
Caché MultiValue Terminal
Independence

Version 2018.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Caché MultiValue Terminal Independence
Caché Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Terminal Definition .. 3
1.1 The TERMDEFS File ... 3
1.2 Adding a New Terminal Definition .. 4
1.3 Modifying an Existing Terminal Definition .. 4
1.4 Deleting a Terminal Definition ... 4
1.5 The COMPILE.TERM Command ... 5
1.6 The Default Terminal Type ... 5
1.7 The TERM Environment Variable .. 5
1.8 Supported TERMINFO Manipulation Codes ... 5

2 Terminal Output ... 9
2.1 TERM Command ... 9
2.2 The CHOOSE.TERM Command ... 10
2.3 The SYSTEM() Function .. 10
2.4 The @() Function .. 10
2.5 Predefined Names .. 11
2.6 jBASE- And Reality-specific Codes .. 13
2.7 MVBASE-Specific Codes .. 14

3 Terminal Input .. 15
3.1 The KEYS command ... 15
3.2 Keyboard Independence .. 15

Caché MultiValue Terminal Independence iii

About This Book

Terminal and keyboard independence refers to the ability of an application to communicate with a user's output device
(terminal) and input device (keyboard) without regard to the manufacturer of the device. The control sequences required
to manipulate various aspects of the output device (e.g. move cursor, add bold , underscore etc.) varies among manufacturers.
Similarly, the sequence of characters generated by a keyboard when certain non-alpha keys are depressed (for example.
the function keys, cursor up key etc.) also varies. For MultiValue applications, help exists from the language to provide
independence of this variance among devices.

In the domain of this discussion, “ terminal” refers to console windows such as Terminal sessions, and the Microsoft
Windows command terminal, and to legacy “green screen” terminals such as the VT-100 or the Wyse 60.

Caché contains a set of terminal definitions suitable for MultiValue applications. For practical purposes, this is limited to
the most popular definitions, but it is easy to add or modify existing definitions. These MultiValue definitions differ from
the terminal definitions of standard Caché devices because the latter do not cover all the requirements of a MultiValue
application. The MultiValue definitions pointed to by the TERMDEFS definition in the VOC. The layout of an entry in
the TERMDEFS file is a simple text record which mirrors the terminal definition given by the "infocmp" command on
most UNIX® systems.

When a user begins a MultiValue session, Caché defaults to use a terminal of type CACHE of fixed screen size. This can
be modified by executing the TERM command, as detailed later.

The application can write control characteristics to the terminal in an independent way using the MultiValue Basic @
function.

There is no real MultiValue standard for reading control characteristics from the keyboard. Pressing the F1 key on a keyboard,
for example, will simply return a stream of regular characters in the range $c(32) through $c(255). Examples of input pro-
cessing are also available in the SAMPLES database.

Note: These facilities allow replacement of the jBASE CommandInit and CommandNext subroutines.

Caché MultiValue Terminal Independence 1

1
Terminal Definition

1.1 The TERMDEFS File
Each account (namespace) in MultiValue will have an F pointer in the VOC called TERMDEFS which points to a database-
wide file, ^%MV.TERMDEFS. Each entry in this global contains a simple text file which defines the characteristics of a
terminal (both output and input characteristics). The global node name should be uppercase.

The layout of these text files is one or more lines, delimited by CR, CR/LF or @AM ($C(254)). The lines have the same
attributes as that presented by the "terminfo" command available on most UNIX® systems. Indeed many of the supplied
terminal definitions come from UNIX® declarations. For example, the global ^%MV.TERMDEFS("VT100") might look
like this:

#
vt100|vt100-s|dec vt100 (w/advanced video),
am, msgr, xenl, xon,
cols#80, it#8, lines#24, vt#3,
acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=^M, csr=\E[%i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1=^H, cud=\E[%p1%dB, cud1=^J,
cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>, el1=\E[1K$<3>,
enacs=\E(B\E)0, home=\E[H, ht=^I, hts=\EH, ind=^J, ka1=\EOq,
ka3=\EOs, kb2=\EOr, kbs=^H, kc1=\EOp, kc3=\EOn, kcub1=\EOD,
kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy,
kf1=\EOP, kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
mc4=\E[4i,mc5=\E[5i,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs=^O, rmam=\E[?7l,
rmkx=\E[?1l\E>, rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h, sc=\E7,
sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;%?%p4%t;5%;m%?%p9%t\016%e\017%;$<2>,
sgr0=\E[m\017$<2>, smacs=^N, smam=\E[?7h, smkx=\E[?1h\E=,
smso=\E[7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

This example was taken from a UNIX® definition of a vt100 terminal. It shows all the characteristics of the terminal. Not
all of these are needed by Caché, and those that are not relevant are ignored. This makes importing terminal definitions
relatively painless, since no editing is required.

The pad characters, denoted by $<nn>, are for really really old terminals and hark from the days before flow control to
serial devices. This information is ignored.

In the above example, \E denotes the escape character $c(27), non-displayable characters denoted by ^A through ^Z being
$c(1) through $c(26). If a string is not a constant and requires parameters to determine the eventual string (for example
moving the cursor to a particular row and column) these are denoted by %, as described in the terminfo manual pages on
a UNIX® system.

Caché MultiValue Terminal Independence 3

The first line shown in the example is a comment. The second line is set of fields delimited by the | character, the last field
simply being a description, the other fields being the name of the terminals this defines. This allows synonym terminals to
be defined by the same source. Hence a single source in the TERMDEFS file may create one or more compiled entries in
the TERMCMP file.

Note: If you upgrade your Caché installation, the TERMDEFS and the TERMCAP files are overwritten. Be sure to
keep backups of these files.

1.2 Adding a New Terminal Definition
Create the source definition for the terminal. Caché uses a standard source as output by the "infocmp" command on UNIX®
systems. Therefore, the usual way of adding a new terminal definition, assuming it already works on a UNIX® system, is
as follows:

• Create a source file on a UNIX® system, for example with the command,

infocmp wyse50 > /tmp/wyse50def

• Copy this source file to a folder/directory on your target system, for example, to C:\tmp\wyse50def.txt

• Copy this file into the TERMDEFS file, cut-and-paste with the ED command to add an entry into the TERMDEFS
file

• Issue the COMPILE.TERM command.

Note: The item id of the item in the TERMDEFS file is uppercase and is the name of the terminal type. The name MUST
be uppercase, although when you refer to the terminal type with the TERM command it is not case-sensitive.

1.3 Modifying an Existing Terminal Definition
A developer may use the ED command to edit an existing entry in the TERMDEFS file and then run the COMPILE.TERM
command.

Note: You should save copies of any changes to TERMDEFS because they will be undone any time you upgrade your
Caché version.

1.4 Deleting a Terminal Definition
COMPILE.TERM compiles the specified TERMDEFS and adds them to the existing TERMCMP file so they are available
for use, but it does not clear prior TERMCMP entries. If you delete entries from TERMDEFS and don't want the terminal
definitions to be available, particularly if you don't want to have them listed in CHOOSE.TERM, you must delete the specific
terminal definitions that you don't want from TERMCMP after you have compiled TERMDEFS and know you have the
working definitions available.

You can directly delete entries from TERMCMP. Individual TERMDEFS entries can generate multiple TERMCMP entries.
For example, the second line of 'wy150' is: wy120|wyse120|wy150|wyse150|WY120|WYSE120|WY150|WYSE150|Wyse

4 Caché MultiValue Terminal Independence

Terminal Definition

120 and 150, This is a '|' delimited list of TERMCMP names to generate from this definition, except the last item, which
is the Terminal Description shown by CHOOSE.TERM.

Some TERMDEFS contain an entry at the bottom. For example, 'wy60' line 36 is: .termtype=w. The 'w' is up-cased and
becomes the Short Name option in CHOOSE.TERM.

1.5 The COMPILE.TERM Command
The data for terminal definitions exists in two globals. The %MV.TERMDEFS global contains the source for the definition.
The %MV.TERMCMP global contains the compiled definition used by the runtime. To compile the sources from
%MV.TERMDEFS to the compiled version in %MV.TERMCMP issue the COMPILE.TERM command. COMPILE.TERM
no arguments compiles all the definitions in the %MV.TERMDEFS file. For example,

USER: COMPILE.TERM
123 terminal definitions compiled
USER:

1.6 The Default Terminal Type
By default, the type of a terminal is CACHE. Users can change current terminal type using the TERM command, for
example,

USER: TERM vt100
USER: ; PRINT SYSTEM(7)
vt100
USER: TERM VT100
USER: ; PRINT SYSTEM(7)
VT100

1.7 The TERM Environment Variable
The TERM command also sets the TERM environment variable. When MV starts, if the terminal specified cannot be
loaded, the MultiValue shell will

1. Display an error message to that effect;

2. Attempt to load the terminal type, CACHE;

3. If successful, display a message that the terminal type is set to CACHE. If unsuccessful (because, for example, it has
been removed from the TERMDEFS file), the terminal type will be set to UNKNOWN and an error message indicating
this will be displayed instead.

1.8 Supported TERMINFO Manipulation Codes
Cursor addressing and other strings requiring parameters are described by a parameterized string capability. For example,
to address the cursor, the “cup” capability is supported. It expects using two parameters: the row and column to move the
cursor to. (For more info, see the UNIX terminfo(5) man page.

Caché MultiValue Terminal Independence 5

The COMPILE.TERM Command

This parameter mechanism uses a stack and special % codes to manipulate it. Typically, a sequence may push one or more
parameters onto the stack and manipulate them in some way. The Caché termdefs file supports the following subset of the
UNIX capability:

DescriptionCode

Push the integer onto the stackOne or more digits

Add “%” to the output string%%

Push the designated parameter onto the stack%p[1-9]

Pop an integer from the stack and append it to the output string as a character%c

Pop an integer from the stack and print its decimal value to the output string%d

Add 1 to the first two parameters (p1 and p2). This is used for cursor positioning; it
allows for some terminals that start their definitions for column and row with position
0, and other terminals that start with position 1.

%i

Append the ESCape character ($CHAR(27)) to the output string\E

Caché extension: equivalent to “%p1%d”%F

Caché extension: equivalent to “%p2%d”%G

Caché extension: equivalent to “%p1%d;%p2%d”%H

Caché extension: equivalent to “"%p1%{64}%+%c”%I

Caché extension: equivalent to “"%p2%{10}%/%{6}%*%p2%+%c”%J

Append the newline character ($CHAR(10)) to the output string\|

Push the character represented by the escape sequence onto the stack (the
representation is given in octal)

\'x'

Arithmetic operations on the top two positions of the stack: addition, subtraction,
division, multiplication, and modulo, respectively.

%+, %-, %/ , %* , %m

Bitwise operations: AND, OR, and negation, respectively%&, %|, %^

Comparison operations: equal to, greater than, and less than, respectively%=, %>, %<

Logical operations: AND and OR%A, %O

Conditional: If … then … else …%? … %t … %e …

Let us assume we want to move the cursor to column 3, row 6 (column and row numbers start at 0, so column 3 is actually
the 4th column and row 6 is the 7th row). The cursor function will be called with two parameters, 3 and 6, and the string

cup=\E[%i%p2%d;%p1%dH$<5>

is interpreted as follows:

6 Caché MultiValue Terminal Independence

Terminal Definition

InterpretationCode

Append the ESCape character ($CHAR(27)) to the output string\E

Append the character, “ [” , to the output string[

Add 1 to the first two parameters; 3 and 6 become 4 and 7, respectively%i

Push parameter 2 (a 7) onto the stack%p2

Print the top of the stack (the integer 7) to the output string%d

Append the character, “ ; ” , to the output string;

Push parameter 1 (a 4) onto the stack%p1

Print the top of the stack (the integer 4) to the output string%d

Append the character, “H”, to the output stringH

Add 5 units of pad character. Caché ignores this sequence. It was used for very old
character-oriented terminals running over an asynchronous link without flow control.

$<5>

So the resulting control sequence sent to the terminal to move the cursor to column 3, row 6 (zero-based) consists of the
ESCape character followed by the characters “[7;4H”.

Caché MultiValue Terminal Independence 7

Supported TERMINFO Manipulation Codes

2
Terminal Output

2.1 TERM Command
The TERM command allows a user to query or establish certain characteristics of the terminal. When used from the shell
as an interactive command:

TERM

the command displays the terminal characteristics. The terminal “ type” can also be set from the command line, for
example,

TERM VT220

sets the terminal to have the characteristics of a DEC VT220.

The characteristics of the terminal are usually set from a program, however, where the command format is

TERM swidth,sdepth,,,,,pwidth,pdepth,termtype

where:

• swidth and sdepth are the screen width (in characters) and depth (in lines)

• pwidth and pdepth are the printer width and depth (also in characters and lines, respectively)

• termtype is the terminal type identifier and can appear anywhere in the command as a non-numeric argument

Note: Arguments 3, 4, 6, and 10 of the command are no longer used; if present, they will be ignored.

The TERM command also supports single character terminal names which are synonyms for other terminal names. For
example,

TERM W

selects the Wyse 60 terminal. To list the supported terminals and their single character synonym (if any), use the
CHOOSE.TERM command.

Caché MultiValue Terminal Independence 9

2.2 The CHOOSE.TERM Command
The CHOOSE.TERM command allows you to see what terminals are supported on your system and then allows you to
select a terminal type by entering a number, the name, or the short name. For example,

USER:CHOOSE.TERM

Terminal Description Term Name Short Name

-------------------- --------- ----------

1) ansi/pc-term compatible with co ANSI

2) AT&T 605 80 column 102key keybo ATT605 Z

3) cache terminal based on vt220 CACHE

4) Hazeltine Esprit I, ESPRIT E

...

...

...

31) xterm terminal emulator (X Wind XTERM

Choose number, term name or short name :

The Short Name field is where the terminal definition has a “ termtype=Xentry” and so allows the terminal to be selected
via the TERM command using a single character synonym.

2.3 The SYSTEM() Function
The MVBasic SYSTEM () function is used to return a limited set of information about the terminal in use. The format is

SYSTEM(code)

where code is an integer that specifies the information desired. The following code values are used for terminal information:

• 1: return a non-zero value if output is not directed to a terminal

• 2: returns the screen width

• 3: returns the screen depth

• 7: returns the type name of this terminal

2.4 The @() Function
MultiValue Basic provides terminal output independence using the @ function call, as follows:

• @(m,n) where m is a positive integer

Moves the cursor to column m and row n, where @(0,0) is the top left hand side of a terminal.

• @(m) where m is a positive integer

Moves the cursor to column m on the current row.

• @(m) where m is negative integer

10 Caché MultiValue Terminal Independence

Terminal Output

Generates video effect character strings. The value of m and the effect intended are emulation dependent and given by
the table below.

• @(m,n) where m is a negative integer

The same as @(m), except some video effects take an optional argument n, as shown by (nn) in the table below.

2.5 Predefined Names
The table below shows all the values we use from a terminfo definition. Caché does not use them all; it only use the ones
necessary to support MultiValue Basic. In this table, there are some Caché defined names. These are shown by the name
starting with an 'x' and the word "NEW" in the description field.

In the table below, the @(-nn) values vary between emulation. The values shown are for Cache Ideal (aka UniVerse)
emulation, unless otherwise noted. The expression 'video attributes' refer to effects such as bold, dim, reverse and so on.

UsageDescriptionName

@(-108) or @(-19) in Unidata emulationBell soundsbel

@(-5)Start blinking video attributeblink

@(-58)Start bold video attributebold

@(-31)Make cursor invisiblecivis

@(-1)Clear screen and move cursor homeclear

@(-32)Turn cursor back oncnorm

@(-9,nn). @(-9) when cub1 not availableMove the cursor left a number of
columns

cub

@(-9). @(-9,nn) when cub not availableMove the cursor left a single columncub1

@(-33,nn). @(-33) when cud1 not availableMove the cursor down a number of
rows

cud

@(-33). @(-33,nn) when cud not availableMove the cursor down a single rowcud1

@(-nn) and @(-34,nn). @(-34) when cuf1
not available

Move the cursor right a number of
columns

cuf

@(-34). @(n) and @(-34,nn) when cuf not
available.

Move the cursor right a single columncuf1

@(col,row) cursor function callPosition the cursor at a specific
column and row

cup

@(-10,nn). @(-10) when cuu1 not availableMove the cursor up a number of rowscuu

@(-10). @(-10,nn) when cuu not availableMove the cursor up a single rowcuu1

@(-22,nn). @(-22) when dch1 not availableDelete a number of charactersdch

@(-22) . @(-22,nn) when dch not availableDelete one characterdch1

@(-11)Start dimmed mode attributedim

@(-18,nn). @(-18) when dl1 not availableDelete a number of linesdl

Caché MultiValue Terminal Independence 11

Predefined Names

UsageDescriptionName

@(-18) . @(-18,nn) when dl not availableDelete one linedl1

@(-71,nn)Erase a number of charactersech

@(-3)Clear screen from cursor to end of
screen

ed

@(-4)Clear screen from cursor to end of lineel

@(-2)Move cursor to home positionhome

@(-19,nn). @(-19) when ich1 not availableInsert a number of charactersich

@(-19) . @(-19,nn) when ich not availableInsert one characterich1

@(-17,nn). @(-17) when il1 not availableInsert a number of linesil

@(-17) . @(-17,nn) when il not availableInsert one lineil1

@(-48). @(-48,nn) when indn not availableScroll up a single linesind

@(-48,nn). @(-48) when ind not availableScroll up a number of linesindn

@(-28)Dump contents of screen to printermc0

@(-24). @(-26) if xmc4i not availableReset auxiliary printingmc4

@(-23). @(-25) if xmc5i not availableStart auxiliary printing to screen and
printer

mc5

@(-7)Start protected field attributeprot

@(-13)Start reverse video attributerev

@(-49). @(-49,nn) when rin not availableScroll up a single lineri

@(-49,nn). @(-49) when ri not availableScroll up a number of linesrin

@(-21)Reset insert modermir

@(-59)Exit standout attributermso

@(-16)Reset underscore attributermul

@(-38) and @(-38,nn)Set a background colorsetab

@(-37) and @(-37,nn)Set a foreground colorsetaf

@(-128) function call. When other reset
attributes not found

Reset specific video attributes Bit
mapped video attribute calls. sgr0 =
Reset all video attributes

sgr

@(-20)Start insert modesmir

@(-15)Start underscore attributesmul

@(-6)NEW Reset blinking video attributexblink

@(-59) if rmso is not availableNEW Reset bold video attributexbold

@(-12)NEW Reset dimmed mode attributexdim

@(-63) or @(-12) in D3 modeDisable protected field handlingxdisableprotect

@(-42)NEW Disable manual inputxdmi

12 Caché MultiValue Terminal Independence

Terminal Output

UsageDescriptionName

@(-43)NEW Enable manual inputxemi

@(-62) or @(-11) in D3 modeEnable protected field handlingxenableprotect

@(-30)NEW Enter 132 column modexenter132

@(-29)NEW Enter 80 column modexenter80

@(col) cursor function callsNEW Position the cursor at a specific
column (This is used in preference to
the hpa value which not all terminals
work successfully with)

xhpa

@(-70). @(-70,nn) if hpa not availableNEW Set column positionxhpa1

@(-26)NEW Reset auxiliary printing to printer
only

xmc4i

@(-25)NEW Start auxiliary printing to printer
only

xmc5i

@(-8)NEW Reset protected field attributexprot

@(-14)NEW Reset reverse video attributexrev

@(-57)NEW Reset numeric keypadxrnumeric

@(-55)NEW Reset line truncatexrtrunc

@(-51). @(-51,nn) when xscl1 not availableNEW Scroll left a single columnxscl

@(-51,nn). @(-51) when xscl not availableNEW Scroll left a number of columnsxscl1

@(-50). @(-50,nn) when xscr1 not availableNEW Scroll right a single columnxscr

@(-50,nn). @(-50) when xscr not availableNEW Scroll right a number of columnsxscr1

@(-109 through @(-116) or @(-57) to
@(-64) in D3 emulation

NEW Set foreground color dimmedxsetafdim

@(-16) if rmul is not availableNEW Reset underscore attributexsmul

@(-56)NEW Set numeric keypadxsnumeric

@(-54)NEW Set line truncatexstrunc

2.6 jBASE- And Reality-specific Codes
Values -128 through -191 are for Reality video effects and are a bit map of video effects as shown in the list below. Caché
supports these values for ALL emulations as there is no conflict. These values are additive. The only values Caché supports
are:

• 0x01 – Half intensity

• 0x02 – Blink

• 0x04 – Reverse

• 0x08 – Blanked

Caché MultiValue Terminal Independence 13

jBASE- And Reality-specific Codes

• 0x10 – Underscore

• 0x20 – Bold

• 0x40 – (not defined)

• 0x80 – Always 1

Note: Value @(-128), which turns off ALL video effects, is available for all emulations.

2.7 MVBASE-Specific Codes
The color sequences @(-57) through @(-64) are used in the MVBASE emulation to produce dimmed foreground colors.
The dimmed colors are white, yellow, magenta, red, cyan, green, blue, and black, respectively.

14 Caché MultiValue Terminal Independence

Terminal Output

3
Terminal Input

3.1 The KEYS command
The KEYS command allows the user to see what characters are returned from the keyboard after depressing a particular
key. The input will therefore be 100% binary and all characters will be interpreted by the KEYS command. Because of the
manner of executing this command, there cannot be a "quit program" keystroke. Instead, the command will terminate after
10 seconds of inactivity.

This KEYS command is very useful when "debugging" a terminal definition. For example, to see what keystroke function
key 3 generates, issue the KEYS command, depress function key 3, and then wait 10 seconds for the KEYS program to
terminate. The following example shows that, on this terminal, pressing F3 generates an escape character followed by
ASCII "O" and then ASCII "R".

USER:KEYS
This program terminates after 10 seconds of inactivity.
Key: ESC 0x1B 27
Key: O 0x4F 79
Key: R 0x52 82
Key: Timeout
USER:

3.2 Keyboard Independence
jBASE provides a pair of supplied subroutines called CommandInit and CommandNext. These subroutines are supplied
in the dev/mv/samples directory supplied with Caché. Also included in the dev/mv/samples directory is the CommandInclude

file, which is a replacement for the jCmdKeys.h file used in jBASE keyboard independence. This source defines values
such as cmd_cursor_up which a jBASE application will probably be using. The values specified in Caché are different
from jBASE, but the end result is the same. This mechanism is available for all emulations, not just jBASE.

Note: For jBASE releases 4.1 and higher, these subroutines were renamed JBASECommandInit and JBASECommand-
Next, so depending upon which release of jBASE you are porting from, you might need to rename these subroutines
in our dev/mv/samples directory.

To use these samples, you can copy them to your own source file and compile and catalog them. The following selection
shows an example of creating a MultiValue file called COMMANDBP which points directly to the samples themselves. This
is used to compile and catalog the source code directly from the dev/mv/samples directory, and then run a small example
program to show the installation has worked. The example can also be copied to a local file and run from there.

Caché MultiValue Terminal Independence 15

USER:ED VOC COMMANDBP
COMMANDBP
New record.
----:I
0001= F
0002= C:\InterSystems\CacheSysBuild282\dev\mv\samples
0003= C:\InterSystems\CacheSysBuild282\dev\mv\samples
0004=
Bottom at line 3.
----:FI
"COMMANDBP" filed in file "VOC".
USER:BASIC COMMANDBP CommandInit CommandNext CommandExample
CommandInit
[B0] Compilation completed.
CommandNext
[B0] Compilation completed.
CommandExample
[B0] Compilation completed.
USER:CATALOG COMMANDBP CommandInit CommandNext CommandExample
[243] 'CommandInit' Cataloged Local.
[243] 'CommandNext' Cataloged Local.
[243] 'CommandExample' Cataloged Local.
USER:CommandExample
Function key 2 pressed
Function key 3 pressed
cmd returned was '2'
Timeout after 5 seconds
Alpha character returned, value = 'x'
USER:

16 Caché MultiValue Terminal Independence

Terminal Input

	Table of Contents
	About This Book
	1 Terminal Definition
	1.1 The TERMDEFS File
	1.2 Adding a New Terminal Definition
	1.3 Modifying an Existing Terminal Definition
	1.4 Deleting a Terminal Definition
	1.5 The COMPILE.TERM Command
	1.6 The Default Terminal Type
	1.7 The TERM Environment Variable
	1.8 Supported TERMINFO Manipulation Codes

	2 Terminal Output
	2.1 TERM Command
	2.2 The CHOOSE.TERM Command
	2.3 The SYSTEM() Function
	2.4 The @() Function
	2.5 Predefined Names
	2.6 jBASE- And Reality-specific Codes
	2.7 MVBASE-Specific Codes

	3 Terminal Input
	3.1 The KEYS command
	3.2 Keyboard Independence

