
Ensemble XML Virtual
Document Development Guide

Version 2018.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Ensemble XML Virtual Document Development Guide
Ensemble Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3

2 Available Tools ... 5
2.1 Using the XML Schema Structures Page ... 5
2.2 Using the XML Document Viewer Page .. 5
2.3 Importing XML Schemas Programmatically ... 6
2.4 XML Classes .. 6

3 Configuration Steps .. 9
3.1 Loading XML Schemas into Ensemble ... 9
3.2 Adding a Business Service to Handle Inbound XML as Virtual Documents 9
3.3 Adding a Business Process to Handle XML Virtual Documents ... 10
3.4 Adding a Business Operation to Handle XML Virtual Documents ... 10

4 Overview of Property Paths in XML Virtual Documents ... 13
4.1 Orientation to Virtual Property Paths for XML Virtual Documents ... 13

4.1.1 Basic Syntax for Schema-dependent Paths .. 14
4.1.2 Basic Syntax for DOM-style Paths .. 14

4.2 Viewing Path Units for XML Virtual Documents .. 15
4.3 Redundant Inner Elements for Schema-dependent Paths ... 17
4.4 Repeating Fields ... 18
4.5 Duplicate Names .. 18
4.6 Choice Structures ... 19
4.7 Groups Included by Reference ... 20

5 Specifying Schema-dependent Paths for XML Virtual Documents ... 23
5.1 Getting or Setting the Contents of an XML Element ... 23
5.2 Getting or Setting the Value of an XML Attribute ... 24
5.3 Comments and Descriptions ... 24
5.4 Using Mixed Content When Setting Paths ... 25
5.5 Special Variations for Repeating Elements .. 25

5.5.1 Iterating Through the Repeating Elements .. 25
5.5.2 Counting Elements ... 26

5.6 Testing Schema-dependent Paths in the Terminal .. 26

6 Specifying DOM-style Paths for XML Virtual Documents .. 29
6.1 Getting or Setting Nodes (Basic Paths) .. 29
6.2 Using Mixed Content When Setting Paths ... 31
6.3 Using the Basic Path Modifiers .. 32
6.4 Using the Full() Function ... 34
6.5 Getting or Setting the Value of an XML Attribute ... 34
6.6 Using Path Modifiers to Insert or Append Nodes .. 35
6.7 Using the element() Function ... 37
6.8 Getting Positions of Elements .. 38
6.9 Getting Counts of Elements ... 38
6.10 Accessing Other Metadata .. 39
6.11 Summary of Path Modifiers ... 39
6.12 Variations for Documents That Use Namespaces ... 40

Ensemble XML Virtual Document Development Guide iii

6.13 Testing DOM-style Paths in the Terminal .. 40

7 Defining Data Transformations for XML Virtual Documents ... 43
7.1 Creating a Data Transformation ... 43
7.2 Available Assignment Actions for XML Virtual Documents ... 44
7.3 Using Code ... 44

7.3.1 The pFormat Argument .. 45
7.4 Example 1: Copying Most of the Source Document .. 46
7.5 Example 2: Using Only a Few Parts of the Source Document ... 47
7.6 Example 3: Using Code and SetValueAt() ... 48

8 Defining Rule Sets for XML Virtual Documents ... 49
8.1 Creating a Rule Set ... 49
8.2 Example .. 50

9 Defining Search Tables for XML Virtual Documents ... 51
9.1 Introduction .. 51
9.2 Example .. 51

10 XML-Enabled Objects Compared to XML Virtual Documents .. 53

Reference for Settings .. 55
Settings for XML Business Services .. 56
Settings for XML Business Operations .. 57

iv Ensemble XML Virtual Document Development Guide

About This Book

This book is one of a set that describes how to add virtual document interfaces and processing to Ensemble productions.
It contains the following sections:

• Introduction

• Available Tools

• Configuration Steps

• Overview of Property Paths in XML Virtual Documents

• Specifying Schema-dependent Paths

• Specifying DOM-style Paths

• Defining Data Transformations for XML Virtual Documents

• Defining Rule Sets for XML Virtual Documents

• Defining Search Tables for XML Virtual Documents

• XML-Enabled Objects Compared to XML Virtual Documents

• Reference for Settings

For a detailed outline, see the table of contents.

The following books provide related information:

• Ensemble Best Practices describes best practices for organizing and developing Ensemble productions.

• Developing Ensemble Productions explains how to perform the development tasks related to creating an Ensemble
production.

• Configuring Ensemble Productions describes how to configure Ensemble productions, business hosts, and settings. It
also provides reference information on settings not discussed in this book.

• Ensemble Virtual Documents describes the concept of Ensemble virtual documents and provides generic information
on working with them.

For general information, see the InterSystems Documentation Guide.

Ensemble XML Virtual Document Development Guide 1

1
Introduction

Ensemble provides support for XML documents as virtual documents. A virtual document is a kind of message that
Ensemble parses only partially. This kind of message has the standard Ensemble message header and the standard message
properties such as ID, Priority, and SessionId. The data in the message, however, is not available as message properties;
instead it is stored directly in an internal-use global, for greater processing speed.

Ensemble provide tools so that you can access values in virtual documents, for use in data transformations, business rules,
and searching and filtering messages. For background information, see Ensemble Virtual Documents.

Note: • When reading XML documents, Ensemble removes the XML declaration, all processing instructions, and
all comments.

• If the name of an element or attribute includes a period (.), Ensemble replaces that with a tilde (~).

For example, an XML element named My.Element appears as My~Element in Ensemble.

You can also work with XML documents as standard Ensemble messages. To do so, you can generate classes from the
corresponding XML schema. For information, see Using Caché XML Tools.

In some cases, it may be more efficient to use XML-enabled objects in productions instead of XML Virtual Documents.
See “XML-Enabled Objects Compared to XML Virtual Documents” for more information.

Ensemble XML Virtual Document Development Guide 3

2
Available Tools

This chapter provides an overview of the Ensemble tools that you can use to work with XML schemas and documents. It
contains the following sections:

• Using the XML Schema Structures Page

• Using the XML Document Viewer Page

• Importing XML Schemas Programmatically

• XML Classes

2.1 Using the XML Schema Structures Page
The XML Schemas page enables you to import and view XML schema specifications.

To display this page, click Ensemble > Interoperate > XML > XML Schema Structures.

For general information on using this page, see “Using the Schema Structures Page” in Ensemble Virtual Documents.

Before importing a schema file, rename it so that its name is informative and unique within this Ensemble namespace. The
filename is used as the schema category name in the Management Portal and elsewhere. If the filename ends with the file
extension .xsd, the file extension is omitted from the schema category name. Otherwise the file extension is included in
the name.

Note: You can use these schemas only to support processing of XML virtual documents as described in this book.
Ensemble does not use them for any other purpose.

Important: After importing a schema file, do not remove the file from its current location in the file system. The XML
parser uses the schema file rather than the schema stored in the Ensemble database.

2.2 Using the XML Document Viewer Page
The XML Document page enables you to display XML documents, parsing them in different ways, so that you can determine
which DocType to use. You can also test transformations. The documents can be external files or documents from the
Ensemble message archives.

Ensemble XML Virtual Document Development Guide 5

To display this page, click Ensemble > Interoperate > XML > XML Document Viewer.

For general information on using this page, see “Using the Document Viewer Page” in Ensemble Virtual Documents.

2.3 Importing XML Schemas Programmatically
You can also load schemas programmatically by using the EnsLib.EDI.XML.SchemaXSD class directly. This class provides
the Import() class method. The first argument to this method is the name of the file to import, including its full directory
path. For example:

set status= ##class(EnsLib.EDI.XML.SchemaXSD).Import("c:\ENSEMBLE\myapp.xsd")

The EnsLib.EDI.XML.SchemaXSD class also provides the ImportFiles() method. For this method, you can specify the first
argument in either of the following ways:

• As the name of a directory to import files from. Ensemble attempts to import all files in this directory, regardless of
the file extensions. For example:

set status=##class(EnsLib.EDI.XML.SchemaXSD).ImportFiles("c:\ENSEMBLE\")

• As a list of filenames, separated by semicolons. You must include the full directory path for the first of these, and you
can use wildcards in the filenames. For example:

set status=##class(EnsLib.EDI.XML.SchemaXSD).ImportFiles("c:\ENSEMBLE*.xsd;*.XSD")

For more information, see the class reference for EnsLib.EDI.XML.SchemaXSD.

Important: After importing a schema file, do not remove the file from its current location in the file system. The XML
parser uses the schema file rather than the schema stored in the Ensemble database.

2.4 XML Classes
For reference, this section lists the classes that Ensemble provides to enable you to work with XML documents.

NotesClassesItem

Each of these business service
classes uses a different adapter,
as indicated by the class name.

• EnsLib.EDI.XML.Service.FileService

• EnsLib.EDI.XML.Service.FTPService

XML business
services

This class is the standard virtual
document routing process.

EnsLib.MsgRouter.VDocRoutingEngineXML routing
process

Each of these business operation
classes uses a different adapter,
as indicated by the class name.

• EnsLib.EDI.XML.Operation.FileOperation

• EnsLib.EDI.XML.Operation.FTPOperation

XML business
operations

This is a specialized message
class to carry XML documents as
Ensemble virtual documents.

EnsLib.EDI.XML.Document (automatically used by the
business host classes)

Messages

6 Ensemble XML Virtual Document Development Guide

Available Tools

NotesClassesItem

This is a specialized search table
class for XML documents.

EnsLib.EDI.XML.SearchTableSearch table

You can also create and use subclasses of these classes.

The business host classes include configurable targets. The following diagram shows some of them:

For information on other configurable targets, see “Reference for Settings.”

Ensemble XML Virtual Document Development Guide 7

XML Classes

3
Configuration Steps

This chapter describes the configuration steps needed to use XML virtual documents in a production. It discusses the fol-
lowing topics:

• How to load XML schemas into Ensemble

• How to configure a business service to handle inbound XML as virtual documents

• How to configure a business process to route XML virtual documents

• How to configure a business operation to handle XML virtual documents

For information on settings not described here, see “Reference for Settings.”

Later chapters describe how to create items to use in the production: data transformations, rule sets, and search tables.

3.1 Loading XML Schemas into Ensemble
For XML virtual documents, it is useful, but not required, to load the corresponding XML schemas into Ensemble. If the
schemas are available in Ensemble, then Ensemble can validate the documents, and you can use the schema-dependent
virtual property paths (rather than only the DOM-style paths). Also, the DTL editor and the Business Rule Editor provide
assistance with the document structure.

To load an XML schema into Ensemble, use the XML Schema Structures page, described in the chapter “Available Tools.”

3.2 Adding a Business Service to Handle Inbound XML
as Virtual Documents
To add a business service to handle inbound XML documents as Ensemble virtual documents, do the following:

1. To your production, add a business service that is based on the class EnsLib.EDI.XML.Service.FileService or
EnsLib.EDI.XML.Service.FTPService.

2. Specify where this business service will find the inbound XML documents.

For example, for EnsLib.EDI.XML.Service.FileService, specify the File Path setting, which is the directory that the
business service will check for new files.

Ensemble XML Virtual Document Development Guide 9

3. Optionally specify other settings as needed. In particular, you might want to specify the following:

• Doc Schema Category, which specifies the XML schema that applies to the inbound documents. Select a XML
schema that you have previously loaded.

You must choose a schema if you want to validate the messages. The schema can also be used if you define search
tables.

• Charset, which specifies the character set of the inbound data. Ensemble automatically translates from this character
encoding. For more options, see “Charset” in “Reference for Settings” in Using File Adapters with Ensemble.

• Search Table Class. See the chapter “Defining Search Tables for XML Virtual Documents.”

Make sure that this search table class is consistent with the kinds of messages received by this business host. For
example, if the business host receives messages whose root element is <Transaction>, it would not be appro-
priate to use a search table class that used properties in an <Employee> element.

4. Specify where to send the XML documents. To do so, specify a comma-separated list of values for the Target Config

Names setting. Each value should be the name of either a business process or a business operation.

3.3 Adding a Business Process to Handle XML Virtual
Documents
To add a business process to handle XML virtual documents, do the following:

1. To your production, add a business process that is based on the class EnsLib.MsgRouter.VDocRoutingEngine.

2. For this business process, specify the Business Rule Name setting. Choose the appropriate business rule set that acts
on XML virtual documents.

For information on defining these, see the chapter “Defining Rule Sets for XML Virtual Documents.”

3. Optionally specify other settings as needed.

4. Configure the appropriate business host or hosts in the same production to send XML virtual documents to this business
process:

• For a business service, edit the Target Config Names setting to include the name of this business process.

• For a business process, specify a Business Rule Name that routes messages to this business process.

3.4 Adding a Business Operation to Handle XML Virtual
Documents
To add a business operation to send XML virtual documents to destinations outside of an Ensemble production, do the
following:

1. To your production, add a business operation that is based on the class EnsLib.EDI.XML.Operation.FileOperation or
EnsLib.EDI.XML.Operation.FTPOperation.

2. Specify settings of this business operation as needed.

10 Ensemble XML Virtual Document Development Guide

Configuration Steps

For example, for EnsLib.EDI.XML.Operation.FileOperation, specify the File Path setting, which is the directory to which
the business operation will write the files. The directory must exist and must be accessible.

3. Optionally specify the Search Table Class setting. See the chapter “Defining Search Tables for XML Virtual Docu-
ments.”

Make sure that this search table class is consistent with the kinds of messages received by this business host. For
example, if the business host receives messages whose root element is <Transaction>, it would not be appropriate
to use a search table class that referred to an <Employee> element.

4. Configure the appropriate business host or hosts in the same production to send XML virtual documents to this business
operation:

• For a business service, edit the Target Config Names setting to include the name of this business operation.

• For a business process, specify a Business Rule Name that routes messages to this business operation.

You might also want to add business operations to handle bad messages (for background, see “Business Processes for
Virtual Documents” in Ensemble Virtual Documents).

Ensemble XML Virtual Document Development Guide 11

Adding a Business Operation to Handle XML Virtual Documents

4
Overview of Property Paths in XML Virtual
Documents

This chapter provides an overview of property paths in XML virtual documents. It discusses the following:

• Orientation to virtual property paths for XML documents

• How to view property path units for an XML schema

• How Ensemble handles redundant inner elements

• How Ensemble handles repeating elements

• How Ensemble handles duplicate elements

• How Ensemble handles choice structures

• How Ensemble handles groups included by reference

The next two chapters describe in detail how to create property paths.

Note: The code examples in this chapter are fragments from data transformations, because data transformations generally
use a richer set of property paths than do rule sets and search tables. Also, the emphasis is on DOM-style paths,
because those are the paths that you must create manually. (In contrast, when you specify a schema to use,
Ensemble displays the structure of the document and automatically generates schema-dependent paths when you
drag and drop or when you use auto-completion.)

4.1 Orientation to Virtual Property Paths for XML Virtual
Documents
This section briefly introduces virtual property paths for XML virtual documents.

As noted earlier, you can use schema-dependent paths only if you have loaded the corresponding XML schema. You can
always use DOM-style paths, even when no schema is available.

Ensemble XML Virtual Document Development Guide 13

4.1.1 Basic Syntax for Schema-dependent Paths

For XML virtual documents, a schema-dependent path consists of a set of path units separated by periods, as in the following
example:

unit1.unit2.unit3

Where unit1 is the name of a child XML element in the document, unit2 is the name of a child element within unit1, and
so on. The leaf unit is the name of either a child XML element or an XML attribute.

For example:

HomeAddress.City

For complete information, see the chapter “Specifying Schema-dependent Paths.”

4.1.2 Basic Syntax for DOM-style Paths

A DOM-style path always starts with a slash and has the basic structure shown in the following example:

/root_unit/unit1/unit2/unit3

Each path unit has the following form.

namespace_identifier:name

Where namespace_identifier represents the XML namespace; this is a token that Ensemble replaces with the actual
namespace URI, as discussed in a later subsection. This token is needed only if the element or attribute is in a namespace,
as you will see later in this chapter.

name is the name of an XML element or attribute.

For example:

/$2:Patient/$2:HomeAddress/$2:City

For complete information, see “Specifying DOM-style Paths.”

4.1.2.1 XML Namespace Tokens

When you load a schema into Ensemble, Ensemble establishes a set of tokens for the namespaces used in that schema, for
use in any DOM-style paths.

The token $1 is used for first namespace that is declared in the schema; this usually corresponds to the XML schema
namespace (http://www.w3.org/2001/XMLSchema). The token $2 is used for the next namespace that is declared
in the schema, $3 is used for the third, and so on.

Ensemble assigns namespace tokens for all namespaces declared in the schema, whether or not those namespaces are
actually used. Therefore, Ensemble might use $3 or a higher value rather than $2 for the items of interest to you, if additional
namespaces are declared in the schema. It is practical to use the Management Portal to view the individual path units, as
discussed in the next section, to be sure that you are using the correct token for a specific path unit.

You can use namespace tokens if you have also loaded the corresponding schema (and have configured the applicable
business host to use that schema). Otherwise, you must use the namespace prefixes exactly as given in the XML document.

14 Ensemble XML Virtual Document Development Guide

Overview of Property Paths in XML Virtual Documents

4.2 Viewing Path Units for XML Virtual Documents
Until you are familiar with property paths for XML virtual documents, it is useful to use the Management Portal to view
the individual path units. You can do this if you have loaded the corresponding schema.

To view the path units for the elements and attributes in a schema:

1. Load the schema as described in the previous chapter.

For example, consider the following XML schema, shown here for reference, for the benefit of readers who are
familiar with XML schemas:

XML

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" targetNamespace="http://myapp.com"
xmlns:myapp="http://myapp.com">
 <element name="Patient" type="myapp:Patient"/>
 <complexType name="Patient">
 <sequence>
 <element minOccurs="0" name="Name" type="string"/>
 <element minOccurs="0" name="FavoriteColors"
 type="myapp:ArrayOfFavoriteColorString" />
 <element minOccurs="0" name="Address" type="myapp:Address" />
 <element minOccurs="0" name="Doctor" type="myapp:Doctor" />
 </sequence>
 <attribute name="MRN" type="string"/>
 <attribute name="DL" type="string"/>
 </complexType>
 <complexType name="ArrayOfFavoriteColorString">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="FavoriteColor"
 nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="Address">
 <sequence>
 <element minOccurs="0" name="Street" type="string"/>
 <element minOccurs="0" name="City" type="string"/>
 <element minOccurs="0" name="State" type="string"/>
 <element minOccurs="0" name="ZIP" type="string"/>
 </sequence>
 </complexType>
 <complexType name="Doctor">
 <sequence>
 <element minOccurs="0" name="Name" type="string"/>
 </sequence>
 </complexType>
</schema>

The following shows an example XML document that obeys the schema shown in this section:

XML

<?xml version="1.0" ?>
<Patient MRN='000111222' xmlns='http://myapp.com'>
 <Name>Georgina Hampton</Name>
 <FavoriteColors>
 <FavoriteColor>Red</FavoriteColor>
 <FavoriteColor>Green</FavoriteColor>
 </FavoriteColors>
 <Address>
 <Street>86 Bateson Way</Street>
 <City>Fall River</City>
 </Address>
 <Doctor>
 <Name>Dr. Randolph</Name>
 </Doctor>
</Patient>

Ensemble XML Virtual Document Development Guide 15

Viewing Path Units for XML Virtual Documents

2. Click Ensemble > Interoperate > XML > XML Schema Structures. This displays the XML Schemas page. The left column
lists XML schemas loaded into this Ensemble namespace.

3. Click Category link in the row corresponding to the XML schema of interest.

If we do this for the XML schema shown previously, Ensemble then displays this:

4. Click the link for the document type of interest.

If we click Patient, Ensemble then displays this:

On this page:

• Above the table, the value in large font displays the DocType value for this XML element. In this case, DocType
is MyApp:Patient.

• The Name column shows path units in the format needed for schema-dependent paths.

In this case, this page tells us that we can use Name, FavoriteColors, Address, Doctor, MRN, and DL as
path units in schema-dependent paths.

• The Element column shows path units in the format needed for DOM-style property paths.

In this case, this page tells us that we can use $3:Name, $2:FavoriteColors/$2:FavoriteColor,
$2:Address, $2:Doctor/$2:Name, @MRN, and @DL as path units in DOM-style paths. Notice that @MRN and
@DL do not have a namespace prefix; these attributes are not in any namespace.

5. Click additional sub-items as wanted.

If we click Address in the Name column, Ensemble displays this:

16 Ensemble XML Virtual Document Development Guide

Overview of Property Paths in XML Virtual Documents

This page displays any additional path units within Address.

In this case, this page tells us that we can use these additional path units in combination with the path unit that we used
to get to this page, for example:

...Address.StreetSchema-dependent path (partial)

/.../$2:Address/$2:StreetDOM-style path (partial)

The following sections note specific variations due to schema variations.

4.3 Redundant Inner Elements for Schema-dependent
Paths
For schema-dependent paths, Ensemble collapses redundant inner elements. This is best explained by example:

• The <FavoriteColors> element contains a sequence of multiple <FavoriteColor> elements. On the schema
viewer page, <FavoriteColors> is shown simply as FavoriteColors() in the Name column (which shows the path
unit for schema-dependent paths). This column is displayed in blue in the following figure.

Ensemble XML Virtual Document Development Guide 17

Redundant Inner Elements for Schema-dependent Paths

In contrast, the same element is shown as $2:FavoriteColors/$2:FavoriteColorsItem in the Element column
on the right. This column shows the path unit for DOM-style paths.

For a sequence of multiple items of the same type, the schema-dependent path does not use the name of the inner element.
(In contrast, the DOM-style path uses all the element names.) More generally, any redundant inner levels found in a
schema are ignored in schema-dependent paths; the following item shows another example.

• The <Doctor> element includes a single <Name> element. On the schema viewer page, the <Doctor> item is shown
as Doctor in the Name column, as shown in the previous figure.

Notice that the schema-dependent path to the data inside <Doctor> does not use the name of the inner element.

In contrast, the same item is shown as $3:Doctor/$3:Name in the Element column on the right. This column shows
the path unit for DOM-style paths.

4.4 Repeating Fields
If a given element can occur multiple times, the Name column displays parentheses () at the end of the element name. For
example, see the FavoriteColors() row in the preceding figure.

The Type and Element columns indicate the number of times the element can be repeated. In this case, the element can be
repeated five times. If there is no number displayed in parentheses in the Type column, the element can be repeated any
number of times.

4.5 Duplicate Names
If an XML schema has multiple elements at the same level that have the same name but different types, then Ensemble
appends _2, _3, and so on, as needed to create unique names at that level. This procedure applies only to the schema-
dependent paths. For example, consider a schema that defines the <Person> element to include two elements named

18 Ensemble XML Virtual Document Development Guide

Overview of Property Paths in XML Virtual Documents

<Contact>. One is of type <Phone> and the other is of type <Assistant>. Ensemble displays the schema for the
<Person> element as follows:

Similarly, if the schema has multiple elements at the same level but in different namespaces, then Ensemble appends _2,
_3, and so on, as needed to create unique names at that level. This procedure applies only to the schema-dependent paths.

4.6 Choice Structures
Some schemas include <choice> structures, like the following example:

<xsd:choice>
 <xsd:element name="OptionA" type="my:OptionType"/>
 <xsd:element name="OptionB" type="my:OptionType"/>
 <xsd:element name="OptionC" type="my:OptionType"/>
</xsd:choice>

Ensemble represents this structure differently for the two kinds of paths. The following shows an example:

For schema-dependent paths, the Name displays a generic name for the <choice> structure, and the Type column displays
a numeric placeholder. The Element column does not display anything.

If we click choice, Ensemble then displays the following:

Ensemble XML Virtual Document Development Guide 19

Choice Structures

In this case, these pages tell us that we can use the following paths to access OptionB:

...Parent.choice.OptionBSchema-dependent path (partial)

/.../Parent/OptionBDOM-style path (partial)

4.7 Groups Included by Reference
A schema can include a <group> that is included via the ref attribute. For example:

<s01:complexType name="Patient">
 <s01:sequence>
 <s01:element name="Name" type="s01:string" minOccurs="0"/>
 <s01:element name="Gender" type="s01:string" minOccurs="0"/>
 <s01:element name="BirthDate" type="s01:date" minOccurs="0"/>
 <s01:element name="HomeAddress" type="s02:Address" minOccurs="0"/>
 <s01:element name="FavoriteColors"
 type="s02:ArrayOfFavoriteColorsItemString" minOccurs="0"/>
 <s01:element name="Container" type="s02:ContainerType" minOccurs="0"/>
 <s01:element name="LatestImmunization" type="s02:Immunization" minOccurs="0"/>
 <s01:element ref="s02:Insurance" minOccurs="0"/>
 <s01:group ref="s02:BoilerPlate" minOccurs="1" maxOccurs="1"/>
 </s01:sequence>
...
<s01:group name="BoilerPlate">
 <s01:sequence>
 <s01:element name="One" type="s01:string"/>
 <s01:element name="Two" type="s01:string"/>
 <s01:element name="Three" type="s01:string"/>
 </s01:sequence>
</s01:group>

Ensemble represents this structure differently for the two kinds of paths. The following shows an example:

20 Ensemble XML Virtual Document Development Guide

Overview of Property Paths in XML Virtual Documents

For schema-dependent paths, the Name displays the name of the group, and the Type column displays a numeric placeholder.
The Element column also displays the name of the group.

If we click BoilerPlate, Ensemble then displays the following:

In this case, these pages tell us that we can use the following paths to access Two:

...Patient.BoilerPlate.TwoSchema-dependent path (partial)

/.../$2:Patient/$2:TwoDOM-style path (partial)

Ensemble XML Virtual Document Development Guide 21

Groups Included by Reference

5
Specifying Schema-dependent Paths for
XML Virtual Documents

This chapter describes how to specify schema-dependent paths for XML virtual documents. It discusses the following:

• How to access contents of an element

• How to access the value of an attribute

• Comments and descriptions

• Mixed content

• Special variations for repeating elements

• How to test schema-dependent paths in the Terminal

You can use these paths to access values and to set values.

The examples in this chapter use the schema shown in the previous chapter.

5.1 Getting or Setting the Contents of an XML Element
To access the contents of an element, you can use one of the following schema-dependent paths. You also use these paths
when you create more complex schema-dependent paths as discussed in later subsections.

Refers toSyntax

Contents of the given element. element_name must be a child of the root
element.

element_name

Contents of the given element. parent is the full path to an element — that is,
any syntax shown in this table. In this case, element_name is a child of the
element referred to by parent.

parent.element_name

Contents of the nth element with the name element_name within the given
parent.

parent.element_name(n)

Contents of the last element with the name element_name within the given
parent.

parent.element_name(-)

Ensemble XML Virtual Document Development Guide 23

Consider the following XML document:

XML

<?xml version="1.0" ?>
<Patient MRN='000111222' xmlns='http://myapp.com'>
 <Name>Georgina Hampton</Name>
 <FavoriteColors>
 <FavoriteColor>Red</FavoriteColor>
 <FavoriteColor>Green</FavoriteColor>
 </FavoriteColors>
 <Address>
 <Street>86 Bateson Way</Street>
 <City>Fall River</City>
 </Address>
 <Doctor>
 <Name>Dr. Randolph</Name>
 </Doctor>
</Patient>

The following table shows some example paths for this document:

Current Path ValueExample Path

Georgina HamptonName

RedFavoriteColors(1)

GreenFavoriteColors(2)

GreenFavoriteColors(-)

86 Bateson WayFall RiverAddress

86 Bateson WayAddress.Street

Dr. RandolphDoctor

5.2 Getting or Setting the Value of an XML Attribute
To access the value of an attribute, you can use one of the following schema-dependent paths. Here (and in the rest of this
section), element_reference is a complete schema-dependent path as described in the previous table.

Refers toSyntax

Value of the attribute_name attribute of the element indicated by
element_reference.

element_reference.attribute_name

The following table shows an example path for the previous document:

Current Path ValueExample Path

000111222MRN

5.3 Comments and Descriptions
Ensemble removes the comments when it reads XML files. Consequently, you should not use comments to document the
schema. Instead of using comments, you can use the description or altdesc attributes available on most schema elements.

24 Ensemble XML Virtual Document Development Guide

Specifying Schema-dependent Paths for XML Virtual Documents

Although it is not useful in most cases, you can access a comment by using one of the following schema-dependent paths:

Refers toSyntax

Text of the first comment of the given element.element_reference.#

Text of the nth comment of the given element.element_reference.#(n)

Text of the last comment.element_reference.#(-)

Note: Ensemble removes all comments when it reads in XML files. The only comments that can be present are comments
that have been added since the XML file was read. To add a comment, use setValueAt() with a path like one
shown in the preceding table.

5.4 Using Mixed Content When Setting Paths
When you use setValueAt(), you can specify a value that consists of mixed content (that is, a value that consists of a mix
of element and text nodes). For example:

ObjectScript

 set mixed="SOME TEXT<HOMETOWN>BELMONT</HOMETOWN>"
 set status=target.SetValueAt(mixed,"Address")

The following table describes how Ensemble handles the value in different scenarios:

How Ensemble Handles the Mixed ContentPath Refers to

Ensemble replaces the current contents of the element or comment with the given
mixed content

element or comment

Not supportedattribute

5.5 Special Variations for Repeating Elements
This section describes variations of virtual property paths that apply when you are referring to a repeating element.

5.5.1 Iterating Through the Repeating Elements

If the path refers to a repeating element, you can use the following syntax to iterate through every instance of that element.

Refers toSyntax

Iterates through the elements of the given name, within the given context.element_name()

Suppose that we now use a data transformation that contains only the following code:

ObjectScript

 set status=target.SetValueAt("REPLACED COLOR","FavoriteColors()")
 if 'status {do $system.Status.DisplayError(status) quit}

Ensemble XML Virtual Document Development Guide 25

Using Mixed Content When Setting Paths

This line of code transforms the document shown previously in this chapter to the following:

XML

<?xml version="1.0" ?>
<Patient MRN='000111222' xmlns='http://myapp.com'>
 <Name>Georgina Hampton</Name>
 <FavoriteColors>
 <FavoriteColor>REPLACED COLOR</FavoriteColor>
 <FavoriteColor>REPLACED COLOR</FavoriteColor>
 </FavoriteColors>
 <Address>
 <Street>86 Bateson Way</Street>
 <City>Fall River</City>
 </Address>
 <Doctor>
 <Name>Dr. Randolph</Name>
 </Doctor>
</Patient>

5.5.2 Counting Elements

If the path refers to a repeating element, you can use the following syntax to return the number of elements.

Refers toSyntax

Number of elements of the given name, within the given context. This syntax is
valid only if the schema defines element_name as a repeating element.

element_name(*)

Number of elements of the given name, within the given context. This syntax is
valid for any element_name.

element_name.*

The following table shows example paths for the document shown previously in this chapter:

Current Path ValueExample Path

2FavoriteColors.*

2FavoriteColors(*)

5.6 Testing Schema-dependent Paths in the Terminal
It can be useful to test virtual document property paths in the Terminal before using them in business processes, data
transformations, and so on, particularly when you are getting familiar with the syntax. To do so for schema-dependent
XML paths, do the following:

1. Load the corresponding XML schema or schemas into Ensemble. To do so, use the XML Schema Structures page,
described in the chapter “Available Tools.”

2. Use the Management Portal to find the DocType value for the root element of the documents that you plan to test. For
example:

See “Viewing Path Units for XML Virtual Documents,” earlier in this book.

26 Ensemble XML Virtual Document Development Guide

Specifying Schema-dependent Paths for XML Virtual Documents

3. In the Terminal or in test code:

a. Create a string that contains the text of a suitable XML document.

b. Use the ImportFromString() method of EnsLib.EDI.XML.Document to create an instance of an XML virtual
document from this string.

c. Set the DocType property of this instance.

d. Use the GetValueAt() and SetValueAt() methods of this instance.

The following method demonstrates step 3:

ClassMethod TestSchemaPath()
{
 set string="<Patient xmlns='http://myapp.com'>"
 _"<Name>Jack Brown</Name>"
 _"<Address><Street>233 Main St</Street></Address>"
 _"</Patient>"
 set target=##class(EnsLib.EDI.XML.Document).ImportFromString(string,.status)
 if 'status {do $system.Status.DisplayError(status) quit}

 //Use the DocType displayed in the Management Portal
 set target.DocType="MyApp:Patient"

 set pathvalue=target.GetValueAt("Address.Street",,.status)
 if 'status {do $system.Status.DisplayError(status) quit}
 write pathvalue
}

The following shows output from this method:

ENSDEMO>d ##class(Demo.CheckPaths).TestSchemaPath()
233 Main St

For additional options for GetValueAt(), see “The pFormat Argument,” later in this book.

Ensemble XML Virtual Document Development Guide 27

Testing Schema-dependent Paths in the Terminal

6
Specifying DOM-style Paths for XML
Virtual Documents

This chapter describes how to specify DOM-style paths for XML virtual documents. It discusses the following:

• How to get or set a document node (basic paths)

• How to use mixed content when setting a value

• How to use basic path modifiers

• How to use the full() function

• How to get or set the value of an attribute

• How to insert or append nodes

• How to use the element() function

• How to get positions of elements

• How to count items

• How to get other metadata

• Summary of path modifiers

• How to modify a path to consider namespaces

• How to test DOM-style paths in the Terminal

You can use these paths to access values and to set values (with noted exceptions).

Most of the following sections assume that the document does not use any XML namespaces. The last section gives infor-
mation on adapting these paths for a document that does use XML namespaces.

The examples in this chapter use the schema shown in the chapter “Overview of Property Paths in XML Virtual Documents.”

6.1 Getting or Setting Nodes (Basic Paths)
In an XML virtual document, there are five kinds of nodes: the root node, elements, text nodes, comments, and processing
instructions. The root node and any element can have child nodes of any type. The other kinds of nodes cannot have child
nodes. Attributes are not nodes.

Ensemble XML Virtual Document Development Guide 29

The following table lists basic DOM-style paths to get or set many of the nodes of an XML virtual document. When there
are multiple nodes of the same type or with the same name, and when you do not want the first one, see the next section.

You also use these paths when you create more complex DOM-style paths as discussed in later subsections.

Refers toSyntax

Contents of the root node.You can also use "", if the context makes
it clear that you are using a DOM-style path (that is, if no schema is
loaded).

/

Contents of the root element, whose name is root_element_name./root_element_name

Contents of the first element of the given name (element_name),
within the given parent. Here parent is the full path to its parent
element, including (as always) the initial slash.

parent/element_name

First text node in the element indicated by element_reference.element_reference/text()

First comment in the element indicated by element_reference.

The value returned does not include the opening syntax (<!--) or
the closing syntax (-->). Similarly, do not include the opening or
closing syntax when setting the value.

Ensemble removes all comments when it reads in XML files. The
only comments that can be present are comments that you add. (To
add them, use setValueAt() with a path like the one shown here.)

element_reference/comment()

First processing instruction in the element indicated by
element_reference.

The value returned does not include the opening syntax (<?) or the
closing syntax (?>). Similarly, do not include the opening or closing
syntax when setting the value.

Ensemble removes all processing instructions when it reads in XML
files. The only instructions that can be present are instructions that
you add. (To add them, use setValueAt() with a path like the one
shown here.)

element_reference/instruction()

Consider the following XML document:

XML

<?xml version="1.0" ?>
<Patient xmlns='http://myapp.com'>Sample text node
 <!--Sample comment-->
 <!--Another comment-->
 <Name>Jane Doe</Name>
 <Address>
 <Street>100 Blank Way</Street>
 </Address>
</Patient>

The following table shows some example paths for this document:

Current Path ValueExample Path

Jane Doe/Patient/Name

30 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

Current Path ValueExample Path

<Street>100 Blank Way</Street>

In this case, the referenced element contains a child element (in contrast
to the previous example). Note that Ensemble ignores whitespace when
comparing DOM-style paths to values. That is, the value here matches
the given path whether or not the document contains line breaks and
indentation.

/Patient/Address

100 Blank Way/Patient/Address/Street

Sample text node/Patient/text()

Sample comment/Patient/comment()

Suppose that we now use a data transformation that contains only the following code:

ObjectScript

 set status=target.SetValueAt("892 Broadway","/Patient/Address/Street")
 if 'status {do $system.Status.DisplayError(status) quit}
 set status=target.SetValueAt("Dr. Badge","/Patient/Doctor/Name")
 if 'status {do $system.Status.DisplayError(status) quit}

Notice that one of these paths already exists and the other does not; both paths are valid. After we use this transformation,
the new document would then look like the following:

XML

<?xml version="1.0" ?>
<Patient xmlns='http://myapp.com'>Sample text node
 <!--Sample comment-->
 <!--Another comment-->
 <Name>Jane Doe</Name>
 <Address>892 Broadway</Address>
 <Doctor>
 <Name>Dr. Badge</Name>
 </Doctor>
</Patient>

6.2 Using Mixed Content When Setting Paths
When you use setValueAt() to set the value at a node, you can specify a value that consists of mixed content (that is, a
value that consists of a mix of element and text nodes). For example:

ObjectScript

 set mixed="SOME TEXT<HOMETOWN>BELMONT</HOMETOWN>"
 set status=target.SetValueAt(mixed,"/Patient/Address/Street")

The following table describes how Ensemble handles the value when you set the value of each different kind of node:

How Ensemble Handles Mixed Content Provided for the Node ValueNode Type

Not supportedroot

Ensemble replaces the current contents of the node with the given mixed contentelement or comment

Ensemble escapes the XML special characters and then replaces the current
contents of the given node

text node or instruction

Ensemble XML Virtual Document Development Guide 31

Using Mixed Content When Setting Paths

Note that attributes are not nodes.

6.3 Using the Basic Path Modifiers
You can add the following basic path modifiers to the end of basic paths (listed in the previous section), with noted
exceptions. You can use the resulting paths in the same way that you use any of the basic paths.

[n]

Refers to an item by item position. Only instances of that item are counted; items of other types are ignored.

• When you get a value, this syntax returns the nth instance of the item to which the basic path refers (or an
empty string otherwise).

• When you set a value, this syntax either overwrites or creates the nth instance of the item to which the basic
path refers.

You can substitute a hyphen (-) to access the last instance. You can also omit the square brackets.

/[n]

Refers to a child element by child element position.

You can substitute a hyphen (-) to access the last child. You can also omit the square brackets.

Restrictions:

• You can use this only with a basic path that refers to an element; that is, you cannot use it with functions such
as comment().

• You can use this syntax only when getting a value, not when setting a value.

You can combine this path modifier with the other path modifiers, if you use the /[n] modifier as the last modifier.

[$n]

Refers to an item by node position.

• When you get a value, this syntax returns the nth node, if that node is an instance of the item to which the
basic path refers. Otherwise the path is invalid, and an error is returned.

• When you set a value, this syntax overwrites the nth node, if that node is an instance of the item to which the
basic path refers. Otherwise the path is invalid, and an error is returned.

Different path modifiers, listed in a later section, enable you to insert or append nodes. (Also see “Summary of Path
Modifiers”.)

Consider the following XML document:

32 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

XML

<?xml version="1.0" ?>
<Patient xmlns='http://myapp.com'>
 <!--Sample comment-->
 <!--Another comment-->
 Sample text node
 <Name>Fred Williams</Name>
 <FavoriteColors>
 <FavoriteColor>Red</FavoriteColor>
 <FavoriteColor>Green</FavoriteColor>
 </FavoriteColors>
 <Doctor>
 <Name>Dr. Arnold</Name>
 </Doctor>
</Patient>

The following table shows some example paths for this document:

NotesCurrent Path ValueExample Path

Fred Williams/Patient/Name

This path accesses the first
child element within the first
element of the document (which
is the only element in the
document, according to the XML
standard). The square brackets
are optional here.

Fred Williams/[1]/[1]

The square brackets are
optional here.

Red/Patient/FavoriteColors/[1]

Green/Patient/FavoriteColors/[2]

Red/[1]/[2]/[1]

Green/[1]/[2]/[2]

This path is invalid. The first
node within <Patient> is not a
<Name> element.

An empty string/Patient/Name[$1]

Fred Williams/Patient/Name[$4]

<Name

xmlns='http://myapp.com'>Dr.

Arnold</Name>

/Patient/Doctor[$6]

This path is invalid. <Patient>
does not have a fourth element.

An empty string/Patient/4

For these paths, the square
brackets are required, because
without square brackets, these
paths would be interpreted as
element names.

Sample comment/Patient/comment()[1]

Another comment/Patient/comment()[2]

Another comment/Patient/comment()[$2]

Another comment/Patient/comment()[-]

Ensemble XML Virtual Document Development Guide 33

Using the Basic Path Modifiers

6.4 Using the Full() Function
For a path that refers to an element (either a basic path or a path that uses basic modifiers), you can also obtain the opening
and closing tags of the element. To do so, add full() to the end of the path.

You can use the full() function when you are setting a value. Within DTL, this is permitted only within a data transformation
that uses the append action; see “Assignment Actions for XML Virtual Documents,” later in this book.

Consider the following XML document:

XML

<?xml version="1.0" ?>
<Patient xmlns='http://myapp.com'>
 <Name>Jack Brown</Name>
 <Address>
 <Street>233 Main St</Street>
 </Address>
</Patient>

The following table shows some example paths for this document:

Current Path ValueExample Path

<Name xmlns='http://myapp.com'>Jack Brown</Name>/Patient/Name/full()

<Address xmlns='http://myapp.com'><Street>233 Main

St</Street></Address>

/Patient/Address/full()

<Street xmlns='http://myapp.com'>233 Main

St</Street>

/Patient/Address/Street/full()

For the root note, use of the full() function is implied. That is, the following two paths are equivalent:

/
/full()

Note: If you use GetValueAt(), you can also specify an additional format argument (f) that retrieves the full element.
For details, see “The pFormat Argument,” later in this book.

6.5 Getting or Setting the Value of an XML Attribute
To access the value of an attribute, you can use one of the following DOM-style paths. Here (and in the rest of this section),
element_reference is a complete DOM-style path to an element.

Refers toSyntax

Value of the given attribute of the given element.element_reference/@attribute_name

(For use only when retrieving values) Value of the nth attribute (in
alphabetical order) of the given element.

element_reference/@[n]

Value of the last attribute of the given element.element_reference/@[-]

You can omit the square brackets.

For example, consider the following XML document:

34 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

XML

<?xml version="1.0" ?>
<Patient MRN='000111222' DL='123-45-6789' xmlns='http://myapp.com'>
 <Name>Liz Jones</Name>
</Patient>

The following table shows some example paths for this document:

Current Path ValueExample Path

000111222/Patient/@MRN

000111222/Patient/@[1]

123-45-6789/Patient/@2

6.6 Using Path Modifiers to Insert or Append Nodes
To insert or append nodes, add the following path modifiers to the end of basic paths. Use the path modifiers listed here
only when you are setting a value.

Also see the next section for a couple of additional options.

[~n]

Inserts an instance of the item to which the basic path refers, right before the nth instance of that item, in the given
context. Nothing is overwritten. See the following table for details.

Here and in the rest of this subsection, n is an integer.

BehaviorExample Path

Inserts a new <Episode> element within <Patient>,
before the existing fifth <Episode> element.

If <Patient> does not include five <Episode> elements,
Ensemble performs padding; it creates empty <Episode>
elements so that the inserted <Episode> is the fifth
<Episode>. All the newly inserted elements are at the
end of the <Patient> element.

If the path refers to intermediate, nonexistent elements,
Ensemble creates those.

/Patient/Episode[~5]

Inserts an <Episode> element within <Patient>, before
the existing fifth element.

If <Patient> does not include five elements (of any type),
this path is invalid. The element() function does not gen-
erate empty elements for padding.

/Patient/element(Episode)[~5]

Not allowed, because there is no information about the
kind of element to insert.

/Patient/[~5]

/Patient/element()[~5]

For example, consider the following XML document:

Ensemble XML Virtual Document Development Guide 35

Using Path Modifiers to Insert or Append Nodes

XML

<?xml version="1.0" ?>
<Patient xmlns='http://myapp.com'>
 <Name>Betty Hodgkins</Name>
 <FavoriteColors>
 <FavoriteColor>Purple</FavoriteColor>
 </FavoriteColors>
</Patient>

Also consider the following code from within a data transformation:

ObjectScript

 set status=target.SetValueAt("INSERTED COLOR","/Patient/FavoriteColors/FavoriteColor[~4]")
 if 'status {do $system.Status.DisplayError(status) quit}

This line of code transforms the original document into the following:

XML

<?xml version="1.0" ?>
<Patient>
 <Name>Betty Hodgkins</Name>
 <FavoriteColors>
 <FavoriteColor>Purple</FavoriteColor>
 <FavoriteColor/>
 <FavoriteColor/>
 <FavoriteColor>INSERTED COLOR</FavoriteColor>
 </FavoriteColors>
</Patient>

For another example, consider the following XML document:

XML

<Patient xmlns='http://myapp.com'>
 <Name>Colin McMasters</Name>
 <Address>
 <Street>102 Windermere Lane</Street>
 </Address>
</Patient>

Also considering the following code from within a data transformation:

ObjectScript

 set status=target.SetValueAt("INSERTED ADDRESS","/Patient/Address/Street[~2]")
 if 'status {do $system.Status.DisplayError(status) quit}

This line of code transforms the original document into the following:

<?xml version="1.0" ?>
<Patient>
 <Name>Colin McMasters</Name>
 <Address>
 <Street>102 Windermere Lane</Street>
 <Street>INSERTED ADDRESS</Street>
 </Address>
</Patient>

[~$n]

Inserts an instance of the item to which the basic path refers, right before the nth node in the given parent. Nothing
is overwritten. The path is invalid if the parent does not contain at least n nodes.

36 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

BehaviorExample Path

Inserts a new <Episode> element within <Patient>,
before the existing third node in that parent. The path is
invalid if the parent does not have three nodes.

/Patient/Episode[~$3]

Not allowed. The element() function works only with
element positions.

/Patient/element(Episode)[~$3]

Not allowed, because there is no information about the
kind of element to insert.

/Patient/[~3]

Not allowed for multiple reasons; see above items./Patient/element()[~3]

[~]

Appends an instance of the item to which the basic path refers, as the (new) last node of the given parent. Nothing
is overwritten.

BehaviorExample Path

Appends a new <Episode> element within <Patient>,
as the last node in that parent. If the path refers to
intermediate, nonexistent elements, Ensemble creates
those.

/Patient/Episode[~]

Appends an <Episode> element within <Patient>, as
the last node in that parent. If the path refers to
intermediate, nonexistent elements, the path is invalid.

/Patient/element(Episode)[~]

Not allowed, because there is no information about the
kind of element to append.

/Patient/[~]

/Patient/element()[~]

For example, the following shows part of a code element in a data transformation:

ObjectScript

 set status=target.SetValueAt("orange","/Patient/FavoriteColors/Color[~]")
 if 'status {do $system.Status.DisplayError(status) quit}
 set status=SetValueAt("pink","/Patient/FavoriteColors/Color[~]")
 if 'status {do $system.Status.DisplayError(status) quit}

This adds two new <Color> children to the <FavoriteColors> element. If the <FavoriteColors> element
does not exist, Ensemble creates it.

Also see “Summary of Path Modifiers”.

6.7 Using the element() Function
You can use the element() function when getting or setting values, as described in the following table:

Ensemble XML Virtual Document Development Guide 37

Using the element() Function

BehaviorWhen AllowedSyntax

Returns the first child element of
the given element.

When getting a
value

element_reference/element()

Returns the nth child element of
the given element.

element_reference/element()[n]

Returns the last child element of
the given element.

element_reference/element()[-]

Inserts the specified element
(given by the element_name
argument) right before the nth child
element of the given parent. This
path is invalid if the given element
does not have at least n child
elements.

When setting a
value

parent_element/element(element_name)[~n]

Appends the specified element
(given by the element_name
argument) as the last node in the
given parent.

parent_element/element(element_name)[~]

6.8 Getting Positions of Elements
You can use the following syntaxes to get positions of elements.

ReturnsSyntax

Element position of the given element within its parent.element_reference/position()

Node position of the given element within its parent. For node
position, Ensemble considers all kinds of nodes, not just
elements.

element_reference/node-position()

6.9 Getting Counts of Elements
You can use the following syntaxes to get counts of elements.

ReturnsSyntax

Count of child elements within the given parent.• element_reference/[*]

• element_reference/count()

Count of elements of the given name, within the given parent.
Notice that there is no slash after the name of the element (in
contrast with the previous set of paths).

• parent/element_name[*]

• parent/element_name.count()

38 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

ReturnsSyntax

Count of child nodes of the given element.• element_reference/[$*]

• element_reference/node-count()

Count of attributes of the given element.• element_reference/@[*]

• element_reference/@.count()

You can omit the square brackets in all cases except for /[*]. Note that Ensemble also supports the last() function
(equivalent to count()) and the node-last() function (equivalent to node-count()); you might prefer to use last() and
node-last() if you are familiar with XPATH, which has a similar last() function.

6.10 Accessing Other Metadata
You can use the following functions to access other metadata of the XML virtual document. You can use these functions
only at the end of a path.

ReturnsFunction

Type of the given node. This function returns one of the following values:

• root

• element

• text

• comment

• instruction

/node-type()

Full name of the given node. For example: s01:Patient/name()

Local name of the given node. For example: Patient/local-name()

Namespace prefix of the given node. For example: s01/prefix()

URI of the namespace to which the given node belongs. For example:
www.myapp.org

/namespace-uri()

All the namespace prefixes and their corresponding URIs, in the scope of the given
element. This information is returned as a comma-separated list. Each list item
consists of the namespace prefix, followed by an equal signs (=), followed by the
URI. The default namespace URI is listed first without a prefix. For example:
=http://tempuri.org,s01=http://myns.com

/prefixes()

6.11 Summary of Path Modifiers
The following table summarizes the path modifier for DOM-style paths:

Ensemble XML Virtual Document Development Guide 39

Accessing Other Metadata

Provides padding (as
needed) when used
with SetValueAt()?

Methods that can
use paths that
contain this modifier

UsesPath
modifier

YesGetValueAt() and
SetValueAt()

Getting or setting nth instance[n]

Not applicableGetValueAt()Getting nth child element/[n]

YesSetValueAt()Inserting nth instance[~n]

NoSetValueAt()Appending instance[~]

NoGetValueAt() and
SetValueAt()

Getting or setting instance at nth node
position

[$n]

NoSetValueAt()Inserting instance at nth node position[~$n]

6.12 Variations for Documents That Use Namespaces
If the document uses XML namespaces, for each element or attribute that is in a namespace, you must modify that section
of the path to include a namespace prefix, followed by colon (:). A namespace prefix is one of the following:

• If you have loaded the corresponding XML schema, use a namespace token as described in “XML Namespace Tokens,”
earlier in this book. For example: use $2:element_name rather than element_name

• If you have not loaded the XML schema, use the namespace prefix exactly as it appears in the document. For example:
s01:Patient

• Use the wildcard * to ignore the namespace. For example: *:Patient

Another option is to ignore all namespaces in the document. To do this, start the path with the wildcard *:/ rather than /

For example: *:/Patient/@MRN

You cannot use any wildcards in a path when you are setting the value for that path.

Note: The output document of a DTL does not necessarily use the same namespace prefixes as the input document. The
namespaces are the same, but the prefixes are generated. According to the XML standard, there is no significance
to the choice of prefix.

6.13 Testing DOM-style Paths in the Terminal
It can be useful to test virtual document property paths in the Terminal before using them in business processes, data
transformations, and so on, particularly when you are getting familiar with the syntax. To do so for DOM-style XML paths,
do the following in the Terminal or in test code:

1. Create a string that contains the text of a suitable XML document.

2. Use the ImportFromString() method of EnsLib.EDI.XML.Document to create an instance of an XML virtual document
from this string.

3. Use the GetValueAt() and SetValueAt() methods of this instance.

40 Ensemble XML Virtual Document Development Guide

Specifying DOM-style Paths for XML Virtual Documents

The following method demonstrates these steps:

ClassMethod TestDOMPath()
{
 set string="<Patient xmlns='http://myapp.com'>"
 _"<Name>Jolene Bennett</Name>"
 _"<Address><Street>899 Pandora Boulevard</Street></Address>"
 _"</Patient>"
 set target=##class(EnsLib.EDI.XML.Document).ImportFromString(string,.status)
 if 'status {do $system.Status.DisplayError(status) quit}

 set pathvalue=target.GetValueAt("/Patient/Name",,.status)
 if 'status {do $system.Status.DisplayError(status) quit}
 write pathvalue
}

The following shows output from this method:

ENSDEMO>d ##class(Demo.CheckPaths).TestDOMPath()
Jolene Bennett

For additional options for GetValueAt(), see “The pFormat Argument,” later in this book.

Ensemble XML Virtual Document Development Guide 41

Testing DOM-style Paths in the Terminal

7
Defining Data Transformations for XML
Virtual Documents

This chapter discusses how to create data transformations (specifically DTL-based transformations) for XML virtual docu-
ments, for use in rule sets. It discusses the following topics:

• How to define a data transformation

• Details on the behavior of different actions

• Using code

• Example 1: copying most of the source document

• Example 2: using only a few parts of the source document

• Example 3: using code and SetValueAt()

7.1 Creating a Data Transformation
To create a data transformation for XML virtual documents:

1. Optionally load the applicable XML schema or schemas into Ensemble.

See “Loading XML Schemas into Ensemble,” earlier in this book.

2. Use the DTL editor in the Management Portal or in Studio, as described in Developing DTL Transformations.

3. Within the data transformation, use the following values:

• For Source Class and Target Class, use EnsLib.EDI.XML.Document, the class with which Ensemble represents XML
virtual documents.

• For Source Document Type, optionally select the XML type expected in the message. Choose an XML type from
one of the XML schemas you have loaded into Ensemble.

Leave this value blank if you do not have or do not want to use the schema.

• For Target Document Type, optionally select a different XML type or remove the value.

Ensemble initializes Target Document Type with the value you select for Source Document Type, if any.

Ensemble XML Virtual Document Development Guide 43

4. Create actions within the data transformation as usual, using the XML property paths described in the previous chapter.
There are two basic scenarios:

• If you have loaded the schemas and have specified the source and target document types, the DTL editor displays
each document structure as a tree. Then you can drag and drop to create the transformation. Ensemble creates
actions that use schema-dependent paths. You can edit these to use DOM-style paths instead, if those are needed
for some reason.

• If you do not specify the document types, the document structures are not displayed as trees. In this case, it is
necessary to add and edit the actions manually. You can use only DOM-style paths.

In either case, you can add code elements to support more complex processing.

After you save and compile the data transformation, it is available for use in a rule set; see the chapter “Defining Rule Sets
for XML Virtual Documents.”

7.2 Available Assignment Actions for XML Virtual
Documents
For XML virtual documents, Ensemble supports the following assignment actions:

• set — Sets a value. If the type of the target element is "any", then the text can include XML markup. The XML
markup must be well formed, but it will not be validated against any schema.

If you set the target element to the value of a source property path, the source property path must exist. Alternatively,
InterSystems IRIS does not set the target and returns an error, which you can optionally ignore by enabling the Ignore

missing source segments and properties setting. For more information, see Specifying Transformation Details.

• append — Appends the new value to the target element, after any subnodes in that element.

• clear — Clears the text context of the target but retains the element and any children. Or, if the target is an attribute,
the action clears its value but retains the attribute.

• remove — Removes the target element or attribute.

Note that insert is not supported.

7.3 Using Code
If you need to add code elements to support more complex processing, you directly invoke the GetValueAt() and
SetValueAt() methods of the source and target variables. For EnsLib.EDI.XML.Document, these methods are as follows:

GetValueAt()

method GetValueAt(pPropertyPath As %String,
 pFormat As %String,
 Output pStatus As %Status) as %String

Where:

• pPropertyPath is an XML property path, as described earlier in this book.

• pFormat is a set of flags that control the format of the returned string. See the following subsection.

44 Ensemble XML Virtual Document Development Guide

Defining Data Transformations for XML Virtual Documents

• pStatus is a status that indicates success or failure.

This method returns the current value at the given property path, or returns an empty string if the path is not valid.

SetValueAt()

method SetValueAt(pValue As %String,
 pPropertyPath As %String,
 pAction As %String = "set",
 pKey As %String = "") as %Status

Where:

• pValue is a suitable value for the given XML property path.

• pPropertyPath is an XML property path, as described in the previous chapter.

• pAction is either "set", "append", "clear", or "remove". For details, see the previous section.

• pKey is not used for XML virtual documents.

This method evaluates the given property path, and (if the path is valid), uses pValue and pAction to modify the
value at that path.

Important: It is useful to check the status values returned by these methods. The status contains specific information
when you specify invalid paths or attempt actions that are not permitted. This information is particularly
useful when you are debugging and can save you time.

7.3.1 The pFormat Argument

The pFormat argument for GetValueAt() is an optional string that controls the format of the returned string. This string
can contain any suitable combination of the characters in the following table:

Specific BehaviorCharacter to
Include in
Format Setting

General Description

Adds a Windows-style carriage return and line feed combination
after every text-free element.

wLine feeds and
carriage returns

Uses the stored line feeds and carriage returns.This option takes
precedence over the options w and n.

r

Includes a new line (line feed) after every text-free element. In
contrast to w, this option does not add a carriage return.

n

Indents each new line with four spaces.iIndentation. Note that
these options are
used only if the output
includes new lines.

Indents each new line with this number of spaces. This option
takes precedence over the previous indentation option.

Any integer from
1 to 9

Indents each new line with a tab. This option takes precedence
over both of the previous indentation options.

t

Uses the stored indentation whitespace. This option takes
precedence over the previous indentation options.

s

Ensemble XML Virtual Document Development Guide 45

Using Code

Specific BehaviorCharacter to
Include in
Format Setting

General Description

Alphabetizes the attributes in an element.aHandling attributes

Uses double quotes (rather than single quotes) to set off attribute
values if possible.

q

Suppresses output of namespace prefixes.pHandling namespaces

Suppresses output of namespace declarations.x

Generates output for each empty element with an open tag and
close tag pair. If this option is not set, empty elements are output
as a single empty tag.

eHandling empty
elements

Canonical output.This option takes precedence over the options
e i n t w

cOther

Generates the full element (including both the starting and ending
tags), not just the contents within the element.

f

Includes information about the location of the schema file that
was loaded into Ensemble. This option takes effect only if you
use f.

l

Includes any XML entities as is, rather than performing XML
escaping for those entities.

o

Generates an XML header line that declares the given character
encoding; e is the non-quoted name of a character encoding
such as UTF–8. If e is empty, use the encoding defined by the
adapter. If e begins with ! then force the encoding of the output
stream. Note that this will be applied automatically for file
operations configured with a non-UTF-8 character set.

C(e)

As noted above, the pFormat argument can equal a combination of these items. For example, if you use the value C(UTF-8)q,
the outbound document is in the UTF-8 character set and attributes are set off with double quotes. For another example, if
you use the value C(UTF-16)a, the outbound document is in the UTF-16 character set and attributes are alphabetized.

Note: This information also applies to the Format setting of an XML business operation.

7.4 Example 1: Copying Most of the Source Document
To easily define a data transformation that copies most of a source document, do the following in the Data Transformation
Builder:

• On the Transform tab, select copy from the Create drop-down list.

Then, by default, the new document will be a copy of the original document.

• Define actions that partly or fully remove selected elements or attributes. To define such an action:

1. In Add Action, click clear or remove.

2. Double-click the target property that you want to clear or remove.

46 Ensemble XML Virtual Document Development Guide

Defining Data Transformations for XML Virtual Documents

3. Enter any value into Value; this field is required but is ignored in this case.

The following shows an example that uses schema-dependent paths:

Class Demo02.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]
{
<transform sourceClass='EnsLib.EDI.XML.Document' targetClass='EnsLib.EDI.XML.Document'
sourceDocType='Demo02:Patient' targetDocType='Demo02:Patient' create='copy' language='objectscript' >
<assign value='"this value is ignored"' property='target.{WorkAddress}' action='remove' />
<assign value='"this value is ignored"' property='target.{HomeAddress}' action='remove' />
</transform>
}

Parameter REPORTERRORS = 1;

}

This data transformation copies the source document to the target and then removes the <WorkAddress> and
<HomeAddress> elements from the target.

The following shows an equivalent example that uses DOM-style property paths:

Class Demo02A.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]
{
<transform sourceClass='EnsLib.EDI.XML.Document' targetClass='EnsLib.EDI.XML.Document'
create='copy' language='objectscript' >
<assign value='"this value is ignored"' property='target.{/Patient/WorkAddress}' action='remove' />
<assign value='"this value is ignored"' property='target.{/Patient/HomeAddress}' action='remove' />
</transform>
}

Parameter REPORTERRORS = 1;

}

Notice that in this case, the data transformation does not specify the document types because they are unnecessary here.

7.5 Example 2: Using Only a Few Parts of the Source
Document
To easily define a data transformation that uses only a few parts of a source document, do the following in the Data
Transformation Builder:

• On the Transform tab, select new from the Create drop-down list.

Then, by default, the new document will be empty.

• Define actions that copy selected elements or attributes. To define such an action, drag and drop from the source doc-
ument area to the target document area. Each action that you add this way is a set action.

Ensemble XML Virtual Document Development Guide 47

Example 2: Using Only a Few Parts of the Source Document

The following shows an example that uses schema-dependent paths:

Class Demo05.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]
{
<transform sourceClass='EnsLib.EDI.XML.Document' targetClass='EnsLib.EDI.XML.Document'
sourceDocType='Demo05:Patient' targetDocType='Demo05:Patient' create='new' language='objectscript' >
<assign value='source.{MRN}' property='target.{MRN}' action='set' />
<assign value='source.{PrimaryCarePhysician}' property='target.{PrimaryCarePhysician}' action='set' />
</transform>
}

Parameter REPORTERRORS = 1;

}

This data transformation copies only the MRN and PrimaryCarePhysician properties from the source to the target.

The following shows an equivalent example that uses DOM-style property paths:

Class Demo05A.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]
{
<transform sourceClass='EnsLib.EDI.XML.Document' targetClass='EnsLib.EDI.XML.Document'
create='new' language='objectscript' >
<assign value='source.{/Patient/MRN}' property='target.{/Patient/MRN}' action='set' />
<assign value='source.{/Patient/PrimaryCarePhysician}'
property='target.{/Patient/PrimaryCarePhysician}' action='set' />
</transform>
}

Parameter REPORTERRORS = 1;

}

7.6 Example 3: Using Code and SetValueAt()
The following example uses the code action type and uses a DOM-style path. It adds an attribute and an XML comment
to the root element:

Class Demo06.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]
{
<transform sourceClass='EnsLib.EDI.XML.Document' targetClass='EnsLib.EDI.XML.Document'
create='copy' language='objectscript' >
<code>
<![CDATA[
 //this part adds an attribute to the document
 set path="/1/@NewAttribute"
 set status=target.SetValueAt("New attribute value",path)
 if 'status {do ##class(MyApp.Utils).Trace("Demo06.MyDTL","Error setting path: ",path)}

 //this part adds a comment to the document
 set path="/1/comment()"
 set status=target.SetValueAt("This is an XML comment",path)
 if 'status {do ##class(MyApp.Utils).Trace("Demo06.MyDTL","Error setting path: ",path)}
]]>
</code>
</transform>
}

Parameter REPORTERRORS = 1;

}

If the SetValueAt() method returns an error, this transformation uses a utility method to record the details.

48 Ensemble XML Virtual Document Development Guide

Defining Data Transformations for XML Virtual Documents

8
Defining Rule Sets for XML Virtual
Documents

This chapter discusses how to create rule sets for XML virtual documents, for use in business processes. It discusses the
following topics:

• How to create a rule set

• Example

To configure a business process to use a rule set, specify its Business Rule Name setting; see “Adding a Business Process
to Handle XML Virtual Documents,” earlier in this book.

8.1 Creating a Rule Set
To create a rule set for XML virtual documents:

1. Optionally load the applicable XML schema or schemas into Ensemble.

See “Loading XML Schemas into Ensemble” earlier in this book.

2. Use the Rule Set editor in the Management Portal or in Studio, as described in Developing Business Rules.

3. For the rule set basic definition, use Virtual Document Message Routing Rule for Type.

This choice sets Context Class to EnsLib.MsgRouter.VDocRoutingEngine. It also sets Rule Assist Class to
EnsLib.MsgRouter.VDocRuleAssist.

4. For any rule constraint in the rule set, use the following values:

• For Message Class, use EnsLib.EDI.XML.Document, the class with which Ensemble represents XML virtual docu-
ments.

• For Schema Category, optionally select an XML schema that you have previously loaded into Ensemble.

Leave this value blank if you do not have or do not want to use the schema.

• For Document Name, optionally select a document type defined in that schema.

Leave this value blank if you have not specified Schema Category.

5. Create rules as usual, using the XML property paths described earlier in this book. There are two basic scenarios:

Ensemble XML Virtual Document Development Guide 49

• If you have loaded the schema and have specified the target document type, the Expression Editor provides
assistance when you start typing Document.

Notice that these property paths are schema-dependent paths, although you could edit them to be DOM-style paths
instead, if those are needed for some reason.

• If you have not loaded the schema and specified the document type, you must type the path manually. You can
use either schema-dependent paths or DOM-style paths.

After you save and compile the rule set, it is available for use in a business process.

8.2 Example
The following shows the class definition for a simple rule set. This rule set has one rule that uses a DOM-style path to
check the <MRN> element of the <Patient> document. Depending on the returned value, the rule routes the message to
either FileOut1 or FileOut2. Notice that in this case, the rule constraint does not refer to the XML schema or type.

Class Demo09.MyRules Extends Ens.Rule.Definition
{

Parameter RuleAssistClass = "EnsLib.MsgRouter.VDocRuleAssist";

XData RuleDefinition [XMLNamespace = "http://www.intersystems.com/rule"]
{
<ruleDefinition alias="" context="EnsLib.MsgRouter.VDocRoutingEngine">
<ruleSet name="" effectiveBegin="" effectiveEnd="">
<rule name="CheckMRN" disabled="false">
<constraint name="msgClass" value="EnsLib.EDI.XML.Document"></constraint>
<when condition="Document.{/$2:Patient/$2:MRN}="123456789"">
<send transform="" target="FileOut1"></send>
<return></return>
</when>
<when condition="Document.{/$2:Patient/$2:MRN}!="123456789"">
<send transform="" target="FileOut2"></send>
<return></return>
</when>
</rule>
</ruleSet>
</ruleDefinition>
}

}

50 Ensemble XML Virtual Document Development Guide

Defining Rule Sets for XML Virtual Documents

9
Defining Search Tables for XML Virtual
Documents

This chapter describes briefly how to define search tables for XML virtual documents. It discusses the following topics:

• Introduction

• Example

To configure a business service or business operation to use a search table class, specify the Search Table Class setting of
that business host. See “Configuration Steps,” earlier in this book.

9.1 Introduction
The XML search table class, EnsLib.EDI.XML.SearchTable indexes only the name of the root element of the XML documents.

If you need more items to search, you can create a subclass. For details, see “Defining a Search Table Class” in Ensemble
Virtual Documents.

Note: Ensemble does not retroactively index messages that were received before you added the search table class.

9.2 Example
The following shows an example:

XData SearchSpec [XMLNamespace = "http://www.intersystems.com/EnsSearchTable"]
{
<Items>
 <Item DocType="MyApp:Patient" PropName="Gender" >{*:/Patient/Gender}</Item>
 <Item DocType="MyApp:Patient" PropName="MRN" >{*:/Patient/@MRN}</Item>
</Items>
}

Ensemble XML Virtual Document Development Guide 51

10
XML-Enabled Objects Compared to XML
Virtual Documents

When developing a production with XML messages, you can use either of the following structures to contain the XML
document:

• XML Virtual Documents

• XML-enabled objects

If you need to access a small number of the elements in the input XML document, you can use XML Virtual Documents,
but if you need to access most of the elements in the input XML document, you should choose XML-enabled objects
because they are more efficient, especially when an object with many elements is processed by a transformation. The fol-
lowing business services and operations are provided to handle XML-enabled objects:

• EnsLib.XML.Object.Service.FileService

• EnsLib.XML.Object.Service.FTPService

• EnsLib.XML.Object.Operation.FileOperation

• EnsLib.XML.Object.Operation.FTPOperation

The XML-enabled object business services read a file containing an XML document and convert it to one or more objects.
You specify a property that defines the XML element to convert to objects. If the XML root document contains a single
element, then the service converts it to one object, but if the XML root document contains a series of these elements, then
the service converts them to separate objects.

To use the XML-enabled object services, you do the following:

1. Define a class that matches the structure of the input XML documents that you are processing. The class can either
match the entire XML document or a repeating element within the root XML document. You can use the XML Schema
Wizard to define this class. You can optionally define a NAMESPACE parameter for this class. This parameter specifies
the XML namespace.

2. Specify the classname in the business service Class Name field.

3. Optionally, specify the element name in the Element Name field. If you specify this field, the service looks for one or
more XML elements with this name within the root XML object. Each occurrence of this element is converted to an
instance of the specified class. If you do not specify this field, the service matches the root document to the specified
class.

Ensemble XML Virtual Document Development Guide 53

4. Optionally, specify the Format parameter and optionally select Ignore Null. The Format parameter can have a value of
"literal", "encoded", or "encoded12". These parameters specify the corresponding parameters for the %XML.Adaptor

class.

The XML-enabled object business operations convert an object to an XML document and write the document to a file. In
addition to specifying information about the XML class and element, you can specify properties that are used when the
operation invokes the %XML.Writer class.

Specify the following properties in the operations:

• Root Element Name — If you specify this property, it is used as the root element name. If you omit this element, the
operation uses the input element name.

• Namespace — Specifies the XML namespace except if the class defines a NAMESPACE property. In that case, the
operation always uses the XML namespace defined in the class.

• Expected Class Name — Class name of the XML-enabled object. If the expected name does not match the actual name,
the %XML.Writer adds an xsi:type attribute to the XML element.

• Indentation Type — Specifies the corresponding property for %XML.Writer. Indentation Type specifies if indentation
of the XML output should take place and what type of indentation.

• Indentation Depth — Specifies the corresponding property for %XML.Writer. Indentation Depth specifies the number
of indentation characters to be used for indentation. The default for "tab" is 1. The default for "space" is 4.

• Charset — Specifies the corresponding property for %XML.Writer. Charset is the charset to use for encoding the XML
output. The default depends upon the output destination. "UTF-8" is the default for output to files and binary streams.
On a Unicode system, "UTF-16 is the default for output to character streams and strings. On an 8-bit system, the default
charset for the locale is the default charset for output to character streams and strings

• No XML Declaration — Specifies the corresponding property for %XML.Writer. If No XML Declaration is 1 (true), the
%XML.Writer does not write the XML declaration. The default is for the %XML.Writer to write the XML declaration
unless Charset is not specified and the output is directed to a string or character stream in which case it does not write
an XML declaration.

• Runtime Ignore Null — Specifies the corresponding property for %XML.Writer.

• Element Qualified — Specifies the corresponding property for %XML.Writer.

• Attribute Qualified — Specifies the corresponding property for %XML.Writer.

• Default Namespace — Specifies the corresponding property for %XML.Writer.

• Suppress xmlns — Specifies the corresponding property for %XML.Writer.

• Format — Specifies the corresponding property for %XML.Writer.

• References inline — Specifies the corresponding property for %XML.Writer.

54 Ensemble XML Virtual Document Development Guide

XML-Enabled Objects Compared to XML Virtual Documents

Reference for Settings

This section provides the following reference information:

• Settings for XML Business Services

• Settings for XML Business Operations

For information on settings for the routing process (EnsLib.MsgRouter.VDocRoutingEngine), see “Settings of a Virtual
Document Routing Process” in Ensemble Virtual Documents.

Ensemble XML Virtual Document Development Guide 55

Settings for XML Business Services
Provides reference information for settings of XML virtual document business services.

Summary
XML virtual document business services provide the following settings:

SeeSettingsGroup

“Settings for Business Services”
in Ensemble Virtual Documents

Target Config Names, Doc Schema CategoryBasic Settings

section in this topicSearch Table Class, ValidationAdditional Settings

section in this topicReply Target Config Names

The remaining settings are either common to all business services or are determined by the file adapter. For information,
see:

• “Settings for All Business Services” in Configuring Ensemble Productions

• “Settings for the File Inbound Adapter” in Using File Adapters with Ensemble

Reply Target Config Names
(File and FTP only) Comma-separated list of configuration items within the production to which the business service should
relay any XML virtual documents reply messages. Usually the list contains one item, but it can be longer. The list can
include both business processes and business operations.

Compare to Target Config Names.

Validation
By default, validation of XML virtual documents is limited to testing whether the DocType is defined. To provide additional
validation for XML virtual documents, you should subclass the EnsLib.MsgRouter.VDocRoutingEngine class and override
the OnValidate method, adding custom code to validate the XML document.

If you are validating the document, return a nonzero value, which suppresses any default validation. If the document passes
validation, return 1 ($$$OK) in pStatus to indicate success. If the document fails validation, return an error code in
pStatus.

56 Ensemble XML Virtual Document Development Guide

Reference for Settings

Settings for XML Business Operations
Provides reference information for settings of XML virtual document business operations.

Summary
XML virtual document business operations provide the following settings:

SettingsGroup

section in this topicFormatBasic Settings

“Settings for Business Operations” in
Ensemble Virtual Documents

Search Table ClassAdditional Settings

The remaining settings are either common to all business operations or are determined by the file adapter. For information,
see:

• “Settings for All Business Operations” in Configuring Ensemble Productions

• “Settings for the File Outbound Adapter” in Using File Adapters with Ensemble

Format
Specifies how to form the outbound document. You can leave this empty, in which case defaults are used. Or you can
specify a string that contains a suitable combination of the characters listed in “The pFormat Argument,” earlier in this
book.

For example, if you use the value C(UTF-8)q, the outbound document is in the UTF-8 character set and attributes are set
off with double quotes. For another example, if you use the value C(UTF-16)a, the outbound document is in the UTF-16
character set and attributes are alphabetized.

Ensemble XML Virtual Document Development Guide 57

Settings for XML Business Operations

	Table of Contents
	About This Book
	1 Introduction
	2 Available Tools
	2.1 Using the XML Schema Structures Page
	2.2 Using the XML Document Viewer Page
	2.3 Importing XML Schemas Programmatically
	2.4 XML Classes

	3 Configuration Steps
	3.1 Loading XML Schemas into Ensemble
	3.2 Adding a Business Service to Handle Inbound XML as Virtual Documents
	3.3 Adding a Business Process to Handle XML Virtual Documents
	3.4 Adding a Business Operation to Handle XML Virtual Documents

	4 Overview of Property Paths in XML Virtual Documents
	4.1 Orientation to Virtual Property Paths for XML Virtual Documents
	4.1.1 Basic Syntax for Schema-dependent Paths
	4.1.2 Basic Syntax for DOM-style Paths

	4.2 Viewing Path Units for XML Virtual Documents
	4.3 Redundant Inner Elements for Schema-dependent Paths
	4.4 Repeating Fields
	4.5 Duplicate Names
	4.6 Choice Structures
	4.7 Groups Included by Reference

	5 Specifying Schema-dependent Paths for XML Virtual Documents
	5.1 Getting or Setting the Contents of an XML Element
	5.2 Getting or Setting the Value of an XML Attribute
	5.3 Comments and Descriptions
	5.4 Using Mixed Content When Setting Paths
	5.5 Special Variations for Repeating Elements
	5.5.1 Iterating Through the Repeating Elements
	5.5.2 Counting Elements

	5.6 Testing Schema-dependent Paths in the Terminal

	6 Specifying DOM-style Paths for XML Virtual Documents
	6.1 Getting or Setting Nodes (Basic Paths)
	6.2 Using Mixed Content When Setting Paths
	6.3 Using the Basic Path Modifiers
	6.4 Using the Full() Function
	6.5 Getting or Setting the Value of an XML Attribute
	6.6 Using Path Modifiers to Insert or Append Nodes
	6.7 Using the element() Function
	6.8 Getting Positions of Elements
	6.9 Getting Counts of Elements
	6.10 Accessing Other Metadata
	6.11 Summary of Path Modifiers
	6.12 Variations for Documents That Use Namespaces
	6.13 Testing DOM-style Paths in the Terminal

	7 Defining Data Transformations for XML Virtual Documents
	7.1 Creating a Data Transformation
	7.2 Available Assignment Actions for XML Virtual Documents
	7.3 Using Code
	7.3.1 The pFormat Argument

	7.4 Example 1: Copying Most of the Source Document
	7.5 Example 2: Using Only a Few Parts of the Source Document
	7.6 Example 3: Using Code and SetValueAt()

	8 Defining Rule Sets for XML Virtual Documents
	8.1 Creating a Rule Set
	8.2 Example

	9 Defining Search Tables for XML Virtual Documents
	9.1 Introduction
	9.2 Example

	10 XML-Enabled Objects Compared to XML Virtual Documents
	Reference for Settings
	Settings for XML Business Services
	Settings for XML Business Operations

	Index

