
DeepSee Implementation
Guide

Version 2018.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

DeepSee Implementation Guide
Caché Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Overview .. 3
1.1 Purpose of DeepSee ... 3
1.2 DeepSee Components to Add to Your Application .. 4
1.3 Recommended Architecture ... 4
1.4 Main Implementation Steps ... 5
1.5 Implementation Tools ... 6

1.5.1 Available Samples .. 7

2 Performing the Initial Setup .. 9
2.1 Setting Up the Web Applications ... 9
2.2 Placing the DeepSee Globals in a Separate Database .. 10
2.3 Alternative Mappings for the Globals .. 10
2.4 Adjusting the CSP Timeout Period ... 13

3 Configuring Settings ... 15
3.1 Accessing the DeepSee Settings ... 15
3.2 Specifying Basic Settings ... 16
3.3 Configuring DeepSee to Support Email ... 17
3.4 Customizing Worklists ... 17
3.5 Creating Runtime Variables for Use as Default Values for Filters ... 19

3.5.1 Editing Runtime Variables ... 20
3.5.2 Removing Runtime Variables ... 20

3.6 Allowed Default Values for Filters ... 20
3.7 Creating Icons .. 20
3.8 Creating Custom Color Palettes ... 21

4 Defining Data Connectors .. 23
4.1 Introduction to Data Connectors .. 23
4.2 Defining a Basic Data Connector ... 23

4.2.1 Defining the Query in an XData Block .. 24
4.2.2 Defining the Output Specification ... 25

4.3 Previewing the Query Results .. 26
4.3.1 Viewing the Test Page .. 26
4.3.2 Printing the Output in the Terminal ... 27

4.4 Defining the Query at Runtime .. 27
4.4.1 Restricting the Records When an Update Is Requested ... 28
4.4.2 Restricting the Records When a Listing Is Requested ... 28
4.4.3 Other Callbacks .. 30

4.5 Using a Data Connector Programmatically .. 30

5 Performance Tips .. 31
5.1 Result Caching and Cube Updates ... 31
5.2 Specifying the Agent Count ... 31
5.3 Cache Buckets and Fact Order ... 31
5.4 Removing Inactive Cache Buckets ... 32
5.5 Precomputing Cube Cells ... 32

5.5.1 Defining the Cell Cache ... 32
5.5.2 Precomputing the Cube Cells .. 33

DeepSee Implementation Guide iii

6 Defining Custom Actions ... 35
6.1 Introduction .. 35

6.1.1 Context Information ... 36
6.2 Defining the Behavior of Actions ... 37

6.2.1 Declaring Actions ... 37
6.2.2 Defining the Behavior of the Actions ... 37

6.3 Available Context Information ... 38
6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data Source 38
6.3.2 Scenario: Pivot Table Widget with Listing as Data Source .. 39
6.3.3 Scenario: Pivot Table Widget with KPI as Data Source ... 40
6.3.4 Scenario: Scorecard with KPI as Data Source ... 40

6.4 Executing Client-Side Commands ... 40
6.4.1 Available Commands .. 41
6.4.2 Details for applyFilter and setFilter ... 42

6.5 Displaying a Different Dashboard .. 43
6.6 Generating a SQL Table from Cube Context ... 43

7 Accessing Dashboards from Your Application ... 45
7.1 Accessing a Dashboard ... 45

7.1.1 URL Encoding ... 46
7.2 Available URL Parameters ... 46
7.3 Options for the SETTINGS Parameter ... 49
7.4 Embedding a Dashboard in a Zen Page .. 52
7.5 Accessing Other DeepSee Pages from Your Application ... 53

7.5.1 Example: Embedding the Analyzer in a Zen Page ... 53

8 Keeping the Cubes Current ... 55
8.1 Overview .. 55

8.1.1 Cube Updates and Related Cubes .. 56
8.1.2 Cube Updates and the Result Cache .. 56

8.2 How Cube Synchronization Works .. 56
8.2.1 When Cube Synchronization Is Possible ... 57
8.2.2 When Cube Synchronization Is Not Possible .. 57
8.2.3 Cube Synchronization in a Mirrored Environment .. 58
8.2.4 Structure of the Cube Synchronization Globals ... 58

8.3 Enabling Cube Synchronization ... 60
8.4 Clearing the ^OBJ.DSTIME Global .. 60
8.5 Using the Cube Manager .. 61

8.5.1 Introduction to the Cube Manager ... 61
8.5.2 Introduction to Update Plans .. 62
8.5.3 Accessing the Cube Manager ... 62
8.5.4 Modifying the Registry Details .. 65
8.5.5 Registering a Cube Group .. 65
8.5.6 Specifying an Update Plan ... 65
8.5.7 Merging Groups ... 66
8.5.8 Building All the Registered Cubes ... 67
8.5.9 Performing On-Demand Builds ... 67
8.5.10 Unregistering a Cube Group .. 68
8.5.11 Viewing Cube Manager Events .. 68
8.5.12 Restricting Access to the Cube Manager ... 69

8.6 Using %SynchronizeCube() ... 69
8.7 Purging DSTIME ... 70

iv DeepSee Implementation Guide

8.8 Updating Cubes Manually .. 70
8.9 Other Options ... 71

8.9.1 Using DSTIME=MANUAL ... 71
8.9.2 Injecting Facts into the Fact Table and Dimension Tables ... 71
8.9.3 Prebuilding Dimension Tables ... 72
8.9.4 Updating a Dimension Table Manually ... 73

8.10 Examples .. 74

9 Executing DeepSee Queries Programmatically ... 75
9.1 Using the Result Set API .. 75
9.2 Basic Example .. 77
9.3 Preparing and Executing a Query ... 77
9.4 Printing the Query Results ... 78
9.5 Examining the Query Results ... 79

9.5.1 Getting the Number of Columns and Rows ... 79
9.5.2 Getting the Value of a Given Cell ... 80
9.5.3 Getting the Column or Row Labels ... 80
9.5.4 Getting Details for Cell Contents ... 82

9.6 Examining the Query Results for a DRILLTHROUGH Query ... 84
9.7 Examining the Query Metadata .. 85
9.8 Other Methods .. 87
9.9 Executing Query Files .. 87

9.9.1 About Query Files .. 88
9.9.2 Executing a Query File ... 88

10 Performing Localization .. 91
10.1 Overview of Localization in DeepSee .. 91

10.1.1 Model Localization .. 91
10.1.2 Folder Item Localization .. 91

10.2 Preparing for Model Localization .. 92
10.3 Preparing for Folder Item Localization .. 93

10.3.1 Default Domain .. 93
10.3.2 Adding Strings to the Message Dictionary .. 93
10.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder Item 93

10.4 Localizing the Strings ... 95

11 Packaging DeepSee Elements into Classes ... 97
11.1 Overview .. 97
11.2 Exporting Folder Items to a Container Class ... 98
11.3 Editing the DeepSee Folder Items for Portability .. 99

11.3.1 Removing <filterState> Elements .. 99
11.3.2 Stripping Out Local Data ... 99

11.4 Importing an Exported Container Class ... 100
11.5 Using the Folder Manager .. 100

11.5.1 Seeing the Dependencies of a Folder Item ... 100
11.5.2 Exporting DeepSee Folder Items to the Server .. 101
11.5.3 Exporting DeepSee Folder Items to the Browser ... 102
11.5.4 Importing DeepSee Folder Items ... 103

11.6 Restoring Deleted Folder Items .. 104

12 Creating Portlets for Use in Dashboards .. 105
12.1 Portlet Basics .. 105
12.2 Defining and Using Settings .. 106

DeepSee Implementation Guide v

12.2.1 Types of Settings .. 106
12.2.2 Receiving Settings Passed Via URL ... 107
12.2.3 Using Settings .. 108

12.3 Examples .. 108
12.4 Using a Data Source ... 109

13 Other Development Work .. 111
13.1 Adding Paper Sizes ... 111
13.2 Auditing User Activity .. 111

13.2.1 Audit Code Requirements and Options .. 112
13.2.2 Example ... 113

13.3 Defining Server Initialization Code ... 113

14 Setting Up Security ... 115
14.1 Overview of Security .. 115
14.2 Basic Requirements .. 116
14.3 Requirements for Common DeepSee Tasks ... 117
14.4 Adding Security for Model Elements ... 119
14.5 Specifying the Resource for a Dashboard or Pivot Table ... 120
14.6 Specifying the Resource for a Folder ... 120

Appendix A: Using Cube Versions ... 121
A.1 Introduction to the Cube Version Feature .. 121

A.1.1 Keeping the Cube Current ... 122
A.1.2 Model Changes Can Break Queries .. 122

A.2 Modifying a Cube to Support Versions ... 123
A.2.1 Cube Versions and Relationships .. 124
A.2.2 Details for %ActivatePendingCubeVersion() .. 124

A.3 Updating a Cube Version ... 125
A.4 Specifying the Cube to Work With .. 127
A.5 Additional Options .. 128

A.5.1 Disabling the Cube Version Feature .. 128

Appendix B: How the DeepSee Query Engine Works .. 129
B.1 Introduction ... 129

B.1.1 Use of Bitmap Indices ... 129
B.1.2 Caching .. 130
B.1.3 Buckets .. 131

B.2 Engine Steps .. 132
B.3 Axis Folding ... 133
B.4 Query Plans .. 134
B.5 Query Statistics .. 134

Appendix C: Using the MDX Performance Utility ... 137

Appendix D: Other Export/Import Options ... 139
D.1 Creating a DeepSee Container Class ... 139
D.2 Exporting and Importing Folder Items .. 140

D.2.1 Exporting Folder Items Programmatically .. 140
D.2.2 Importing Folder Items Programmatically .. 141

Appendix E: DeepSee and Disaster Recovery ... 143
E.1 Configuration ... 143
E.2 Disaster Recovery .. 143

vi DeepSee Implementation Guide

About This Book

This book describes how to implement DeepSee and discusses all implementation topics other than modeling. It includes
the following chapters:

• Overview

• Performing the Initial Setup

• Configuring Settings

• Defining Data Connectors

• Performance Tips

• Defining Custom Actions

• Accessing Dashboards from Your Application

• Keeping the Cubes Current

• Executing DeepSee Queries Programmatically

• Performing Localization

• Packaging DeepSee Elements into Classes

• Creating Portlets for Use in Dashboards

• Other Development Work

• Setting Up Security

• Using Cube Versions

• How the DeepSee Query Engine Works

• Using the MDX Performance Utility

• Other Export/Import Options

• DeepSee and Disaster Recovery

For a detailed outline, see the table of contents.

The other developer books for DeepSee are as follows:

• Getting Started with DeepSee briefly introduces DeepSee and the tools that it provides.

• DeepSee Developer Tutorial guides developers through the process of creating a sample that consists of a cube, subject
areas, pivot tables, and dashboards.

• Defining DeepSee Models describes how to define the basic elements used in DeepSee queries: cubes and subject areas.
It also describes how to define listing groups.

• Advanced DeepSee Modeling Guide describes how to use the more advanced and less common DeepSee modeling
features: computed dimensions, unstructured data in cubes, compound cubes, cube relationships, term lists, quality
measures, KPIs, plugins, and other special options.

• Using MDX with DeepSee introduces MDX and describes how to write MDX queries manually for use with DeepSee
cubes.

• DeepSee MDX Reference provides reference information on MDX as supported by DeepSee.

DeepSee Implementation Guide 1

• Tools for Creating DeepSee Web Clients provides information on the DeepSee JavaScript and REST APIs, which you
can use to create web clients for your DeepSee applications.

The following books are for both developers and users:

• DeepSee End User Guide describes how to use the DeepSee User Portal and dashboards.

• Creating DeepSee Dashboards describes how to create and modify dashboards in DeepSee.

• Using the DeepSee Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in Caché.

For general information, see the InterSystems Documentation Guide.

2 DeepSee Implementation Guide

About This Book

1
Overview

This chapter provides an overview of DeepSee and the implementation tools and process. It discusses the following topics:

• Purpose of DeepSee

• Components that DeepSee adds to your application

• Recommended architecture

• Implementation steps

• Implementation tools

Be sure to consult the online InterSystems Supported Platforms document for this release for information on system
requirements for DeepSee.

1.1 Purpose of DeepSee
The purpose of InterSystems DeepSee is to enable you to embed business intelligence (BI) into your applications so that
your users can ask and answer sophisticated questions of their data. Your application can include dashboards, which contain
graphical widgets. The widgets display data and are driven by pivot tables and KPIs (key performance indicators). For a
pivot table, a user can display a listing, which displays source values.

Pivot tables, KPIs, and listings are queries and are executed at runtime:

• A pivot table can respond to runtime input such as filter selections made by the user. Internally it uses an MDX (Mul-
tiDimensional eXpressions) query that communicates with a DeepSee cube.

A cube consists of a fact table and its indices. A fact table consists of a set of facts (rows), and each fact corresponds
to a base record. For example, the facts could represent patients or departments. DeepSee also generates a set of level
tables. All the tables are maintained dynamically.

Depending on your configuration and implementation, DeepSee detects changes in your transactional tables and
propagates them to the fact tables as appropriate.

DeepSee generates an MDX query automatically when a user creates the pivot table in the Analyzer.

• A KPI can also respond to runtime user input. Internally, it uses either an MDX query (with a DeepSee cube) or an
SQL query (with any table or tables).

In either case, you create the query manually or copy it from elsewhere.

DeepSee Implementation Guide 3

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

• A listing displays selected values from the source records used for the rows of the pivot table that the user has selected.
Internally, a listing is an SQL query.

You can specify the fields to use and let DeepSee generate the actual query. Or you can specify the entire query.

Dashboards can include buttons and other controls that launch actions. Actions can apply or set filters, refresh the dashboard,
open other dashboards or other URLs, run custom code, and so on. DeepSee provides a set of standard actions, and you
can define custom actions.

1.2 DeepSee Components to Add to Your Application
To add DeepSee to an application, you add some or all of the following components:

• Data connector classes. A data connector enables you to use an arbitrary SQL query as the source of a cube or a listing.

• Cube definition classes. A cube defines the elements used within DeepSee pivot tables, and controls the structure and
contents of the corresponding fact table and indices.

A cube definition points to the transactional class (or the data connector) that it uses as its basis.

You can have any number of cubes, and you can use a given class as the basis of multiple cubes.

For each cube, DeepSee generates and populates a fact table class and other classes.

• Subject area classes.

A subject area is primarily a filtered cube. (It includes a filter and overrides for different parts of the cube definition,
as wanted.) You can use cubes and subject areas interchangeably in DeepSee.

• KPI definition classes.

You define KPIs when you need custom queries, particularly queries that are determined at runtime based on user
input.

You also define KPIs when you need custom actions, because actions are contained in KPI classes.

• Pivot tables, which you create by drag and drop. DeepSee generates the underlying MDX queries.

• Dashboards, which display pivot tables and KPIs by running the underlying queries and displaying the results.

• The User Portal, which displays pivot tables and dashboards.

1.3 Recommended Architecture
As noted elsewhere, InterSystems generally recommends that you use mirroring as part of your high availability strategy.
For any large-scale application, InterSystems recommends that you base your DeepSee cubes on the application data that
is on the mirror server, as shown in the following figure:

4 DeepSee Implementation Guide

Overview

Specifically:

• Define your application so that the code and the data are in separate databases. This is not required, but is a typical
architecture.

• Set up mirroring so that the application data is mirrored to the mirror server.

• So that DeepSee can access the application data, copy some or all of the application classes and other code to the
mirror server as well.

It is not generally necessary to mirror the application code.

• On the mirror server, create a database to contain the DeepSee cube definitions and (optionally) data.

Optionally create another database to store the DeepSee fact table and other large-volume DeepSee data. The following
chapter provides information on the globals that DeepSee uses.

• On the mirror server, define a namespace in which to run DeepSee. In this namespace, define mappings to access the
application data, application code, DeepSee cube definitions, and DeepSee data on this server.

Note that for small-scale applications or demos, all the code and data can be in the same database.

For recommendations on DeepSee disaster recovery, see DeepSee and Disaster Recovery.

1.4 Main Implementation Steps
The implementation process includes the following steps:

1. If the namespace in which you want to use DeepSee does not yet define a web application, define a web application
for it. See the chapter “Performing the Initial Setup.”

DeepSee Implementation Guide 5

Main Implementation Steps

2. Optionally map the DeepSee globals from other databases, for performance.

See the chapter “Performing the Initial Setup.”

3. Create the cubes and optional subject areas. This process includes the following steps, which you iterate as needed:

a. Define one or more cubes. In this step, you use either the DeepSee Architect, Studio, or both.

b. Build the cubes. Here you use the Architect or the Terminal.

c. Use the DeepSee Analyzer to view the cubes and validate them.

After the cubes are defined, define any subject areas based on those cubes.

For information on creating cubes and subject areas, see Defining DeepSee Models.

For information on using the Analyzer, see Using the DeepSee Analyzer.

4. Optionally create KPIs. See the Advanced DeepSee Modeling Guide.

5. Optionally create custom actions. See the chapter “Defining Custom Actions.”

6. Make changes as needed to keep the cubes current. The way that you do this depends on how current the data must
be, as well as any performance considerations.

See the chapter “Keeping the Cubes Current.”

7. Create pivot tables and dashboards. See Using the DeepSee Analyzer and Creating DeepSee Dashboards.

8. Package the pivot tables and dashboards into Caché classes for easier deployment.

See the chapter “Packaging DeepSee Elements into Classes.”

9. Create links from your application to dashboards. See “Accessing Dashboards from Your Application.”

At the appropriate points during this process, you may also have to do the following:

• Create data connectors — See “Defining Data Connectors.”

• Configure settings — See “Configuring Settings.”

• Perform localization — See “Performing Localization.”

• Define custom portlets for use in dashboards — See “Creating Portlets for Use in Dashboards.”

• Perform other development tasks — See “Other Development Work.”

• Set up security – See “Setting Up Security for DeepSee.”

1.5 Implementation Tools
You use the following tools during the implementation process:

• Tools available from the DeepSee section of the Management Portal:

– Architect — Use this to define cubes and subject areas. Here you can also compile and build cubes (and compile
subject areas).

– Analyzer — Use this to examine cubes and subject areas when validating your model. Later you use it to create
pivot tables.

– User Portal — Use this to define dashboards.

6 DeepSee Implementation Guide

Overview

– Query Tool — Use this to create MDX queries and view their query plans.

– Folder Manager — Use this primarily to export pivot tables and dashboards so that you can package their definitions
within a Caché class.

You can also use it to associate resources with folders.

– Settings option — Use this to specify the appearance and behavior of the User Portal, and to define variables that
can be used in dashboards.

– DeepSee Logs — Use this to see the DeepSee build log for this namespace.

• Studio — Use this to define advanced cube features, any methods or routines used by cube elements, and any callback
methods in the cube classes. You also use this to define KPIs.

• Terminal — You can use this to rebuild cubes and to test methods.

• MDX shell (running in the Terminal) — Use this to examine cubes and subject areas and to create custom MDX queries
and see their results.

• Other sections of the Management Portal — Use these to map globals, define resources, roles, and users for use with
DeepSee, and to examine the DeepSee fact tables if wanted.

• Utility methods:

– %DeepSee.Utils includes methods that you can use to build cubes, synchronize cubes, clear the cell cache, and
other tasks.

– %DeepSee.UserLibrary.Utils includes methods that you can use to programmatically perform the tasks supported
in the Folder Manager.

• The data connector class (%DeepSee.DataConnector) — Use this to make arbitrary SQL queries available for use in
DeepSee cubes and listings.

• The result set API (%DeepSee.ResultSet) — Use this to execute MDX queries programmatically and access the results.

1.5.1 Available Samples

The SAMPLES database includes two DeepSee samples, in the HoleFoods and Patients packages. These samples include
cube definitions, subject areas, KPIs, data connectors, and plugins. They also include sample pivot tables and dashboards.

DeepSee Implementation Guide 7

Implementation Tools

2
Performing the Initial Setup

This chapter describes setup activities to perform before you create cubes. It discusses the following topics:

• How to set up the web application

• How to place the DeepSee globals in a separate database

• Alternative mapping for the DeepSee globals

• How to set the web application session timeout period

2.1 Setting Up the Web Applications
In order to use DeepSee in a web application, it is necessary to configure that web application so that it is DeepSee-enabled.
Specifically, a web application is DeepSee-enabled if you select the DeepSee option when you configure the application;
this option enables your application to use the %DeepSee classes. Similarly, if you select the iKnow option, the application
can use the iKnow/DeepSee classes. For details on configuring web applications, see the chapter “Applications” in the
Caché Security Administration Guide.

The application name has an effect on how the application can be accessed; see the table below.

In the Management Portal, the DeepSee menus
link to this web application

Web Application Configuration

YES (note that the DeepSee menus always try to
access this web application — even if another web
application is configured as the default, via the
Namespace Default Application option)

• Name is /csp/namespace

• Namespace is namespace

• DeepSee is selected

NO (you can still access the web application by
entering its URL in the browser)

• Name is any name other than /csp/namespace

• Namespace is namespace

• DeepSee is selected

Note that the sample web application /csp/samples is already configured to provide access to DeepSee and iKnow.

DeepSee Implementation Guide 9

2.2 Placing the DeepSee Globals in a Separate Database
When you use DeepSee in a given namespace, that increases the amount of data stored in the database (or databases) used
by that namespace. If the source table is large, DeepSee correspondingly stores a large amount of its own data. The DeepSee
caches further increase the storage needs. As a consequence, it is generally a good idea to map some of the DeepSee globals
to different databases. You can map all the DeepSee globals to a single database or you can define multiple mappings. As
an example, the following steps describe how to place all the DeepSee globals in a single separate database:

1. Create the database.

When you do so, you might consider pre-expanding the database (that is, setting its initial size), to avoid disk fragmen-
tation created by runtime expansion.

2. Add a global mapping in the namespace that contains the classes that you plan to use with DeepSee. When you do so:

• For Global Database Location, select the database that you just created.

• For Global Name, type DeepSee.*

Also see the next section for more specific mappings you might use.

Note: For the SAMPLES namespace, this step also affects where the DeepSee Patients sample is stored. In this case,
you can also create an additional mapping for ^DeepSee.Study.* as in the following example:

3. Recompile all cube, subject area, and KPI classes in this namespace.

Also rebuild all cubes.

For details on creating databases and mapping globals, see the chapter “Configuring Caché” in the Caché System Admin-
istration Guide.

2.3 Alternative Mappings for the Globals
In some cases, you might want to separately map the DeepSee and related globals to separate databases. The following
table lists the key globals:

CommentsGlobalsItems

When you initially build the cube,
you might disable journaling for the
database that contains these
globals. After that, enable
journaling for the databases.

• ^DeepSee.Fact

• ^DeepSee.FactRelation

• ^DeepSee.Index

Fact tables and their
indices

10 DeepSee Implementation Guide

Performing the Initial Setup

CommentsGlobalsItems

See the chapter “Keeping the
Cubes Current.”

• ^OBJ.DSTIME

• ^DeepSee.Update

Globals used to keep
cube synchronized
with the source table

• ^DeepSee.Cubes

• ^DeepSee.Dimension

• ^DeepSee.DimensionI

Cube internals

See “Using the Cube Manager” in
“Keeping the Cubes Current.”

• ^DeepSee.CubeManager

• ^DeepSee.CubeManager.CubeEventD

• ^DeepSee.CubeManager.CubeEventI

• ^DeepSee.CubeManager.CubeRegistr

Cube Manager

See “Defining Listing Groups” in
Defining DeepSee Models.

^DeepSee.ListingGroupsListing groups

You can disable journaling for the
database that contains these
globals. For information on the
result cache, see “Cube Updates
and the Result Cache,” later in this
book.

• ^DeepSee.BucketList

• ^DeepSee.Cache.*

• ^DeepSee.JoinIndex

• ^DeepSee.UpdateCounter

• ^DeepSee.Listing

Result cache (for
large data sets)

See Using the DeepSee Analyzer
and Creating DeepSee Dash-
boards.

• ^DeepSee.Filters

• ^DeepSee.Folder*

• ^DeepSee.FolderItem*

Items created in the
Analyzer and in the
Dashboard Designer

See the Advanced DeepSee
Modeling Guide.

• ^DeepSee.TermListTerm lists

See the Advanced DeepSee
Modeling Guide.

• ^DeepSee.QMsrsQuality measures

See “Defining and Using Pivot
Variables” in Using the DeepSee
Analyzer.

• ^DeepSee.VariablesPivot variables

DeepSee Implementation Guide 11

Alternative Mappings for the Globals

CommentsGlobalsItems

For most of these, see the chapter
“Configuring Settings.”

• ^DeepSee.DashboardSettings (user-spe-
cific dashboard settings)

• ^DeepSee.User.SendTo (user email
addresses)

• ^DeepSee.User.Settings (runtime vari-
ables)

• ^DeepSee.User.Icons (custom icons)

• ^DeepSee.UserPortalSettings (general
settings and worklist settings)

• ^DeepSee.UserPreferences (recent items,
per user)

• ^DeepSee.PaperSizes (see “Adding Paper
Sizes,” later in this book)

Other portal options

See the chapter “Other
Development Work.”

• ^DeepSee.InitCode

• ^DeepSee.AuditCode

Custom code

• ^DeepSee.AgentLog

• ^DeepSee.Last*

• ^DeepSee.PivotError

• ^DeepSee.QueryLog

• ^DeepSee.Session

• ^DeepSee.SQLError

Recent history and
logs

• ^ISC.IK.*iKnow

• ^DeepSee.ActiveTasks

• ^DeepSee.Agents

• ^DeepSee.Build

• ^DeepSee.Cancel

• ^DeepSee.ComputedSQL

• ^DeepSee.Functions

• ^DeepSee.IDList

• ^DeepSee.Pivot

• ^DeepSee.Shell

• ^DeepSee.TaskGroups

• ^DeepSee.Tasks

• ^DeepSee.UI.Charts

Internals used for
processing

12 DeepSee Implementation Guide

Performing the Initial Setup

This is not a comprehensive list; DeepSee uses additional globals with names that start ^DeepSee. Globals not listed here
typically contain only small amounts of data or are typically defined only briefly.

2.4 Adjusting the CSP Timeout Period
The User Portal is based on ZEN and thus respects the CSP session timeout period for the namespace you are working in.
The default session timeout period is 15 minutes, which might not be long enough.

To increase the CSP timeout period:

1. Go to the Management Portal.

2. Click System > System Administration> Security > Applications > Web Application.

3. Click Edit in the row for the namespace in which you are using DeepSee.

4. Change the value of Session Timeout, which specifies the default timeout period for the CSP session, in seconds.

5. Click Save.

DeepSee Implementation Guide 13

Adjusting the CSP Timeout Period

3
Configuring Settings

This chapter describes how to configure options that affect the appearance and behavior of DeepSee. It discusses the fol-
lowing topics:

• How to access the DeepSee settings

• How to specify the basic settings

• How to configure DeepSee to support email

• How to customize worklists

• How to create runtime variables for use as default values for filters

• Allowed default values for filters

• How to create icons

• How to create custom color palettes

3.1 Accessing the DeepSee Settings
To access the DeepSee settings:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with a Caché username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Click DeepSee > Admin > Settings.

The system displays the following page:

DeepSee Implementation Guide 15

3.2 Specifying Basic Settings
On the General tab, you can specify the following settings:

• Color Scheme — Select a color scheme for the User Portal.

• Chart Series Color Scheme — Select a color scheme for chart series. This is used as the default color scheme. Via the
Dashboard Editor, users can apply a different color scheme to a given chart.

• Home Page Title — Specify the title for the browser page or tab.

• Company Name — Select a title to display in the upper right area of the User Portal.

If you specify this, do not specify Company Logo.

• Company Logo — Specify the URL of an image to display to the right of the company name.

Specify either a complete URL, starting with http:// or a URL relative to the web application defined for this
namespace.

If you specify this, Company Name is ignored.

• Company Link — Specify the URL to open when a user clicks the company logo or name in the upper right.

Specify either a complete URL, starting with http:// or a URL relative to the web application defined for this
namespace.

• Google Maps API Key — Specify a key to use for the Google Maps API. Google has changed their policy regarding
the use of the Google Maps libraries so that all new installations require an API key to function. See the Google Maps
API Documentation for more information.

• Dashboard email — See the next topic.

• Default Resource — Default resource to use to secure pivot tables and dashboards.

See “Adding Security for DeepSee Elements,” later in this book.

• No Dashboard Titles — If this option is selected, DeepSee hides the title area in the User Portal and in all dashboards.
The title area is this area:

16 DeepSee Implementation Guide

Configuring Settings

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

This option is equivalent to the NOTITLE URL parameter; see “Available URL Parameters,” later in this book.

• No Dashboard Borders — If this option is selected, DeepSee hides the border in the User Portal and in all dashboards.
This option is equivalent to the NOBORDER URL parameter; see “Available URL Parameters,” later in this book.

• Show Calculated Members in Filters — If this option is selected, calculated members that are part of existing cube
dimensions will appear in filters. This setting does not affect calculated members that are part of special dimensions
created by the definition of a calculated member.

• Autosave — These options enable or disable the autosave feature in this namespace. If the Analyzer check box is
selected, DeepSee automatically saves the state of the Analyzer for each user, for each pivot table. This means that
when a given user opens a pivot table in the Analyzer, DeepSee displays that pivot table as the user last saw it.

Similarly, if the User Portal Settings check box is selected, DeepSee automatically saves the state of the User Portal
for each user, for each dashboard.

In both the Analyzer and the User Portal, there is an option to clear the autosave state. (You can also remove all autosave
data programmatically. See the %KillAutosaveFolders() method of %DeepSee.UserLibrary.Utils.)

Click Save after making any changes on this tab.

3.3 Configuring DeepSee to Support Email
On the General tab, you can configure DeepSee so that users can send email from within dashboards. To do so, use the
Dashboard email setting. Select one of the following:

• Use client-side email — Enables email in DeepSee. When a user sends email, DeepSee accesses the default client-side
email system, which the user then uses to send a message. The message contains a link to the dashboard, and the user
can edit the message.

• Use server-side email — Enables email in DeepSee. When a user sends email, DeepSee displays a dialog box where
the user types the email address and enters an optional comment, which DeepSee adds to the message that it generates;
this default message contains a link to the dashboard. The system then sends the email via an SMTP server.

If you select this, you must also configure Caché to use an SMTP server. See “Configuring Task Manager Email Set-
tings” in the chapter “Configuring Caché” in the Caché System Administration Guide.

• Disabled — Disables support for email within DeepSee.

This is the default.

3.4 Customizing Worklists
On the Worklists tab, you can customize how DeepSee displays worklists. To do so, click Customized worklists and then
select options in the following groups:

• The Home Page Top Panel and Home Page Bottom Panel options specify the worklists that are available in the User
Portal, which always has two worklist areas on the left.

• The Dashboard Page Top Panel and Dashboard Page Bottom Panel options specify the worklists that are available in
dashboards, which can have zero, one, or two worklist areas on the left, depending on their configuration.

DeepSee Implementation Guide 17

Configuring DeepSee to Support Email

In each section of this page, select the worklists to be available in the corresponding area. The available worklists are as
follows:

• The Details worklist displays details for the pivot table or dashboard that the user has selected. For example:

• The Favorites worklist displays any items that the user has marked as favorites. For example:

• The Recent items worklist displays items that the user has recently accessed. For example:

• The Alerts worklist displays recent alerts for the user. For example:

• The Filters worklist displays filters and other controls in the dashboard. For example:

18 DeepSee Implementation Guide

Configuring Settings

3.5 Creating Runtime Variables for Use as Default Values
for Filters
On the Run-time Variables tab, you can define variables that have a logical name and a value that is an ObjectScript
expression that is evaluated at runtime. You use these within dashboards for the default values of filters.

To add a setting:

1. Click New.

The page then displays the following:

2. Specify the following details:

• Name — Specify the name of the variable.

• Value — Specify an ObjectScript expression.

The value can be any valid ObjectScript expression. For example, it can be an invocation of a class method or
routine; that method or routine can use special variables such as $USERNAME and $ROLES.

For details on the allowed values, see the section “Allowed Default Values for Filters.”

• Context — Select DefaultFilterValue to specify the context in which you will use this expression. Then the Widget
Editor lists this setting as a possible default value for a filter, when you add a control to a widget.

The value Other is currently not used.

• Description — Optionally specify a comment.

3. Click Apply.

The variable is added to the table, which also shows its current value:

DeepSee Implementation Guide 19

Creating Runtime Variables for Use as Default Values for Filters

3.5.1 Editing Runtime Variables

To edit a runtime variable:

1. Click the variable in the table.

2. Edit the details in the area below the table.

3. Click Apply.

3.5.2 Removing Runtime Variables

To remove a runtime variable, click the X in the row for that variable.

The system immediately removes the variable.

3.6 Allowed Default Values for Filters
The following table lists the possible default values for filters, when used with an MDX-based data source. Use this infor-
mation when you define runtime variables to use as filter defaults, or when you specify filters in other ways described in
this book.

Expression That Returns This ValueScenario

"&[keyval]" where keyval is the key for the member. See “Key Values”
in the DeepSee MDX Reference.

A single member

"&[keyval1]:&[keyval2]"A range of members

"{&[keyval1],&[keyval2],&[keyval3]}"A set of members

"%NOT &[keyval]"All members of the level except
for a specified single member

"%NOT{&[keyval1],&[keyval2],&[keyval3]}"All members of the level except
for a specified subset

Note that for an MDX-based data source, the filter name and filter value are not case-sensitive (except for the optional
%NOT string).

3.7 Creating Icons
On the User-defined Icons tab, you can define reusable icons with logical names. You can use these icons within pivot
tables that have conditional formatting and within widget controls on dashboards.

To add an icon:

20 DeepSee Implementation Guide

Configuring Settings

1. Click New.

The bottom area of the page then displays the following:

2. For Name, specify the name you will use to refer to this icon.

3. For Path, specify the location of the icon file. Do one of the following:

• Specify a relative path that is relative to install-dir/CSP/broker/

• Specify a complete URL.

4. Click Apply.

The icon is added to the table, which also shows a preview:

You can edit or remove icons in the same way that you do with runtime variables. See the previous section for details.

For information on using icons in pivot tables with conditional formatting, see “Applying Conditional Formatting” in
Using the DeepSee Analyzer. For information on configuring widget controls, see “Adding a Control” in Creating DeepSee
Dashboards.

3.8 Creating Custom Color Palettes
You can also create custom color palettes, for use in the dashboard editor, which provides a color picker. The following
shows this color picker with one of the default color palettes:

DeepSee Implementation Guide 21

Creating Custom Color Palettes

To add a custom color palette, add nodes to the ^DeepSee.UserPortalColorSets global, as follows:

ValueNode

A $LISTBUILD list that consists of the following items,
in order:

^DeepSee.UserPortalColorSets(n) where n is
an integer, incremented from the previous node in the
global.

1. Logical name of the color palette

2. Display name of the color palette. Optionally use
$$$Text() to make this name localizable.

3. A list of CSS color names, separated by semi-
colons.

For example:

ObjectScript

 set colorlist = "darkturquoise;greenyellow;hotpink;floralwhite;palevioletred;plum;"
 set colorlist = colorlist _"powderblue;palegreen;plum;mediumaquamarine;linen;"
 set colorlist = colorlist _"lightsteelblue;lightpink;oldlace;lightsalmon;gold;"
 set mycolors=$LB("My Custom Colors","My Custom Colors",colorlist)
 set ^DeepSee.UserPortalColorSets($I(^DeepSee.UserPortalColorSets)) = mycolors

When a user selects a color palette, DeepSee displays a sample of each color in the grid. You can specify up to 64 colors.

22 DeepSee Implementation Guide

Configuring Settings

4
Defining Data Connectors

This chapter describes how to define data connectors. It discusses the following topics:

• Introduction

• How to define basic data connectors

• How to preview the query results

• How to construct the data connector query at runtime

• How to use the data connector programmatically

4.1 Introduction to Data Connectors
A data connector maps the results of an arbitrary SQL SELECT query into an object that can be used as the source of a
cube, for a detail listing, or both. (For information on defining cubes and listings, see Defining DeepSee Models.)

The SQL query can use a combination of the following:

• Local tables in the namespace in which you are using DeepSee.

• Views in the same namespace.

• Linked tables in the same namespace. You define a linked table with the Link Table Wizard. The table has a class
definition in your namespace but is linked to a table in an external database.

Important: There are restrictions on queries when using linked tables. See “Restrictions on SQL Gateway Queries”
in the chapter “Using the Caché SQL Gateway” in Using Caché SQL.

You can define a data connector so that it supports updates to the cube. To update this cube, you must either rebuild the
entire cube or use ProcessFact(); see “Keeping the Cubes Current.”

4.2 Defining a Basic Data Connector
To define a data connector, create a class as follows:

• It must extend %DeepSee.DataConnector.

DeepSee Implementation Guide 23

• It must specify a query. You can specify the query in an XData block, as described in the first subsection.

Another possibility is to implement a callback to construct the query at runtime. This is described later in this chapter.

• It must define an output specification, which maps the query columns to properties, as described in the second subsection.

• If you need to use this data connector for a listing, the class must specify the SUPPORTSIDLIST class parameter as 1:

Class Member

Parameter SUPPORTSIDLIST = 1;

• If you need to use this data connector for a cube, and if you want to support cube updates, the class must specify the
SUPPORTSSINGLE parameter as 1:

Class Member

Parameter SUPPORTSSINGLE = 1;

When you compile a data connector, the system generates a class with the name packagename.classname.ResultSet, where
packagename.classname is the full name of the data connector class itself. Do not edit the generated class.

4.2.1 Defining the Query in an XData Block

To define the query in an XData block, add an element to the data connector class like the following:

Class Member

XData SourceQuery [XMLNamespace = "http://www.intersystems.com/deepsee/connector/query"]
{
 <sql>SELECT %ID, DateOfSale, Product->Name AS ProductName FROM HoleFoods.SalesTransaction</sql>
}

Notes:

• You cannot use this technique if the data connector must support detail listings or updates. In such cases, instead see
“Defining the Query at Runtime,” later in this chapter.

• The name of this XData block must be SourceQuery

• The XMLNamespace parameter must equal "http://www.intersystems.com/deepsee/connector/query"

• The XData block must contain one <sql> element, which contains the SQL query to execute.

• The query must return the IDs of the records, in addition to other fields you need.

• To include the less than symbol (<) in the query, use <

For example:

<sql>SELECT A,B,C FROM MyApp.MyTable WHERE A<'50'</sql>

Similarly, to include an ampersand (&) in the query, use &

• If you are using this data connector for a listing or you need to support cube updates, the query must end with WHERE
$$$RESTRICT token. For example:

XML

<sql>SELECT A,B,C FROM MyApp.MyTable WHERE $$$RESTRICT</sql>

The $$$RESTRICT token is case-sensitive.

24 DeepSee Implementation Guide

Defining Data Connectors

Note: $$$RESTRICT is not a macro. It is replaced at runtime, not at compile time.

• If you use Caché arrow syntax to access a field, it might be necessary to also supply an alias for the field. Specifically,
an alias is required if you use the data connector as the basis of a cube and you want to use the field in the definition
of a cube element.

For example, consider the following query:

SELECT %ID, DateOfSale, Product->Name FROM HoleFoods.SalesTransaction

In this case, there is no way for a cube definition to refer to the Product->Name field; the build process throws an
error if you use either Product->Name or Product.Name. As a consequence, you cannot use this field as the basis
of a level or measure.

In contrast, consider this query:

SELECT %ID, DateOfSale, Product->Name AS ProductName FROM HoleFoods.SalesTransaction

In this case, you can treat ProductName as a property in the source class, so you can define a level or measure based
on it.

4.2.2 Defining the Output Specification

Every data connector class must contain an XData block that maps the query columns to properties, as in the following
example:

Class Member

XData Output [XMLNamespace = "http://www.intersystems.com/deepsee/connector/output"]
{
<connector>
 <property name="Gender" sourceProperty="Gender" />
 <property name="Age" sourceProperty="Age" type="%ZEN.Datatype.integer"/>
 <property name="HomeCity" sourceProperty="HomeCity"/>
 <property name="PatientGroup" sourceProperty="PatientGroup"
 transform='$CASE(%val,"A":"Group A","B":"Group B",:%val)' />
 <property name="TestScore" sourceProperty="TestScore" type="%ZEN.Datatype.integer"/>
</connector>
}

Each <property> element is a property of the data connector and can be used by DeepSee.

Notes:

• The name of this XData block must be Output

• The XMLNamespace parameter must equal "http://www.intersystems.com/deepsee/connector/output"

• This XData block must contain one <connector> element.

• The <connector> element must include one or more <property> elements.

• Each <property> element must specify some or all of the following attributes:

DeepSee Implementation Guide 25

Defining a Basic Data Connector

PurposeAttribute

Name of the property, for use as a source property in a cube, in a source
expression in a cube, or as a field in a listing.

name

Name of the corresponding column of the result set.sourceProperty

(Optional) Data type for the property. The default is %Library.String.type

(Optional) An expression that uses %val (the current column value) as input
and returns a transformed value.

transform

• If you are going to use this data connector for a listing, also specify the idkey attribute for the appropriate <property>
element or elements. This attribute indicates that the given property or properties represent the IdKey of the data set.

If you mark multiple fields with idKey="true", the data connector combines these fields.

Note: If you have a cube based on a data connector and listings in that cube that are also based on data connectors,
all of these data connectors must have the same property (or properties) marked as idkey="true", because
the underlying mechanism uses the same ID values in all cases.

The following shows an example with idkey:

Class Member

XData Output [XMLNamespace = " http://www.intersystems.com/deepsee/connector/output"]
{
<connector >
 <property name= "%ID" sourceProperty ="ID" displayName ="Record ID" idKey= "true"/>
 <property name= "Product" sourceProperty ="Product" displayName ="Product name"/>
 <property name= "AmountOfSale" sourceProperty ="AmountOfSale" displayName ="Amount of sale"/>
</connector >
}

4.3 Previewing the Query Results
To test a data connector, you can directly view the query results by using the test page or by printing output in the Terminal.

4.3.1 Viewing the Test Page

To view the test page for a data connector:

1. Open the data connector class in Studio.

2. Click View > View Web Page.

The system then displays a page like the following:

26 DeepSee Implementation Guide

Defining Data Connectors

4.3.2 Printing the Output in the Terminal

To easily see the output for a data connector, use its %Print() class method in the Terminal. For example:

d ##class(DeepSee.Model.PatientsQuery).%Print()
1 1 SUBJ_1003 M 27 Redwood
2 2 SUBJ_1003 M 41 Magnolia
3 3 SUBJ_1003 F 42 Elm Heigh
...

By default, this method prints the first 100 records of the output.

This method has the following signature:

classmethod %Print(ByRef pParameters, pMaxRows As %Integer = 100) as %Status

Where pParameters is currently not used, and pMaxRows is the maximum number of rows to display.

4.4 Defining the Query at Runtime
Instead of defining a hardcoded query in an XData block, you can construct the query at runtime. If the data connector must
support detail listings or updates, you must use this technique.

To construct the query at runtime, implement the %OnGetSourceResultSet() method. This method has the following
signature:

Method %OnGetSourceResultSet(ByRef pParameters, Output pResultSet) As %Status

Where pParameters is currently unused, and pResultSet is the result set.

In your implementation, do the following:

1. If you are using this data connector for multiple purposes, examine the %mode property of the data connector instance.
DeepSee automatically sets this property when it creates the data connector instance. This property has one of the fol-
lowing values:

• "all" — Indicates that the cube is being built or that an All member is being shown.

• "idlist" — Indicates that a listing is being requested.

DeepSee Implementation Guide 27

Defining the Query at Runtime

• "single" — Indicates that %ProcessFact() has been invoked.

2. Creates an instance of %SQL.Statement. The query must return the IDs of the records, in addition to other fields you
need.

The details of the query should be different, depending on the mode in which this data connector has been created.
Typically:

• You define a basic query for use with the "all" mode.

• You add a restriction when the mode is "single", to get the single record that is being updated. The first subsection
provides details.

• You add a different restriction when the mode is "idlist", to get a subset of the records. The second subsection
provides details.

3. Execute that statement, optionally passing to it any runtime values as parameters. Certain runtime values are available
as properties of the statement instance, as discussed in the following subsections.

This step creates an instance of %SQL.StatementResult.

4. Return the instance of %SQL.StatementResult as an output parameter.

4.4.1 Restricting the Records When an Update Is Requested

When you update a cube with ProcessFact(), you indicate the ID of the record to update. When you create a data connector
for use by a cube, you must add logic so that its query uses only the given ID. In this case, you can use the %singleId

property of your data connector; it contains the ID of the record that is being updated. For example:

 //do this when constructing the SQL statement
 if (..%mode="single") {
 set sql = sql _ " where %ID = ?"
 }

...
 //do this when executing the SQL statement
 if (..%mode="single") {
 set pResultSet = tStatement.%Execute(..%singleId)
 }

For information on ProcessFact(), see the chapter “Keeping the Cubes Current.”

4.4.2 Restricting the Records When a Listing Is Requested

When a user requests a listing, DeepSee retrieves the IDs of the records used in the given context and stores them for later
use. For a default listing, DeepSee automatically uses those IDs in the SQL query of the listing. When you create a data
connector for use in a listing, you must add logic so that your query uses the IDs.

In this case, it is necessary to understand how DeepSee stores the IDs for a listing. It writes these IDs to a table (the listing
table for this cube), which includes the following columns:

• _DSqueryKey — Identifies a listing.

• _DSsourceId — An ID, as in the original source data.

The following shows an example:

28 DeepSee Implementation Guide

Defining Data Connectors

Here, the first five rows are associated with the listing 83616140, which uses the IDs of five records, given in the
_DSsourceId column. The next two rows are associated with the listing 2139316107, which uses the IDs of two records.

There are two ways to modify the data connector query to use the listing table:

• Add an IN clause to the query and use the applicable rows from the listing table in a subquery. The following shows
an example:

SQL

SELECT A,B,C FROM MyApp.MyTable
WHERE (ID IN (SELECT _DSsourceId FROM listingtable WHERE
_DSqueryKey=somekey))

In this case:

– listingtable is the name of the listing table for the cube. To get this table name, you use the %listingTable

property of your data connector.

– somekey is the unique key for the current listing. To get this key, you use the %listingKey property of your data
connector.

This approach can lead to <MAXSTRING> errors and other size-related issues.

• Perform a JOIN between the source table and the listing table with the correct WHERE clause.

The following shows an example, from a data connector that is used as the source for a cube and as the source for a listing.
Notice that the listing key is passed to the query as a parameter.

Class Member

Method %OnGetSourceResultSet(ByRef pParameters, Output pResultSet) As %Status
{
 set tSC = $$$OK
 set pResultSet = ""
 Try {
 set sql = "SELECT %ID, fdate, fname, ftimestamp FROM TestTD.TimeDimensions"
 //when we're using this for a listing, add WHERE clause to restrict to
 //the appropriate IDs (in the table given by the %listingTable property)

 if (..%mode="idlist") {
 set sql = sql _ " where %ID in (select _DSsourceId from "
 _ ..%listingTable _ " where _DSqueryKey = ?)"
 }

 set tStatement = ##class(%SQL.Statement).%New()
 set tSC = tStatement.%Prepare(.sql)

 If $$$ISERR(tSC) {
 set ex = ##class(%Exception.StatusException).CreateFromStatus(tSC)
 throw ex
 }

 //if we're using this for a listing, pass in the listing key as a parameter
 if (..%mode="idlist") {
 set pResultSet = tStatement.%Execute(..%listingKey)
 } else {
 set pResultSet = tStatement.%Execute()
 }

DeepSee Implementation Guide 29

Defining the Query at Runtime

 //check %SQLCODE and report if there's an error
 If pResultSet.%SQLCODE {
 set sqlcode=pResultSet.%SQLCODE
 set message=pResultSet.%Message
 set ex = ##class(%Exception.SQL).CreateFromSQLCODE(sqlcode, message)
 throw ex
 }
 }
 Catch(ex) {
 Set tSC = ex.AsStatus()
 }
 Quit tSC
}

4.4.3 Other Callbacks

The %DeepSee.DataConnector class provides additional callback methods that you can customize to handle errors, perform
transformations on rows, perform filtering, and so on. These include %OnNextRecord() and %OnProcessRecord(). For
details, see the InterSystems Class Reference.

4.5 Using a Data Connector Programmatically
To use a data connector programmatically, do the following:

1. Create an instance of it.

2. Invoke its %Execute() method, which returns a result set. This method also returns a status by reference.

3. Check the returned status.

4. If the status is not an error, you can now use the result set, which is an instance of %SQL.StatementResult.

For example:

ObjectScript

 Set tConnector=..%New()
 Set tRS=tConnector.%Execute(,.tSC)
 If $$$ISERR(tSC) {Quit}
 //use tRS as needed ...

30 DeepSee Implementation Guide

Defining Data Connectors

5
Performance Tips

This chapter contains performance tips for DeepSee.

For more information on performance and troubleshooting options, see the InterSystems Developer Community. Also see
the section “Placing the DeepSee Globals in a Separate Database,” earlier in this book.

5.1 Result Caching and Cube Updates
For any cube that uses more than 64,000 records (by default), DeepSee maintains and uses a result cache. When you update
a cube in any way, parts of the result cache are considered invalid and are cleared. The details depend upon options in the
cube definition (see “Cache Buckets and Fact Order,” later in this chapter). Therefore, it is not generally desirable to update
the cubes constantly.

The result cache works as follows: Each time a user executes a query (via the Analyzer for example), DeepSee caches the
results for that query. The next time any user runs that query, DeepSee checks to see if the cache is still valid. If so, DeepSee
then uses the cached values. Otherwise, DeepSee re-executes the query, uses the new values, and caches the new values.
The net effect is that performance improves over time as more users run more queries.

5.2 Specifying the Agent Count
DeepSee sets up a pool of agents that execute queries. This pool consists of a set of agents with high priority and the same
number of agents with low priority. You can control the number of agents, which are also used when cubes are built. For
details, see “Specifying the Agent Count” in the chapter “Compiling and Building Cubes” in Defining DeepSee Models.

5.3 Cache Buckets and Fact Order
As noted earlier, for large data sets, DeepSee maintains and uses a result cache. In this case, it can be useful to control the
order of rows in the fact table, because this affects how DeepSee creates and uses the cache. To do this, you can specify
the Initial build order option for the cube; see “Other Cube Options” in Defining DeepSee Models.

When users evaluate pivot tables, DeepSee computes and caches aggregate values that it later reuses whenever possible.
To determine whether DeepSee can reuse a cache, DeepSee uses the following logic:

1. It examines the IDs of the records used in a given scenario (for example, for a given pivot table cell).

DeepSee Implementation Guide 31

https://community.intersystems.com/node/418306

2. It checks the buckets to which those IDs belong. A bucket is a large number of contiguous records in the fact table
(details given later).

• If the bucket has been updated (because there was a change for at least one ID in the bucket), DeepSee discards
any corresponding cache associated with that bucket and regenerates the result.

• If the bucket has not been updated, DeepSee reuses the appropriate cache (if available) or generates the result (if
not).

In some scenarios, changes to the source records (and the corresponding updates to any cubes) occur primarily in the most
recent source records. In such scenarios, it is useful to make sure that you build the fact table in order by age of the records,
with the oldest records first. This approach means that the caches for the older rows would not be made invalid by changes
to the data. (In contrast, if the older rows and newer rows were mixed throughout the fact table, all the caches would
potentially become invalid when changes occurred to newer records.)

For more information, see “How the DeepSee Query Engine Works,” later in this book.

5.4 Removing Inactive Cache Buckets
When a cache bucket is invalidated (as described in the previous section), it is marked as inactive but is not removed. To
remove the inactive cache buckets, call the %PurgeObsoleteCache() method of %DeepSee.Utils. For example:

d ##class(%DeepSee.Utils).%PurgeObsoleteCache("patients")

5.5 Precomputing Cube Cells
As noted earlier, when users evaluate pivot tables, DeepSee computes and caches aggregate values that it later reuses
whenever possible. This caching means that the more users work with DeepSee, the more quickly it runs. (For details, see
“How the DeepSee Query Engine Works,” later in this book.)

To speed up initial performance as well, you can precompute and cache specific aggregate values that are used in your
pivot tables, especially wherever performance is a concern. The feature works as follows:

• Within the cube class, you specify an additional XData block (CellCache) that specifies cube cells that should be
precomputed and cached. For details, see the first subsection.

• You programmatically precompute these cube cells by using a utility method. See the second subsection.

You must do this after building the cube.

Important: A simpler option is to simply run any queries ahead of time (that is, before any users work with them).

5.5.1 Defining the Cell Cache

Your cube class can contain an additional XData block (CellCache) that specifies cube cells that can be precomputed
and cached, which speeds up the initial performance of DeepSee. The following shows an example:

/// This xml document defines aggregates to be precomputed.
XData CellCache [XMLNamespace = " http://www.intersystems.com/deepsee/cellCache"]
{
<cellCache xmlns= "http://www.intersystems.com/deepsee/cellCache" >
 <group name= "BS">
 <item>

32 DeepSee Implementation Guide

Performance Tips

 <element >[Measures].[Big Sale Count]</element >
 </item>
 </group>
 <group name= "G1">
 <item>
 <element >[UnitsPerTransaction].[H1].[UnitsSold]</ element>
 <element >[Measures].[Amount Sold]</element >
 </item>
 <item>
 <fact >DxUnitsSold</fact >
 <element >[Measures].[Amount Sold]</element >
 </item>
 </group>
</cellCache >
}

The <cellCache> element is as follows:

• It must be in the namespace "http://www.intersystems.com/deepsee/cellCache"

• It contains zero or more <group> elements.

Each <group> element is as follows:

• It has a name attribute, which you use later when specifying which groups of cells to precompute.

• It contains one or more <item> elements.

Each <item> element represents a combination of cube indices and corresponds to the information returned by
%SHOWPLAN. An <item> element consists of one or more <element> elements.

An <element> can include one or more of either of the following structures, in any combination:

<fact>fact_table_field_name</fact>

Or:

<element>mdx_member_expression</element >

Where:

• fact_table_field_name is the field name in the fact table for a level or measure, as given by the factName attribute
for that level or measure.

• mdx_member_expression is an MDX expression that evaluates to a member. This can be either a member of a level
or it can be a measure name (each measure is a member of the special MEASURES dimension).

This expression cannot be a calculated member.

Note: Each group defines a set of intersections. The number of intersections in a group affects the processing speed
when you precompute the cube cells.

5.5.2 Precomputing the Cube Cells

To precompute the aggregate values specified by a <group>, use the %ComputeAggregateGroup() method of
%DeepSee.Utils. This method is as follows:

classmethod %ComputeAggregateGroup(pCubeName As %String,
 pGroupName As %String,
 pVerbose As %Boolean = 1) as %Status

Where pCubeName is the name of the cube, pGroupName is the name of the cube, and pVerbose specifies whether to write
progress information while the method is running. For pGroupName, you can use "*" to precompute all groups for this
cube.

DeepSee Implementation Guide 33

Precomputing Cube Cells

If you use this method, you must first build the cube.

The method processes each group by looping over the fact table and computing the intersections defined by the items within
the group. Processing is faster with fewer intersections in a group. The processing is single-threaded, which allows querying
in the foreground.

34 DeepSee Implementation Guide

Performance Tips

6
Defining Custom Actions

This chapter describes how to define custom actions for use in DeepSee dashboards. It discusses the following topics:

• Introduction to actions

• How to define actions

• Context information you can use on the server

• How to execute client-side commands

• How to display a different dashboard

• How to generate a table from cube context

6.1 Introduction
You define custom actions within KPI classes. Then:

• When you display a given KPI in a widget, you can add controls to that widget that invoke the custom actions. See
“Adding Widget Controls” in Creating DeepSee Dashboards.

• If you specify a KPI class as the actionClass attribute of the <cube> element, all actions within this class are
available to pivot tables that use this cube, which means they can be added as controls to widgets that display these
pivot tables.

• If you specify a KPI class as the actionClass attribute of another <kpi> element, all actions within this class are
available to that KPI, in addition to any actions defined within that KPI.

• You can execute actions from within the Analyzer. Note that in this case, only a subset of the client-side commands
are supported: alert, navigate, and newWindow. Other commands are ignored.

For details on defining KPIs, see the Advanced DeepSee Modeling Guide.

You can perform many of the same operations with either a standard action or a custom action:

Can Be Performed
in Custom Action?

Available As
Standard Action?

Operation

YesYesSetting a filter

YesYesSetting a filter and refreshing the display

DeepSee Implementation Guide 35

Can Be Performed
in Custom Action?

Available As
Standard Action?

Operation

YesYesRefreshing the display of a widget

NoYesRefreshing the display of the entire
dashboard

NoYesSpecifying the row or column sort for a pivot
table

NoYesSpecifying the row or column count for a
pivot table

NoYesDisplaying a listing for a pivot table

YesYesDisplaying another dashboard

YesYesDisplaying a URL in the same page

YesNoDisplaying a URL in a new page

YesNoExecuting code on the server

NoYesChanging the data source of the widget

NoYesChanging the row or column specification of
the widget

For details on the standard actions, see “Adding Widget Controls” in Creating DeepSee Dashboards.

6.1.1 Context Information

DeepSee makes context information available to actions, by two different mechanisms. When a user launches a custom
action, DeepSee writes context information into the pContext variable, which is available in your custom code on the
server. When a custom action opens a URL, DeepSee replaces the $$$VALUELIST and $$$CURRVALUE tokens, if these
are included in the URL. The following figure illustrates these mechanisms:

36 DeepSee Implementation Guide

Defining Custom Actions

6.2 Defining the Behavior of Actions
To define custom actions, you must both declare the actions and define their behavior.

6.2.1 Declaring Actions

To declare actions, do either or both of the following tasks in a KPI class:

• Within the <kpi> element, include one <action> element for each action.

This element specifies the name of an action available within this KPI class; the user interfaces use this information
to create lists of available actions for the users. For example:

<kpi xmlns="http://www.intersystems.com/deepsee/kpi"
 name="Holefoods Actions">

<action name="ActionA"/>
<action name="ActionB"/>
<action name="ActionC"/>
</kpi>

For information on <action>, see the appendix “Reference Information for KPI and Plugin Classes” in the Advanced
DeepSee Modeling Guide.

• Override the %OnGetActionList() callback method of your KPI class. This method has the following signature:

ClassMethod %OnGetActionList(ByRef pActions As %List, pDataSourceName As %String = "") As %Status

Where pActions is an array with the following nodes:

ValueNode

Number of actionspActions

Details for the nth action.This is a $LISTBUILD list that consists of the following
items:

pActions(n)

– A string that equals the logical action name

– A string that equals the corresponding display name

And pDataSourceName is for future use.

For example:

ClassMethod %OnGetActionList(ByRef pActions As %List, pDataSourceName As %String = "") As %Status
{
 set newaction=$LB("New Action","New Action Display Name")
 set pActions($I(pFilters))=newaction
 quit $$$OK
}

6.2.2 Defining the Behavior of the Actions

To define the behavior of the actions, override the %OnDashboardAction() callback method of your KPI class. This
method has the following signature:

classmethod %OnDashboardAction(pAction As %String, pContext As %ZEN.proxyObject) as %Status

DeepSee Implementation Guide 37

Defining the Behavior of Actions

DeepSee executes this callback when a user invokes an action on a dashboard. pAction is the logical name of the action.
pContext is an object that contains information about the currently selected scorecard row and that provides a way for the
method to return commands to the dashboard; the next sections give the details.

A simple example is as follows:

Class Member

ClassMethod %OnDashboardAction(pAction As %String, pContext As %ZEN.proxyObject) As %Status
{
 Set sc = $$$OK
 Try {
 If (pAction = "Action 1") {
 //this part defines Action 1
 //perform server-side actions
 }
 Elseif (pAction="Action 2")
 {
 //this part defines Action 2
 //perform other server-side actions
 }
 }
 Catch(ex) {
 Set sc = ex.AsStatus()
 }
 Quit sc
}

This method defines two actions, Action 1 and Action 2.

Note: Because %OnDashboardAction() is a class method, you do not have access to %seriesNames or other properties
of the KPI class from within this method (no class instance is available from the method).

6.3 Available Context Information
An action can use context information — values from the dashboard, based on the row or rows that the user selected before
launching the action. These values are useful if you want to cause changes in the database that are dependent on context.

Because %OnDashboardAction() is a class method, you do not have access to %seriesNames or other properties of the
KPI class from within this method. Instead, DeepSee provides the pContext variable, which is an object whose properties
provide information for use in the action. The details are different in the following scenarios:

• Pivot table that uses a pivot table as the data source

• Pivot table that uses a listing as the data source

• Pivot table that uses a KPI as the data source

• Scorecard that uses a KPI as the data source

6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data Source

In this scenario, within the %OnDashboardAction() method, the pContext variable has the following properties:

38 DeepSee Implementation Guide

Defining Custom Actions

Property ContentsProperty Name

Value of first selected cellcurrValue

Column numbercurrSeriesNo

Row numbercurrItemNo

MDX %FILTER clause or clauses that represent the filtering applied to the current
cell context. This includes values of any filter controls, as well as the row and
column context.

currFilterSpec

NullvalueList

Name of the cube queried by this pivot tablecubeName

MDX query defined by this pivot tablemdx

A proxy object that contains one property for each pivot variable. Specifically,
pContext.pivotVariables.varname contains the value of the pivot variable varname.
In this proxy object, all pivot variable names are in lowercase. For example, if
the server defines a pivot variable named MyVar, this pivot variable is available
as pContext.pivotVariables.myvar

pivotVariables

An array that indicates the current values of all filter controls. For each node in
this array, the subscript is the name of a filter defined by the KPI. The value of
the node is the corresponding key or keys, in the form described at “Allowed
Default Values for Filters” .

filters

Name of the current data sourcedataSource

6.3.2 Scenario: Pivot Table Widget with Listing as Data Source

In this scenario, within the %OnDashboardAction() method, the pContext variable has the following properties:

Property ContentsProperty Name

Value of the first selected cell that was displayed before the listing was showncurrValue

Column number of the first selected cell that was displayed before the listing was
shown

currSeriesNo

Comma-separated list of values from the first column of the listing (these values
must not contain commas)

valueList

A proxy object that contains one property for each pivot variable. Specifically,
pContext.pivotVariables.varname contains the value of the pivot variable varname.
In this proxy object, all pivot variable names are in lowercase. For example, if
the server defines a pivot variable named MyVar, this pivot variable is available
as pContext.pivotVariables.myvar

pivotVariables

An array that indicates the current values of all filter controls. For each node in
this array, the subscript is the name of a filter defined by the KPI. The value of
the node is the corresponding key or keys, in the form described at “Allowed
Default Values for Filters” .

filters

Name of the current data sourcedataSource

DeepSee Implementation Guide 39

Available Context Information

6.3.3 Scenario: Pivot Table Widget with KPI as Data Source

In this scenario, within the %OnDashboardAction() method, the pContext variable has the following properties:

Property ContentsProperty Name

Value of first selected cellcurrValue

Column number of first selected cellcurrSeriesNo

NullvalueList

A proxy object that contains one property for each pivot variable. Specifically,
pContext.pivotVariables.varname contains the value of the pivot variable varname.
In this proxy object, all pivot variable names are in lowercase. For example, if
the server defines a pivot variable named MyVar, this pivot variable is available
as pContext.pivotVariables.myvar

pivotVariables

An array that indicates the current values of all filter controls. For each node in
this array, the subscript is the name of a filter defined by the KPI. The value of
the node is the corresponding key or keys, in the form described at “Allowed
Default Values for Filters” .

filters

Name of the current data sourcedataSource

6.3.4 Scenario: Scorecard with KPI as Data Source

In this scenario, within the %OnDashboardAction() method, the pContext variable has the following properties:

Property ContentsProperty Name

Value of the KPI property that is marked as Value Column in this scorecardcurrValue

Row numbercurrSeriesNo

Value of the KPI property that is marked as Value Column in this scorecardvalueList

A proxy object that contains one property for each pivot variable. Specifically,
pContext.pivotVariables.varname contains the value of the pivot variable varname.
In this proxy object, all pivot variable names are in lowercase. For example, if
the server defines a pivot variable named MyVar, this pivot variable is available
as pContext.pivotVariables.myvar

pivotVariables

An array that indicates the current values of all filter controls. For each node in
this array, the subscript is the name of a filter defined by the KPI. The value of
the node is the corresponding key or keys, in the form described at “Allowed
Default Values for Filters” .

filters

Name of the current data sourcedataSource

6.4 Executing Client-Side Commands
An action can contain commands to execute when the control returns to the dashboard. To include such commands, set the
pContext.command property within the definition of the action. For example:

40 DeepSee Implementation Guide

Defining Custom Actions

ObjectScript

 //this part defines Action 1
 //perform server-side actions
 //on returning, refresh the widget that is using this KPI
 Set pContext.command="refresh;"

For pContext.command, specify a string of the following form to execute a single command:

command1

For pContext.command, specify a semicolon-delimited list of commands:

command1;command2;command3;...;

The final semicolon is optional.

Some commands accept one or more arguments. For these, use command:arg1:arg2:... instead of command.

6.4.1 Available Commands

Within pContext.command, you can use the following commands:

alert

alert:message

Displays the message in a dialog box. message is the message to display

For example:

ObjectScript

 Set pContext.command = "alert:hello world!"

applyFilter

applyFilter:target:filterSpec

For information on the arguments, see “Details for applyFilter and setFilter.”

This command sets the given filter and refreshes the browser window.

For example, the following applies a filter to a pivot table:

ObjectScript

 Set pContext.command = "applyFilter:samplepivot:[DateOfSale].[Actual].[YearSold]:&[2008]"

navigate

navigate:url

Where url is the URL to display.

This command opens the given URL in the same browser window.

For example:

ObjectScript

 Set pContext.command = "navigate:http://www.google.com"

DeepSee Implementation Guide 41

Executing Client-Side Commands

newWindow

newWindow:url

Where url is the URL to display.

This command opens the given URL in a new browser window.

For example:

ObjectScript

 Set pContext.command = "newWindow:http://www.google.com"

popup

popup:zenpopupurl

Where zenpopupurl is the relative URL of a Zen popup window.

This command displays the given Zen popup window. For example:

ObjectScript

 Set pContext.command = "popup:%ZEN.Dialog.fileSelect.cls"

refresh

refresh:widgetname

Where widgetname is the optional name of a widget to refresh; if you omit this argument, the command refreshes
the widget from which the user launched the action.

This refreshes the browser window, using any current settings for filters.

For example:

ObjectScript

 // Refresh the widget that fired this action and another named samplepivot.
 Set pContext.command = "refresh;refresh:samplepivot"

Note that this example includes multiple commands, separated by a semicolon.

setFilter

setFilter:target:filterSpec

For information on the arguments, see “Details for applyFilter and setFilter.”

This command sets the given filter, but does not refresh the browser window.

6.4.2 Details for applyFilter and setFilter

The applyFilter and setFilter commands are as follows, respectively:

applyFilter:target:filterSpec

And:

setFilter:target:filterSpec

42 DeepSee Implementation Guide

Defining Custom Actions

Where:

• target is the widget to filter. You can use an asterisk (*) to apply the filter to all widgets.

• filterSpec specifies the filter value or values to apply to the given target. This must have the following form:

filter_name:filter_values

Where the arguments depend upon the details of the target widget as follows:

filter_valuesfilter_nameScenario

See “Allowed Default Values for Filters”
in the chapter “Configuring Settings.”

[dimension].[hierarchy].[level]Target widget
displays a
pivot table

One of the allowed values for this filter,
as defined in the KPI

Name of a filter defined in that KPITarget widget
displays a KPI

Notes:

– You can use multiple filter specifications; to do so, separate them with a tilde (~). For example:

FILTER:filterspec1~filterspec2

– The filter name and filter values are not case-sensitive for pivot tables or for KPIs that use MDX queries.

– The filter can affect only widgets that have been configured with a filter control (possibly hidden) that uses the
same filter. For example, suppose that a widget includes a Cities filter control, and has no other filter controls. If
the action filters to a city, the widget is updated. If the action filters to a ZIP code, the widget is not updated.

6.5 Displaying a Different Dashboard
In your custom action, you can use navigate or newWindow to display a different dashboard. Use the dashboard URL
as described in the chapter “Accessing Dashboards from Your Application.” The URL can include the SETTINGS keyword,
which initializes the state of the dashboard.

6.6 Generating a SQL Table from Cube Context
In your custom action, you can use the %CreateTable API to create a SQL table from cube context. The table may be
created from either:

1. A field list

2. The name of a listing defined in the cube, either as a field list or a custom SQL query.

See the class reference for more details.

DeepSee Implementation Guide 43

Displaying a Different Dashboard

7
Accessing Dashboards from Your
Application

This chapter describes how to access DeepSee dashboards and the DeepSee User Portal from your application. It discusses
the following topics:

• How to access a dashboard from your application

• Parameters you can use in a dashboard URL

• Available options for the SETTINGS parameter

• How to embed a dashboard in a Zen page

• Accessing other DeepSee pages from your application

7.1 Accessing a Dashboard
To access a dashboard, use a URL of the following form:

http://localhost:57772/csp/samples/_DeepSee.UserPortal.DashboardViewer.zen?DASHBOARD=dashbdname.dashboard

Where localhost:57772 is the server and port on which Caché is running, samples is the namespace in which the dashboard
is defined, and dashbdname is the name of the dashboard, including the folder to which it belongs, if any.

More generally, use a URL of the following form:

http://localhost:57772/csp/samples/_DeepSee.UserPortal.DashboardViewer.zen?parmstring&parmstring&parmstring...

Where parmstring is a parameter, followed by an equals sign, followed by a value. For example:

DASHBOARD=Drill%20Options.dashboard

As shown previously, use an ampersand (&) to combine multiple parameter strings. For example:

DASHBOARD=Drill%20Options.dashboard&NOMODIFY=1

DeepSee Implementation Guide 45

7.1.1 URL Encoding

Certain characters have reserved meanings in a URL and others are disallowed. To include such a character in parmstring,
replace the character with the URL-encoded version (also called percent-encoded). The easiest way to do this is as follows:

1. Identify all the strings that could potentially include reserved or disallowed characters.

2. For each such string, do the following in sequence:

a. Convert to UTF-8 encoding

b. Create a URL-encoded version of the string.

If you are performing these transformations on the server, you can use an ObjectScript function such as $ZCONVERT
or $TRANSLATE. For example:

set UTF8db=$ZCONVERT(dashboardname,"O","UTF8")
set escapeddb=$ZCONVERT(UTF8db,"O","URL")
set url=baseurl_"DASHBOARD="_escapeddb

If you are performing these transformations on the client, use a suitable client function. For example, if the client uses
JavaScript, use the encodeURI() function.

Or use other logic such as the $TRANSLATE function. Some of the most commonly used characters are these:

URL-Encoded VersionCharacter

%20space character

%26&

%2C,

You can find lists of URL-encoded characters on the Internet; one resource is Wikipedia
(https://en.wikipedia.org/wiki/Percent-encoding).

7.2 Available URL Parameters
You can use the following case-sensitive parameters within the dashboard URL. Note that for some parameters, you can
use either a plain-text version or an encrypted version. For example, the dashboard URL can include an encrypted version
of the dashboard name.

DASHBOARD

DASHBOARD=dashbdname.dashboard

This parameter specifies the dashboard to display. You must specify either this parameter or the XDASHBOARD
parameter.

dashbdname is the name of the dashboard, including the folder to which it belongs, if any. For example:

DASHBOARD=Dashboards/Dashboard%20with%20Filters%20and%20Listing%20Button.dashboard

Here %20 represents a space character; see “URL Encoding,” earlier in this chapter.

46 DeepSee Implementation Guide

Accessing Dashboards from Your Application

https://www.w3schools.com/jsref/jsref_encodeURI.asp
https://en.wikipedia.org/wiki/Percent-encoding

XDASHBOARD

XDASHBOARD=encryptedvalue

Encrypted version of the DASHBOARD parameter. You can use parameter only within the context of a CSP
session. You must specify either this parameter or the DASHBOARD parameter.

To create encryptedvalue, start with the name of the dashboard, including the folder to which it belongs, if any.
For example:

Dashboards/Dashboard with Filters and Listing Button.dashboard

Do not include URL escaping; for example, leave a space as a space character.

Then use the Encrypt() class method of %CSP.Page to encrypt this value. Use the value returned by Encrypt()
as the value of the XDASHBOARD parameter.

EMBED

EMBED=1

If this parameter is 1, the dashboard is displayed in embedded mode. This is equivalent to setting NOTITLE=1,
NOMODIFY=1, NOBORDER=1, and WORKLISTS=0.

XEMBED

XEMBED=encryptedvalue

Encrypted version of the EMBED parameter. You can use parameter only within the context of a CSP session.

To create encryptedvalue, start with the value you would use for EMBED. Then use the Encrypt() class method
of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XEMBED parameter.

NOTITLE

NOTITLE=1

If this parameter is 1, the dashboard is displayed without a title area. The title area is the top area, as in the following
example:

NOMODIFY

NOMODIFY=1

If this parameter is 1, the dashboard cannot be modified. This option removes items from Menu. It also suppresses
the edit options on widgets, so that a widget includes only minimize, maximize, and remove options in the upper
right.

NOBORDER

NOBORDER=1

If this parameter is 1, the dashboard is displayed without the border.

DeepSee Implementation Guide 47

Available URL Parameters

RESIZE

RESIZE=boolean

Specifies whether the widgets can be resized and moved. If boolean is 1 (the default), the widgets can be resized
and moved. If boolean is 0, they cannot.

WORKLISTS

WORKLISTS=n

Where n is 0, 1, or 2. This parameter specifies the number of worklist areas to display on the left.

XWORKLISTS

XWORKLISTS=encryptedvalue

Encrypted version of the WORKLISTS parameter. You can use parameter only within the context of a CSP session.

To create encryptedvalue, start with the value you would use for WORKLISTS. Then use the Encrypt() class
method of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XWORKLISTS
parameter.

SCHEME

SCHEME=schemename

Specifies the color scheme for the dashboard (if you do not want to use the default). For schemename, specify a
scheme as listed in the General tab of the Settings page. See “Specifying Basic Settings,” earlier in this book.

SETTINGS

SETTINGS=name1:value1;name2:value2;name3:value3;...;

Where name1, name2, name3, and so on are names of dashboard settings, as described in the next section, and
value1, value2, value3, and so on are the values for the settings.

You can include this parameter multiple times in the URL.

For example, to pass values to all widgets in a dashboard, use a URL of the following form:

basic_dashboard_url&SETTINGS=name:value;name:value;name:value;...;

To pass values to a specific widget in a dashboard, use the following variation:

basic_dashboard_url&SETTINGS=TARGET:widgetname;name:value;name:value;name:value;...;

To pass values to multiple widgets in a dashboard, use the following variation:

basic_dashboard_url&SETTINGS=...;&SETTINGS=...;&SETTINGS=...;...;

A setting for a specific widget always takes precedence over settings for all widgets. Otherwise, the settings are
applied in the order in which they are specified; if one setting is inconsistent with another setting, the later setting
takes effect. These settings do not take precedence over any user settings.

XSETTINGS

XSETTINGS=encryptedvalue

48 DeepSee Implementation Guide

Accessing Dashboards from Your Application

Encrypted version of the SETTINGS parameter. You can use parameter only within the context of a CSP session.

To create encryptedvalue, start with the value that you would use with SETTINGS. Then use the Encrypt() class
method of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XSETTINGS
parameter.

CacheUserName and CachePassword

CacheUserName=myuser&CachePassword=mypass

Where myuser is a Caché username and mypass is the corresponding password. Include these parameters if the
user has not yet logged in to Caché.

AUTOSAVE

AUTOSAVE

Requests the autosaved version of the dashboard. For information on the autosave feature, see “Specifying Basic
Settings,” earlier in this book.

7.3 Options for the SETTINGS Parameter
For the SETTINGS URL parameter, you can use settings given in the following list. Any SETTINGS string either applies
to all widgets or applies to a specific widget. Include as many SETTINGS strings as you need. For example:

basic_dashboard_url&SETTINGS=...;&SETTINGS=...;&SETTINGS=...;...;

Note: When Caché parses a SETTINGS parameter, it assumes that any semicolon is a delimiter between two different
settings strings. To include a semicolon and not have it treated as a delimiter, you must replace it with %3B%3B
(this sequence is two URL-encoded semicolons; it is necessary to use two URL-encoded semicolons because of
how the parsing is performed).

TARGET

TARGET:widgetname

Specifies the widget to which this set of settings applies. If you want the settings to apply to all widgets, omit this
parameter from the SETTINGS string.

FILTER

FILTER:filter_name.filter_values

Specifies how to filter the given widgets. The arguments depend upon the details of the target widget as follows:

DeepSee Implementation Guide 49

Options for the SETTINGS Parameter

filter_valuesfilter_nameScenario

URL-encoded version of the allowed
filter values that are shown in
“Allowed Default Values for Filters”
in the chapter “Configuring Settings”

URL-encoded version of
[dimension].[hierarchy].[level]

Target widget
displays a
pivot table

URL-encoded version of an allowed
value for this filter, as defined in the
KPI

URL-encoded version of the name of a
filter defined in that KPI

Target widget
displays a
KPI

For information on creating URL-encoded strings, see “URL Encoding,” earlier in this chapter.

Notes:

• You can use the special token $$$FILTERS in place of filter_name.filter_value. This is useful if you use the
URL in a custom navigate action (which accesses another dashboard from a given dashboard; see “Displaying
a Different Dashboard,” elsewhere in this book). In this scenario, $$$FILTERS is replaced with the current
filter values of the original dashboard. For example:

FILTER:$$$FILTERS

The target dashboard should include the same filters.

• You can use multiple filter specifications; to do so, separate them with a tilde (~). For example:

FILTER:filterspec1~filterspec2

Where each filterspec is filter_name.filter_values

• Each target widget must also be configured to include a filter control (possibly hidden) that uses the same
filter. For example, suppose that a widget includes a Cities filter control, and has no other filter controls. You
can include &SETTINGS=FILTER:[Cities].%26[Centerville] in the dashboard URL and that will
filter this widget. If you include &SETTINGS=FILTER:[ZIP].%26[34577], that does not affect the widget.

• To use multiple members of the same filter together, use a set expression that lists those members; see “Allowed
Default Values for Filters” in the chapter “Configuring Settings.” (If you include the same filter multiple
times within the SETTINGS string, DeepSee uses the last value that you provide; this is probably not the
behavior that you want.)

VARIABLE

VARIABLE:variable_name.variable_value

Specifies the value of the given pivot variable. For information on pivot variables, see “Defining and Using Pivot
Variables” in Using the DeepSee Analyzer.

You can use the special token $$$VARIABLES in place of variable_name.variable_value. This is useful if you
use the URL in a custom navigate action (which accesses another dashboard from a given dashboard; see “Dis-
playing a Different Dashboard,” elsewhere in this book). In this scenario, $$$VARIABLES is replaced with the
current values of the given pivot variables, as specified in the original dashboard. For example:

VARIABLE:$$$VARIABLES

ROWCOUNT

ROWCOUNT:n

50 DeepSee Implementation Guide

Accessing Dashboards from Your Application

Specifies the maximum number (n) of rows to display; this applies only when members are displayed as rows.

COLCOUNT

COLCOUNT:n

Specifies the maximum number (n) of columns to display; this applies only when members are displayed as
columns.

ROWSORT

ROWSORT:measure

Specifies the measure by which to sort the rows. Here measure is the MDX identifier for the measure. For example:

ROWSORT:[MEASURES].[mymeasure]

Note that you cannot omit the square brackets of these identifiers (in contrast to other uses of MDX in DeepSee).

COLSORT

COLSORT:[MEASURES].[my measure]

Specifies the measure by which to sort the columns. Here measure is the MDX identifier for the measure; see
ROWSORT.

ROWSORTDIR

ROWSORTDIR:sortkeyword

Specifies how to sort the rows. Here sortkeyword is one of the following:

• ASC — Sort in ascending order but preserve any hierarchies.

• DESC — Sort in descending order but preserve any hierarchies.

• BASC — Sort in ascending order and break any hierarchies.

• BDESC — Sort in descending order and break any hierarchies.

COLSORTDIR

COLSORTDIR:sortkeyword

Specifies how to sort the columns. See ROWSORTDIR.

PORTLET

PORTLET:portlet_setting.value

Specifies the value for a portlet setting, to override any configured value for that setting. As with the other SET-
TINGS options, this setting is applied to all widgets listed by the TARGET parameter (or all portlet widgets if
TARGET is not specified).

Here portlet_setting must be the name of the setting as defined in the portlet, and value must be the URL-encoded
version of an allowed value for this setting. For information on creating URL-encoded strings, see “URL Encoding,”
earlier in this chapter.

DeepSee Implementation Guide 51

Options for the SETTINGS Parameter

You can use multiple portlet specifications; to do so, separate them with a tilde (~). For example:

PORTLET:portletspec1~portletspec2

Where each portletspec is portlet_setting.value

For information on defining portlets, see the chapter “Creating Portlets for Use on Dashboards.”

To see an example, display the dashboard Widget Examples/Custom Portlet, which displays a round clock, and
then add the following to the end of the URL in the browser:

&SETTINGS=PORTLET:CIRCLE.0~SIZE.200

Then press Return. You should see the clock change into a square, slightly larger than it had previously been.

For example, the following limits the column count to 3 for most widgets but limits the column count to 1 for the widget
RegionVsYear.

&SETTINGS=TARGET:RegionVsYear;COLCOUNT:1;&SETTINGS=COLCOUNT:3;

Note: These settings are not supported for custom widgets or custom controls.

7.4 Embedding a Dashboard in a Zen Page
To embed a dashboard in a Zen page:

1. Place an <iframe> element within the Zen page.

2. For the <iframe> element, set the src attribute equal to _DeepSee.UserPortal.DashboardViewer.zen
along with the appropriate URL parameters as described earlier in this chapter. Within this value, substitute &
for any ampersand, and substitute < for any left angle bracket.

For example:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <iframe width="1000" height="800"
 src="_DeepSee.UserPortal.DashboardViewer.zen?DASHBOARD=Basic Dashboard Demo.dashboard" />
 </page>
}

For another example:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <iframe width="1000" height="800"
 src="_DeepSee.UserPortal.DashboardViewer.zen?DASHBOARD=Dashboards/Sample Meters
B.dashboard&EMBED=1" />
 </page>
}

52 DeepSee Implementation Guide

Accessing Dashboards from Your Application

7.5 Accessing Other DeepSee Pages from Your
Application
Your application can also provide direct links to other DeepSee web pages, such as the Analyzer and User Portal.

The URLs for the DeepSee web pages have the following general structure.

http://localhost:57772/csp/samples/_Package.Class

Where localhost:57772 is the server and port on which Caché is running, samples is the namespace in which you are running
DeepSee, and _Package.Class is the name of the package and class that defines the page, with an underscore instead of a
percent sign at the start of the package name. When you access the Analyzer or other DeepSee, this URL is shown in the
toolbar or your browser.

You can use any of the applicable URL parameters with these pages; see “Available URL Parameters,” earlier in this
chapter. When you use the URL for the Analyzer, you can also specify the PIVOT URL parameter, which indicates the
pivot table to display. For example:

http://localhost:57772/csp/samples/_DeepSee.UI.Analyzer.zen?PIVOT=Pivot%20Features%2FConditional%20Formatting.pivot

Note that if you use the URL for the Analyzer, and you specify the AUTOSAVE URL parameter but not the PIVOT
parameter, the Analyzer displays the most recently viewed item.

As with the dashboard viewere, you can embed these pages in Zen pages. The subsection shows an example.

7.5.1 Example: Embedding the Analyzer in a Zen Page

The following example shows the XData block for a Zen page class that embeds the DeepSee analyzer in an <iframe>:

XData Contents [XMLNamespace = "http://www.intersystems.com/zen"]
{
<page xmlns="http://www.intersystems.com/zen" title="">
 <iframe width="1000" height="800"
 src="_DeepSee.UI.Analyzer.zen?$NAMESPACE=SAMPLES&EMBED=1" />
 </page>
}

DeepSee Implementation Guide 53

Accessing Other DeepSee Pages from Your Application

8
Keeping the Cubes Current

This chapter discusses how to use the Cube Manager and other tools for updating the cubes. It discusses the following
topics:

• Overview of the options

• How cube synchronization works

• How to enable cube synchronization

• How to clear the ^OBJ.DSTIME global

• How to use the Cube Manager

• How to use %SynchronizeCube()

• How to purge the DSTIME index

• How to update cubes manually

• Other options

• Examples that you can execute from a dashboard

Also see the appendix “Using Cube Versions.”

8.1 Overview
The generic phrase updating a cube refers to the process of causing a cube to reflect the current contents of the source table
and related tables. DeepSee provides three techniques:

• Rebuild the cube, using the Rebuild option in the Architect, for example. This process can be time-consuming, and
queries cannot be executed while a cube is being rebuilt.

• Synchronize the cube. The cube synchronization feature (also known as the DSTIME feature) enables DeepSee to keep
track of changes to the data. You periodically synchronize the cube to include those changes.

It is possible to execute queries during synchronization.

Depending on the cube implementation and depending on which data changes, it may not be possible to use this feature;
see “When Cube Synchronization Is Possible,” later in this chapter.

• Update the cube manually. This process uses the %ProcessFact() and %DeleteFact() methods. Unlike with the other
options, in this case, it is necessary for your code to know which records of the fact table to update or delete.

DeepSee Implementation Guide 55

It is possible to execute queries during the manual updates.

You can use any suitable combination of these techniques. The following table compares them:

Updating
Manually

SynchronizingRebuilding

shortshortlongComparative duration of process

yesyesnoAble to execute queries during this process

yesnoyesTechnique is available in all scenarios

yesnonoTechnique requires you to know which records
were changed

yesyesyesTechnique invalidates parts of the result cache

noneCube ManagerCube Manager
and Architect

User interfaces that provide this option

For information on the Cube Manager, see “Using the Cube Manager,” later in this chapter.

8.1.1 Cube Updates and Related Cubes

For any kind of update, whenever you have cube-to-cube relationships, it is necessary to update the cubes in a specific
order. In particular, update the independent cube first. Then update any cubes that depend on it. To do this, you can use the
Cube Manager, which traverses the relationships and determines the correct update order.

Or you can write and use a utility method or routine that builds your DeepSee cubes in the appropriate order.

8.1.2 Cube Updates and the Result Cache

For any cube that uses more than 512,000 records (by default), DeepSee maintains and uses a result cache. For any combi-
nation of update techniques and tools, you should also carefully consider the frequency of cube updates, because any update
could invalidate parts of the result cache.

For large data sets, DeepSee maintains and uses a result cache for each cube as follows: Each time a user executes a query
(via the Analyzer for example), DeepSee caches the results for that query. The next time any user runs that query, DeepSee
checks to see if the cache is still valid. If so, DeepSee then uses the cached values. Otherwise, DeepSee re-executes the
query, uses the new values, and caches the new values. The net effect is that performance improves over time as more users
run more queries.

When you update a cube in any way, parts of the result cache are considered invalid and are cleared. The details depend
upon options in the cube definition (see “Cache Buckets and Fact Order,” earlier in this book). Therefore, it is not generally
desirable to update constantly.

8.2 How Cube Synchronization Works
This section describes briefly how cube synchronization works. Internally, this feature uses two globals: ^OBJ.DSTIME
and ^DeepSee.Update.

First, it is necessary to perform an initial build of the cube.

56 DeepSee Implementation Guide

Keeping the Cubes Current

When Caché detects a change within the source table used by a cube, it adds entries to the ^OBJ.DSTIME global. These
entries are to indicate which IDs have been added, changed, or deleted.

When you synchronize the cube (via %SynchronizeCube(), described later in this chapter), Caché first reads the
^OBJ.DSTIME global and uses it to update the ̂ DeepSee.Update global. After it adds an ID to the ̂ DeepSee.Update global,
Caché removes the same ID from the ^OBJ.DSTIME global. (Note that in previous versions, the cube synchronization
feature used only one global; the newer system prevents a race condition.)

Then Caché uses the ̂ DeepSee.Update global and updates the fact and dimension tables of the cube, thus bringing the cube
up to date.

The following figure shows the overall flow:

The subsections discuss the following details:

• When the cube synchronization feature can be used

• When the cube synchronization feature cannot be used

• Cube synchronization in a mirrored environment

• Structure of the cube synchronization globals

8.2.1 When Cube Synchronization Is Possible

You can use the cube synchronization feature in scenarios where all the following items are true:

• The base class for the cube is a persistent class (but is not a linked table).

• The changed record is a record in that class.

8.2.2 When Cube Synchronization Is Not Possible

You cannot use the cube synchronization feature in the following scenarios:

• The base class for the cube is a data connector. (See the chapter “Defining Data Connectors.”)

DeepSee Implementation Guide 57

How Cube Synchronization Works

• The base class for the cube is a linked table. (See “Using the Caché SQL Gateway” in Using Caché SQL.)

• The changed record is not in the extent of the base class used by the cube. That is, the changed record belongs to another
table.

In these scenarios, the cube synchronization feature cannot detect the change, and your application must update the cube
manually as described in “Updating Cubes Manually.”

Also, cube synchronization does not affect age dimensions (that is, dimensions whose Dimension type is age).

8.2.3 Cube Synchronization in a Mirrored Environment

If you use DeepSee on a mirror server, note that the ^OBJ.DSTIME global is part of the application data and should be
mirrored (if it mapped to a different database, for example, that database should be mirrored). The ̂ DeepSee.Update global
is generated by DeepSee code and thus is present only in the database that contains the cube definitions and data.

Important: On the mirror server, the databases that store the ^OBJ.DSTIME and ^DeepSee.Update globals must be
read/write. Note that you can store both of these globals in the same database, although the above figure
shows them in separate databases.

For a discussion of using DeepSee on a mirror server, see “Recommended Architecture” in the first chapter of this book.

8.2.4 Structure of the Cube Synchronization Globals

This section describes the structure of the cube synchronization globals. You do not need this information to use cube
synchronization; this information is provided in case you wish to use these globals for other purposes.

8.2.4.1 ^OBJ.DSTIME

The ^OBJ.DSTIME global has a different form depending on whether DSINTERVAL is set.

If DSINTERVAL is not set, this global has nodes like the following:

58 DeepSee Implementation Guide

Keeping the Cubes Current

ValueNode

One of the following values:^OBJ.DSTIME(class,increment,ID) where class is the
full package and class name of the source class,
increment is 0, and ID is the ID of the new, changed,
or deleted record in the given class

• 0 (which means that the record was changed)

• 1 (which means that the record was added)

• 2 (which means that the record was deleted)

Note that it is possible to manually delete a fact from a fact table without deleting the corresponding record from the source
class by using the %SetDSTimeIndex() method.

If DSINTERVAL is set, this global has nodes like the following:

ValueNode

Same as in the other scenario^OBJ.DSTIME(class,timestamp,ID) where class and
ID are the same as in the other scenario, and timestamp
is the number of seconds since midnight on December
31st, 1840

DeepSee removes unneeded entries from the ^OBJ.DSTIME global when you synchronize or rebuild a cube.

8.2.4.2 ^DeepSee.Update

The ^DeepSee.Update global has nodes as follows:

ValueNode

Integer that indicates the next value
of increment to use

^DeepSee.Update

Same as in the ̂ OBJ.DSTIME global^DeepSee.Update(class,increment,ID) where class is the full
package and class name of the source class, increment is 0 or a
positive integer, and ID is the ID of the new, changed, or deleted
record in the given class. Each time you synchronize cubes, DeepSee
new nodes to this global, using the next highest integer for increment.
See the example.

Integer that indicates the next value
of increment to use when creating
nodes in this global to record
changes for the given cube.

^DeepSee.Update("cubes",cube,"dstime") where cube is the
logical name of a cube

The date and time (in $H format)
when this cube was last
synchronized.

^DeepSee.Update("cubes",cube,"lastDataUpdate") where
cube is the logical name of a cube

DeepSee Implementation Guide 59

How Cube Synchronization Works

Here is an example:

^DeepSee.Update=3
^DeepSee.Update("DeepSee.Study.Patient",0,1)=0
^DeepSee.Update("DeepSee.Study.Patient",0,2)=0
^DeepSee.Update("DeepSee.Study.Patient",0,100)=0
^DeepSee.Update("DeepSee.Study.Patient",1,1)=2
^DeepSee.Update("DeepSee.Study.Patient",1,120)=0
^DeepSee.Update("DeepSee.Study.Patient",2,42)=0
^DeepSee.Update("DeepSee.Study.Patient",2,43)=0
^DeepSee.Update("DeepSee.Study.Patient",2,50)=0
^DeepSee.Update("DeepSee.Study.Patient",2,57)=0
^DeepSee.Update("cubes","PATIENTS","dstime")=3
^DeepSee.Update("cubes","PATIENTS","lastDataUpdate")="64211,63222.68"

The nodes under ^DeepSee.Update("DeepSee.Study.Patient",0) represent the first set of changes, the nodes
under ^DeepSee.Update("DeepSee.Study.Patient",1 represent the second set of changes, and so on.

DeepSee does not automatically remove nodes from ^DeepSee.Update global. For information on purging this global; see
“Purging DSTIME.”

8.3 Enabling Cube Synchronization
Before you can synchronize a cube, you must enable the cube synchronization feature for that cube. To do so:

1. Make sure that cube synchronization is possible in your scenario. See “When Cube Synchronization Is Possible,”
earlier in this chapter.

2. Add the DSTIME parameter to the base class used by that cube, as follows:

Class Member

Parameter DSTIME="AUTO";

The parameter value is not case-sensitive.

3. Also optionally add the following parameter to the base class:

Class Member

Parameter DSINTERVAL = 5;

This parameter primarily affects how entries are stored in the ^OBJ.DSTIME global; see “Structure of the Cube Syn-
chronization Globals.” The form of the ̂ OBJ.DSTIME global has no effect on the behavior of the cube synchronization
mechanism.

4. Recompile the base class and all cube classes that use it.

5. Rebuild these cubes.

8.4 Clearing the ^OBJ.DSTIME Global
This section describes how to clear the ^OBJ.DSTIME global. In some cases, you might want to periodically clear the
^OBJ.DSTIME global. For example, if you are not using cubes in DeepSee, you may want to clear the ̂ OBJ.DSTIME global
to free up space.

60 DeepSee Implementation Guide

Keeping the Cubes Current

You can set up a task in the Task Manager to periodically clear the ^OBJ.DSTIME global. To do so, create a new task with
an OnTask() method such as the following:

Method OnTask() As %Status
{
 set classname=$ORDER(^OBJ.DSTIME(""))
 while (classname="") {

 //check to see if this classname is contained in ^DeepSee.Cubes("classes")
 set test=$DATA(^DeepSee.Cubes("classes",classname))

 if (test'=1) {
 kill ^OBJ.DSTIME(classname)

 }
 set classname=$ORDER(^OBJ.DSTIME(classname))

 }

 q $$$OK
}

This task clears ^OBJ.DSTIME entries if they aren’t being used by DeepSee cubes. Use the Task Schedule Wizard to
schedule the task to run as often as necessary.

8.5 Using the Cube Manager
This section describes how to access and use the Cube Manager, which is designed to help you manage cube updates. You
use it to determine how and when to update cubes. It adds tasks that rebuild or synchronize cubes at the scheduled dates
and times that you choose. This section discusses the following topics:

• Introduction to the Cube Manager

• Introduction to update plans

• How to access the Cube Manager

• How to modify the registry details

• How to register a cube group

• How to specify an update plan

• How to build all registered cubes

• How to perform an on-demand build

• How to unregister a cube group

• How to see past cube events

• How to restrict access to the Cube Manager UI

Note: The Cube Manager tasks are visible in the Task Manager, which is discussed in “Using the Task Manager” in
the Caché System Administration Guide. InterSystems recommends that you do not modify these tasks in any
way.

8.5.1 Introduction to the Cube Manager

The Cube Manager enables you to define the cube registry, which contains information about the cubes in the current
namespace. In particular, it contains information about how they are to be built, synchronized, or both.

DeepSee Implementation Guide 61

Using the Cube Manager

The cube registry defines a set of cube groups. A cube group is a collection of cubes that need to be updated together, either
because they are related or because you have chosen to update them together. When you first access the Cube Manager, it
displays an initial set of cube groups. Each initial cube group is either a single cube or a set of cubes that are related to each
other (and thus must be updated as a group). You can merge these initial cube groups together as wanted. You cannot,
however, break up any of the initial cube groups.

Each cube group is initially unregistered, which means that it is not included in the cube registry. After you register a cube
group (thus placing it into the registry), you define an update plan for it. The Cube Manager creates automatic tasks that
use these update plans. See the next section for details.

8.5.2 Introduction to Update Plans

The update plan for a cube group specifies how and when the cubes are to be updated. Each group has a default plan, which
you can modify. You can also specify different update plans for specific cubes in the group. In both cases, the plan choices
are as follows:

• Build and Synch — Rebuild periodically, once a week by default. Also synchronize periodically, once a day by default.

This option is not supported for a given cube unless that cube supports synchronization (as described earlier in this
chapter).

• Build Only — Rebuild periodically, once a week by default.

• Synch Only — Synchronize the cubes periodically, once a day by default.

This option is not supported for a given cube unless that cube supports synchronization (as described earlier in this
chapter).

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least once
from the Cube Manager.

• Manual — Do not rebuild or synchronize from the Cube Manager.

Instead, use any suitable combination of other tools: the Build option in the Architect and the %BuildCube(),
%SynchronizeCube(), %ProcessFact(), and %DeleteFact() methods. For details on the latter three methods, see
later sections of this chapter.

For each plan (other than Manual), you can customize the schedule details.

For any namespace, the Cube Manager defines two tasks: one performs all requested cube build activity in this namespace,
and one performs all requested cube synchronization activity in this namespace. Both of these tasks follow the instructions
provided in the cube registry. Both tasks also automatically process cubes in the correct order required by any relationships.

The Cube Manager provides an Exclude check box for each registered group and cube, which you can use to exclude that
group or cube from any activity by the Cube Manager. Specifically, the Cube Manager tasks ignore any excluded groups
and cubes. Initially these check boxes are selected, because it is generally best to not to perform updates until you are ready
to do so. For example, you might want to adjust the DeepSee agent counts before building any cubes.

8.5.3 Accessing the Cube Manager

To access the Cube Manager, do the following in the Management Portal:

1. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

62 DeepSee Implementation Guide

Keeping the Cubes Current

2. Click DeepSee > Admin > Cube Management > Registry.

3. If you have not used the Cube Manager in this namespace, it prompts you for information about the cube registry. In
this case, specify the following information:

• Cube Registry Class Name — Specify a complete class name, including package. This class definition will be the
cube registry for this namespace.

• Disable — Optionally click this to disable the registry. If the registry is disabled, the Cube Manager tasks are
suspended. (Because there are no Cube Manager tasks yet, it would be redundant to disable the registry at this
point.)

• Update Groups — Specify how to update groups with respect to each other. If you select Serially, the tasks update
one group at a time. If you select In Parallel, the tasks update the groups in parallel.

• Allow build to start after this time — Specify the earliest possible build time.

You can change all these details later, apart from the class name.

Then click OK.

The system displays the Cube Registry page. You can view this page in two modes (via the View buttons). Click the left
View button for tree view or click the right View button for table view.

8.5.3.1 Tree View

In tree view, the left area of the Cube Manager displays a tree of unregistered cube groups. For example:

The middle area displays a table (initially empty) with information for the registered groups. The following example shows
what this table looks like after you have registered a group:

DeepSee Implementation Guide 63

Using the Cube Manager

This area is color-coded as follows:

• White background — The group or cube is included, which means that the Cube Manager tasks update it. See the
Exclude option in “Specifying an Update Plan,” later in this chapter.

• Gray background — The group or cube is excluded, which means that the Cube Manager tasks ignore it.

This area also lists (in italics) any subject areas based on a given cube, for example:

Note that you cannot specify update plans for the subject areas, because updates in a cube are automatically available in
any subject area based on that cube. (So there is no need and no way to update a subject area independently from the cube
on which it is based.)

In the right area, the Details tab (not shown) displays details for the current selection. You can make edits in this tab. The
Tools tab provides links to other tools.

Note: When the Cube Manager is in tree view, you can expand or collapse the display of all registered groups, which
are shown in the middle area. To do so, use the Expand All or Collapse All button, as applicable, at the top of the
middle area. These buttons do not affect the left area of the page, which displays the unregistered groups.

8.5.3.2 Table View

In table view, the Cube Manager lists all cubes in the current namespace, with their update plans. For example:

This table is color-coded as follows:

• White background — The cube is included, which means that the Cube Manager tasks update it. See the Exclude option
in “Specifying an Update Plan,” later in this chapter.

• Gray background — The cube is excluded, which means that the Cube Manager tasks ignore it.

• Pink background — The cube is not registered and therefore has no update plan.

64 DeepSee Implementation Guide

Keeping the Cubes Current

The Group Name field indicates the group to which each cube belongs, and the Group Build Order field indicates the order
in which each cube is to be built or synchronized within its group. The Cube Manager computes this order only for cubes
in registered groups.

In the right area, the Details tab (not shown) displays details for the current selection. You can make edits in this tab. The
Tools tab provides links to other tools.

8.5.4 Modifying the Registry Details

When you first access the Cube Manager, it prompts you for initial information. To modify these details later (other than
the registry class name, which cannot be changed):

1. Display the Cube Manager in tree view.

2. In the middle area, click the heading that starts Registered Groups.

3. Edit the details on the right.

For information on the options, see the previous section.

4. Click Save.

8.5.5 Registering a Cube Group

To register a cube group:

1. Display the Cube Manager in tree view.

2. Expand the list of unregistered cubes on the left.

3. Drag the group from that area and drop it onto the Registered Groups heading in the middle area.

Or display the Cube Manager in table view, click the row for any cube in the group, and click Register Group in the right
area.

In either case, the change is automatically saved.

8.5.6 Specifying an Update Plan

To specify the update plan for a cube group and its cubes:

1. Display the Cube Manager in tree view.

2. Click the group in the middle area.

3. In the Details pane on the right, specify the following information:

• Name — Unique name of this group.

• Exclude — Controls whether the generated tasks perform update activities for cubes in this group. Initially this
option is selected, and the group is excluded.

The Cube Manager displays any excluded groups or cubes with a gray background.

• Update Plan — Select an update plan.

Note that the Cube Manager does not permit you to use synchronization unless that cube supports it (as described
earlier in this chapter). For example, you can choose the Build and Synch plan for the group, but the Cube Manager
automatically sets the update plan to Build for any cube that does not support synchronization.

DeepSee Implementation Guide 65

Using the Cube Manager

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least
once from the Cube Manager.

• Build every — Use these fields to specify the schedule for the build task (if applicable).

• Synch every — Use these fields to specify the schedule for the synchronization task (if applicable).

• Build Cubes Synchronously — Select this to cause DeepSee to build these cubes synchronously (if applicable). If
this option is clear, DeepSee builds them asynchronously.

Initially, these details apply to all cubes in the group. If you edit details for a specific cube and then later want to
reapply the group defaults, click Apply to All Cubes in Group.

4. Optionally click a cube within this group (in the middle area) and edit information for that cube in the Details pane on
the right.

The options are similar to those for the entire group, but include the following additional options, depending on whether
the cube supports synchronization:

• Post-Build Code — Specify a single line of ObjectScript to be executed immediately after building this cube. For
example:

do ##class(MyApp.Utils).MyPostBuildMethod("transactionscube")

• Pre-Synchronize Code — Specify a single line of ObjectScript to be executed immediately before synchronizing
this cube. For example:

do ##class(MyApp.Utils).MyPresynchMethod("transactionscube")

If needed, to abort the synchronization, do the following in your code:

set $$$ABORTSYNCH=1

• Post-Synchronize Code — Specify a single line of ObjectScript to be executed immediately after synchronizing
this cube. For example:

do ##class(MyApp.Utils).MyPostsynchMethod("transactionscube")

In all cases, your code can perform any processing required.

Modify each cube as needed.

5. Click Save.

When you do so, the Cube Manager creates or updates the cube registry in this namespace. If the Task Manager does
not yet include the necessary tasks, the Cube Manager creates them.

8.5.7 Merging Groups

You can merge one group (group A) into another (group B). Specifically this moves all the cubes from group A into the
group B and then removes the now-empty group A.

To merge one group into another, use the following procedure. In this procedure, group A must not yet be registered, and
group B must be registered.

1. Display the Cube Manager in tree view.

2. Drag group A (the group that contains the cubes that you want to move) from the left area and drop it into the group
heading of group B (the target group) in the middle area.

66 DeepSee Implementation Guide

Keeping the Cubes Current

The system prompts you to confirm the action.

3. Click OK.

If group B currently has an update plan that cannot be used for some of the newly moved cubes, the system displays
a dialog box to indicate this. Click OK. For any such cubes, the Cube Manager selects an update plan that can be used.

4. Review the update plan for each newly moved cube and modify it as needed.

5. Click Save.

Or use the following alternative procedure. In this procedure, both groups must already be registered.

1. Display the Cube Manager in table view.

2. In the middle area, click the row for any cube in group A (the group that contains the cubes that you want to move).

3. On the right, click Merge to another group and then select group B (the target group) from the drop-down list.

4. Click Merge.

The system prompts you to confirm the action.

5. Click OK.

If group B currently has an update plan that cannot be used for some of the newly moved cubes, the system displays
a dialog box to indicate this. Click OK. For any such cubes, the Cube Manager selects an update plan that can be used.

6. Review the update plan for each newly moved cube and modify it as needed.

7. Click Save.

8.5.8 Building All the Registered Cubes

DeepSee provides a utility method that you can use to build all the registered cubes, in the correct order. The method is
BuildAllRegisteredGroups() in the class %DeepSee.CubeManager.Utils. This method ignores the schedule specified in
the registry but uses the build order specified in the registry.

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least once from
the Cube Manager user interface.

8.5.9 Performing On-Demand Builds

The Cube Manager also provides options to build cubes on demand (that is, ignoring the schedule). In this kind of build,
the Cube Manager rebuilds the requested cube as well as any cubes that depend on it.

To perform an on-demand build:

1. Save any changes to the cube registry.

Important: The build options are disabled if there are any unsaved changes.

2. Select a registered cube. To do so, either:

• Display the Cube Manager in tree view and then click a cube in the middle area.

• Display the Cube Manager in table view and click a cube that shows Yes in the Registered column.

3. On the right, clear the Exclude option.

4. Click Build Dependency List.

DeepSee Implementation Guide 67

Using the Cube Manager

The Cube Manager then displays the build dialog box.

5. Click Build List.

The dialog box displays progress of the build.

6. When the build is done, click OK.

There are other ways to perform on-demand builds:

• Display the Cube Manager in tree view. Click the header of the table in the middle area. Then click Build All Registered

Groups. Continue as described previously.

• Display the Cube Manager in tree view. Click a cube group in the middle area. Then click Build This Group. Continue
as described previously.

8.5.10 Unregistering a Cube Group

To unregister a cube group:

1. Display the Cube Manager in tree view.

2. In the middle area, click the X in the row for the cube group.

3. Click OK.

8.5.11 Viewing Cube Manager Events

For certain events, the Cube Manager writes log entries to a table, which you can query via SQL. The table name is
%DeepSee_CubeManager.CubeEvent. The CubeEvent field indicates the type of cube event. Possible logical values for
this field include the following:

When the Cube Manager Writes This Log EntryCubeEvent Value

Immediately after registering a cube group.register

Immediately after saving changes to a cube group.update

Immediately after unregistering a cube group.unregister

When building a cube.The Cube Manager generates an initial log just before starting
the build, and then updates that entry after the build is complete.

build

When synchronizing a cube. The Cube Manager generates an initial log just before
starting the synchronization is started, and then updates that entry after the
synchronization is complete.

synch

Immediately after executing any code specified by the Pre-Synchronize Code option.presynch

Immediately after executing any code specified by the Post-Synchronize Code option.postsynch

Immediately after executing any code specified by the Post-Build Code option.postbuild

When you use the Build Dependency List option (which performs an on-demand build
of a given cube and any related cubes). The Cube Manager generates an initial log
just before starting the build, and then updates that entry after the build is complete.

repair

For information on other fields in this table, see the class reference for %DeepSee.CubeManager.CubeEvent.

68 DeepSee Implementation Guide

Keeping the Cubes Current

8.5.12 Restricting Access to the Cube Manager

You may want to manage the cube update schedule without allowing users to change that schedule through the Cube Registry
page. To restrict access to the Cube Registry page, set the UserUpdatesLocked attribute to "true" in either the
RegistryMap or RegistryMapGroup objects within your saved cube registry. For example:

<RegistryMap Disabled="false" IndependentSync="false" SerialUpdates="false" UserUpdatesLocked="true">

When UserUpdatesLocked is set to "true" for a RegistryMap:

• The registry’s Disable setting cannot be changed through the Details tab. For information on accessing this tab, see
Modifying the Registry Details.

When UserUpdatesLocked is set to "true" for a RegistryMapGroup:

• Each registered group’s Exclude checkbox is displayed but disabled

• Each registered cube’s Exclude checkbox is hidden

• Each registered group’s Update Plan is hidden

• Each registered cube’s Update Plan is hidden

• The red X button for removing registered groups is removed

• The Build Frequency and Synch Frequency columns are left blank

• The Build Dependency List is available for cubes, but the Build This Group button is disabled.

8.6 Using %SynchronizeCube()
Note: Before you can synchronize a cube, follow the steps in “Enabling Cube Synchronization,” earlier in this chapter.

To synchronize a cube programmatically (that is, without the Cube Manager), call the %SynchronizeCube() method of
the %DeepSee.Utils class, which has the following signature:

classmethod %SynchronizeCube(pCubeName As %String, pVerbose As %Boolean = 1) as %Status

For the specified cube (pCubeName), this method finds and applies all changes from the source data that have been made
since the last call to this method.

If pVerbose is true, the method writes status information to the console. For additional arguments for this method, see the
class reference.

You can call %SynchronizeCube() in either of the following ways:

• Call the method from the part of your code that changes the data in the base class.

This is the approach used in the Patients sample.

• Periodically call %SynchronizeCube() as a recurring task.

If %SynchronizeCube() displays the message No changes detected, this can indicate that you had not previously
rebuilt the cube.

DeepSee Implementation Guide 69

Using %SynchronizeCube()

8.7 Purging DSTIME
For historical reasons and for convenience, the phrase purging DSTIME refers to purging the older entries from the
^OBJ.DSTIME global. It is necessary to purge this global periodically because it can become quite large.

As of release 2017.2, to purge DSTIME for a given cube, do the following:

1. Call the REST API /Data/GetDSTIME. See “GET /Data/GetDSTIME” in Tools for Creating DeepSee Web Clients.
Pass, as an argument, the full name of the source class of the cube.

This REST call returns the last ^OBJ.DSTIME timestamp processed for that source class on a given server. In the case
of an async mirror setup, the timestamp retrieved from this REST service will be the most recent timestamp that can
safely be purged on the primary production server.

2. Using the returned timestamp as an argument, call the %PurgeUpdateBuffer() method of %DeepSee.Utils so that
you purge ^OBJ.DSTIME up to but not including the timestamp processed on the remote server. The default behavior
for this method is to increment the top node of the local ^OBJ.DSTIME so that every purge will provide a new sync
point to be propagated to the DeepSee server.

8.8 Updating Cubes Manually
As described in “When Cube Synchronization Is Not Possible,” it is sometimes necessary to update a cube manually. In
these situations, your application must do the following:

1. Determine the IDs of the affected records in the base class.

2. Update the cube for those records by calling the %ProcessFact() and %DeleteFact() methods of %DeepSee.Utils.

As input, these methods require the ID of the affected row or rows.

The following list provides information on these methods:

%ProcessFact()

classmethod %ProcessFact(pCubeName As %String,
 pSourceId As %String = "",
 pVerbose As %Boolean = 0) as %Status

Where pCubeName is the logical name of a cube, and pSourceID is the ID of a record in the base class used by
that cube. For the given cube, this method updates the corresponding row of the fact table, the associated indices,
and any level tables if affected.

If pVerbose is true, the method writes status information to the console.

%DeleteFact()

classmethod %DeleteFact(pCubeName As %String,
 pSourceId As %String = "",
 pVerbose As %Boolean = 0) as %Status

Where pCubeName is the logical name of a cube, and pSourceID is the ID of a record in the base class used by
that cube. For the given cube, this method deletes the corresponding row of the fact table and updates the indices
correspondingly.

If pVerbose is true, the method writes status information to the console.

70 DeepSee Implementation Guide

Keeping the Cubes Current

8.9 Other Options
This section discusses other options that are more advanced or less common:

• How to use DSTIME=MANUAL

• How to inject a record into the fact table

• How to prebuild dimension tables

• How to update a dimension table manually

8.9.1 Using DSTIME=MANUAL

Instead of letting DeepSee automatically update the ^OBJ.DSTIME global, you can update this global at times that you
choose. To do so:

1. Specify DSTIME as "MANUAL" rather than "AUTO".

2. Then within your application, call the method %SetDSTimeIndex() of the class %DeepSee.Utils whenever you add,
change, or delete objects of the class, or when you want to update the ^OBJ.DSTIME global.

This method has the following signature:

ClassMethod %SetDSTimeIndex(pClassName As %String,
 pObjectId As %String,
 pAction As %Integer,
 pInterval As %Integer = 0)

Where:

• pClassName is the full package and class name of the object that you have added, changed, or deleted.

• pObjectId is the object ID for that object.

• pAction is 0 if you updated the object, 1 if you added it, or 2 if you deleted it or want to delete the corresponding
fact from the fact table without deleting the object. The value of pAction is used as the value of the resulting
^OBJ.DSTIME node. Note that facts are removed from a cube during synchronization if the corresponding record
does not exist in the source class, or if a value of 2 is specified for pAction.

• pInterval is an optional integer. If you specify this as a positive integer, DeepSee uses time stamp subscripts in
the ^OBJ.DSTIME and ^DeepSee.Update globals. See the discussion of the DSINTERVAL parameter in “Enable
Cube Synchronization.”

Then, when you want to update a given cube, call the %SynchronizeCube() method of the %DeepSee.Utils class, as
described previously.

8.9.2 Injecting Facts into the Fact Table and Dimension Tables

In rare cases, you might need the fact table to include records that do not correspond to any source records. In such cases,
use the %InjectFact() method of the cube class.

This method has the following signature:

classmethod %InjectFact(ByRef pFactId As %String,
 ByRef pValues As %String,
 pDimensionsOnly As %Boolean = 0)
 as %Status

DeepSee Implementation Guide 71

Other Options

Where:

• pFactId is the ID of the fact. Set this to "" for an insert. On return, this argument contains the ID used for the fact.

• pValues is a multidimensional array of fact values. In this array, the subscript is the sourceProperty name (case-sensitive).

• pDimensionsOnly controls whether the method affects both the fact table and dimension tables or just the dimension
tables. If this argument is true, the method affects only the dimension tables. You use this argument if you prebuild
the dimension tables as described in the next section.

CAUTION: Do not use this method to update dimension tables for levels that are based on source expressions. To
add records to those tables, instead use an SQL UPDATE statement.

You can use %InjectFact() to update dimension tables for levels that are based on source properties.

8.9.3 Prebuilding Dimension Tables

By default, DeepSee populates the dimension tables at the same time that it builds the fact table. It is possible to prebuild
one or more dimension tables so that they are populated before the fact table, if this is necessary for some reason.

To prebuild one or more dimension tables, do the following:

• Implement the %OnBuildCube() callback in the cube definition class. This method has the following signature:

classmethod %OnBuildCube() as %Status

The %BuildCube() method calls this method just after it removes the old cube contents and before it starts processing
the new contents.

• In this implementation, invoke the %InjectFact() method of the cube class and specify the pDimensionsOnly argument
as true.

For details on this method, see the previous section.

For example, the following partial implementation predefines the Cities dimension in the HoleFoods sample:

Class Member

ClassMethod %OnBuildCube() As %Status
{
 // pre-build City dimension
 Set tVar("Outlet.Country.Region.Name") = "N. America"
 Set tVar("Outlet.Country.Name") = "USA"

 Set tVar("Outlet") = 1000
 Set tVar("Outlet.City") = "Cambridge"
 Do ..%InjectFact("",.tVar,1)

 Set tVar("Outlet") = 1001
 Set tVar("Outlet.City") = "Somerville"
 Do ..%InjectFact("",.tVar,1)

 Set tVar("Outlet") = 1002
 Set tVar("Outlet.City") = "Chelsea"
 Do ..%InjectFact("",.tVar,1)

 Quit $$$OK
}

Notes:

• It is necessary to provide a unique ID as well as a name for a member.

• For completeness, this code should also provide the city population, longitude, and latitude, because the corresponding
dimension table contains these values.

72 DeepSee Implementation Guide

Keeping the Cubes Current

• It is also necessary to provide values for any higher level members.

8.9.4 Updating a Dimension Table Manually

In some cases, there is no change to your base class, but there is a change to a lookup table that is used as a level. In these
cases, you can update the cube in any of the ways described earlier in this chapter. If the only change is to a single dimension
table, however, it is quicker to update the level table directly. You can do so via the %UpdateDimensionProperty() method
of %DeepSee.Utils.

This method has the following signature:

classmethod %UpdateDimensionProperty(pCubeName As %String,
 pSpec As %String,
 pValue As %String,
 pKey As %String)
 as %Status

Where:

• pCubeName is the name of the cube.

• pSpec is the MDX member expression that refers to the level member to update. You must use the dimension, hierarchy,
and level identifiers in this expression. For example: "[docd].[h1].[doctor].&[61]"

As a variation, pSpec can be a reference to a member property. For example:
"[homed].[h1].[city].&[Magnolia].Properties(""Principal Export"")"

DeepSee uses this argument and the pCubeName argument to determine the table and row to update.

• pValue is the new name for this member, if any.

Or, if you specified a member property, pValue is used as the new value of the property.

• pKey is the new key for this member, if any.

Specify this argument only if you specify a member for pSpec.

You can make three kinds of changes with this method:

• Specify a new key for a member. For example:

Set tSC =
##class(%DeepSee.Utils).%UpdateDimensionProperty("patients","[docd].[h1].[doctor].&[186]",,"100000")

By default, the key is also used as the name, so this action might also change the name.

• Specify a new name for a member. For example:

Set tSC =
##class(%DeepSee.Utils).%UpdateDimensionProperty("patients","[docd].[doctor].&[186]","Psmith,
Alvin")

By default, the name is the key, so this action might change the key.

• Specify a new value for some other property (both Name and Key are properties). For example:

Set memberprop="homed.h1.city.Pine.Properties(""Principal Export"")"

Set tSC = ##class(%DeepSee.Utils).%UpdateDimensionProperty("patients",memberprop,"Sandwiches")

DeepSee Implementation Guide 73

Other Options

8.10 Examples
The Patients sample includes utility methods that change data and that use either synchronization or manual updates as
appropriate. To try these methods, you can use a dashboard provided with this sample:

1. Open the User Portal in the SAMPLES namespace.

2. Click the dashboard Real Time Updates.

3. Click the buttons in the upper left area. Each of these executes a KPI action that executes a method to randomly change
data in this sample. The action launches the method via JOB, which starts a background process.

• Add Patients adds patients.

This action calls a method that adds 100 patients and calls %SynchronizeCube() after adding each patient.

• Change Patient Groups changes the patient group assignment for some patients.

This action calls a method that randomly changes the patient group assignment for some percentage of patients
and calls %SynchronizeCube() after each change.

• Delete Some Patients deletes some patients.

This action calls a method that deletes 1 percent of the patients and calls %SynchronizeCube() after each deletion.

• Change Favorite Colors changes the favorite color for some patients.

This action calls a method that randomly changes the favorite color for some percentage of the patients. In this
case, the changed data is stored in the DeepSee_Study.PatientDetails table, which is not the base table for the
Patients cube. Hence it is necessary to use %ProcessFact() instead of %SynchronizeCube().

The method includes the following block of code:

ObjectScript

 Set patID=patdetails.PatientID

 Set myquery="SELECT ID FROM DeepSee_Study.Patient WHERE PatientID=?"
 Set rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 Set status=rset.Prepare(myquery)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}
 Set status=rset.Execute(patID)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}
 While rset.Next() {
 Set id=rset.Data("ID")
 Do ##class(%DeepSee.Utils).%ProcessFact("patients",id)
 }

This block of code executes an SQL query to return all patients who are affected by the change to the data. It then
iterates through those patients and updates the Patients cube for each of them.

• Add Encounters adds encounters for some patients.

This action calls a method that includes logic similar to that for DeepSee.Study.PatientDetails; see the previous
item.

• Change Doctor Groups changes the doctor group assignment for some of the primary care physicians.

This action calls a method that includes logic similar to that for DeepSee.Study.PatientDetails.

Tip: These methods write log details to the global ^DeepSee.Study.Log. For example:

^DeepSee.Study.Log(1)="13 May 2011 05:29:37PM Adding patients..."
^DeepSee.Study.Log(2)="13 May 2011 05:29:38PM Current patient count is 10200"

74 DeepSee Implementation Guide

Keeping the Cubes Current

9
Executing DeepSee Queries
Programmatically

This chapter describes how to use the DeepSee result set API, as well as how to execute files that contain MDX files. It
discusses the following topics:

• How to use the result set API in general

• Basic examples

• How to prepare and execute a query

• How to print the query results

• How to examine the query results

• How to examine the query results for a DRILLTHROUGH query

• How to examine the query metadata

• Other methods you can use

• How to execute query files

For information on %ShowPlan() and %PrintStatistics(), see “How the DeepSee Query Engine Works,” later in this
book.

9.1 Using the Result Set API
The class %DeepSee.ResultSet enables you to execute MDX queries against DeepSee cubes and to view and examine the
results. To use this class, do the following:

1. Create an instance of %DeepSee.ResultSet.

For example:

ObjectScript

 set rset=##class(%DeepSee.ResultSet).%New()

2. Optionally disable use of the cache. To do so, set the %UseCache property of that instance equal to 0. For example:

DeepSee Implementation Guide 75

ObjectScript

 set rset.%UseCache=0

By default, caching is enabled.

3. Optionally enabling tracing. To enable detailed tracing during the prepare phrase, set the %Trace property of the result
set instance equal. To enable tracing for all phases of the query, set the %dstrace variable equal to 1. For example:

ObjectScript

 set rset.%Trace=1
 set %dstrace=1

By default, tracing is disabled.

4. Create an MDX query, as a string. For example:

ObjectScript

 set query="SELECT MEASURES.[%COUNT] ON 0, diagd.MEMBERS ON 1 FROM patients"

For details on the MDX syntax and functions supported in DeepSee, see Using MDX with DeepSee and DeepSee MDX
Reference.

5. Prepare and execute the query. Typically you do this as follows:

a. Call the %PrepareMDX() method of your instance, using your query string as the argument.

b. Call %Execute() or %ExecuteAsynch().

Each of these methods returns a status, which your code should check before proceeding.

Or you can call %ExecuteDirect(), which prepares and executes the query.

Or you can call lower-level methods of the %DeepSee.ResultSet; these are not discussed here.

Note: If the query uses any plug-ins, note that %Execute() and %ExecuteDirect() do not return until all pending
results are complete. Specifically they do not return until the DeepSee engine has finished executing any
plug-ins used in the query.

6. If you used %ExecuteAsynch(), periodically check to see whether the query has completed. If the query uses any
plug-ins, make sure that any pending results are also complete; pending results are the results from the plug-ins, which
are executed separately from the query.

To determine the status of the query, call the %GetStatus() method of your instance. Or call the %GetQueryStatus()
class method of %DeepSee.ResultSet. These methods return the status of the query and also (separately) the status of
any pending results; see the class documentation for details.

Optionally, to cancel a query that has not yet completed, call the %CancelQuery() class method.

7. Your instance of %DeepSee.ResultSet now contains the query results. Now you can use methods of this instance to
perform tasks such as the following:

• Print the results.

• Get cell values, get the number of cells or axes in the result set, and otherwise examine the results.

• Get the metadata for the query itself, such as the query plan, the SQL used for the listing, the MDX used for a
range of cells in the query, and so on.

• Get the query statistics.

76 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

9.2 Basic Example
The following example creates and prepares a query, executes it, returns the result set as output, and displays the results:

Class Member

ClassMethod RunQuery1(Output result As %DeepSee.ResultSet) As %Status
{
 Set rset=##class(%DeepSee.ResultSet).%New()
 Set query="SELECT MEASURES.[%COUNT] ON 0, diagd.MEMBERS ON 1 FROM patients"
 Set status=rset.%PrepareMDX(query)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Set status=rset.%Execute()
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Write !, "Full results are as follows ***************",!
 Do rset.%Print()
 Quit $$$OK
}

When you run this method in the Terminal, you see results like the following:

SAMPLES>do ##class(DeepSee.APISamples).RunQuery1()

Full results are as follows ***************
 Patient Count
1 None 8,394
2 asthma 671
3 CHD 357
4 diabetes 563
5 osteoporosis 212

9.3 Preparing and Executing a Query
When you prepare and execute a query, you typically use the following methods:

%PrepareMDX()

method %PrepareMDX(pMDX As %String) as %Status

Parses the query, converts it to a runtime query object, and prepares it for execution.

%Execute()

method %Execute(ByRef pParms) as %Status

Executes the query synchronously; the pParms argument is discussed after this list. Use this only after you have
prepared the query.

%ExecuteAsynch()

method %ExecuteAsynch(Output pQueryKey As %String,
 ByRef pParms,
 pWait As %Boolean = 0) as %Status

Executes the query asynchronously (or synchronously depending on the value of pWait). The arguments are dis-
cussed after this list. Use this only after you have prepared the query.

DeepSee Implementation Guide 77

Basic Example

%ExecuteDirect()

classmethod %ExecuteDirect(pMDX As %String,
 ByRef pParms,
 Output pSC As %Status) as %DeepSee.ResultSet

Prepares and executes the query and then returns the result set. pSC is the status, which you should check. For the
other arguments, see the discussion after this list.

Where:

• pParms— Specifies the values of any named parameters to use in this query. This is a multidimensional array with
one or more nodes as follows:

ValueNode

Value of this parameterParameter name, not case-sensitive

These values override any values for the same parameters given within the body of the query itself.

• pQueryKey — Returns the unique key for this query, for use when later referring to the query (to cancel it, get the cell
count, or for other uses).

• pWait — Specifies whether to wait until the query has completed, before returning from this method call.

If pWait is true, %ExecuteAsynch() runs synchronously.

The following sample uses a query that contains a named parameter; this is an InterSystems extension to MDX:

Class Member

ClassMethod RunQuery2(city as %String = "Magnolia",Output result As %DeepSee.ResultSet) As %Status
{
 Set rset=##class(%DeepSee.ResultSet).%New()
 Set query="WITH %PARM c as 'value:Pine' "
 _"SELECT homed.[city].@c ON 0 FROM patients"
 Set status=rset.%PrepareMDX(query)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Set myparms("c")=city
 Set status=rset.%Execute(.myparms)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Write !, "Full results are as follows ***************",!
 Do rset.%Print()
 Quit $$$OK
}

The following shows an example Terminal session:

d ##class(DeepSee.APISamples).RunQuery2("Centerville")

Full results are as follows ***************
 Centerville
 1,124

9.4 Printing the Query Results
To display the query results for diagnostic purposes, use one of the following methods:

78 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

%Print()

Prints the query results and returns a status. For an example, see “Basic Example” and “Preparing and Executing
a Query, ”earlier in this chapter.

%PrintListing()

If the query uses the MDX DRILLTHROUGH clause, this method performs the drillthrough for the first cell of
the query, and prints the results to the current device. Otherwise, it prints an error.

This method does not return anything.

Important: Both methods include a line number at the start of each line of data (that is, after any column headings).
The line number is not part of the results.

The following example demonstrates %PrintListing():

Class Member

ClassMethod RunQuery3()
{
 Set rset=##class(%DeepSee.ResultSet).%New()

 Set query="DRILLTHROUGH SELECT gend.female ON 0,birthd.[1913] ON 1 "
 _"FROM patients RETURN PatientID,PrimaryCarePhysician->LastName"

 Set status=rset.%PrepareMDX(query)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

 Set status=rset.%Execute()
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

 Write !, "Listing details for the first cell are as follows ***************",!
 Do rset.%PrintListing()
}

You can use this in the Terminal as follows:

SAMPLES>d ##class(DeepSee.APISamples).RunQuery3()

Listing details for the first cell are as follows ***************
 # PatientID LastName
 1: SUBJ_101317 Xiang
 2: SUBJ_104971 North
 3: SUBJ_105093 Klausner
 4: SUBJ_109070 Quine

9.5 Examining the Query Results
To work with the query results programmatically, you first need to understand their organization. The result set is a set of
cells organized by a set of axes. Unless you are sure of the organization of the result set, use %GetRowCount() and
%GetColumnCount() to get information about the number of rows and columns.

Then to access the value in a given cell, use the %GetOrdinalValue() method. Or to access the column and row header
labels, use the %GetOrdinalLabel() method. Or to get detailed information about members used in a cell, use the
%GetAxisMembers() method. The following subsections give the details.

Note: There are different methods to examine the results of a DRILLTHROUGH query. See the next section.

9.5.1 Getting the Number of Columns and Rows

To get the number of columns in the result set, use %GetColumnCount().

DeepSee Implementation Guide 79

Examining the Query Results

Similarly, to get the number of rows, use %GetRowCount().

For example, the following method prints a given result set and then uses the preceding methods to report on the axes of
this result set:

Class Member

ClassMethod ShowRowAndColInfo(rset As %DeepSee.ResultSet)
{
 //print query results
 write !, "Result set for comparison",!
 do rset.%Print()

 set colCount=rset.%GetColumnCount()
 set rowCount=rset.%GetRowCount()
 write !, "This result set has ",colCount, " column(s)"
 write !, "This result set has ",rowCount, " row(s)"
}

The following shows example output from this method:

Result set for comparison
 Patient Count
1 None 844
2 asthma 55
3 CHD 38
4 diabetes 55
5 osteoporosis 26

This result set has 1 column(s)
This result set has 5 row(s)

The following shows output based on a different result set:

Result set for comparison

1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

This result set has 1 column(s)
This result set has 6 row(s)

As noted earlier, remember that %Print() includes a line number at the start of each line of data, and this line number is
not part of the results.

9.5.2 Getting the Value of a Given Cell

To get the value of a given cell, use %GetOrdinalValue(). This method has the following signature:

method %GetOrdinalValue(colNumber,rowNumber) as %String

Where colNumber is the column number (and 1 represents the first column). Similarly, rowNumber is the row number (and
1 represents the first row). If there is no such cell within the result set, the method returns null.

9.5.3 Getting the Column or Row Labels

To get the labels used for a column or a row, call the %GetOrdinalLabel() method of your instance. This method has the
following signature:

method %GetOrdinalLabel(Output pLabel As %String,
 pAxis As %Integer,
 pPosition As %Integer,
 Output pFormat As %String) as %Integer

80 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

Where:

• pLabel is a multidimensional array with one node for each label as follows:

ValueNode

LabelInteger that represents the label number; the first label is 1, and so on.

In this array, the first label is the most specific (innermost) label, the second label is the next most specific, and so on.
See the example.

This array is returned as an output parameter.

• pAxis is the axis to examine. Use 1 to get the column labels or use 2 to get the row labels.

• pPosition is the position along the axis to examine. The first position is 1.

This method returns the number of labels at the given position on the given axis. The following shows an example. It executes
a CROSSJOIN query (so that an axis has multiple labels), displays the results so that you can compare them to the labels,
and then it iterates through the members on that axis, printing the labels for each:

Class Member

ClassMethod ShowRowLabels() As %Status
{
 Set rset=##class(%DeepSee.ResultSet).%New()
 Set query="SELECT CROSSJOIN(aged.[age group].MEMBERS,"
 Set query=query_"gend.gender.MEMBERS) ON 1 FROM patients"
 Set status=rset.%PrepareMDX(query)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Set status=rset.%Execute()
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Write !, "Full results are as follows ***************",!
 Do rset.%Print()

 Write !, "Labels used on the rows are as follows ***************",!
 For j=1:1:rset.%GetRowCount() {
 Write !, "Row ",j
 Set labelcount=rset.%GetOrdinalLabel(.pLabel,2,j)
 For i=1:1:labelcount {
 Write !, " label("_i_") is "_pLabel(i)
 }
 }

 Quit $$$OK
}

When executed in the Terminal, this method gives output like the following:

SAMPLES>d ##class(DeepSee.APISamples).ShowRowLabels()

Full results are as follows ***************

1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

Labels used on the rows are as follows ***************

Row 1
 label(1) is Female
 label(2) is 0 to 29
Row 2
 label(1) is Male
 label(2) is 0 to 29
Row 3
 label(1) is Female
 label(2) is 30 to 59
Row 4

DeepSee Implementation Guide 81

Examining the Query Results

 label(1) is Male
 label(2) is 30 to 59
Row 5
 label(1) is Female
 label(2) is 60 +
Row 6
 label(1) is Male
 label(2) is 60 +
SAMPLES>

9.5.4 Getting Details for Cell Contents

So far, this chapter has provided instructions only on obtaining labels and cell values. In some cases, you might need more
specific information about the contents of a given cell.

First, it is useful to review the concepts, with some example queries for reference. Consider the following query results, as
seen in the DeepSee shell:

 Patient Count
1 None 844
2 asthma 55
3 CHD 38
4 diabetes 55
5 osteoporosis 26

In this example, each row corresponds to one member of the diagnosis dimension. The column corresponds to one member
(Patient Count) of the Measures dimension. The following shows another example:

 Patient Count
1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

In this example, each row corresponds to a tuple that combines one member of the age group dimension with one member
of the gender dimension. (A tuple is a intersection of members.)

In general, in an MDX result set, each row corresponds to a tuple and each column corresponds to a tuple. Each of these
tuples might be a simple member as in the first example, or might be a combination of multiple members as shown in the
second example. A tuple may or may not include a measure.

For any given cell, you might need to find information about the tuple of the column to which it belongs and the tuple of
the row to which it belongs. To get information about these tuples, do the following:

1. Invoke the %GetAxisMembers() method of your result set:

method %GetAxisMembers(pAxis As %Integer,
 Output pKey,
 pItemNo As %Integer = "") as %Status

Finds information for the requested axis (and the optional requested item on that axis), writes that to a process-private
global and returns, by reference, a key that you can use to retrieve information from that global. (DeepSee writes this
information to a process-private global because potentially there can be a large amount of information, and it is
impossible to determine its structure ahead of time.)

pAxis optionally specifies the axis you are interested in:

• Use 0 to return information about the slicer axis (the WHERE clause).

• Use 1 to return information about the columns (this is axis 0 in MDX).

• Use 2 to return information about the rows.

pKey, which is returned as an output parameter, is a key that you use later to access the information.

82 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

pItemNo optionally specifies the tuple on that axis for which you want information. If you specify this argument, the
method writes data only for that tuple; if you omit it, the method writes data for all tuples. Use 1 for the first tuple on
an axis.

2. Use pKey to retrieve the appropriate node or nodes from the process-private global ^||DeepSee.AxisMembers. The
%GetAxisMembers() method writes data to the nodes ^||DeepSee.AxisMembers(pKey,pAxis,j,k) where:

• pKey is the key returned by the %GetAxisMembers() method.

• pAxis is an integer that specifies the axis.

• j is an integer that specifies the tuple in which you are interested. Use 0 for the first tuple on an axis.

• k is an integer that specifies the member of the tuple in which you are interested. Use 1 for the first member of a
tuple.

3. Retrieve the appropriate list items from each of those nodes. Each node of ^||DeepSee.AxisMembers has a value of the
following form:

$LB(nodeno,text,dimName,hierName,levelName,memberKey,dimNo,hierNo,levelNo)

Where:

• nodeno is the node number of this part of the axis.

• text is the text for this part of the axis.

• dimName, hierName, and levelName are the names of the dimension, hierarchy, and level used for this part of the
axis.

• memberKey is the key for the member used for this part of the axis.

• dimNo, hierNo, and levelNo are the numbers of the dimension, hierarchy, and level used for this part of the axis.

4. Kill the generated nodes of the process-private global ^||DeepSee.AxisMembers.

Or, if you are certain that no other processes are using the %GetAxisMembers() method, kill the entire global.

DeepSee does not automatically kill this global.

The following example method prints a description of the column and row tuples for a given cell, given a result set and a
cell position:

Class Member

ClassMethod ShowCellDetails(rset As %DeepSee.ResultSet, col As %Integer = 1, row As %Integer = 1)
{
 //print query results
 write !, "Result set for comparison",!
 do rset.%Print()

 //call %GetAxisMembers to build process-private global with info
 //for given result set and axis; return key of node that has this info
 Set status=rset.%GetAxisMembers(1,.columnkey)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}
 Set status=rset.%GetAxisMembers(2,.rowkey)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

 write !, "We are looking at the cell ("_col_","_row_")"
 write !, "The value in this cell is ", rset.%GetOrdinalValue(col,row)
 write !, "For this cell, the column is a tuple that combines the following member(s):"
 set i=0
 while (i '= "") {
 write !, " Member ",i
 set infolist=^||DeepSee.AxisMembers(columnkey,1,col,i)
 write:$LI(infolist,3)'="" !, " Dimension name: ",$LI(infolist,3)
 write:$LI(infolist,4)'="" !, " Hierarchy name: ",$LI(infolist,4)
 write:$LI(infolist,5)'="" !, " Level name: ",$LI(infolist,5)
 write:$LI(infolist,6)'="" !, " Member key: ",$LI(infolist,6)

DeepSee Implementation Guide 83

Examining the Query Results

 set i=$ORDER(^||DeepSee.AxisMembers(columnkey,1,col,i))
 }

 write !, "For this cell, the row is a tuple that combines the following member(s):"
 set i=0
 while (i '= "") {
 write !, " Member ",i
 set infolist=^||DeepSee.AxisMembers(rowkey,2,row,i)
 write:$LI(infolist,3)'="" !, " Dimension name: ",$LI(infolist,3)
 write:$LI(infolist,4)'="" !, " Hierarchy name: ",$LI(infolist,4)
 write:$LI(infolist,5)'="" !, " Level name: ",$LI(infolist,5)
 write:$LI(infolist,6)'="" !, " Member key: ",$LI(infolist,6)
 set i=$ORDER(^||DeepSee.AxisMembers(rowkey,2,row,i))
 }
 Kill ^||DeepSee.AxisMembers(columnkey)
 Kill ^||DeepSee.AxisMembers(rowkey)
}

The following shows example output for this method:

Result set for comparison
 0 to 29 30 to 59 60+
 1 Female->None 189 184 62
 2 Female->asthma 18 7 7
 3 Female->CHD * 4 14
 4 Female->diabetes * 11 23
 5 Female->osteopor * * 23
 6 Male->None 178 186 45
 7 Male->asthma 14 7 2
 8 Male->CHD * 5 15
 9 Male->diabetes * 11 10
10 Male->osteoporos * * 3

We are looking at the cell (2,6)
The value in this cell is 186
For this cell, the column is a tuple that combines the following member(s):
 Member 0
 Dimension name: AgeD
 Hierarchy name: H1
 Level name: Age Group
 Member key: 30 to 59
For this cell, the row is a tuple that combines the following member(s):
 Member 0
 Dimension name: GenD
 Hierarchy name: H1
 Level name: Gender
 Member key: Male
 Member 1
 Dimension name: DiagD
 Hierarchy name: H1
 Level name: Diagnoses
 Member key: <null>

9.6 Examining the Query Results for a DRILLTHROUGH
Query
If the query uses the MDX DRILLTHROUGH statement, then you use a different technique to examine the results.

In this case, use the following method of your instance of %DeepSee.ResultSet:

method %GetListingResultSet(Output pRS As %SQL.StatementResult, Output pFieldList As %List) as %Status

This method returns the following as output parameters:

• pRS is an instance of %SQL.StatementResult that contains the results from the DRILLTHROUGH query.

• pFieldList is a list (in $LIST format) of the fields in this result set.

Use pRS in the same way that you use any other instance of %SQL.StatementResult; see the class reference for details.

84 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

9.7 Examining the Query Metadata
You can use the following methods to get the cube name, query text, and other metadata for any instance of
%DeepSee.ResultSet. (For information on accessing the query plan, see the next section.)

%GetCubeName()

method %GetCubeName() as %String

Returns the name of the cube that the query uses. The query must be prepared before you can use this method.

%GetListingSQL()

method %GetListingSQL() as %String

Returns the SQL statement used to display the source data, if the query is a DRILLTHROUGH query.

%GetParameterInfo()

method %GetParameterInfo(Output pParms) as %Status

Returns a multidimensional array that contains the parameters used in the query, along with the values used for
them. This array has the structure described earlier in this chapter.

%GetQueryText()

method %GetQueryText() as %String

Returns a string that contains the MDX query that was used to create this result set.

%GetSlicerForCellRange()

method %GetSlicerForCellRange(Output pSlicer As %String,
 pStartRow As %Integer, pStartCol As %Integer,
 pEndRow As %Integer, pEndCol As %Integer)
 as %Status

Returns, by reference, a string that contains the MDX slicer statement for the given range of cells. You specify a
range of cells by indicating a rectangle that consists of a starting row and column and an ending row and column.
The first cell position on any axis is 1.

%IsDrillThrough()

method %IsDrillThrough() as %Boolean

Returns true if the query is a DRILLTHROUGH query; returns false otherwise.

For example, the following method generates a report on the basic metadata:

Class Member

ClassMethod ShowQueryMetadata(rset As %DeepSee.ResultSet) As %Status
{
 Set cubename=rset.%GetCubeName()
 Write !, "This result set comes from the following cube: ",cubename,!

 Set status=rset.%GetParameterInfo(.pParms)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}
 If $DATA(pParms) {
 Write "The query uses the following parameters:",!

DeepSee Implementation Guide 85

Examining the Query Metadata

 Set p = $ORDER(pParms(""))
 While (p '= "") {
 Write $$$UPPER(p), " = " ,$GET(pParms(p,"VALUE")),!
 Set p = $ORDER(pParms(p))
 }
 }
 Set query=rset.%GetQueryText()
 Write "The query is as follows:",!, query,!

 Set isdrill=rset.%IsDrillThrough()
 If isdrill {
 Set listingsql=rset.%GetListingSQL()
 Write !!, "It uses the following SQL to drill into the source table:"
 Write !, listingsql
 }
}

The following examples (with line breaks added for readability) show output from this method, using several sample result
sets. In the first case, we use GetResultSet1() of DeepSee.APISamples:

SAMPLES>set rs1=##class(DeepSee.APISamples).GetResultSet1()

SAMPLES>d ##class(DeepSee.APISamples).ShowQueryMetadata(rs1)

This result set comes from the following cube: patients
The query is as follows:
SELECT {[MEASURES].[AVG TEST SCORE],[MEASURES].[%COUNT]} ON 0,
[DIAGD].[H1].[DIAGNOSES].MEMBERS ON 1 FROM [PATIENTS]

In the next example, we use GetResultSet2(), which uses a query that contains named parameters:

SAMPLES>set rs2=##class(DeepSee.APISamples).GetResultSet2()

SAMPLES>d ##class(DeepSee.APISamples).ShowQueryMetadata(rs2)

This result set comes from the following cube: patients
The query uses the following parameters:
C = Magnolia
The query is as follows:
SELECT [HOMED].[H1].[CITY].MAGNOLIA ON 0,%SEARCH ON 1 FROM [PATIENTS]

In the next example, we use GetResultSet3(), which uses a query that does a drillthrough:

SAMPLES>set rs3=##class(DeepSee.APISamples).GetResultSet3()

SAMPLES>d ##class(DeepSee.APISamples).ShowQueryMetadata(rs3)

This result set comes from the following cube: patients
The query is as follows:
DRILLTHROUGH SELECT [GEND].[H1].[GENDER].[FEMALE] ON 0,[BIRTHD].[H1].[YEAR].[1913] ON 1
FROM [PATIENTS] RETURN PatientID, PrimaryCarePhysician-> LastName

It uses the following SQL to drill into the source table:
SELECT TOP 1000 PatientID,PrimaryCarePhysician-> LastName FROM
DeepSee_Study.Patient source WHERE source.%ID IN (SELECT _DSsourceId FROM
DeepSee_Model_PatientsCube.Listing WHERE _DSqueryKey = '1858160995')

The following example method generates a report that shows the MDX slicer for a given range of cells, in a given result
set:

Class Member

ClassMethod ShowSlicerStatement(rset As %DeepSee.ResultSet, Row1 As %Integer = 1,
Col1 As %Integer = 1, Row2 As %Integer, Col2 As %Integer) As %Status
{
 If '$DATA(Row2) {Set Row2=Row1}
 If '$DATA(Col2) {Set Col2=Col1}

 Set status=rset.%GetSlicerForCellRange(.slicer,Row1,Col1,Row2,Col2)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

 Write !, "The requested cell range:"
 Write !, " Columns ",Col1, " through ", Col2
 Write !, " Rows ",Row1, " through ", Row2

86 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

 Write !, "The slicer statement for the given cell range is as follows:"
 Write !, slicer

 If 'rset.%IsDrillThrough(){
 Write !!, "For comparison, the query results are as follows:",!
 Do rset.%Print()
 }
 Else {
 Write !!, "This is a drillthrough query and %Print "
 _"does not provide a useful basis of comparison"
 }
}

To try this method, we use GetResultSet4() of DeepSee.APISamples, which uses a query that has different levels for rows
and columns:

SAMPLES>d ##class(DeepSee.APISamples).ShowSlicerStatement(rs4)

The requested cell range:
 Columns 1 through 1
 Rows 1 through 1
The slicer statement for the given cell range is as follows:
CROSSJOIN({[AgeD].[H1].[Age Bucket].&[0 to 9]},{[GenD].[H1].[Gender].&[Female]})

For comparison, the query results are as follows:
 Female Male
1 0 to 9 689 724
2 10 to 19 672 722
3 20 to 29 654 699
4 30 to 39 837 778
5 40 to 49 742 788
6 50 to 59 551 515
7 60 to 69 384 322
8 70 to 79 338 268
9 80+ 204 113

9.8 Other Methods
The class %DeepSee.ResultSet also provides additional methods like the following:

• %GetCellCount()

• %FormatNumber()

• %GetOrdinalLabel()

• %GetOrdinalKey()

• %GetQueryKey()

• %GetRowTotal()

• %GetColumnTotal()

• %GetGrandTotal()

For a full list and details, see the class reference.

9.9 Executing Query Files
DeepSee provides a tool for executing MDX queries that have been saved in files. The output can be written to the current
device or to a file. The output results include statistics on the query run.

This tool can be useful for simple testing.

DeepSee Implementation Guide 87

Other Methods

9.9.1 About Query Files

A query file must be an ASCII file as follows:

• Any line breaks in the file are ignored.

• Two or more blank spaces in a row are treated as a single blank space.

• The file can contain any number of MDX queries (zero or more).

• The queries can contain comments, but comments cannot be nested. An MDX comment has the following form:

/* comment here */

A comment may or may not be on its own line.

• Use the command GO on a line by itself to execute a query. The query consists of all text from the previous GO (or
the start of the file) up to, but not including, the GO command.

There must be no spaces before GO on this line.

For example:

/* First query in this file*/
SELECT MEASURES.%COUNT ON 0,
homed.[home zip].[34577].CHILDREN
ON 1 FROM patients
GO

/* Second query in the file*/
SELECT MEASURES.%COUNT ON 0,
homed.[home city].MEMBERS ON 1 /*ignore this comment*/FROM patients
GO

9.9.2 Executing a Query File

To execute a query file, use the following class method of %DeepSee.Shell:

ClassMethod %RunQueryFile(pQueryFile As %String, pResultFile As %String = "") As %Status

Where:

• pQueryFile is the name of the query file.

• pResultFile is the name of the file into which to write the query statistics.

If this argument is null, the method writes the query statistics to the current device.

In all cases, the method writes the query results to the current device.

For example:

d ##class(%DeepSee.Shell).%RunQueryFile("c:\mdxtest.txt")
--
Query 1:
/* First query in this file*/SELECT MEASURES.%COUNT ON 0, homed.[home zip].[34577].CHILDREN ON 1 FROM
 patients
 Count
1 Cypress 1,091
2 Magnolia 1,087
3 Pine 1,121
Query Statistics:
 Results Cache: 1

88 DeepSee Implementation Guide

Executing DeepSee Queries Programmatically

 Computations: 0
 Cache Hits: 0
 Cells: 0
 Expressions: 0

 Prepare: 0.261 ms
 Execute Axes: 0.026 ms
 Execute Cells: 0.000 ms
 Consolidate: 0.000 ms
 Total Time: 0.287 ms

ResultSet Statistics:
 Cells: 3
 Parse: 3.553 ms
 Display: 0.361 ms
 Total Time: 3.914 ms
--
Query 2:
/* Query 2*/SELECT MEASURES.%COUNT ON 0, homed.[home city].MEMBERS ON 1 /*ignore this comment*/FROM
patients
 Count
1 Cedar Falls 1,119
...

For information on query statistics, see “How the DeepSee Query Engine Works,” later in this book.

DeepSee Implementation Guide 89

Executing Query Files

10
Performing Localization

This chapter describes how to localize strings in DeepSee. It discusses the following topics:

• Overview

• How to prepare for localization of the model

• How to prepare for localization of the folder items

• How to localize the strings

10.1 Overview of Localization in DeepSee
This section provides an overview of how DeepSee supports localization of strings.

10.1.1 Model Localization

DeepSee provides a simple mechanism for localizing the names of level, measures, and other model elements.

Every element in the DeepSee model has a logical value and a display value. You specify the logical value, the original
display value, and alternative display values for use with other language locales. Then:

• In MDX queries, you always use the logical value.

• The user interfaces use the appropriate display value, if available. The user configures the browser to use a preferred
language, and when the browser sends requests to a server, those requests indicate the preferred language to use, if
available. The server sends a reply that includes the appropriate set of strings, based on that language preference.

10.1.2 Folder Item Localization

In a similar manner, you can localize a specific set of following strings within dashboards, pivot tables, and other folder
items. For these strings, you specify the original display value and alternative display values for use with other language
locales.

The User Portal and the dashboard viewer use the appropriate display value, if available. The user configures the browser
to use a preferred language, and when the browser sends requests to a server, those requests indicate the preferred language
to use, if available. The server sends a reply that includes the appropriate set of strings, based on that language preference.

DeepSee Implementation Guide 91

10.2 Preparing for Model Localization
To prepare for localization of strings in the DeepSee models, do the following:

• Specify the DOMAIN class parameter in each cube, subject area, and KPI class.

For example:

Class Member

Parameter DOMAIN = "PATIENTSAMPLE";

The classes in the Patients sample all use the same value for DOMAIN, but this practice is not required. You can
specify a different value for each class.

• Specify a value for the displayName attribute for every DeepSee element.

In the Architect, when you specify a name, the system initializes the Display name field with the same value. When
you work in Studio, however, you must remember to specify the displayName attribute (which is optional), in
addition to the name attribute (which is required).

When you compile the classes, the system adds values to the ^CacheMsg global in this namespace. These values may look
like this:

This global (which is known as the message dictionary for this namespace) contains the messages defined in this namespace;
for DeepSee, each message corresponds to the name of a model element.

When you compile a cube, subject area, or KPI class that defines the DOMAIN parameter, the system updates this global
to include the messages defined in that class, in your default language. Each message uses a numeric identifier and has a
string value that applies to the default language.

If you do not see the expected set of strings, make sure that the class defines the DOMAIN parameter, that you have specified
values for displayName, and that you have compiled the class.

92 DeepSee Implementation Guide

Performing Localization

10.3 Preparing for Folder Item Localization
This section describes how to prepare for localization of strings in the dashboards, pivot tables, and other folder items.

10.3.1 Default Domain

DeepSeeUser is the domain that DeepSee uses by default when it looks for a localized string in a dashboard. For details,
see the following sections.

10.3.2 Adding Strings to the Message Dictionary

Create a class that, when compiled, generates a set of entries in the message dictionary. In this class:

• Extend %RegisteredObject or any other class that provides access to the standard system macros.

• Specify the DOMAIN class parameter. For example:

Class Member

Parameter DOMAIN = "DeepSeeUser";

The DeepSeeUser domain is the most convenient choice, because this is the default domain.

• Define a method that uses $$$Text(Localizable String) to refer to each string that the given domain should contain.
Localizable String is an expression that evaluates to a string in this domain.

You can specify any name for the method. It does not need to take any arguments or return any values. The following
shows an example:

ClassMethod DefineL18N()
{
 set x=$$$Text("Dashboard Title")
 set x=$$$Text("Dashboard Description")
 set x=$$$Text("KeywordA")
 set x=$$$Text("KeywordB")

 set x=$$$Text("Control Label")
 set x=$$$Text("Tooltip")
 set x=$$$Text("Widget Title")
 set x=$$$Text("Chart Title")
}

Or, instead of $$$Text(Localizable String}, use $$$Text(@MessageID@) where MessageID is a numeric ID that
is unique within the given domain.

When you compile this class, the compiler finds each instance of the $$$Text macro and adds values to the ^CacheMsg
global in this namespace.

10.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder
Item

In the definition of a dashboard, pivot table, or other folder item, use one of the following values instead of the exact string
that you want to see:

• $$$Localizable String

Where Localizable String is a string defined in the default domain.

For example:

DeepSee Implementation Guide 93

Preparing for Folder Item Localization

For another example:

• $$$Localizable String/OtherDomain

Where Localizable String is a string defined in the domain given by OtherDomain.

For example:

If you do not include the /OtherDomain part, DeepSee looks for this string in the default domain.

Important: For the name of a folder or of a folder item, use the following variation: $$$Localizable
String#OtherDomain

For example: use the following as a folder name: $$$My Folder#MyDeepSeeDomain

• $$$@MessageID

Where MessageID is a numeric message ID defined in the default domain.

• $$$@MessageID/OtherDomain

Where MessageID is a numeric message ID defined in the domain given by OtherDomain.

If you do not include the /OtherDomain part, DeepSee looks for this string in the default domain.

Use these values for any of the following strings in the folder item definition:

• Folder name

• Folder item name

• (For dashboards) Dashboard title (if specified, this is shown instead of the dashboard name)

• Item description

• Keywords

• Labels for dashboard controls

• Tooltips for dashboard controls

• Titles of widgets (but not their logical names)

94 DeepSee Implementation Guide

Performing Localization

• Chart titles within dashboard widgets that display charts

10.4 Localizing the Strings
To localize the strings:

1. Export the message dictionary to one or more XML files. To do so, do the following in the Terminal:

a. Change to the namespace in which you are using DeepSee.

b. Identify the output file and its location:

ObjectScript

 SET file="C:\myLocation\Messages.xml"

The specified directory must already exist; the system does not create it.

c. Run the export command:

• It may be practical to export only those messages in a particular domain:

ObjectScript

 DO ##class(%Library.MessageDictionary).ExportDomainList(file,"myDomain")

The domain names are case-sensitive.

• Or, to export all the messages in the namespace:

ObjectScript

 DO ##class(%Library.MessageDictionary).Export(file)

Tip: To generate a sample message file, use this command in the SAMPLES namespace.

2. For each desired language, make a copy of the message file.

3. Edit each message file as follows:

a. Edit the Language attribute of the root element:

<MsgFile Language="en">

Change this to the language name of the desired language.

This must be an all-lowercase language tag that conforms to RFC1766 (so that a user can choose the preferred
language in the browser from the standard set). This tag consists of one or more parts: a primary language tag
(such as en or ja) optionally followed by a hyphen (-) and a secondary language tag (so that the result has the
form en-gb or ja-jp).

For example:

<MsgFile Language="es">

b. Scan the file to find the <MsgDomain> element that corresponds to the appropriate domain:

<MsgDomain Domain="myDomain">

DeepSee Implementation Guide 95

Localizing the Strings

https://www.ietf.org/rfc/rfc1766.txt

If you exported only one domain, the file contains only one <MsgDomain> element.

c. Within this section, edit the value of each message. For example, change this:

 <Message Id="2372513034">City</Message>

To this:

 <Message Id="2372513034">Ciudad</Message>

4. Import the edited message file or files. To do so:

• To import a single file:

ObjectScript

 SET file="C:\myLocation\myfile.xml"
 DO ##class(%Library.MessageDictionary).Import(file)

• To import all the files in the same directory:

ObjectScript

 SET myFiles="C:\myLocation"
 DO ##class(%Library.MessageDictionary).ImportDir(myFiles,"d")

5. Optionally use the Management Portal to verify that the message dictionary has been updated. To do so, switch to the
appropriate namespace, select System Explorer > Globals, and then click View Globals for the ^CacheMsg global.

Within this global, you should see a new set of subscripts that correspond to the language you have added.

6. In your browser, find the setting that controls the language that it requests for use on localized pages. Change this setting
to the language that you specified in the edited message file.

Depending on the browser, you might need to clear the browser cache, restart the browser, or both.

7. Access the Analyzer and validate that you see translated strings.

For more information on the utility methods in %Library.MessageDictionary, see the class reference for that class or see the
article String Localization and Message Dictionaries.

96 DeepSee Implementation Guide

Performing Localization

11
Packaging DeepSee Elements into Classes

In most cases, you develop your application elements on a test system and then copy them to a production system. This
chapter describes how to package the DeepSee elements and copy them to another system. It discusses the following topics:

• Overview

• How to export DeepSee folder items to container classes

• When and how to edit the folder item definitions

• How to import exported container classes

• How to use the Folder Manager

• How to restore deleted folder items

Note: This chapter assumes that you are familiar with the process of exporting from and importing into Studio. If not,
see Using Studio.

Also see the appendix “Other Export/Import Options.”

11.1 Overview
Your DeepSee implementation may include some or all of the following elements:

• Cube class definitions

• Subject area class definitions

• KPI class definitions

• DeepSee folder items, which include all the items that are not defined as classes. These include pivot tables, dashboards,
pivot variables, and so on.

To move all these items to another system (here called the target system), do the following:

1. Export all the folder items to one or more DeepSee container classes, as described in the next section.

A DeepSee container class contains an XML representation of any number of DeepSee folder items.

2. Export the cube, subject area, and KPI class definitions.

DeepSee Implementation Guide 97

You can create a project that contains all your DeepSee class definitions and folder items. Then you can export this
project from Caché and import it into another Caché instance, where needed. You can use the Studio export/import
options or you can use the usual class methods in %SYSTEM.OBJ.

3. Examine the exported folder item definitions to make edits for portability.

4. Import all the class definitions to the target system.

When you compile the container classes, DeepSee iterates over all the folder items contained in those classes and creates
or overwrites each of those items in the target system.

11.2 Exporting Folder Items to a Container Class
To export DeepSee folder items to container classes, you use a method that generates a file that defines a container class
that includes the items. The method is %ExportContainer(), which is in the class %DeepSee.UserLibrary.Utils. This method
is as follows:

classmethod %ExportContainer(ByRef pItemList As %String,
 pFileName As %String,
 pContainerClassName As %String = "") as %Status

Where:

• pItemList is a multidimensional array that has nodes of the following form:

Node ValueNode

""pItemList(itemidentifier)

For each itemidentifier, use one of the following strings:

– dashboardname.dashboard where dashboardname is the name of a dashboard. You can use the wildcard * to
represent all dashboards; you can use the wildcard with the other types of items as well.

– pivotname.pivot where pivotname is the name of a pivot table (or use *).

Note that the %ExportContainer() method identifies all the pivot tables used by any dashboard you export. The
only pivot tables you need to export explicitly are the pivot tables that are not used by any dashboard.

– namedfiltername.namedFilter where namedfiltername is the name of a named filter (or use *).

– sharedcalcmembername.sharedCalcMember where sharedcalcmembername is the name of a shared calculated
member (or use *).

– listinggroupname.listingGroup where listinggroupname is the name of a listing group (or use *).

– pivotvarname.pivotVariable where pivotvarname is the name of a pivot variable (or use *).

– settingname.userSetting where settingname is the name of a user setting (or use *).

– termlistname.termList where termlistname is the name of a term list (or use *).

– themename.theme where themename is the name of a dashboard theme (or use *).

– widgettemplatename.widgetTemplate where widgettemplatename is the name of a widget template (or use
*).

– linkname.link where linkname is the name of a dashboard link (or use *).

– reportname.report where reportname is the name of a dashboard report (or use *).

98 DeepSee Implementation Guide

Packaging DeepSee Elements into Classes

• pFileName is the name of the file to generate.

• pContainerClassName is the full name of the container class to generate, including package.

11.3 Editing the DeepSee Folder Items for Portability
If you intend to copy a DeepSee folder item to another system, it is worthwhile to examine the exported XML and make
any necessary edits, discussed in the following subsections.

Also note the following points:

• When you export a dashboard, DeepSee does not automatically export any pivot tables that it uses. It is your responsi-
bility to identify and export the pivot tables as well.

• References between DeepSee elements (such as from a dashboard to any pivot tables) are made by name.

11.3.1 Removing <filterState> Elements

If it was saved in a previous release, a folder item definition might contain <filterState> elements, which are no longer
supported. If so, you should remove these — that is, remove both the starting tag <filterState> and the matching
ending tag </filterState>.

11.3.2 Stripping Out Local Data

A folder item definition might also contain information that is local to your system and not available on another system
(depending on what elements you package and share between systems). Check the XML for the following items:

localDataSource attribute

Where found: <widget> elements in exported dashboards.

This attribute contains any local overrides performed in the Mini Analyzer. You should always clear this when
you use the exported XML in another system. For example, change this:

localDataSource="$LOCAL/Basic Dashboard Demo/SamSmith/590125613.pivot"

To this:

localDataSource=""

Or remove the localDataSource attribute.

owner attribute

Where found: All folder items.

This element contains the name of the user who owns this item. If the given user does not exist on the target system,
edit this attribute. You can set the attribute to null. For example, change this:

owner="DevUser"

To this:

owner=""

DeepSee Implementation Guide 99

Editing the DeepSee Folder Items for Portability

Or you can remove the attribute.

resource attribute

Where found: All folder items.

This element contains the name of the resource used to secure this item, if any. If this resource does not exist on
the target system, edit this attribute. You can set the attribute to null or even remove the attribute.

createdBy attribute

Where found: All folder items.

This element contains the name of the user who created this item. You can set the attribute to null or even remove
the attribute. If you do so, when the XML is imported (or the container class is compiled), createdBy is set to
the current user.

timeCreated attribute

Where found: All folder items.

This element contains the name of the user who created this item. You can set the attribute to null or even remove
the attribute. If you do so, when the XML is imported (or the container class is compiled), timeCreated is set
to the current time stamp.

11.4 Importing an Exported Container Class
To import an exported container class, use the %ImportContainer() method, which is in the class
%DeepSee.UserLibrary.Utils. This method is as follows:

ClassMethod %ImportContainer(pFileName As %String = "", pReplace As %Boolean = 1) As %Status

Where:

• pFileName is the name of the file to generate.

• pReplace specifies whether to replace the existing class.

Note that %ImportContainer() automatically calls the %OnLoad() method if it is defined in the container class.

11.5 Using the Folder Manager
This section describes how to use the Folder Manager to see the dependencies of an item, export items, and import items.
You can also export and import in Studio, as described later in this chapter.

11.5.1 Seeing the Dependencies of a Folder Item

If you click the check box for a single item, the left area of the Folder Manager displays details for that item, including a
list of the items that it depends on:

100 DeepSee Implementation Guide

Packaging DeepSee Elements into Classes

11.5.2 Exporting DeepSee Folder Items to the Server

To export DeepSee folder items to files on the server:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with a Caché username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Select DeepSee > Admin > Folder Manager.

4. Select Server.

5. For Server Directory, type the full path of the directory in which to export the items. Or type the name of a directory
relative to the directory that contains the default database for this namespace. Or use the Browse button.

The directory must already exist.

6. Click the check box next to each item that you want to export.

Or to select all items, click the check box at the top of the column of check boxes.

7. Click Export.

8. Optionally click the Directory tab, which shows the files in the given directory.

DeepSee Implementation Guide 101

Using the Folder Manager

11.5.2.1 Variation: Exporting a Container Class

To instead export a single file that consists of a container class that contains the given folder items, do the following:

1. Specify Server and Server Directory as in the preceding steps.

2. Select the items to export.

3. Select the option Create Container Class For Export.

4. Optionally select Export Related Supporting Items to export all supporting items that might be needed to deploy the
selected folder items. Examples of supporting items include pivot variables, named filters, and shared calculated
members.

5. For Container Class Name, optionally specify a fully qualified class name (package and class). If no Container Class

Name is specified, both the container class and the export file will use generated names.

6. Click Export.

For information on container classes, see “Packaging DeepSee Folder Items into Classes.”

11.5.3 Exporting DeepSee Folder Items to the Browser

To export DeepSee folder items to the browser’s download directory:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with a Caché username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Select DeepSee > Admin > Folder Manager.

4. Select Browser.

5. Select the items to export.

6. Optionally select Export Related Supporting Items.

102 DeepSee Implementation Guide

Packaging DeepSee Elements into Classes

7. For Container Class Name, optionally specify a fully qualified class name (package and class). If no Container Class

Name is specified, both the container class and the export file will use generated names.

8. Click Export.

11.5.4 Importing DeepSee Folder Items

To import a folder item that has previously been exported:

1. Click DeepSee, Admin, and then click Folder Manager.

2. For Server Directory, type the full path of the directory that contains the exported items. Or type the name of a directory
relative to the directory that contains the default database for this namespace.

3. Click the Directory tab, which shows the filenames for items in the given directory.

4. Click the check box next to each file that you want to import.

Or to select all items, click the check box at the top of the column of check boxes.

5. Click Import.

6. Click OK at the prompt to continue. Or click Cancel.

Note: For the items created when you import the files, the owner is the username under which the Caché service runs,
for example _SYSTEM.

11.5.4.1 Variation: Importing Local Files to the Server

To import a local file to the server:

1. Click DeepSee, Admin, and then click Folder Manager.

2. Select Browser.

3. Click the Directory tab, and then click Choose File.

4. Select the file that you want to import.

5. Click Import.

6. Click Ok at the prompt to continue. Or click Cancel.

DeepSee Implementation Guide 103

Using the Folder Manager

11.6 Restoring Deleted Folder Items
When you delete a pivot table or dashboard via the web-based interfaces, DeepSee moves it into a folder named $TRASH.
Or, if the item is already in a folder, then $TRASH/ is prepended to the folder name. In either case, the item is no longer
visible in the web-based interfaces. To restore the item, if needed, do the following in Studio:

1. In the Workspace window, expand the Other folder.

2. Find the item that corresponds to the folder item table definition. Here its displayed name starts with $TRASH-, followed
by the complete original name.

3. Right-click the item, and then click Export.

4. Specify the name of the file and click OK.

5. Open the exported file with a text editor and modify the folderName attribute of the exported item. For example,
change this:

<dashboard xmlns="http://www.intersystems.com/deepsee/library" name="DashA" folderName="$TRASH"
...>

To this:

<dashboard xmlns="http://www.intersystems.com/deepsee/library" name="DashA" folderName="New Folder"
 ...>

For folderName, specify any string that does not start with a dollar sign ($). This can be the name of an existing
folder or a new one.

104 DeepSee Implementation Guide

Packaging DeepSee Elements into Classes

12
Creating Portlets for Use in Dashboards

This chapter describes how to create portlets that users can add to dashboards, as widgets. It discusses the following topics:

• Basics of defining portlets

• How to define a portlet that provides settings

• Simple examples

• How to define a portlet that uses a data source

12.1 Portlet Basics
To define a portlet, create and compile a class as follows:

• Use %DeepSee.Component.Portlet.abstractPortlet as a superclass.

• Implement the %DrawHTML() method, which should draw the body of the portlet as HTML.

This method has the following signature:

method %DrawHTML()

Also see “Using Settings” for additional options.

• Optionally implement the %OnGetPortletName() method, which returns the localized name of the portlet, to display
in the Widget Builder dialog box.

Otherwise, the short class name becomes the portlet name.

This method has the following signature:

classmethod %OnGetPortletName() as %String

• Optionally implement the %OnGetPortletIcon() method, which returns the URL of the icon for the portlet, to display
in the Widget Builder dialog box.

Otherwise, the system uses a generic icon.

This method has the following signature:

classmethod %OnGetPortletIcon() as %String

DeepSee Implementation Guide 105

• Optionally implement the %OnGetPortletSettings() method, which returns one or more configurable settings. See
“Defining Settings.”

Otherwise, the portlet has no settings.

• Optionally implement the adjustContentSize() method, which DeepSee calls whenever the widget containing the
portlet is loaded or resized. This method has the following signature:

ClientMethod adjustContentSize(load, width, height) [Language = javascript]

• Optionally implement the onApplyFilters() method, which DeepSee calls whenever a filter change is sent to the
widget. This method has the following signature:

ClientMethod onApplyFilters(refresh) [Language = javascript]

12.2 Defining and Using Settings
It is fairly simple to define a portlet that provides configurable settings. To do this, implement the %OnGetPortletSettings()
method in the portlet class. This method has two purposes:

• To define settings to be listed in the Settings menu for this widget, in the Dashboard Designer.

• To receive values for these settings via the dashboard URL. For information on passing the values via the URL, see
the chapter “Accessing Dashboards from Your Application.”

The %OnGetPortletSettings() method has the following signature:

classmethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) as %Status

pInfo should be a multidimensional array that contains the following nodes:

ValueNode

List returned by $LISTBUILD as follows:
$LB(name,default,type,caption,tooltip)

pInfo(integer)

• name is the logical name of the setting

• default is the default value of the setting

• type is the type of the setting. See the following subsection.

• caption is the localized caption of the setting

• tooltip is an optional tooltip

pSettings is a multidimensional array that is passed to this method; it contains the values of any settings passed via the
URL. For details, see the second subsection.

12.2.1 Types of Settings

In the pInfo argument of %OnGetPortletSettings(), you can specify the type of each setting; this controls how the Dashboard
Designer displays that setting. Use one of the following:

• "%Integer"

106 DeepSee Implementation Guide

Creating Portlets for Use in Dashboards

• "%Boolean"

• "ENUM^caption1:value1,caption2:value2" or a similar form. In this string, caption1 and caption2 are labels
to display in the Dashboard Designer, and value1 and value2 are the corresponding values that are actually used. In
practice, a setting of this type can provide only a few options, before the Dashboard Designer runs out of space to
display them. See the next item.

• "DRILL^caption1:value1,caption2:value2" or a similar form. In this string, caption1 and caption2 are
labels to display in the Dashboard Designer, and value1 and value2 are the corresponding values that are actually used.

The following figure shows a sample of each of these types of setting:

The following implementation of %OnGetPortletSettings() shows how these settings were defined:

Class Member

ClassMethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) As %Status
{
 Kill pInfo
 set pInfo($I(pInfo)) = $LB("INTEGERSETTING","150","%Integer","Integer Setting","Sample integer setting")

 set pInfo($I(pInfo)) = $LB("BOOLEANSETTING","1","%Boolean","Boolean Setting","Sample boolean setting")

 set pInfo($I(pInfo)) = $LB("ENUMSETTING","150","ENUM^option1:150,option2:200,option3:200",
 "ENUM Setting","Sample ENUM setting")

 set pInfo($I(pInfo)) = $LB("DRILLSETTING","150",
 "DRILL^option1:150,option2:200,option3:200,option4:200,option5:200,option6:200,option7:200",
 "DRILL Setting","Sample DRILL setting")

 Quit pInfo
}

12.2.2 Receiving Settings Passed Via URL

The URL of a dashboard can pass values to some or all widgets on that dashboard, including values for any portlet settings.
To accept these values, when you implement %OnGetPortletSettings(), use the pSettings argument, which is a multidi-
mensional array that contains values for any settings that were provided in the URL. The structure of this array is as follows:

ValueNode

Value of that settingpSettings("setting") where setting is the name of a setting

DeepSee Implementation Guide 107

Defining and Using Settings

One approach is to use $GET(pSettings("setting") as the default value for each setting. For example:

ClassMethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) As %Status
{
 Kill pInfo
 Set pInfo($I(pInfo)) = $LB("LOGO",$G(pSettings("LOGO")),"","Clock logo","Logo displayed on top of
clock")

 Set pInfo($I(pInfo)) = $LB("STEP",$G(pSettings("STEP"),"10"),"%Integer",
 "Second hand redraw interval (msec)","milliseconds steps of second hand")

 Set pInfo($I(pInfo)) = $LB("OFFSET",$G(pSettings("OFFSET"),"0"),"%Integer",
 "Offset from base time (min)","minutes difference from base time (Local or UTC)")

 Set pInfo($I(pInfo)) = $LB("UTC",$G(pSettings("UTC"),"0"),"%Boolean","UTC","Time Base: local (default)
 or UTC")

 Set pInfo($I(pInfo)) = $LB("CIRCLE",$G(pSettings("CIRCLE"),"1"),"%Boolean",
 "Circle","Shape: square (default) or circle")

 Set pInfo($I(pInfo)) = $LB("SIZE",$G(pSettings("SIZE"),"150"),"%Integer","Size","Size of the clock")

 Quit pInfo
}

12.2.3 Using Settings

To use the settings in the portlet, define the %DrawHTML() method so that it extracts the values of the settings from the
settings property of the portlet and then uses those values in whatever manner is suitable for your needs. The settings

property of the portlet is a multidimensional array of the following form:

ValueNode

Value of that settingsettings("setting") where setting is the name of a setting

For a simple example, %DrawHTML() could contain extract a setting called SIZE:

 set size=$G(..settings("SIZE"))

And the method could use this value to set the size of the portlet.

12.3 Examples
The following shows a simple example:

Class DeepSee.Model.Custom.MyPortlet Extends %DeepSee.Component.Portlet.abstractPortlet
{

/// Static HTML display method: draw the BODY of this component as HTML.
Method %DrawHTML()
{
 &html<<div class="portletDiv" style="overflow:hidden;">>
 &html<<div style="font-size:16px; border-bottom:1px solid gray;">My Widget</div>>

 Set tInfo(1) = $LB("Sales","UP","12")
 Set tInfo(2) = $LB("Costs","DOWN","-8")
 Set tInfo(3) = $LB("Profits","UP","18")

 &html<<table width="100%" cellspacing="0" border="0">>
 Set n = $O(tInfo(""))
 While (n'="") {
 Set tName = $LG(tInfo(n),1)
 Set tDir = $LG(tInfo(n),2)
 Set tPct = $LG(tInfo(n),3)
 Set clr = $S(tPct<0:"red",1:"black")
 Set bg = $S(n#2:"#FFEEEE",1:"white")

108 DeepSee Implementation Guide

Creating Portlets for Use in Dashboards

 Set tPct = tPct _ "%"
 &html<<tr style="font-size:24px; background:#(bg)#;color:#(clr)#;">
 <td style="padding:4px;">#(tName)#</td>
 <td style="padding:4px;">#(tDir)#</td>
 <td style="padding:4px;text-align:right;">#(tPct)#</td></tr>>
 Set n = $O(tInfo(n))
 }
 &html<</table>>
 &html<</div>>
}

}

When used as a widget, the widget has the following contents:

This example displays static data, but your portlet could display real-time data.

For a more complex example that also defines settings, see DeepSee.Model.PortletDemo.ClockPortlet in the
SAMPLES database.

12.4 Using a Data Source
You can also define a portlet that accesses data, because %DeepSee.Component.Portlet.abstractPortlet implements the ZEN
dataView API. To take advantage of this option, you should be familiar with Zen.

If a data source is defined, your portlet widget creates the appropriate dataController for the data source and connects to
that. The most convenient way to create such a portlet is as follows:

• In the %DrawHTML() method of the portlet, do nothing but force a modification of the renderFlag property:

Method %DrawHTML()
{
 Set ..renderFlag = ..renderFlag + 1
}

This causes ZEN to render this component on the client.

• Implement a client-side renderContents() method. This should (a) connect to the dataController, and (b) create dynamic
HTML and use it to render the enclosingDiv of the portlet.

ClientMethod renderContents() [Language = javascript]
{
 var html = [];

 // do we have a data controller?
 var controller = this.getController();
 if (null == controller) {
 // try to connect to dataController
 this.connectToController();
 controller = this.getController();
 }

 if (controller) {

DeepSee Implementation Guide 109

Using a Data Source

 html[html.length] = controller;

 }
 else {
 html[html.length] = 'No data source';
 }

 this.getEnclosingDiv().innerHTML = html.join('');
}

110 DeepSee Implementation Guide

Creating Portlets for Use in Dashboards

13
Other Development Work

Depending on the users’ needs and the business requirements, you may have to do some or all of the following additional
development work:

• Adding paper sizes

• Adding audit code

• Creating initialization code, to initialize the server environment

13.1 Adding Paper Sizes
When users print a dashboard widget to a PDF file, DeepSee provides a default set of paper sizes, and the user can choose
among them. To extend this set of sizes, add nodes as needed to the ^DeepSee.PaperSizes global, as follows:

ValueNode

$LISTBUILD(sizename,dimensions) where sizename is the name
of the size and dimensions specifies the dimensions. dimensions
must have one of the following forms:

widthxheight in

widthxheight mm

There must be exactly one space between height and the unit name.

^DeepSee.PaperSizes(n) where n is
an integer

For example:

Set ^DeepSee.PaperSizes(1) = $LB("My Sticker","100x100 mm")

The new size is immediately available.

13.2 Auditing User Activity
You can execute custom code, such as writing to an audit log, every time a user executes a query or accesses a dashboard.

To add custom code to execute when users execute a query, perform the following one-time setup steps:

DeepSee Implementation Guide 111

• Write a class method, routine, or subroutine that contains the custom code. The first subsection provides details on the
requirements and options; the second subsection provides an example.

• Set ^DeepSee.AuditQueryCode equal to a string containing a valid ObjectScript statement that executes that
method, routine, or subroutine.

For example, do the following in the Terminal:

set ^DeepSee.AuditCode="do ^MyDeepSee.AuditCode"

Every time a query is executed in this namespace, DeepSee executes the code specified in
^DeepSee.AuditQueryCode, thus invoking your routine or class method.

Similarly, to add custom code to execute when users access a dashboard:

• Write a class method, routine, or subroutine that contains the custom code.

• Set ^DeepSee.AuditCode equal to a string containing a valid ObjectScript statement that executes that method,
routine, or subroutine.

Every time a dashboard is accessed in this namespace, DeepSee executes the code specified in ̂ DeepSee.AuditCode.

13.2.1 Audit Code Requirements and Options

When you define audit code for either scenario, make sure that the code does not write any output to the current device.
Also make sure that it does not kill any % variables required by Zen or DeepSee.

Your code can use the following variables:

• $USERNAME — name of the current user.

• $ROLES — roles of the current user.

• %dsQueryText — text of the current query.

• %dsCubeName — logical name of the cube used in the current query.

• %dsResultSet — current instance of %DeepSee.ResultSet, which you can use to access other information, if needed.
For details on working with %DeepSee.ResultSet, see “Executing DeepSee Queries Programmatically,” earlier in
this book.

• %dsDashboard — name of the dashboard that is being accessed, if any.

Typically, audit code writes output to a file or to a global.

Note that %dsQueryText, %dsCubeName, and %dsResultSet are only available to audit routines using
^DeepSee.AuditQueryCode, while %dsDashboard is only available to routines using ^DeepSee.AuditCode.

112 DeepSee Implementation Guide

Other Development Work

13.2.2 Example

The following shows a simple example audit routine. It has one subroutine for use with ^DeepSee.AuditQueryCode

and another subroutine for use with ^DeepSee.AuditCode:

 ; this is the routine DeepSeeAudit
 quit

dashboard
 set auditentry="At "_$ZDT($H,3)_", " _$USERNAME_" accessed dashboard: "_%dsDashboard
 set ^MyDeepSeeAuditLog($INCREMENT(^MyDeepSeeAuditLog))=auditentry
 quit

query
 set auditentry="At "_$ZDT($H,3)_", " _$USERNAME_" ran query: "_%dsQueryText
 set ^MyDeepSeeAuditLog($INCREMENT(^MyDeepSeeAuditLog))=auditentry
 quit

To use this routine, we would enter the following two lines in the Terminal:

SAMPLES>set ^DeepSee.AuditQueryCode="do query^DeepSeeAudit"

SAMPLES>set ^DeepSee.AuditCode="do dashboard^DeepSeeAudit"

To see the audit log, we can use ZWRITE. The following shows example results (with line breaks added for readability):

SAMPLES>zw ^MyDeepSeeAuditLog
^MyDeepSeeAuditLog=2
^MyDeepSeeAuditLog(1)="At 2014-06-20 16:26:38, SamSmith accessed dashboard: User Defined
Listing.dashboard"
^MyDeepSeeAuditLog(2)="At 2014-06-20 16:26:38, SamSmith ran query: SELECT NON EMPTY {[MEASURES].[AMOUNT
 SOLD],
[MEASURES].[UNITS SOLD]} ON 0,NON EMPTY [DATEOFSALE].[ACTUAL].[YEARSOLD].MEMBERS ON 1 FROM [HOLEFOODS]"

13.3 Defining Server Initialization Code
To define server initialization code:

• Place a valid ObjectScript statement in the ^DeepSee.InitCode global.

For example, do the following in the Terminal:

set ^DeepSee.InitCode="do ^myroutine"

• Make sure that the code does not write any output to the current device.

• Also make sure that it does not kill any % variables required by Zen or DeepSee.

This code is called by the %RunServerInitCode() method of %DeepSee.Utils. This method is called whenever a DeepSee
session is created or when a background agent starts.

DeepSee Implementation Guide 113

Defining Server Initialization Code

14
Setting Up Security

DeepSee has a formal mechanism for managing access to functionality and DeepSee items. This mechanism is based on
the underlying Caché security framework. This chapter discusses the following topics:

• Overview of security in DeepSee

• Basic requirements for using DeepSee

• Requirements for performing common tasks

• How to add security for model elements

• How to specify the resource for a pivot table or dashboard

• How to specify the resource for a folder

This chapter assumes that you are familiar with Caché security as described in the Caché Security Administration Guide.
In particular, it assumes that you understand the relationships between resources, roles, and users.

For information on security for Visual Reporting options, see Using DeepSee Visual Reporting.

Note: If you install Caché with the Minimal Security option (and if you do not tighten security after that), the user
UnknownUser belongs to the %All role and has access to all parts of DeepSee. In this case, ignore this chapter.

Important: Also note that you use DeepSee from within a web application. By default, a web application can access
a subset of InterSystems classes, which does not include the %DeepSee classes. To use DeepSee in your
web application, you must explicitly enable access to the %DeepSee classes. For details, see “CSP
Application Settings” in Using Caché Server Pages (CSP); see the subsection “Special Case: DeepSee.”

This access is enabled by default for the /csp/samples and /csp/ensdemo web applications.

14.1 Overview of Security
The following table summarizes how elements in DeepSee are secured:

DeepSee Implementation Guide 115

How SecuredElement

%DeepSee_Portal and %DeepSee_PortalEdit resourcesDeepSee User Portal

%DeepSee_Portal, %DeepSee_Analyzer, and
%DeepSee_AnalyzerEdit resources

DeepSee Analyzer

%DeepSee_Portal, %DeepSee_Architect and
%DeepSee_ArchitectEdit resources

DeepSee Architect

%DeepSee_Portal and %DeepSee_Admin resourcesFolder Manager and Cube Manager

%DeepSee_Portal, %DeepSee_Admin, and %Development

resources
Query Tool and Settings pages

%DeepSee_Portal and %DeepSee_PortalEdit resourcesTerm List Manager and Quality Measure
Manager pages

%DeepSee_ListingGroup, %DeepSee_ListingGroupEdit, and
%DeepSee_ListingGroupSQL resources

Listing Group Manager

Custom resources (optional)Cubes, subject areas, listings, listing
fields, listing groups, KPIs, folders, and
folder items (such as dashboards and
pivot tables)

Accessible only to users of any cubes to which the quality
measures are published; no additional security

Quality measures

No security optionsTerm lists

For details, see “Requirements for Common DeepSee Tasks,” later in this chapter.

14.2 Basic Requirements
For a user to use DeepSee, the following must be true, in addition to the other requirements listed in the rest of this chapter:

• The user must have access to the database or databases in which DeepSee is used.

By default, when you create a database, Caché does the following:

– Creates a resource with a name based on the database name (%DB_database_name).

– Establishes that this resource controls access to the new database.

– Creates a role with the same name as the resource. This role has read and write privileges on the resource.

You can specify whether the read and write privileges are public. These privileges are not public by default.

For example, suppose that you create a database called MyApp for use with DeepSee, and you let Caché create the
resource and role as described here, and suppose that the read and write privileges are not public. In this case, a DeepSee
user must belong to the %DB_MyApp role, which has read and write privileges on the %DB_MyApp resource.

Note that the SAMPLES database is treated specially; in order to use this database, it is not necessary to belong to the
%DB_SAMPLES role.

• If the ̂ DeepSee globals are mapped from another database, the user must also have access to the database that contains
these globals.

116 DeepSee Implementation Guide

Setting Up Security

14.3 Requirements for Common DeepSee Tasks
The following table lists the security requirements for common tasks, in addition to the items in the previous section.

Privileges That the User Must Have for This Task*Task

USE permission for the %DeepSee_Portal resourceViewing the User Portal (apart
from the Analyzer or the mini
Analyzer) with no ability to create
dashboards

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_PortalEdit resource

Viewing the User Portal (apart
from the Analyzer or the mini
Analyzer) with the ability to create
new dashboards

• USE permission for the %DeepSee_Portal resource

• USE permission for the resource (if any) associated with the dash-
board; see “Adding Security for Model Elements”

• USE permission for the resources (if any) associated with the pivot
tables used in the dashboard

• USE permission for the resources (if any) associated with the folders
that contain the dashboard and the pivot tables

• USE permission for the resources (if any) associated with the cubes

or subject areas** used in the pivot tables

• USE permission for the resources (if any) associated with the KPIs
used in the dashboard

• SQL SELECT privilege for all tables used by the queries of the KPIs

Note that the system displays all widgets to which the user has
permission. That is, the dashboard is displayed even though the user
cannot see all of it.

Viewing a dashboard (including
exporting to Excel and printing to
PDF)

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_Analyzer resource

Read-only access to the Analyzer
or Mini Analyzer

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_AnalyzerEdit resource

Full access to the Analyzer or Mini
Analyzer

• USE permission for the %DeepSee_Portal resource

• USE permission for the resource (if any) associated with the listing

• SQL SELECT privilege for all tables used by the listing

Viewing a listing

DeepSee Implementation Guide 117

Requirements for Common DeepSee Tasks

Privileges That the User Must Have for This Task*Task

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_AnalyzerEdit resource

• USE and WRITE permissions for the resource (if any) associated
with the given pivot table

• USE permission for the resources (if any) associated with the folders
that contain the pivot table

• USE permission for the resources (if any) associated with the cube**

or subject area used in the pivot table

Modifying an existing pivot table in
the Analyzer

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_PortalEdit resource

• USE permission for the resource (if any) associated with the folder
that contains the dashboard

Creating a new dashboard

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_PortalEdit resource

• USE and WRITE permissions for the resource (if any) associated
with the given dashboard

• USE permission for the resource (if any) associated with the folder
that contains the dashboard

Modifying an existing dashboard

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_Architect resource

Read-only access to the Architect

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_ArchitectEdit resource

Creating a new cube or subject
area in the Architect

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_ArchitectEdit resource

• USE and WRITE permissions for the resource (if any) associated
with the given cube or subject area; see “Adding Security for Model
Elements”

Modifying an existing cube or
subject area in the Architect

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_Admin resource or USE permis-
sion for the %Development resource

• Folder Manager page

• Query Tool page

• Settings pages

• USE permission for the %DeepSee_Portal resource

• USE permission for the %DeepSee_PortalEdit resource

• Term List Manager page

• Quality Measures page

118 DeepSee Implementation Guide

Setting Up Security

Privileges That the User Must Have for This Task*Task

USE permission for the %DeepSee_ListingGroup resourceListing Group Manager (read only
access)

USE permission for the %DeepSee_ListingGroupEdit resourceListing Group Manager (edit
access, except for custom SQL
query options)

• USE permission for the %DeepSee_ListingGroupEdit resource

• USE permission for the %DeepSee_ListingGroupSQL resource

Listing Group Manager (edit
access, including custom SQL
query options)

*Also see the previous section. Note that in your resource definitions, some of the permissions might be public. For example,
in a minimal security installation, by default, the USE permission is public for all the DeepSee resources.

**If a cube contains relationships to other cubes, those cubes are secured separately. A user must have USE permission for
all of them in order to use the relationships. Similarly, a compound cube consists of multiple cubes, which are secured
separately.

14.4 Adding Security for Model Elements
To add security for a cube, subject area, KPI, pivot table, dashboard, listing, or listing field:

1. Create a resource in the Management Portal. Use the Resources page (select System Administration > Security >
Resources).

2. Create a role in the Management Portal. Use the Roles page (select System Administration > Security > Roles). This
role should have USE and WRITE permissions on the resource you just created.

Or you could create one role with USE and WRITE permissions and another role with only USE permission.

3. Associate the resource with the DeepSee item as follows:

• For a dashboard or pivot table, when you save the item, type the name of the applicable resource into the Access

Resource field.

See also “Specifying the Resource for a Dashboard or Pivot Table.”

To save a dashboard or pivot table, you must also have the USE and WRITE privileges for the appropriate DeepSee
user interface component, as described in the previous heading.

• For a cube, subject area, or listing field, use the Architect to specify the resource that secures that item.

• For a listing defined in a cube definition, use the Architect to specify the resource that secures that item.

• For a listing group or for a listing defined in a listing group, use the Listing Group Manager to specify the resource
that secures that item.

• For a KPI, edit the class definition in Studio. Use the name of the applicable resource as the value of the RESOURCE
class parameter.

4. Assign users to roles as needed.

DeepSee Implementation Guide 119

Adding Security for Model Elements

14.5 Specifying the Resource for a Dashboard or Pivot
Table
To specify the resource for a dashboard or pivot table, specify the Access Resource field when you save the item. You can
do this in any of the following cases:

• The item has no owner (specified as the Owner field).

• You are the owner of the item.

• You have USE permission on the %DeepSee_Admin resource.

14.6 Specifying the Resource for a Folder
To specify the resource for a folder:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with a Caché username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Click DeepSee > Admin > Folder Manager.

4. Click the check box next to a folder.

5. In the left area, click the Details tab.

6. Type the name of the resource.

7. Click Save Folder.

120 DeepSee Implementation Guide

Setting Up Security

A
Using Cube Versions

This appendix describes how to use the cube version feature, which enables you to modify a cube definition, build it, and
provide it to users, with only a short disruption of running queries. This appendix discusses the following topics:

• Introduction to this feature

• How to modify a cube to use this feature

• How to update the cube version

• Options for working with a specific cube version

• Additional options specific to the cube version feature

This feature requires twice the amount of disk space, per cube. Also, this feature requires editing the cube class in Studio.

Note: The cube version feature is not supported for a cube that defines a formally shared dimension. It is also not supported
for a cube that defines a one-way relationship; it can be used with cubes that define two-way relationships.

A.1 Introduction to the Cube Version Feature
The cube version feature enables you to modify a cube definition, build it, and provide it to users, with only a short disruption
of running queries. The feature works as follows:

• A given cube definition can have versions.

• DeepSee generates a version-specific fact table and dimension tables for each cube version.

• At any given time, only one cube version is active. The user interfaces and all generated queries use this version.

• To make the newest cube version available, it must be activated. At this point, DeepSee momentarily blocks any queries
from being run and then switches to the newest version.

The following figure shows the overall process:

DeepSee Implementation Guide 121

The cube logical name is redirected automatically to the active cube. The Analyzer and other user interfaces use only the
cube logical name and thus see only the active cube. Similarly, if you use methods in %DeepSee.Utils and you specify the
cube logical name without a version number, DeepSee runs the method against the active cube.

When you update the cube version number (in Studio) and recompile, that creates a pending cube, which you can then
build. When you are ready, you use a utility method to activate the cube, which causes the pending cube to become active
and causes the previously active cube to become deprecated.

By default, the activation process automatically deletes the deprecated cube. The cube version feature is not intended to
support switching back and forth between versions.

The best practice is to use source control. The cube version feature is not a replacement for source control, but can be
helpful in conjunction with it.

A.1.1 Keeping the Cube Current

If a cube uses the cube version feature, you cannot build the active version of the cube. That is, the method
$SYSTEM.DeepSee.BuildCube() does not affect the active version; instead an error is returned. The Build option in the
Architect behaves the same way. These actions are blocked because they would disrupt running queries for a long time,
and the goal of this feature is to prevent that disruption.

You can synchronize the cube.

A.1.2 Model Changes Can Break Queries

The cube version feature does not check to ensure that queries that function correctly on the active cube will function correctly
on the pending cube. For example, if the pending cube no longer includes a model element that is defined in the active
cube, any queries that use that element will not work when you activate the pending cube. It is the customer’s responsibility
to identify model changes that could cause disruption and to handle such changes appropriately.

122 DeepSee Implementation Guide

Using Cube Versions

A.2 Modifying a Cube to Support Versions
To modify a cube so that it supports the cube version feature (and to create and activate the initial version):

Important: Read this note if you are making a transition to cube versions and you have existing cubes that do not use
this feature and you do not want any queries to be disrupted.

When you make the transition to cube versions, the process is different for the first cube version. Specifically,
the first cube version should be runtime-compatible with the cube currently in use (the unversioned cube
definition). This means that the first cube version should not remove or redefine any measures or levels,
compared to the non-versioned cube definition. It can add elements; that has no effect on existing queries.

1. Add the following parameter to the cube class:

Parameter USECUBEVERSIONS=1;

To make this change and the next, it is necessary to use Studio.

2. Add the following attribute to the <cube> element and then save the class:

version="versionnum"

Where versionnum is an integer.

3. Compile the class. Within the package generated by DeepSee for this cube, there is now a new subpackage (named
Versionversionnum). For example:

In this example, the new package is HoleFoods.Cube.Version1.

The classes HoleFoods.Cube.Fact, HoleFoods.Cube.Listing, HoleFoods.Cube.Star475620761, and so on existed previously;
these were generated for the cube before USECUBEVERSIONS was added. The cube version utilities do not touch
these class definitions.

DeepSee Implementation Guide 123

Modifying a Cube to Support Versions

4. Optionally make changes to the cube definition. Read the important note at the start of this section to decide which
changes to make. Save your changes.

5. Build the cube. This step does not affect any running queries (nor do the preceding steps, provided that you follow the
guidelines in the important note at the start of this section).

If you build the cube in the Terminal, the system displays slightly different output, to indicate that it is building a specific
cube version. For example:

 Building cube [HOLEFOODS:1]

6. In the Terminal, execute the %ActivatePendingCubeVersion() method of the class %DeepSee.CubeVersion.Utils.
This method takes one argument, the name of the cube to build (without any version number). For example:

ObjectScript

 d ##class(%DeepSee.CubeVersion.Utils).%ActivatePendingCubeVersion("holefoods")

This method displays output like the following:

Pending version for holefoods: 1
Pending version synchronized: HOLEFOODS:1
Queries locked for cube: holefoods
Killing active tasks for cube: holefoods
Cube version activated: HOLEFOODS:1
Removing non-versioned cube data

One step of this method does briefly prevent queries from being executed against the cube; however, it is likely that
users would not experience any actual delay.

Now all users see the new version of the cube.

7. If you are using the Cube Manager to update this cube, make sure that the update plan for the cube is either Synch Only

or Manual. See “Keeping the Cube Current.”

A.2.1 Cube Versions and Relationships

You can use the cube version feature with cubes that are part of relationships. The rules are as follows:

• All relationships must be two-way, rather than one-way.

• Each of the related cubes must also specify a cube version.

• When you update the version, build the new version, and activate the new version for any of the cubes, you must do
the same for all the related cubes.

• Activate the related cubes in the same order in which you build them. See “Determining the Build Order for Related
Cubes” in Advanced DeepSee Modeling Guide.

A.2.2 Details for %ActivatePendingCubeVersion()

The %ActivatePendingCubeVersion() method has the following signature:

ClassMethod %ActivatePendingCubeVersion(pCubeGenericName As %String,
 pRemoveDeprecated As %Boolean = 1,
 pVerbose As %Boolean = 1) As %Status

Where:

• pCubeGenericName is the name of the cube, without version number. This argument is not case-sensitive.

124 DeepSee Implementation Guide

Using Cube Versions

• pRemoveDeprecated specifies whether the method should also remove the cube version that is now being deprecated.
If this argument is 1, the method removes the fact table and its data, dimension tables and their data, any cached data,
and any internally used metadata for the cube version that is now being deprecated.

When you use this method for the first time, in the transition from a non-versioned cube, it removes the data stored in
the fact table and so on for the non-versioned cube. It does not remove the non-versioned generated classes, which
DeepSee needs.

• pVerbose specifies whether to display messages indicating the stage of processing of this method.

A.3 Updating a Cube Version
Important: If you have not yet activated the first cube version, see the previous section. When you compile the first

cube version, any changes to the cube would affect running queries, even before you activate the cube.
Therefore it is necessary to compile, build, and activate one version of the cube that is runtime-compatible
with the non-versioned cube; see the previous section for what this means.

If you have already modified a cube and created an initial version, use the following process to update the cube:

1. First modify the cube class so that it uses a new version number, in the <cube>element. This precaution prevents any
cube changes from being visible too early. (Recall that some cube changes, such as to display names, take effect as
soon as you compile a cube. See “When to Recompile and Rebuild” in Defining DeepSee Models.)

2. Save the cube class.

3. Make changes to the cube as wanted and save them.

Note that for a live system, you should test these changes on a different system first.

4. Compile the cube.

Within the package generated by DeepSee for this cube, there is now another new subpackage with the new version
number. For example:

DeepSee Implementation Guide 125

Updating a Cube Version

5. Build the cube.

6. In the Terminal, execute the %ActivatePendingCubeVersion() method of the class %DeepSee.CubeVersion.Utils. In
this case, this method displays output like the following:

Pending version for holefoods: 2
Pending version synchronized: HOLEFOODS:2
Queries locked for cube: holefoods
Killing active tasks for cube: holefoods
Cube version activated: HOLEFOODS:2
Deprecating previously active version: HOLEFOODS:1
Removing previously active version: HOLEFOODS:1

Within the package generated by DeepSee for this cube, there is now only the subpackage with the new version number.
For example:

126 DeepSee Implementation Guide

Using Cube Versions

Now all users see the new cube.

Note: You can define subject areas based on a cube that uses the versioning feature. As with any change in a base cube,
when you change a cube version, you must also recompile the subject area so it will function properly.

A.4 Specifying the Cube to Work With
When you use cube versions, you have the following options for specifying which cube to work with:

• When creating a manual query in the Analyzer or in the Query Tool, you can use either of the following forms of cube
name:

– The logical cube name. In this case, the query uses the active version of the cube.

– The form cubename:versionnum where cubename is the logical cube name, and versionnum is the version number.
In this case, the query uses the specified version.

• In the Analyzer, Cube Manager, and other user interfaces, you can work only with the active version, with the exceptions
noted in the previous bullet.

The user interfaces display the cube caption, which contains no information about the version.

Also, when you save changes, the saved data contains only the logical cube name (that is, without the version number),
unless you typed a version number into a manual query. By default, definitions of pivot tables and listing groups do
not contain version numbers.

• When you use methods in %DeepSee.Utils that accept a cube name as an argument, you can use either the logical cube
name or the form cubename:versionnum.

• In the MDX shell, you can use either the logical cube name or the form cubename:versionnum. If tracing is enabled
in the shell, the shell displays the cube version number.

DeepSee Implementation Guide 127

Specifying the Cube to Work With

A.5 Additional Options
The class %DeepSee.CubeVersion.Utils provides additional methods that you can use for debugging purposes. These include:

• %GetVersionedCubeName()

• %DeprecateCubeVersion()

• %SetPendingCubeVersion()

• %RemoveCubeVersion()

For details, see the class reference for %DeepSee.CubeVersion.Utils.

Also, the %BuildCube() of %DeepSee.Utils can return, by reference, the cube name with the active version number. For
example:

SAMPLES>set cubename="patients"

SAMPLES>set status=##class(%DeepSee.Utils).%BuildCube(.cubename)

Building cube [PATIENTS:1]
Existing cube deleted.
Fact table built: 1,000 fact(s) (2 core(s) used)
Fact indices built: 1,000 fact(s) (2 core(s) used)

Complete
Elapsed time: 0.461454s
Source expression time: 0.298187s

SAMPLES>w cubename
PATIENTS:1

The method $SYSTEM.DeepSee.BuildCube() does not provide this option.

A.5.1 Disabling the Cube Version Feature

To disable versions for a given cube:

1. Modify the cube class and specify USECUBEVERSIONS as 0.

2. Save and compile the class.

3. Build the cube.

4. Optionally delete the cube versions that are no longer needed. Execute the following command in the Terminal:

ObjectScript

 set status=##class(%DeepSee.CubeVersion.Utils).%RemoveCubeVersion(cubename,version)

Where cubename is the logical cube name, and versionnum is the version number.

This method returns an error if you attempt to remove the active version.

From this point on, the cube behaves the same as a non-versioned cube.

128 DeepSee Implementation Guide

Using Cube Versions

B
How the DeepSee Query Engine Works

This appendix explains how DeepSee executes queries. You may find this information useful when you are viewing query
plans or diagnosing problems. This appendix discusses the following topics:

• Introduction

• Steps that the query engine performs

• Details about axis folding

• Query plans

• Query statistics

Important: This appendix provides some information on globals used internally by DeepSee. This information is
provided for demonstration purposes; direct use of these globals is not supported. The organization of these
globals is subject to change without notice.

B.1 Introduction
This section introduces the basic concepts. The next section provides a more detailed description.

B.1.1 Use of Bitmap Indices

When you compile a cube class, DeepSee creates the fact table class that the engine uses. This class defines all bitmap
indices as needed by the engine; these are stored in the global ^DeepSee.Index. When you build or synchronize a cube,
DeepSee updates these indices as appropriate. When it is necessary to find records in the fact table, the query engine combines
and uses these bitmap indices as appropriate.

As an example, one bitmap index provides access to all the records that contribute to the Snack member of the Product
Category level. Another bitmap index provides access to all the records that contribute to the Madrid member of the
City level. Yet another provides access to all the records that contribute to the 2012 member of the YearSold level. To
find all the records that contribute to Snack, Madrid, and 2012, DeepSee combines those bitmap indices and then uses
the resulting index to retrieve the records.

DeepSee Implementation Guide 129

B.1.2 Caching

For any cube that uses more than 512,000 records (by default), DeepSee maintains and uses a result cache. In this case,
whenever DeepSee executes queries, it updates the result cache, which it later uses wherever possible. The result cache
includes the following globals:

• ^DeepSee.Cache.Results, which contains values for each query previously executed for a given cube. This global
also contains meta-information about those queries that can be used to quickly rerun them. To retrieve information for
a query, DeepSee uses the cube name and the query key, which is a hash of the normalized query text.

For a given cube name and query key, this global includes a set of subnodes that contain final and intermediate values.
These subnodes are organized by bucket number and then by result cell. (A bucket is a contiguous set of records in
the source table; see the next subsection.)

The following shows an example:

^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",-1,2,3)=67693.46
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",-1,2,4)=425998.02
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",-1,2,5)=212148.68
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",0,2,3)=301083.77
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",0,2,4)=1815190.08
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",0,2,5)=910314.95
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",1,2,3)=78219.74
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",1,2,4)=463165.12
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",1,2,5)=233031.39
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",2,2,3)=79153.44
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",2,2,4)=461472.97
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",2,2,5)=233584.42
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",3,2,3)=76017.13
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",3,2,4)=464553.97
^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",3,2,5)=231550.46

In this example, the first subscript after "data" indicates the bucket number. Buckets –1 and 0 are special: the –1
bucket is the active bucket (representing the most recent records), and the 0 bucket is the consolidated result across all
buckets.

The final subscripts indicate the result cell by position. The value of the node is the value of the given result cell.

For example, ^DeepSee.Cache.Results("HOLEFOODS","en2475861404","data",0,2,3) contains the
consolidated value for cell (2,3) across all buckets. Notice that this number equals the sum of the intermediate values
for this cell, as contained in the other nodes.

• ^DeepSee.Cache.Axis, which contains metadata about the axes of previously run queries. DeepSee uses this
information whenever it needs to iterate through the axes of a given query. It does not contain cached data.

• ^DeepSee.Cache.Cells, which contains cached values of measures for cells returned by previously executed
queries. A cell is an intersection of any number of non-measure members (such as the intersection of Madrid, Snack,
and 2012). In this global, each cell is represented by a cell specification, which is a specialized compact internal-use
expression. The following shows a partial example:

^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::1:1",1)=$lb(1460.05)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::1:2",1)=$lb(606.22)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::1:3",1)=$lb(40.17)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::1:4",1)=$lb(63.72)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::2:1",1)=$lb(3778)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::2:2",1)=$lb(1406.08)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::2:3",1)=$lb(117.31)
^DeepSee.Cache.Cells("HOLEFOODS",1,":::2012:::::1:1::2:4",1)=$lb(412.24)

The first subscript is the cube name, the second is the bucket number, the third is the cell specification
(":::2012:::::1:1::1:1" for example), and the last indicates the measure. The value of a given node is the
aggregate value of the given measure for the given cube, cell, and bucket. In this case, the results are expressed in
$LISTBUILD form for convenience in internal processing. Notice that this global does not use the query key; this is
because the same cell could easily be produced by multiple, quite different queries.

130 DeepSee Implementation Guide

How the DeepSee Query Engine Works

This global is known as the cell cache and is populated only when the cache uses buckets.

The cell cache does not include values for the active bucket. Nor does it include values for the 0 bucket (consolidated
across all buckets).

These globals are not populated until users execute queries. The cache grows in size as more queries are executed, resulting
in faster performance because DeepSee can use the cache rather than re-executing queries.

Note that the cache does not include values for any properties defined with isReference="true". These values are
always obtained at runtime.

B.1.3 Buckets

For any cube that uses more than 512,000 records (by default), DeepSee organizes the cache into buckets. Each bucket
corresponds to a large number of contiguous records in the fact table, as shown in the following figure:

The final bucket (or partial bucket) is the active bucket and is not represented in the cell cache.

By default, the fact table contains records in the same order as the source table. You can specify Initial build order for the
cube to control the order in which DeepSee examines the source table records when it performs a full build of the cube;
see “Other Cube Options” in Defining DeepSee Models.

Whenever the fact table is updated, DeepSee discards parts of the cache as appropriate. More specifically, DeepSee invalidates
any buckets that use records from the affected part or parts of the fact table. Other buckets are left alone. When it executes
a query, DeepSee uses cached data only for the valid buckets. For records that do not have valid cached results, DeepSee
uses the bitmap indices and recomputes the needed intermediate values. As the last phase of query execution, DeepSee
consolidates the results. Thus DeepSee can provide results that come from a combination of cached data and new or changed
data. Also, because some of the engine work can be split by bucket, DeepSee can (and does) perform some processing in
parallel.

DeepSee Implementation Guide 131

Introduction

B.1.3.1 Default Bucket Size

By default, a bucket is 512,000 records. The bucket size is controlled by the bucketSize option, which expresses the
bucket size as an integer number of groups of records, where a group is 64,000 contiguous records. The default bucketSize
is 8, so that the default bucket is 8 x 64,000 records or 512,000 records. For information on bucketSize, see “<cube>”
in Defining DeepSee Models.

B.2 Engine Steps
To process a query, DeepSee performs the following steps:

1. Preparation, which occurs in process (that is, this step is not launched as a background process). In this phase:

a. DeepSee parses the query and converts it to an object representation, the parse tree.

In the parse tree, each axis of the query is represented separately. One axis represents the overall filtering of the
query.

b. DeepSee converts the parse tree to a normalized version of the query text.

In this normalized version, for example, all %FILTER clauses have been combined into a single, equivalent
WHERE clause.

c. DeepSee generates a hash that is based on the normalized query text. DeepSee uses this hash value as the query
key. The query key enables DeepSee to look up results for this query in the globals discussed in this appendix.

d. If DeepSee finds that it is possible to reuse previous results for this query (from ^DeepSee.Cache.Results),
DeepSee does so and skips the following steps.

2. Execute axes, which also occurs in process. In this phase:

a. DeepSee executes any subqueries.

b. DeepSee examines the slicer axis (the WHERE clause), merges in any relevant filtering (such as from a subject
area filter), and updates ^DeepSee.Cache.Axis with information about this axis.

c. DeepSee examines each of the remaining axes and updates ^DeepSee.Cache.Axis.

3. Execute cells, which occurs in the background (in multiple parallel processes). In this phase, DeepSee obtains interme-
diate values for each cell of the results, separately for each bucket, as follows:

a. First DeepSee checks to see if ^DeepSee.Cache.Cell contains a value for the cell for the given bucket.

If so, DeepSee uses that value.

b. Otherwise, DeepSee uses the applicable nodes of ^DeepSee.Index to obtain the bitmap indices that it needs.
DeepSee combines these bitmap indices and then uses the result to find the applicable records in the source table.

If the cache uses buckets, DeepSee adds nodes to ^DeepSee.Cache.Cell for use by later queries.

4. Consolidation, which occurs in process. In this phase:

a. For each slicer axis, DeepSee examines each result cell for that axis.

For each result cell, DeepSee finds all the nodes in ^DeepSee.Cache.Cell that contain values for this cell.

It then combines those values.

b. For each result cell, DeepSee then combines the results across the slicer axes and obtains a single value.

132 DeepSee Implementation Guide

How the DeepSee Query Engine Works

For information, see the next section.

DeepSee evaluates the CURRENTMEMBER function during the consolidation phase. In contrast, it evaluates other
functions earlier in the processing.

B.3 Axis Folding
In the consolidation phase, if there are multiple slicer axes, DeepSee combines results across these axes, for each result
cell. This step is known as axis folding.

Important: Axis folding means that if a given source record has a non-null result for each slicer axis, that record is
counted multiple times.

To determine whether axis folding is required, DeepSee considers all the filters applied to the query, from all sources: the
subject area, the pivot table, and the dashboard. The net combination of these filters determines whether axis folding is
needed, as follows. The following table lists the main possibilities:

Axis
Folding
Performed?

Form of Filter

NoSingle member. Example: [PRODUCT].[P1].[PRODUCT CATEGORY].&[Candy]

NoSingle measure. Example: [MEASURES].[Units Sold]

NoA tuple (combination of members or of members and a measure). Example:
([Outlet].[H1].[City].&[7],[PRODUCT].[P1].[PRODUCT CATEGORY].&[Candy])

YesCross joins that use members wrapped in %TIMERANGE functions
CROSSJOIN(%TIMERANGE([BirthD].[H1].[Date].&[10000],[BirthD].[H1].[Date].&[50000]),%TIMERANGE([BirthD].[H1].[Date].&[40000],[BirthD].[H1].[Date].&[NOW]))

NoOther cross joins. Example:
NONEMPTYCROSSJOIN([Outlet].[H1].[City].&[7],[PRODUCT].[P1].[PRODUCT

CATEGORY].&[Candy])

NoThe %OR function, wrapped around a set expression that lists multiple members. Example:
%OR({[Product].[P1].[Product Category].&[Candy],[Product].[P1].[Product

Category].&[Snack]})

YesA set expression that lists multiple members but does not use %OR. Example:
{[Product].[P1].[Product Category].&[Candy],[Channel].[H1].[Channel

Name].&[2]}

To create these expressions (as filters) in the Analyzer, you generally drag and drop items to the Filters box. To create the
set expressions in the last two rows, you must use the Advanced Filter editor. Note that DeepSee automatically uses the
%OR function when possible; the Advanced Filter editor does not display it as an option.

DeepSee Implementation Guide 133

Axis Folding

B.4 Query Plans
If you execute a query in the Query Tool, you can see the query plan. Similarly, if you execute a query programmatically
(as described earlier in this book), you can call the %ShowPlan() method of your result set. For example:

SAMPLES>do rs1.%ShowPlan()
-------------- Query Plan ---------------------
**SELECT {[MEASURES].[AVG TEST SCORE],[MEASURES].[%COUNT]} ON 0,[AGED].[AGE
BUCKET].MEMBERS ON 1,[GEND].[GENDER].MEMBERS ON 2 FROM [PATIENTS]****
DIMENSION QUERY (%GetMembers): SELECT %ID,DxAgeBucket MKEY, DxAgeBucket
FROM DeepSee_Model_PatientsCube.DxAgeBucket ORDER BY DxAgeBucket**
**DIMENSION QUERY (%GetMembers): SELECT %ID,DxGender MKEY, DxGender
FROM DeepSee_Model_PatientsCube.DxGender ORDER BY DxGender**
**EXECUTE: 1x1 task(s) **
CONSOLIDATE
-------------- End of Plan -----------------

Note that line breaks and spaces have been added here to format the documentation properly for its PDF version.

B.5 Query Statistics
If you execute a query programmatically (as described earlier in this book), you can call the %PrintStatistics() method
of your result set. For example:

SAMPLES>do rs1.%PrintStatistics()
Query Statistics:
 Results Cache: 0
 Query Tasks: 1
 Computations: 15
 Cache Hits: 0
 Cells: 10
 Slices: 0
 Expressions: 0

 Prepare: 0.874 ms
 Execute Axes: 145.762 ms
 Columns: 0.385 ms
 Rows: 144.768 ms
 Members: 134.157 ms
 Execute Cells: 6.600 ms
 Consolidate: 1.625 ms
 Total Time: 154.861 ms

ResultSet Statistics:
 Cells: 0
 Parse: 3.652 ms
 Display: 0.000 ms
 Total Time: 3.652 ms

The values shown here are as follows:

• Query Statistics — This group of statistics gives information about the query, which returned a result set. It
does not include information on what was done to use that result set.

– Results Cache is 1 if the results cache was used or is 0 otherwise.

– Query Tasks counts the number of tasks into which this query was divided.

– Computations indicates how much time was spent performing intermediate computations such as aggregating
a measure according to its aggregation option. It does not include evaluating MDX expressions.

– Cache Hits counts the number of times an intermediate cache was used.

– Cells counts all the cells of the result set as well as any intermediate cells that were computed.

134 DeepSee Implementation Guide

How the DeepSee Query Engine Works

– Slices counts the number of cube slices in the query. This count indicates the number of items on the WHERE
clause.

– Expressions indicates how much time was spent evaluating MDX expressions.

When the cache is used, Computations, Cache Hits, Cells, and Expressions are all zero.

– Prepare, Execute Axes, Execute Cells, and Consolidate indicate how long different parts of the query
processing took place. These parts are listed in order.

– Total Time is the sum of those parts.

When the cache is used, Execute Cells and Consolidate are both zero, because those parts of the processing
are not performed.

• ResultSet Statistics — This group of statistics gives information about what was done to use the result set
after it was returned by the result set. The values are as follows:

– Cells counts the number of cells in the result set.

– Parse indicates how long it took to parse the result set.

– Display indicates how long it took to display it.

– Total Time is the sum of those times.

DeepSee Implementation Guide 135

Query Statistics

C
Using the MDX Performance Utility

DeepSee provides a tool, the %DeepSee.Diagnostic.MDXUtils class, to enable you to gather query statistics and lower-level
performance statistics at the same time. This class provides the %Run() method:

classmethod %Run(pMDX As %String = "",
 pBaseDir As %String = "",
 pVerbose As %Boolean = 0,
 ByRef pParms="",
 Output pOutFile="") as %Status

Given an MDX query, this method prepares and runs the query and generates files that contain diagnostic information about
that query. The arguments are as follows:

• pMDX — Specifies the MDX query.

• pBaseDir — Specifies the base directory to which the output directory (MDXPerf) is written. The default base directory
is the installation directory.

• pVerbose — Specifies whether to invoke routines in verbose mode. Use 1 for yes, or 0 (the default) for no.

• pParms — Specifies a multidimensional array of parameters. This array can have the following nodes:

– pParms("CubeStats") — Specifies whether to generate cube statistics. Use 1 (the default) for yes, or 0 for no.

– pParms("TimePERFMON") — Specifies how long, in seconds, to collect data via ^PERFMON. Specify a pos-
itive integer; the default is 15. For details, see “Monitoring Performance Using ^PERFMON” in the Caché
Monitoring Guide.

– pParms("pButtonsOn") — Specifies whether to also generate a ^pButtons report. Use 1 for yes, or 0 (the
default) for no.

– pParms("pButtonsProfile") — Specifies the name of the ^pButtons profile to use. For details, see
“Monitoring Performance Using ^pButtons” in the Caché Monitoring Guide.

• pOutFile — Returned as an output parameter, this argument specifies the name of the main report HTML file generated
by this method.

The %Run() method generates the following files:

• MDXPerf_nnnnn_nnnnn.html — Main HTML report file. This contains query statistics, the query plan, and so on.

• cubename.xml — Definition of the given cube.

• Cached_MDXPerf_cubename_nnnnn_nnnnn.html — ̂ PERFMON timed collection report for running the query when
using the result cache.

For details, see “Monitoring Performance Using ^PERFMON” in the Caché Monitoring Guide.

DeepSee Implementation Guide 137

• Uncached_MDXPerf_cubename_nnnnn_nnnnn.html — ^PERFMON timed collection report for running the query
when not using the result cache.

Note that DeepSee creates a result cache only for a cube that uses more than 512,000 records (by default), so this report
could have the same numbers as Cached_MDXPerf_cubename_nnnnn_nnnnn.html.

• hostname_date_time.html — ^pButtons report.

For details, see “Monitoring Performance Using ^pButtons” in the Caché Monitoring Guide.

• Other files generated by ^pButtons. These vary by operating system.

138 DeepSee Implementation Guide

Using the MDX Performance Utility

D
Other Export/Import Options

This appendix describes additional options for exporting and importing DeepSee elements, as a supplement to the chapter
“Packaging DeepSee Elements into Classes.” It discusses the following topics:

• How to create a container class in Studio

• How to export and import folder items via the older API

Note: This appendix assumes that you are familiar with the process of exporting from and importing into Studio. If not,
see Using Studio.

D.1 Creating a DeepSee Container Class
As noted in the chapter “Packaging DeepSee Elements into Classes,”you can package pivot tables and other folder items
into Caché classes. You can package as many elements as needed into a single class, which is easier to export and import
than many separate files.

To create such a class:

• The class must extend %DeepSee.UserLibrary.Container.

• The class must include an XData block named Contents. For this XData block, you must specify the XML namespace
as follows:

[XMLNamespace = "http://www.intersystems.com/deepsee/library"]

• The top-level element within the XData block must be <items>.

Include as many XML definitions as needed within <items>. You can copy the definitions in Studio or from exported
XML files. Also see the next section, which describes edits you should make.

Also be sure to copy and paste only the definition, not the XML declarations at the top of the file. That is, do not copy the
following line into the XData block:

<?xml version="1.0" encoding="UTF-8"?>

DeepSee Implementation Guide 139

For example:

Class DeepSee.Model.DashboardItems Extends %DeepSee.UserLibrary.Container
{

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
<dashboard dashboard definition here ...
</dashboard>
<dashboard another dashboard definition here ...
</dashboard>
<pivot pivot definition here ...
</pivot>
<pivot another pivot definition here ...
</pivot>
<pivot yet another pivot definition here ...
</pivot>
</items>
}

}

When you compile this class or when you call its %Process() instance method, DeepSee creates the items defined in the
XData block. Specifically, it imports these definitions into the internal global that the User Portal uses.

The same class can also define the %OnLoad() callback, which can execute any additional code needed when these items
are set up.

For samples of pivot tables and dashboards that are packaged into class definitions, see the classes DeepSee.DashboardsEtc

and HoleFoods.DashboardsEtc in the SAMPLES namespace.

If you delete a container class, that has no effect on the pivots and dashboards that currently exist.

D.2 Exporting and Importing Folder Items
This section describes the older API for exporting and importing folder items.

D.2.1 Exporting Folder Items Programmatically

To export folder items programmatically, use the following command:

Do ##class(%DeepSee.UserLibrary.Utils).%Export(itemname,filename)

Where:

• itemname is the full name of the item, including the folder in which it belongs.

– For a pivot table, append the extension .pivot

– For a dashboard, append the extension .dashboard

– For a widget, append the extension .widget

– For a theme, append the extension .theme

• filename is the full path and file name of the file to create. InterSystems suggests that you end the file name with .xml,
because the file is an XML file.

For example:

140 DeepSee Implementation Guide

Other Export/Import Options

ObjectScript

 set DFIname="Chart Demos/Area Chart.pivot"
 set filename="c:/test/Chart-Demos-Area-Chart-pivot.xml"
 do ##class(%DeepSee.UserLibrary.Utils).%Export(DFIname,filename)

 set DFIname="KPIs & Plugins/KPI with Listing.dashboard"
 set filename="c:/test/KPIs-Plugins-KPI-with-Listing-dashboard.xml"
 do ##class(%DeepSee.UserLibrary.Utils).%Export(DFIname,filename)

D.2.1.1 Alternative Technique (for Exporting Multiple Items)

To export multiple items programmatically into a single XML file, use the $system.OBJ.Export() method. The first and
second arguments for this method are as follows:

• items is a multidimensional array as follows:

Node ValueArray Node

""items("full-folder-item-name.DFI") where items is the name of the array
and full-folder-item-name.DFI is the full name of the folder item, exactly as
seen in Studio, including case.

Note that because this argument is a multidimensional array, you must precede it with a period when you use the
$system.OBJ.Export() method.

• filename is the full path and file name of the file to create. InterSystems suggests that you end the file name with .xml,
because the file is an XML file.

For example:

ObjectScript

 set items("Chart Demos-Area Chart.pivot.DFI")=""
 set items("Chart Demos-Bar Chart.pivot.DFI")=""
 set items("Chart Demos-Bubble Chart.pivot.DFI")=""
 set filename="c:/test/Chart-Samples.xml"
 do $system.OBJ.Export(.items,filename)

You can also use this method to export other items such as classes; for details, see the Class Reference for %SYSTEM.OBJ.

D.2.2 Importing Folder Items Programmatically

To import folder items programmatically:

ObjectScript

 Do ##class(%DeepSee.UserLibrary.Utils).%Import(pFile, pReplace, pVerbose)

Where:

• pFile is the full path and file name of the file to import.

• If pReplace is true, replace an existing item with the same name. The default is false.

• If pVerbose is true, write status to the console. The default is true.

For example:

ObjectScript

 set filename="c:/test/Chart-Demos-Area-Chart-pivot.xml"
 do ##class(%DeepSee.UserLibrary.Utils).%Import(filename,1,1)

DeepSee Implementation Guide 141

Exporting and Importing Folder Items

E
DeepSee and Disaster Recovery

This appendix describes the recommended procedure for write-protecting copied source data on an async mirror member
using DeepSee. It discusses the following topics:

• Configuration

• Disaster Recovery

E.1 Configuration
This section describes the necessary initial configuration tasks.

1. Set up the async mirror as a disaster recovery (DR) async with all source data databases and the newly-mapped database
for ^OBJ.DSTIME. This will perform more validation of the system and push any issues with the ISCAgent and so on
to configuration time instead of recovery time. Note that this mode does not allow for a read-write database.

2. Once configured, switch the DR to a read-only async member.

3. On a read-only async, each specific database has a ReadOnly flag that can be cleared, allowing writes. Do this for
the database containing ^OBJ.DSTIME.

The source data is now write-protected and the cubes can be synchronized properly.

E.2 Disaster Recovery
This section describes the steps to take during disaster recovery.

1. Remove the database containing ̂ OBJ.DSTIME from the mirror configuration. Note that the database is still available.

2. Switch the async member back to a DR member.

3. Promote the member to primary.

4. Synchronize cubes.

The ^OBJ.DSTIME buffer needs to be treated as out-of-date on any other systems that may now be relying on this one, as
there will be no attempt to synchronize that data with other async members. The database containing ^OBJ.DSTIME needs
to be added back into the mirror set as part of the recovery procedure.

DeepSee Implementation Guide 143

	Table of Contents
	About This Book
	1 Overview
	1.1 Purpose of DeepSee
	1.2 DeepSee Components to Add to Your Application
	1.3 Recommended Architecture
	1.4 Main Implementation Steps
	1.5 Implementation Tools
	1.5.1 Available Samples

	2 Performing the Initial Setup
	2.1 Setting Up the Web Applications
	2.2 Placing the DeepSee Globals in a Separate Database
	2.3 Alternative Mappings for the Globals
	2.4 Adjusting the CSP Timeout Period

	3 Configuring Settings
	3.1 Accessing the DeepSee Settings
	3.2 Specifying Basic Settings
	3.3 Configuring DeepSee to Support Email
	3.4 Customizing Worklists
	3.5 Creating Runtime Variables for Use as Default Values for Filters
	3.5.1 Editing Runtime Variables
	3.5.2 Removing Runtime Variables

	3.6 Allowed Default Values for Filters
	3.7 Creating Icons
	3.8 Creating Custom Color Palettes

	4 Defining Data Connectors
	4.1 Introduction to Data Connectors
	4.2 Defining a Basic Data Connector
	4.2.1 Defining the Query in an XData Block
	4.2.2 Defining the Output Specification

	4.3 Previewing the Query Results
	4.3.1 Viewing the Test Page
	4.3.2 Printing the Output in the Terminal

	4.4 Defining the Query at Runtime
	4.4.1 Restricting the Records When an Update Is Requested
	4.4.2 Restricting the Records When a Listing Is Requested
	4.4.3 Other Callbacks

	4.5 Using a Data Connector Programmatically

	5 Performance Tips
	5.1 Result Caching and Cube Updates
	5.2 Specifying the Agent Count
	5.3 Cache Buckets and Fact Order
	5.4 Removing Inactive Cache Buckets
	5.5 Precomputing Cube Cells
	5.5.1 Defining the Cell Cache
	5.5.2 Precomputing the Cube Cells

	6 Defining Custom Actions
	6.1 Introduction
	6.1.1 Context Information

	6.2 Defining the Behavior of Actions
	6.2.1 Declaring Actions
	6.2.2 Defining the Behavior of the Actions

	6.3 Available Context Information
	6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data Source
	6.3.2 Scenario: Pivot Table Widget with Listing as Data Source
	6.3.3 Scenario: Pivot Table Widget with KPI as Data Source
	6.3.4 Scenario: Scorecard with KPI as Data Source

	6.4 Executing Client-Side Commands
	6.4.1 Available Commands
	6.4.2 Details for applyFilter and setFilter

	6.5 Displaying a Different Dashboard
	6.6 Generating a SQL Table from Cube Context

	7 Accessing Dashboards from Your Application
	7.1 Accessing a Dashboard
	7.1.1 URL Encoding

	7.2 Available URL Parameters
	7.3 Options for the SETTINGS Parameter
	7.4 Embedding a Dashboard in a Zen Page
	7.5 Accessing Other DeepSee Pages from Your Application
	7.5.1 Example: Embedding the Analyzer in a Zen Page

	8 Keeping the Cubes Current
	8.1 Overview
	8.1.1 Cube Updates and Related Cubes
	8.1.2 Cube Updates and the Result Cache

	8.2 How Cube Synchronization Works
	8.2.1 When Cube Synchronization Is Possible
	8.2.2 When Cube Synchronization Is Not Possible
	8.2.3 Cube Synchronization in a Mirrored Environment
	8.2.4 Structure of the Cube Synchronization Globals

	8.3 Enabling Cube Synchronization
	8.4 Clearing the ^OBJ.DSTIME Global
	8.5 Using the Cube Manager
	8.5.1 Introduction to the Cube Manager
	8.5.2 Introduction to Update Plans
	8.5.3 Accessing the Cube Manager
	8.5.4 Modifying the Registry Details
	8.5.5 Registering a Cube Group
	8.5.6 Specifying an Update Plan
	8.5.7 Merging Groups
	8.5.8 Building All the Registered Cubes
	8.5.9 Performing On-Demand Builds
	8.5.10 Unregistering a Cube Group
	8.5.11 Viewing Cube Manager Events
	8.5.12 Restricting Access to the Cube Manager

	8.6 Using %SynchronizeCube()
	8.7 Purging DSTIME
	8.8 Updating Cubes Manually
	8.9 Other Options
	8.9.1 Using DSTIME=MANUAL
	8.9.2 Injecting Facts into the Fact Table and Dimension Tables
	8.9.3 Prebuilding Dimension Tables
	8.9.4 Updating a Dimension Table Manually

	8.10 Examples

	9 Executing DeepSee Queries Programmatically
	9.1 Using the Result Set API
	9.2 Basic Example
	9.3 Preparing and Executing a Query
	9.4 Printing the Query Results
	9.5 Examining the Query Results
	9.5.1 Getting the Number of Columns and Rows
	9.5.2 Getting the Value of a Given Cell
	9.5.3 Getting the Column or Row Labels
	9.5.4 Getting Details for Cell Contents

	9.6 Examining the Query Results for a DRILLTHROUGH Query
	9.7 Examining the Query Metadata
	9.8 Other Methods
	9.9 Executing Query Files
	9.9.1 About Query Files
	9.9.2 Executing a Query File

	10 Performing Localization
	10.1 Overview of Localization in DeepSee
	10.1.1 Model Localization
	10.1.2 Folder Item Localization

	10.2 Preparing for Model Localization
	10.3 Preparing for Folder Item Localization
	10.3.1 Default Domain
	10.3.2 Adding Strings to the Message Dictionary
	10.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder Item

	10.4 Localizing the Strings

	11 Packaging DeepSee Elements into Classes
	11.1 Overview
	11.2 Exporting Folder Items to a Container Class
	11.3 Editing the DeepSee Folder Items for Portability
	11.3.1 Removing <filterState> Elements
	11.3.2 Stripping Out Local Data

	11.4 Importing an Exported Container Class
	11.5 Using the Folder Manager
	11.5.1 Seeing the Dependencies of a Folder Item
	11.5.2 Exporting DeepSee Folder Items to the Server
	11.5.3 Exporting DeepSee Folder Items to the Browser
	11.5.4 Importing DeepSee Folder Items

	11.6 Restoring Deleted Folder Items

	12 Creating Portlets for Use in Dashboards
	12.1 Portlet Basics
	12.2 Defining and Using Settings
	12.2.1 Types of Settings
	12.2.2 Receiving Settings Passed Via URL
	12.2.3 Using Settings

	12.3 Examples
	12.4 Using a Data Source

	13 Other Development Work
	13.1 Adding Paper Sizes
	13.2 Auditing User Activity
	13.2.1 Audit Code Requirements and Options
	13.2.2 Example

	13.3 Defining Server Initialization Code

	14 Setting Up Security
	14.1 Overview of Security
	14.2 Basic Requirements
	14.3 Requirements for Common DeepSee Tasks
	14.4 Adding Security for Model Elements
	14.5 Specifying the Resource for a Dashboard or Pivot Table
	14.6 Specifying the Resource for a Folder

	Appendix A: Using Cube Versions
	A.1 Introduction to the Cube Version Feature
	A.1.1 Keeping the Cube Current
	A.1.2 Model Changes Can Break Queries

	A.2 Modifying a Cube to Support Versions
	A.2.1 Cube Versions and Relationships
	A.2.2 Details for %ActivatePendingCubeVersion()

	A.3 Updating a Cube Version
	A.4 Specifying the Cube to Work With
	A.5 Additional Options
	A.5.1 Disabling the Cube Version Feature

	Appendix B: How the DeepSee Query Engine Works
	B.1 Introduction
	B.1.1 Use of Bitmap Indices
	B.1.2 Caching
	B.1.3 Buckets

	B.2 Engine Steps
	B.3 Axis Folding
	B.4 Query Plans
	B.5 Query Statistics

	Appendix C: Using the MDX Performance Utility
	Appendix D: Other Export/Import Options
	D.1 Creating a DeepSee Container Class
	D.2 Exporting and Importing Folder Items
	D.2.1 Exporting Folder Items Programmatically
	D.2.2 Importing Folder Items Programmatically

	Appendix E: DeepSee and Disaster Recovery
	E.1 Configuration
	E.2 Disaster Recovery

	Index

