InterSystems:

Caché

Cache MultiValue Basic
Reference

\Version 2018.1
2024-05-02

Caché MultiValue Basic Reference

Caché Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

ADOUL THIS BOOK ...viitiiiiei ittt ettt ettt ettt s e e be e s tb e e beesabe e sbeesabeebeesabeebeesabeesbeesaneeees 1
SYMDIOIS .ottt b bbb R bRt b e bkt e ekt nr bt e b n e nn e 3
Symbols Used in CAChE MVBAESICccoeiiiiiiiiiiieiie ettt 4
Caché MultiValue Basic COMMEANTScceirieiiiirieiriir ettt re e sbe e sbeebesbeebesbeebesbeenbesneenes 9
ABORT, ABORTE, ABORTM ..ottt sttt sttt st sbe bt sbe s b e sbesaesbaebesbaebesbaebesnsenns 10
AASSIGN L b a b e bt e b e ea b e be et e abe et abe e besaeesbeerbenbeerbenreens 11
BEGIN TRANSACTION ..ottt sttt ettt sbs et sbs et sbeetesaeestssbeesbesbeesbesreens 12
L A PP PUPNY 13
(=31 O AN | OO RRORRR 14
CALL ettt b e e b e bbb be b he e b e ehe e beehb e beehb e beeabeebeenreebeereebeenrenrees 18
CASE ..ot be et bbb e be et b e b e R b e be et e abe et e abeebeabe e beereenrearees 21
CATCH ittt ettt et e s b e e e st e et e s b e e st e sbe e st e sbsebesbsebesaseabesaeesbesneesteaneens 23
(O N | N TR 25
(O N L] TR 27
(O I N = RSSO 28
CLEARCOM (CLEARCOMMON) ...cotiiieietisiesiesiestestestese e saessesessessessessessessessessessessesasssessesssseens 29
CLEARDATA ... oottt ettt et b e et e be et e sbe e s b e s ae e s be s aae s beetbesbe e st e sbe e st e sbeeabesbeenbesbeebesanentesanes 30
CLEARFILE ..ottt sttt et b e et s be et s ae e st s ae e s be st e b e ebb e st e enbesbeenbeebeenbesreennas 31
(O Iy AN = 1\ U O ROTRROR 32
CLEARSELECT oottt ettt e s e e e et e e e et e e e s be e e e ebbe e e eateeesbeeaeatbeeeanteeennnes 33
(O 10 1 T 34
CLOSESEQ ...ttt ittt ettt ettt s b e et s be et e sbe e s b e sae e s besbaesbe et b e beebbesbeeabesbeeabesbeenbesbeebesaeenteares 35
(@10 1Y/ 11, | I OO SRRRRURURI 36
COM (COMMON) Lottt ettt e st e s be s be st e s besbe st et e see st et esae e enseseeseeseeneatenreaes 38
(@10 1\ I 1\ 1 1R 40
(610NN AV =1 = LS 41
CREATE ..ottt e e e e e et e e et e e et e e e etae e e eateeeeabeeeateeeebeeeeasbeeeanteeesseneanseeeanns 43
(O I OO OO UO PSR TU SRR 45
DATA ettt ettt b et h e b et ahe et ehe e ebe s e ebeeh b e be et e ab e e beebe e beaaeeabeeaeeabeenneabeenrens 47
(] =1 =] OO 48
[0 = O ORI 49
D] = PSSR 50
DELETE, DELETEU ...ttt ettt ettt e et e e e et be e e e e s stbra e e e e s e nnraeeeeeans 51
DELETELIST ittt ettt sttt et et s b e e be s be e b e sba e st e ebsenbesaseabesaseabeannesbeeneesbeesnens 53
DELETESEQ ..oiitiiitiiie ittt ettt ettt et be et s he e ete s be e sbesteesbesbaesbesabe st e etbesbeenbesbeenbesbeenbesaeearesanes 54
DIM (DIMENSION) ...octiiiiiccse sttt sttt st sbe st et sbesbe st e st et et e e enseseeseeneerestestearens 56
(] K] I N ORI 59
L1 = [TSP 60
EINID ot e e —— e e e e e b — et e e e e ——e e e e et e bareaeeaabrareeeeaaaraeeaaeaas 61
END TRANSACTION ..ttt ittt sttt sttt st esbeeabesbeenbesbeenbesbeebesaeesbesaeesbesteesbesteens 63
EINTER oottt ettt et s b et s b e b et e b e e tb e b e e tb e b e e st e e beeabesbeebesheesbesheesbeetbesbeeabenreenbeereenns 64
L0 N N RSP SPS 66
ERRIMISG .ottt st sttt et b et e b et e s b e et e e b e et e s b e e besbe e e besbeestesatesbeeraesbeerbenreen 68
EXECUTE oottt et e sttt e e e etb e e e st e e e e beeeeeabeeesabeeesabeeesbaeeesbeasssbeeeanes 70
= I 74
FILELOCK oottt ettt ettt he et s be et e s be e besbe e besba et e ebsesbesaseebeeasesbeennesbeesnesbeesrens 75

Caché MultiValue Basic Reference

FIND oo oeeeeeeeeeeeeeeeeeeeesesessssaeseeseesssess s e e e e st s e e eeeeeeeeeeees 77
FINDSTR oo eeeeeeeeesessesesseseeeeessesesee s e e eesesssssssessesseeeeeenese s 79
FLUSH oot eesessesesessseesessssesee s sesssses e s s e e e s essessssessesseneeeene s 81
=010 N 82
FORMLIST oo eeeeeeeeseseessessssessessseesee s s eeeeesssesssssssssssseesessesesessessssssssse 84
=012 30 N] = E oo 85
=0 NTo 0] N 87
GET(ARG.) eeeeeeeeeeeeeeeeeseeeeeeeseseeesesessesessessssss e sese s e s s eneeeeeee 89
GETLIST ovvveveeeeeeeeeeeeaseseesesessssesssssseees s eeesessssesesseseeeseseeseese s eseseese e seeeeeeseessssesesssseseeees 90
GOSUB ..o eeeeeeeeesesssssssssssseesssesese s eesessssessssssseseessese e 91
101 Lo IO 92
R1=7Y)| LT 94
HUSH oo eeeeeesesseseesesseesseesseese s eeeeseesssessesssseseessese s 97
IFe THENL.ELSE ooovvovveeeeeeeeeeeeeeessessesesssesssssssssssse s eesesssesssssssessesessseesessessssssessssssssseseneeee 98
IN oo e e st 99
INPUT ooooooeeeeeeeeeeeseesesseaseeesessssss s eeessssssssesssesesessessesse s ssse s eeeeeeesesssssesesseees 100
INPUTCLEAR ..o eeeeeeeeeessssssssssssssesssssesesessesssssssssesss s eseeeeessesssssssesssesennennees 105
INPUTCTRL .o seeeeeeeeseessssssssssesssssesessesesssssssssssssssssseseeessessssssssssssssseesesenessssssss 106
INPUTERR .cooovvvoveeeeeeeeeeeeeeesesaeseasessssesssssess s eeesesssssessssseeesesseessessssessssssssseseseseeseeeeeeeeesees 107
INPUTIF <o eeeeeeeeeeesesesseeeesessse s e eesssessssesssseeeeeeseeesessssssssssssssss 108
INPUTNULL oo oeeeeeeeeveeeeeeeesssssseseesessssesesssssss s sesssesssssssseseesesessesssesseseessssessssseseseee 109
INIS e eeeeeeeesseseseesessseeseses e ee e s s 110
BIILL ovvvveeeeeeeeeeeessessssssssssssssssseses e eeeeeesesesssssssessseesesessseeseesesssssssseees s eeeeseessssssessseseeneenenes 111
0= oo 113
1107 1 = 114
LOCK oo eees e eeeeeseesssssesesseeeeeeseeeses e s e e essessssesssseeeeseessss s 117
LOOP...REPEAT .o eeeeeeeeeeeeeeeeeeeeeeesesssssssssssssseeseseeses s ssssssssesessseseeseeeseessssssesssseeneeenees 118
AT oo eeeeeeeeeeeseessessesssesseseses e eesseses s 120
IMATBUILD ..ccoooooeeereseeseeses e eeeseeessssssssssssessesessessessessesssssssssssssseess e eeeseessessssessenenees 122
IMATPARSEoooeeeeeeeeeeseeeeseasesssesessesssessss s e eeeeeeseessssssssesssssesssesesaesasessssessesssesseseseseeseeeeeeeeeeees 124
MATREAD, MATREADL, MATREADUcoiioeeeeeeeeeeeeeeeeeveeeeseeeeeeseseesessesssssssssssssssssssssesee 126
MATWRITE, MATWRITEU ...cocooooraereeeesseesesseesseeseeeeeeeseeessessssessessesesssssesesessesssssssssssssssesssseeee 128
SIMIERGEveoeeeeeeeeeseseseeseaeseesesesssee s e e eeeesssesssseeseeesesesesee s eese s eeeseeeeesesesssesessenseees 131
NAP ..o e e eeeeessesesssseseeseseseee e esssesss s s 132
NOBUFcooooeeeeeereeseeesesessssses s eeesesssssssssssssssssesssseesensessessssssssse s eeeseeeeeesssssssssesesesenenenees 133
INULL eoooooooereoeeoeeeeeeeese s eeeeeesessssesssessesesessessessesssssssss s eeeesesssssssssssseeseesessesessssssid 134
ON oo eeseesse s e e e et 135
OPEN oot eeeeeee e eeeeeeeseesessseeseeeeseeese s eessssssessssseeesees s 136
OPENINDEX ..oooooovveeeeveeeeeeeeeeeesaesessesessssssessssss s seesssssessssseseesaemeseessessessessssssseeesseeseeeeeseees 139
OPENPATH ..ooooeeeeeeeeeeeeeeeeeeaesesesesssssse s eeeeessessssssssssssesesssseeeessesssesssesssse e eeeeeeeeeees 140
021N =0 ST 142
013 0] NI 145
o161 Lo 147
PAGE oo eeeeeeeeesesesesseeeesessee et e e s e s e s et 148
PCPERFORM ... eee e eeesesssesessesseeesesesesseese s sssss e eeesesssssesesssesesenennennees 149
PERFORM ... eeeeeeeeeeessesessessssesssssessessessssssssss s eeeeeessesssssssssssseenessenesessssssn 150
PRECISION ... eeeeeeesesessessseessssssssessessessssssss s eesssesssssesssssseeseeseeensssssssse 151
=] N oY 152
PRINTER .covooeeeeeeeeeeeese e eeeeeeeeeeessesesssesseeseseessseseesesssssssss s s e eeessesssssesssssseeneeaesessesssssssss 155
PRINTER RESET ..oovvvoveveeeeeeeeeeeeeseesesseesssesssssssssssseeseeseseessssssssssssssesssaeesessssssssessssssssesssssseseseseee 156

Caché MultiValue Basic Reference

PROCREAD ..ottt e e 157

oL T ORI 1 =T 158
PROG (PROGRAM) ..ottt ittt sttt sttt ettt ettt s et s et es s be s be s b e s s aenenaenen 159
[(O]\, | = 160
A NN T Y1 7 161
READ, READL, READU, READV, READVL, READVUcccoooieiiieeeeeeeeeese e 162
A] = T 165
L=y B] X ISR 167
L= A B NN | = G SRS 169
LR A B AN L= G I £ = 7 171
AN D o = N R 172
A] =l 174
RECORDLOCKL, RECORDLOCKUoooiitiiiieietietieest ettt sttt st srens 176
RELEASE ..ottt st sttt ettt e bt b e e bt s b e s b e s b e s b e s b e st e st e sb et st e st et et et eneareas 178
[Y TSR 179
LR 1Y LG AV 4 180
o 0 = 182
REVREMONE ..ottt sttt sttt sttt et bt esbesbe st e sbesbesbesbeseetesteseensenteresneareas 183
(O I AN O - 185
RO ettt ettt sttt st et et e et et e et e ae et e st b et e b et et e et ebe et ebe et eae et eae et eas et e st be b reetane s 187
] ST 188
SEEK(ARG.) wooveoveeeetereeesseiesiesssesssess s sssse s as s ssss s s s s sssssss s esssassssnssnssssssssssasassennoes 189
SELECT, SELECTN, SELECTV ..cuioiitce ettt sttt sttt sttt st see e 190
oY I O A I = T 193
RS o I O I RS 195
SELECTINDEX ..ottt sttt sttt ettt b st e bbb e b st s sb e sb e st st et e st st st estasesnnareas 196
SETREM oo e e e e e e e s e b e a e e s s e aa e e e e s aarres 197
] I TSR 198
SSELECT, SSELECTN, SSELECTV ..ottt sttt te st st st ste st s sensssnannanens 199
R AN L TR 200
STOP, STOPE, STOPMooitiitiitieeite sttt ettt ettt sttt st st ste st sa e st e st ebsesesnssbssbesnesrea 202
Y0 1] (O 1 I 1N =TT 204
YT = TR 206
QLI I = A B 207
I 1L Y 208
TRANSACTION ABORT .ottt ettt sttt sttt sttt sbe st e st st e st e sas st st et et anesbesresresresres 209
TRANSACTION COMMIT ittt sttt sttt sttt be s sbesbesaesbesteste st 210
TRANSACTION START oottt bbbt sa bt b b e e s besbe st e sbesbesras 211
I3 2R 212
L] N | 213
L AT @ =l R 214
WRITE, WRITEU, WRITEV, WRITEVU ..ottt sttt sre st sre s 215
R AT I == T 218
WWRITELIST oottt ettt sttt st et b et e b e s b e s b e s b e s b e s b e sbe s b e sbe st st et e e et estsbearis 220
WRITESEQ, WRITESEQF ...ttt sttt e nnne s 221
Ry =L U I ST 223
Caché MultiValue BasiC FUNCLIONScccciiiiiiiieiieetie ittt sttt sbe st sbe e sbeebesreenresbeennes 225
o G LAY 0 S S 226
F A = ST 229
F A =T ST 230

Caché MultiValue Basic Reference

AACOS ovooeereeeeeeeeeeeeeeeesee s s sesseseees et 12t ettt 232
AADDS oo eeveeeeeeee e e esesenee ettt et e 233
AALPHA oo eeeeeeeeeeeee e esseseeee o2 s 255t e e 234
AANDS ..o eeeeeeeeeeeee e sesseeee e ettt 235
ASCIL oo seeseeeaseesss s sssseseses e s s eseese s s e s s et ee st s s s eesseeessessseeeend 236
AASIN oo seeeeees s s eseeeeee e e ettt s et e et 237
AASSIGNED ovvvveeeeeeereeeseeeeeeeseeeeesssesssseessesssssesseesesseesssesssessssesssssesssssssessseessssesesssseseesesessssseeees 238
ATAN oo esesseessee s eeeesese e 22522 ettt e et er et 239
BITAND ovvvveeeeooeee oo eeeeeeeeesses e ssesssesssssees e sssesesssees s essseene e eeesssesssemeeeeseeeesssssennenee 240
BITNOT eoeevveeeeesseeseeeeeeeesseeesseees s esseseeessees s sses s es e sess e eees s sseseeee s sessesseseees 242
BITOR ovvvveeeeeemeesseeeseseeesessesesssseesseseesssssessssseesssssseessseess e sseseesssseesssssesssssssesesesssesesssssseeeeese 244
BITRESET vvvvevveeeeeeeeseseeeessesessssesessssessssssessssssssssssssessesssssessssssssssssessssssssssssesensssesssssesssssssesssns 246
BITSET eevvvvvveeeeeseneeseeeesesssseessssesssesssssssesssssesssseeesesssssessssessssessssssesssseeesssssesssssssessssessssesssssseees 248
BITTEST weovvveeeeeeeeeeeeeesssssnesseseessessssessseesssseessssssssssssessssesssessesssssasssseessesssssessesssssessssssseessnsesssen 250
BITXOR vvveevereeeeeeeeseseeesessesesseeeessssssssssseessseeeesesssesessseesseeeessessesessseeesseeesssssseessseesesseesssssssensss 251
BYTE oooeeeeeeeeeeesssseseseeeesessesesssseese s seseesess e s s ee e e st e serees 253
BYTELEN weooeeoeoveeeeesseseesseeesssseessssssessssseessssseessseeasssessssssesesessessssssessssssesessseesssesesesssseeeeeessssee 254
CALCULATE .oooovreeeeeeeseeeeeeeoneeeesseeeesssseesesssesssssssssssssesssessssssssssssssesssseesssssessssssssssseesssessssssssenes 255
CATS oovvveeeereeeeeeeeeessseseses e s esssseees e e e e s e 2 s e et et s e e s 256
CHANGE vvvoovveeeeeeeeeeeeeeeseesesssseessesssssesssess s sssesesss e s e sssssees e ssesesssssseeesssesesesessssssseessnns 257
03N = SO 259
CHARS ..o eeeeeeees e es e e s s s eesssseeee 260
CHECKSUM ..o eeeeeeoseseeessseeeseseeesssseess s s ssssseessessesss s ssssseessseesssssesssssseseeseessssesssenee 261
(070 I OSSOSO 262
(030 2O 263
(030 N1V =123 SO 264
(030 100000000 266
COSH ovvvvveeeeeeeeeseeeeeseeeeeesees s sssseeese e s s s ee e s s e s e s st seeee s esesssessssseeeee 267
COUNT oo eeeeeeeeeeseese s sssseeessees e ssseese e s e s ees e s s s s s eesssesessseseens e 268
(010 101N 1T 269
SDATA (SD) evvvvvveeeeeerereeeseeseseseeessssesssseessessssessssesssssesssesssesssseesssssessssssssssssesssssesssssssesesesssssseess 270
DIATE ovvooeevreeeeeeeeseeesesesseseessseeessessessssseee s s e s s e 22 s e st e e 273
DICOUNT covvveeeeooee e eeeeeeesesse e eeeessesesssee s sseseeesese e eessssesesse s seseesssssssenesesessseesssssenennns 274
2= =3 /=S 275
DIV oo esseeeeseseees e esseeeses e s ettt 276
DIVS oo eeeeeeeeeeseees e seseseeesse s e seeeeee s ettt 277
DIVSZ oovvvveeeeereeseeeeesseeseessseessesessssesssessseessseessssssesess e es s essesees s ssesssseseeess e eessesessssssenensee 279
DOWNGCASE vvecoovreeeeeeeeeeeeeeesssessseeesssssesessssesssseesssssssessssesssssessssssssesssessssseesssssssssssessssesssssseees 281
900 1 1 =3O 282
DT coveeeeereeeeeeeeeeeseeesesssees e ssseseses e e e e s sttt s e 283
EBCDIC ovvvvveeeereeeeeeeeeeeeeeeesesesssseeesssseeessseesssssessssssesesesesssseessssssesssseesssssesssssesesssesssssesssssssesesns 284
EOF(ARG.) wvvoovrrreereeeseeeeeeesesesssseesssssesesssessssssessssssssesssesssssssssssssssssessssssssssssessnssesssssssssssssesesns 285
EQS ooreeeeeeeeeeeeeseeseeeeseeeesesssseessee e s e st ettt e e e 286
EREPLACE .o vvvveeeeesee e sesssessssseeessseesssssssessssesssseessssssseessseesssessssssssssssseesssesssesssseessesssseee 287
EXISTS rrvevveveeeeeeeseeeseeeeeesesssesssessseeeeseessesssssee e sesesesense s ssese e seseeeessssesener e eeesseessessseee 288
EXP oo eeeeeeeeeeeeee s eeeseees e e ettt ee e 289
EXTRACT woeeevvveeeeeeseeeseseeeesesseeesssseessse s essesesesseees s ssssseseseeess e sssssesss e seseesssesseeeeeseeesssseees 290
FADD oo vveeeeeee e sesseeeses e eseeees e e s et e sesseeeenns 292
=15 Yoo 293
=TT =T o OO OO 294

vi

Caché MultiValue Basic Reference

FIELDS .o e 296

FIELDSTORE .oeevvveeeeeeeveeeeeesseeseeeeseesseeseeessessssssesaseessessseassessessseesesssesssessesssessesessessssssseesessees 298
FILEINFO ovvvveeoeeeeseveeeeeeseesesesssesseesessssessessssssseseessesesssssesssessssssessessssesssessssesessssssssssessssssseesone 300
FIX e eveeeeseeeeeesessseeeeesseeessesseessseess e eees e e eee e e e et e ettt n e nee 301
FIVIT oo eeseeeseseeeee e s e s e st ees e 302
=Y £SO 305
FIMUL oo eseees s eseee e seees s s e s e e e eeee e ee e s s seee e s e sssee s 307
FOLD ovvveeooeeeeeveeeeeeeeeeseeee s eeesseeeeeee s seees e eees e e e e s e s s e e e s s e eeeseseseeeeenenees 308
FSUB oo vveeeeeeeesssseesessessesessesseessseesesseesseses e e ssees e s s sees e s et s e s ss e seessseee e 310
=3O 311
1] =1 IO 312
1= = NNV 2O 314
GETPTR coooooeeeeeeeeeeeeeseeeeeeeeeeessseesseeeseesseeeeeeseessseeseee e e s s e e e s e s e e s s s e e esess s eeeeeseseeeesneseees 315
GETPU oo eeeeeeeeeeeeseeeseseessseeess s e ssees s e e e e s s eee e e et e e e s s e eessessseee s 316
GETREM oo eveeceseeeseseesesseessseesesseesssees e s s sees s ss e eeseeseseeseeseessseeeeessessseeees 317
GROUP .o eveeee e eeeee e seessssesseeeeeseseesseeseessseess e sees e sees e s e eeeeessees e eseessseenseseessreeees 318
L ST 320
[010] N\ V2SSO 322
[010] N\ V2T oo 328
IF'S oo eveeeseeeeeesesesseeseesseees e s e e ettt ettt et eee 330
INDEX evvvveeeoeeeessesesoeseesssesssessessssessessesssssssessessssessessesssssssesssessseesesssesessssesssessssesesssessseeseese 332
INDEXS cvvveoeeeeeeeeeseseeesessessseseessssesseessessssssssessessesessesseessssssssassesessessssssesssssssssssessssesessessesessesseesees 333
INDICES eevvveveeeeseseesseseeseseeesesseeess e sssseesssssess s sssseesseseeess e sses e eessssesesssseeeeeesssesesseees 334
INIMIAT oo eeeeeeeeeeeeseseeseeeseessseeseeessesse e e s s ssees e s s ee s e s eeee s s s eesesss e eeseeseseeeeseesee 336
INSERT vveoooeeeeeeeeeeseeseeeesesseesssesesessseessesseessessseeseeseesssesseese s s e eeseesss e eeseeese s eseeeseeeeeessesseees 337
INT oo eeeeeeeeeeeeeeeeseeeeseseeseeeeee s seese e e s e e s ees e e e s s e e st s e ee s s e eeeeesesee e ree 339
ISOBIECT ovvveereeeeeseeeeesseessseessesseesssessesseesesessessesssssesessessesessessesseesseseesseseseeseessssssesssessseenesee 340
ITYPE ©ooeeveveeeeeeeeseseesseeseesesessesseesesesseeseessseesse e sesese e s e e e ee e s e s es s s seee e seesssee e 341
KEYIN oo eeeeeeeeeseeese e seseeeesssess s sssseeesss e e s s s eee e s e s s e sesseeee s 342
1= = LSOO 343
LEN oo eeeeee e seeae e seees s seeee e eeeee e e e s e eee e eese s 344
LENS oo eeeeeeoeeseeseeeses e seeesseeeesssesseseesesesess e s s seees s s s e e e s e e seeee e 345
LES ovveeeeeeeeeeseeeeeeseseessessesesesss e s e sees et e et s ettt ettt 346
SLIST (SL1) evvveeerremeeseeeesssseessesessessesssesssseseessssssesesessssessesssessssesssssessesessessessssessessesssssssessessees 347
SLISTBUILD (SLB) vvvvveeeeeereeeeeeeeeeeeeeessessssseessseseeesssssssssssessssssssesessssssesssssssesesssesssssesssssseesens 350
SLISTDATA (BLD) 1eeervvveeeeeeeeeeeeeeesseeeseessesssessseessessesssessesssessseesesssesssessesssessseesesssessseasesssesees 353
SLISTEIND (BLIF) wevvveeeeeeeeeeeeeeseeeesseeeesesseesssesesesssessseessesssesssessseessesssessesssesssessseseeseseessaseessseeees 355
SLISTFROMSTRING (BLFS) ovvvveeeereeeeeeeseeesseesessseesssesesssssssssessessssssssesssssessssesssessesssseseessessees 357
SLISTGET (SLG) vvvvveerrreereseeesseseesssesessessesssessssessesssessssessesssessssssessssssssessessssssseessessseessssssessseseens 359
SLISTLENGTH (L) wvvvrreeeeereeeereeeeeseeesseeeessssesssssessssessssssssesssssssessssssssssessssssssssessessssessesseees 361
SLISTINEXT ovveeeeerreeeeseeseseeeeeesssesssseeessssesesssseeesssseesesssesseseeesssseessssseeessseesssseesssssseeeesesesseesssseees 362
BLISTSAME (BLS) wrvvvveerreeeeeeeessesssesseeessesssesssesssesssesssessesssesssessesssessseesesssessssesesssessseessesseesees 364
SLISTTOSTRING (BLTS) weoreevvveeeereeeseeeesessesessseeeesessessseessssssesssessssssesssessesssessseesesssesseeeeesssesees 366
SLISTVALID ovooreeeeveeeoeeeeeeseeeeeesessseeessessessseseseessessseassseesesssessssessesssessssessesssesessessesssesesesssssseeees 368
LN coveeooe e seeeese e eseee e e ee et ettt et et et e e e 370
LOWER . evvvvceseeseseeessesseseseesssessessssesssssessssessessessseessesseessesesesseessesesessesssssssessessssessessessseesesse 371
LTS oo eeeeeeesesseee s sssesesesseees s st s et ee e e 372
IMAXIMUM ovvooooeeeeeveeeeesseeeseeseseeseseeesesesessseessesssesssesssesssesseseseesseesseeeesssessseesesssesseseeeesseesees 373
IVINIMIUM oo seeee e e e e e ssee s seee s sseeeessees 374
IVIOD .o eeeee e eseee e s e e e s e e e e 375
IMIODS ovvveeeeeeeeveeeseeeesseeeesseseessseeeseessesssesseessessseeseeeseeses e e e s s s e s s s e e e e s eseee s e e eeeeeseees 376

Caché MultiValue Basic Reference Vii

IVIULS oooeeeveeeeeeeeseeeeee s eseee s sesees e s s s e e s e s e s s e s s s e eeseesesee s 378
NEG ©oooevvveeeeeeeeeseeeseesesssessseesesssessse s seese e e eese e s e es e e e e eene s s e ee s s e er e 379
NEGS ovvvveereeeeeeeeseseeeeessessssesseesssessseesesssssssseesessssesseseesssssssessessesessesseesssssseesessssseseesesssseeneessesees 380
NES ..o eeeeeeeeeeseee s seseseeesseees e s ese e e e e e s s s e e e e e 381
NOT eooeeeeeeeeeeeeeeeeeee e seees e ssese s eese e s s ee e s e e s s e s e eeseesss e esee 382
NOTS eveeeeoeeeeeeeeeeeeeeeeeseeeeeeeesesesesee s e e e ee s ee s e e e e e e s e e s e s e es e s s eeesessseeeeenensees 383
NUM oo eeeeeeeeeeseeeee e seese e s e e seee e s s e e s e s s s eese et eseeeeseeseees 384
NUMS oo eeeeeseseeseseeesessesssesssessessesess s sssees s eesseses s sssees e sssses e eesseseseseessseeeeesesseees 385
[07070) N1 V225 OO 386
OCONVS oo eeeeeeeseseese s ssseeeeseeesss s sss s ees s sesseaeeseeseseesssssseeaseeessesesssssseeeens 403
)l n =l N (:10) OO 405
ORS oo eeeeeeeeeeeeeeseee e e es e e s e e e e eee e e et et ettt e s e 409
PR oo eeeeee e esees s seeees s seese e s e e eeee e e s e e e ee e s et eee s s eseees s 410
PVWRS ..o evveeeeeeeseseeesesseseseessessessesesseessessessse e ssesssees s eeses e e e e e s e s eeesesee s sessseee s 411
QUOTE oooroeeeeveeeeeeeeeeeeeeseeseessseeseessesssees e ssees s seess s sese e ss e e s e s e e e s seneneesesseees 413
RAUSE oo vvvveeeeeeeee e eeeseeess s eseeseess e e e e s et e e ss e ee s ssssreees 414
RECORDLOCKED ..ovvocooeeeveeeeeesseeseeeeeessessseeeessssssseesesssssssssssesssessseeessssesssesssssssseseesssssesees 415
REM oo eeeees s seeees s seees e s e e e e e s e e s e s s e e e e s e eseeesseeeenn 416
REMOVE ovveeeoeeeeeeeeeeeeseessseeesseesessseesssessesssesessessessseaes e s s s s e essesssesessessesssesessesesssseeesesssssseenens 417
REPLACE vvvveeoeeeseseeessesesssesssesssesssesssessessssssseessesssessssessesssesssessessssssssessessssesseessessssessesssessseeees 419
REUSE .oooeesvvveeeoeeesesseesoeseessssssssessessssesssessesssssssessessssssssesessssssseesessssssseesesssssssessssssssseesssssssenens 421
=TT oo 423
2] SO 424
ROUND .vvveeeoeeeeeeeee e eeseeee s sseee s sseee e ss e s s s s eee e e e e s s s es s e s s eeseessseee s 425
SADD .ottt e e 426
SCMP oo evveeeeeeeeeseeesesee e s e e st e ettt et 427
SDIV oo eeeeeeeeeeeseess s seess s seee e e e e ettt et e s e 428
S =T (o 1 | =0 NS 430
SENTENCE ..ovveoooeeeeeeeeceeseeeseeeeeseessseseesseeesseesseessessseeseessessseseeessesssesseesesssseeseessessseeesssesssenees 431
=10 OO 433
SEQS eooreeeeeeeeeeeeeseseee e s s s eee e s et ettt et e e s 434
SIN e veveeeeeeeeeeeeeeeseeeeeeeseeseese e sees e e e et ee e et et r e ee e e r e 436
SINH evvvveereeeeeeeeeeseseeesseessesseesseessessessseses e seees e s sesees e e s seses e eesss s eeesssseseenesseneseesesseees 437
SIMUL oo eseseeeesesess s sssesees e s s eee e s s e e s sensee e 438
1) =3 OO 439
SOUNDEX ..eevvveeeeeeeeeeeeeeseeseeeeseeessessseseseessessseesseessessseaseeesessseeseeesessseeseeesessseeeesseseseseeeneseees 440
SPACE . eovveeeoeeeeeeveeeeeeeeeeseees e s e e e s e oo 441
SPACES .vecooeeeevveeeeeeeeseseesesseesssseseessse e s e e sess e sttt et r e e e 442
SPLICE vvvvreeeevveeeoeseeeseeeesessesssesssessesssessseeesesseses e s sessesee e ssese e e e s s s e eeesssseseeesesseneseesesseees 443
20010 1= = SO 445
0] =3 OO 447
108 1 1 =IO 448
SSUB .evvveeeeeeeeeseeesseessessseeseeseesseess s e e s e ettt et s e 449
STATUS oooreeeeveeeeeeseesseeeeesssessseseessessseses e ssssss e eseesseees e s s sesee s e s s e s eeesss e eeseeseseseeeneseees 450
STR eeevvveeereeeessseesseeeessseesseseeseseesse s seee e seee e e e et e ettt e e 451
STRS eevvvveeeeeereeseeseessseseeaesesss e ssesseeses e s s s e s e es s e s e s s e s seseeeseseeeee e 452
10 1= = SO 453
SUBS vvveeeeeeeeeeeeeeeeeseeessees e seees s s e e e ettt et s e e 455
SUBSTRINGS .ooreievvveeeoseeeseeeeesesseesssesssesssesssessesssssssesssseseesssessesssssssesssesssssssssesssessseeeesssesssenees 457
SUM oo eeeeeeeeeeesseesesseessseesease e es e s e e e s e et 458

viii Caché MultiValue Basic Reference

SUMMATION Lottt e bbb sre 459

SYSTEM oottt ettt s bbbt R et R et R R R bRt R et b e bRt nnenen 460
17 1 RS 465
72 Y PSSR 466
TIIMIE ottt bbb bbb R bbb bR bR bbbttt e 467
TIMEDATE ..otttk ek bbbttt b ettt ettt bbb 469
TRAINS e b et b ettt E et Rt Rt b e b bbb bR bRt bttt et rens 470
TRIM ittt b ettt b e e be st e b st e £ et e R e b e R e bR e bRt bRt e Rt bt Ee ettt et 472
TRIMB ettt b e st e st et e s b ae e e b b e e e aa bt e s be e e e b be e e nabe e e s beeearaeenans 474
B IR 1A= 15 TSP 475
TRIME ettt bbb bbb e btk ek s ek s e ekt s b bt s b b e ebe e b et be et e 476
TRIMES et b e bbbtk e b ek ek e s e et e s et e s b et e s b b e e b e e e be e abeeas 477
LIRS 17 S T OO PRPUPTRPRRN 478
UNASSIGNED ..ottt ettt ettt bbb s bt se bt be s nte st 479
L LA 1 (O 1 o PR PPR 480
UNICHARS ettt s te e s st e e s teeeate e s teesaee e teessbeetaesareenteeanreenes 481
UNISEQ ettt ettt et ekt b et b et bt e bbbt et et et et ettt e bbb b b 482
UNISEQS oottt sttt b et b etttk stttk e e s et s b e b e b e st e b e e et et et et et ebeneebeneas 483
UPCASE ...ttt bbbt bbbt b et bR bR bRt bt bt ettt 485
DI ISR 486
D I 2SS 488
Caché MultiValue Basic General CONCEPLScouoerireriiirieierieie ettt 489
Whitespace and COMIMENTScviviiiireieseseseseesie e esee e sresre e srestesresresteseeseenseseeneeneesenses 490
(@00 0] o1 T (T 1)1 491
Y AV BT - B 1Y 1= T TPV R PP 493
DYNAMIC ATTAYS ittt ettt sttt st bbbt et b s bt bt ekt s besbesb e s beseeeb e be e e e esbebeabeabeebesbesbesbesbeseens 494
. o USRS RSP PRRRTRRN 496
LINE CONLINUALION ...vvivierieieetese sttt ettt te st st e st et e aesee s e e e e e eneenenneans 497
MATCH Pattern MatChingvcvivieiirire et resre e sre e 498
MUIEIVAIUE FIIES ..ttt et et ettt nr bbb e nbeneas 500
(OF: ol SO o] =T £ SRR 501
(O] o 1=T =1 (o] £ TSP P U RTUPTUPUPPTUPOPN 502
SETINGS ettt ettt ettt b bbb bbbt btk Rk R bR bR bRt R et R et bt ekt ket b e 507
SYSEEM VATADIES ...ttt bbbt 509
USET VATTADIES ...ttt bbbtk bbbt nbns 514
VOC FOMMAL ...ttt b ekt b e bbb s h bbb e e s e et e bt e bt e bt e bt ebenbenbesrennes 516

Caché MultiValue Basic Reference

About This Book

This book provides reference material for various elements of Caché MVBasic: commands, functions, system variables,
constants, operators, and symbols.

This book contains the following sections:
e Symbols

e Caché MultiValue Basic Commands
e Caché MultiValue Basic Functions

e Caché MultiValue Basic General Concepts

There is also a detailed Table of Contents.

Other related topics in the Caché documentation set are:

e MultiValue Basic Quick Reference

» Using the MultiValue Features of Caché

» Operational Differences between MultiValue and Caché
» Caché MultiValue Commands Reference

e Caché MultiValue Query Language (CMQL) Reference
e The Caché MultiValue Spooler

For general information, see Using InterSystems Documentation.

Caché MultiValue Basic Reference

Symbols

Caché MultiValue Basic Reference

Symbols

Symbols Used in Caché MVBasic

A table of characters used in Caché MVBasic as operators, etc.

Table of Symbols

The following are the literal symbols used in Caché MVBasic. (This list does not include symbols indicating format con-
ventions, which are not part of the language.) There is a separate table for symbols used in ObjectScript.

The name of each symbol is followed by its ASCII decimal code value.

Symbol

[space] or
[tab]

#<
#>

$*

%

0)

**

Name and Usage

White space (Tab (9) or Space (32)): One or more whitespace characters between keywords,
identifiers, and variables.

Exclamation Mark (33): Single-line comment indicator.

Logical OR operator.

Double Quote (34): Used to enclose string literals. You can use " to specify an empty string.

Pound (35): Not Equal To operator (inequality logical operator). For example, 3#4 returns 1
(True).

Command line command specifying that the statement following it be executed as an
ObjectScript command. See the Caché MultiValue Commands Reference.

Pound, Less than: Greater than or equal to operator (symbols mean not less than).
Pound, Greater than: Less than or equal to operator (symbols mean not greater than).
Dollar sign (36): Permitted character in variable names.

Dollar sign, Asterisk: A single-line comment indicator.

Percent sign (37): Permitted character in variable names.

Ampersand (38): Logical AND operator.

Single Quote (39): Used to enclose string literals. You can use " to specify an empty string.

Parentheses (40,41): Used to enclose a procedure or function parameter list. For example,
SYSTEM(15), or OCONV(12345,"D").

Used to enclose a command or program option. For example, COMPILE.TERM (VT).When
used with a command option, the closing parenthesis is optional; for example, COMPILE . TERM
(VT.

Used to nest expressions; nesting overrides the default order of operator precedence.

Used to specify static array subscripts; a subscripted array has to be dimensioned using the
DIM command.

In CALL statement, used to specify argument passed by value.

Asterisk (42): Multiplication operator.

Single-line comment indicator.

Double Asterisk: Exponentiation operator.

Caché MultiValue Basic Reference

Symbols Used in Caché MVBasic

Symbol Name and Usage

*= Asterisk, Equal: Multiplication assignment operator.

+ Plus sign (43): Addition operator.

++ Double Plus sign: Increment operator.

+= Plus, Equal: Addition assignment (increment) operator.

, Comma (44): Used to separate parameters in a function parameter list.

Used to separate subscripts in a static array; a subscripted array has to be dimensioned
using the DIM command.

At the end of a line of code, a line continuation indicator.
In DIM statements, used to separate multiple assignments.

In PRINT or CRT statements, inserts a tab between arguments.

- Minus sign (45): Unary arithmetic negative operator.

Subtraction operator.

— Double Minus sign: Decrement operator.
—= Minus, Equal: Subtraction assignment (decrement) operator.
—> Arrow (minus, greater than): Object class indicator.
Period (46): Decimal point character.
Permitted character in variable names; cannot be first character.
MV Shell command stack command prefix, followed by the letter A, C, D, L, U, or X, or the
? character. See the Caché MultiValue Commands Reference.
Three Periods: MATCH operator pattern match code.
? Period, Question Mark: MV Shell command stack command to display available commands.
See the Caché MultiValue Commands Reference.
/ Slash (47): Division operator.
In COMMON statement, used to enclose a storage area name. For example, /sharedvars/.

1 Double Slash: As a prefix to a directory name, allows MultiValue to directly reference the
directory. For example, to create the Windows file C:/temp/results.txt:

OPEN "//C:/temp" TO DSCB
WRITE results ON DSCB,'results.txt"

/= Slash, Equal: Division assignment operator.
Colon (58): Label suffix. For example, LabelOne:.
String concatenation operator.

In INPUT statement, a suffix to the variable or length arguments that suppresses a line
return.

MV Shell prompt character.

Caché MultiValue Basic Reference 5

Symbols

Symbol

<<..

[]

>>

Name and Usage

Colon Equals: String concatenation assignment operator.

Semicolon (59): MV Shell MVBasic language command prefix. For example, ;print date().
See the Caché MultiValue Commands Reference.

MVBasic statement end indicator. Optional, unless the statement is followed on the same
line by another MVBasic statement, or by an in-line comment.

In INSERT and REPLACE functions, an argument separator.

Semicolon Exclamation Mark: In-line comment indicator.

Semicolon Asterisk: In-line comment indicator.

Semicolon Slash: A command issued from the debug prompt that displays variable values.
Less than (60): Less than operator.

Less than, Equal: Less than or equal to operator.

Less than, Greater than: Not Equal To operator (inequality logical operator). For example,
3<>4 returns 1 (True).

Used to enclose integers specifying the Field, Value, and Subvalue level of a dynamic array
element. For example, <1,2,2>.

Double less than, double greater than: an inline prompt, used to interactively request an
input value. Inline prompts can be used in MVBasic statements or MultiValue command line
commands. Described in the Caché MultiValue Commands Reference.

Equal sign (61): Equality operator. For example, 3=4 returns 0 (False).

Assignment operator.

Equal, Less than: Less than or equal to operator.
Equal, Greater than: Greater than or equal to operator.
Greater than (62): Greater than operator.

Greater than, Equal: Greater than or equal to operator.

At sign (64): Prefix for system variable names (for example @RECORD). Prefix for system
variables that specify the characters used for dynamic array level delimiters (for example,

@FM).

The @ function used with PRINT, CRT, or INPUT to position the cursor on the screen, or
control display modes. For example, PRINT @(15):""Over here!” or PRINT
@(-5):"Blinking text”

Square Brackets (91 & 93): Substring extract operator; brackets enclose integers specifying
the substring to extract.

Left Square Bracket (91): Command line command specifying that the statement following
it be executed as an ObjectScript command. See the Caché MultiValue Commands Refer-
ence.

In the MultiValue ED editor, an Escape key is displayed as "[". See the Caché MultiValue
Commands Reference.

Caché MultiValue Basic Reference

Symbols Used in Caché MVBasic

Symbol Name and Usage

\ Backslash (92): Used to enclose string literals. Cannot be used in MATCH strings. You can
use \\ to specify an empty string.

In HEADING or FOOTING, inserts the current time and date.

] Right Square Bracket (93): In HEADING or FOOTING, starts a new line.
N Caret (94): as a prefix to a variable name, indicates a Caché global variable.

In HEADING or FOOTING, inserts a page humber.

Underscore (95): In INPUT, a suffix to the length argument that makes a line return mandatory.

{3 Curly Braces (123 & 125): CALCULATE operation. For example: totalnums += {num}.

Caché MultiValue Basic Reference 7

Caché MultiValue Basic Commands

Caché MultiValue Basic Reference

Caché MultiValue Basic Commands

ABORT, ABORTE, ABORTM

Terminates program execution and returns to MVBasic shell.

ABORT [errcode [,vall[,val2]]]
ABORTE [errcode [,vall[,val2]]]
ABORTM [message]

Arguments
errcode Optional — A MultiValue error code; commonly (but not always) specified as a positive
integer. The error code can be specified as a literal or as a expression that resolves to a
literal value. A non-numeric literal value must be specified as a quoted string.
val Optional — A comma-separated list of one or more literal values to insert into the error
message corresponding to errcode. These insert values can be specified as literals or as
expressions that resolves to a literal value. A non-numeric literal value must be specified as
a quoted string.
message Optional — An expression that resolves to a literal error message text, specified as a quoted
string.
Description

The ABORT statements are used to terminate program execution and return to the MVBasic shell programming prompt.
If an argument is specified, they use this argument to display an error message before terminating program execution.

» ABORTE with an specified argument uses the ERRMSG file to obtain the error message to display. For a list of error
codes and corresponding error messages, see Error Messages in the Caché MultiValue Commands Reference.

* ABORTM with an specified argument uses the literal message as the error message to display.
* ABORT in Caché MVBasic is functionally identical to ABORTE. Depending on the emulation setting, ABORT in
other MultiValue emulations may be functionally identical to either ABORTE or ABORTM.

An abort operation resets the @LEVEL system variable to 0.
ABORT and STOP

The ABORT command terminates all program execution and returns to the programming prompt. The STOP terminates
the executing routine and returns control to the calling routine.

During debugging, STOP terminates the debugging session. The debugger treats an ABORT as an error condition; the
debugger performs a break operation to allow for examination of the condition causing the ABORT.

See Also

« BREAK statement

» ERRMSG statement

» STOP statement

e ObjectScript: QUIT command

10 Caché MultiValue Basic Reference

ASSIGN

ASSIGN

Assigns a value to the SYSTEM or STATUS functions.

ASSIGN value TO SYSTEM(code)
ASSIGN int TO STATUSQ

Arguments
value An expression that evaluates to a value. This may be an integer value or
a string value, depending on the SYSTEM() function.
int An expression that evaluates to an integer value. A non-integer values is
truncated to an integer. A non-numeric value evaluates to 0.
code An integer code specifying which SYSTEM code information to modify. For
a list of codes, refer to the SYSTEM function.
Description

The ASSIGN statement is used either to assign an integer return value to the STATUS function, or to assign a return value
to one of the SYSTEM function options. Assignments apply to the current process.

When assigning a STATUS function value, value must be a literal, variable, or arithmetic expression that resolves to a
positive or negative integer. A fractional number is truncated to its integer portion. A string is truncated at the first non-
numeric character. A non-numeric string resolves to the numeric value 0. If you exit and re-enter the MV Shell, the STATUS
function value is reset to 0.

Most SYSTEM functions cannot be assigned a value using this command. SYSTEM(2), SYSTEM(3), and SYSTEM(7)
can be assigned a value. Only a valid terminal type can be assigned to SYSTEM(7). If you exit and re-enter the MV Shell,
these SYSTEM function values persist until explicitly reset.

Examples

The following example reduces the terminal's page width setting by 10 characters:

pwidth=SYSTEM(2); I The old page width
PRINT pwidth

ASSIGN pwidth-10 TO SYSTEM(2)

PRINT SYSTEM(2); 1 The new page width

In the following example, the first ASSIGN sets the terminal (channel 0) page width to 20. The PRINTER ON statement
changes channel 0 to the current printer. The second ASSIGN sets the printer (channel 0) page width to 40. The PRINTER
OFF reverts channel 0 to the terminal, which now has a page width of 40:

EXECUTE "TERM"
ASSIGN 20 TO SYSTEM(2)
EXECUTE ""TERM"

PRINTER ON

ASSIGN 40 TO SYSTEM(2)
PRINTER OFF

EXECUTE ""TERM"

See Also

e STATUS function
e SYSTEM function

Caché MultiValue Basic Reference 11

Caché MultiValue Basic Commands

BEGIN TRANSACTION

Begins a transaction.

BEGIN TRANSACTION

Description

The BEGIN TRANSACTION statement initiates a transaction. A transaction is a block of code beginning with BEGIN
TRANSACTION and ending with END TRANSACTION. All statements within the transaction are either applied as a
unit by a COMMIT statement, or rolled back as a unit by a ROLLBACK statement. Following a COMMIT or
ROLLBACK, program execution continues at the END TRANSACTION statement.

Note: Caché MVBasic supports two sets of transaction statements:
* UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.
* UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.

These two sets of transaction statements should not be combined.

CAUTION: There is a fundamental difference in the way Caché transactions operate in comparison to most other
transaction systems in the MV world. In Caché, items written to a file are immediately available both to
the writing process and any other process accessing the file. If the transaction is aborted either program-
matically or because of some failure, then the item will be rolled back to the state prior to the start of the
transaction.

Most other transaction systems in the MV world will make an item written to a file available to the process
that wrote the item (in other words, if it reads the item back from the file after the write, it will be given
the version that it wrote to the file), but any other process READing the item will see the version of the
item as it was before a write. This is generally referred to as the isolation level. This difference may have
implications for systems that wish to scan files without taking locks.

Example

The following example performs database operations within a transaction. It sets a variable x, which determines whether
the transaction should be committed or rolled back.

PRINT "Before the transaction"
BEGIN TRANSACTION

IF x=0
THEN COMMIT
END
ELSE ROLLBACK
PRINT "Transaction rolled back™
END
PRINT "This should not print"”
END TRANSACTION
PRINT "After the transaction"

See Also

» END TRANSACTION statement
» COMMIT statement

* ROLLBACK statement

12 Caché MultiValue Basic Reference

BREAK

BREAK

Enables or disables keys that pause program execution.

BREAK [KEY] { ON | OFF }
BREAK [KEY] flag

Arguments
flag An expression that evaluates to a boolean value. O=disable break keys. 1
(or any non-zero number)=enable break keys.
Description

The BREAK statement is used to enable or disable terminal keys that can pause program execution. It can be executed
using the ON or OFF keyword, or by using a boolean flag value. These two forms are functionally identical.

When BREAK is enabled (ON), the Interrupt, Suspend, and Quit keys will cause program execution to be suspended.
When BREAK is disabled (OFF) these keys have no effect on program execution. The BREAK setting determines how
ctrl-C is handled when typed at the INPUT prompt.

The KEY keyword is optional and performs no function; it is provided for code compatibility only.

The MVBasic BREAK statement performs the same operation as the various MultiValue command line BREAK commands.
Issuing any of these statements increments or decrements a counter. Thus multiple BREAK OFF statements (of any type)
must be reversed by an equal number of BREAK ON statements.

Emulation
JBASE emulation supports an argumentless BREAK statement as a synonym for EXIT. Refer to the EXIT statement for

details. In jBASE emulation, BREAK statements simply enable or disable (toggle) without maintaining a counter.
See Also

* ABORT statement

* INPUT statement

» STOP statement

« BREAK command in Caché MultiValue Commands Reference

Caché MultiValue Basic Reference 13

Caché MultiValue Basic Commands

BSCAN

Traverses the unique keys in an index, or the item ids in an inode-type file.

BSCAN keyvar [,recvar]

[FROM filevar[,startkey]]

[USING indexname] [RESET] [BY seq]
[THEN statements] [ELSE statements]

Arguments
keyvar BSCAN assigns to keyvar the key or item id returned by the BSCAN operation.
recvar Optional — If you specify a recvar, BSCAN assigns the contents associated with keyvar to

it. This can be the list of item ids associated with the key returned in keyvar, or the contents
of the record associated with the item id returned in keyvar.

FROM filevar | Optional — A local variable name assigned to the MultiValue file by the OPEN statement. If
you do not specify filevar, the default file, specified in the system variable @STDFIL, is used.

startkey Optional — An expression that specifies the relative starting position of the scan. startkey
can be an index key or item id. If the USING indexname clause is used, startkey is a value
in the specified index.

USING Optional — The name of a secondary index associated with the file.
indexname
BY seq Optional — Specifies the direction of the scan. The available seq options are “A” (ascending)

and “D” (descending). The default is ascending.

Description
The BSCAN statement operates in 2 modes:

» BSCAN with an indexname steps through the unique keys in an index. The keys are returned as keyvar. It optionally
returns the item id associated with keyvar as recvar.

« BSCAN without an indexname steps through the item ids in an inode-type file. The list of item ids is returned as keyvar.
It optionally returns the contents of each keyvar item as recvar.

The BSCAN statement scans the leaf nodes of either a B-tree file (type 25) or a secondary index. The record ID returned
by the scan operation is assigned to keyvar. If you specify a recvar, BSCAN assigns the contents of the keyvar record to
it.

filevar specifies an open file. If you do not specify filevar, the default file is used. (For more information on default files,
see the OPEN statement.) If the specified file is neither accessible nor open, BSCAN returns nothing and sets STATUS()
to 3.

startkey is an expression that evaluates to a record ID of a record in the B-tree file. If the USING clause is used, startkey
is a value in the specified index. startkey specifies the relative starting position of the scan.

startkey need not exactly match an existing record ID or index key. If it does not, the scan finds the next or previous record
ID or value, depending on whether the scan is in ascending or descending order. For example, depending on how precisely
you want to specify the starting point at or near the record ID or value SMITH, startkey can evaluate to SMITH, SMIT,
SMI, SM, or S.

If you do not specify startkey, on the initial BSCAN operation, the scan starts at the beginning (leftmost slot of the leftmost
leaf) or end (rightmost slot of the rightmost leaf) of the index or file, depending on the value of the seq expression. The

14 Caché MultiValue Basic Reference

BSCAN

scan then moves in the direction specified in the BY clause. Subsequent BSCAN operations with no startkey specified will
continue from the keyvar returned by the previous BSCAN.

indexname is an expression that evaluates to the name of a secondary index associated with the file.

RESET resets the internal scan pointer to the first or last key, depending on the BY seq clause value. If you do not specify
seq, the scan is done in ascending order. If you specify startkey in the FROM clause, RESET is ignored.

seq is an expression that evaluates to A or D; it specifies the direction of the scan. "A", the default, specifies ascending
order. "D" specifies descending order.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the BSCAN statement
finds a valid index key, or item id and its associated data, the THEN clause is executed. If the scan does not find a valid
index key, or if some other error occurs, the ELSE clause is executed. The statements argument can be the NULL keyword,
a single statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Any file updates executed in a transaction (that is, between a BEGIN TRANSACTION statement and a COMMIT statement)
are not accessible to the BSCAN statement until after the COMMIT statement has been executed.

Note: Cache supports the BSCAN statement for compatibility with legacy MultiValue systems. When retrieving keys
from an index, developers should use OPENINDEX and SELECT with the ATKEY clause, because SELECT
ATKEY has a simpler, more intuitive syntax and superior performance.

STATUS Values

The STATUS function returns the following values after the BSCAN statement is executed:

If NLS is enabled, the BSCAN statement retrieves record IDs in the order determined by the active collation locale; otherwise,
BSCAN uses the default order, which is simple byte ordering that uses the standard binary value for characters; the Collate
convention as specified in the NLS.LC.COLLATE file for the current locale is ignored.

0 The scan proceeded beyond the first or last key. keyvar and recvar are set to empty strings.

1 The scan returned an existing index key, or an index key that matches the key specified by
startkey.

2 The scan returned an index key that does not match startkey. keyvar is either the next or the

previous record ID in the B-tree, depending on the direction of the scan.

3 filevar is not open, or is not an inode-type.

4 indexname does not exist.

5 seq does not evaluate to A or D.

6 The index specified by indexname needs to be built.
10 An internal error was detected.

Caché MultiValue Basic Reference 15

Caché MultiValue Basic Commands

Examples

The following example demonstrates using BSCAN to step through the keys in an index:

0001 EXECUTE "CREATE-FILE DATE-FILE®

0002 OPEN *DICT",*DATE-FILE" TO DICT.DATE.FILE ELSE STOP 201, *DICT DATE-FILE"
0003 WRITE "D":@AM:1 ON DICT.DATE.FILE, "DAY.OF .WEEK"

0004 EXECUTE *CREATE-INDEX DATE-FILE DAY.OF.WEEK®

0005 OPEN *DATE-FILE® TO DATE.FILE ELSE STOP 201, *DATE-FILE"

0006 FOR I1=1 TO 21

0007 ID=DATEQ)+I

0008 WRITE OCONV(ID,*DWA") ON DATE.FILE,ID

0009 NEXT I

0010 LOOP

0011 BSCAN DOW, IDLIST FROM DATE.FILE USING *DAY.OF.WEEK® ELSE EXIT
0012 CRT "DOW=":DOW,* DATES=":IDLIST

0013 REPEAT

This returns the following output:

[421] DICT for file 'DATE-FILE' created. Type = INODE
[418] Default data section for file 'DATE-FILE' created. Type = INODE
[437] Added default record ‘@ID' to 'DICT DATE-FILE'.
[417] CreateFile Completed.

DOW=FRIDAY DATES=14642 14649 14656
DOW=MONDAY DATES=14645 14652 14659
DOW=SATURDAY DATES=14643 14650 14657
DOW=SUNDAY DATES=14644 14651 14658
DOW=THURSDAY DATES=14641 14648 14655
DOW=TUESDAY DATES=14646 14653 14660
DOW=WEDNESDAY DATES=14640 14647 14654

Notice that on each iteration, BSCAN returns the next unique key in the index. The item ids associated with the key are
returned as an @AM-delimited list in the optional recvar argument. If you want to process each record for the key, you
need to code a loop to do so.

The following example demonstrates using BSCAN to retrieve the keys for a particular key:

0001 OPEN "DATE-FILE®" TO DATE.FILE ELSE STOP 201, "DATE-FILE"

0002 BSCAN DOW FROM DATE.FILE,*SUN" USING "DAY.OF.WEEK®" ELSE NULL
0003 CRT "DOW=":DOW, " STATUS=":STATUS(Q)

0004 BSCAN DOW FROM DATE.FILE USING "DAY.OF.WEEK®" ELSE NULL

0005 CRT "DOW=":DOW, " STATUS=":STATUSQ)

0006 BSCAN DOW FROM DATE.FILE,*Z" USING "DAY.OF.WEEK®" ELSE NULL
0007 CRT "DOW=":DOW, " STATUS=":STATUSQ

This returns the following output:

DOW=SUNDAY STATUS=2
DOW=THURSDAY STATUS=1
DOW= STATUS=0

On line 2 we request key SUN. There is no SUN, so BSCAN returns the next key SUNDAY. The BSCAN on line 4 doesn't
specify a start key, so the next key. THURSDAY, is returned. On line 6, we request key Z. There is no Z and nothing after
Z,s0 BSCAN returns status 0

In the following example BSCAN is used to scan the item ids of an inode-type file. In this example, we look for item id
SEL in VOC. SEL does not exist, so BSCAN returns the next id SEARCH:

0001 OPEN *VOC®" TO VOC ELSE STOP 201, "VOC*

0002 BSCAN ID,ITEM FROM VOC,*"SEL" BY "D" ELSE NULL
0003 CRT "ID=":ID," ITEM=":ITEM

0004

MINE:-TRY

ID=SEARCH ITEM=V SEARCH C 2C

See Also

e OPEN statement
e OPENINDEX statement

16 Caché MultiValue Basic Reference

BSCAN

e SELECT ATKEY statement
e STATUS function

Caché MultiValue Basic Reference 17

Caché MultiValue Basic Commands

CALL

Transfers control to an external subroutine.

CALL routine[(arglist)]

Arguments
routine Name of the external subroutine to call.
arglist Optional — Comma-delimited list of arguments to pass to the external subroutine.
The number of arguments specified must match the number of argument defined
for the subroutine. Specify the MAT keyword before an array argument.
Description

The CALL statement can be used to call an external subroutine and to optionally pass arguments to that subroutine. The
external subroutine must have been compiled and cataloged. You can use the RETURN statement within the external
subroutine to return control to the next statement following the CALL statement.

Note: The RETURN statement will first return from internal GOSUB subroutines and then return from the external
SUBROUTINE when the GOSUB stack is exhausted.

You can use routine to specify the external subroutine either directly or indirectly:
e The routine argument can specify the exact name under which the subroutine was cataloged.

e The routine argument can specify the name of a variable that contains the name of the subroutine. A variable of this
type is prefaced with the @ symbol. A variable name can be a local variable, or an element of an array.

If the routine name begins with an asterisk (*), CALL first looks it up as a local routine. If not found, CALL looks it
up as a global routine. If still not found, CALL generates an error. Note that *routine processing is different in UniData
emulation, as described below.

The argument list can contain any combination of regular variables and array variables. An array variable must be dimensioned
in the calling program using the DIM statement. Caché dimensionless arrays can also be passed to the subroutine as argu-
ments, providing they are DIMensioned using DIM var().

In arglist, an array variable name must be preceded by the MAT keyword. The following is an argument list that specifies
a literal, a regular variable, and an array variable:

CALL MySub(123,myvar ,MAT myarray)

By default, all arglist arguments are passed by reference. If the subroutine changes the value of an argument passed by
reference, this value is also changed in the calling program. You can specify that an argument is to be passed by value by
enclosing the argument name in parentheses (which changes the variable in to an expression; expressions are always passed
by value). If the subroutine changes the value of an argument passed by value, the value of this argument in the calling
program remains unchanged.

You can also use the COMMON statement to make specified variables available to all external subroutines. You should
avoid calling SUBROUTINES using a variable that is declared in COMMON as a subroutine argument as you will have
two references to the same variable in the subroutine — the original COMMON reference, and the subroutine parameter.

Note: An array may be dimensioned differently in the subroutine than it is in the calling program, but that the number
of dimensioned elements should remain the same. Hence a variable A declared as DIM A(10) may be declared
as A(5,2) in the subroutine.

18 Caché MultiValue Basic Reference

CALL

CALL works on only a single value at a time. If you specify a CALL with a multivalue argument, Caché MVBasic invokes
CALL repeatedly, once for each value in the multivalue argument. The called external subroutine can only return single-
valued arguments.

CALL, ENTER, SUBR, and GOSUB

The CALL statement is used to call an external subroutine with parameter passing and return. If you do not need to pass
parameters or return to the calling program, you can use ENTER to call an external subroutine.

The SUBR function is used to call an external subroutine that returns a value. The GOSUB statement is used to call an
internal subroutine.

Examples

The following example uses CALL to pass arguments by reference:

Main
X=""Burma’
y=""Myanmar"*
PRINT x ! Returns "Burma
CALL MapSub(x,y)
PRINT X ! Returns "Myanmar™

MapSub(name, newname)
PRINT name ! Returns "'Burma"
name=newname
PRINT name ! Returns "Myanmar™
RETURN

The following example uses CALL to pass an argument by value by using parentheses around the argument:

Main
Xx=""Burma’
y="Myanmar"
PRINT x ! Returns "Burma
CALL MapSub((x), y)
PRINT x Returns "Burma'

MapSub(name, newname)

PRINT name ! Returns "'Burma"
name=newname
PRINT name ! Returns "Myanmar™
RETURN

Emulation

In UniData and UDPICK emulations, a routine name with an initial character of * is handled as a global routine name.
CALL removes the leading * and then looks up the resulting routine name as a global routine. If the runtime environment
is not UniData emulation, a normal lookup is done on a routine name with a leading * character.

The use of $OPTIONS UNIDATA in the MVBasic source file does not activate this behavior. The handling of names with
leading * is determined by the user setting in the command language at runtime. Therefore, to activate this behavior, the
CEMU command must set UniData emulation before running a program that calls a routine name with a leading *

See Also

 ENTER statement

« COMMON statement

* RETURN statement

» SUBROUTINE statement
* END statement

* DIM statement

Caché MultiValue Basic Reference 19

Caché MultiValue Basic Commands

e (GOSUB statement
e SUBR function

20 Caché MultiValue Basic Reference

CASE

CASE

Selects one of several statements based on the value of expressions.

BEGIN CASE
CASE expressionl
statement
CASE expression2
statement . . .
END CASE

Arguments
expression A value, variable, or expression that evaluates to a boolean value: FALSE = 0, TRUE=1 or
any numeric value other than 0.

statement One or more MVBasic statements to execute if the corresponding expression evaluates to
TRUE.

Description

The CASE statement tests each case in the order specified, and executes the statement(s) associated with the first expression
that evaluates to true (a numeric value other than 0). An unlimited number of CASE statements can be specified within the
BEGIN CASE ... END CASE clause. At most, only one CASE statement is taken — the first case that evaluates to a true
value. Matching stops when the first expression that evaluates to true is encountered.

If no CASE expression evaluates to true, execution continues with the first statement after the END CASE statement.

You can specify a default case by specifying an expression that always evaluates to true (1). Typically, the literal integer
value 1 is used as the expression in the last CASE clause: CASE 1. The statements associated with this clause will be
executed if all the other CASE clauses evaluate to false (0).

You cannot use a GOTO statement to transfer execution within a CASE statement.

CASE statements can be nested. You can use a GOTO statement to transfer execution from a CASE clause to a nested a
CASE statement.

A placeholder CASE block, consisting of just the BEGIN CASE and END CASE statements, is supported.

Arguments

expression

CASE evaluates expression to a boolean value. If true, the case is taken and its statements executed. If false, the case is
skipped over, and the next CASE expression is evaluated. CASE expressions are evaluated in the order specified; therefore,
an error in an expression (for example, a divide-by-zero error: CASE var/0) is not detected if a prior expression is taken.

statement

One or more statements executed if expression evaluates to true. If expression does not evaluate to true, statement is not
parsed.

Caché MultiValue Basic Reference 21

Caché MultiValue Basic Commands

Examples

The following example takes a user input and executes one of the specified cases based on length of the input string. The
final case (CASE 1) is always true. This provides a case that is always taken if all of the previous cases did not evaluate to
true:

INPUT myword
BEGIN CASE
CASE 5 > LEN(myword)
CRT "'short™
CRT "word"
CASE 5 < LEN(myword)
CRT "long™
CRT "word"
CASE 1
CRT "five letter"”
CRT "word"
END CASE
CRT "all done™

The following example shows nested CASE statements. It shows how a GOTO can be used to transfer execution to a
nested CASE statement:

INPUT myword
BEGIN CASE
CASE 5 > LEN(myword)
CRT "'short word"
Atest:
BEGIN CASE
CASE 1 = COUNT(myword,"A™)
CRT "contains one A"
CASE 1 < COUNT(myword,"A'™)
CRT "contains more than one A"
CASE 1
CRT "contains no A"
END CASE
CASE 5 < LEN(myword)
CRT "long word"
GOTO Atest:
CASE 1
CRT "five letter word"
GOTO Atest:
END CASE

See Also
e |F..THEN...ELSE statement

22 Caché MultiValue Basic Reference

CATCH

CATCH

Identifies a block of code to execute when an exception occurs.

TRY
statements

CATCH [exceptionvar]
statements

END TRY

Arguments

exceptionvar Optional — An exception variable. Specified as a local variable, with or without subscripts,
that receives a Caché Object reference (oref).

Description

The CATCH statement defines an exception handler, one or more statements to execute when an exception occurs in the
code following a TRY statement. The CATCH statement is followed by one or more exception handling code statements.
The CATCH block must immediately follow its TRY, and the paired TRY and CATCH are terminated by an END TRY
statement.

The CATCH statement has two forms:
e Without an argument

* With an argument

CATCH without an Argument

Argumentless CATCH is invoked when an exception occurs in the TRY block. This executes the series of statements
between CATCH and END TRY.

CATCH with an Argument

CATCH exceptionvar is invoked when an exception occurs in the TRY block. This exception passes exceptionvar to the
CATCH block. This exception can either be explicitly invoked by a THROW statement, or issued by the system runtime
environment in the event of a system exception. The exceptionvar Caché Object reference (oref) provides properties that
contain information about the exception, such as the Name of the error and the Location where it occurred. The user-written
CATCH exception handler code can use this information to analyze the exception.

Arguments

exceptionvar

A local variable, used to receive the exception object reference from the THROW statement or from the system runtime
environment in the event of a system exception. When a system exception occurs, exceptionvar receives a reference to an
object of type %Exception.SystemException. For further details, refer to the %Exception.AbstractException class in the
InterSystems Class Reference.

Caché MultiValue Basic Reference 23

Caché MultiValue Basic Commands

Examples

The following example shows a CATCH invoked by a runtime exception. The myvar argument receives a system-generated
exception object:

TRY
PRINT "about to divide by zero™
a=7/0
PRINT *"this should not display”
CATCH myvar
PRINT "this is the exception handler™
PRINT :myvar->Name,"Error Name"
PRINT :myvar->Code,"Error Code Number"
PRINT :myvar->Location,"Error Location"
END TRY
PRINT "this is where the code falls through™

See Also

e THROW statement
e TRY statement

24 Caché MultiValue Basic Reference

CHAIN

CHAIN

Executes a MultiValue command from a program, exiting the program.

CHAIN command

Arguments

command A MultiValue command specified as a quoted string.

Description

The CHAIN command executes the specified Caché MultiValue command, but does not return execution to the MVBasic
program. Commonly, CHAIN is used with the MultiValue RUN command to “chain” execution from one program to
another. It initially searches the VOC for the command; if the command is not found in the VOC, it searches the global
catalog. For lookup details, refer to CATALOG in the Caché MultiValue Commands Reference.

CHAIN does not create a new execution environment. Therefore any select lists that were active when CHAIN was invoked
are retained as the active select lists of the invoked command.

CHAIN cannot pass values to command. Because CHAIN does not return to the invoking program, it cannot pass a return
value from command.

EXECUTE, PERFORM, and CHAIN

The EXECUTE command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement in the invoking program. EXECUTE creates a new execution environment; select lists that
were active when EXECUTE was invoked are not retained by its invoked MultiValue commands. EXECUTE can
explicitly pass values to the MultiValue command(s) and return values from the MultiValue command(s).

The PERFORM command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement in the invoking program. PERFORM cannot pass or return values.

The CHAIN command executes a single MultiValue command from within MVBasic. It does not return execution to the
invoking program. CHAIN cannot pass values.

Examples
The following example issues the MultiValue RUN command, to initiate execution of the bignumprog MVBasic program:
IF x>100
THEN
CHAIN "RUN bignumprog"
END
ELSE
PRINT "continuing execution"
END
Emulation

In jBASE emulation, CHAIN does not pass the default select list (select list 0) to the invoked program.

In UniData and UDPICK emulations, a command name with an initial character of * is handled as a global name. CHAIN
removes the leading * and then looks up the resulting command name in the global catalog in SYS.MV, rather than looking
up in the VOC. If the runtime environment is not a UniData emulation, a normal VOC lookup is done on the *command
name.

Caché MultiValue Basic Reference 25

Caché MultiValue Basic Commands

See Also

» EXECUTE statement

* PERFORM statement

» ObjectScript: XECUTE command

26 Caché MultiValue Basic Reference

CHANGE

CHANGE

Replaces all instances of a substring in a variable.

CHANGE oldstring TO newstring IN variable

Arguments
oldstring The substring to be replaced. An expression that resolves to a valid string or numeric.
newstring The replacement substring. An expression that resolves to a valid string or numeric. To delete
oldstring, specify the empty string (™).
variable An existing variable containing a string value. variable may be a dynamic array. variable
accepts a single dynamic array reference (A<i>), a single substring reference (A[s,l]), or a
substring reference nested inside a dynamic array reference (A<i>[s,]).
Description

The CHANGE statement edits the value of variable by replacing all instances of oldstring with newstring. The oldstring
and newstring values may be of different lengths. Matching of strings is case-sensitive. If oldstring is not present in the
variable, no operation is performed.

The values of oldstring and newstring can be a string or a numeric. If numeric, the value is converted to canonical form
(plus sign, leading and trailing zeros removed) before performing the string replacement.

To remove all instances of oldstring from variable, specify the null string (
cannot be used as the oldstring value.

) as the newstring value. The null string (")

CHANGE and SWAP both perform string substitution, and are functionally identical. CONVERT performs character-
for-character substitution.

Examples
In following example, CHANGE replaces every instance of “?” with “[PLEASE CHECK]” in global variable ~mytest:

mytest=""Jones" :@VM:""?":@VM:""? Water St.":@VM:"Springfield":@vM:""?"
CHANGE "'?'* TO "[PLEASE CHECK]'™ IN ~mytest
PRINT “mytest

See Also

* CONVERT statement
* SWAP statement

* CONVERT function
* CHANGE function

e Strings

Caché MultiValue Basic Reference 27

Caché MultiValue Basic Commands

CLEAR

Resets variables not assigned to a common storage area.

CLEAR

Arguments

The CLEAR statement takes no arguments.

Description

The CLEAR statement clears (sets to 0) all local variables that are not assigned to a common storage area. Variables in a
named common storage area or in the unnamed common storage area are unaffected.

Because CLEAR sets to 0 both assigned and unassigned variables, it can be usefully invoked at the beginning of a program
to prevent problems caused by unassigned variables.

You can use the COMMON statement to assign variables to a common storage area. You can use the CLEAR COMMON
statement to clear (reset to 0) all local variables that are assigned to a named common storage area or to the unnamed
common storage area.

See Also

e COMMON statement
e CLEARCOMMON statement

28 Caché MultiValue Basic Reference

CLEARCOM (CLEARCOMMON)

CLEARCOM (CLEARCOMMON)

Resets variables assigned to a common storage area.

CLEARCOM [/store/]
CLEARCOMMON [/store/]
CLEAR COM [/store/]
CLEAR COMMON [/store/]

Arguments
store Optional — A named common storage area for a group of variables. If specified,
this name is enclosed with slashes (/). The default is the unnamed common area.
Description

The CLEARCOMMON statement resets all of the variables stored in the common storage area, assigning them the value
“0”. The COMMON statement allows you to assign a list of local variables to a common storage area. These variables do
not have to be defined to be listed in a common storage area.

The COMMON statement can define a store name for a named common storage area. If COMMON omits store, the
named variables are stored in the unnamed common storage area. CLEARCOMMON can reset the variables in a named
common storage area, or omit store and reset the variables in the unnamed common storage area.

CLEARCOM, CLEARCOMMON, CLEAR COM, and CLEAR COMMON are all equivalent syntactical forms for
this statement.

You can use the CLEAR statement to clear (reset to 0) all local variables that are not assigned to a common storage area.

See Also

e CLEAR statement
¢ COMMON statement

Caché MultiValue Basic Reference 29

Caché MultiValue Basic Commands

CLEARDATA

Clears all data stored by the DATA statement.

CLEARDATA

Arguments

None.

Description

The CLEARDATA statement flushes (clears) all remaining data stored in the input stack by the DATA statement. Following
CLEARDATA, the INPUT statement issues a user prompt, rather than automatically receiving data stored by the DATA
statement.

Examples
The following example illustrates the use of the CLEARDATA statement:

DATA "New York',"Chicago","","Annapolis"
FOR x=1 TO 4

INPUT cityname

IF cityname="""

THEN CLEARDATA

PROMPT **Missing name: **

INPUT cityname

ELSE

PRINT cityname
NEXT

See Also

e DATA statement
 INPUT statement

30 Caché MultiValue Basic Reference

CLEARFILE

CLEARFILE

Deletes all records from a MultiValue file.

CLEARFILE filevar [SETTING var]
[ON ERROR statements] [LOCKED statements]

Arguments

filevar A file variable name used to refer to a MultiValue file. This filevar value is
supplied by the OPEN statement.

SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR clause. Provided for jBASE compatibility.

Description

The CLEARFILE statement is used to delete all data from a MultiValue file. It does not delete the file itself. CLEARFILE
takes the file identifier filevar, defined by the OPEN statement.

CAUTION: CLEARFILE can delete large quantities of data. This data may be accessed by multiple processes.
To delete individual data records, use the DELETE statement.
You can optionally specify a LOCKED clause, which is executed if CLEARFILE could not delete all records due to lock
contention.
You can optionally specify an ON ERROR clause. If the data deletion fails (for example, the file could not be accessed),

the ON ERROR clause is executed.

See Also

* OPEN statement

» DELETE statement
» STATUS statement
» STATUS function

Caché MultiValue Basic Reference 31

Caché MultiValue Basic Commands

CLEARINPUT

Clears input data from the type-ahead buffer.

CLEARINPUT

Arguments

None.

Description

The CLEARINPUT statement deletes (clears) any user input data stored in the type-ahead buffer. This affects the INPUTIF
statement, which receives user input from the type-ahead buffer. CLEARINPUT has no effect on the INPUT statement,
which does not use a type-ahead buffer.

The CLEARINPUT and INPUTCLEAR statements are functionally identical. CLEARINPUT is supported for compat-
ibility with UniData systems.
See Also

e INPUTIF statement
* INPUTCLEAR statement

32 Caché MultiValue Basic Reference

CLEARSELECT

CLEARSELECT

Resets active select lists.

CLEARSELECT [selectlist]
CLEARSELECT ALL

Arguments
selectlist Optional — An identifier assigned to an active select list, specified as an integer
from O through 10 (inclusive), or a named select list variable. If omitted, select list
0 is cleared.
Description

The CLEARSELECT statement resets an active select list. It has three syntactical forms:

* CLEARSELECT selectlist resets the specified select list.

* CLEARSELECT resets select list 0.

* CLEARSELECT ALL resets all active numbered select lists. It has no effect on named select lists.

Emulation

By default, SELECT uses select list 0 as the default select list for both internal and external use. Reality, D3, R83, POWER95,
MVBase, and IN2 systems use two distinct default select lists, one internal and one external. This behavior can be set using
$OPTIONS PICK.SELECT. When this option is set, the default external select list is 0, and the default internal select
list is 10.

See Also

e SELECT statement

Caché MultiValue Basic Reference 33

Caché MultiValue Basic Commands

CLOSE

Closes a MultiValue file.

CLOSE filevar [ON ERROR statements]

Arguments
filevar A file variable name used to refer to a MultiValue file. This filevar is supplied
by the OPEN statement.
Description

The CLOSE statement is used to close a MultiValue file. It takes the file identifier filevar, defined by the OPEN statement.
If multiple OPEN statements have been issued for the same MultiValue file:

» If the process has issued multiple OPEN statements specifying different filevar variables, you must issue a CLOSE
for each filevar.

» Ifthe process has issued multiple OPEN statements specifying the same filevar, a single CLOSE for this filevar closes
the MultiValue file.

e If multiple processes have issued an OPEN statement for the same MultiValue file, you must issue a CLOSE for the
filevar in each process, even if the processes specified the same filevar variable.
You can optionally specify an ON ERROR clause. If file close fails, the ON ERROR clause is executed. This may occur

if filevar does not refer to an existing file, or if the filevar file has already been closed.

Alternatively, you can use the STATUS function to determine the status of the file close operation, as follows: 0=success;
-1=file does not exist or has already been closed.

See Also

e OPEN statement
e STATUS function

34 Caché MultiValue Basic Reference

CLOSESEQ

CLOSESEQ

Closes a file opened for sequential access.

CLOSESEQ filevar [ON ERROR statements]

Arguments
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
Description

The CLOSESEQ statement is used to close a file that has been opened for sequential access using OPENSEQ. A file
opened for sequential access is exclusively held by the process that opened it. Issuing a CLOSESEQ allows that file to be
accessed by other processes.

You can use the STATUS function to determine the status of the close operation, as follows: 0=close successful; -1=close
failed either because file variable not defined or file has already been closed.

You can optionally specify an ON ERROR clause. If file close fails, the ON ERROR clause is executed. This may occur
if the file is already closed.

See Also

¢ OPENSEQ statement
e STATUS function

Caché MultiValue Basic Reference 35

Caché MultiValue Basic Commands

COMMIT

Commits all changes made during the current transaction.

COMMIT [TRANSACTION | WORK] [THEN statements] [ELSE statements]

Description

The COMMIT statement ends the current transaction initiated by a BEGIN TRANSACTION statement. All file changes
issued during the transaction are committed, and cannot be subsequently reverted.

The COMMIT must be specified between the BEGIN TRANSACTION and END TRANSACTION statements. Following
a COMMIT, program execution skips to the line of code following the END TRANSACTION statement.

The TRANSACTION or WORK keywords are optional and provides no functionality. They are provided solely for com-
patibility with other MultiValue vendor products.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the transaction commit
is successful, the THEN clause is executed. If the transaction commit fails, the ELSE clause is executed. The statements
argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block
of statements has specific line break requirements: each statement must be on its own line and cannot follow a THEN,
ELSE, or END keyword on that line.

To revert the changes made during the current transaction, issue a ROLLBACK statement, rather than a COMMIT
statement.

After the transaction is closed, program execution continues at the END TRANSACTION statement.

Note: Caché MVBasic supports two sets of transaction statements:
e UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.
¢ UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.

These two sets of transaction statements should not be combined.

Please refer to the documentation for BEGIN TRANSACTION for notes on important differences regarding the
isolation level of transactions within Caché vs the that generally found in MV systems.

Locks and Transactions

File locks and record locks that were taken out during a transaction are released at the end of a transaction. If there are
nested transactions, the release of locks taken out during the inner transactions is delayed until the completion of the outermost
transaction. This release of locks is part of a successful COMMIT or ROLLBACK operation. Locks are described in the
LOCK statement.

36 Caché MultiValue Basic Reference

COMMIT

Example

The following example performs database operations within a transaction. It sets a variable x, which determines whether

the transaction should be committed or rolled back.

PRINT *"Before the transaction™
BEGIN TRANSACTION

IF x=0
THEN COMMIT
THEN PRINT "Commit successful™
ELSE PRINT *"Commit failed"”
END
ELSE ROLLBACK
END
PRINT "This should not print"”
END TRANSACTION
PRINT "Transaction resolved"

See Also

» BEGIN TRANSACTION statement
» END TRANSACTION statement

* ROLLBACK statement

Caché MultiValue Basic Reference

37

Caché MultiValue Basic Commands

COM (COMMON)

Lists variables available to external subroutines.

COM [/store/] var [,var2][- . -1
COMMON [/store/] var [,var2][- - -1
Arguments
store Optional — A named storage area for the listed variables. If specified, this name

is enclosed with slashes (/).

var A variable or a comma-separated list of multiple variables.

Description

The COMMON statement allows you to specify list of local variables that are placed in a common storage area available
to external subroutines. You can specify one variable or a comma-separated list of variables. These variables do not have
to be defined to be listed as common. A variable placed in a common storage area may contain a literal value or an object
reference.

You can use store to specify a named common storage area, or omit this argument and store the listed variables in the
unnamed common storage area. A store name can be of any length, but it suggested that it be unique within its first 27
characters.

You specify a COMMON statement in both the calling program and each called subroutine that uses the variables. The
corresponding variables in an external subroutine do not have to have the same names; they correspond by being in the
same sequence. Thus the first variable in the main program's COMMON statement corresponds with the first variable in
the external subroutine's COMMON statement, the second with the second, and so forth.

Specifying an array ina COMMON statement dimensions that array; it cannot be subsequently dimensioned using a DIM
statement. Attempting to do so results in a compile error.

Note: Arrays dimensioned in COMMON areas in one program do not need to be dimensioned in the same way in the
definition of the same COMMON area in another program. However, the number of elements defined should be
the same in both cases. It is best practice to defined COMMON areas via a single INCLUDE file in order to avoid
using different definitions in different programs.

You can use the CLEARCOMMON statement to reset all of the variables in held in a common storage area.

Emulation

The COMMON initialization of array variables for Caché MVBasic is UNASSIGNED, for both named and unnamed
common storage areas. Other supported MultiValue emulations provide differing initialization for array variables in named
and unnamed common storage areas. Scalar variables are always initialized as UNASSIGNED in all emulations.

Examples

The following example initializes an array variable in the unnamed common storage area, then tests whether the variable
is assigned. In native Caché MVBasic the result will always be unassigned; other MultiValue emulations return other results.

COMMON c(3)
IF ASSIGNED(c(3)) THEN PRINT c(3)
ELSE PRINT *Unassigned for unnamed storage"

38 Caché MultiValue Basic Reference

COM (COMMON)

The following example initializes an array variable in a named common storage area, then tests whether the variable is
assigned. In native Caché MVBasic the result will always be unassigned; other MultiValue emulations return other results.

COMMON /ABC/ y(2)
IF ASSIGNED(y(2)) THEN PRINT y(2)
ELSE PRINT "Unassigned for named storage"

See Also

» CALL statement

e CLEARCOMMON statement
* DIM statement

» SUBROUTINE statement

» ASSIGNED function

* UNASSIGNED function

Caché MultiValue Basic Reference 39

Caché MultiValue Basic Commands

CONTINUE

Jumps to FOR or LOOP statements and re-executes test and loop.

CONTINUE

Arguments

The CONTINUE statement does not have any arguments.

Description

The CONTINUE statement is used within the code block of a FOR...NEXT or LOOP...REPEAT statement. CONTINUE
causes execution to immediately jump back to the FOR or LOOP keyword, starting a new iteration of the loop. The FOR
or LOOP statement evaluates its test condition, and, based on that evaluation, may re-execute the code block loop.

Example
The following example illustrates the use of the CONTINUE statement:

FOR i=1 TO 10
PRINT i
IF i=5 THEN CONTINUE
ELSE PRINT "not five"
NEXT
PRINT *"all done"

See Also

* FOR..NEXT statement

* LOOP..REPEAT statement
» EXIT statement

* GOTO statement

40 Caché MultiValue Basic Reference

CONVERT

CONVERT

Replaces single characters in a string.

CONVERT charsout TO charsin IN string

Arguments
charsout One or more characters to be replaced. Any expression that resolves to a valid string
or numeric.
charsin The character or characters to be inserted in place of the corresponding characters in
charsout. Any expression that resolves to a valid string or numeric.
string The string in which character substitutions are made. An expression that resolves to a
valid string. string may be a dynamic array. string accepts a single dynamic array
reference (A<i>), a single substring reference (A[s,l]), or a substring reference nested
inside a dynamic array reference (A<i>[s,I]).
Description

The CONVERT statement edits the value of string by replacing all instances of single characters in charsout with single
characters from charsin. CONVERT performs a character-for-character substitution. Matching of characters is case-sensitive.

CONVERT can be used as follows:

» Toremove all instances of a character from a string, specify the character to be removed in charsout and a null string
in charsin. For example, to remove the # character from mystring: CONVERT *'#'" TO "' IN mystring

» Toreplace all instances of a character in a string with another character, specify the character to be replaced in charsout
and the replacement character in charsin. For example, to replace all instances of the # character with the * character
in mystring: CONVERT *'# TO "*" IN mystring

» Toreplace all instances of a list of single characters with corresponding other single characters, specify those characters
to be replaced in charsout and the corresponding replacement characters in charsin. For example, to replace all instances
in mystring of the each lowercase letter a, b, ¢, and d with the corresponding uppercase letter: CONVERT *‘abcd™ TO
"ABCD™ IN mystring

» To both replace some single characters and remove others, specify those characters to be replaced or removed in
charsout. First specify those to be replaced, then those to be removed. Specify the corresponding replacement characters
in charsin, and nothing for the characters to be removed. For example, to replace all instances of + with &, and to
remove all instances of # in mystring: CONVERT *'+#' TO "&" IN mystring

The value of charsout and charsin can be a string or a numeric. If numeric, the value is converted to canonical form (plus
sign, leading and trailing zeros removed) before performing the CONVERT operation.

If charsout contains more characters than charsin, the unpaired characters are deleted from string. If charsin contains more
characters than charsout, the unpaired characters are ignored and have no effect.

Note: CONVERT performs single character one-for-one substitution for all instances in a string. The CHANGE
function performs substring replacement, and can specify how many instances to replace and where to begin
replacement.

The CONVERT statement and the CONVERT function perform the same operation, with the following difference:
the CONVERT statement changes the supplied string; the CONVERT function returns a new string with the
specified changes and leaves the supplied string unchanged.

Caché MultiValue Basic Reference 41

Caché MultiValue Basic Commands

Examples

The following example illustrates use of the CONVERT statement in converting a string to a dynamic array by replacing
the # character with a Value Mark level delimiter character:

cities="New York#Chicago#Boston#Los Angeles"
CONVERT "#'" TO CHAR(253) IN cities
PRINT cities

See Also

* CONVERT function
* CHANGE function
* SWAP statement

e Strings

42 Caché MultiValue Basic Reference

CREATE

CREATE

Creates a file for sequential access.

CREATE filevar [THEN statements][ELSE statements]

Arguments
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
Description

The CREATE statement is used to create a file for sequential access. To create a file, you must first issue an OPENSEQ
statement, giving the fully-qualified pathname for the file you wish to create. Because the file does not yet exist, the
OPENSEQ appears to fail, taking its ELSE clause and setting the value returned by the STATUS function to -1. However,
the OPENSEQ sets its filevar to an identifier for the specified file pathname. You then supply this filevar to CREATE to
create a new file.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file creation is
successful, the THEN clause is executed. If file creation fails, the ELSE clause is executed. The statements argument can
be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements
has specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END
keyword on that line.

The CREATE statement is:

e Optional if the first operation you perform on the new file is to issue a WRITESEQ. If you issue an OPENSEQ and
then issue a WRITESEQ), this first write operation automatically creates the file.

« Mandatory if the first operation you perform on the new file is to issue a WRITEBLK. The CREATE creates the file,
and then you may issue a WRITEBLK to write to the file.
You can use the STATUS function to determine the status of the file creation operation. A successful file creation returns

a status of 0. A failed file creation returns a status of -1, for any of the following reasons:

e The directory specified in OPENSEQ does not exist. CREATE can create a file, but not the directory to contain the
file. You can create the directory after issuing an OPENSEQ and then use the filevar returned by OPENSEQ to create
the file.

» Thefile already exists.
* The specified filevar is invalid.

After creating a file, you can use the STATUS statement to obtain file status information. The file is open for read and
write operations. You can use CLOSESEQ to release an open file, making it available to other processes.

Caché MultiValue Basic Reference 43

Caché MultiValue Basic Commands

Examples

The following example creates a new sequential file on a Windows system:

OPENSEQ "'C:/myfiles/testl” TO mytest
IF STATUS()=0
THEN PRINT "File already exists"
END
ELSE PRINT STATUSQ; I returns -1
CREATE mytest
IF STATUS()=0
THEN PRINT "File created"
ELSE PRINT "File create failed"
END

See Also

e« OPENSEQ statement

e CLOSESEQ statement
* WRITEBLK statement
« WRITESEQ statement
» STATUS statement

* STATUS function

44

Caché MultiValue Basic Reference

CRT

CRT

Displays on the terminal screen.

CRT [text]
CRT text [format]

Arguments
text Optional — Any MVBasic expression that resolves to a quoted string or a numeric. You can
specify a single expression or a series of expressions separated by either commas (,) or
colons (:). A comma inserts a tab spacing between the two strings. A colon concatenates
the two strings. If text is omitted, a blank line is returned.
format Optional — A code specifying how to handle text, specified as a quoted string. This format
is applied to the text that immediately precedes it. Whitespace characters may be inserted
between text and format.
Description

CRT displays one or more text items on the terminal screen. This text can consist of any number of text strings separated
by commas or colons. Any text may be followed by an optional format. This format applies only to the text string that
immediately precedes it.

CRT does not send its output to an open PRINTER channel, which allows CRT to be executed without using PRINTER
OFF and PRINTER ON.

A text can consist of a single string or numeric expression, or a series of expressions alternating with separator characters.
If no text is specified, CRT returns a blank line.

The following separators are supported:

» A comma (,) used as a separator character inserts a predefined tab between to items. By default, tabs are set at ten
column intervals. You can specify a comma before the first expression to indent that expression. You cannot specify
a comma after the last expression; this results in a syntax error. You can specify a series of commas to specify multiple
tabs; an odd number of commas increments the number of tabs. Thus, one or two commas (exp ,exp or exp, ,exp)
equals one tab, three or four commas (exp, , ,exp or exp, , , ,exp) equals two tabs, and so forth.

» Acolon () used as a separator character concatenates two items. Specifying a colon before the first expression has no
effect. Specifying a colon after the last expression enables concatenation of the results of two commands. By default,
a CRT statement ends by issuing a linefeed and carriage return. However, if you end the CRT argument with a colon,
CRT does not issue the linefeed and carriage return, This enables you to concatenate the output of the next statement
to the CRT output.

The DISPLAY and CRT commands are identical. The PRINT command is similar to CRT, but provides additional
functionality.

Formatting

The optional format argument specifies how to handle text. CRT supports three types of format arguments:
e @ function formatting

« implicit formatting, using FMT function codes

» implicit conversion, using OCONV function codes

Caché MultiValue Basic Reference 45

Caché MultiValue Basic Commands

You can use an @ function with positive arguments to specify the column position and/or line position at which to print.
For example, CRT @(15):""Over here!" prints the literal string starting at column 16. You can also use the @ function
with negative arguments to change screen display modes. For example, CRT @(-1):""Over here!" clears the screen,
then prints the literal string at line 1, column 1.

You can use the optional format argument to specify display width, justification, fill characters, and zero filling or rounding
for decimal digits. This is known as “implicit formatting” because it is equivalent to inserting a FMT function as one of
the CRT arguments. For further details on the available format codes, refer to the FMT function.

You can disable implicit formatting by specifying $OPTIONS NO. IMPLICIT.FMT. Specifying this option prevents the
evaluation of the format argument in CRT, PRINT, or DISPLAY. It has no effect on the explicit use of the FMT function.

Implicit conversion performs many of the OCONV function conversions by specifying the conversion code as the format
argument. For example, both of the following perform date conversion from internal to display format:

CRT 14100 "'D"; 1 08 AUG 2006
CRT OCONV(14100,"D"™); 1 08 AUG 2006

For further details on the available format conversion codes, refer to the OCONYV function.

Examples

The following examples illustrate the use of the CRT command:

CRT "hello","world™":"1"

returns:
hello world!
See Also

» DISPLAY statement
* PRINT statement

* @ function

* FMT function

» SPACE function

46 Caché MultiValue Basic Reference

DATA

DATA

Provides user input data.

DATA exp [,exp2][- - -1
Arguments
exp An expression to use as user input data. It can be a literal or a defined variable.

You can specify a comma-separated list of multiple expressions.

Description

The DATA statement defines one or more input values on an input stack for future use. A DATA value is taken from the
input stack by the next INPUT statement, rather than pausing program execution for user input.

You can specify a comma-separated list of DATA values; these are used successively by multiple invocations of the INPUT
statement.

A DATA value of the empty string (DATA ***") is treated as an actual data value: If the optional length parameter of a
subsequent INPUT statement is set to -1, INPUT sets variable to 1 (indicating that there is input available). If the INPUT
statement has a THEN clause, INPUT executes the statements associated with THEN clause as if the user had entered data
from the keyboard.

You can use CLEARDATA to flush all remaining data stored by a DATA statement.
You cannot use DATA to supply a character to the KEYIN function.

See Also

* INPUT statement
» CLEARDATA statement

Caché MultiValue Basic Reference 47

Caché MultiValue Basic Commands

DEBUG

Interrupts program execution to enter debug mode.

DEBUG

Arguments

None.

Description

The DEBUG statement interrupts program execution by issuing a break to another stack level and issues a prompt. From
this point you can issue debug commands, including returning to the execution of the interrupted program.

By default, a command issued at the debug prompt is an ObjectScript command. To issue a Caché MVBasic statement at
the debug prompt, you must prefix a semicolon to the command. This is shown in the following terminal example:

USER: ;myvar="ABC"

USER: ; DEBUG
<BREAK>+1"MVBAS1C1048._mvi

Source ld: File: Line:0

USER 7d1>WRITE "my variable=",myvar
my variable=ABC

USER 7d1>;CRT "my variable",myvar
my variable ABC

USER 7d1>

The :/ Statement

At the debug prompt, you can use the ;/ statement to display the contents of a variable. The variable may be subscripted.
The syntax is as follows:

;/varname

The ;/ statement returns varname=value. It can be used to display the value of a local variable, an array dimensioned with
DIM, a variable defined using EQUATE, or a variable defined in a COMMON statement.

The ;/ statement can return COMMON variables that are defined in different accounts (namespaces).

See Also

* ; (semicolon) command in the MultiValue Commands Reference

48 Caché MultiValue Basic Reference

DEFFUN

DEFFUN

Declares a user-defined function

DEFFUN name [(args)] [CALLING routine]

Arguments
name The name of an existing user-defined function. This cannot be the name of any existing
system-provided (built-in) function. Name validation is performed on name.
args Optional — An argument, or comma-separated list of arguments for the function. Arguments
can be subscripted. If one or more arguments are specified, the enclosing parentheses are
mandatory.
CALLING Optional — Used to map a identifier to a valid name. Either an identifier, or a quoted string
routine literal that begins with the asterisk (*) character. No name validation is performed on routine.
Description

The DEFFUN statement allows you to declare an existing user-defined function, placing it in the function lookup table.
This operation only declares the function's name and argument list. Prior to invoking DEFFUN, the function must have
been defined, using the FUNCTION statement.

The CALLING clause is commonly used to map an invalid function name (routine) to a valid user-defined function name
(name). User-defined function names cannot begin with a punctuation character (except %); built-in function names often
begin with a punctuation character. You can use a CALLING clause to map one to the other. In the optional CALLING
clause, the routine name can be a quoted string literal function name beginning with an asterisk (*), as follows:

DEFFUN foo(x,y,z) CALLING "*foo"

In this example, DEFFUN allows calls to appear in expressions using the ordinary identifier foo, while the name *foo is
passed to the runtime execution. The leading asterisk specifies how to look up this function name. In Caché MultiValue
and most emulations, the asterisk is both part of the function name and an indicator specifying how to look up this function.
In UniData emulation, the asterisk is removed from the function name and serves only as a lookup indicator. For further
details, refer to the CALL statement.

Examples
The following example illustrates the use of the DEFFUN statement:

DEFFUN cuberoot(mynum,precision)
CRT cuberoot(mynum,precision)

See Also

e CALL statement
e FUNCTION statement

Caché MultiValue Basic Reference 49

Caché MultiValue Basic Commands

DEL

Deletes an element from a dynamic array.

DEL dynarray <f[,v[,s]]>

Arguments
dynarray Any valid dynamic array.
f An integer specifying the Field (attribute) level of the dynamic array on which to perform
the deletion. Fields/Attributes are counted from 1.
v Optional — An integer specifying the Value level of the dynamic array on which to perform
the deletion. Values are counted from 1 within a Field.
S Optional — An integer specifying the Subvalue level of the dynamic array on which to
perform the deletion. Subvalues are counted from 1 within a Value.
Description

The DEL statement deletes one element from a dynamic array. It deletes both the data and the dynamic array delimiter.
Which element to delete is specified by the f, v, and s integers. The enclosing angle brackets are mandatory. For example,
if f=2 and v=3, this means delete the third value from the second field. If f=2 and v is not specified, this means to delete the
entire second field.

The DEL statement and the DELETE function perform the same operation, with the following difference: DEL changes
the supplied dynamic array; DELETE creates a new dynamic array with the specified change and leaves the supplied
dynamic array unchanged.

Examples

The following example uses the DEL statement to delete the second value from the first field of a dynamic array:

cities="New York":@VM:"London":@VM:
"Chicago'":@VM:""Boston":@VM:"Los Angeles"
PRINT cities

1 Returns: “New YorkylLondonyChicagoyBostonylLos Angeles"
DEL cities <1,2>
PRINT cities

1 Returns: "New YorkyChicagoyBostonylLos Angeles"

See Also

* COUNTS function
* DELETE function

* EXTRACT function

» Dynamic Arrays

50 Caché MultiValue Basic Reference

DELETE, DELETEU

DELETE, DELETEU

Deletes a record from a MultiValue file.

DELETE filevar,reclD
[SETTING var] [LOCKED statements] [ON ERROR statements] [THEN statements] [ELSE
statements]

DELETEU filevar,reclD
[SETTING var] [LOCKED statements] [ON ERROR statements] [THEN statements] [ELSE
statements]

Arguments

filevar A local variable used as the file identifier of an open MultiValue file. This
variable is set by the OPEN statement.

reciD The record ID of the record to be deleted.

SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR clause. Provided for jBASE compatibility.

Description

The DELETE statement deletes a record from a MultiValue file. The DELETEU statement performs the same operation,
but does not release an existing update lock if one was established.

You must use the OPEN statement to open a file before issuing either of these DELETE statements.

DELETE and DELETEU delete records without waiting for conflicting locks on those records to be released. To require
that the program wait indefinitely for a conflicting lock to be released, you can check for locks prior to calling DELETE
or DELETEU by using an IF RECORDLOCKED statement. For example:

IF RECORDLOCKED(filevar,recID) >= 0 THEN
DELETE filevar,reclD THEN ... ELSE ...

END

ELSE STOP 5010,@ACCOUNT,filevar,reclD

Alternatively, you can set the SOPTION WRITE.LOCK.WAIT configuration option. However, this option applies
globally, which can introduce unnecessary waits, such as on READ statements, and significantly slow down programs.

If lock contention is active, to specify the action that occurs when a record is locked, you can optionally specify a LOCKED
clause.

You can optionally specify an ON ERROR clause. If record delete fails, the ON ERROR clause is executed. This may
occur if the filevar file has already been closed.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the record delete is
successful, the THEN clause is executed. If record delete is attempted but fails, the ELSE clause is executed.

DELETE completes successfully if the recID refers to a non-existent record.
Examples
The following example illustrates the use of the DELETE statement:

OPEN "Myfile.Test" TO myfile
DELETE myfile,myrec ON ERROR PRINT "no delete"

Caché MultiValue Basic Reference 51

Caché MultiValue Basic Commands

See Also

OPEN statement
READ statement
WRITE statement
CLEARFILE statement
STATUS function

52

Caché MultiValue Basic Reference

DELETELIST

DELETELIST

Deletes a saved select list.

DELETELIST listname

Arguments

listhame A name assigned to a saved select list.

Description
The DELETELIST statement deletes a saved select list. The select list was saved using WRITELIST.

The listname select list is saved in the &SAVEDLISTS& file. Caché stores this file using the "SAVEDLISTS global.

See Also

e WRITELIST statement

Caché MultiValue Basic Reference 53

Caché MultiValue Basic Commands

DELETESEQ

Deletes a sequential file.

DELETESEQ filename [SETTING setvar] [LOCKED statements]
[ON ERROR statements] [THEN statements] [ELSE statements]

Arguments

filename The file to be deleted. A fully-qualified Windows or UNIX® file pathname,
specified as a quoted string. For two-part versions of this argument, see
the Emulation section below.

SETTING setvar A variable used to hold the system return code. Because this comes from
the underlying operating system, values are platform-dependent. However,
all supported platforms return 0O for successful completion. The SETTING
clause is executed before the ON ERROR, THEN, or ELSE clause.

Description

The DELETESEQ statement is used to delete a sequential access file.

The filename must be a fully-qualified pathname. The directories specified in filename must exist for a file delete to be
successful. File names are not case-sensitive.

You can optionally specify a LOCKED clause, which is executed if DELETESEQ could not delete the specified sequential
access file due to lock contention.

You can optionally specify an ON ERROR clause, which is executed if the file is located but could not be deleted. If no
ON ERROR clause is present, the ELSE clause is taken for this type of error condition.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file delete is suc-
cessful, the THEN clause is executed. If file delete fails (for example, the file does not exist), the ELSE clause is executed.

You can use the STATUS function to determine the status of the sequential file delete operation, as follows: 0=success;
1=file does not exist; 2=path does not exist; 3=access denied; 4=the file is a directory; 5=the file is locked by another MV
process; 6=the file is in use; -1=unexpected error; -2=delete failed for platform-dependent reason, see setvar for further
explanation.

File Locking

Issuing OPENSEQ gives a process exclusive access to the specified file. An OPENSEQ locks the file against a
DELETESEQ issued by any other process. This lock persists until the process that opened the file releases the lock, by
issuing a CLOSE, a CLOSESEQ), or a RELEASE statement.

Emulation

For jBASE emulation, the filename argument can be specified with a two-part path,filename syntax. When executed, the
two parts are concatenated together, with a delimiter added to the end of path, when necessary. For example, DELETESEQ
"c:\temp\", "mytest.txt" or DELETESEQ "c:\temp®, "mytest.txt".

For other emulation modes, the filename argument can be specified with a two-part file,itemID syntax. The file part is a
dir-type file defined in the VOC master dictionary, and the itemID part is an operating system file within that directory.

See Also

» CREATE statement

54 Caché MultiValue Basic Reference

DELETESEQ

 OPENSEQ statement
« READSEQ statement
e WRITESEQ statement
* FLUSH statement

* NOBUF statement

e CLOSESEQ statement
* RELEASE statement

» STATUS statement

e FILEINFO function

* STATUS function

e @FILENAME system variable

Caché MultiValue Basic Reference 55

Caché MultiValue Basic Commands

DIM (DIMENSION)

Dimensions an array of variables.

DIM array([rows[,columns]][,array2([rows[,columns]DIL,---1
DIMENSION array([rows[,columns]])[,array2([rows[, columns]])[,...]

Arguments
array Name of an array. Follows standard variable haming conventions. Can be a single array or
a comma-separated list of arrays.
rows Optional — A positive, non-zero integer specifying the number of array elements to dimension
for a one-dimensional (vector) array, or the number of rows to dimension for a two-dimensional
array. Maximum value is 65535. A value less than 1 or greater than 65535 results in an
<ARRAY DIMENSION> error.
columns Optional — For two-dimensional (matrix) arrays, a positive, non-zero integer specifying the
number of columns per row. Can only be used in conjunction with the rows argument.
Maximum value is 65535. A value less than 1 or greater than 65535 results in an <ARRAY
DIMENSION> error.
Description

The DIMENSION and DIM keywords are synonyms.

The DIM statement can be used in two ways: explicitly, to dimension a one-dimensional or two-dimensional array, or
implicitly to dimension a multidimensional array.

* Most MultiValue systems require you to explicitly dimension the rows and columns of a static array. These values
specify the maximum number of elements that can be defined for that array. An explicitly dimensioned array is limited
to two subscripts. It can be either one-dimensional, representing a vector array, or two-dimensional, representing the
rows and columns of a matrix array. A one-dimensional array can be dimensioned either as a vector array: DIM
arrayname(n) or a matrix array with a column dimension of 1: DIM arrayname(n,1).

» Caché MVBasic also allows you to dimension arrays of an arbitrary number of dimensions. This allows MVBasic to
support the multidimensional arrays used in Caché. You specify a multidimensional array using a DIM statement with
empty parentheses: DIM arrayname(). This declares arrayname as a dimensioned array, but the number of dimensions
and number of elements in each dimension may be expanded dynamically at runtime.

If a subroutine or function uses a static array (for example, DIM myarray(2)), the static array must be dimensioned
within the subroutine or function. However, if a subroutine or function uses an array of unspecified dimensions (for
example, DIM myarray()), you may specify the DIM either within or outside the subroutine or function.

The subscripts of a dimensioned array can be specified using named variables, as well as numeric indices. Variables whose
names begin with a % are known as public arrays and their values are preserved across SUBROUTINE calls in a similar
manner to COMMON arrays. Variables whose names begins with ~ are known as globals and their values are stored on
disk automatically. Variables with normal naming conventions are known as local arrays and their value is lost when the
program terminates, as with any other variable.

To clear data from an implicitly dimensioned array, use $kill. This clears any values that have been assigned.

56 Caché MultiValue Basic Reference

DIM (DIMENSION)

Note: When executing a DIM statement from the MVBasic command shell, you must assign and use the array elements
within the same command line. For example:

USER:;DIM xQ,y(Q :x(1)="fred" ;y(2)="betty" ;CRT x(1),y(2)

Attempting to reference a dimensioned array in a subsequent command line results in a MVBasic syntax error.
You cannot DIM the same array twice in a DIM statement. You cannot DIM an array that has already been declared using
the COMMON statement. Attempting to do so results in a compile error.
You can use the EXISTS function or the $DATA function to determine if a variable or array node has been defined.

All uninitialized variables are treated as zero-length strings (""").

Using Dimensioned Arrays

You can use the INMAT function to return the defined dimensions of a static array.

Emulation

IN2, INFORMATION, P1Open, Prime, UniData, and UniVerse respond to an undimensioned array element by issuing a
runtime <UNDEFINED> error. Other emulations respond to an undimensioned array element by issuing a compile-time
syntax error.

Examples

The following examples illustrate the use of the DIM statement:

! Dimensions a one-dimensional array with 10 elements.
DIM MyVector(10)

I Dimensions a two-dimensional matrix array
I with 10 rows and 10 columns.
DIM MyMatrix(10,5)

I Dimensions a two-dimensional array using local variables
DIM MyMatrix(myrows,mycols)

! Dimension a local array of arbitrary size and subscript type.
DIM MyLocal ()

MyLocal (88) = ““88”

MyLocal (88,”The”) = “The 88”

MyLocal (““Hello’™) = “World!”

Notes
Caché MVBasic does not require the dimension of arrays to be specified, and therefore does not implement the ReDim
Statement.

See Also

» COMMON statement

* MAT statement

* MATBUILD statement
* MATPARSE statement
* MATREAD statement
* MATWRITE statement
¢ $DATA function

e EXISTS function

Caché MultiValue Basic Reference 57

Caché MultiValue Basic Commands

* INMAT function

e Variables

58 Caché MultiValue Basic Reference

DISPLAY

DISPLAY

Displays on the terminal screen.

DISPLAY [text]
DISPLAY text [format]

Arguments
text Optional — Any MVBasic expression that resolves to a quoted string or a numeric. You can
specify a single expression or a series of expressions separated by either commas (,) or
colons (:). A comma inserts a tab spacing between the two strings. A colon concatenates
the two strings. If text is omitted, a blank line is returned.
format Optional — A code specifying how to handle text, specified as a quoted string. This format
is applied to the text that immediately precedes it. Whitespace characters may be inserted
between text and format.
Description

DISPLAY is identical in function to the CRT statement. Please refer to the CRT statement for further information.

See Also

* CRT statement

* PRINT statement
* FMT function

Caché MultiValue Basic Reference 59

Caché MultiValue Basic Commands

ECHO

Suppresses user input display on the screen.

ECHO {OFF | ON}
ECHO {expression}

Arguments
expression A MVBasic expression that resolves to a boolean value, either 0 (off) or 1 (on). You can also
specify these values using the keywords OFF and ON. The default is 1.
Description

The ECHO statement suppresses or allows the display of input characters on the terminal screen. If set to OFF, or 0,
echoing of user input on the terminal screen is suppressed. If set to ON, or 1, user input is echoed on the terminal screen.
One common use for ECHO is when entering a password, using the INPUT statement. ECHO OFF suppresses display
of the input password; the password is written to the INPUT variable.

The ECHO statement suppresses screen display of user input. The HUSH statement suppresses All screen display.

Examples

The following example illustrates the use of the ECHO statement:

PRINT "Type your username'
INPUT uname

ECHO OFF

PRINT "Type your password"
INPUT pword

ECHO ON

See Also

* HUSH statement
» CRT statement

* PRINT statement
* INPUT statement

60 Caché MultiValue Basic Reference

END

END

Terminates a block of code or a program.

END

Arguments

None.

Description

The END statement has three uses:
* Asaclause terminator

¢ As astatement terminator

e Asaroutine terminator

Clause Terminator
When used as a clause terminator, the END keyword terminates execution of a block of code.

END is used as part of an IF... THEN statement, where it terminates execution of the block of code for the current clause
of the IF... THEN statement.

END is used as part of a multiline LOCKED clause, ON ERROR clause, THEN clause, or ELSE clause, where it terminates
execution of the block of code.

Block code clauses have specific line break requirements:
» Each block code statement must appear on its own line.
e The LOCKED, ON ERROR, THEN, or ELSE keyword cannot precede a block code statement on the same line.

e The END keyword can appear on its own line, or can appear at the end of the final block code statement line. The code
line END ELSE (concluding a multiline THEN clause and beginning an ELSE clause) is also valid.

The following are valid syntactic forms:

command args
THEN
statementl
statement2
END

ELSE
statementl
statement?2
END

command args THEN
statementl
statement2 END
ELSE

statementl
statement2 END

command args THEN
statementl
statement?2

END ELSE
statementl
statement?2

END

Caché MultiValue Basic Reference 61

Caché MultiValue Basic Commands

Statement Terminator

The END keyword is used with another keyword in a few statements to indicate the end of the code encompassed by that
statement. These uses are:

« BEGIN CASE ... CASE ... END CASE
 BEGIN TRANSACTION ... END TRANSACTION
* TRY ..CATCH .. END TRY

Routine Terminator

When used outside of a block structure clause END terminates routine or program execution. Commands following an
END statement are not executed. If additional lines of code appear after the END statement, Caché (and all emulation
modes), by default, generates an error: “Unexpected line outside of program”. You can set SOPTIONS
IGNORE.EXTRA.LINES to ignore lines that appear after the END statement, rather than issuing an error message.

See Also
e GOTO statement
* $OPTIONS statement

* |F..THEN statement
* RETURN statement

62 Caché MultiValue Basic Reference

END TRANSACTION

END TRANSACTION

Specifies where to continue execution after a transaction.

END [TRANSACTION | WORK]

Description

The END TRANSACTION statement specifies the end of a transaction. This is where to continue program execution
following a COMMIT statement or a ROLLBACK statement.

If an END TRANSACTION is encountered before either a COMMIT or a ROLLBACK, the current transaction is rolled
back.

The TRANSACTION or WORK keywords are optional and provides no functionality. They are provided solely for com-
patibility with other MultiValue vendor products.
Note: Caché MVBasic supports two sets of transaction statements:

e UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.

e UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.

These two sets of transaction statements should not be combined.

Example

The following example performs database operations within a transaction. It sets a variable x, which determines whether
the transaction should be committed or rolled back.

PRINT "Before the transaction"
BEGIN TRANSACTION

IF x=0
THEN COMMIT
END
ELSE ROLLBACK
PRINT "Transaction rolled back™
END
PRINT "This should not print"”
END TRANSACTION
PRINT "After the transaction"

See Also

» BEGIN TRANSACTION statement
* COMMIT statement

* ROLLBACK statement

Caché MultiValue Basic Reference 63

Caché MultiValue Basic Commands

ENTER

Transfers control to an external subroutine.

ENTER name

Arguments

name Name of the external subroutine to call.

Description

The ENTER statement can be used to call an external subroutine. The external subroutine must have been compiled and
cataloged. No parameters can be passed using ENTER; use CALL if you need to pass parameters to a subroutine. When
ENTER is used to call an external subroutine, the RETURN statement within the external subroutine does not return
control to calling program; use CALL if you need to return following a subroutine call.

ENTER calls the external subroutine without increasing the stack level. This can be useful when issuing a large number
of calls without returning. Because ENTER is not increasing the stack level, a <FRAMESTACK> error cannot occur.

You can use name to specify the external subroutine either directly or indirectly:
e The name argument can specify the exact name under which the subroutine was cataloged.
» The name argument can specify the name of a variable that contains the name of the subroutine. A variable of this type

is prefaced with the @ symbol. A variable name can be a local variable, or an element of an array.

You can also use the COMMON statement to make specified variables available to all external subroutines.

ENTER, CALL, GOSUB, and SUBR

The ENTER statement is used to call an external subroutine with no parameter passing or return, and without increasing
the stack level. The CALL statement is used to call an external subroutine with parameter passing and returning. CALL
increases the stack level.

The GOSUB statement is used to call an internal subroutine. The SUBR function is used to call an external subroutine that
returns a value.

Examples

The following example uses ENTER to call an external subroutine:

Main
x=""Burma
PRINT x ! Returns "Burma"
ENTER ErrorSub
PRINT x ! Does not execute
ErrorSub

PRINT "An error occurred”
QUIT

See Also

» CALL statement

» COMMON statement
 RETURN statement

* SUBROUTINE statement

64 Caché MultiValue Basic Reference

ENTER

* END statement
* DIM statement
* GOSUB statement
* SUBR function

Caché MultiValue Basic Reference

65

Caché MultiValue Basic Commands

EQUATE

Replaces a symbol with a value at compile time.

EQUATE symbol TO expression [, .--.]
EQU symbol TO expression [, -..]

EQUATE symbol LITERALLY str [, -..]
EQU symbol LIT str [, --.]

Arguments
symbol The placeholder symbol to be replaced, specified as one or more characters. The first
character must be a letter or percent sign (%). Subsequent characters may be letters,
numbers, percent sign (%), underscore (_), or dollar sign ($). The final character may not be
an underscore.
expression The value used to replace all instances of symbol at compile time. Any valid Caché MVBasic
expression.
str The string used to replace all instances of symbol at compile time. Specified as a quoted
string.
Description

EQUATE replaces every instance of symbol in the program with the specified expression or variable. EQUATE performs
this substitution at compile time. Therefore, the value replaced is not affected by program execution. EQUATE can be
used to replace executable statements in the program. Variables perform substitutions during program execution and cannot
be used to modify the program's executable code.

You can specify multiple symbol TO expression and symbol LITERALLY str clauses in any combination as a
comma-separated list. You can insert line breaks as needed following a comma separator.

EQUATE treats a sequence of words separated by —> as a single entity. For example:

EQUATE vin TO car(7)
AutoCheck->vin = vin

returns AutoCheck->vin = car (7).

The EQUATE keyword can be abbreviated as EQU. The LITERALLY keyword can be abbreviated as LIT.

Examples

The following example replaces at compile time every instance of the symbol add length with the expression BYTE-
LEN(x)+20 or LEN(x)+10, depending on the setting of the Unicode variable:

IF Unicode=1
THEN EQUATE addlength TO BYTELEN(Xx)+20
ELSE EQUATE addlength TO LEN(x)+10

The following example replaces at compile time every instance of the symbol Ietters with the contents of the variable
alpha:

EQUATE letters LITERALLY "alpha"
BEGIN CASE
CASE lang=English
alpha=""abcdefghi jklmnopgrstuvwxyz"
CASE lang=Greek
alpha="" u
END CASE

66 Caché MultiValue Basic Reference

EQUATE

See Also

e Variables

Caché MultiValue Basic Reference 67

Caché MultiValue Basic Commands

ERRMSG

Displays the specified error message.

ERRMSG errcode [,vall[,val2]]

Arguments
errcode An expression that resolves to a MultiValue error code; commonly (but not always) specified
as a positive integer. The error code can be specified as a literal or as a expression that
resolves to a literal value. A non-numeric literal value must be specified as a quoted string.
val Optional — A comma-separated list of one or argument values inserted into the error message
text. These argument values can be specified as literals or as expressions that resolve to
literals. A non-numeric literal value must be specified as a quoted string.
Description

ERRMSG displays the error message text corresponding to the errcode error code. Error messages are defined in the
ERRMSG file. An error message text commonly includes the error code (in square brackets) as part of the message.

If you specify a errcode value that does not correspond to an error code, ERRMSG displays the string “Errmsg” with the
error code in square brackets.

If you specify one or more val arguments, ERRMSG displays the errcode error message text with these val arguments
inserted in the message. If the errcode error message does not take an inserted value, the val argument is ignored. If the
errcode value does not correspond to an error code, ERRMSG returns the “Errmsg” string with val appended and followed
by a caret () separator character.

Examples

The following examples return an error message that does not take a supplied value:

ERRMSG 94
ERRMSG 94,24
ERRMSG 94,"testl", test2"

all of these return: [94] End of file.

The following examples return an error message that takes one supplied value:

ERRMSG 40
ERRMSG 40,24
ERRMSG 40,"testl","test2"

these return:

[40] Program " has not been compiled.
[40] Program "24" has not been compiled.
[40] Program “testl® has not been compiled.

The following examples specify a num value that does not correspond to an error code:

ERRMSG 50
ERRMSG 50,24
ERRMSG 50, testl", test2"

these return:

68 Caché MultiValue Basic Reference

ERRMSG

Errmsg[50]
Errmsg[50]24"
Errmsg[50] testltest2”®

For a list of error codes and corresponding error messages, see Error Messages in the Caché MultiValue Commands Reference.

See Also

e ABORTE statement
e STOPE statement

Caché MultiValue Basic Reference 69

Caché MultiValue Basic Commands

EXECUTE

Executes a MultiValue command from within a program, passing and returning values.

Use any of the following three syntactical forms:

EXECUTE command

[CAPTURING {dynarray | NULL} | OUTPUT oref]
[PASSLIST [dynarray]]

[RTNLIST var]

[{SETTING | RETURNING} dynarray]

EXECUTE command
IN < expression]

OUT > var]

SELECT[(list)] < dynarray]
SELECT[L (list)] > var]
PASSLIST[(dynarray) 11
STATUS > var]

EXECUTE command
,//IN. < expression]

,//0UT. > var]

,//SELECT.[(list)] < dynarray]
,//SELECT.[(list)] > varl]
,//PASSLIST.[(dynarray) 1]
,//STATUS. > var]

Arguments
command One or more MultiValue commands, each command specified as a quoted
string. A string can be quoted using single quotes (‘cmd arg'), double quotes
("emd arg"), or backslashes (\cmd arg\). To specify multiple commands,
separate the commands with a Field Mark ("cmd1 arg":@FM:"cmd2 arg").
var A variable used to hold a value.
dynarray A dynamic array.
oref An object reference. The corresponding class must have (at minimum) a
WriteLine() method (which inserts a newline at the end of the write
operation) and a Write() method (which does not insert a newline).
Description

The EXECUTE command executes the specified Caché MultiValue command(s), then returns execution to the next
MVBasic statement following the EXECUTE. It initially searches the VOC for the command; if the command is not found
in the VOC, it searches the global catalog. For lookup details, refer to CATALOG in the Caché MultiValue Commands
Reference.

The first syntactical form supports the following optional clauses:

e The CAPTURING clause diverts all terminal output from the MultiValue command to the supplied dynarray variable.
This output is stored as a dynamic array, with lines separated by Field Marks. If command executes successfully, the
resulting terminal output is captured; if command fails, the error message is captured. CAPTURING NULL discards
all terminal output, with the following exceptions: Output from the OUT statement is displayed. Output from non-
MultiValue commands or shell commands cannot be captured, and is therefore displayed. If command includes the
HUSH ON command, output is not stored in dynarray based on that command, and terminal display is disabled upon
return from the EXECUTE command.

70 Caché MultiValue Basic Reference

EXECUTE

* The OUTPUT clause diverts all terminal output from the MultiValue command to the supplied oref. (One use of this
object is to invoke a class from which you can execute write methods to write to a sequential file.) This is especially
useful when handling extremely large command outputs (>3.6 Mbytes). The following example:

oref = "%Stream.FileCharacter'->%New()
EXECUTE "LIST BIGFILE ID-SUPP Al1'" OUTPUT oref

directs the output to the standard Caché %Stream class using the standard Write() and WriteLine() methods. An object
derived from a user-written class can be used if it has both a Write() and WriteLine() method, as shown in the
example below. A WriteLine() method ends by forcing a new line; a Write() method does not force a new line.

If an error occurs, such as specifying a filevar that is not an existing sequential file, EXECUTE fails without displaying
an error message. It is the programmer’s responsibility to check the @SYSTEM.RETURN.CODE for -1, indicating
an error. If using a Unicode version of Caché, you must change the file translation in the locale. The OUTPUT clause
and the CAPTURING clause are mutually exclusive.

e The PASSLIST clause supplies the specified dynarray to the executed command as the current default external select
list.

* The RTNLIST clause receives the default select list (if any) produced by the executed command.

* The RETURNING clause receives the ERRMSG error message string with which the command terminated. The format
is a dynamic array containing the ERRMSG number followed by the parameters.

The second and third syntactical forms support the following optional clauses:
e The IN clause specifies the input value for command.

e The OUT clause assigns the output from command to var. The var variable must be simple variable name. It cannot
include a system variable, an EQUATE, a dynamic array reference, or a substring reference.

» The PASSLIST clause supplies the specified dynarray to the executed command as the current default external select
list.

» The STATUS clause var variable contains the execution status of the last executed list or select command. If the
command completed successfully, var contains the number of items listed, selected, or otherwise processed. If the
command failed, var contains -1. If the specified command name is not a valid command, var contains -1. Commands
that do not list or select items do not set var; var is set to 0 regardless of whether the command succeeded or failed.
var can be a simple variable, or a single dynamic array reference (A<i>), a single substring reference (A[s,1]), or a
substring reference nested inside a dynamic array reference (A<i>[s,I]).

EXECUTE, PERFORM, and CHAIN

The EXECUTE command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement. EXECUTE can pass values to the MultiValue command(s) and return values from the Mul-
tiValue command(s).

The PERFORM command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement. PERFORM cannot pass or return values.

The CHAIN command executes a single MultiValue command from within MVBasic. It does not return execution to
MVBasic. CHAIN cannot pass values.

Emulation

In Reality emulation, EXECUTE executes all stacked data, regardless of list status. In Caché and all other emulations,
only the EXECUTE command argument is executed. For all emulations (except Reality) EXECUTE either clears or
maintains stacked data on the DATA queue, depending on the STACK.GLOBAL option.

Caché MultiValue Basic Reference 71

Caché MultiValue Basic Commands

EXECUTE supports the STACK.GLOBAL option, which can be set using SOPTIONS. When STACK.GLOBAL is on,
EXECUTE does not clear unused items from the DATA queue upon completion. By default, STACK.GLOBAL is on for
Caché, and for UniVerse, UniData, PICK, Prime, PIOpen, and IN2 emulations. STACK.GLOBAL is off for all other
emulations.

In jBASE emulation, the RTNLIST clause returns the select list expanded to a dynamic array. All other emulations return
the select list name. The PASSLIST clause requires that the select list be designated as external. This external select list
bit setting is only used for jJBASE emulation.

EXECUTE supports the RETURNING.CODE option, which can be set using SOPTIONS.

In UniData and UDPICK emulations, a command name with an initial character of * is handled as a global name. EXECUTE
removes the leading * and then looks up the resulting command name in the global catalog in SYS.MV, rather than looking
up in the VOC. If the runtime environment is not a UniData emulation, a normal VOC lookup is done on the *command
name.

Invoking Other Command Shells
You can use the $XECUTE command to issue an ObjectScript command from within Caché MVBasic.

You can use the PCPERFORM command to issue an operating system command from within Caché MVBasic.

Examples

The following example issues the MultiValue LISTME command, captures its output in the dynamic array variable
currusers and then returns execution to the MVBasic program:

PRINT TIMEQ

EXECUTE "LISTME"™ CAPTURING currusers
PRINT TIMEQ

PRINT currusers

The following example shows how to use EXECUTE to execute multiple MultiValue commands:

PRINT TIMEQ
EXECUTE "SLEEP 2':@FM:"'SLEEP 3"
PRINT TIMEQ

This following example directs output to a sequential file using the OUTPUT clause. It uses the standard Caché-supplied
%Stream.FileCharacter class, which uses an operating system file as temporary storage. The location of the file is determined
by the class itself, although a method allows you to override the default location. This example uses the default location.
Once the object is closed, the temporary file is deleted. In this example, the size of the output from the LIST command is
limited only by the maximum size of the file:

* Execute the LIST command to an object.
*

oref = "%Stream.FileCharacter'->%New()
EXECUTE *"LIST BIGFILE ID-SUPP Al SAMPLE 100" OUTPUT oref
*

* Read back that object, one line at a time.
*

oref->Rewind()

lineno = 1

LOOP WHILE oref->AtEnd = 0 DO
line = oref->ReadLine()

PRINT lineno "R%4'":": ™ : OCONV(line,"MCP™)
lineno = lineno + 1
REPEAT

72 Caché MultiValue Basic Reference

EXECUTE

The following example uses an OUTPUT clause with a user-defined MVExecute.Output class:

0001: oref = ""MVExecute.Output'"->%New()
0002: EXECUTE "LIST BIGFILE ID-SUPP Al SAMPLE 100" OUTPUT oref

0003:

0004: * Read back that object, one line at a time.
0005: *

0006: LineCount = oref->LineCount

0007: PRINT "Line count = ":LineCount

0008: FOR I = 1 TO LineCount

0009: PRINT I "R%4" : ": " : oref->ReadLine(l)
0010: NEXT 1

The following is the definition of this user-defined MVExecute.Output class. It contains the required Write() and WriteLine()
methods, and a ReadL ine() method:

Class MVExecute.Output Extends %Persistent

Property LineCount As %lInteger;
Property Lines As array Of %String;
Method Write(line As %String) As %Integer [Language = mvbasic]

IF NOT(@ME->LineCount) THEN
@ME->LineCount = 1
dummy = @ME->Lines->SetAt('",1)
END
LineNew = @ME->Lines->GetAt(@ME->LineCount) : line
dummy = @ME->Lines->SetAt(LineNew , @ME->LineCount)
RETURN O
}
Method WriteLine(line As %String) As %Integer [Language = mvbasic]
IF NOT(@VE->LineCount) THEN
@ME->LineCount = 1
dummy = @ME->Lines->SetAt(''",1)
END
LineNew = @ME->Lines->GetAt(@ME->LineCount) : line
dummy = @ME->Lines->SetAt(LineNew , @ME->LineCount)

@ME->LineCount = @ME->LineCount + 1
RETURN O

}
Method ReadLine(LineNumber As %lInteger) As %String [Language = mvbasic]

IF LineNumber LE O OR LineNumber GT @ME->LineCount THEN RETURN "?7?"
RETURN @ME->Lines->GetAt(LineNumber)

See Also

* CHAIN statement

* OUT statement

* PERFORM statement

* STATUS function

e ObjectScript: XECUTE command

Caché MultiValue Basic Reference 73

Caché MultiValue Basic Commands

EXIT

Exits a LOOP...REPEAT or FOR...NEXT statement.

EXIT

Arguments

The EXIT statement takes no arguments.

Description

The EXIT statement can only be used within a LOOP...REPEAT or FOR...NEXT control structure to provide an alternate
way to exit the loop. EXIT transfers control to the statement immediately following the end of the loop structure (the NEXT
or REPEAT keyword).

Any number of EXIT statements may be placed anywhere in the block of code statements. EXIT is commonly used with
the evaluation of some condition (such as an IF...THEN statement).

When used within nested loop statements,EXIT only exits the loop in which it occurs; EXIT transfers control to the loop
that is nested one level above the exited loop.

The GOTO statement can also be used to exit from a loop control structure. The CONTINUE statement exits from the
current iteration of a loop; the EXIT statement exits from the loop.

Emulation

In jBASE emulation mode, EXIT has both an argumentless and an argumented form.

» EXIT without an argument is used to exit a loop, as described above. The keyword BREAK without an argument can
also be used for this purpose.

e EXIT with anargument is used to exit a program and return the argument value. The argument is commonly an integer
code value.

See Also

* FOR..NEXT statement

* LOOP..REPEAT statement
* GOTO statement

» CONTINUE statement

74 Caché MultiValue Basic Reference

FILELOCK

FILELOCK

Locks a MultiValue file.

FILELOCK [filevar] [,locktype] [ON ERROR statements] [LOCKED statements]

Arguments
filevar Optional — A file variable name used to refer to a MultiValue file. This
filevar is supplied by the OPEN statement. If not specified, the default file
is locked.
locktype Optional — The type of lock requested, specified by the keyword SHARED
or EXCLUSIVE. If not specified, the default is EXCLUSIVE.
Description

The FILELOCK statement is used to lock a MultiValue file. It takes the file identifier filevar, defined by the OPEN
statement.

You can optionally specify a LOCKED clause. This clause is executed if filevar refers to a file that has already been locked
by another user. The clause is executed if locktype conflicts with an existing lock. The LOCKED clause is optional, but
strongly recommended; if no LOCKED clause is specified, program execution waits indefinitely for the conflicting lock
to be released.

If a file is locked by another user, the STATUS function returns the process ID (pid) of the user holding the lock.

You can optionally specify an ON ERROR clause. If file lock fails, the ON ERROR clause is executed. This may occur if
filevar does not refer to a currently open file.

You can release a file lock by issuing a FILEUNLOCK, issuing a RELEASE with no record ID, or by closing the file.
File and Record Locking

A FILELOCK is equivalent to taking a RECORDLOCK on all records in the file. For FILELOCK to exclusively lock
a file, not only must no other user have a conflicting FILELOCK, but no other user may have a RECORDLOCKU or
RECORDLOCKL for any record of the file. You can check the status of file locks and record locks using the RECORD-
LOCKED function.

Lock Promotion

If you have a shared lock on a file, then request an exclusive lock on the same file, MVBasic attempts to get the exclusive
lock. If it is successful, your shared lock is promoted to an exclusive lock. The result is that you hold one exclusive lock,
not two locks.

See Also

e OPEN statement

FILEUNLOCK statement

RELEASE statement
e RECORDLOCKED function

STATUS function

Caché MultiValue Basic Reference 75

Caché MultiValue Basic Commands

FILEUNLOCK

Unlocks a MultiValue file.

FILEUNLOCK [Ffilevar] [ON ERROR statements]

Arguments
filevar Optional — A file variable name used to refer to a MultiValue file. This
filevar is supplied by the OPEN statement. If not specified, the default file
is unlocked.
Description

The FILEUNLOCK statement is used to unlock a MultiValue file, undoing the lock established by FILELOCK.
FILEUNLOCK only releases locks established by FILELOCK. It does not release record locks; record locks can be
released using the RELEASE statement. You can check the status of file locks and record locks using the RECORDLOCKED
function.

You can unlock a MultiValue file by issuing a FILEUNLOCK, by issuing a RELEASE with no record ID, or by closing
the file.

FILEUNLOCK takes the file identifier filevar, defined by the OPEN statement.
You can optionally specify an ON ERROR clause. If file unlock fails, the ON ERROR clause is executed. This may occur
if filevar does not refer to a currently open file.

See Also

e CLOSE statement

* FILELOCK statement

* RELEASE statement

» STATUS statement

* RECORDLOCKED function
* STATUS function

76 Caché MultiValue Basic Reference

FIND

FIND

Finds an element of a dynamic array by exact value.

FIND data IN dynarray SETTING f[,v[,s]] [THEN statements] [ELSE statements]

Arguments
data The data value of an element. This value must be the complete value of the element.
dynarray Any valid dynamic array.
f A variable that receives an integer denoting the Field level of the dynamic array where
the element data was found. Fields are counted from 1.
Y Optional — A variable that receives an integer denoting the Value level of the dynamic
array where the element data was found. Values are counted from 1 within a Field.
S Optional — A variable that receives an integer denoting the Subvalue level of the dynamic
array where the element data was found. Subvalues are counted from 1 within a Value.
Description

The FIND statement locates the data value in a dynamic array and returns its location by setting the f, v, and s variables to
integers. For example, if data is located in the third Value of the second Field, FIND sets f=2 and v=3.

The data value must be an exact match with the full value of an element in dynarray. It cannot be a substring of an element
value. Matching is case-sensitive. If data does not match an element value, f, v, and s are unchanged and retain their previous
values.

Thef, v, and s arguments accept a single dynamic array reference (A<i>), a single substring reference (A[s,1]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If data is located in
dynarray, the THEN clause is executed. If data is not located in dynarray, the ELSE clause is executed. The statements
argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block
of statements has specific line break requirements: each statement must be on its own line and cannot follow a THEN,
ELSE, or END keyword on that line.

The FIND statement returns the f, v, and s position of a dynamic array element by specifying the element's exact value.
The FINDSTR statement returns the f, v, and s position of a dynamic array element by specifying a substring found in that
element. The EXTRACT function returns the value of a dynamic array element by specifying its f, v, and s position.

You can use the <> operator or the REPLACE function to replace an element value in a dynamic array based on position.
For further details, see the Dynamic Arrays page of this manual.

Examples
The following example uses the FIND statement to find the second value from the first field of a dynamic array:

cities="New York":@VM:"London":@VM:
"Chicago'":@VM:""Boston":@VM:"Los Angeles"
FIND "London™ IN cities SETTING v,f,s
PRINT v,f,s

See Also

e FINDSTR statement

Caché MultiValue Basic Reference 77

Caché MultiValue Basic Commands

LOCATE statement
EXTRACT function
REPLACE function
Dynamic Arrays
Strings

Variables

78

Caché MultiValue Basic Reference

FINDSTR

FINDSTR

Finds an element of a dynamic array by substring value.

FINDSTR substring IN dynarray[,occurrence] SETTING fm[,vm[,sm]] [THEN statements]
[ELSE statements]

Arguments
substring A string to match against each element in dynarray.
dynarray The target dynamic array in which substring is located.
occurrence Optional — An integer that specifies which occurrence of substring to return
dynarray. The default is 1.
fm Variables that receive an integer specifying the Field Mark (fm) Value Mark (vm)
vm and Subvalue Mark (sm) where substring is located in dynarray. For further
information on these level delimiters, see the Dynamic Arrays page of this manual.
sm
Description

The FINDSTR statement searches a dynamic array for the specified substring. If it locates the substring, it sets integer
count variables specifying which element of the dynamic array contains the substring. By default, it locates the first
occurrence of substring in the dynamic array, reading left to right. You can set the optional occurrence argument for sub-
sequent occurrences of substring in the dynamic array.

If FINDSTR finds substring, it sets fm, vm, and sm to an integer count. If dynamic array delimiters for a lower level do
not exist, FINDSTR sets this level's variable (vm and/or sm) to 1. If substring is not located, fm, vm, and sm are not modified,
and continue to hold their previous values.

The fm, vm, and sm arguments accept a single dynamic array reference (A<i>), a single substring reference (A[s,1]), or a
substring reference nested inside a dynamic array reference (A<i>[s,]).

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If substring is located
in dynarray, the THEN clause is executed. If substring is not located in dynarray, the ELSE clause is executed. The
statements argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword.
A block of statements has specific line break requirements: each statement must be on its own line and cannot follow a
THEN, ELSE, or END keyword on that line.

The FINDSTR statement returns the f, v, and s position of a dynamic array element by specifying a substring found in that
element. The FIND statement returns the f, v, and s position of a dynamic array element by specifying the element's exact
value. The EXTRACT function returns the value of a dynamic array element by specifying its f, v, and s position.

Examples

The following example shows how to use the FINDSTR statement:

statecity="Kansas':@VM:"Kansas City':@VM:"Topeka"
@FM:"Missouri”:@VM:"'St Louis":@VM:"Kansas City"
FOR x=1 TO 5

FINDSTR "Kansas'" IN statecity,x SETTING f,v,s
PRINT f,v,s

NEXT

This example returns the following values for f, v, and s:

Caché MultiValue Basic Reference 79

Caché MultiValue Basic Commands

1 1 1]
1 2 1 !
2 3 1 1
2 3 1 1
2 3 1

See Also

* FIND statement

* EXTRACT function
* REPLACE function
* Dynamic Arrays

e Strings

e Variables

1st occurrence of substring "Kansas"
2nd occurrence of substring '‘Kansas"
3rd occurrence of substring "Kansas"
no further occurrences, variables unchanged

80

Caché MultiValue Basic Reference

FLUSH

FLUSH

Flushes (immediately applies) writes to a sequential 1/O file.

FLUSH filevar [THEN statements] [ELSE statements]

Arguments
filevar A file variable name used to refer to a MultiValue sequential 1/O file. This
filevar is supplied by the OPENSEQ statement.
Description

The FLUSH statement flushes the 1/0 buffer for a MultiValue sequential file. That is, it immediately performs any pending
file I/O WRITESEQ operations. It takes the file identifier filevar, defined by the OPENSEQ statement.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file buffer flush
is successful (the specified file exists), the THEN clause is executed. If the buffer flush fails (the specified file does not
exist), the ELSE clause is executed. The statements argument can be the NULL keyword, a single statement, or a block of
statements terminated by the END keyword. A block of statements has specific line break requirements: each statement
must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Caché MVBasic also provides a NOBUF statement, which disables 1/0 buffering, causing all subsequent I/O operations
to be immediately issued to the sequential file.

See Also

» OPENSEQ statement
« WRITESEQ statement
* NOBUF statement

Caché MultiValue Basic Reference 81

Caché MultiValue Basic Commands

FOOTING

Prints a footer at the bottom of each output page.

FOOTING [ON channel] footer

Arguments
channel Optional — An integer that specifies a logical print channel. The default is 0.
footer The footer to print on output pages, specified as a string enclosed in double quotation
marks. This footer can consist of any combination of literal text and code characters.
Code character letters are enclosed in single quote characters, and are not case-sensitive.
Description

The FOOTING statement prints a footer at the bottom of each page of printed output text. The footer can consist of a literal
text and code characters that either specify text (for example, include the current date), or control the printing of footer text
(for example, center the footer). A footer is always enclosed in double quotation marks. To include letter code characters,
enclose them in single quotation marks. To include a literal single quotation mark, double it. For example: ""Mary " "s
Report™.

The FOOTING operation can be reversed using PRINTER RESET, which resets the footing (and heading) to null.

The optional channel specifies the logical print channel for this output. The range of available values is -1 through 255
(inclusive). If channel=-1, output is displayed on the terminal screen. If channel is not specified, the default logical print
channel is 0.

The following are the available code characters that supply footer text:

'D' Include current date formatted as dd mmm yyyy. For example, 11 Sep 2006.

T Include current time and date formatted as hh:mm:ss dd mmm yyyy. Time is in 12—hour

\ format with “am” or “pm” appended. For example, 7:45:22pm 11 Sep 2006 .

‘P Include current page number, right-aligned. The default alignment is 4 digits. You can

A specify a larger or smaller alignment by appending an integer to 'P'. For example, 'P2'".
This code specifies the page number position and alignment; the PAGE statement defines
the actual page number value.

'S' Include current page number, left-aligned. This code specifies the page number position
and alignment; the PAGE statement defines the actual page number value.

'R’ Include record ID, left-justified.

The 'S" and 'P' code characters specify whether an increasing number of digits (1, 10, 100, etc.) should expand the page
number to the left or to the right. These code characters can be included at any point within the text of a footer. The page
number appears at that point, either left-aligned ('S") or right-aligned ('P"). By default, both 'S' and 'P' are left-justified. To
right-justify a page number, use the 'G' code, as follows: 'GS' or 'GP".

The following are the available code characters that format footer text:

82 Caché MultiValue Basic Reference

FOOTING

'C' Center the footer. You can adjust centering alignment by appending an integer to 'C'.
For example, 'C15'. You can also center a footer using the 'G' code character.

'G' Insert spaces to evenly distribute the footer across the full available width. You can
specify multiple 'G' codes within a footer.

L' Line break. Text after line break defaults to left-justified.

]

'N' Suppress automatic paging.

Q' Treat\,], and ” as literals, not code characters for rest of footer.

By default, a footer is left-justified. To right-justify a footer, specify a 'G' before the footer text: ***G*Annual Report".
To center a footer, specify a'G' before and after the text: ***G*Annual Report”G"'. To spread out the parts of a footer,
specify a 'G' between literals in the footer: ***G*Annual "G"Report*"G*"".

By default, the backslash (\), right square bracket (]), and caret () are code characters. To include these characters as literals
in a footer, use the 'Q' code character. Any instances of these three characters following the 'Q’ code in the footer are treated
as literals, not code characters.

The FOOTING statement places text at the bottom of each page. The HEADING statement places text at the top of each
page. The PAGE statement advances printing to the next page and prints any defined heading or footing on that page.

Examples

The following example centers the current date at the bottom of each page. Note that the footer must be enclosed in double
quotation marks, even when there is no literal footer text:

FOOTING "**CD""
The following example centers two lines of footer, with the page number right-justified on the first footer line:
FOOTING ""G"Big Widgets Corporation"GS""LC"First Quarter Report"

The following example left-justifies two lines of footer, with the page number at the end of the first footer line and the time
and date at the end of the second footer line. Note that the punctuation code characters are not enclosed in single quotes:

FOOTING "Big Widgets Corporation™]First Quarter Report \"

See Also

 HEADING statement

* PAGE statement

* PRINTER statement

* PRINTER RESET statement

Caché MultiValue Basic Reference 83

Caché MultiValue Basic Commands

FORMLIST

Selects field ids into a numbered select list.

FORMLIST dynarray [TO listnum] [ON ERROR statements]
FORMLIST [Ffilevar] [TO listnum] [ON ERROR statements]

Description

The FORMLIST statement is functionally identical to the SELECT statement.

See Also
e SELECT statement

84

Caché MultiValue Basic Reference

FOR...NEXT

FOR...NEXT

Repeats a group of statements a specified number of times.

FOR var = start TO end
[STEP increment]
[WHILE expression]
[UNTIL expression]
statements

NEXT [var]

Arguments

The FOR...NEXT statement syntax has these parts:

var A numeric variable used as a loop counter. var must be a local variable. It can be a %
variable. It can be a subscripted array. var cannot be an @ variable, a global variable,
or an object property. It cannot be an element of a user-defined type.

start Initial value of counter.
end Final value of counter.

STEP increment Optional — The STEP clause sets the amount the counter is changed each time through
the loop. increment can be a positive or negative integer. If a STEP clause is not
specified, increment defaults to 1. If increment is 0, FOR...NEXT loops infinitely.

WHILE expression | Optional — The WHILE and UNTIL clauses specify a test condition for exiting the FOR
UNTIL expression | loop. You can omit or specify either clause, or specify both clauses in any order.

statements One or more statements between FOR and NEXT that are executed the specified
number of times.

Description

The FOR...NEXT statement begins with a FOR keyword with var=start TO end to establish a loop counter. This is followed
by one or more optional clauses: STEP, WHILE, and UNTIL. The loop itself consists on one or more executable statements.
The FOR loop is ended by the mandatory NEXT keyword.

The counter functions as follows:
» If start <end, the loop executes the specified number of times.
e If start = end, the loop executes once.

« If start > end, the loop does not execute.

Most commonly, start and end are positive integers. They can, however, be positive or negative integers or decimal numbers.

The optional STEP clause sets an increment (or decrement) for the counter. By default, the counter increments by 1. The
increment argument can be either positive (increment) or negative (decrement). Most commonly increment is an integer,
but it can be a decimal number. An increment of O causes an infinite loop.

Once the loop starts and all statements in the loop have executed, increment is added to the counter. At this point, either
the statements in the loop execute again (based on the same test that caused the loop to execute initially), or the loop is
exited and execution continues with the statement following the NEXT keyword.

Caché MultiValue Basic Reference 85

Caché MultiValue Basic Commands

You can nest FOR...NEXT loops by placing one FOR...NEXT loop within another. Give each loop a unique variable
name as its counter. The following construction is correct:

FOR ¥ = 1 TO 10
FOR j =1 TO 10
FOR k = 1 TO 10
I Some statements

You can use a CONTINUE statement to interrupt a loop and return to the counter.

Notes

Changing the value of counter while inside a loop can make it more difficult to read and debug your code.

FOR and GOTO

Caché MVBasic permits you to exit or enter a FOR loop using a GOTO statement. This implementation of GOTO follows
MultiValue standards, and is less restrictive than the ObjectScript standard for GOTO statements.

FOR.INCR.BEF

Caché MVBasic supports FOR.INCR.BEF as the Caché default. This option increments the FOR loop counter before
performing bounds checking. To perform bounds checking before incrementing the loop, specify $OPT I0ONS
—FOR. INCR.BEF to turn off this option.

See Also

» CONTINUE statement
» EXIT statement

* GOTO statement

e LOOP..REPEAT statement
. IF... THEN statement

86 Caché MultiValue Basic Reference

FUNCTION

FUNCTION

Defines an external function.

FUNCTION name[(arglist)]

[statements]
RETURN(returnval)
Arguments
name Name of the FUNCTION; follows standard variable naming conventions.
arglist Optional — List of variables specifying arguments that are passed to the FUNCTION
procedure when it is called. Multiple arguments are separated by commas. The arglist
is enclosed with parentheses.
statements A group of statements to be executed within the body of the FUNCTION procedure.
returnval Return value of the FUNCTION. If no return value is specified, FUNCTION returns the
empty string.
Description

The FUNCTION statement defines an external function that returns a value to the invoking procedure. This FUNCTION
procedure is visible to all other procedures in your script. The values of local variables ina FUNCTION are not preserved
between calls to the procedure.

The FUNCTION statement is very similar to SUBROUTINE, except that FUNCTION returns a value. Like a
SUBROUTINE procedure, a FUNCTION procedure is a separate procedure that can take arguments, perform a series of
statements, and change the values of its arguments. However, unlike a SUBROUTINE procedure, you can use a FUNCTION
procedure on the right side of an expression in the same way you use any intrinsic function.

There cannot be a label on the FUNCTION statement line. The FUNCTION statement must be the first line in the external
function, with the following exceptions: comment lines, SOPTIONS statements, $COPYRIGHT statements, and DIM
statements that do not dimension a static array. For example, DIM Var () and DIM abc are permitted, but DIM Var(2)
is not.

There can only be one FUNCTION statement in an external function (no nested functions). You can't definea FUNCTION
procedure inside another FUNCTION or inside a SUBROUTINE procedure.

Before invoking a function, it must be locally defined using the DEFFUN statement.

Examples

The following two examples show the definition of a function and the invocation of that function:

FUNCTION IsGreaterThan(lower, upper)
IF lower < upper

THEN RETURN(1)

ELSE RETURN(O)

DEFFUN IsGreaterThan(X,y)
CRT IsGreaterThan(x,y)

See Also

e DEFFUN statement
e« DIM statement

Caché MultiValue Basic Reference 87

Caché MultiValue Basic Commands

e RETURN statement
e SUBROUTINE statement

88 Caché MultiValue Basic Reference

GET(ARG.)

GET(ARG.)

Retrieves the next command line argument.

GET(ARG.[,n]) variable [THEN statements] [ELSE statements]

Arguments
n Optional — An integer specifying which command line argument to retrieve. The
default is the first unread argument (the next argument).
variable A local variable used to hold the value of the command line argument retrieved.
Description

The GET(ARG.) statement retrieves a command line argument, copying its value into variable. Each time you invoke
GET(ARG.) it updates a command line pointer. Therefore, repeated invocation of GET(ARG.) without the n argument
results in the sequential retrieval of each command line argument in left-to-right order.

The keyword ARG . (note the period at end of this keyword) and the surrounding parentheses are mandatory.

You can use the optional n value to retrieve a command line argument by its integer position in the command line argument
list. Command line arguments are counted from 1. If n=0, GET(ARG.) retrieves the next command line argument.

GET(ARG.) considers all values following the program name to be command line arguments. Command line arguments
are separated by blank spaces; a blank space within a quoted string is not treated as a command line argument separator.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the command line
argument retrieval is successful, the THEN clause is executed. If there are no command line arguments, no more command
line arguments, or if you specify a value of n that does not correspond to a command line argument, or a negative value
for n, GET(ARG.) executes the ELSE clause. If no ELSE clause in provided, GET(ARG.) returns the empty string to
variable. The statements argument can be the NULL keyword, a single statement, or a block of statements terminated by
the END keyword. A block of statements has specific line break requirements: each statement must be on its own line and
cannot follow a THEN, ELSE, or END keyword on that line.

The GET(ARG.) statement both moves the command line argument pointer and retrieves the argument value. The
SEEK(ARG.) statement just moves the command line argument pointer. The EOF(ARG.) function returns whether or not
the command line argument pointer is past the end of the list of command line arguments.

See Also

 SEEK(ARG.) statement
 EOF(ARG.) function

Caché MultiValue Basic Reference 89

Caché MultiValue Basic Commands

GETLIST

Retrieves a saved select list.

GETLIST listname [TO listnum] [SETTING variable] [THEN statements] [ELSE statements]

Arguments
listhame A record ID assigned to a saved select list.
TO listhum Optional — A numbered select list, specified as an integer from 0 through 10. If
omitted, select list O is used.
SETTING variable Optional — An integer count returned, which contains the number of elements in
the specified select list.
Description

The GETLIST statement retrieves a saved select list, making it available to the READNEXT statement. You specify the
listhame specifying the storage location of the select list, and the listnum of a numbered active select list into which to copy
it. The select list was saved using WRITELIST.

The listname select list is saved in the &SAVEDLISTS& file. Caché stores this file using the "SAVEDLISTS global.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the saved select list

retrieval is successful, the THEN clause is executed. If saved select list retrieval fails (listname does not exist), the ELSE

clause is executed. The statements argument can be the NULL keyword, a single statement, or a block of statements terminated
by the END keyword. A block of statements has specific line break requirements: each statement must be on its own line

and cannot follow a THEN, ELSE, or END keyword on that line.

See Also

e READNEXT statement
e WRITELIST statement

90 Caché MultiValue Basic Reference

GOSuUB

GOSUB

Transfers program execution to a label, with return option.

GOSUB label

Arguments

label Any valid label. The label name can be optionally followed by a colon (:)

Description

The GOSUB statement is used to transfer execution to the line of code identified by label. This label identifies an internal
subroutine that is executed until a RETURN statement is encountered. Execution then reverts to the line immediately fol-
lowing the GOSUB statement.

Under the following circumstances control does not revert to the line following the GOSUB statement: The internal sub-
routine invokes an ENTER statement, or the internal subroutine terminates with an END statement.

The label argument value corresponds to line of code identified by a label identifier. Non-numeric labels end with a colon
character; this colon is option when specifying the label argument.

The GOSUB statement is similar to GOTO, except that GOSUB permits a RETURN. The ON statement provides a way
to select one of several GOSUB labels, based on an integer value.

Emulation
JBASE emulation uses the ONGO.RANGE option setting for handling out-of-range label values.

Examples

The following example illustrates the use of the GOSUB statement:

IF TIMEQQ=0 THEN
GOSUB Midnight:
PRINT "Delayed",TIMEQ
ELSE
PRINT TIMEQ
END IF
Midnight:
PRINT "It"s midnight, time is reset to 0"
SLEEP 1
RETURN

See Also

* GOTO statement
 RETURN statement
* END statement

* ON statement

e Labels

Caché MultiValue Basic Reference 91

Caché MultiValue Basic Commands

GOTO

Transfers program execution to a label.

GOTO label
G label

Arguments

label Any valid label. The label name can be optionally followed by a colon (:)

Description

The GOTO statement is used to transfer execution to the line of code identified by label. The label argument value corre-
sponds to line of code identified by a label identifier. Numeric labels do not use a colon suffix. Non-numeric labels end
with a colon character; this colon is option when specifying the label argument.

G is an abbreviation for the GOTO statement. The GOSUB statement is similar to GOTO, except that it permits a RETURN.
The ON statement provides a way to select one of several GOTO labels, based on an integer value.

Commonly, GOTO is used within a code block of an IF... THEN statement.

GOTO can be used to exit from a FOR...NEXT or LOOP...REPEAT loop. You can also use the EXIT statement to cause
execution to jump out of a FOR...NEXT or LOOP...REPEAT loop. You can use the CONTINUE statement to cause
execution to jump back to the FOR or LOOP statement to perform the next loop iteration.

GOTO can be used to enter the middle of a FOR...NEXT or LOOP...REPEAT loop. This use of GOTO is generally not
recommended, and is not supported in other Caché languages, such as ObjectScript.

Emulation
JBASE emulation uses the ONGO.RANGE option setting for handling out-of-range label values.

Examples
The following examples illustrate the use of the GOTO statement with numeric and non-numeric labels:

Numeric label:

IF TIME(Q=0 THEN
GOTO 20
ELSE
PRINT Time(Q)
END IF
END
20
PRINT "It"s midnight, time is reset to 0"
END

Non-numeric label:

IF TIME()=0 THEN
GOTO Midnight
ELSE
PRINT Time(Q)
END IF
END
Midnight:
PRINT "It"s midnight, time is reset to 0"
END

92 Caché MultiValue Basic Reference

GOTO

See Also

GOSUB statement

ON statement

IF.. THEN statement

EXIT statement
FOR...NEXT statement
LOOP...REPEAT statement
CONTINUE statement
Labels

Caché MultiValue Basic Reference

93

Caché MultiValue Basic Commands

HEADING

Prints a header at the top of each output page.

HEADING [ON channel] header

Arguments

channel

header

Description

Optional — An integer that specifies a logical print channel. The default is 0.

The header to print on output pages, specified as a string enclosed in double quotation
marks. This header can consist of any combination of literal text and code characters.
Code character letters are enclosed in single quote characters, and are not case-sensitive.

The HEADING statement prints a header at the top of each page of output text. This output text can be displayed on a
terminal (by default) or directed to a printer (by specifying PRINTER ON).

The header can consist of a literal text and code characters that either specify text (for example, include the current date),
or control the printing of header text (for example, center the header). A header is always enclosed in double quotation
marks. To include letter code characters, enclose them in single quotation marks. To include a literal single quotation mark,
double it. For example: ""Mary*®*s Report™.

The HEADING operation can be reversed using PRINTER RESET, which resets the heading (and footing) to null.

The optional channel specifies the logical print channel for this output. The range of available values is -1 through 255
(inclusive). If channel=-1, output is displayed on the terminal screen. If channel is not specified, the default logical print

channel is 0.

The following are the available code characters that supply header text:

R

Include current date formatted as dd mmm yyyy. For example, 11 Sep 2006.

Include current time and date formatted as hh:mm:ss dd mmm yyyy. Time is in 12—hour
format with “am” or “pm” appended. For example, 7:45:22pm 11 Sep 2006 .

Include current page number, right-aligned. The default alignment is 4 spaces. You can
specify a larger or smaller alignment by appending an integer to 'P'. For example, 'P2'.
'PP' prints the page number twice, both right aligned 4 spaces. This code specifies the
page number position and alignment; the PAGE statement defines the actual page
number value.

Include current page number, left-aligned. This code specifies the page humber position
and alignment; the PAGE statement defines the actual page number value.

Include record ID, left-justified.

The 'S" and 'P' code characters specify whether an increasing number of digits (1, 10, 100, etc.) should expand the page
number to the left or to the right. These code characters can be included at any point within the text of a header. The page
number appears at that point, either left-aligned ('S") or right-aligned ('P"). By default, both 'S' and 'P' are left-justified. To
right-justify a page number, use the 'G' code, as follows: 'GS' or 'GP".

The following are the available code characters that format header text:

94

Caché MultiValue Basic Reference

HEADING

'C' Center the header. You can adjust centering alignment by appending an integer to 'C'.
For example, 'C15'. You can also center a header using the 'G' code character.

'G' Insert spaces to evenly distribute the header across the full available width. You can
specify multiple 'G' codes within a header.

L' Line break. Text after line break defaults to left-justified.

]

'N' Suppress automatic paging.

Q' Treat\,], and ” as literals, not code characters for rest of header.

By default, a header is left-justified. To right-justify a header, specify a 'G' before the header text: ***G*Annual Report".
To center a header, specify a 'G' before and after the text: ***G*Annual Report™G*". To spread out the parts of a header,
specify a 'G' between literals in the header: ***G*Annual *G"Report*G*="".

By default, the backslash (\), right square bracket (]), and caret () are code characters. To include these characters as literals
in a header, use the 'Q' code character. Any instances of these three characters following the 'Q' code in the header are
treated as literals, not code characters.

To clear an existing heading, specify HEADING CHAR(255). If you specify more than one HEADING statement in a
program, MVBasic issues a form feed before executing the second (and all subsequent) HEADING statement(s).

The HEADING statement places text at the top of each page. The FOOTING statement places text at the bottom of each
page. The PAGE statement advances printing to the next page and prints any defined heading or footing on that page.

Emulation

IN2, jBASE, MVBase, PICK, Reality, R83, POWER95, Ultimate: in these emulation modes, the HEADING statement is
immediately applied when issued.

D3: The initial HEADING statement is immediately applied when issued. Subsequent HEADING statements are applied
following either the end of a page or the issuing of a PAGE statement. This does not apply if PRINTER ON is immediately
followed by a PAGE statement, or if a PRINT statement is followed by HEADING.

JBASE: 'PP" includes the page number right aligned 4 spaces.
Reality: 'P" includes the page number with no alignment; 'PP" includes the page number right aligned 4 spaces.

In Caché MVBasic, the HEADING is applied to only the current output device. For example, if you specify HEADING
for the terminal page header, then specify PRINTER ON, you must specify HEADING again for the printer page header.
In D3, MVBase, and Reality, if you specify HEADING for the terminal page header, then specify PRINTER ON, the
terminal header is inherited by printer channel 0.

Examples

The following example centers the current date at the top of each page. Note that the header must be enclosed in double
quotation marks, even when there is no literal header text:

HEADING **CD""
The following example centers two lines of header, with the page number right-justified on the first header line:

HEADING ""G"Big Widgets Corporation®"GS""LC"First Quarter Report"

Caché MultiValue Basic Reference 95

Caché MultiValue Basic Commands

The following example left-justifies two lines of header, with the page number at the end of the first header line and the
time and date at the end of the second header line. Note that the punctuation code characters are not enclosed in single
quotes:

HEADING '"'Big Widgets Corporation™]First Quarter Report \"

See Also

FOOTING statement

PAGE statement

PRINTER statement
PRINTER RESET statement

96

Caché MultiValue Basic Reference

HUSH

HUSH

Suppresses all screen display.

HUSH [ON | OFF | flag]l [SETTING var]

Arguments

flag Optional — An expression that evaluates to a boolean value. O=disable
hushing. 1 (or any non-zero number)=enable hushing. The same boolean
values can be supplied using the ON or OFF keyword.

SETTING var Optional — A variable that HUSH sets to the hush state (O or 1) prior to
invoking the command. This clause is useful for restoring the prior HUSH
state setting.

Description

The HUSH statement is used to enable or disable all output display to the screen. It can be executed using the ON or OFF
keyword, or by using a boolean flag value. HUSH with no arguments toggles the current hush state.

When HUSH is ON, all screen output is disabled, both user input and program output, including display of the programmer
prompt. This distinguishes it from the ECHO statement, which only disables the display of user input.

The HUSH statement does not disable display of output from the OUT statement.

See Also

e ECHO statement
e OUT statement

Caché MultiValue Basic Reference 97

Caché MultiValue Basic Commands

IF..THEN...ELSE

Conditionally executes a group of statements, depending on the value of an expression.

IF condition THEN statements
IF condition ELSE elsestatements
IF condition THEN statements ELSE elsestatements

IF condition

[THEN
statements
END]
[ELSE
elsestatements
END]
Arguments
condition An expression that evaluates to True or False. For further details on
boolean logical operators, refer to the Operators page of this manual.
statements One or more statements executed if condition is True.
elsestatements One or more statements executed if no previous condition expression is
True.
Description

The IF statement performs a boolean test on condition, and then executes either the THEN clause (condition=1 (true)) or
the ELSE clause (condition=0 (false)).

You can omit or include either the THEN clause or the ELSE clause. If condition=1 and the THEN clause is omitted, or
condition=0 and the ELSE clause is omitted, IF returns the empty string. Further IF statements can be nested within THEN
or ELSE clauses.

IF can be coded as a single-line statement, or as a code block statement using the END keyword. You can use any of the
single-line forms for short, simple tests. However, the block form provides more structure and flexibility than the single-
line form and is usually easier to read, maintain, and debug.

When executing a block IF, condition is tested. If condition is True, the statements following THEN are executed. If
condition is False, the statements following ELSE are executed. After executing the statements following THEN or ELSE,
execution continues with the statement following END.

What follows the THEN keyword is examined to determine whether or not a statement is a block IF. If anything other than
a comment appears after THEN on the same line, the statement is treated as a single-line IF statement.

For a block IF statement, the IF keyword must be the first statement on a line. The block IF must end with an END statement.

The condition expression can be a compound expression, using = (equal to), # (not equal to), and other the comparison
operators. You can use literals, variables, and dynamic arrays as condition expression elements. Multiple test expressions
can be associated by AND and OR logical operators.

See Also

e CASE statement

e Operators

98 Caché MultiValue Basic Reference

IN

Reads a single character of user input.

IN variable [FOR timeout [THEN statements] [ELSE statements]]

Arguments
variable A variable used to hold the user input character.
FOR timeout Optional — An expression that resolves to an integer specifying the number of tenths
of a second to wait for input before timing out. A timeout value of 0 is permitted. The
FOR clause requires either a THEN clause or an ELSE clause, or both.
Description

The IN statement pauses program execution for user input, then reads a single character of user input into variable. The
character is stored in variable as an ASCII code value. It is therefore necessary to use the CHAR function to display the
character.

You specify the timeout value in tenths of a second; however, Caché only handles timeout in whole seconds. Caché rounds
this timeout value to an integer number of whole seconds. Any timeout value less than 10 is rounded up to one second.

If no FOR clause is specified, the IN statement pauses execution indefinitely until receiving user input. The FOR clause,
which is used with the THEN and ELSE clauses, provides for timeout of this pause for user input.

If you have specified a FOR clause, you can optionally specify a THEN clause, an ELSE clause, or both a THEN and an
ELSE clause. If the user input occurs within the FOR timeout, the THEN clause is executed. If the user input does not occur
within the FOR timeout, the ELSE clause is executed. The statements argument can be the NULL keyword, a single statement,
or a block of statements terminated by the END keyword. A block of statements has specific line break requirements: each
statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

By default, the input character is not echoed, regardless of the setting of ECHO. However, echoing is emulation-dependent.
For example, in D3 emulation the input character is always echoed, regardless of the setting of ECHO. The user value is
echoed to the terminal; it is never echoed to the printer.

If you specify Ctrl-C as the user input to IN, the process enters the ObjectScript (COS) debugger. It displays the instruction
“Type G to continue or Q to exit.” You can disable this use of Ctrl-C by specifying the BREAK OFF statement before
issuing the IN statement.

You can also use the KEYIN function to receive a single character of user input, or the INPUT statement to receive one
or more characters of user input. You can use the <<. . .>> inline prompt to prompt for a user input value to insert in a
MVBasic statement or a MultiValue command line command. The <<. . .>> inline prompt is described in the Caché
MultiValue Commands Reference.

See Also

e |INPUT statement
 KEYIN function

Caché MultiValue Basic Reference 99

Caché MultiValue Basic Commands

INPUT

Receives user input.

INPUT [@(Ccol[,row])] variable [,length []] [:]1 [format] [FOR n | WAITING n]
[THEN statements] [ELSE statements]

INPUT variable,-1

Arguments

@(col,row)

variable

length

format

FOR n

WAITING n

Description
The INPUT statement has two forms:

Optional — A clause that specifies the location (column and row) to put the input
prompt on the screen. If you specify this clause, INPUT displays the previous value
of variable at the prompt. A col value of 0 or 1 displays the prompt at column 1. If
row is omitted, it defaults to row=1, the top of the Terminal window; row=23 is the
bottom of the Terminal window.

A variable used to receive the user input. This variable does not need to be
previously defined. If length is not specified, you can follow variable with a colon
(:) character to suppress the line return. This character is further described below.

Optional — An integer specifying the maximum length of the input data. By default,
the input data is accepted when the number of characters specified in length are
input. If less than the number of characters specified in length are input, the input
data is accepted when the user presses the Enter key.

If length is omitted, or length=0, data of any length can be specified. The data is
accepted by pressing the Enter key.

The length integer can be followed by the underscore (_) character, and/or the
colon (:) character (in any order). These special-purpose characters are described
below.

If length is -1, variable is assigned a boolean value indicating whether or not data
was input. This option does not prompt the user for data.

Suppresses line return.
Requires Enter key to accept input data, regardless of the length of the input data.

Optional — A format mask string used to validate the input data. format can be
specified with or without length. If length is specified, format can be preceded by
a comma delimiter or just a blank space. For further details on format mask strings,
refer to the FMT function.

The FOR n and WAITING n clauses are functionally identical ways to specify a
timeout value. n is an integer specifying tenths of a second to wait before timing
out. Caché rounds n to the nearest whole second interval.

INPUT with length specified as a positive integer, or with length unspecified. This syntax receives input data. It can
be used in interactive programs to receive input data from the user, or to receive input data non-interactively from the

DATA statement.

INPUT with length specified as -1. This syntax tests for the presence of input data and returns a boolean value.

100

Caché MultiValue Basic Reference

INPUT

Receiving Input Data

The INPUT statement is used in interactive programs to receive input from the user. INPUT pauses program execution
while awaiting user input. By default, it displays a question mark (?) prompt to receive user input. (This prompt is modifiable
using the PROMPT statement.) The user types this input which is echoed character-by-character at the input prompt.

e If length omitted, the user must press the Enter key to accept the input data.

» If the input data is less than the number of characters specified in length (or length=0), the user must press the Enter
key to accept the input data.

» Ifthe input data is equal to the number of characters specified in length the input data is accepted without pressing the
Enter key. However, if the underscore () character is specified after the length argument, length specifies the maximum
number of characters that can be input, but accepting the input data requires pressing the Enter key, regardless of the
number of input characters.

INPUT can also receive data from the DATA statement, as described below. If data is present in a DATA statement, the
? prompt and user input are suppressed, and input is taken from DATA.

By default, when INPUT accepts data input it performs a line return. You can suppress this line return by following either
the variable or the length argument with a colon character (:). You can append a colon to variable if length is not specified,;
otherwise, append the colon to length. You can include or omit a space between variable or length and the colon.

If length=0, user input continues until the Enter key is pressed.

If you specify the optional @(col,row) clause, the question mark (?) prompt appears at the specified column and row
location. This prompt displays the previous value of variable. (If variable is undefined, the prompt displays an empty string
as the previous value.) To accept the previous value, press the Enter key. To delete and replace this value, type the new
value. To replace this value with a null value, press the space bar or tab key, then press the Enter key. This @(col,row)
clause suppresses the line return following data input. For further details, refer to the @ function.

By default, the input characters and the @ clause previous value are echoed, regardless of the setting of ECHO. However,
INPUT echoing is emulation-dependent. These values are echoed to the terminal; they are never echoed to the printer.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If any data is input, the
THEN clause is executed. If no data is input (the Enter key is pressed), the ELSE clause is executed. The statements argument
can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements
has specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END
keyword on that line.

You can also use the KEYIN function or the IN statement to receive a single character of user input. You can use the
<<...>>inline prompt to prompt for a user input value to insert in a MVBasic statement or a MultiValue command line
command. The <<...>> inline prompt is described in the Caché MultiValue Commands Reference.

Timeout

Specifying a timeout for a user input prompt is optional, but highly recommended. You can specify a FOR n clause or a
WAITING n clause to establish how long INPUT should wait for completion of user input data before timing out. These
two clauses are functionally identical. Input completion is determined by either the Enter key or length.

The n value is an integer, specifying timeout in tenths of a second. However, Caché timeout is executed in whole seconds.
For n values less than 10, Caché times out at 1 second. For n values greater than 10, Caché rounds to the closest whole
second interval. Therefore an n value of 3 specifies three-tenths of a second, but actually times out at one second; an n
value of 13 specifies thirteen-tenths of a second, but is rounded down to 10, so actually times out at one second; an n value
of 16 is rounded up to 20, so actually times out at two seconds.

When timeout occurs, Caché MVBasic executes the ELSE clause (if present). If no ELSE clause is specified, Caché
MVBasic executes the next statement.

Caché MultiValue Basic Reference 101

Caché MultiValue Basic Commands

INPUT and INPUTIF

INPUT does not support type-ahead — the user's ability to type input data before the prompt is displayed. The INPUTIF
statement does support type-ahead. INPUT and INPUTIF are otherwise identical.

Testing for the Presence of Input Data

If length=-1, INPUT does not prompt the user for data. It checks the input buffer for the presence of data and places a
boolean value in variable: 1 if data was present in the input buffer; 0 if no data was present in the input buffer. An empty
string (") is considered data. INPUT with length=-1 tests for the presence of input data, but does not remove data from
the input buffer or advance a buffer pointer.

You can use the DATA statement to place data in the input buffer. You can use the CLEARDATA statement to remove
all data from the input buffer. This is shown in the following example:

INPUT var,-1 THEN PRINT "Boolean=",var ;1 prints O
DATA "abc™
INPUT var,-1 THEN PRINT *"Boolean="',var ;1 prints 1
CLEARDATA

INPUT var,-1 THEN PRINT *"'‘Boolean=",var ;1 prints O

Because INPUT with length=-1 does not prompt for data, the underscore (_) and colon (:) special-purpose characters have
no effect. The @(col,row), format, and FOR n or WAITING n clauses also have no effect.

To test for the presence of user-input data, use the SLEEP statement to allow time for the user to type (or not type) data
to the input buffer before INPUT checks the input buffer for the presence of data. This is shown in the following example:

SLEEP 5
;1 suspends execution for 5 seconds, allowing the user to type data
INPUT var,-1 THEN PRINT "Boolean=",var
;1 prints 1 if user input data during sleep interval
;1 or prints O if the user did not input data during sleep interval
;1 The user-input data (if any) will appear at the MV command prompt
;1 after the execution of this statement.

Non-text Input Values
Null String

To input a null string, you must first designate a character to represent the null string using the INPUTNULL statement.
You then specify that designated character to INPUT to specify the null string. This INPUTNULL character designation
only applies to the INPUT statement. In all other contexts this character is a literal.

Space and Tab

The user can input space characters and tab characters. In variable space and tab are distinct characters. Both space and
tab are length=1, and both can be removed using a single backspace. However, when echoing input to the terminal, both
space and tab are echoed as a space character.

Ctrl-C
If the user types Ctrl-C at the prompt, INPUT behavior depends on the BREAK setting.

* If BREAK is disabled (OFF), any input data that the user has typed into INPUT up to that point is deleted. The user
can then type a new input value at the prompt and press Enter.

e IfBREAK s enabled (ON), the process checks the login mode. If in Programmer mode, the process enters the
ObjectScript debugger. If in Application mode, it does not enter the debugger. For further details refer to the ObjectScript
BREAK command in the Caché ObjectScript Reference.

INPUT and DATA

If you use the DATA statement to pre-define a user input value, the INPUT statement takes its value from the DATA
statement rather than from user input. The INPUT statement does not pause program execution or require user interaction.

102 Caché MultiValue Basic Reference

INPUT

The DATA statement value does not conclude with a return character, and the INPUT statement does not issue a line
return. If the length argument is specified, only that number of characters is input from the DATA item value, but the entire
DATA item is consumed.

The length argument suffix characters (colon or underscore) have no effect on DATA statement input.
INPUT treats a DATA value of the empty string (DATA ***) as an actual data value: If length=-1, INPUT sets variable=1.

If a DATA statement contains a comma-separated list of arguments, these arguments are supplied in order to multiple
invocations of the INPUT statement.

Values supplied by a DATA can be flushed using the CLEARDATA statement. Following a CLEARDATA, the next
INPUT prompts the user for input data.

You can configure INPUT to accept only stacked DATA input values. You can configure this behavior using the class
method %SYSTEM.MV.InputDataOnly(). Setting InputDataOnly() to 0 (the default) causes INPUT to accept both
stacked DATA and user-input data values; once all stacked DATA values are exhausted, the next INPUT statement prompts
the user for input data. Setting InputDataOnly() to 1 causes INPUT to accept only stacked DATA values; once all stacked
DATA values are exhausted, the next INPUT statement issues an ABORT. You can determine the status of the
InputDataOnly() flag by displaying the ObjectScript $MVV/(218) special variable.

Examples

The following example displays the input prompt and pauses ten seconds for user input:

PRINT "Input the person"s last name"
INPUT namevar,16 FOR 100
IF namevar="""
PRINT "No name input"
ELSE
PRINT "Last name (max 16 chars) '':namevar

The following example positions the input prompt using the @(col,row) clause, then takes an input of any length to variable
namevar. If you press the Enter key or timeout without supplying any user input, namevar retains the default value
"ANONYMOUS".

namevar="ANONYMOUS""
INPUT @(1,23) namevar,16 FOR 100

The following example takes input data from the DATA statement. At each iteration INPUT takes the next DATA value.
Note that in this program INPUT takes a maximum of 5 characters, regardless of the length of each DATA value; each
iteration advances to the next DATA value. This program does not pause for user input. However, if the FOR loop iterated
one more time, the fifth INPUT would prompt the user:

DATA "Adams™,''Bean',"Clarkenwell',"Davis"
FOR 1=1 TO 4

INPUT namevar,5

PRINT "Last name (max 16 chars) '‘:namevar
NEXT

Emulation
Several aspects of INPUT echoing display are emulation-dependent:

For all emulations, except PIOpen, regardless of ECHO setting, with INPUT @, the cursor is initially positioned, the
prompt displayed, the original value of the data is displayed, and the cursor is positioned on the first character of the original
value for user input.

For PIOpen, the cursor is positioned at the location specified by INPUT@, not on the prior position (as in other emulations),
and the original value of the data is not displayed.

With ECHO OFF set, the original value of the input variable is not displayed in all emulations except UniVerse and Cache.

Caché MultiValue Basic Reference 103

Caché MultiValue Basic Commands

With ECHO OFF set, when you type user input it is displayed character-by-character in Cache, UniVerse, INFORMATION,

P1Open, PICK, and IN2 emulations; typing is not echoed in all other emulations.

With ECHO OFF set, when input has been satisfied (by pressing Enter or by entering the number of characters specified
on INPUT @) the new value of the variable is redisplayed for most emulations. On PIOpen and UniData no redisplay
occurs. On jBASE, if ECHO ON the cursor is positioned and the new value is displayed; if ECHO OFF the cursor is
positioned, and blank spaces the length of the new value are displayed. With ECHO OFF set, D3 and Reality replace the
length of the original value with blank spaces and then display the new value. With ECHO OFF set, UniVerse replaces
the original value with blank spaces when the user types the first character; UniVerse redisplays the new value after you
press the Enter key.

See Also

IN statement

INPUTIF statement
INPUTNULL statement
DATA statement
PROMPT statement
CLEARDATA statement
BREAK statement
KEYIN function
STATUS function

104

Caché MultiValue Basic Reference

INPUTCLEAR

INPUTCLEAR

Clears input data from the type-ahead buffer.

INPUTCLEAR

Arguments

None.

Description

The INPUTCLEAR statement immediately deletes (clears) any user input data stored in the type-ahead buffer. It does not
wait for the next READ statement. This affects the INPUTIF statement, which receives user input from the type-ahead
buffer. INPUTCLEAR has no effect on the INPUT statement, which does not use a type-ahead buffer.

The INPUTCLEAR and CLEARINPUT statements are functionally identical.

See Also

e INPUTIF statement
e CLEARINPUT statement

Caché MultiValue Basic Reference 105

Caché MultiValue Basic Commands

INPUTCTRL

Filters control characters from input.

INPUTCTRL [ON | OFF | flag]

Arguments
flag A boolean value. 0: no filtering of control characters (the default). 1 (or any
non-zero number): control characters are filtered out of the input stream.
The same boolean values can be supplied using the OFF and ON keywords.
Description

The INPUTCTRL statement is used to filter out control characters from the characters accepted by the INPUT command.
It can be executed using the ON or OFF keyword, or by using a boolean flag value. The default is OFF, meaning control
characters are accepted by INPUT.

When INPUTCTRL is on, control character sequences that perform operations are neither executed nor recorded as part
of the input string (for example, Ctrl-c). Control characters that code for special characters are recorded as part of the input
string (for example, Ctrl-r or Ctrl-w).

The INPUTCTRL is only applied to the current EXECUTE level.
You can use the CONTROL.CHARS command line command to set or display the current process-wide default for control
character filtering.

See Also

* [N statement

e INPUT statement

e INPUTIF statement

106 Caché MultiValue Basic Reference

INPUTERR

INPUTERR

Writes a message to the user terminal.

INPUTERR [message [, ---1 1

Arguments
message Optional — A string literal to write to the terminal screen. Can be an
expression or variable that resolves to a literal value. If omitted, a blank
line is written.
Description

The INPUTERR statement performs several operations affecting the user terminal.

» It advances the terminal cursor to the last line of the current page. For further information on page lines refer to the
SYSTEM function and the ASSIGN statement

» Itwrites the optional message to the terminal screen at the new cursor location. If you specify multiple comma-separated
message arguments, they are displayed with tab spacing, similar to the PRINT or CRT command. You can also con-
catenate multiple message arguments, using the colon (:) concatenation operator.

» It deletes (clears) any user input data stored in the type-ahead buffer. This affects the INPUTIF statement, which
receives user input from the type-ahead buffer.

The message is cleared by the next INPUT @(col,row) statement.

Emulation

Caché and UniVerse clear user input data stored in the type-ahead buffer. All other emulations do not perform this action.

See Also

 [NPUT statement
¢ INPUTIF statement

Caché MultiValue Basic Reference 107

Caché MultiValue Basic Commands

INPUTIF

Receives data from input buffer.

INPUTIF [@(col[,row])] variable [,length [11 [:] [format]
{THEN statements | ELSE statements}

INPUTIF variable,-1 {THEN statements | ELSE statements}

Description

The INPUTIF statement is used to receive data from the input buffer. While it can be used for interactive user input, this
usage is not recommended.

INPUT and INPUTIF are similar, with the following differences:
* INPUTIF does not display a prompt when awaiting user input. INPUT displays a prompt.

» INPUTIF does not support timeout clause syntax. For this reason, it should not be used for interactive user input in
most circumstances. INPUT supports timeout.

» INPUTIF requires either a THEN clause, an ELSE clause, or both. For INPUT the THEN clause and ELSE clause
are optional.

* INPUTIF takes the THEN clause when the Enter key is pressed without typing user input data. INPUT takes the ELSE
clause if length is not -1 and the Enter key is pressed without typing user input data.

For further details on INPUTIF, refer to the INPUT statement.

See Also

* INPUT statement

108 Caché MultiValue Basic Reference

INPUTNULL

INPUTNULL

Specifies a null character for INPUT.

INPUTNULL char

Arguments

char An expression that resolves to a single character.

Description

The INPUTNULL statement designates a character to represent the null string. If you specify this character to an INPUT
statement, it is saved to the variable as a null string (a string of length 0). This character remains as the designated null
string character for the current process until you reset it by specifying INPUTNULL ***'.

INPUTNULL only affects the INPUT statement. It has no effect on the IN statement or the KEYIN function.

Example

The following example designates the ~ character to represent the null string for INPUT:

INPUTNULL "~
INPUT @(1,23) inval
2N

PRINT "Value =":inval
Value =

PRINT LENCinval)

0

See Also

. INPUT statement

Caché MultiValue Basic Reference 109

Caché MultiValue Basic Commands

INS

Inserts data in a dynamic array.

INS expression BEFORE dynarray <f[,v[,s]]>

Arguments
expression The data to be inserted.
dynarray The name of a valid dynamic array. If the dynamic array does not exist, INS creates it.
f An integer specifying the Field level of the dynamic array in which to insert the data.
Fields are counted from 1.
v Optional — An integer specifying the Value level of the dynamic array in which to insert
the data. Values are counted from 1 within a Field.
S Optional — An integer specifying the Subvalue level of the dynamic array in which to
insert the data. Subvalues are counted from 1 within a Value.
Description

The INS command inserts a data value at the specified dynamic array location. Which element to insert is specified by the
f, v, and s integers. For example, if f=2 and v=3, this means insert the new data value as the third value in the second field.
The INS statement does not overwrite; if there already was a third value, the insert increments its location to the fourth
value. INS adds multiple delimiter characters, when needed, to place the data value at the specified location.

To insert a value at the beginning of a dynarray set f to 1 or 0. To insert a value at the end of a dynarray set f to -1. If lower
level delimiters exist in dynarray, setting an upper level to 0, the null string, a non-numeric value, or an undefined variable
is equivalent to setting it to 1.

Both the INS command and the INSERT function insert a value into a dynamic array. The INS command changes the
value of the supplied dynarray. The INSERT function returns a dynamic array containing the insert; it does not change
the value of the supplied dynarray.

Examples

The following example uses the INS command to insert the second value in the first field of a dynamic array:

cities="New York":@VM:"London":@VM:
"Chicago':@VM:""Boston":@VM:""Los Angeles"
INS "Providence'" BEFORE cities <1,2>
PRINT cities
1 Returns: "New YorkyProvidenceylLondonyChicagoyBostonylLos Angeles"

See Also

* INSERT function

* COUNTS function
» DELETE function

* EXTRACT function

e Dynamic Arrays

110 Caché MultiValue Basic Reference

$KILL

$KILL

Deletes variables.

$KILL variable[, -..]

Arguments
variable The variable(s) to be deleted by the $KILL command. variable can be a single variable
name or a comma-separated list of variable names.
Description

The $KILL statement deletes the specified variable or comma-separated list of variables. The variables can be local variables,
process-private variables, or globals. They do not have to be actual defined variables, but they must be valid variable names.
You cannot kill a special variable, even if its value is user-specified. Attempting to do so generates a <SYNTAX> error.

The ASSIGNED function returns 0 if a variable is unassigned or has been deleted.

Using $KILL to delete variables frees up local variable storage space. To determine or set the maximum local variable
storage space (in kilobytes), use the ObjectScript $ZSTORAGE special variable. To determine the currently available local
variable storage space (in bytes), use the $SSTORAGE special variable.

Examples

In the following example, $KILL deletes local variables a, b, and d. The PRINT returns 3 and 5.

THLDOQLOTQ

OX AL 11
_—-ClhWN P

LL a,b,d
NT a,b,c,d,e

In the following example, $KILL deletes the process-private global ~| | ppglob and all of its subscripts. No other variables
are affected.

~l lppglob(1)="Ffruit"
~llppglob(1,1)="apples"

~l lppglob(1,2)=""oranges"

$KILL ~| Ippglob

PRINT ~]lppglob(1),”|Ippglob(l,1)

Notes
$KILL and Objects

Object variables (OREFs) automatically maintain a reference count — the number of items currently referring to an object.
Whenever you set a variable or object property to refer to an object, Caché increments the object’s reference count. When
you $KILL a variable, Caché decrements the corresponding object reference count. When this reference count goes to 0,
the object is automatically destroyed; that is, Caché removes it from memory. The object reference count is also decremented
when a variable is set to a new value, or when the variable goes out of scope.

In the case of a persistent object, call the %Save() method before removing the object from memory if you wish to preserve
changes to the object. The %Delete() method deletes the stored version of a Caché object; it does not remove the in-memory
version of that object.

Caché MultiValue Basic Reference 111

Caché MultiValue Basic Commands

Using $KILL with Arrays

You can use SKILL to delete an entire array or a selected node within an array. The specified array can be a local variable,
a process-private global, or a global variable. For further details on global variables with subscripted nodes, see Global
Structure in Using Caché Globals.

To delete a global array and all of its subordinate nodes, simply supply the global name to $KILL.

To delete an array node, supply the appropriate subscript. For example, the following $KILL command deletes the node
at subscript 1,2. This example uses the ASSIGNED function to return a boolean value indicating whether the variable has
been deleted:

~fruitbasket(1)="fruit"
~fruitbasket(l,1)="apples"
~fruitbasket(l,2)="oranges"
~fruitbasket(1,2,1)="navel"
~fruitbasket(1,2,2)="mandarin"
PRINT ~fruitbasket(1),"” contains ", fruitbasket(1,1),
" and ",~fruitbasket(1,2)
PRINT ~fruitbasket(1,2)," contains " ,“fruitbasket(1,2,1),
" and ",~fruitbasket(1,2,2)
$KILL ~Fruitbasket(1,2)
PRINT "1st level node: ",ASSIGNED(“fruitbasket(l))
PRINT "2nd level node: ",ASSIGNED(“fruitbasket(1,1))
PRINT "Deleted 2nd level node: " ,ASSIGNED("fruitbasket(1,2))
PRINT "3rd level node under deleted 2nd: " ,ASSIGNED(“fruitbasket(1,2,1))

When you delete an array node, you automatically delete all nodes subordinate to that node and any immediately preceding
node that contains only a pointer to the deleted node. If a deleted node is the only node in its array, the array itself is deleted
along with the node.

See Also

» \Variables

» ASSIGNED function

* UNASSIGNED function

112 Caché MultiValue Basic Reference

LET

LET

Assigns a value to a variable.

LET var=expression

Arguments

var Any valid variable name.

expression Any MVBasic expression that resolves to a value.
Description

The LET statement assigns the value of expression to the variable var. You can perform the same assignment operation
by just specifying var=expression without the LET keyword. For further details on assignment operations, refer to the
Variables page of this manual.

LET permits value assignment to all valid variable names, including variable names that are keywords. For clarity and
compatibility, use of keywords as variable names is discouraged.

Examples

The following examples use LET to assign values to the variable x:

LET x=12

LET x="Fred"

LET x="Con'":"catenate"

LET x=""

LET x=4+4*3; ! Returns 16
LET x=(4+4)*3; I Returns 24

See Also

e Variables

Caché MultiValue Basic Reference 113

Caché MultiValue Basic Commands

LOCATE

Finds an element in a specified part of a dynamic array by exact value.

LOCATE data IN dynarray[<f[,v[,s]1>] [,start] [BY format] SETTING variable
[THEN statements] [ELSE statements]

LOCATE(data,dynarray[,f[,v];variable[;format]) [THEN statements] [ELSE statements]

Arguments

data The element value to search for in dynarray. This value must be the
complete value of the element. An expression that evaluates to a string or
a numeric value. Values are case-sensitive.

IN dynarray A valid dynamic array.

f Optional — An integer that denotes the Field level of the dynamic array to
search for the element data. Fields are counted from 1. The surrounding
angle brackets are required.

Y% Optional — An integer that denotes the Value level of the dynamic array
to search for the element data. Values are counted from 1.

S Optional — Supported by Some Emulations Only — An integer that denotes
the Subvalue level of the dynamic array to search for the element data.
Subvalues are counted from 1.

start Optional — An integer specifying the starting location to begin searching
the level specified in f, v, and s. This argument is not supported by all
emulations.

BY format Optional — specifies the collation sequence. Specify format as a quoted
string with one of the following values: “AL’ (ascending, left justified); “AR”
(ascending, right justified); “DL’ (descending, left justified); “DR”
(descending, right justified).

SETTING variable A local variable that LOCATE sets to an integer specifying either where
data is located or where data can be added.

Description

The LOCATE statement is used to search for an element value in a dynamic array and return the search results by setting
variable. Caché MVBasic supports both syntactical forms, as shown above.

In Caché MVBasic you can set the f, v variables to integers to specify which data item(s) of the dynamic array to search.
If you search with just the dynarray array name, you are searching for an Field within the dynamic array. If you search
with dynarray<f> then you are searching within Field f of dynarray for a Value. If you search with dynarray<f,v> you are
searching for a Subvalue within the Value dynarray<f,v>. For example, setting f=2 searches the second dynamic array field
for the data value. Caché MVBasic LOCATE does not support s (Subvalue level); this is only supported by the INFOR-
MATION, PIOpen, and UniData emulations, which use a different search logic, as described below.

The data value must be an exact match with the full value of an element in dynarray. It cannot be a substring of an element
value. Matching is case-sensitive. If data does not match an element value, variable is set to an integer 1 larger than the
current last element. This specifies how many elements were searched and where the missing value can be appended to the
existing values. LOCATE behavior when dynarray is the null string (") is described below.

114 Caché MultiValue Basic Reference

LOCATE

The f, v, and s arguments accept a single dynamic array reference (A<i>), a single substring reference (A[s,l]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

The optional BY clause specifies the collation (ascending or descending) and the justification (left or right) used to locate
a value. Left justification is commonly used for strings, and right justification is used for numbers. Positive and negative
numbers are sorted in numeric sequence, regardless of the justification. However, a mixed numeric value (for example
-24degrees) sorts in string collation sequence, rather than numeric sequence.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If data is located in
dynarray, the THEN clause is executed. If data is not located in dynarray, the ELSE clause is executed. The statements
argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block
of statements has specific line break requirements: each statement must be on its own line and cannot follow a THEN,
ELSE, or END keyword on that line.

Null Value Arguments
LOCATE behavior when data and/or dynarray has an empty string value is as follows:

» data="", dynarray=value: Sets variable to an integer 1 larger than the last element of dynarray. The ELSE clause is
taken. If start is specified with a value greater than 1, variable=start.

» data=value, dynarray="": Sets variable=1. The ELSE clause is taken. This is because searching for a nonempty string
treats an empty dynamic array component as containing zero subcomponents, so zero components are searched and
the LOCATE stops before searching the subcomponent at position 1. If start=0 or start=1, variable=1; if start is
greater than 1, variable=start.

o data="", dynarray=""": Sets variable=1. The THEN clause is taken. This is because searching for the empty string in
the subcomponent contained in an empty component of a dynamic array considers that component as containing one
empty subcomponent at position 1 which matches the searched-for empty string. If start is specified with a value other
than 1, the ELSE clause is taken. If start=0 or start=1, variable=1; if start is greater than 1, variable=start.

LOCATE and FIND

The LOCATE statement and the FIND statement both search for an exact element value in a dynamic array and return its
location. Both support optional syntax THEN for successful search and ELSE for unsuccessful search. They differ in the
following ways:

* FIND is used to search an entire dynamic array; there is no way to limit its scope to a portion of the dynamic array.
LOCATE can use the f, v, and s variables to limit the scope of the search.

* When a search is successful, FIND returns an absolute location within the dynamic array; LOCATE returns a count
relative to the specified starting location.

* When a search is unsuccessful, FIND provides no location information; LOCATE provides information on where the
missing value could be appended to the existing values.

To locate an element in a dynamic array by a substring value, use the FINDSTR statement. To return the value of an element
by specifying its dynamic array location, use the EXTRACT function.

Emulation

In INFORMATION, PIOpen, UDPICK, and UniData, f, v, and s arguments mean to search at that level, rather than to
search within that level. The f, v, and s argument values are start positions, rather than array subscripts. The search begins
at the lowest level specified and only that level is searched. For this reason, these emulations require the f argument, and
only these emulations support the s argument. SOPTIONS INFO.LOCATE supports this emulation feature. If dynarray is
the null string ("), the SETTING variable is the integer value of the lowest specified level (f, v, or s). These emulations
do not support the start argument.

Caché MultiValue Basic Reference 115

Caché MultiValue Basic Commands

In UniData, if f is less than or equal to 0, it is treated as 1. If v, or s (or both) are less than or equal to O, they are ignored.
If data="" and dynarray=""the THEN clause is always taken, regardless of the value of start.

Examples

The following example uses the LOCATE statement to find the second value from the first field of a dynamic array:

cities="New York'":@VM:"London":@VM:
""Chicago':@VM:""Boston':@VM:""Los Angeles"
LOCATE "London' IN cities<l> SETTING a
THEN PRINT *found",a
I returns "found 2" found in field 1 at position 2
ELSE PRINT "not found",a
LOCATE "London" IN cities<2> SETTING a
THEN PRINT *"found",a
ELSE PRINT "not found",a
I returns "not found 1", append to field 2 at level 1
LOCATE "London" IN cities<1,3> SETTING a
THEN PRINT "found",a;
ELSE PRINT "not found",a
I returns 2 not found, append to field 2 at level 2

The following example uses the second syntactical form of LOCATE. It is otherwise identical to the previous example:

cities="New York":@VM:"London" :@VM:
"Chicago':@VM:""Boston':@VM:""Los Angeles"
LOCATE(*'London™,cities<l>;a)

THEN PRINT *found",a

! returns "found 2" found in field 1 at position 2

ELSE PRINT *not found",a
LOCATE("'London",cities<2>;a)

THEN PRINT "found",a

ELSE PRINT *not found",a

! returns "not found 1", append to field 2 at position 1
LOCATE(*'London",cities<l,3>;a)

THEN PRINT *"found",a;

ELSE PRINT "not found",a

! returns 2 not found, append to field 2 at level 2

See Also

e FIND statement

* FINDSTR statement
* EXTRACT function
e Dynamic Arrays

e Strings

e Variables

116 Caché MultiValue Basic Reference

LOCK

LOCK

Obtains a logical process lock.

LOCK name [THEN statements] [ELSE statements]

Arguments
name A number or a string, or an expression that evaluates to a number or a string specifying a
lock name. Commonly, an integer from 0 through 64.
Description

The LOCK statement sets a named process lock, preventing other processes from obtaining a lock with the same name.

Process locks are not incremental: A process can set the same lock multiple times with LOCK. A single UNLOCK releases
the lock

Commonly, name evaluates to an integer in the range 0 through 64. However, in Caché any number or string may be
specified as a logical lock name. The lock hame may not be empty, so LOCK """ sets LOCK 0.

You can specify optional THEN and ELSE clauses. If you obtain lock name, the THEN clause is executed. If you already
have lock name, the THEN clause is also executed. If you could not obtain lock name because it is held by another resource,
the ELSE clause is executed. If you could not obtain lock name because it is held by another resource, the ELSE clause is
executed.

Unlike READU locks, process locks set in a program are not released automatically when the program terminates. The
lock belongs to the process, and persists for the life of the process, unless unlocked explicitly using the UNLOCK statement.

You can determine which locks are held using the LIST.LOCKS command line command. You can unlock one or all locks
using the CLEAR.LOCKS command line command. These commands are described in the Caché MultiValue Commands
Reference.

Example

The following example uses the LOCK statement to obtain a logical lock named 17.

a=17
LOCK a THEN PRINT "Got the Lock"
ELSE PRINT "Couldn®t get the lock"

UNLOCK a

See Also
e UNLOCK statement

e LIST.LOCKS command line command

e CLEAR.LOCKS command line command

Caché MultiValue Basic Reference 117

Caché MultiValue Basic Commands

LOOP...REPEAT

Repeats a block of statements while a condition is true or until a condition becomes true.

LOOP [{WHILE | UNTIL} condition [DO]]
statements
REPEAT

LOOP statements
[WHILE | UNTIL} condition [DO]]

REPEAT
Arguments
condition Optional — Numeric or string expression that evaluates to True or False. Loop repeats
either WHILE condition is True, or UNTIL condition is True. If this clause is omitted, an
infinite loop occurs.
statements One or more statements that are repeated while or until condition is True.
Description

The LOOP...REPEAT statement is a flow-of-control statement that repeats a block of program statements zero or more
times. The loop is performed either UNTIL condition becomes true, or WHILE condition remains true. The two syntax
forms are equivalent.

The REPEAT keyword is mandatory, signalling the end point of the loop. The DO keyword is optional; if specified it must
be on the same line as the condition clause.

You can use the CONTINUE statement to cause execution to jump to the next iteration of the loop.

LOOP...REPEAT statements can be nested.

118 Caché MultiValue Basic Reference

LOOP...REPEAT

Examples

The following examples illustrate use of the LOOP...REPEAT statement. All four examples are exactly equivalent; each
executes the loop 10 times

x=0

LOOP UNTIL x=10
PRINT RND(100)
! Generate a random number between 1 and 100
X=X+1

REPEAT

x=0

LOOP WHILE x<10
PRINT RND(100)
! Generate a random number between 1 and 100
X=X+1

REPEAT

x=0
LOOP
PRINT RND(100)
! Generate a random number between 1 and 100
X=X+1
UNTIL x=10
REPEAT

x=0
LOOP
PRINT RND(100)
! Generate a random number between 1 and 100
X=X+1
WHILE x<10
REPEAT

See Also

* CONTINUE statement
» EXIT statement

* FOR..NEXT statement

Caché MultiValue Basic Reference 119

Caché MultiValue Basic Commands

MAT

Assigns values to all the elements in a dimensioned array.

MAT array = value

MAT arrayl = MAT array2

Arguments
array Name of an existing array. This array must have been dimensioned using the DIM statement.
value The value to assign to all of the elements of the array. An expression that resolves to a value.
Description

The MAT statement assigns values to all of the elements of a specified array. This array may be one-dimensional or two-
dimensional. MAT has two forms:

* MAT array=value assigns the same value to every element of the array.

 MAT arrayl=MAT array?2 assigns the values of the elements in array2 to the corresponding elements in arrayl.
Both arrayl and array2 must already have been dimensioned using the DIM statement. The arrays may be differently
dimensioned. If there are more elements in array2 than arrayl, the excess array2 elements are ignored. If there are
more elements in arrayl than array2, the excess arrayl elements are not assigned a value. All uninitialized variables
are treated as zero-length strings ("").

Note: This statement cannot be executed from the MVBasic command shell. Attempting to do so results in a MVBasic
syntax error.

Emulation
D3 supports arrayl = MAT array? as functionally equivalent to MAT arrayl = MAT array?2.

Examples

The following examples illustrate the use of the MAT statement:

I Dimension a one-dimensional array with 6 elements.

DIM MyVectorl1l(6)

I Dimension a one-dimensional array with 10 elements.

DIM MyVector2(10)

1 Assign the value "pending"” to all elements of MyVector2

MAT MyVector2="pending"

1 Assign the values of elements of one array to another array
MAT MyVectorl1=MAT MyVector2

I Results are a that MyVectorl contains 6 elements all assigned
1 the value "pending"

See Also

* DIM statement
MATBUILD statement
* MATPARSE statement
* MATREAD statement
* MATWRITE statement

120 Caché MultiValue Basic Reference

MAT

e Variables

Caché MultiValue Basic Reference 121

Caché MultiValue Basic Commands

MATBUILD

Builds a dynamic array from a dimensioned array.

MATBUILD dynarray FROM array [,start [,end]] [USING delimiter]

Arguments
dynarray A dynamic array, each element of which receives the value of the corresponding dimensioned
array element.
array Name of an existing dimensioned array. This array must have been dimensioned using the
DIM statement.
start Optional — An integer that specifies the first element to be transcribed. The default is 1.
end Optional — An integer that specifies the last element to be transcribed. You must specify a
start value to specify an end value. The default is the last element in array.
USING Optional — The dynamic array delimiter character to be used to separate elements, specified
delimiter as a variable (for example @VM) or a quoted string. The default is a field mark (@FM). If a
string of more than one characters is specified, only the initial character is used. The empty
string (") is a valid value here; it's use would create a string of concatenated elements, not
a dynamic array.
Description

The MATBUILD statement assigns the values of the elements of a specified dimensioned array to a dynamic array. You
can create a dynamic array containing all of the element values of the dimensioned array, or you can limit the dynamic
array to those elements of the dimensioned array between start and end.

Note: This statement cannot be executed from the MVBasic command shell. Attempting to do so results in a MVBasic
syntax error.

By default, MATBUILD assigns empty strings to unassigned nodes. If the highest subscripts of the dimensioned array are
unassigned or have empty string values, the dynamic array is truncated at the last assigned data value. This behavior can
be configured using the %SYSTEM.Process.MVUndefined() method.

MATBUILD is the functional opposite of MATPARSE.

Emulation

D3, JBASE, MVBase, R83, POWER95, Reality, and Ultimate set SOPTIONS MATBUILD.UNASSIGNED.ERROR.
This causes these emulations to not support unassigned dimensioned array nodes. If MATBUILD encounters an unassigned
node, it issues an <UNDEFINED> error. This behavior can be configured using the %SYSTEM.Process.MVUndefined()
method.

UniData MATBUILD does not truncate the highest subscripts of a dimensioned array if they are unassigned or have empty
string values.

122 Caché MultiValue Basic Reference

MATBUILD

Examples

The following example illustrates the use of the MATBUILD statement:

! Dimension a one-dimensional array with 6 elements.

DIM MyVectorl1l(6)

1 Assign the value "pending"” to all elements of MyVectorl
MAT MyVectorl="pending"

1 Assign the values of elements of a dimensioned array

! to a dynamic array

MATBUILD mydynarray FROM MyVectorl USING "'~"

The results are the mydynarray dynamic array string assigned the value

"pending”pending”~pending”pending”~pending”pending". Here the "A" character is used as the dynamic array

delimiter, rather than the default field mark character.

See Also

* DIM statement

* MAT statement

* MATPARSE statement
* MATREAD statement
* MATWRITE statement

e Variables

Caché MultiValue Basic Reference

123

Caché MultiValue Basic Commands

MATPARSE

Builds a dimensioned array from a dynamic array.

MATPARSE array [,start [,end]] FROM dynarray [USING delimiter]

Arguments
array Name of an existing dimensioned array. This array must have been dimensioned using the
DIM statement.
start Optional — An integer that specifies the first dimensioned array element to receive a value.
The default is 1.
end Optional — An integer that specifies the last dimensioned array element to receive a value.
You must specify a start value to specify an end value. The default is the last element in
array.
dynarray An existing dynamic array, each element of which is transcribed to the corresponding
dimensioned array element.
USING Optional — Specifies the dynamic array delimiter character used to define separate elements.
delimiter The default is a field mark (@FM).
Description

The MATPARSE statement assigns the values of the elements of a dynamic array to a dimensioned array. You can create
adimensioned array containing all of the element values of the dynamic array, or you can limit the transcription of dynamic
array elements to those only dimensioned array elements between start and end.

Note: This statement cannot be executed from the MVBasic command shell. Attempting to do so results in a MVBasic
syntax error.

MATPARSE is the functional opposite of MATBUILD.

Examples
The following example illustrates the use of the MATPARSE statement:

I Dimension a static array
DIM MyArray(2,5)
I Create a dynamic array with 5 elements
MyDyn=""Fred" :@FM:""Barney" :@FM:"Wilma" :@FM:"Betty" :@FM:""Pebbles"
1 Assign dynamic array elements to the dimensioned static array
MATPARSE MyArray FROM MyDyn
1 Display the number of elements parsed
CRT INMATQ
I Display static array element values
CRT MyArray(1,2); ! returns "Barney"
CRT MyArray(1,3); ! returns "Wilma"

124 Caché MultiValue Basic Reference

MATPARSE

The following example uses a start value of 2. It is otherwise identical to the previous example:

I Dimension a static array
DIM MyArray(3,5)
1 Create a dynamic array with 5 elements
MyDyn=""Fred":@FM:""Barney' :@FM:"Wilma'":@FM:"'Betty' :@FM:""Pebbles"
1 Assign dynamic array elements to the dimensioned static array
MATPARSE MyArray,2 FROM MyDyn
I Display the number of elements parsed
CRT INMATQ
I Display static array element values
CRT MyArray(1,2); ! returns "Fred"
CRT MyArray(1,3); ! returns "Barney"

The following example uses Value Marks (@VM) as the dynamic array delimiters. It is otherwise identical to the first
example:

I Dimension a static array
DIM MyArray(2,5)
I Create a dynamic array with 5 elements
MyDyn=""Fred":@VM:"Barney' :@VM:"Wilma'":@VM:"'Betty' :@VM:""Pebbles"
1 Assign dynamic array elements to the dimensioned static array
MATPARSE MyArray FROM MyDyn USING @VM
I Display the number of elements parsed
CRT INMATQ
I Display static array element values
CRT MyArray(1,2); ! returns '"Barney"
CRT MyArray(1,3); ! returns "Wilma™

See Also

* DIM statement

e MAT statement

* MATBUILD statement
* MATREAD statement
* MATWRITE statement
* INMAT function

e Dynamic Arrays

Caché MultiValue Basic Reference 125

Caché MultiValue Basic Commands

MATREAD, MATREADL, MATREADU

Reads data from a MultiValue file to a dimensioned array.

MATREAD array FROM filevar,reclD
[SETTING var] [ON ERROR statements] [[THEN statements] [ELSE statements]]

MATREADL array FROM filevar,reclD
[ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE statements]]

MATREADU array FROM filevar,reclD
[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

Arguments

array Name of an existing dimensioned array that receives the file data. This
array must have been dimensioned using the DIM statement.

filevar A local variable used as the file identifier of an open MultiValue file. This
variable is set by the OPEN statement.

reciD The record ID of the record to be read, specified as either a number or an
alphanumeric string of up to 31 characters. Letters in a reclD are
case-sensitive. For naming conventions, refer to MATWRITE.

SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR, THEN, or ELSE clause. Provided for BASE
compatibility.

Description

The MATREAD, MATREADL, and MATREADU statements read the specified record into a dimensioned array.
You must use the OPEN statement to open the MultiValue file before issuing any of these statements.

You must use the DIM statement to dimension array before issuing any of these statements. If a record read by MATREAD
has more attributes than specified by DIM, the handling of these extra attributes is controlled by the STATIC.DIM option:

¢ With $OPTIONS STATIC.DIM (the default in Reality, PICK, Ultimate, POWER95, MVBase, IN2, and R83 emula-
tions) dimensioned arrays are created starting from element #1. When there is a MATREAD of more attributes than
the array has dimensions, the extra attributes are appended to the last element, and INMAT returns 0 to indicate the
overflow. On legacy platforms, there is no array element 0, and the array usually cannot be re-dimensioned, but Caché
does have an element 0 and allows re-dimensioning.

* With $OPTIONS -STATIC.DIM (the default in Cache, UniVerse, UniData, INFORMATION, PIOpen, UDPICK,
D3, and jBASE emulations) dimensioned arrays are created starting from element 0. When there isa MATREAD with
more attributes than dimensions, the extra attributes are put into element 0.

A read operation must be able to acquire at least a shared lock on the desired resource. The MATREADL statement acquires
a shared lock before performing the read. The MATREADU statement acquires an update (exclusive) lock before performing
the read. An optional LOCKED clause is provided that is executed if the desired lock could not be acquired. A MATREAD
pauses execution until it can acquire a shared lock on the specified record.

126 Caché MultiValue Basic Reference

MATREAD, MATREADL, MATREADU

You can optionally specify a LOCKED clause. This clause is executed if MATREADL or MATREADU could not perform
a read due to lock contention. The LOCKED clause is optional, but strongly recommended; if no LOCKED clause is
specified, program execution waits indefinitely for the conflicting lock to be released.

You can optionally specify an ON ERROR clause, which is executed if array is not a MultiValue dimensioned array. If
no ON ERROR clause is present, the ELSE clause is taken, or an <ARRAY DIMENSION> error is issued.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. MATREAD executes
the THEN clause if the read was successful. The THEN clause is executed even when all remaining field identifiers are
the null string. MATREAD executes the ELSE clause if the read operation fails.

MATREAD, MATREADL, and MATREADU all read the specified MultiValue file record value into array. If recID
refers to a non-existent record, the read operation fails.

Note: This statement cannot be executed from the MVBasic command shell. Attempting to do so results in a MVBasic
syntax error.

The various MATREAD statements read from a MultiValue file into a dimensioned array. The various READ statements
read from a MultiValue file into a dynamic array.

Examples
The following example illustrates the use of the MATREAD statement:

DIM myarray(6)

OPEN "TEST.FILE™ TO myfile

MATREAD myarray FROM myfile,1

PRINT *"the number of records read:",INMAT()
PRINT "the record value:",myarray(1l)

See Also

e DIM statement

* MAT statement

* MATBUILD statement
* MATPARSE statement
* MATWRITE statement
* OPEN statement

* READ statement

» INMAT function

e Variables

Caché MultiValue Basic Reference 127

Caché MultiValue Basic Commands

MATWRITE, MATWRITEU

Writes data from a dimensioned array to a MultiValue file record.

MATWRITE array {ON | TO} filevar,reclD
[SETTING var] [ON ERROR statements] [LOCKED statements] [THEN statements] [ELSE
statements]

MATWRITEU array {ON | TO} Ffilevar,reclD
[SETTING var] [ON ERROR statements] [LOCKED statements] [THEN statements] [ELSE
statements]

Arguments
array Name of an existing dimensioned array that supplies the record data written
to the MultiValue file. This array must have been dimensioned using the
DIM statement.
filevar A local variable used as the file identifier of an open MultiValue file. This
variable is set by the OPEN statement. You can specify either ON or TO
as the keyword.
reciD The record ID of the record to be written, specified as either a number or
an alphanumeric string of up to 31 characters. Letters in a reclD are
case-sensitive. Additional naming conventions are described below.
SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR clause. Provided for BASE compatibility.
Description

The MATWRITE statements are used to write data from a dimensioned array to a record in a MultiValue file.

« MATWRITE writes a record, then releases the update (exclusive) record lock

« MATWRITEU writes a record, retaining the update (exclusive) record lock

You can optionally specify a LOCKED clause. This clause is executed if the write command could not acquire an exclusive

record lock due to lock contention. The LOCKED clause is optional, but strongly recommended; if no LOCKED clause is
specified, program execution waits indefinitely for the conflicting lock to be released.

You can optionally specify an ON ERROR clause, which is executed if array is not a MultiValue dimensioned array. If
no ON ERROR clause is present, an <ARRAY DIMENSION> error is issued.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the record write is
successful, the THEN clause is executed. If record write is attempted but fails, the ELSE clause is executed.

You can use the STATUS function to determine the status of the write operation, as follows: O=write successful; -1=write
failed because file not open (or opened by another process).

Note: This statement cannot be executed from the MVBasic command shell. Attempting to do so results in a MVBasic
syntax error.

Record Naming Conventions

The following are naming conventions for a valid MultiValue reclD:

128 Caché MultiValue Basic Reference

MATWRITE, MATWRITEU

* ArreclD can be a number or an alphanumeric string.

e Ifanumber, it is converted to canonical form: multiple plus and minus signs are resolved, and the plus sign, and
leading and trailing zeros are removed. If the number is enclosed in single or double quotation marks, conversion to
canonical form is not performed. Only a single period can be specified, which is used as the decimal separator character.

» Ifanalphanumeric string, the first character must be a letter, dollar sign (3$), or percent sign (%). Subsequent characters
may be letters, numbers, or percent characters. If the first character is a dollar sign ($), all subsequent characters must
be letters.

» The period (.) character can appear within a recID. If the recID is alphabetic any number of periods can be specified,;
these periods are stripped out and are not part of the recID. If the recID is a mixed alphanumeric, no periods may be
specified.

» The recID may be enclosed in single or double quotation marks, these become part of the record name, unless the
recID is an integer in canonical form. Single and double quotes are equivalent. Thus: "4"='4'=4 and "rec1"="rec1' but
not equal to recl. Do not specify a blank space within a reclD.

e AreclD is case-sensitive.

* AvreclD is limited to 31 characters. You may specify a reclD longer than 31 characters, but only the first 31 characters
are used. Therefore, a recID must be unique within its first 31 characters.

Empty Nodes

By default, MATWRITE assigns empty strings to unassigned nodes. If the highest subscripts of the dimensioned array
are unassigned or have empty string values, the resulting record is truncated at the last assigned data value. This behavior
can be configured using the %SYSTEM.Process.MVUndefined() method.

Record Locks

RECORDLOCKU performs an update (exclusive) lock on a record. This update record lock is automatically released when
you write data to the record using MATWRITE. The MATWRITEU command does not release the update record lock.
You can check the status of an update record lock using the RECORDLOCKED function. You can explicitly release an
update record lock using the RELEASE command.

MATWRITE and WRITE

The MATWRITE and MATWRITEU statements write from a dimensioned array to a MultiValue file record. The various
WRITE statements write from a dynamic array (or an ordinary string) to a MultiValue file record.

Emulation

D3, jBASE, MVBase, R83, POWER95, Reality, and Ultimate set SOPTIONS MATBUILD.UNASSIGNED.ERROR.
This causes these emulations to not support unassigned dimensioned array nodes. Because MATWRITE uses MATBUILD
to construct the output string, if MATWRITE encounters an unassigned node, it issues an <UNDEFINED> error. This
behavior can be configured using the %SYSTEM.Process.MVUndefined() method.

UniData MATWRITE truncates the highest subscripts of a dimensioned array if they are unassigned or have empty string
values. (UniData MATBUILD does not truncate in these circumstances.)

By default, Caché and the D3, jBASE, Pl1Open, Prime, UniData, and UniVerse emulations do not set SOPTIONS
STATIC.DIM; all other emulations set SOPTIONS STATIC.DIM. When set, STATIC.DIM re-dimensions an array at
runtime when there are more attributes than the number of dimensioned array elements. Thus excess attributes are appended
to the end of the array. When STATIC.DIM is not set, excess attributes are placed in array element 0.

Caché MultiValue Basic Reference 129

Caché MultiValue Basic Commands

Examples

The following example writes a line of data to an existing sequential file on a Windows system:

DIM

OPEN "'TEST.FILE" TO mytest
IF STATUS()=0

myarray(6)

THEN

MATWRITE myarray TO mytest,1
ON ERROR PRINT "MATWRITE error occurred"

CLOSE mytest

END
ELSE

PRINT "File open failed"

END

See Also

DIM statement

MAT statement
MATBUILD statement
MATPARSE statement
MATREAD statement
OPEN statement
STATUS statement
WRITE statement

Variables

130

Caché MultiValue Basic Reference

$MERGE

$MERGE

Merge two arrays.

$MERGE destination=source

Arguments
destination A local variable, process-private global, or global to be merged. If specified
as a class property, the source variable must be a multidimensional
(subscripted) variable.
source A local variable, process-private global, or global to be merged. If specified
as a class property, the source variable must be a multidimensional
(subscripted) variable.
Description

The $SMERGE statement is used to merge two arrays. $SMERGE destination=source copies source into destination and
all descendants of source into descendants of destination. It does not modify source, or kill any nodes in destination.

Note: $MERGE operates only on non-MultiValue arrays. It cannot be used with a MultiValue static dimensioned array
that has been declared using DIM.

$MERGE simplifies the copying of a subtree (multiple subscripts) of a variable to another variable. Either variable can
be a subscripted local variable, process-private global, or global. A subtree is all variables that are descendants of a specified
variable.

If destination is undefined, SMERGE defines it and sets it to source. If source is undefined, SMERGE completes success-
fully, but does not change destination. When the destination and source are the same variable, no merge occurs. SMERGE
issues an error if the source and destination have a parent-child relationship.

You can specify multiple, comma-separated destination=source pairs. They are evaluated in left-to-right order.

The $SMERGE command can take longer than most other Caché MVBasic commands to execute. As a result, it is more
prone to interruption. The effect of interruption is implementation-specific. Under Caché, an interruption may cause an
unpredictable subset of the source to have been copied to the destination subtree.

See Also

e Global Structure chapter in Using Caché Globals

Caché MultiValue Basic Reference 131

Caché MultiValue Basic Commands

NAP

Suspends processing for a specified number of milliseconds.

NAP [millisecs]

Arguments
millisecs Optional — An integer count of milliseconds. If omitted, execution is suspended for 1
millisecond.
Description

The NAP statement specifies the number of milliseconds to suspend program execution. There are one thousand milliseconds
in a second. If you specify NAP with no argument, it suspends program execution for one millisecond.

The SLEEP and RQM statements can be used to suspend program execution for a specified number of seconds.

See Also

e SLEEP statement
« RQM statement

132 Caché MultiValue Basic Reference

NOBUF

NOBUF

Turns off buffering for sequential file 1/0.

NOBUF filevar [THEN statements] [ELSE statements]

Arguments
filevar A file variable name used to refer to a MultiValue sequential 1/O file. This
filevar is supplied by the OPENSEQ statement.
Description

By default, sequential file 1/O is performed using 1/O buffering. This buffer is automatically assigned as part of the OPENSEQ
operation. 1/0 buffering significantly improves overall performance, but means that write operations are not immediately
applied to the sequential file. The NOBUF statement disables the 1/O buffer for an open MultiValue sequential file. That
is, all 1/0O operations are immediately executed on the sequential file.

NOBUF takes the file identifier filevar, defined by the OPENSEQ statement. Thus, NOBUF can only be issued after a
sequential file has been opened with 1/0O buffering.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file buffer is
successfully disabled (the specified filevar exists), the THEN clause is executed. If the buffer disable fails (usually because
the specified filevar does not exist), the ELSE clause is executed. The statements argument can be the NULL keyword, a
single statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Caché MVBasic also provides a FLUSH statement, which immediately writes the current contents of the 1/0 buffer to the
sequential file.

See Also

e OPENSEQ statement

e WRITESEQ statement

e FLUSH statement

Caché MultiValue Basic Reference 133

Caché MultiValue Basic Commands

NULL

Performs no operation, used in a clause.

NULL

Arguments

The NULL statement takes no arguments.

Description

The NULL statement performs no operation. It is used to indicate in an optional clause that no operation is to be performed
when that clause is executed. It can be used within a THEN clause, an ELSE clause, or an ON ERROR clause. It is most
commonly used in a THEN clause. For example:

WRITE mydata TO filevar,reclD
THEN NULL
ELSE GOTO write_error
PRINT "All done"

NULL transfers control to the statement immediately following the THEN...ELSE construction.

See Also

* END statement
e |F..THEN statement

134 Caché MultiValue Basic Reference

ON

ON

Transfers program execution to one of several internal subroutines or labels.

ON iInteger GOSUB labell[,label2][...]
ON integer GOTO labell[,label2][---]

Arguments

integer A positive non-zero integer that corresponds to the list of labels.

label Any valid label. The label name can be optionally followed by a colon (:).
Description

The ON statement is used to transfer execution to one of the labels specified by the GOSUB or GOTO keyword. Which
label to transfer execution to is specified by the integer argument: a value of 1 transfers control to the first listed label, a
value of 2 transfers control to the second listed label, and so forth.

For a GOTO, this label identifies a line of code in the current program. For a GOSUB, this label identifies an internal
subroutine that is executed until a RETURN statement is encountered. Execution then reverts to the line immediately fol-
lowing the ON...GOSUB statement. (Execution of an internal subroutine can also terminate with an END statement, which
does not return control.)

The label argument value corresponds to line of code identified by a label identifier. Non-numeric labels end with a colon
character; this colon is option when specifying the label argument.

See Also

* GOSUB statement
* GOTO statement

* RETURN statement

e Labels

Caché MultiValue Basic Reference 135

Caché MultiValue Basic Commands

OPEN

Opens a MultiValue file.

OPEN [SECTION,] mvfile [TO filevar]
[SETTING var] [ON ERROR statements]
[THEN statements] [ELSE statements]

Arguments

SECTION Optional — An expression evaluating to “DICT”, “DATA”, or “". Unless
SECTION is “DICT", the section opened by OPEN is determined by the
mvfile argument.

DATA Optional — A keyword specifying whether to access the MultiValue data
file or the dictionary file. The default is to access the data file. Note the

DICT . . .
required comma following this keyword.

mvfile An expression evaluating to a filename defined in the VOC, or an mv
filename path. See the Description below.

filevar Optional — A local variable name assigned to the MultiValue file. If omitted,
the file is opened into the special variable @STDFIL.

SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR, THEN, or ELSE clause. Provided for BASE
compatibility.

Description

The OPEN statement is used to open the mvfile MultiValue file. This must either be an existing file defined as a file in the
VOC, or the VOC itself. You can create a MultiValue file by using the CREATE.FILE verb.

136 Caché MultiValue Basic Reference

OPEN

You can specify mvfile in any of the following ways:

"filename"

“filename,"
"filename,datasection"
"faccount, ,"

"account, filename, "

"account, filename,datasection"

The following four OPEN statements all do the same thing:

OPEN “DATA”,”filename”
OPEN “DATA filename”
OPEN ““filename”

OPEN ““filename, filename”

The following two OPEN statements both do the same thing:

OPEN “DICT”,”filename”
OPEN “DICT filename”

Note the trailing comma(s) in several of these formats. **fi lename™ and "'fi lename, ' are functionally identical. If you
specify ""'account, , " the VOC for the specified account is opened. If mvfile is an empty string, OPEN executes its ELSE
clause.

The OPEN statement assigns a filevar variable to the specified MultiValue file. filevar is a local variable specific to the
current process. You use this filevar variable to refer to the MultiValue file in subsequent READ, WRITE, and other file
statements. Issuing a CLOSE statement deletes the filevar value.

A process can successfully issue multiple concurrent OPEN statements against the same MultiValue file. Multiple processes
can issue concurrent OPEN statements against the same MultiValue file.

You can optionally specify an ON ERROR clause, which is executed if an argument is invalid.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file open is suc-
cessful (the specified file exists), the THEN clause is executed. If file open fails (the specified file does not exist), the ELSE
clause is executed. Commonly, a STOP is issued as part of an ELSE clause.

You can use the STATUS function to determine the status of the file open operation, as follows: O=success; -1=file does
not exist.

After opening a file, you can use the STATUS statement to obtain file status information. You can use the FILEINFO
function to get information about an open file.

OPEN is used to open a MultiValue file for READ and WRITE access. Use OPENSEQ to open a sequential file.
The following example uses OPEN to open the VOC file:

OPEN "VOC" TO MyVoc

IF 0=STATUS() THEN PRINT "Opened file" ELSE STOP 201, "VOC*
CLOSE MyVoc

IF 0=STATUS() THEN PRINT "Closed file" ELSE PRINT "Close error”

Directory Direct Reference
You can use the double slash (//) prefix to directly reference a directory pathname from the OPEN command. For example:

OPEN *'//C:/temp'™ TO DSCB
WRITE results ON DSCB,"results.txt"

This program opens the Windows directory C:/temp and creates the file C:/temp/results.txt.

The directory pathname must be preceded by //, and must not already exist in the VOC.

Caché MultiValue Basic Reference 137

Caché MultiValue Basic Commands

The DICT and DATA keywords are not meaningful in this context. Either may be specified or omitted without affecting
the directory reference.

Emulation

You may specify the keyword SYSTEM before the account portion of mvfile. For example:
"SYSTEM, account, filename". In Caché MVBasic this keyword is a no-op, it is provided for compatibility with other

MultiValue implementations.

In D3 emulation mode, you can specify MDS, rather than SYSTEM, as this no-op keyword prefix.

See Also

READ statement
WRITE statement
CLOSE statement
OPENSEQ statement
STATUS statement
OPENPATH statement
FILEINFO function
STATUS function

138

Caché MultiValue Basic Reference

OPENINDEX

OPENINDEX

Opens an index.

OPENINDEX filename, indexname TO ivar [THEN statements] [ELSE statements]

Arguments
filename The name of a MultiValue file defined in the VOC, or the name VOC.
filename must be specified as a quoted string. If there are multiple defined
data sections (data files), you can specify filename as
"filename,datasection".
indexname The name of a defined index, specified as a quoted string.
ivar The name of an index variable, a dynamic array.
Description

The OPENINDEX statement is used to open an existing index and create an ivar (index variable) for use by the SELECT,
SELECT ATKEY, or SELECTINDEX statement.

The ivar argument accepts a single dynamic array reference (A<i>), a single substring reference (A[s,1]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the index is opened,
the THEN clause is executed. If the index cannot be opened, the ELSE clause is executed. The statements argument can
be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements
has specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END
keyword on that line.

Examples

The following example used OPENINDEX to open an index to VOC on the attribute F1. The SELECT selects this index
to a select list. The READNEXT KEY reads an item from the select list:

OPENINDEX *"VOC®","F1" TO ldxFp ELSE ABORT
SELECT ldxFp TO ldxList
READNEXT KEY l1dx,ld FROM ldxList

See Also

» SELECT statement

» SELECT ATKEY statement
» SELECTINDEX statement

» READNEXT statement

* READNEXT KEY statement

Caché MultiValue Basic Reference 139

Caché MultiValue Basic Commands

OPENPATH

Opens a directory.

OPENPATH pathname
[TO Filevariable]
[SETTING var] [ON ERROR statements]
[[THEN statements] [ELSE statements]]

Arguments
pathname Optional — A fully-qualified pathname of a directory, specified as a quoted string. For example:
“C:\foo\”
TO Optional — A structure that contains the file type and the file name. For details, see below.
filevariable

SETTING var | Optional —When an error occurs, sets the local variable var to the operating system's error
return code. Successful completion returns O; error return codes are platform-specific. The
SETTING clause is executed before the ON ERROR, THEN, or ELSE clause. Provided for
JBASE compatibility.

Description

OPENPATH opens a directory. Each filename within the directory is represented as a record ID. Subsequent READ
statements specify these files using the record IDs.

The filevariable string has the following structure:
$C(128)_$MVW(1)_$C(FileType) $C(DictFlag) $LIST(FileNamel[,FileName2])

The FileType codes are as follows: 0=Select List; 1=0S File; 2=Directory; 3=Global
The DictFlag codes are as follows: 0=data file; 1=dictionary file
FileName1 specifies (depending on the FileType) the file name, directory name, or global name.

FileName2 is only specified for FileTypes 2 and 3: If FileType 2=the VOC id for the OS file name. If FileType 3 = the
VOC id for the file name.

The filevariable argument accepts a single dynamic array reference (A<i>), a single substring reference (A[s,I]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

You can optionally specify an ON ERROR clause, which is executed when the directory is located but could not be opened.
The ELSE clause is executed when the directory could not be located. If no ON ERROR clause is specified, the ELSE
clause is executed for both types of failed access.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the directory open
succeeds, the THEN clause is executed. If the directory open fails, the ELSE clause is executed.

See Also
¢ OPEN statement
e« OPENSEQ statement

e READ statement
e WRITE statement

140 Caché MultiValue Basic Reference

OPENPATH

» STATUS function

Caché MultiValue Basic Reference 141

Caché MultiValue Basic Commands

OPENSEQ

Opens a file for sequential access.

OPENSEQ filename TO filevar [LOCKED statements]
[ON ERROR statements] [THEN statements] [ELSE statements]

Arguments

filename The file to be opened. A fully-qualified Windows or UNIX® file pathname,
specified as a quoted string. For two-part versions of this argument, see
the Emulation section below.

TO filevar A file variable name used to refer to the file in Caché MVBasic. filevar can
be a simple variable, or can be a single dynamic array reference (A<i>), a
single substring reference (A[s,l]), or a substring reference nested inside
a dynamic array reference (A<i>[s,I]).

Description

The OPENSEQ statement is used to open a file for sequential access. This can be an existing file or a new file. It assigns
the file to filevar.

You can optionally specify a LOCKED clause, which is executed if OPENSEQ could not open the specified file due to
lock contention. The LOCKED clause is optional, but strongly recommended; if no LOCKED clause is specified, program
execution waits indefinitely for the conflicting lock to be released.

You can optionally specify an ON ERROR clause, which is executed if the file could not be opened. If no ON ERROR
clause is present, the ELSE clause is taken for this type of error condition.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file open is suc-
cessful (the specified file exists), the THEN clause is executed. If file open fails (the specified file does not exist), the ELSE
clause is executed.

You can use the STATUS function to determine the status of the sequential file open operation, as follows: 0=success; -
1=file does not exist.

To create a file, you must first issue an OPENSEQ statement, giving the fully-qualified pathname for the file you wish to
create. Because the file does not yet exist, the OPENSEQ appears to fail, taking its ELSE clause and setting the value
returned by the STATUS function to -1. However, the OPENSEQ sets its filevar to an identifier for the specified file. You
then supply this filevar to CREATE to create the new file.

The filename must be a fully-qualified pathname. The directories specified in filename must exist for a file create to be
successful. Pathnames are not case-sensitive; however, case is preserved when you specify a filename to create a sequential
file.

After opening a file, you can use the STATUS statement to obtain file status information. You can use READBLK,
READSEQ, WRITEBLK, and WRITESEQ to perform sequential read and write operations. You can use CLOSESEQ
to release an open file, making it available to other processes.

File Locking

Issuing OPENSEQ gives the process exclusive access to the specified file. An OPENSEQ locks the file against an
OPENSEQ issued by any other process. This lock persists until the process that opened the file releases the lock, by issuing
a CLOSE, a CLOSESEQ), or a RELEASE statement.

142 Caché MultiValue Basic Reference

OPENSEQ

Issuing an OPENSEQ for a non-existent file also performs an exclusive file lock, so that your process can issue a CREATE
to create this file. A CLOSE or CLOSESEQ releases this file lock, whether or not the file has been successfully created.

If an OPENSEQ without a LOCKED clause attempts to open a file already opened by another process, the OPENSEQ
waits until the first process closes (or releases) the desired file. If an OPENSEQ with a LOCKED clause attempts to open
a file already opened by another process, the OPENSEQ concludes by executing the LOCKED clause statements. The
ELSE clause is not invoked because of lock contention.

FILEINFO and @FILENAME

You can use the FILEINFO function to return sequential file information, including whether a specified filevar has been
defined (key=0) and the filename specified in OPENSEQ for that filevar (key=2). The @FILENAME system variable also
contains the filename specified in the most recent OPENSEQ.

In both cases, the file does not have to exist; if OPENSEQ specifies a non-existent file, both FILEINFO and @FILENAME
return the specified pathname as a directory path. Subsequently creating this file does not change the FILEINFO and
@FILENAME pathname values. If the file does not exist, the FILEINFO file type (key=3) is 0. Creating the file changes
this FILEINFO file type to 5.

Sequential File 1/0 Buffering

By default, sequential file 1/0 is performed using 1/0 buffering. This buffer is automatically assigned as part of the OPENSEQ
operation. 1/0 buffering significantly improves overall performance, but means that write operations are not immediately
applied to the sequential file.

Caché MVBasic provides two statements that override 1/0 buffering. The FLUSH statement immediately writes the current
contents of the 1/O buffer to the sequential file. The NOBUF statement disables the 1/0 buffer for the duration of the
sequential file open. That is, all subsequent I/O write operations are immediately executed on the sequential file.

Emulation

For jBASE emulation, the filename argument can be specified with a two-part path,filename syntax. When executed, the
two parts are concatenated together, with a delimiter added to the end of path, when necessary. For example, OPENSEQ
"c:\temp\", "mytest.txt™ TO FDor OPENSEQ "c:\temp~,"mytest.txt" TO FD.

For other emulation modes, the filename argument can be specified with a two-part file,itemID syntax. The file part is a
dir-type file defined in the VOC master dictionary, and the itemID part is an operating system file within that directory.

Examples

The following example opens a sequential file on a Windows system and writes a line to it. If the file does not exist, it
creates the file:

filename="c:\myfiles\testl"
OPENSEQ filename TO mytest ELSE STOP 201, filename
IF STATUS(=0
THEN
WRITESEQ *"John Doe™ TO mytest
CLOSESEQ mytest
END
ELSE
CREATE mytest
IF STATUS()=0
THEN
WRITESEQ "John Doe™ TO mytest
CLOSESEQ mytest
END
ELSE
PRINT "File create failed"
END
END

Caché MultiValue Basic Reference 143

Caché MultiValue Basic Commands

See Also

CREATE statement
DELETESEQ statement
READSEQ statement
WRITESEQ statement
FLUSH statement
NOBUF statement
CLOSESEQ statement
RELEASE statement
STATUS statement
FILEINFO function
STATUS function
@FILENAME system variable

144

Caché MultiValue Basic Reference

$OPTIONS

$OPTIONS

Sets configuration options for MultiValue implementations.

$OPTIONS option

Arguments
option The name of a single option, or the names of multiple options separated by spaces. Option
names are not case-sensitive.
Description

The $OPTIONS statement provides emulation/compatibility options for the various “flavors” of MultiValue database
systems for the current MVBasic program. There are two basic types of options:

» Emulation options. You specify the desired emulation, which sets multiple default values appropriate for that MultiValue
“flavor”.

» Flag options that set a single specific default value, usually by turning a behavior on or off.

An $OPTIONS statement may specify multiple option values, separating the values with a blank space. If you specify an
emulation option, it must be the first option value specified.

Emulation Options

Each option sets the appropriate configuration values for that MultiValue implementation. The following option database
system values are supported:

Cache

D3

IN2
INFORMATION
JBASE
MVBase
PICK
PIOpen
Prime

R83
POWER95
Reality
UDPICK
Ultimate
UniData
UniVerse

$OPTIONS sets the emulation for the duration of the current MVBasic program. Emulation is specific to the current
account. An $OPTIONS statement can only specify one emulation option.

Both “Prime” and “INFORMATION” option values set an emulation of “INFORMATION.” An option value of “Default”
sets an emulation of “CACHE”. You can determine the current emulation using the SYSTEM(1001) and SYSTEM(1051)
functions.

You can set the systemwide MultiValue emulation for the current account using the CEMU command line command, as
described in the Caché MultiValue Commands Reference.

D3 emulation, by default, provides variable names that are not case-sensitive. Use of such variables is not advised when
interacting with Caché CSP variables, ZEN, and other InterSystems software, all of which uses case-sensitive variables.
To make D3 emulation use case-sensitive variables, specify the flag option $OPTIONS -NO.CASE. Refer to Chapter 13
Other Compatibility Issues in Operational Differences between MultiValue and Caché for further details.

Caché MultiValue Basic Reference 145

Caché MultiValue Basic Commands

Flag Options

Caché MVBasic supports many flag option values that affect the default behavior of individual statements or functions.
These are provided to support porting or emulation of specific functional differences between the various MultiValue
implementations.

To turn on (activate) a flag option value, specify the option name ($OPTIONS CASE). To turn off a flag option value,
prefix the option name with a minus sign (JOPTIONS -CASE). You can specify multiple flag options, separated by blanks.
The emulation option, if present, must be specified as the first option.

The specific flag option values are listed in the SOPTIONS section of Operational Differences between MultiValue and
Caché. They are described individually in the reference page for the statement or function for which they modify default
behavior.

Command Line Emulation Mode

From the MultiValue Shell, the emulation mode is specified for the current account (namespace) using the CEMU command
line command. The initialization value is Cache. However, once CEMU sets an emulation for an account, that emulation
is persistent across processes and Caché restart. This is the emulation mode used for the compilation and execution of an
MVBasic statement from the command line.

Use the $OPTIONS statement to temporarily override the emulation setting established by CEMU. To specify an option
setting other than the ones set by the CEMU emulation mode, it is necessary to specify the SOPTIONS statement and the
MVBasic statement that it affects on the same command line.

For example, the default value for SYSTEM(33) is the contents of the command stack. To return the UniData SYSTEM(33)
value (the system platform name), it is necessary to specify SOPTIONS UniData on the same command line. This is shown
in the following Windows example:

USER:CEMU

Emulation for account "USER" is "CACHE"

USER: ;PRINT SYSTEM(33)

;PRINT SYSTEM(33)pCEMU

USER: ; $OPTIONS UniData ;PRINT SYSTEM(33)

Windows NT

USER: ;PRINT SYSTEM(33)

;PRINT SYSTEM(33)p;$OPTIONS Unidata ;PRINT SYSTEM(33)p;PRINT SYSTEM(33)pCEMU

The following example sets a custom emulation. It begins in Cache' emulation (SYSTEM(1001)=0). $OPTIONS sets the
emulation as PICK (SYSTEM(1001)=5) and also turn off the CASE option (-CASE). This makes local variable names not
case-sensitive. The result is a PICK emulation without case sensitivity, which is a behavior otherwise only found in D3
emulation.

USER:CEMU

Emulation for account "USER" is "CACHE"

USER: ;PRINT SYSTEM(1001)

0

USER: ;$OPTIONS PICK -CASE ;x=123 ;PRINT SYSTEM(1001) ;PRINT x ;PRINT X
5

123

123

USER: ;PRINT SYSTEM(1001)

0

See Also

e SYSTEM function
» $OPTIONS section in Operational Differences between MultiValue and Caché

« CEMU command line command in the Caché MultiValue Commands Reference

146 Caché MultiValue Basic Reference

ouT

OuT

Displays the character(s) specified by the corresponding numeric code(s).

OUT int[,int2[,...]

Arguments
int An integer code that corresponds to a character. You can specify a single
character code or a comma-separated list of character codes.
Description

The OUT statement displays the specified characters on the terminal screen. Valid int codes include the ASCII character
codes and the Unicode character codes. Codes are specified as base-10 integers. You can specify a single character, or a
comma-separated list of characters. Characters specified in a list are concatenated into an output string.

The OUT statement display is not suppressed by the HUSH statement or the EXECUTE statement's CAPTURING clause.
Examples

The following example displays the character string “ABCD”:

OUT 65,66,67,68

The following example displays a character string of the first four lowercase letters of the Greek alphabet:

OUT 945,946,947,948

The following example displays the Euro currency symbol:

OUT 8364

The following example rings the bell on the terminal:

ouT 7

See Also

« EXECUTE
» HUSH

Caché MultiValue Basic Reference 147

Caché MultiValue Basic Commands

PAGE

Advances printing to the next output page.

PAGE [ON channel] [pagenum]

Arguments
ON channel Optional — The ON clause specifies a print channel as an integer value of -1 through
255. If not specified, the print channel defaults to 0, which is the current terminal session
screen.
pagenum Optional — An integer specifying the page number to print on the next page. Page
numbering must be defined in the header or footer for this option to take effect.
Description

The PAGE statement advances the output device (printer or terminal) to a new page. If a header and/or a footer are defined,
PAGE prints these on the new page. If the header and/or footer defines a page number field, PAGE uses the pagenum field
to specify the page number to print on the new page.

The optional channel specifies the logical print channel for this output. The range of available values is -1 through 255
(inclusive). If channel=-1, output is displayed on the terminal screen. If channel is not specified, the default logical print
channel is O (the current user terminal).

For PAGE ON channel (with channel < 0) to affect a print job, the PRINTER ON statement must have been specified.
Otherwise, no operation is performed.

Before calling PAGE, you can use the HEADING and FOOTING statements to define the text to be printed at the top
and bottom of each page. After calling PAGE, you can use the PRINT statement to specify the text to be printed on the
new page.

Page Length and Number Settings

You can determine the current page length by calling SYSTEM(3). You can determine the current page number by calling
SYSTEM(5). You can change these values by calling the ASSIGN statement.

See Also

¢ ASSIGN statement

FOOTING statement
 HEADING statement
* PRINT statement

* PRINTER statement

* SYSTEM function

148 Caché MultiValue Basic Reference

PCPERFORM

PCPERFORM

Issues an operating system command and returns to MVBasic.

PCPERFORM cmdstr [CAPTURING {var | NULL}]

Arguments
cmdstr An operating system command to be issued to the operating system shell
(command prompt). Specified as a variable or a quoted string. This string
cannot exceed 248 characters in length.
CAPTURING var Optional — a variable used to receive the operating system's response.
You can specify a local variable name or the NULL keyword.
Description

The PCPERFORM statement is used to issue an operating system shell command from within Caché MVBasic. If you
specify a CAPTURING var clause, the response from the operating system is returned as the value of var. CAPTURING
NULL discards the response from the operating system.

Invoking Other Shells

You can use the EXECUTE, PERFORM, and CHAIN commands to issue MultiValue commands from within Caché
MVBasic.

You can use the $XECUTE command to issue an ObjectScript command from within Caché MVBasic.

Invoking Operating System Commands from the MV Shell

You can use the DOS or SH MultiValue command line commands to issue an operating system shell command from the
MultiValue Shell. For further details refer to the Caché MultiValue Commands Reference.

See Also

* CHAIN statement

» EXECUTE statement

* PERFORM statement

* $XECUTE statement

Caché MultiValue Basic Reference 149

Caché MultiValue Basic Commands

PERFORM

Executes a MultiValue command from a program and returns.

PERFORM command

Arguments
command One or more MultiValue commands, each command specified as a quoted
string. A string can be quoted using single quotes (‘cmd arg'), double quotes
("cmd arg"), or backslashes (\cmd arg\). To specify multiple commands,
separate the commands with a Field Mark ("cmd1 arg":@FM:"cmd2 arg").
Description

The PERFORM command executes the specified Caché MultiValue command(s), then resumes execution of the MVBasic
program. It initially searches the VOC for the command,; if the command is not found in the VOC, it searches the global
catalog. For lookup details, refer to CATALOG in the Caché MultiValue Commands Reference.

EXECUTE, PERFORM, and CHAIN

The EXECUTE command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement in the invoking program. EXECUTE can pass values to the MultiValue command(s) and
return values from the MultiValue command(s).

The PERFORM command executes one or more MultiValue commands from within MVBasic, then returns execution to
the next MVBasic statement in the invoking program. PERFORM cannot pass or return values.

The CHAIN command executes a single MultiValue command from within MVBasic. It does not return execution to the
invoking program. CHAIN cannot pass values.

Emulation

In Reality and D3 emulations, the PERFORM command is functionally identical to the EXECUTE command.

In UniData and UDPICK emulations, a command name with an initial character of * is handled as a global name. PERFORM
removes the leading * and then looks up the resulting command name in the global catalog in SYS.MV, rather than looking
up in the VOC. If the runtime environment is not a UniData emulation, a normal VOC lookup is done on the *command
name.

Examples

The following example shows how to use PERFORM to execute multiple MultiValue commands:

PRINT TIMEQ
PERFORM "SLEEP 2'':@FM:"'SLEEP 3"
PRINT TIMEQ

See Also

* CHAIN statement

» EXECUTE statement

» ObjectScript: XECUTE command

150 Caché MultiValue Basic Reference

PRECISION

PRECISION

Specifies the maximum number of decimal digits when transforming a floating point number.

PRECISION int

Arguments

int An integer specifying the maximum number of decimal digits.

Description

The PRECISION statement specifies the maximum number of decimal digits to display when converting a floating point
number. It rounds the decimal portion to the number of decimal digits specified in int. The default number of decimal digits
is 4.

PRECISION does not add trailing zeros to numbers with fewer decimal digits than specified.

If int is O, the null string, or a non-numeric string, PRECISION rounds all decimal digits to the nearest integer value.

Examples
The following example illustrates use of the PRECISION statement to provide a precision value to the FIX function:

mynum=123.987654321
PRINT FIX(mynum)
! returns 123.9877
1 (rounds to the default precision of 4)
PRECISION 2
PRINT FIX(mynum)
! returns 123.99
I (rounds to a precision of 2)

See Also

e FIX function

Caché MultiValue Basic Reference 151

Caché MultiValue Basic Commands

PRINT

Prints to the terminal or to a specified device.

PRINT text[:]
PRINT [ON channel] text [format][:]

PRINT ON CHANNEL #channel

Arguments

ON channel Optional — The ON clause specifies a print channel as an integer value of -1 through 255.
If not specified, the print channel defaults to 0, which is the current terminal session screen.

text Optional — Any MVBasic expression that resolves to a quoted string or a numeric. You can
specify a single expression or a series of expressions separated by either commas (,) or
colons (:). A comma inserts a tab spacing between the two strings. A colon concatenates
the two strings. If text is omitted, a blank line is returned.

format Optional — A code specifying how to handle text, specified as a quoted string. This format
is applied to the text that immediately precedes it. Whitespace characters may be inserted
between text and format.

Description

PRINT displays the items specified in text to the screen, or to the device specified by the ON channel clause. If no text is
specified, PRINT displays a blank line.

To print to a printer, the PRINTER ON command must have been issued. The channel specifies a printer print channel as
a positive integer. If channel is 0 or -1, the text is printed to the terminal screen (or to a CAPTURING clause), regardless
of whether PRINTER ON has been set.

A text can consist of a single string or numeric expression, or a series of expressions alternating with separator characters.
Any text may be followed by an optional format. This format applies only to the text string that immediately precedes it.

The following separators are supported:

» A comma (,) used as a separator character inserts a predefined tab between to items. By default, tabs are set at ten
column intervals. You can specify a comma before the first expression to indent that expression. You cannot specify
a comma after the last expression; this results in a syntax error. You can specify a series of commas to specify multiple
tabs; an odd number of commas increments the number of tabs. Thus, one or two commas (exp ,exp or exp, ,exp)
equals one tab, three or four commas (exp, , ,exp or exp, , , ,exp) equals two tabs, and so forth.

» Acolon () used as a separator character concatenates two items. Specifying a colon before the first expression has no
effect. Specifying a colon after the last expression enables concatenation of the results of two commands. By default,
a PRINT statement ends by issuing a linefeed and carriage return. However, if you end the PRINT argument with a
colon, PRINT does not issue the linefeed and carriage return, This enables you to concatenate the output of the next
statement to the PRINT output.

The PRINT (without the ON clause), DISPLAY, and CRT commands are identical.

Formatting
The optional format argument specifies how to handle text. PRINT supports three types of format arguments:
* @ function formatting

e implicit formatting, using FMT function codes

152 Caché MultiValue Basic Reference

PRINT

» implicit conversion, using OCONYV function codes

You can use an @ function with positive arguments to specify the column position and/or line position at which to print.
For example, CRT @(15):'""Over here!" prints the literal string starting at column 16. You can also use the @ function
with negative arguments to change screen display modes. For example, CRT @(-1):""Over here!" clears the screen,
then prints the literal string at line 1, column 1.

To advance to the next page, and to print defined headings and footings, use the PAGE statement.

You can use the optional format argument to specify display width, justification, fill characters, and zero filling or rounding
for decimal digits. This is known as “implicit formatting” because it is equivalent to inserting a FMT function as one of
the PRINT arguments. For further details on the available format codes, refer to the FMT function.

You can disable implicit formatting by specifying $OPTIONS NO. IMPLICIT.FMT. Specifying this option prevents the
evaluation of the format argument in CRT, PRINT, or DISPLAY. It has no effect on the explicit use of the FMT function.

Implicit conversion performs many of the OCONV function conversions by specifying the conversion code as the format
argument. For example, both of the following perform date conversion from internal to display format:

PRINT 14100 "D*; 1 08 AUG 2006
PRINT OCONV(14100,"D"); 1 08 AUG 2006"

For further details on the available format conversion codes, refer to the OCONV function.

Examples

The following examples illustrate the use of the PRINT statement:
PRINT “hello™, world!"

returns:
hello world!

PRINT *"hello":"world!"

returns:
helloworld!

PRINT "hello"
PRINT "world!"

returns:

hello
world!

PRINT "hello":
PRINT "world!"

returns:

helloworld!

Emulation

For Caché and most emulations, if channel is a positive integer, PRINT output always goes to a spooler print job, regardless
of the use of PRINTER ON or PRINTER OFF. D3, jBASE, and Reality emulations send the PRINT output to the screen
if the application has not executed a PRINTER ON statement.

Caché MultiValue Basic Reference 153

Caché MultiValue Basic Commands

See Also

CRT statement
DISPLAY statement
ECHO statement

PAGE statement
PRINTER ON statement
@ function

FMT function

SPACE function
SPOOLER function

154

Caché MultiValue Basic Reference

PRINTER

PRINTER

Specifies whether to direct output to the printer.

PRINTER ON
PRINTER OFF
PRINTER CLOSE [ON nnn]

Arguments
ON nnn Optional — The print channel as assigned by the PRINT statement.
Specified as an integer value in the range 0 through 255. If omitted, the
default is print channel 0.
Description

PRINTER ON directs output to the printer. After setting this option, PRINT statements direct their output to the print
buffer, with the exception of PRINT ON 0 or PRINT ON -1 which always output to the terminal screen. PRINTER ON
has no effect on CRT statements, which always output to the terminal screen.

PRINTER CLOSE spools the print buffer to the printer and closes the print channel. The ON nnn clause allows you to
specify which print channel. If this clause is omitted, Caché MVBasic closes print channel 0; this behavior is emulation-
dependent. An implicit PRINTER CLOSE is issued when the program terminates.

PRINTER OFF directs subsequent output to the screen (the default output device).

Note: PRINTER RESET is listed in this manual as a separate command, not an option of the PRINTER command.

Emulation

PRINTER CLOSE with no argument closes only print channel 0 in Caché and in UniVerse emulation (and some other
emulations). In PICK and Reality (and some other emulations) PRINTER CLOSE with no argument closes all print
channels. This behavior is governed by the SP-CONDUCT bit mask 4096.

See Also

e PRINT statement
SPOOLER function

Caché MultiValue Basic Reference 155

Caché MultiValue Basic Commands

PRINTER RESET

Resets terminal or default printer channel characteristics.

PRINTER RESET

Description

PRINTER RESET resets the header, footer, and line number characteristics. It resets these characteristics for terminal
output if output is directed to the terminal. It resets these characteristics for printer output if output is directed to the default
print channel. Where output is directed is specified using the PRINTER command.

PRINTER RESET resets the following:

» The page header to null, removing any header set by the HEADING command.
» The page footer to null, removing any footer set by the FOOTING command.

e The current line number, resetting the value of SYSTEM(4).

See Also
 HEADING statement
* FOOTING statement
* SPOOLER function

156 Caché MultiValue Basic Reference

PROCREAD

PROCREAD

When called by a procedure, reads the input buffer contents.

PROCREAD data [THEN statements] [ELSE statements]

Arguments

data Name of a variable used to receive PROC data from the input buffer.

Description

The PROCREAD statement reads the results of a PROC from the primary input buffer into the data variable. The
MVBasic program must have been called by a procedure for PROCREAD to execute successfully.

The data variable must be simple variable name. It cannot include a system variable, an EQUATE, a dynamic array reference,
or a substring reference.

When reading from a PQ PROC, PROCREAD converts the @AM buffer delimiter to a blank space. PROCREAD converts
empty buffer entries to the backslash (\) character. PROCWRITE reverses these character conversions. For this reason,
including a\ literal in the input buffer should be avoided. When reading from a PQN PROC, PROCREAD does not perform
these character conversions.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the input buffer read
is successful, the THEN clause is executed, even when the contents of the input buffer is the empty string. If input buffer
read operation fails, the ELSE clause is executed. If the program containing PROCREAD was not called by a procedure,
the read operation fails and the ELSE clause is executed. The statements argument can be the NULL keyword, a single
statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Emulation

D3 and several other emulations support SOPTIONS READ.RETAIN. This option causes the data variable to retain its
original value if PROCREAD fails.

See Also

e PROCWRITE statement
e Caché MultiValue PROC Reference

Caché MultiValue Basic Reference 157

Caché MultiValue Basic Commands

PROCWRITE

When called by a procedure, writes to the input buffer.

PROCWRITE data

Arguments

data Name of a variable used to contain data to be written to the input buffer.

Description

The PROCWRITE statement writes the contents of data to a PROC using the primary input buffer. The MVBasic program
must have been called by a procedure for PROCWRITE to execute successfully.

Following the write operation, PROCWRITE resets the primary input buffer pointer so that it points to the beginning of
the data in the buffer.

For a PQ PROC, PROCWRITE converts each blank space in data to an @AM delimiter, reversing the PROCREAD
operation. PROCWRITE converts each elements that consists of a backslash (\) to an empty element, reversing the
PROCREAD operation. Because of this backslash conversion, a backslash literal transferred by PROCREAD will be
transferred back by PROCWRITE as an empty element. For this reason, backslashes in the input buffer should be avoided.
This PROCWRITE conversion only applies to backslashes that represent empty elements (a backslash delimited by blank
spaces). If a backslash is appended to other characters, PROCWRITE treats it as a quote delimiter.

When writing to a PQN PROC, PROCWRITE does not perform these character conversions.

Emulation
In Ultimate emulation, PROCWRITE converts all attribute marks (@AM) to blank spaces.

See Also

e PROCREAD statement
e Caché MultiValue PROC Reference

158 Caché MultiValue Basic Reference

PROG (PROGRAM)

PROG (PROGRAM)

Specifies the program name.

PROG name
PROGRAM name

Arguments

name A name used to identify the current program. Must be a valid identifier.

Description

The PROGRAM statement is used to specify a name for the current program. It must appear as the first non-comment line
of the program.

See Also

e Labels

e Comments

Caché MultiValue Basic Reference 159

Caché MultiValue Basic Commands

PROMPT

Sets the user input prompt.

PROMPT string

Arguments

string A quoted string of one or more characters to use as the user input prompt.

Description

The PROMPT statement sets the user input prompt to the character (or characters) specified in string. The default prompt

is the question mark (?) character.

The user input prompt is used by the INPUT statement. However, if a DATA statement is specified, INPUT does not

display the input prompt.

See Also

* DATA statement
* INPUT statement

160

Caché MultiValue Basic Reference

RANDOMIZE

RANDOMIZE

Initializes the random-number generator.

RANDOMIZE [number]

Arguments

number Optional — Any valid numeric expression.

Description

The RANDOMIZE statement uses number to initialize the RND function's random-number generator, giving it a seed
value. By specifying the same RANDOMIZE number seed, you can use RND to repeatedly generate the same “random”
number.

To restore true randomness, issue a RANDOMIZE statement without the number argument. If you omit number, the value
returned by the system internal clock is used as the new seed value.

If RANDOMIZE is not used, the RND function uses the system internal clock as a seed the first time it is called, and
thereafter uses the last generated random number as the next seed value.

Examples
The following example illustrates use of the RANDOMIZE statement:

RANDOMIZE 10; ! Seeds random-number generator
PRINT RND(7)

1 Generates a random value between 1 and 6
PRINT RND(7)

1 Generates the same "random™ value as above
RANDOMI ZE; 1 Restores randomness
PRINT RND(7)

1 Generates a random value between 1 and 6

See Also
« RND function

Caché MultiValue Basic Reference 161

Caché MultiValue Basic Commands

READ, READL, READU, READV, READVL, READVU

Reads data from a MultiValue file.

READ dynarray FROM filevar,reclD
[SETTING var] [ON ERROR statements] [[THEN statements] [ELSE statements]]

READL dynarray FROM filevar,reclD
[ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE statements]]

READU dynarray FROM filevar,reclD

[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

READV dynarray FROM filevar,reclD,fieldno
[SETTING var] [ON ERROR statements] [[THEN statements] [ELSE statements]]

READVL dynarray FROM filevar,reclD,fieldno
[ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE statements]]

READVU dynarray FROM filevar,reclD,fieldno
[ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE statements]]

Arguments

dynarray A dynamic array used to receive the field values from the file. This argument
may be a local variable or an object reference.

filevar A local variable used as the file identifier of an open MultiValue file. This
variable is set by the OPEN statement.

reclD The record ID of the record to be read, specified as either a number or an
alphanumeric string of up to 31 characters. Letters in a recID are
case-sensitive. For naming conventions, refer to WRITE.

fieldno The field number of the field to be read, specified as an integer. Used with
READV and READVU. If O, returns the reciD.

SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR, THEN, or ELSE clause. Provided for BASE
compatibility.

Description

These read statements read a value from a MultiValue file into a dynamic array. The READ, READL, and READU
statements read the specified record into dynarray. The READV, READVL, and READVU statements reads the specified
field within a record into dynarray.

The dynarray argument accepts a single dynamic array reference (A<i>), a single substring reference (A[s,l]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

You must use the OPEN statement to open the MultiValue file before issuing any of these READ statements.

A read operation must be able to acquire at least a shared lock on the desired resource. The READL and READVL statements
acquire a shared lock before performing the read. The READU and READVU statements acquire an update lock before
performing the read.

162 Caché MultiValue Basic Reference

READ, READL, READU, READV, READVL, READVU

You can optionally specify a LOCKED clause for READL, READU, READVL, and READVU. This clause is executed
if the statement could not acquire the desired resource due to lock contention. The LOCKED clause is optional, but strongly
recommended; if no LOCKED clause is specified, program execution waits indefinitely for the conflicting lock to be
released.

You can optionally specify an ON ERROR clause, which is executed if an argument is invalid.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the read is successful,
the THEN clause is executed. The THEN clause is executed even when all remaining field identifiers are the null string.
If read cannot read the specified record, the ELSE clause is executed.

Reading a Record

READ, READL, and READU all read the specified MultiValue file record value into dynarray. If recID refers to a non-
existent record, the read operation fails.

Reading a Field

READV, READVL, and READVU all read the specified field value from the specified MultiValue file record into dynarray.
They do this by locating field delimiters in the record string. If fieldno is 0, these statements returns the specified recID to
dynarray. If fieldno refers to a non-existent field (does not correspond to a field delimiter), these statements returns the null
string to dynarray. If fieldno is 1 and the entire record consists of a single numeric value (and thus contains no field
delimiters), these statements return that numeric value.

If recID refers to a non-existent record and fieldno is not 0, the read operation fails.

Reading to an Object

The dynarray argument can be an object reference, allowing READ to read data into an object. The following statements
are all valid forms of reading to an object:

READ @me->prop FROM myfile,1

READ "class'->meth()->prop FROM myfile,1
READ obj->prop FROM myfile,1

READ (obj)->prop FROM myfile,1

READ and MATREAD

The various READ statements read from a MultiValue file into a dynamic array. The various MATREAD statements read
from a MultiValue file into a dimensioned array.

Examples

The following example illustrates the use of the READ statement:

OPEN "TEST.FILE"™ TO myfile
READ mydyn FROM myfile,1
PRINT "the record value:",mydyn

The following example illustrates the use of the READV statement:

OPEN "TEST.FILE" TO myfile
READV mydyn FROM myfile,1,1
PRINT "the field value:",mydyn

See Also

* OPEN statement

* MATREAD statement
* WRITE statement

Caché MultiValue Basic Reference 163

Caché MultiValue Basic Commands

e CLOSE statement
e STATUS function

» Dynamic Arrays

164 Caché MultiValue Basic Reference

READBLK

READBLK

Reads a block of data from a sequential file.

READBLK data FROM filevar,blksize [THEN statements] [ELSE statements]

Arguments
data Name of a variable used to receive a block of data from a file.
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
blksize A positive integer specifying the block size, in bytes.
Description

The READBLK statement is used to read a block of data of a specified size from a file that has been opened for sequential
access using OPENSEQ. This block of data is written to the data variable. The specified blksize can be any size.

The data argument accepts a single dynamic array reference (A<i>), a single substring reference (A[s,1]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

When invoked, READBLK increments a pointer to the end of the data just read, so that repeated invocations of READBLK
read sequentially through the file data. The same file pointer is used by READBLK and WRITEBLK. If the file contains
less data than blksize, the available data is read.

You can determine the current position of this pointer using the STATUS statement. You can reposition this pointer using
the SEEK statement.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file read is suc-
cessful, the THEN clause is executed. If file read fails, or if the end of the file is reached, the ELSE clause is executed. The
statements argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword.
A block of statements has specific line break requirements: each statement must be on its own line and cannot follow a
THEN, ELSE, or END keyword on that line.

You can use the STATUS function to determine the status of the read operation, as follows: 0=sequential read successful;
-1=read failed because file not open (or opened by another process); 1=end-of-file encountered; 2=read timed out.

READBLK and READSEQ

The READBLK command retrieves data from a sequential file in blocks of a specified length. These blocks may be of any
length, and have no necessary relationship to the length of logical data units, such as lines or records, within the file. The
READSEQ command retrieves a single line of data from a sequential file. A line of data is identified by the presence of
end-of-line characters. A line of data may be of any size.

Caché MultiValue Basic Reference 165

Caché MultiValue Basic Commands

Examples
The following example reads the first 100 bytes of data from an existing sequential file on a Windows system:

OPENSEQ "C:\myfiles\testl" TO mytest

F STATUS()=0

THEN

E
E

E

READBLK mydata FROM mytest,100

IF mydata="""

THEN PRINT "'no data"

END

ELSE PRINT mydata
END

WEOFSEQ mytest
CLOSESEQ mytest
ND

LSE

PRINT "File open failed”

ND

See Also
OPENSEQ statement

WRITEBLK statement

READSEQ statement
SEEK statement
STATUS statement
STATUS function

166

Caché MultiValue Basic Reference

READLIST

READLIST

Reads the remaining field ids from a select list.

READLIST dynarray FROM slist [THEN statements] [ELSE statements]
READLIST dynarray FROM listname [account] [THEN statements] [ELSE statements]

Arguments
dynarray A dynamic array used to receive the field values from the select list.
slist An active select list, identified by number or name. A numbered select list
is specified as an integer from 0 through 10. A named select list is specified
as a variable name.
listhame account A saved select list, identified by its assigned listhame record ID. If the saved
select list is in the current account, omit account. If the saved select list is
in another account, specify the account name, separating listname and
account with a space character.
Description

The READLIST statement reads all remaining field identifiers from a select list into a dynamic array. If no reads have
been performed on the select list, READLIST reads the entire select list into dynarray. If a READNEXT has been performed
on the select list, READLIST reads the remaining select list field identifiers into dynarray.

You can use any of the following SELECT statements to create a select list: SELECT, SELECTN, SELECTV, SSELECT,
SSELECTN, or SSELECTYV. These various SELECT statements allow you to specify a numbered or named select list,
with field identifiers either sorted or not sorted.

The listname select list is saved in the &SAVEDLISTS& file. Caché stores this file using the ~SAVEDLISTS global.

The dynarray variable must be simple variable name. It cannot include a system variable, an EQUATE, a dynamic array
reference, or a substring reference.

If an error occurs during READLIST processing, Caché sets the dynarray variable to the null string ("*).

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the select list pointer
has not reached the end of the select list, READLIST executes the THEN clause. The THEN clause is executed even when
all remaining field identifiers are the null string. READLIST executes the ELSE clause if the select list pointer has reached
the end of the select list, or the select list does not exist. The statements argument can be the NULL keyword, a single
statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Unlike READNEXT and READPREV, READLIST does not clear the select list when it reaches the end of the select
list. For this reason, you can follow a READLIST statement with a READPREYV to read individual field identifiers
backwards from the end of the select list.

Caché MultiValue Basic Reference 167

Caché MultiValue Basic Commands

Examples

The following example illustrates the use of the READLIST statement. SELECT copies all of the field mark identifiers
into Select List 4. A READNEXT reads the first field mark identifier from Select List 4 into the area variable. AREADLIST
then reads all the remaining field mark identifiers from Select List 4 into the dynarea dynamic array:

regions="Northeast' :@FM:""Southeast" :@FM:""Northwest" :@FM: ""Southwest"
SELECT regions TO 4 ON ERROR PRINT "Select failed"
READNEXT area FROM 4 THEN PRINT area ELSE PRINT "no fields"
! returns “Northeast"
READLIST dynarea FROM 4 THEN PRINT dynarea ELSE PRINT "no fields"
! returns '"SoutheastfNorthwestfSouthwest"
READLIST dynarea FROM 4 THEN PRINT dynarea ELSE PRINT "no fields"
I returns "no fields"

See Also

SELECT statement
SSELECT statement
READNEXT statement
READPREYV statement

Dynamic Arrays

168

Caché MultiValue Basic Reference

READNEXT

READNEXT

Reads the next field id from a select list.

READNEXT fieldval [FROM slist]
[SETTING var] [[THEN statements] [ELSE statements]]

Arguments

fieldval A variable used to receive a field value from the select list. Optionally, this
can be a multilevel specification, with the levels separated by commas:
field,value or field,value,subvalue.

slist Optional — A select list. This can be a numbered select list specified as
an integer from 0 through 10, or a named select list specified as a variable
name. If slist is not specified or is the empty string ("), the default select
list (0) is accessed.

SETTING var Optional — When a read error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the THEN, or ELSE clause. Provided for jBASE compatibility.

Description

The READNEXT statement reads successive field identifiers from a select list, one field identifier per invocation. The
field identifier is read from the slist select list into the fieldval variable. Optionally, READNEXT can be used to read suc-
cessive values or successive subvalues within a field, by specifying a multilevel fieldval variable. (READNEXT can also
be used to read successive index identifiers; this is described below.)

You can use any of the following SELECT statements to create a select list: SELECT, SELECTN, SELECTV, SSELECT,
SSELECTN, or SSELECTYV. These various SELECT statements allow you to specify a numbered or named select list,
with field identifiers either sorted or not sorted.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. READNEXT executes
the THEN clause if the select list pointer has not reached the end of the select list. The THEN clause is executed even when
a field identifier is the null string. READNEXT executes the ELSE clause if the select list pointer has reached the end of
the select list, or the select list does not exist. The statements argument can be the NULL keyword, a single statement, or
a block of statements terminated by the END keyword. A block of statements has specific line break requirements: each
statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Note: READNEXT reads a single field identifier from a select list into a variable. READLIST reads all remaining
field identifiers from a select list into a dynamic array.

READNEXT reads the next field identifier in a select list. READPREYV reads the previous field identifier in a select list.
If READNEXT reaches the end of the select list, it clear the select list. For this reason, a subsequent READPREYV cannot
read backwards from the end of the select list.

Reading an Index

You can use READNEXT to perform successive reads on an index. The index must have been opened using an
OPENINDEX statement. and then selected into a named select list with a SELECTINDEX statement.

You can also perform successive reads on an index using the READNEXT KEY statement.

Caché MultiValue Basic Reference 169

Caché MultiValue Basic Commands

Emulation

Caché MVBasic, by default, uses select list 0 as the default select list for both internal and external use. By default, D3,
Reality, R83, POWER95, MVBase, and IN2 emulations use two distinct default select lists, one internal and one external.
The default external select list is 0, and the default internal select list is 10. When READNEXT first accesses the external
select list (list 0), it moves this list to the internal select list (10). Thus subsequent READNEXT operations can continue
to access this select list, regardless of modifications to list 0. This emulation behavior can be set using $OPTIONS
PICK.SELECT.

UniData sets SYSTEM(11) to the SELECT count when using Select List 0. Each invocation of READNEXT decrements
this SYSTEM(11) count. READNEXT does not decrement the @SELECTED count.

Examples

The following example illustrates the use of the READNEXT statement. SELECT copies all of the field mark identifiers
into Select List 4. Each iteration of READNEXT reads the next field mark identifier from Select List 4 into the area variable:

regions=""Northeast' :@FM:"Southeast' :@FM:""Northwest' :@FM:"'Southwest"
SELECT regions TO 4 ON ERROR PRINT "Select failed"”
FOR x=1 TO 5
READNEXT area FROM 4
PRINT area
NEXT

The following example illustrates the use of READNEXT with the THEN and ELSE clauses. SELECTYV copies all of the
field mark identifiers into Select List mylist. READNEXT reads the next field mark identifier from Select List mylist into
the area variable:

regions="Northeast':@FM:"Southeast' :@FM:""Northwest' :@FM:""Southwest"
SELECT regions TO mylist ON ERROR PRINT "'Select failed"
x=1
LOOP WHILE x=1
READNEXT area FROM mylist THEN PRINT area ELSE x=0
REPEAT

See Also

» READPREYV statement

» SELECT statement

e SSELECT statement

» SELECTINDEX statement

» READNEXT KEY statement
e GETLIST statement

* READLIST statement

» Dynamic Arrays

170 Caché MultiValue Basic Reference

READNEXT KEY

READNEXT KEY

Reads the next key and item id from an index.

READNEXT KEY keyname,itemlD FROM slist [THEN statements] [ELSE statements]

Arguments
keyname A variable used to receive the key name from the select list.
itemID A variable used to receive the key item ID from the select list.
slist A select list to an existing index. A named select list specified as a variable
name.
Description

The READNEXT KEY statement reads successive key identifiers from a select list, one key identifier per invocation.
READNEXT KEY returns both the key name and the key item ID. The key identifier is read from the slist select list into
the itemID variable.

READNEXT KEY is used on a select list created by either a SELECT or a SELECT ATKEY.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. READNEXT KEY
executes the THEN clause if the select list pointer has not reached the end of the select list. The THEN clause is executed
even when a key identifier is the null string. READNEXT KEY executes the ELSE clause if the select list pointer has
reached the end of the select list, or the select list does not exist. The statements argument can be the NULL keyword, a
single statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

Examples

The following example used OPENINDEX to open an index to VOC on the attribute F1. The SELECT selects this index
to a select list. The READNEXT KEY reads an item from the select list:

OPENINDEX *"VOC®,"F1" TO ldx.Fp ELSE ABORT
SELECT ldx.Fp TO ldx.List
READNEXT KEY ldx,ld FROM ldx.List

See Also

* OPENINDEX statement

» SELECT statement

» SELECT ATKEY statement
» SELECTINDEX statement
» READNEXT statement

Caché MultiValue Basic Reference 171

Caché MultiValue Basic Commands

READPREV

Reads the previous field id from a select list.

READPREV fieldval [FROM slist]
[SETTING var] [[THEN statements] [ELSE statements]]

Arguments

fieldval A variable used to receive a field value from the select list. Optionally, this
can be a multilevel specification, with the levels separated by commas:
field,value or field,value,subvalue.

slist Optional — A select list. This can be a numbered select list specified as
an integer from 0 through 10, or a named select list specified as a variable
name. If not specified, the default select list (0) is accessed.

SETTING var Optional — When a read error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the THEN or ELSE clause. Provided for jBASE compatibility.

Description

The READPREYV statement reads successive field identifiers from a select list in reverse order, one field identifier per
invocation. The field identifier is read from the slist select list into the fieldval variable. Optionally, READPREYV can be
used to read successive values or successive subvalues within a field (in reverse order), by specifying a multilevel fieldval
variable.

READPREYV reads the previous field identifier in a select list. READNEXT reads the next field identifier in a select list.

You can use any of the following SELECT statements to create a select list: SELECT, SELECTN, SELECTV, SSELECT,
SSELECTN, or SSELECTYV. These various SELECT statements allow you to specify a numbered or named select list,
with field identifiers either sorted or not sorted.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. READPREYV executes
the THEN clause if the select list pointer has not reached the beginning of the select list. The THEN clause is executed
even when a field identifier is the null string. READPREV executes the ELSE clause if the select list pointer has reached
the beginning of the select list, or the select list does not exist. The statements argument can be the NULL keyword, a single
statement, or a block of statements terminated by the END keyword. A block of statements has specific line break
requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

If READPREYV reaches the beginning of the select list, it clears the select list. For this reason, a subsequent READNEXT
cannot read the first item on the select list. Similarly, if a READNEXT reads the last item of a select list, the list is cleared.
A subsequent READPREYV cannot be used to read backwards from the end of the select list.

READPREYV and READNEXT read a single field identifier from a select list into a variable. READLIST reads all
remaining field identifiers from a select list into a dynamic array. READLIST does not clear the select list. Therefore, you
can follow a READLIST with a READPREV to read the last field identifier in the select list.

172 Caché MultiValue Basic Reference

READPREV

Examples

The following example illustrates the use of the READPREYV statement. SELECT copies all of the field mark identifiers
into Select List 4. READNEXT reads the next field mark identifier from Select List 4 into the area variable. READPREV
reads the previous field mark identifier from Select List 4 into the area variable.

regions="Northeast' :@FM:""Southeast" :@FM:""Northwest" :@FM: ""Southwest"
SELECT regions TO 4 ON ERROR PRINT "Select failed"
READNEXT area FROM 4
PRINT area; ! returns "Northeast"
READNEXT area FROM 4
PRINT area; ! returns "Southeast"
READPREV area FROM 4
PRINT area; ! returns "Northeast"

The following example uses READLIST to advance to the end of the select list, and then uses READPREV to read the
last item in the select list:

regions="Northeast" :@FM:""Southeast" :@FM:""Northwest" :@FM: ""Southwest"
SELECT regions TO 4 ON ERROR PRINT "Select failed"
READLIST area FROM 4

PRINT area; ! returns '"Northeast”"Southeast™Northwest~Southwest"
READPREV area FROM 4

PRINT area; ! returns "Southwest"
See Also

READLIST statement

» READNEXT statement
e SELECT statement

e SSELECT statement

* GETLIST statement

* Dynamic Arrays

Caché MultiValue Basic Reference 173

Caché MultiValue Basic Commands

READSEQ

Reads a line of data from a sequential file.

READSEQ data FROM filevar
[ON ERROR statements] [THEN statements] [ELSE statements]

Arguments
data Name of a variable used to receive a line of data from a file.
FROM filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
Description

The READSEQ statement is used to read a line of data from a file that has been opened for sequential access using
OPENSEQ. This line of data is written to the data variable.

The data argument accepts a single dynamic array reference (A<i>), a single substring reference (A[s,I]), or a substring
reference nested inside a dynamic array reference (A<i>[s,I]).

A line of data is defined as a unit of data terminated by a newline character. Newline characters are not returned as part of
data. When invoked, READSEQ increments a pointer to the next sequential unit of data, so that repeated invocations of
READSEQ read sequentially through the file data. The same file pointer is used by READSEQ and WRITESEQ.

You can determine the current position of this pointer using the STATUS statement. You can reposition this pointer using
the SEEK statement.

You can optionally specify an ON ERROR clause, which is executed if the file is located but could not be read. If no ON
ERROR clause is present, the ELSE clause is taken for this type of error condition.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file read is suc-
cessful, the THEN clause is executed. If file read fails, or if the end of the file is reached, the ELSE clause is executed.

You can use the STATUS function to determine the status of the read operation, as follows: 0=sequential read successful;
-1=read failed because file not open (or opened by another process); 1=end-of-file encountered; 2=read timed out.

READSEQ and READBLK

The READSEQ command retrieves a single line of data from a sequential file. A line of data is identified by the presence
of end-of-line characters. A line of data may be of any size. The READBLK command retrieves data from a sequential
file in blocks of a specified length. These blocks may be of any length, and have no necessary relationship to the length of
logical data units, such as lines or records, within the file.

174 Caché MultiValue Basic Reference

READSEQ

Examples
The following example reads the first line of data from an existing sequential file on a Windows system:

OPENSEQ "C:\myfiles\testl" TO mytest
IF STATUS()=0
THEN
READSEQ mydata FROM mytest
IF mydata="""
THEN PRINT "no data"
END
ELSE PRINT *“the Ffirst line:",mydata
END
WEOFSEQ mytest
CLOSESEQ mytest
END
ELSE
PRINT "File open failed”
END

See Also

e OPENSEQ statement
* WRITESEQ statement
» READBLK statement
e CLOSESEQ statement
» SEEK statement

» STATUS statement

* STATUS function

Caché MultiValue Basic Reference 175

Caché MultiValue Basic Commands

RECORDLOCKL, RECORDLOCKU

Locks a record in a MultiValue file.

RECORDLOCKL filevar, reclD [ON ERROR statements] [LOCKED statements]
RECORDLOCKU filevar, reclD [ON ERROR statements] [LOCKED statements]

Arguments
filevar A file variable name used to refer to a MultiValue file. This filevar is supplied
by the OPEN statement.
reciD The record ID of a record to be locked, specified as an integer.
Description

The RECORDLOCK statements are used to lock a record in a MultiValue file.

» RECORDLOCKL performs a shared lock on a record. It permits other users to also get a RECORDLOCKL on the
record, but prevents other uses from getting a RECORDLOCKU on the record or an exclusive FILELOCK on the
file.

e RECORDLOCKU performs an update (exclusive) lock on a record. It prevents other uses from getting a
RECORDLOCKL or RECORDLOCKU on the record or a FILELOCK of any type on the file.
The RECORDLOCK statements take the file identifier filevar, defined by the OPEN statement.

You can optionally specify a LOCKED clause. This clause is executed if the record to be locked has already been locked
by another user. The clause is executed if the level of lock requested conflicts with an existing lock. This clause is optional,
but strongly recommended; if no LOCKED clause is specified, program execution waits indefinitely for the conflicting
lock to be released.

You can optionally specify an ON ERROR clause. If file lock fails, the ON ERROR clause is executed. This may occur if
filevar does not refer to a currently open file.

You can check the status of file locks and record locks using the RECORDLOCKED function.

Lock Promotion

If you have a shared lock on a record, then request an exclusive (update) lock on the same record, MVBasic attempts to
get the exclusive lock. If it is successful, your shared lock is promoted to an exclusive lock. The result is that you hold one
exclusive lock, not two locks.

Releasing Record Locks

Use RELEASE to release individual record locks. CLOSE releases all record locks held on the specified file. ABORT
and STOP release all record locks held by the current process.

An update record lock is automatically released when you write data to the record using WRITE or WRITEV. The
WRITEU and WRITEVU commands do not release the update record lock.

An update record lock is automatically released when you delete the record using DELETE. The DELETEU command
does not release the update record lock.

See Also

e FILELOCK statement

176 Caché MultiValue Basic Reference

RECORDLOCKL, RECORDLOCKU

e OPEN statement
» RELEASE statement
e RECORDLOCKED function

Caché MultiValue Basic Reference 177

Caché MultiValue Basic Commands

RELEASE

Releases record locks.

RELEASE [filevar [,recID]] [ON ERROR statements]

Arguments
filevar Optional — A file variable name used to refer to a MultiValue file. This filevar is supplied
by the OPEN statement.
reciD Optional — The record ID for which record locks are to be released. If not specified, all
record locks and the file lock on filevar are released.
Description

A RELEASE statement with no argument releases all record locks held by the current process that were applied at the
current @LEVEL execution level. (This differs from native UniData behavior, which releases all locks held by the current
process on all levels.)

A RELEASE statement with the filevar argument releases all record locks on the specified MultiValue file held by the
current process. A RELEASE statement with the filevar and recID arguments releases the record lock for the specified
record on the specified MultiValue file held by the current process.

Records are locked using the RECORDLOCKU and RECORDLOCKL statements. You can check the status of record
locks (and file locks) using the RECORDLOCKED function.

An update record lock is automatically released when you write data to the record using WRITE or WRITEV. The
WRITEU and WRITEVU commands do not release the update record lock.

An update record lock is automatically released when you delete the record using DELETE. The DELETEU command
does not release the update record lock.

CLOSE releases all record locks held on the specified file. ABORT and STOP release all record locks held by the current
process.

A file is locked using the FILELOCK statement. RELEASE with no recID can be used to release a locked file. This is
equivalent to issuing a FILEUNLOCK statement.

You can optionally specify an ON ERROR clause. If a record lock release fails, the ON ERROR clause is executed.

See Also

* OPEN statement

* FILEUNLOCK statement

» RECORDLOCKL statement
» RECORDLOCKU statement
* RECORDLOCKED function

178 Caché MultiValue Basic Reference

REM

REM

Includes a comment in a program.

REM comment

Arguments
None.

The comment argument is the text of any comment you want to include. After the REM keyword, a space is required before
comment.

Description

You can use the REM statement to include comments in the source code of your program. A comment can be on a separate
line, or on the same line as an executable statement. If you include a comment on the same line as an executable statement,
the statement must be ended with a semicolon (;) before the comment indicator.

The REM statement is one of several single-line comment indicators. You can also use the exclamation mark (1), asterisk
(*), or dollar sign asterisk ($*) to indicate a comment. Regardless of which indicator you use, all comments are single-line
comments; you must specify a comment indicator for every line of a comment.

Note: Caché MVBasic contains both a REM (remarks) statement and a REM (remainder) function. These are completely
unrelated and should not be confused.

Examples

The following example illustrates the use of the REM statement:

MyStri=""Hello"; REM Comment after a statement.
MyStr2 = "Goodbye"
REM This is also a comment.
PRINT MyStri,Mystr2; REM comment (note semicolon)
I This too is a comment.
* This too is a comment.
$* This too is a comment.

See Also

e« Comments

Caché MultiValue Basic Reference 179

Caché MultiValue Basic Commands

REMOVE

Extracts sequential elements of a dynamic array.

REMOVE value FROM dynarray [AT pos] SETTING delim

Arguments
value A variable used to receive the extracted element value.
dynarray A dynamic array from which successive data values are to be extracted.
AT pos Optional — A variable specifying the initial starting position in dynarray as an integer
character count. pos must be specified as a local variable, not as a numeric literal.
The AT clause is provided for compatibility with D3 and UniData systems.
delim A local variable that resolves to an integer code for the dynamic array delimiter
type. delim must be specified as a local variable, not as a numeric literal. delim
can accept a single dynamic array reference (A<i>), a single substring reference
(A[s,1]), or a substring reference nested inside a dynamic array reference (A<i>[s,l]).
Description

The REMOVE statement efficiently extracts successive data values from a dynamic array. The extracted element value is
placed in the value variable. REMOVE operates on a single dynamic array level; you specify the level delimiter using the
delim argument. REMOVE maintains an internal pointer so that repeated calls return successive element values. When
the last element value has been extracted, REMOVE sets value to the empty string.

You can use the GETREM function to return the character position in dynarray of the REMOVE pointer.

Note: The REMOVE statement is identical to the REVREMOVE statement, except that REVREMOVE operates in
the reverse direction. The REMOVE function, REMOVE statement, and REVREMOVE statement all share
the same pointer. It is incremented by a Remove and decremented by a Revremove.

The delim variable resolves to an integer code with one of the following values:

End of file

@IM Item Mark CHAR(255)
@FM Field Mark CHAR(254)
@VM Value Mark CHAR(253)
@SM Subvalue Mark CHAR(252)
@TM Text Mark CHAR(251)

ga | b~ W N| », O

180 Caché MultiValue Basic Reference

REMOVE

Examples

The following example successively extracts the first 5 Value Mark elements from a dynamic array:

names="Fred" :@VM:""Barney" :@VM:""Wilma" :@VM: ""Betty"
delim=3
FOR x=1 TO 5

REMOVE val FROM names SETTING delim

PRINT val
! Returns:
1 Fred
L Barney
1 Willma
1 Betty
1 e
NEXT
See Also

*» REVREMOVE statement
» SETREM statement

* EXTRACT function

* GETREM function

* REMOVE function

Caché MultiValue Basic Reference 181

Caché MultiValue Basic Commands

RETURN

Returns from a subroutine or function.

RETURN[(retval)] [TO label]

Arguments
retval Optional (Functions Only) — An expression that evaluates to the return value for a
user-defined function. The return value must be enclosed in parentheses. If not specified,
an empty string is returned.
TO label Optional (Subroutines Only) — Any valid label. The label name can be optionally followed
by a colon (:)
Description

The RETURN statement is used to end execution of a user-defined subroutine or function and return control to the statement
that invoked the subroutine or function.

Subroutines

The RETURN statement with no argument ceases execution of a subroutine and returns control to the GOSUB statement
(for an internal subroutine) or the CALL statement (for an external subroutine) that invoked the subroutine. Program exe-
cution resumes with the line immediately following the GOSUB or CALL.

You can terminate an external subroutine with a RETURN or with an END statement.

The RETURN statement with a TO label clause ceases execution of a subroutine and transfers execution to the internal
subroutine identified by the specified label.

Functions

The RETURN statement ceases execution of a function and returns retval to the location where the function was invoked.
If no retval is specified, an empty string is returned.

Before invoking a user-defined external function, it is necessary to locally define the function using the DEFFUN statement.

See Also

» CALL statement

* GOSUB statement

» END statement

* FUNCTION statement
o Labels

182 Caché MultiValue Basic Reference

REVREMOVE

REVREMOVE

Extracts sequential elements of a dynamic array in reverse order.

REVREMOVE value FROM dynarray SETTING delim

Arguments
value A variable used to receive the extracted element value.
dynarray A dynamic array from which successive data values are to be extracted.
delim A local variable that resolves to an integer code for the dynamic array delimiter
type. delim must be specified as a local variable, not as a numeric literal. delim
can accept a single dynamic array reference (A<i>), a single substring reference
(A[s,I]), or a substring reference nested inside a dynamic array reference (A<i>[s,l]).
Description

REVREMOVE efficiently extracts successive data values from a dynamic array beginning at the end of the string. The
extracted element value is placed in the value variable. REVREMOVE operates on a single dynamic array level; you
specify the level delimiter using the delim argument. REVREMOVE maintains an internal pointer so that repeated calls
return successively previous element values. When the last element value has been extracted, REMOVE sets value to the
empty string.

You can use the GETREM function to return the character position in dynarray of the REVREMOVE pointer.

Note: The REVREMOVE statement is identical to the REMOVE statement, except that it operates in the reverse
direction. The REMOVE function, REMOVE statement, and REVREMOVE statement all share the same
pointer. It is incremented by a Remove and decremented by a Revremove.

The delim variable resolves to an integer code with one of the following values:

End of file

@IM ltem Mark CHAR(255)
@FM Field Mark CHAR(254)
@VM Value Mark CHAR(253)
@SM Subvalue Mark CHAR(252)

a | Al W N | O

@TM Text Mark CHAR(251)

Examples

The following example successively extracts the last 5 Value Mark elements from a dynamic array:

names="Fred" :@VM:""Barney" :@VM:"Wilma" :@VM:""Betty"

FOR x=1 TO 5
REVREMOVE val FROM names SETTING 3
PRINT val
! Returns:
! Betty
1 Willma
! Barney
1 Fred
' o
NEXT

Caché MultiValue Basic Reference 183

Caché MultiValue Basic Commands

See Also

REMOVE statement
SETREM statement
EXTRACT function
GETREM function
REMOVE function

184

Caché MultiValue Basic Reference

ROLLBACK

ROLLBACK

Reverts all changes made during the current transaction.

ROLLBACK [TRANSACTION | WORK] [THEN statements] [ELSE statements]

Description

The ROLLBACK statement reverts all changes made during the current transaction initiated by a BEGIN TRANSACTION
statement. All file changes issued during the transaction are undone, returning the data to the state prior to the BEGIN
TRANSACTION.

The ROLLBACK must be specified between the BEGIN TRANSACTION and END TRANSACTION statements.
Following a ROLLBACK, program execution skips to the line of code following the END TRANSACTION statement.

The TRANSACTION or WORK keywords are optional and provides no functionality. They are provided solely for com-
patibility with other MultiValue vendor products.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the transaction rollback
is successful, the THEN clause is executed. If the transaction rollback fails, the ELSE clause is executed. The statements
argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block
of statements has specific line break requirements: each statement must be on its own line and cannot follow a THEN,
ELSE, or END keyword on that line.

To commit the changes made during the current transaction, issue a COMMIT statement, rather than a ROLLBACK
statement.

After the transaction is closed, program execution continues at the END TRANSACTION statement.
Note: Caché MVBasic supports two sets of transaction statements:

e UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.
* UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.

These two sets of transaction statements should not be combined.

Locks and Transactions

File locks and record locks that were taken out during a transaction are released at the end of a transaction. If there are
nested transactions, the release of locks taken out during the inner transactions is delayed until the completion of the outermost
transaction. This release of locks is part of a successful COMMIT or ROLLBACK operation. Locks are described in the
LOCK statement.

Unaffected by ROLLBACK

» The contents of spooler and form queues, and any print jobs queued or in progress.

» The contents of the &PH& file and any spawned PHANTOM (background) processes.
e The contents of the &COMO& file used to keep an audit trail of terminal inputs.

Caché MultiValue Basic Reference 185

Caché MultiValue Basic Commands

Example

The following example performs database operations within a transaction. It sets a variable x, which determines whether
the transaction should be committed or rolled back.

PRINT *"Before the transaction™
BEGIN TRANSACTION

IF x=0
THEN COMMIT
END
ELSE ROLLBACK
THEN PRINT *"Rollback successful™
ELSE PRINT "Rollback failed”
END
PRINT "This should not print"”
END TRANSACTION
PRINT "Transaction resolved"

See Also

» BEGIN TRANSACTION statement
» END TRANSACTION statement

» COMMIT statement

186 Caché MultiValue Basic Reference

RQM

RQM

Suspends processing for a specified duration.

RQM [seconds]

ROM time
Arguments
seconds Optional — An integer count of seconds. If omitted, execution is suspended for 1 second.
time A wakeup time, specified in 24-hour format as hh:mm[:ss], or in 12-hour format as
hh:mm[:ss]JAM or hh:mm[:ss]PM.
Description

The RQM statement has two formats. You can either specify the number of seconds to suspend program execution, or
specify the time at which to resume execution. If you specify RQM with no argument, it suspends program execution for
one second. You can specify seconds as an integer or a fraction. If seconds is a decimal number, it is rounded to the nearest
whole second.

You can specify time in either 24-hour or 12-hour format. A 24-hour time is specified as hh:mm[:ss]. A 12-hour time is
specified as hh:mm[:ss][{AM | PM}. In both formats, spaces are not permitted, leading zeros may be omitted, and the seconds
component of the time is optional. The following are all valid 24-hour format time values: 02:34, 2:34:00, 14:34, 14:34:00.
The following are all valid 12-hour format time values: 2:34PM, 02:34PM, 2:34:00PM. 2:34AM. Midnight can be represented
by 24:00, 00:00, 12:00PM, 00:00PM, or 00:00AM. An invalid time argument generates a syntax error.

RQM is a synonym for SLEEP.

You can use NAP to suspend program execution for a specified number of milliseconds.

See Also

* NAP statement
e SLEEP statement

e SLEEP command in Caché MultiValue Commands Reference

Caché MultiValue Basic Reference 187

Caché MultiValue Basic Commands

SEEK

Repositions the file pointer for a sequential file.

SEEK filevar [,offset [,relto]] [THEN statements] [ELSE statements]

Arguments
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
offset Optional — A positive or negative integer count of bytes used to reposition
the file pointer relative to the relto position. By default, offset is 0.
relto Optional — A flag indicating the pointer position is determined relative to
some location. The available values are: O=relative to the beginning of the
file; 1=relative to the current pointer position; 2=relative to the end of the
file. The default is 0.
Description

The SEEK statement is used to position the sequential file pointer in a file that has been opened for sequential access using
OPENSEQ.

By default, SEEK repositions the file pointer to the beginning of the file. SEEK can be used to increment or decrement
the file pointer from its current position, or from the beginning or end of the file.

You can determine the current position of the file pointer using the STATUS statement.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the pointer reposition
is successful, the THEN clause is executed. If pointer reposition fails (usually because the specified position is beyond the
limits of the file), the ELSE clause is executed and the pointer position remains unchanged. The statements argument can
be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements
has specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END
keyword on that line.

You can use the STATUS function to determine the status of the pointer reposition operation, as follows: 0=success; -
1=pointer reposition failed because either position is beyond the limits of the file or the file is not open.

See Also

¢ OPENSEQ statement
« READSEQ statement
« WRITESEQ statement
» STATUS statement

» STATUS function

188 Caché MultiValue Basic Reference

SEEK(ARG.)

SEEK(ARG.)

Points to the next command line argument.

SEEK(ARG.[,n]) [THEN statements] [ELSE statements]

Arguments
n Optional — An integer specifying which command line argument to point to. The
default is the first unread argument (the next argument).
Description

The SEEK(ARG.) statement points to a command line argument. Each time you invoke SEEK(ARG.) it updates a command
line pointer. Therefore, repeated invocation of SEEK(ARG.) without the n argument results in sequentially pointing to
each command line argument in left-to-right order.

The keyword ARG. (note the period at end of this keyword) and the surrounding parentheses are mandatory.

You can use the optional n value to point to a command line argument by its integer position in the command line argument
list. Command line arguments are counted from 1. If n=0, SEEK(ARG.) points to the next command line argument.

SEEK(ARG.) considers all values following the program name to be command line arguments. Command line arguments
are separated by blank spaces; a blank space within a quoted string is not treated as a command line argument separator.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If moving the pointer
to the command line argument is successful, the THEN clause is executed. If there are no command line arguments, no
more command line arguments, or if you specify a value of n that does not correspond to a command line argument,
SEEK(ARG.) executes the ELSE clause. The statements argument can be the NULL keyword, a single statement, or a
block of statements terminated by the END keyword. A block of statements has specific line break requirements: each
statement must be on its own line and cannot follow a THEN, ELSE, or END keyword on that line.

The GET(ARG.) statement both moves the command line argument pointer and retrieves the argument value. The
SEEK(ARG.) statement just moves the command line argument pointer. The EOF(ARG.) function returns whether or not
the command line argument pointer is past the end of the list of command line arguments.

See Also

 GET(ARG.) statement
* EOF(ARG.) function

Caché MultiValue Basic Reference 189

Caché MultiValue Basic Commands

SELECT, SELECTN,

SELECTV

Selects items into a select list.

SELECT dynarray [TO listnum] [SETTING var] [ON ERROR statements]
SELECT [Ffilevar] [TO listnum] [SETTING var] [ON ERROR statements]
SELECT dynarray TO listname [SETTING var] [ON ERROR statements]

SELECT [Ffilevar] TO listname [SETTING var] [ON ERROR statements]

SELECTN dynarray [TO listnum] [ON ERROR statements]
SELECTN [Ffilevar] [TO listnum] [ON ERROR statements]

SELECTV dynarray TO listname [ON ERROR statements]
SELECTV [filevar] TO listname [ON ERROR statements]

Arguments

dynarray

filevar

TO listnum

TO listhame

SETTING var

Description

Any valid dynamic array of Field Values.

Optional — A local variable used as the file identifier of an open MultiValue
file. This variable is set by the OPEN statement. If omitted, the default file
variable is used.

Optional — A numbered select list, specified as an integer from 0 through
10. You must specify a listnum from 1 through 10; listhum 0 is not valid for
Caché MVBasic. If omitted, select list O is used.

A named select list, specified as a local variable name. (See Emulation
section below.)

Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR clause. Provided for jBASE compatibility.

The SELECT statements select the field identifiers from a MultiValue file or a dynamic array and place them in a select
list. You can then use READNEXT to read this select list, one field identifier at a time. Selecting to a select list overwrites

any previous values for that select list.

e SELECT can select into a numbered select list or a named select list. (See “Emulation” section below.)

e SELECTN can only select into a numbered select list.

* SELECTYV can only select into a named select list.

Note: You can use SELECTE to copy nhumbered Select List O to a named select list.

Unless otherwise stated, all documented SELECT behavior also applies to SELECTN and SELECTV.

SELECT statements sort the contents of a select list or file into Caché storage order: first the empty string, then canonical
numbers in ascending numeric order, then strings in string collation order. They then place the results in a select list.
SELECT does not sort the contents of a file system directory or the elements of a dynamic array. These are copied into a
select list in the order listed. To sort dynamic array elements, first use SELECT to copy the elements into a select list, then
use SELECT or SSELECT on that select list.

The optional ON ERROR clause specifies one or more MVBasic statements to execute if the SELECT operation fails. For
example, if you specify an invalid listnum the ON ERROR statements are executed.

190

Caché MultiValue Basic Reference

SELECT, SELECTN, SELECTV

When you are finished using an assigned select list, you can use the CLEARSELECT statement to reset the select list.

Note: SELECT and FORMLIST are functionally identical.

SELECT filevar

For SELECT filevar, you must specify a MultiValue file opened using the OPEN statement. The SELECT completes
successfully even if filevar is not defined, but a subsequent READNEXT statement fails.

SELECT filevar places a direct reference to filevar in the newly created select list; the select list does not contain a copy
of the file contents. Therefore, any subsequent change to the filevar file will immediately change the contents of this previously
selected select list. To avoid this, you can specify SOPTIONS FSELECT before invoking SELECT filevar. If the FSELECT
flag option is activated, SELECT filevar creates a select list containing a copy of the indices from the file referenced by
filevar; subsequent changes to the filevar file will have no effect on the contents of this previously selected select list. The
FSELECT option is off (inactive) by default. Using the FSELECT option makes the length of the select list immediately
available after executing the SELECT filevar statement. However, performing a SELECT filevar with the FSELECT
option enabled has poorer performance than a SELECT filevar without FSELECT.

Note: Use of FSELECT only appliesto a SELECT filevar executed directly as an MVBasic statement. Indirect execution
of SELECT filevar, such as EXECUTE 'SELECT filevar', does not apply the FSELECT setting. Executing
SELECT filevar from the MultiValue Shell does not apply the FSELECT setting.

Selecting an Index

You can use SELECT with a named select list to select an entire index. The index must have been opened using an
OPENINDEX statement. After selecting the index, you can read individual index items using the READNEXT KEY
statement.

If you wish to select only part of an index, you can use the SELECT ATKEY or SELECTINDEX statement.
SELECT and SSELECT

The SSELECT (sorted select) statements sort in ordinary string collation order. SSELECT filevar always creates a select
list containing a copy of the indices from the file referenced by filevar, regardless of the $SOPTIONS FSELECT setting.
The SELECT statements are otherwise comparable to the corresponding SSELECT statements.

Emulation

By default, SELECT can select to a numbered select list or to a named select list. Any TO clause variable that resolves to
an integer from 0 through 10 is treated as a numbered select list; any other value is treated as a named select list. SELECT
uses select list 0 as the default select list for both internal and external use. These are the defaults for Caché, jBASE, and
UniData emulation.

D3, IN2, MVBase, PICK, R83, POWER95, Reality, and Ultimate set SOPTIONS VAR.SELECT. This requires that the
select list specified in the TO clause must be a named select list; SELECT behaves like SELECTV. These emulations
return an error when you specify a numeric value for the TO clause. Select List 0 is used as the default when you omit the
TO clause.

INFORMATION, P1Open, Prime, and UniVerse set SOPTIONS SELECT.ANY This requires that the select list specified
in the TO clause must be a numbered select list; SELECT behaves like SELECTN. These emulations return an error when
you specify a non-numeric value for the TO clause.

D3, IN2, MVBase, R83, POWER95, and Reality set SOPTIONS PICK.SELECT. This causes SELECT to use two distinct
default select lists, one internal and one external. The default external select list is 0, and the default internal select list is
10.

Caché MultiValue Basic Reference 191

Caché MultiValue Basic Commands

UniData sets SOPTIONS FSELECT by default; for Caché and all other emulations FSELECT is inactive by default. This
causes SELECT to set both @SELECTED and SYSTEM(11) when using Select List 0. For any other select list, only
@SELECTED is set. All other emulations only set @SELECTED.

D3, IN2, jBASE, MVBase, PICK, R83, POWER95, and Ultimate set SOPTIONS NO.RESELECT. This prevents the
reselecting of a select list; a second SELECT is ignored when referencing an active unused or partially used select list.
For D3, jBASE, MVBase, R83, POWERY5, and Ultimate, $SOPTIONS ARRAY.RESELECT is also set by default,
overriding NO.RESELECT for a dynamic array.

Examples

The following example illustrates the use SELECT dynarray. SELECT copies all of the field mark identifiers into Select
List 3. The @SELECTED system variable contains the number of elements selected (in this case, 4). Each iteration of
READNEXT reads the next field mark identifier from Select List 3 into the area variable:

regions="Northeast'":@FM:""Southeast" :@FM: ""Northwest'" :@FM: ""'Southwest"
SELECT regions TO 3 ON ERROR PRINT *"Select failed™
PRINT @SELECTED
FOR x=1 TO 5
READNEXT area FROM 3
PRINT area
NEXT

The following example illustrates the use of the SELECTYV statement. SELECTYV copies all of the field mark identifiers
into a Select List named rfields. Each iteration of READNEXT reads the next field mark identifier from Select List rfields
into the area variable:

regions="Northeast' :@FM:"Southeast' :@FM:""Northwest" :@FM:"'Southwest"
SELECTV regions TO rfields ON ERROR PRINT "Select failed”
PRINT @SELECTED
FOR x=1 TO 5
READNEXT area FROM rfields
PRINT area
NEXT

See Also

» OPEN statement

* OPENINDEX statement

» READNEXT statement

» READNEXT KEY statement
» SELECT ATKEY statement

» SELECTE statement

» SELECTINDEX statement

» CLEARSELECT statement

* FORMLIST statement

e @SELECTED system variable

e Dynamic Arrays

192 Caché MultiValue Basic Reference

SELECT ATKEY

SELECT ATKEY

Selects a specified key type into a select list.

SELECT ivar [TO varname] ATKEY keytype[,reclID[,vmcount]] [ON ERROR statements]

Arguments
ivar A local variable used as the index identifier of an open MultiValue file. This
variable is set by the OPENINDEX statement.
TO varname Optional — Either a named select list for an index, specified as a variable
name, or a select list number. If omitted, select list 0 is used.
keytype The specified index key to select. You can specify the empty string (ATKEY
**) if you wish MVBasic to ignore the ATKEY clause and take the recID
and/or vmcount values.
reciD Optional — A specified record within the index key value at which to start
processing.
vmcount Optional — If the record specified in reclD is a dynamic array, vmcount
specifies which element to start from. Specified as an integer value,
beginning with 1 (the default).
Description

The SELECT ATKEY statement selects the index identifiers of the specified type from an index file and places them in
a select list. You can then use READNEXT KEY to read this select list, one index identifier at a time. Selecting to a select
list overwrites any previous values for that select list.

There are three ways to select an index

 SELECT selects the entire index into a named select list. You then use READNEXT KEY to read individual index
items.

e SELECT ATKEY selects the specified index key into a named select list. You then use READNEXT KEY to read
individual index items.

 SELECTINDEX selects all the unique index keys into a named select list. You then use READNEXT to read indi-
vidual index items.
For all three types of index SELECT, you must specify an index file opened using the OPENINDEX statement.

The optional ON ERROR clause specifies one or more MVBasic statements to execute if the SELECT ATKEY operation
fails. For example, if you specify an invalid ivar the ON ERROR statements are executed.

When you are finished using an assigned select list, you can use the CLEARSELECT statement to reset the select list.

Examples

The following example used OPENINDEX to open an index to VOC on the attribute F1. The SELECT ATKEY selects
S-type keys from this index to a select list. The READNEXT KEY reads an item from the select list:

OPENINDEX "VOC®,"F1" TO ldxFp ELSE ABORT
SELECT ldxFp TO ldxList ATKEY "'S"
READNEXT KEY ldx,l1d FROM ldxList

Caché MultiValue Basic Reference 193

Caché MultiValue Basic Commands

See Also

OPENINDEX statement
SELECT statement
SELECTINDEX statement
READNEXT KEY statement
CLEARSELECT statement

194

Caché MultiValue Basic Reference

SELECTE

SELECTE

Copies select list 0 to a named select list.

SELECTE TO varname

Arguments

varname A named select list, specified as a variable name.

Description

The SELECTE statement copies Select List 0 to a select list named varname. You can then use READNEXT to read this
select list, one field identifier at a time.

Select List 0 is the default select list created by a SELECT or SELECTN statement.

Note: SELECTE enables you to copy Select List 0 to a named select list. You can create a named select list directly
by using SELECTV.

Examples

The following example illustrates the use of the SELECTE statement. Here SELECT copies all of the field mark identifiers
into Select List 0. Then SELECTE copies Select List 0 to a select list named rfields. Each iteration of READNEXT reads
the next field mark identifier from Select List rfields into the area variable:

regions="Northeast' :@FM:"Southeast' :@FM:""Northwest' :@FM:"'Southwest"
SELECT regions TO O ON ERROR PRINT "Select failed"
SELECTE TO rfields
FOR x=1 TO 5
READNEXT area FROM rfields
PRINT area
NEXT

See Also

» READNEXT statement
» SELECT statement

» SSELECT statement

e Dynamic Arrays

Caché MultiValue Basic Reference 195

Caché MultiValue Basic Commands

SELECTINDEX

Selects an index.

SELECTINDEX indexname[,akey] FROM filevar TO varname

Arguments
indexname The name of a defined index, specified as a quoted string.
akey Optional — A specific index key value, specified as a quoted string.
filevar A local variable name assigned to the index file by the OPENINDEX
statement.
varname A named select list for an index, created by SELECTINDEX. varname is
specified as a variable name.
Description

The SELECTINDEX statement is used to select the unique keys of an index for use by the READNEXT statement. The
index must already have been opened using the OPENINDEX statement.

There are three ways to select an index

 SELECT selects the entire index into a named select list. You then use READNEXT KEY to read individual index
items.

* SELECT ATKEY selects the specified index key into a named select list. You then use READNEXT KEY to read
individual index items.

e SELECTINDEX selects all the unique index keys into a named select list. You then use READNEXT to read indi-
vidual index items.

Example

OPENINDEX *VOC®,"F1" TO idxfp
SELECTINDEX *"F1® FROM idxfp TO idxlist
FOR x=1 TO 5

READNEXT id FROM idxlist

PRINT id
NEXT

See Also

* OPENINDEX statement

» SELECT statement

» SELECT ATKEY statement
» READNEXT statement

» CLEARSELECT statement

196 Caché MultiValue Basic Reference

SETREM

SETREM

Positions the remove pointer in a dynamic array.

SETREM position ON dynarray

Arguments
position A positive integer specifying the number of bytes to increment the pointer in the
dynamic array.
dynarray A dynamic array in which the pointer is positioned.
Description

The SETREM statement positions a pointer within a dynamic array. This statement is commonly used to position a pointer
for the REMOVE or REVREMOVE statements to extract data values from the dynamic array.

You can use the GETREM function to return the character position in dynarray of the SETREM pointer. REMOVE and
REVREMOVE also modify this internal pointer so that repeated calls return successive element values.

See Also

» REMOVE statement

* REVREMOVE statement
+ EXTRACT function

* GETREM function

* REMOVE function

Caché MultiValue Basic Reference 197

Caché MultiValue Basic Commands

SLEEP

Suspends processing for a specified duration.

SLEEP [seconds]

SLEEP time
Arguments
seconds Optional — An integer count of seconds. If omitted, execution is suspended for 1 second.
time A wakeup time, specified in 24-hour format as hh:mm[:ss], or in 12-hour format as
hh:mm[:ss]JAM or hh:mm[:ss]PM.
Description

The SLEEP statement has two formats. You can either specify the number of seconds to suspend program execution, or
specify the time at which to resume execution. If you specify SLEEP with no argument, it suspends program execution
for one second. You can specify seconds as an integer or a fraction. If seconds is a decimal number, it is rounded to the
nearest whole second.

You can specify time in either 24-hour or 12-hour format. A 24-hour time is specified as hh:mm[:ss]. A 12-hour time is
specified as hh:mm[:ss][{AM | PM}. In both formats, spaces are not permitted, leading zeros may be omitted, and the seconds
component of the time is optional. The following are all valid 24-hour format time values: 02:34, 2:34:00, 14:34, 14:34:00.
The following are all valid 12-hour format time values: 2:34PM, 02:34PM, 2:34:00PM. 2:34AM. Midnight can be represented
by 24:00, 00:00, 12:00PM, 00:00PM, or 00:00AM. An invalid time argument generates a syntax error.

RQM is a synonym for SLEEP.

You can use NAP to suspend program execution for a specified number of milliseconds.

See Also

* NAP statement
* RQM statement

e SLEEP command in Caché MultiValue Commands Reference

198 Caché MultiValue Basic Reference

SSELECT, SSELECTN, SSELECTV

SSELECT, SSELECTN, SSELECTV

Selects and sorts items into a select list.

SSELECT dynarray [TO listnum] [ON ERROR statements]
SSELECT [filevar] [TO listnum] [ON ERROR statements]
SSELECT dynarray TO listname [ON ERROR statements]

SSELECT [Ffilevar] TO listname [ON ERROR statements]

SSELECTN dynarray [TO listnum] [ON ERROR statements]
SSELECTN [Filevar] [TO listnum] [ON ERROR statements]

SSELECTV dynarray TO listname [ON ERROR statements]
SSELECTV [Ffilevar] TO listname [ON ERROR statements]

Description

The SSELECT statements sort the contents of a select list or file into string collation order and place the results in a select
list. The SSELECT statements sort the contents of a file system directory into string collation order and place the results
in a select list. The SSELECT statements copy the elements of a dynamic array into a select list in the order listed; they
do not sort dynamic array elements. To sort dynamic array elements, use SELECT to copy the elements into a select list,
then use SSELECT on that select list.

When sorting the contents of a select list, SSELECT removes duplicate values. Therefore, an output select list may contain
fewer items than the input select list.

The output select list can be a numbered select list or a named select list. The “N” and “V” command name suffixes specify
whether the output select list is a numbered select list or a named select list.

The SSELECT statements sort in ordinary string collation order. The SELECT statements sort in Caché storage order:
first the empty string, then canonical numbers in ascending numeric order, then strings in string collation order. The
SSELECT statements are otherwise comparable to the corresponding SELECT statements.

The optional ON ERROR clause specifies one or more MVBasic statements to execute if the SSELECT operation fails.
For example, if you specify an invalid listnum the ON ERROR statements are executed.

See Also
e SELECT statement

* Dynamic Arrays

Caché MultiValue Basic Reference 199

Caché MultiValue Basic Commands

STATUS

Provides file status information.

STATUS dynarray FROM filevar [THEN statements] [ELSE statements]

Arguments
dynarray A dynamic array used by STATUS to hold file information as Field elements.
filevar A file variable name specifying the file from which status information is to
be returned. This filevar is obtained from OPEN or OPENSEQ.
Description

The STATUS statement is used to return status information about a file. This information is returned as Field Mark
delimited elements of a dynamic array. You must open the file, using the OPEN or OPENSEQ statement, to obtain the
filevar required to invoke STATUS.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If file status information
is obtained, the THEN clause is executed. If file status information could not be obtained, the ELSE clause is executed.
The statements argument can be the NULL keyword, a single statement, or a block of statements terminated by the END
keyword. A block of statements has specific line break requirements: each statement must be on its own line and cannot
follow a THEN, ELSE, or END keyword on that line.

To display individual status fields, use angle bracket syntax. The following example displays the 20th field, which is the
full file path:

STATUS statdyn FROM filevar
PRINT statdyn<20>

Field 1 of dynarray contains the current position of the sequential file pointer, counting from 0. This count includes the
two-character newline (carriage return + line feed) that appears at the end of each line of data in a sequential file. The same
file pointer is used by WRITESEQ and READSEQ. You can reposition this pointer using the SEEK statement.

Field 20 of dynarray contains the full file path of the open file.

Field 21 of dynarray contains a numeric code for the file type, as follows: -2 sequential file; -1 dir-type file; 0 global with
the full record in a single node; 1 global with each attribute in a separate subnode.

Examples

The following example opens a sequential file on a Windows system and determines its status. It prints out two status fields:
the full pathname and the file type (in this case, -2):

myfile="c:\InterSystems\Cache\Dev\mv\samples\CommandExample*
OPENSEQ myfile TO filevar ELSE STOP 201,myfile
STATUS statdyn FROM filevar
PRINT statdyn<20>
PRINT statdyn<21>
CLOSESEQ filevar

The following example opens the VOC file and determines its status. It prints out two status fields: the file pathname (in
this case, a global variable) and the file type (in this case, 0):

OPEN "VOC®" TO myvoc ELSE STOP 201, "VOC*
STATUS statdyn FROM myvoc

PRINT statdyn<20>

PRINT statdyn<21>
CLOSE myvoc

200 Caché MultiValue Basic Reference

STATUS

See Also

OPEN statement
OPENSEQ statement
READSEQ statement
SEEK statement
WRITESEQ statement

Caché MultiValue Basic Reference

201

Caché MultiValue Basic Commands

STOP, STOPE, STOPM

Terminates program execution and returns to the calling environment.

STOP [errcode [,valll[,val2]]]
STOPE [errcode [,vall[,val2]]l]
STOPM [message]

Arguments
errcode Optional — A MultiValue error code; commonly (but not always) specified as a positive
integer. The error code can be specified as a literal or as a expression that resolves to a
literal value. A non-numeric literal value must be specified as a quoted string.
val Optional — A comma-separated list of one or more literal values to insert into the error
message corresponding to errcode. These insert values can be specified as literals or as
expressions that resolves to a literal value. A non-numeric literal value must be specified as
a quoted string.
message Optional — An expression that resolves to a literal error message text, specified as a quoted
string.
Description

All forms of the STOP statement are used to terminate program execution and return control to the calling environment.
If you specify an argument, these statements return an error message before terminating program execution.

STOP and STOPE return MultiValue error messages. They are nearly functionally identical; both return the specified
error code and corresponding error message. STOPE always returns both the error code and the error message. This includes
error messages missing val insert values. STOP always returns the error code; it only returns the error message if you have
specified at least one of the val insert values required to complete the error message, or if the error message does not require
any insert values. For a list of error codes and corresponding error messages, see Error Messages in the Caché MultiValue
Commands Reference.

STOPM returns the literal message text specified in message.

When you call an MVBasic routine from a non-MultiValue environment, a STOP statement clears the entire execution
stack and either terminates the process or returns to the Terminal prompt.

Examples

The following Windows example shows a common use of STOP as an ELSE clause statement:

foo=""c:\foofile"
OPEN foo TO myfile ELSE STOP 201, foo

STOP returns the error message: [201] Unable to open file “c:\foofile".

The following examples show the difference between STOPE and STOP when the error message requires an insert value
that the command does not provide:

OPEN foo TO myfile ELSE STOPE 201
STOPE returns: [201] Unable to open file "".
OPEN foo TO myfile ELSE STOP 201

STOP returns: [201]

202 Caché MultiValue Basic Reference

STOP, STOPE, STOPM

ABORT and STOP

The ABORT command terminates all program execution and returns to the programming prompt. The STOP terminates
the executing routine and returns control to the calling routine.

During debugging, STOP terminates the debugging session. The debugger treats an ABORT as an error condition; the
debugger performs a break operation to allow for examination of the condition causing the ABORT.

See Also

* ABORT statement

* ERRMSG statement

* BREAK statement

» ObjectScript: QUIT command

Caché MultiValue Basic Reference 203

Caché MultiValue Basic Commands

SUBROUTINE

Defines an external subroutine.

SUBROUTINE [name][(arglist)]

[statements]
RETURN
Arguments
name Optional — Any valid name to assign to the subroutine.
arglist Optional — List of variables specifying arguments that are passed to the SUBROUTINE
when it is called. Multiple arguments are separated by commas. The arglist is enclosed
with parentheses.
statements A group of statements to be executed within the body of the SUBROUTINE.
Description

The SUBROUTINE statement defines an external subroutine. A SUBROUTINE is a separate procedure that can take
arguments, perform a series of statements, and change the values of its arguments.

The SUBROUTINE statement is very similar to FUNCTION, except that FUNCTION always returns a value. A
SUBROUTINE generally does not return a value. (You can use the SUBR function to call an external subroutine that
returns a value.)

There cannot be a label on the SUBROUTINE statement line. There can only be one SUBROUTINE statement in an
external subroutine (no nested subroutines). The SUBROUT INE statement must be the first line in the external subroutine,
with the following exceptions: comment lines, SOPTIONS statements, SCOPYRIGHT statements, and DIM statements
that do not dimension a static array. For example, DIM Var() and DIM abc are permitted, but DIM Var(2) is not.

The name argument allows you to identify the external subroutine; it is not (strictly speaking) required to define or invoke
an external subroutine. If name is omitted, either of the following syntactic forms are permitted: SUBROUTINE (arglist)
or SUBROUTINE(arglist).

An external subroutine must be compiled and cataloged before it can be invoked. You can invoke an external subroutine
with a CALL statement. The CALL statement invokes a subroutine by its name in the catalog; this is not necessarily the
same as name.

When using CALL to invoke a subroutine, you can pass it arguments. The list of arguments passed by CALL must correspond
in position and number to the number of arguments defined in SUBROUTINE to receive the passed values. The names of
the arguments do not have to correspond.

The argument list can contain any combination of regular variables and array variables. In arglist, an array variable name
must be preceded by the MAT keyword. The following is an argument list that specifies a regular variable and two array
variables:

SUBROUTINE MySub(myvar ,MAT myarray,MAT refarray)

By default, all arguments are passed by reference. If the subroutine changes the value of an argument passed by reference,
this value is also changed in the calling program. You can specify in the CALL statement that an argument is to be passed
by value. If the subroutine changes the value of an argument passed by value, the value of this argument in the calling
program remains unchanged.

You can also use the COMMON statement to make specified variables available to all external subroutines.

204 Caché MultiValue Basic Reference

SUBROUTINE

You can terminate an external subroutine with a RETURN or with an END statement. Following a RETURN, program
execution resumes with the line immediately following the invoking CALL statement.

SUBR, CALL, and GOSUB

The SUBR function is used to call an external subroutine that returns a value. The CALL statement is used to call an
external subroutine that does not return a value. The GOSUB statement is used to call an internal subroutine.

See Also

« COMMON statement
* RETURN statement

* FUNCTION statement
» CALL statement

* GOSUB statement

* SUBR function

Caché MultiValue Basic Reference 205

Caché MultiValue Basic Commands

SWAP

Replaces all instances of a substring in a variable.

SWAP oldstring WITH newstring IN variable

Arguments
oldstring The substring to be replaced. An expression that resolves to a valid string or numeric.
newstring The replacement substring. An expression that resolves to a valid string or numeric. To delete
oldstring, specify the empty string (™).
variable An existing variable containing a string value. variable may be a dynamic array. variable
accepts a single dynamic array reference (A<i>), a single substring reference (A[s,l]), or a
substring reference nested inside a dynamic array reference (A<i>[s,]).
Description

The SWAP statement edits the value of variable by replacing all instances of oldstring with newstring. The oldstring and
newstring values may be of different lengths. Matching of strings is case-sensitive.

The values of oldstring and newstring can be a string or a numeric. If numeric, the value is converted to canonical form
(plus sign, leading and trailing zeros removed) before performing the string replacement.

To remove all instances of oldstring from variable, specify the null string (
cannot be used as the oldstring value.

) as the newstring value. The null string (")

Note: Caché MVBasic supports the UniData SWAP statement for substring replacement. UniVerse implements a
completely different SWAP statement for variable value exchange, which we do not support at this time. Caché
MV Basic also supports the UniVerse CHANGE statement for substring replacement.

SWAP and CHANGE both perform string substitution, and are functionally identical. CONVERT performs character-
for-character substitution.

Examples

The following example illustrates use of the SWAP statement, replacing a substring value in all the elements of a dynamic
array:

cities="Pittsburg Penn.":@VM:"Philadephia Penn."
SWAP ""Penn." WITH "PA"™ IN cities

See Also

* CHANGE function

* CONVERT statement
* CONVERT function
* CHANGE function

e Strings

206 Caché MultiValue Basic Reference

TCLREAD

TCLREAD

Copies the terminal command line into a variable.

TCLREAD variable

Arguments

variable A variable used to hold the command line.

Description

The TCLREAD statement copies the Terminal Control Language (TCL) command line into variable. This allows param-
eters to be passed from TCL to the MVBasic program.

Caché MultiValue Basic Reference 207

Caché MultiValue Basic Commands

THROW

Throws an exception from a TRY block to a CATCH exception handler.

THROW [oref]

Arguments

oref Optional — A user-defined object reference.

Description

The THROW statement explicitly issues an exception from within a block of code defined by a TRY statement. Issuing
a THROW transfers execution from the TRY block to the corresponding CATCH exception handler.

THROW is used to issue an explicit exception. MVBasic issues an implicit exception when a runtime exception occurs.
A runtime exception generates an exception object which it throws to a CATCH exception handler.

THROW has two forms:
» Without an argument

e With an argument

THROW without an Argument

Argumentless THROW transfers exception processing to the corresponding CATCH exception handler. No object is
pushed on the stack, but the %New() method is called.

THROW with an Argument

THROW oref specifies a user-defined object reference, which it throws to the CATCH statement.

Arguments

expression

A user-defined object reference (oref). For example, THROW **Sample_MyException'->%New(*'Example
Error',45). The creation and population of this exception object is the responsibility of the programmer.

Examples
The following example shows the use of THROW:

TRY
PRINT "about to issue a THROW statement"
THROW "'Sample.MyException'->%New("'Example Error",45,"Sample Program')
PRINT *"this should not display"

CATCH myvar
PRINT "this is the exception handler™
PRINT :myvar->Name,"Error Name"
PRINT :myvar->Code,"Error Code Number"
PRINT :myvar->Location,"Error Location"

END TRY

PRINT *"this is where the code falls through™

See Also

e CATCH statement
e TRY statement

208 Caché MultiValue Basic Reference

TRANSACTION ABORT

TRANSACTION ABORT

Reverts all changes made during the current transaction.

TRANSACTION ABORT

Description

The TRANSACTION ABORT statement reverts all changes made during the current transaction initiated by a
TRANSACTION START statement. All file changes issued during the transaction are undone, returning the data to the
state prior to the TRANSACTION START.

To commit the changes made during the current transaction, issue a TRANSACTION COMMIT statement, rather than
a TRANSACTION ABORT statement.

Note: Caché MVBasic supports two sets of transaction statements:

* UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.
* UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.

These two sets of transaction statements should not be combined.

Locks and Transactions

File locks and record locks that were taken out during a transaction are released at the end of a transaction. If there are
nested transactions, the release of locks taken out during the inner transactions is delayed until the completion of the outermost
transaction. This release of locks is part of a successful TRANSACTION COMMIT or TRANSACTION ABORT
operation. Locks are described in the LOCK statement.

See Also
e TRANSACTION START statement
e TRANSACTION COMMIT statement

Caché MultiValue Basic Reference 209

Caché MultiValue Basic Commands

TRANSACTION COMMIT

Commits all changes made during the current transaction.

TRANSACTION COMMIT {THEN statements | ELSE statements }

Description

The TRANSACTION COMMIIT statement ends the current transaction initiated by a TRANSACTION START statement.
All file changes issued during the transaction are committed, and cannot be subsequently reverted.

You must specify either a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the transaction commit
is successful, the THEN clause is executed. If the transaction commit fails, the ELSE clause is executed. The statements
argument can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block
of statements has specific line break requirements: each statement must be on its own line and cannot follow a THEN,
ELSE, or END keyword on that line.

To revert the changes made during the current transaction, issue a TRANSACTION ABORT statement, rather than a
TRANSACTION COMMIT statement.

Note: Caché MVBasic supports two sets of transaction statements:
¢ UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.
e UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.

These two sets of transaction statements should not be combined.

Locks and Transactions

File locks and record locks that were taken out during a transaction are released at the end of a transaction. If there are
nested transactions, the release of locks taken out during the inner transactions is delayed until the completion of the outermost
transaction. This release of locks is part of a successful TRANSACTION COMMIT or TRANSACTION ABORT
operation. Locks are described in the LOCK statement.

See Also

e TRANSACTION START statement
e TRANSACTION ABORT statement

210 Caché MultiValue Basic Reference

TRANSACTION START

TRANSACTION START

Begins a transaction.

TRANSACTION START {THEN statements | ELSE statements}

Description

The TRANSACTION START statement initiates a transaction. There is no command to demarcate the end of a transaction.
All subsequent statements are part of this transaction until the transaction is closed, either by a TRANSACTION COMMIT
statement or a TRANSACTION ABORT statement. If neither a TRANSACTION COMMIT nor a TRANSACTION

ABORT is issued, the transaction remains open until the end of the program, at which time it is automatically rolled back.

You must specify either a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the transaction start is
successful, the THEN clause is executed. If the transaction start fails, the ELSE clause is executed. The statements argument
can be the NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements
has specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END
keyword on that line.

You can use multiple TRANSACTION START statements to create nested transactions.

Note: Caché MVBasic supports two sets of transaction statements:
* UniData-style TRANSACTION START, TRANSACTION COMMIT, and TRANSACTION ABORT.
e UniVerse-style BEGIN TRANSACTION, COMMIT, ROLLBACK, and END TRANSACTION.

These two sets of transaction statements should not be combined.

Locks and Transactions

File locks and record locks that were taken out during a transaction are released at the end of a transaction. If there are
nested transactions, the release of locks taken out during the inner transactions is delayed until the completion of the outermost
transaction. This release of locks is part of a successful TRANSACTION COMMIT or TRANSACTION ABORT
operation. Locks are described in the LOCK statement.

See Also

e TRANSACTION COMMIT statement
¢« TRANSACTION ABORT statement

Caché MultiValue Basic Reference 211

Caché MultiValue Basic Commands

TRY

Identifies a block of code to monitor for exceptions during execution.

TRY
statements
CATCH exceptionvar
statements
END TRY

Description

The TRY statement takes no arguments. It is used to identify one or more Caché MVBasic code statements between the
TRY keyword and the CATCH keyword. This block of code is protected code for structured exception handling. If an
exception occurs within this block of code, Caché sets exceptionvar to an object describing the exception, then transfers
execution to an exception handler, identified by the CATCH statement. This is known as throwing an exception. If no
exception occurs, execution continues with the next Caché MVBasic statement after the END TRY statement.

An exception may occur as a result of a runtime exception, such as attempting to divide by 0, or it may be explicitly prop-
agated by issuing a THROW statement.

A TRY block must be immediately followed by a CATCH block. The paired TRY and CATCH are terminated by an
END TRY statement.

Examples

In the following examples, the TRY code block is executed. It attempts to set the local variable a. In the first example, the
code completes successfully, and the CATCH statements are skipped over. In the second example, the code fails an Err
error indicating division by zero, and execution is passed to the CATCH statement.

TRY succeeds:

TRY
PRINT *"about to divide by one"
a=7/1
PRINT "this line is executed"
CATCH myvar
PRINT "this is the exception handler™
PRINT "Error name: '',myvar->Name
END TRY
PRINT "this is where the code falls through”

TRY fails:

TRY
PRINT "about to divide by zero"
a=7/0
PRINT "this should not display"
CATCH myvar
PRINT "this is the exception handler™
PRINT "Error name: ' ,myvar->Name
END TRY
PRINT "this is where the code falls through™

See Also

e CATCH statement
* THROW statement

212 Caché MultiValue Basic Reference

UNLOCK

UNLOCK

Releases a process lock.

UNLOCK expression

Arguments
expression A number or string, or an expression that evaluates to a number or string specifying an
existing lock to be unlocked.
Description

The UNLOCK statement releases a process lock on expression that was obtained by a LOCK statement. Each time a lock
is obtained on an expression a lock count is incremented. UNLOCK decrements this count. Only when the lock count falls
to zero will the logical lock be released. For this reason, you should balance each successful call to LOCK with a corre-
sponding call to UNLOCK.

Unlike READU locks, process locks set in a program are not released automatically when the program terminates. The
lock belongs to the process, and persists for the life of the process, unless unlocked explicitly.

Commonly, expression evaluates to an integer in the range 0 through 64. However, in Caché any number or string may be
specified as a logical lock. UNLOCK " is equivalent to UNLOCK 0.

Examples

The following example uses the LOCK statement to obtain a logical lock on an expression, and then uses the UNLOCK
function to release the logical lock. Note that because the lock on a was taken twice, it must be unlocked twice.

a=45
LOCK a THEN PRINT "Got the lock"
ELSE PRINT "Couldn®"t get the lock"
LOCK a THEN PRINT "Got the lock again"
ELSE PRINT *"Couldn®t get the lock"

UNLOCK a
UNLOCK a

See Also

e LOCK statement

Caché MultiValue Basic Reference 213

Caché MultiValue Basic Commands

WEOFSEQ

Writes an end-of-file to a sequential file.

WEOFSEQ filevar [ON ERROR statements]

Arguments
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ.
Description

The WEOFSEQ statement is used to write an end-of-file indicator to a file that has been opened for sequential access using
OPENSEQ. Placing an end-of-file indicator renders all data past that point inaccessible to READSEQ statements. Placing
an end-of-file indicator has no effect on WRITESEQ statements, or on the pointer position count provided by the STATUS
statement.

You can optionally specify an ON ERROR clause, which is executed if the end-of-file write fails.
You can also use the STATUS function to determine the status of the write operation, as follows: 0=success; -1=operation
failed because file not open (or opened by another process).

See Also

¢ OPENSEQ statement
e READSEQ statement
e WRITESEQ statement
e STATUS statement

» STATUS function

214 Caché MultiValue Basic Reference

WRITE, WRITEU, WRITEV, WRITEVU

WRITE, WRITEU, WRITEV, WRITEVU

Writes data to a record in a MultiValue file.

WRITE data {ON | TO} filevar,reclD
[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

WRITEU data {ON | TO} Ffilevar,reclD
[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

WRITEV data {ON | TO} Ffilevar,reclD,fieldno
[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

WRITEVU data {ON | TO} filevar,reclD,fieldno
[SETTING var] [ON ERROR statements] [LOCKED statements] [[THEN statements] [ELSE
statements]]

Arguments
data Data to write to the MultiValue file. Can be an expression or variable that
resolves to a dynamic array or some other literal value.
filevar A local variable used as the file identifier of an open MultiValue file. This
variable is set by the OPEN statement. You can specify either ON or TO
as the keyword.
reclD The record ID of the record to be written, specified as either a number or
an alphanumeric string of up to 31 characters. Letters in a reclD are
case-sensitive. Additional naming conventions are described below.
fieldno The field number of the field to write. Used with WRITEV and WRITEVU.
SETTING var Optional — When an error occurs, sets the local variable var to the
operating system's error return code. Successful completion returns 0;
error return codes are platform-specific. The SETTING clause is executed
before the ON ERROR, THEN, or ELSE clause. Provided for BASE
compatibility.
Description

The WRITE statements are used to write data to a record in a MultiValue file. You supply this data using the data variable.
* WRITE writes a record, then releases the update record lock

WRITEU writes a record, retaining the update record lock

WRITEV writes a field within a record, then releases the update record lock

e WRITEVU writes a field within a record, retaining the update record lock

These WRITE statements write records without waiting for conflicting locks on those records to be released. To require

that the program wait indefinitely for a conflicting lock to be released, you can check for locks prior to calling the WRITE
statement.

Alternatively, you can set the SOPTION WRITE.LOCK.WAIT configuration option. However, this option applies
globally, which can introduce unnecessary waits, such as on READ statements, and significantly slow down programs.

Caché MultiValue Basic Reference 215

Caché MultiValue Basic Commands

If lock contention is active, to specify the action that occurs when a record is locked, you can optionally specify a LOCKED
clause.

You can optionally specify an ON ERROR clause, which is executed when the operation fails and generates an error code.
For example, attempting to write to a read-only file. If you do not specify an ON ERROR clause, the ELSE clause is taken
for an error code condition, as well as for an unsuccessful write.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file write is suc-
cessful, the THEN clause is executed. If file write does not complete successfully, the ELSE clause is executed.

If the WRITE has neither an ON ERROR clause nor an ELSE clause, a failed write operation generates a <WRITE> error
and halts program execution.

You can use the STATUS function to determine the status of the write operation, as follows: O=write successful; -1=write
failed because file not open (or opened by another process).

Record Naming Conventions
The following are naming conventions for a valid MultiValue reclD:
» ArreclD can be a number or an alphanumeric string.

e Ifanumber, it is converted to canonical form: multiple plus and minus signs are resolved, and the plus sign, and
leading and trailing zeros are removed. If the number is enclosed in single or double quotation marks, conversion to
canonical form is not performed. Only a single period can be specified, which is used as the decimal separator character.

» Ifanalphanumeric string, the first character must be a letter, dollar sign ($), or percent sign (%). Subsequent characters
may be letters, numbers, or percent characters. If the first character is a dollar sign ($), all subsequent characters must
be letters.

» The period (.) character can appear within a reclD. If the reclD is alphabetic any number of periods can be specified;
these periods are stripped out and are not part of the recID. If the recID is a mixed alphanumeric, no periods may be
specified.

» The recID may be enclosed in single or double quotation marks, these become part of the record name, unless the
recID is an integer in canonical form. Single and double quotes are equivalent. Thus: "4"='4'=4 and "rec1"="rec1' but
not equal to recl. Do not specify a blank space within a reclD.

e AreclD is case-sensitive.

e AreclD is limited to 31 characters. You may specify a recID longer than 31 characters, but only the first 31 characters
are used. Therefore, a recID must be unique within its first 31 characters.

Record Locks

RECORDLOCKU performs an update (exclusive) lock on a record. This update record lock is automatically released when
you write data to the record using WRITE or WRITEV. The WRITEU and WRITEVU commands do not release the
update record lock. You can check the status of an update record lock using the RECORDLOCKED function. You can
explicitly release an update record lock using the RELEASE command.

Writing a Field to a Record

WRITEV and WRITEVU writes a field within a record. They search the record string for the delimited piece specified
by the fieldno count, replace it, then rewrite the record. If the fieldno is higher than the number of field delimiters, these
statements append the field to the end of the record. If the entire record consists of a single numeric value (and thus contains
no field delimiters), these statements convert the record value to a string before appending the specified field value. If the
fieldno is O, a new field is appended to the beginning of the record.

216 Caché MultiValue Basic Reference

WRITE, WRITEU, WRITEV, WRITEVU

WRITE and MATWRITE

The various WRITE statements write a dynamic array (or a string value) to a MultiValue file record. The various
MATWRITE statements write a dimensioned array to a MultiValue file record.

Examples

The following example writes a line of data to an existing sequential file on a Windows system:

OPEN "TEST.FILE"™ TO mytest

IF STATUS()=0

THEN
WRITE "John Doe"™ TO mytest,1
CLOSE mytest

END

ELSE
PRINT "File open failed"

END

See Also

» OPEN statement

* READ statement

* CLOSE statement

* MATWRITE statement
* STATUS function

* Dynamic Arrays

Caché MultiValue Basic Reference 217

Caché MultiValue Basic Commands

WRITEBLK

Writes data to a sequential file.

WRITEBLK data ON filevar [THEN statements] [ELSE statements]
WRITEBLK data TO filevar [THEN statements] [ELSE statements]

Arguments
data Data to write to the sequential file. Can be an expression or variable that
resolves to a literal value.
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ. The ON and TO keywords are equivalent.
Description

The WRITEBLK statement is used to write data to a file that has been opened for sequential access using OPENSEQ.
You supply this data using the data variable. The data is written as a variable-length “block” (meaning that the data receives
no special processing and no special characters are appended). The length of the block is determined by the length of the
specified data; the data can be of any length. It has no necessary relationship to logical data units, such as lines or records.

When invoked, WRITEBLK increments a pointer to the end of the data just written, so that repeated invocations of
WRITEBLK write sequential blocks of data to the file. The same file pointer is used by WRITEBLK and READBLK.

You can determine the current position of this pointer using the STATUS statement. You can reposition this pointer using
the SEEK statement.

To write an end-of-file, use the WEOFSEQ statement.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file write is suc-
cessful, the THEN clause is executed. If file write fails, the ELSE clause is executed. The statements argument can be the
NULL keyword, a single statement, or a block of statements terminated by the END keyword. A block of statements has

specific line break requirements: each statement must be on its own line and cannot follow a THEN, ELSE, or END keyword
on that line.

You can use the STATUS function to determine the status of the write operation, as follows: 0=sequential write successful;
-1=write failed because file not open (or opened by another process).

WRITEBLK and WRITESEQ

The WRITEBLK command writes a string of data to a sequential file. This string may have no relationship to a record
within the file. The WRITESEQ command writes a single line of data (a data record) to a sequential file, ending the write
by appending two newline characters (carriage return & linefeed) to the data.

Issuing a WRITESEQ creates a new file, if the file specified in OPENSEQ does not exist. Issuing a WRITEBLK does
not create a new file. You must issue a CREATE statement to create a sequential file before invoking WRITEBLK.

218 Caché MultiValue Basic Reference

WRITEBLK

Examples

The following example writes a block of data to an existing sequential file on a Windows system:

OPENSEQ "C:\myfiles\testl" TO mytest
IF STATUS()=0
THEN
WRITEBLK "John Doe" TO mytest
WEOFSEQ mytest
CLOSESEQ mytest
END
ELSE
PRINT "File open failed"
END

The following example creates a new sequential file and writes a block of data to it. The CREATE statement is mandatory
with WRITEBLK:

OPENSEQ "'C:\myfiles\testl" TO mytest
CREATE mytest

WRITEBLK **John Doe™ TO mytest
WEOFSEQ mytest

CLOSESEQ mytest

See Also

e« OPENSEQ statement
» CREATE statement

* READBLK statement
« WRITESEQ statement
« WEOFSEQ statement
e CLOSESEQ statement
» SEEK statement

» STATUS statement

» STATUS function

Caché MultiValue Basic Reference 219

Caché MultiValue Basic Commands

WRITELIST

Saves a select list.

WRITELIST dynarray ON listname [SETTING var]
WRITELIST dynarray TO listname [SETTING var]

Arguments
dynarray A select list supplied by the SELECT statement. A dynamic array of elements
separated by field mark delimiters.
listhame A name assigned to the saved select list.
SETTING var Optional — a local variable used to receive a numeric error code if the operation
fails.
Description

The WRITELIST statement saves a select list. Once you have saved a select list, you can use GETLIST to activate the
saved select list so that it can be read by READNEXT.

The listname select list is saved in the &SAVEDLISTS& file. Caché stores this file using the ~SAVEDLISTS global.

You can use either the ON or TO keyword. The ON keyword is preferred; the TO keyword is provided for jJBASE compat-
ibility.

The optional SETTING clause is executed if the WRITELIST operation fails and an error code is generated. The var
variable is set to this numeric error code. The SETTING clause is provided for JBASE compatibility.

Emulation

In jBASE emulation, if listhame is 0 or """, WRITELIST creates a new select list 0, saves to select list 0, and makes this
select list active. Caché and other emulations create select list 0 and save to select list 0, but do not retain it as an active
select list.

See Also

e DELETELIST statement
e SELECT statement

220 Caché MultiValue Basic Reference

WRITESEQ, WRITESEQF

WRITESEQ, WRITESEQF

Writes a line of data to a sequential file.

WRITESEQ data ON filevar [ON ERROR statements] [THEN statements] [ELSE statements]
WRITESEQ data TO filevar [ON ERROR statements] [THEN statements] [ELSE statements]

WRITESEQF data ON filevar [ON ERROR statements] [THEN statements] [ELSE statements]
WRITESEQF data TO filevar [ON ERROR statements] [THEN statements] [ELSE statements]

Arguments
data Data to write to the sequential file. Can be an expression or variable that
resolves to a literal value.
filevar A file variable name used to refer to the file in Caché MVBasic. This filevar
is obtained from OPENSEQ. The ON and TO keywords are equivalent.
Description

The WRITESEQ statement is used to write a line of data to a file that has been opened for sequential access using
OPENSEQ. You supply this data using the data variable. WRITESEQ appends the two newline characters (carriage return
& linefeed) to the data, defining it as a line of data.

By default, WRITESEQ begins writing at the beginning of the file, overwriting any existing file data.

WRITESEQ increments a pointer to the end of the data it has just written (plus the two newline characters), so that repeated
invocations of WRITESEQ write sequential lines of data to the file. The same file pointer is used by WRITESEQ and
READSEQ.

You can determine the current position of this pointer using the STATUS statement. You can reposition this pointer using
the SEEK statement.

To write an end-of-file, use the WEOFSEQ statement.

You can optionally specify an ON ERROR clause, which is executed when the operation fails and generates an error code.
For example, specifying an invalid filevar, or attempting to write to a read-only file. If you do not specify an ON ERROR
clause, the ELSE clause is taken for an error code condition, as well as for an unsuccessful write.

You can optionally specify a THEN clause, an ELSE clause, or both a THEN and an ELSE clause. If the file write is suc-
cessful, the THEN clause is executed. If file write does not complete successfully, the ELSE clause is executed.

You can use the STATUS function to determine the status of the write operation, as follows: 0=sequential write successful;
-1=write failed because file not open (or opened by another process).

/O Buffering

By default, WRITESEQ operations are written to an 1/O buffer. This buffer is automatically assigned as part of the
OPENSEQ operation. 1/0O buffering significantly improves overall performance, but means that write operations are not
immediately applied to the sequential file.

WRITESEQF is identical to WRITESEQ, except that it does not use 1/0 buffering. WRITESEQF is useful for logging
operations which must be immediately written to disk. However, because writing directly to a sequential file can significantly
effect performance, WRITESEQF is not recommended for most data update operations.

Caché MVBasic provides two statements that override WRITESEQ /0 buffering. The FLUSH statement immediately
writes the current contents of the 1/O buffer to the sequential file. The NOBUF statement disables the 1/0 buffer for the
duration of the sequential file open. That is, all subsequent WRITESEQ operations are immediately executed on the
sequential file, exactly as if they were WRITESEQF operations.

Caché MultiValue Basic Reference 221

Caché MultiValue Basic Commands

New Sequential File

If you are creating a new file, issue an OPENSEQ and then issue a WRITESEQ. Issuing a CREATE is optional; the first
WRITESEQ creates the file.

WRITESEQ and WRITEBLK

The WRITEBLK command writes a string of data to a sequential file. This string can be of any length, and may have no
relationship to a record within the file. The WRITESEQ command writes a single line of data (a data record) to a
sequential file, ending the write by appending two newline characters (carriage return & linefeed) to the data.

Issuing a WRITESEQ creates a new file, if the file specified in OPENSEQ does not exist. Issuing a WRITEBLK does
not create a new file.

Examples

The following example writes a line of data to an existing sequential file on a Windows system:

OPENSEQ "C:\myfiles\testl" TO mytest
IF STATUS()=0
THEN
WRITESEQ "John Doe™ TO mytest
WEOFSEQ mytest
CLOSESEQ mytest
END
ELSE
PRINT "File open failed"”
END

See Also

 OPENSEQ statement

« READSEQ statement
* WRITEBLK statement
e WEOFSEQ statement
e CLOSESEQ statement
* FLUSH statement

* NOBUF statement

» SEEK statement

» STATUS statement

* STATUS function

222 Caché MultiValue Basic Reference

$XECUTE

$XECUTE

Executes an ObjectScript command.

$XECUTE expression

Arguments
expression An expression that evaluates to one or more valid ObjectScript commands, specified
as a quoted string. The expression string delimiter character cannot be used within
expression. For example, if the expression string contains double quotation marks
(delimiting an ObjectScript string literal), you must enclose expression with either
single quote marks (') or backslash (\) characters.
Description

$XECUTE is used to invoke an ObjectScript command from within Caché MVBasic. $XECUTE executes ObjectScript
commands that result from the process of expression evaluation of the specified argument. Each $XECUTE argument
must evaluate to a string containing ObjectScript commands. The string must not contain a tab character at the beginning
or a <Return> at the end. The string must be no longer than a valid ObjectScript program line.

In effect, the $XECUTE argument is like calling a one-line subroutine. It is terminated when the end of the argument is
reached or an ObjectScript QUIT command is encountered. After Caché executes the argument, it returns control to the
point immediately after the $XECUTE argument.

Each invocation of $XECUTE places a new context frame on the call stack for your process. The ObjectScript $STACK
special variable contains the current number of context frames on the call stack.

Local Variables

Variables in MVBasic are local, private variables. They are hidden from the ObjectScript code being executed by a
$XECUTE statement. Therefore, $XECUTE can only be used for ObjectScript code that does not access MV Basic variables
or expressions containing MVBasic variables.

If you wish to execute ObjectScript that uses MVBasic variables, your MVBasic code must pass those variables as actual
parameters to an external ObjectScript routine.

Invoking Other Command Shells

You can use the EXECUTE, PERFORM, and CHAIN commands to issue MultiValue commands from within Caché
MVBasic.

You can use the PCPERFORM command to issue an operating system command from within Caché MVBasic.
Examples
The following example executes the subroutine that is the value of CosSub.

CosSub="WRITE ! FOR I=1:1:5 { WRITE ?1*5,1+1 }"
$XECUTE CosSub

Returns:

23456

Caché MultiValue Basic Reference 223

Caché MultiValue Basic Commands

Notes
$XECUTE and Objects

You can use $XECUTE to call object methods and properties and execute the returned value, as shown in the following
examples:

$XECUTE patient.Name
$XECUTE "WRITE patient.Name"

$XECUTE and FOR

If the $XECUTE argument contains an ObjectScript FOR command, the scope of the FOR is the remainder of the argument.
When the outermost FOR in an $XECUTE argument is terminated, the $XECUTE argument is also terminated.

$XECUTE and DO

If the $XECUTE argument contains an ObjectScript DO command, Caché executes the routine or routines specified in
the DO argument or arguments. When it encounters a QUIT, it returns control to the point immediately following the DO
argument.

For example, in the following commands, Caché executes the routine ROUT and returns to the point immediately following
the DO argument to write the string “DONE”.

$XECUTE "DO ~ROUT WRITE !,"DONE""

$XECUTE and GOTO

A ObjectScript command specified in $XECUTE cannot specify an ObjectScript label. An ObjectScript command specified
in $XECUTE cannot access an MVBasic label. Therefore the use of GOTO within $XECUTE is not supported.

$XECUTE and QUIT
There is an implied QUIT at the end of each $XECUTE argument.

Nested Invocation of $XECUTE

Caché supports the use of the ObjectScript XECUTE command within the $XECUTE argument. However, you should
use nested invocation of $XECUTE with caution because it can be difficult to determine the exact flow of processing at
execution time.

Execution Time for Commands Called by $XECUTE

The execution time for code called within $XECUTE can be slower than the execution time for the same code encountered
in the body of a routine. This is because Caché compiles source code that is specified with the $XECUTE command or
that is contained in a referenced global variable each time it processes the $XECUTE.

See Also

* CHAIN statement
 EXECUTE statement
* PERFORM statement

e PCPERFORM statement
* ObjectScript XECUTE command

224 Caché MultiValue Basic Reference

Caché MultivValue Basic Functions

Caché MultiValue Basic Reference 225

Caché MultiValue Basic Functions

@ (at sign)

Sets screen cursor position or screen display option.

exL.yD
@(code[,argl)
Arguments
X An expression that resolves to a positive integer specifying the number of columns to
indent the horizontal position of the screen cursor. 0=column 1 (no indent), 1=indent 1
column.
y Optional — An expression that resolves to a positive integer specifying the vertical line
position of the screen cursor. O=top of screen. If omitted, defaults to the current line.
code An expression that resolves to a negative integer specifying a screen display option
code.
arg Optional — An expression that resolves to an integer argument required by certain code
values.
Description

The @ function has two forms. If the first argument is a positive integer or zero, it sets the cursor position. If the first
argument is a negative integer, it sets a screen display option.

Cursor Positioning

The @ function (with a positive first argument) changes the horizontal and/or vertical position of the screen cursor. To
change only the horizontal position, specify @(x). To change only the vertical position, specify @(0,y).

The @ function does not change the ObjectScript $X and $Y special variables.
Screen Display Options

The @ function (with a negative first argument) changes a screen display option. The following code options are supported:

-1 Clear screen and position cursor at home location (top left). For wyse terminals, -1 clears the
screen, except for protected fields.

-2 Position cursor at home location (top left).

-3 Clear the screen from the current cursor position to the end of the screen.

-4 Clear the screen from the current cursor position to the end of the line.

-5 Start blinking text.

-6 Stop blinking text.

-7 Start protected field. (See -62)

-8 End protected field. (See -62)

-9 Back space. You can supply an optional 2nd argument specifying the number of backspaces

to perform. The default is 1 backspace.

226 Caché MultiValue Basic Reference

@ (at sign)

-10

-13
-14
-15
-16
-17

-18
-20
-21

-24
-29
-30

-32
-34

Back line. Moves up a line without resetting cursor column. You can supply an optional 2nd
argument specifying the number of lines to go back. The default is to go back one line (go to
the previous line).

Start reverse video. This displays white characters on a black background.
Stop reverse video.

Start underlining.

Stop underlining.

Insert line. Moves up a line and resets cursor to column 1. You can supply an optional 2nd
argument specifying the number of lines to insert.

Delete line. Resets cursor to column 1.

Set insert (overtype) mode.

Reset insert mode to normal mode (the default).

Disable keyboard input and screen display.

Reenable keyboard input and screen display (the default).
Use 80-column line width (the default).

Use 132—column line width.

Turn off blinking cursor position indicator.

Turn on blinking cursor position indicator (the default).

Move cursor forward (insert blank space). You can supply an optional 2nd argument specifying
the number of spaces to advance the cursor. 0 or 1 both advance the cursor 1 space. The
default is to advance the cursor 1 space.

Set foreground (text) color. You can supply an optional 2nd argument specifying the color,
as follows: O=black, 1=red, 2=green, 3=yellow, 4=blue, 5=magenta, 6=turquoise, 7=white,
8=no change, 9=black. Higher numbers have no effect. The default is red. The blinking cursor
remains black.

Set background color. You can supply an optional 2nd argument specifying the color, as
follows: O=black, 1=red, 2=green, 3=yellow, 4=blue, 5=magenta, 6=turquoise, 7=white, 8=no
change, 9=white. Higher numbers have no effect. The default is red. The blinking cursor
changes to a contrast color to the background color.

Disable keyboard input.
Reenable keyboard input (the default).

Move cursor up (reverse line feed). You can supply an optional 2nd argument specifying the
number of lines to move up. The default is 1.

Enables arrow keys / numeric keypad (the default). Arrow keys can be used to move the
cursor left and right within the command line, or to retrieve previous command lines.

Disables arrow keys / numeric keypad. All arrow keys are equivalent to the Enter key.
Start bold text.
Stop bold text.

Enable protected fields (see -7 and -8).

Caché MultiValue Basic Reference 227

Caché MultiValue Basic Functions

-63 Disable protected fields (see -7 and -8).
-108 Sounds the bell.
Emulation

In D3 emulation, @(-11) enables protected fields and @(-12) disables protected fields. D3 also supports @(-57) through
@(-64).

In jBASE and Reality emulation, @(-128) through @(-191) are supported. Start blinking text with -131, -138, -139, -142,
or -143. Start reverse text with -140 or -141. Start underline text with -144, -145, -152, or -153. Start bold text with -160
or -161. Start blink/underline with -146, -147, -150, -151, -154, -155, -158, or -159. Start reverse/underline with -148, -149,
-156, or -157. Start blink/bold with -162, -163, or -166. You can use -137 to turn off any combination of bold, blinking,
reverse, or underline text.

In MVBase emulation, @(-57) through @(-64) are used for dimmed foreground colors.

In Ultimate emulation, @(-1) Clear screen; @(-2) Cursor home; @(-3) Clear to end of screen; @(-4) Clear to end of line;
@(-5) Blink on; @(-6) Blink off; @(-7) Protected field on; @(-8) Protected field off; @(-9) Cursor left; @(-10) Cursor up;
@(-11) Cursor down; @(-12) Cursor right; @(-13) Printer on; @(-14) Printer off; @(-15) Printer on (enable slave port in
transparent mode); @(-16) Printer on (initiate slave local print); @(-17) Underline on; @(-18) Underline off; @(-19)
Reverse on; @(-20) Reverse off; @(-21) Delete line; @(-22) Insert line; @(-23) Scroll up; @(-24) Bold on; @(-25) Bold
off; @(-26) Delete character; @(-27) Insert character; @(-28) Insert on; @(-29) Insert off; @(-33) 80 column screen; @(-
34) 132 column screen; @(-50) Graphics on; @(-51) Graphics off; @(-52) Blink on; @(-53) Blink off; @(-54) Reverse
on; @(-55) Reverse off; @(-58) Underline on; @(-59) Underline off; @(-66) Dim (half intensity) on; @(-67) Dim (half
intensity) off; @(-80) Set 80 column mode; @(-82) Set 132 column mode; @(-108) sounds the bell.

In UniData emulation, @(-19) sounds the bell.

228 Caché MultiValue Basic Reference

ABS

ABS

Returns the absolute value of a number.

ABS(number)

Arguments

number An expression that resolves to a number or a numeric string.

Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1. ABS returns
a number in canonical form; it removes plus and minus signs and leading and trailing zeros from number. A string is parsed
as a number until a non-numeric character is encountered. Thus “7dwarves” is parsed as 7. If number is the empty string
(™" or a non-numeric value, ABS returns 0 (zero).

The ABS function gives the absolute value of a number: all numbers become positive. The NEG function inverts the sign
of a number: negative numbers become positive and positive numbers become negative.

Examples

The following example uses the ABS function to compute the absolute value of a number:

PRINT ABS(0050.300); ! Returns 50.3
PRINT ABS(-50.3); ! Returns 50.3
PRINT ABS(+50.3); ! Returns 50.3
PRINT ABS(0); I Returns 0O
PRINT ABS(-0); I Returns O

See Also

* ABSS function
* NEG function

Caché MultiValue Basic Reference 229

Caché MultiValue Basic Functions

ABSS

Returns the absolute value of each element in a dynamic array.

ABSS(dynarray)

Arguments

dynarray An expression that resolves to a dynamic array containing numeric elements.

Description

The ABSS function returns a dynamic array containing the absolute value of each numeric element of dynarray. The
absolute value of a number is its unsigned magnitude. ABSS returns numbers in canonical form; it removes signs, and
leading and trailing zeros from the element values. If a dynarray element is a missing element, an empty string, or a non-
numeric value, ABSS returns a value of 0 (zero) for that element.

Examples

The following example uses the ABSS function to return the absolute value of each of the numbers in a dynamic array:

a = 11:0VM:-22:@VM:-33:0VM:44
PRINT a; I returns 1ly-22y-33y44
PRINT ABSS(a); 1 returns 11y22y33y44

The following example uses the ABSS function with a dynamic array that has missing and non-numeric elements:

b = -11:@QVM:""":@VM:"-7dwarves' :@VM:@VM: ""dwarves""
PRINT ABSS(b); 1 returns 11y0y7y0y0

See Also

e ABS function
 NEGS function

e Dynamic Arrays

230 Caché MultiValue Basic Reference

ACCESS

ACCESS

Returns information about the current MultiValue file called from a dictionary.

ACCESS(code)
Arguments
code A literal integer value in the range 1 through 11 (inclusive). You cannot specify code as
an expression. A code value containing a fractional portion is truncated to an integer. A
code value outside of the range 1 through 11 generates a syntax error.
Description

The ACCESS function returns information about the current Item being processed in CMQL when the routine is called
from a DICTIONARY CALL conversion code. The called routine is called for every value in the DICT item attributes. If
specified in DICT item attribute 7, the routine is also called each time a break-on occurs.

The information returned by ACCESS depends on the value of code. The following code values are supported:

1 The filevar for the data portion of the file. A filevar is assigned by the OPEN statement.

2 The filevar for the dictionary portion of the file. A dictionary filevar is assigned by the OPEN
statement using the DICT keyword.

3 A dynamic array containing the current item from the file.

4 Counter of the number of items processed. Defaults to O.

5 The attribute number specified in attribute 2 of the DICT item that is calling the current

routine. Defaults to 0.

6 The current value number being processed. (1 is returned for single valued attributes.)
Defaults to 0.

7 The current subvalue number being processed. (1 is returned if there are no subvalues.)
Defaults to 0.

8 Number of detail lines processed since the last break. (This code is only valid if the DICT
item attribute 7 is specified.) Defaults to 0.

9 The current break level. Set to 0 when processing a detail line. (This code is only valid if
the DICT item attribute 7 is specified.) Defaults to 0.

10 Item ID.

11 File name.

ACCESS is provided for compatibility with the D3 (PICK) implementation of MultiValue Basic.

See Also

* OPEN statement

» STATUS statement
e FILEINFO function
* STATUS function

Caché MultiValue Basic Reference 231

Caché MultiValue Basic Functions

ACOS

Returns the arc-cosine of an angle.

ACOS(nhumber)

Arguments

number

Description

The ACOS function returns the trigonometric arc-cosine of number. An arc-cosine is the inverse of a cosine.

An expression that resolves to a number in the range -1 to 1 (inclusive). Values outside
of this range generate an <ILLEGAL VALUE> error.

By default, Caché MVBasic trig functions return results in degrees. To return results in radians, set SOPTIONS RADIANS.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples

The following example uses the ACOS function to return the arc-cosine of an angle:

PRINT ACOS(-0.5):" in degrees"

PRINT ACOS(-0.5)*(3.1415/180)):"

See Also

ATAN function

COS function

SIN function

TAN function

Derived Math Functions

ObjectScript: $ZARCCOS function

in radians"

232

Caché MultiValue Basic Reference

ADDS

ADDS

Adds the values of corresponding elements in two dynamic arrays.

ADDS(dynarrayl,dynarray?2)

Arguments

dynarray An expression that resolves to a dynamic array of numeric values.

Description

The ADDS function adds the value of each element in dynarrayl to the corresponding element in dynarray?2. It then returns
a dynamic array containing the results of these additions. If a dynarray element value is a null string, missing, or a non-
numeric value, ADDS parses its value as 0 (zero).

If the two dynamic arrays have different numbers of elements, the returned dynamic array has the number of elements of
the longer dynamic array. By default, the shorter dynamic array is padded with 0 value elements for the purpose of the
arithmetic operation. You can also use the REUSE function to define behavior when specifying two dynamic arrays with
different numbers of elements.

You can use the NUMS function to determine if the elements in a dynamic array are numeric. You can use the SUBS
(subtraction), MULS (multiplication), DIVS or DIVSZ (division), MODS (modulo division), and PWRS (exponentiation)
functions to perform other arithmetic operations on the corresponding elements of two dynamic arrays.

To add together the element values within a single dynamic array, use either the SUM function (for single-level dynamic
arrays) or the SUMMATION function (for multi-level dynamic arrays),

Examples

The following example uses the ADDS function to add the elements of two dynamic arrays:

a=11:@VM:22:@VM:33:@VM:44
b=10:@VM:9:@VM:8:@VM:7

PRINT a; ! returns 11ly22y33y44
PRINT ADDS(a,b); ! returns 21y31y41y51

See Also

» CATS function

+ DIVS function

* DIVSZ function

* MODS function

* MULS function

* PWRS function

* SUM function

* SUMMATION function
» SUBS function

e Dynamic Arrays

Caché MultiValue Basic Reference 233

Caché MultiValue Basic Functions

ALPHA

Determines if a string is alphabetic or not.

ALPHA(string)

Arguments

string An expression that resolves to a string.

Description

If string consists entirely of alphabetic characters, ALPHA returns 1. Otherwise, ALPHA returns 0. Note that blank spaces
are non-alphabetic characters. Dynamic array separator characters are considered to be alphabetic characters. On a Unicode
system ALPHA recognizes Unicode letters as alphabetic characters.

Examples

The following example uses the ALPHA function to determine if a string consists of only alphabetic characters:

PRINT ALPHA('‘abcdefg™);
PRINT ALPHA("'AbCdEFG™);
PRINT ALPHA("my string™);
PRINT ALPHA("half-wit™);
PRINT ALPHA("™");

1
1
1
1
1
PRINT ALPHA(123); 1

See Also
« NUM function

Returns
Returns
Returns
Returns
Returns
Returns

OQOOOREk

(
(

space not allowed)
hyphen not allowed)

234

Caché MultiValue Basic Reference

ANDS

ANDS

Returns the logical AND of corresponding elements of two dynamic arrays.

ANDS(dynarrayl,dynarray?2)

Arguments

dynarray An expression that resolves to a dynamic array of boolean values.

Description

The ANDS function performs a logical AND test on the corresponding element values of dynarrayl and dynarray?2. If both
element values are non-zero numeric values, ANDS returns 1 for that element. Otherwise, ANDS returns 0. If a dynarray
element value is an empty string, a missing element, or a string containing any non-numeric character, ANDS parses its
value as 0.

A single leading plus or minus sign is parsed as a numeric character. Multiple leading plus and minus signs are treated as
numeric characters in a number, but not in a numeric string. A numeric string with multiple leading plus and minus signs
causes ANDS to treat the element value as non-numeric.

If the two dynamic arrays have different numbers of elements, the returned dynamic array has the number of elements of
the longer dynamic array. By default, the shorter dynamic array is padded with 0 value elements for the purpose of the
logical comparison. You can also use the REUSE function to define behavior when specifying two dynamic arrays with
different numbers of elements.

Caché MVBasic also supports the logical operators & and AND.

Examples

The following example uses the ANDS function to compare two dynamic arrays. It returns 1 when both element values
are non-zero:

a=1:@vVM:0:@VM:33:@VM:0
b=10:@VM:9:@VM:1:@VM:0
PRINT ANDS(a,b)

1 returns 1lyOylyO

The following example performs an AND test on two dynamic arrays of different lengths:

a=1:@VM:0:@VM:1:@VM:0
b=1:0VM:1:@VM:1:@VM:1:@VM:1:@VM:0
PRINT ANDS(a,b)

I returns 1lyOylyOyOyO

See Also

* ORS function

* NOTS function
* Dynamic Arrays

e Operators

Caché MultiValue Basic Reference 235

Caché MultiValue Basic Functions

ASCI

Converts a string from EBCDIC to ASCII.

ASCI1(string)

Arguments

string An expression that resolves to a string.

Description

The ASCII function takes a string of characters and returns the EBCDIC code representation for each character. If you
supply a string of EBCDIC code characters, ASCII returns the corresponding ASCII character(s). This is the inverse of
the EBCDIC function. The string cannot contain Unicode characters.

The CHAR function takes an ASCII code and returns the corresponding character. The SEQ function takes a character
and returns the corresponding ASCII code.

Examples

The following example uses the ASCI1 function to return the characters associated with the specified EBCDIC code string:

estring=EBCDIC("'ABCDEFG'")
astring=ASCIl1(estring)
PRINT astring

I returns "ABCDEFG"

The following example shows the use of the SEQ and CHAR functions with the ASCII function:

PRINT SEQ(EBCDIC('A™))
! returns 193

PRINT ASCI11(CHAR(193))
! returns A"

See Also

» EBCDIC function
* CHAR function

» SEQ function

e Strings

236 Caché MultiValue Basic Reference

ASIN

ASIN

Returns the arc-sine of an angle.

ASIN(number)
Arguments
number An expression that resolves to a number or numeric string in the range -1 to 1 (inclusive).
Values outside of this range generate an <ILLEGAL VALUE> error.
Description

The ASIN function returns the trigonometric arc-sine of number. An arc-sine is the inverse of a sine.
By default, Caché MVBasic trig functions return results in degrees. To return results in radians, set SOPTIONS RADIANS.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples

The following example uses the ASIN function to return the arc-sine of an angle:

PRINT ASIN(-0.5):" in radians"
PRINT ASIN(-0.5)*(180/ACOS(-1)):" in degrees"

See Also

» ATAN function

+ COS function

» SIN function

* TAN function

» Derived Math Functions

e ObjectScript: $ZARCSIN function

Caché MultiValue Basic Reference 237

Caché MultiValue Basic Functions

ASSIGNED

Determines if a variable is assigned.

ASSIGNED(var)

Arguments

var A user variable. If var is not a valid variable name, MVBasic issues a syntax error.

Description

The ASSIGNED function determines whether a user variable is assigned or not assigned. If var is assigned a value,
ASSIGNED returns 1. If var is not assigned a value, ASSIGNED returns 0. An assigned value can be a single value or a
dynamic array value. ASSIGNED also returns 1 if var is assigned the empty string ("), or is assigned an unassigned variable.

The input var can be a local variable, a global variable, or a process-private global variable. It can be with or without sub-
scripts.

Note: ASSIGNED should not be used on system variables (@ variables). It always returns O for all @ variables, whether
or not the @ variable currently has a value.

The UNASSIGNED function is the functional opposite of the ASSIGNED function.

The COMMON statement initializes variables as unassigned in Caché MVBasic. Array variable initialization varies with
different MultiValue emulations.

You can use the $KILL statement to unassign variables.

Examples

The following example tests the assignment of several variables. ASSIGNED returns 1 (assigned) for variables a through
f. ASSIGNED returns 0 (unassigned) for variable g.

a=123

b="fred"
c=1:@VM:2:@VM:3
prilierty

e=NULL

=g

PRINT ASSIGNED(a)
PRINT ASSIGNED(b)
PRINT ASSIGNED(c)
PRINT ASSIGNED(d)
PRINT ASSIGNED(e)
PRINT ASSIGNED(F)
PRINT ASSIGNED(g)

Note that variable f is considered assigned, even though it is assigned to an unassigned variable.

See Also

« COMMON statement

¢ $KILL statement

* UNASSIGNED function

238 Caché MultiValue Basic Reference

ATAN

ATAN

Returns the arctangent of a number.

ATAN(number)

Arguments

number An expression that resolves to a number or a numeric string.

Description

The ATAN function takes the ratio of two sides of a right triangle (number) and returns the corresponding angle. The ratio
is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

By default, Caché MVBasic trig functions return results in degrees. To return results in radians, set SOPTIONS RADIANS.
The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples

The following example returns the arctangents of the integers from -4 through 4:

FOR x = -4 TO 4
PRINT "Arctangent of ":x:" is ":ATAN(X)
NEXT

The following example uses ATAN to calculate the value of pi:

PRINT ATAN(1)*4; I Calculate the value of pi.

Notes

Arctangent (ATAN) is the inverse trigonometric function of tangent (TAN), which takes an angle as its argument and
returns the ratio of two sides of a right triangle. Do not confuse the arctangent with the cotangent; a cotangent is the simple
inverse of a tangent (1/tangent).

See Also

» COS function
» SIN function
» TAN function

e Derived Math Functions

» ObjectScript: $ZARCTAN function

Caché MultiValue Basic Reference 239

Caché MultiValue Basic Functions

BITAND

Returns the bitwise AND for two bit strings.

BITAND(bitstringl,bitstring2)

Arguments
bitstring A bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
Description

The BITAND function compares two bit strings bit-by-bit, and returns a bitstring that is the logical AND bitwise compar-
ison of the two strings. Both bitstring values are specified as positive integers. The returned value is also expressed as a
positive integer.

The following is the truth table for BITAND:

bitstringl = 0 bitstringl =1
bitstring2 = 0 0 0
bitstring2 =1 0 1

A bitstring can be expressed as either a number or as a string. A humber is converted to canonical form, with leading plus
signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-numeric string it is
assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered. Thus “7dwarves”
is parsed as 7.

Examples

The following example specifies a bitstringl of 14 (binary 1110), and a bitstring2 of 9 (binary 1001). Bitwise AND com-
parison results in the binary string 1000, the integer value of which is 8:

PRINT BITAND(14,9); ! Returns 8

The following example specifies a bitstringl of 14 (binary 1110), and a bitstring2 of 6 (binary 110). Bitwise AND compar-
ison results in the binary string 0110, the integer value of which is 6:

PRINT BITAND(14,6); ! Returns 6

The following example specifies a bitstring1 of 65 (binary 1000001), and a bitstring2 of 62 (binary 111110). Bitwise AND
comparison results in the binary string 0000000, the integer value of which is O:

PRINT BITAND(65,62); ! Returns O

The following example specifies two bitstrings with the same integer value. Bitwise AND comparison of a number with
itself always results in the number:

PRINT BITAND(64,64); ! Returns 64

See Also
e BITOR function

240 Caché MultiValue Basic Reference

BITAND

* BITXOR function

* BITNOT function

* BITSET function

* BITRESET function
* BITTEST function

Caché MultiValue Basic Reference 241

Caché MultiValue Basic Functions

BITNOT

Sets the specified bit in a bitstring to its opposite value.

BITNOT(bitstring,bitno)

Arguments
bitstring The bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
bitno The bit position in bitstring to set to its opposite value. An expression that resolves to
a positive integer. Bit positions are counted right to left, beginning with position 0. The
maximum bitno value is 62. A fractional bitno is truncated to its integer portion. A negative
bitno generates a <FUNCTION> error.
Description

The BITNOT function defines a bit string using bitstring and changes (flips) one bit of that bit string at the location spec-
ified by bitno. Both values are specified as positive integers. If the bit specified by bitno has a value of 0, BITNOT sets it
to 1. If the bit specified by bitno has a value of 1, BITNOT sets it to 0.

Both bitstring and bitno can be expressed as either numbers or as strings. These numbers are converted to canonical form,
with leading plus signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-
numeric string it is assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered.
Thus “7dwarves” is parsed as 7.

The BITNOT function always changes the specified bit. The BITSET function only sets the specified bit if its value is 0.
The BITRESET function only sets the specified bit if its value is 1.

Examples

The following example specifies a bitstring of 64 (binary 1000000), and bitno sets bit position 0 to its opposite. This results
in the binary string 1000001, the integer value of which is 65:

PRINT BITNOT(64,0); ! Returns 65

The following example specifies a bitstring of 64 (binary 1000000), and bitno sets bit position 4 to its opposite. This results
in the binary string 1010000, the integer value of which is 80:

PRINT BITNOT(64,4); ! Returns 80

The following example specifies a bitstring of 65 (binary 1000001), and bitno specifies setting bit position 0 to its opposite.
This results in the binary string 1000000, the integer value of which is 64:

PRINT BITNOT(65,0); ! Returns 64

The following example specifies a bitstring of 8 (binary 1000), and bitno specifies setting bit position 4 to its opposite. The
bitstring has an implicit bit position of 4 with a value of 0. Setting this bit to 1 returns the binary string 11000, the integer
value of which is 24:

PRINT BITNOT(8,4); ! Returns 24

242 Caché MultiValue Basic Reference

BITNOT

The following example specifies a bitstring of 1 (binary 1), and bitno sets bit position 0 to its opposite. This results in the
binary string 0, the integer value of which is 0:

PRINT BITNOT(1,0); ! Returns O

See Also

* BITSET function

* BITRESET function
e BITTEST function

Caché MultiValue Basic Reference 243

Caché MultiValue Basic Functions

BITOR

Returns the bitwise OR for two bit strings.

BITOR(bitstringl,bitstring2)

Arguments
bitstring A bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
Description

The BITOR function compares two bit strings bit-by-bit, and returns a bitstring that is the logical OR bitwise comparison
of the two strings. Both bitstring values are specified as positive integers. The returned value is also expressed as a positive
integer.

The following is the truth table for BITOR:

bitstringl = 0 bitstringl =1
bitstring2 = 0 0 1
bitstring2 =1 1 1

A bitstring can be expressed as either a number or as a string. A number are converted to canonical form, with leading plus
signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-numeric string it is
assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered. Thus “7dwarves”
is parsed as 7.

Examples

The following example specifies a bitstringl of 14 (binary 1110), and a bitstring2 of 9 (binary 1001). Bitwise OR compar-
ison results in the binary string 1111, the integer value of which is 15:

PRINT BITOR(14,9); ! Returns 15

The following example specifies a bitstring1 of 14 (binary 1110), and a bitstring2 of 6 (binary 110). Bitwise OR comparison
results in the binary string 1110, the integer value of which is 14:

PRINT BITOR(14,6); ! Returns 14

The following example specifies a bitstring1 of 65 (binary 1000001), and a bitstring2 of 62 (binary 111110). Bitwise OR
comparison results in the binary string 1111111, the integer value of which is 127:

PRINT BITOR(65,62); ! Returns 127

The following example specifies two bitstrings with the same integer value. Bitwise OR comparison of a number with itself
always results in the number:

PRINT BITOR(64,64); ! Returns 64

See Also
e BITAND function

244 Caché MultiValue Basic Reference

BITOR

* BITXOR function

* BITNOT function

* BITSET function

* BITRESET function
* BITTEST function

Caché MultiValue Basic Reference 245

Caché MultiValue Basic Functions

BITRESET

Sets the specified bit in a bitstring to 0.

BITRESET(bitstring,bitno)

Arguments
bitstring The bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
bitno The bit position in bitstring to set to 0. An expression that resolves to a positive integer.
Bit positions are counted right to left, beginning with position 0. The maximum bitno
value is 62. A fractional bitno is truncated to its integer portion. A negative bitno generates
a <FUNCTION> error.
Description

The BITRESET function defines a bit string using bitstring and resets to 0 one bit of that bit string at the location specified
by bitno. Both values are specified as positive integers. If the bit specified by bitno has a value of 1, BITRESET sets it to
0. If the bit specified by bitno already has a value of 0, BITRESET leaves it unchanged.

Both bitstring and bitno can be expressed as either numbers or as strings. These numbers are converted to canonical form,
with leading plus signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-
numeric string it is assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered.
Thus “7dwarves” is parsed as 7.

The BITRESET function sets a specified bit to 0. The BITSET function sets a specified bit to 1. The BITNOT function
sets a specified bit to its opposite value.

Examples

The following example specifies a bitstring of 65 (binary 1000001), and bitno resets bit position 0 to the bit value 0. This
results in the binary string 1000000, the integer value of which is 64:

PRINT BITRESET(65,0); ! Returns 64

The following example specifies a bitstring of 64 (binary 1000000), and bitno resets bit position 6 to the bit value 0. This
results in the binary string 0000000, the integer value of which is 0:

PRINT BITRESET(64,6); ! Returns O

The following example specifies a bitstring of 64 (binary 1000000), and bitno specifies resetting bit position 0 to the bit
value 0. But because bit position 0 already has a bit value of 0, the binary string 1000000 (integer value 64) is returned
unchanged:

PRINT BITRESET(64,0); ! Returns 64

The following example specifies a bitstring of 8 (binary 1000), and bitno specifies resetting bit position 4 to the bit value
0. The bitstring has an implicit bit position of 4, which already has a value of 0. Thus the original binary string 1000
(integer value 8) is returned unchanged:

PRINT BITRESET(8,4); ! Returns 8

246 Caché MultiValue Basic Reference

BITRESET

The following example specifies a bitstring of O (binary 0), and bitno sets bit position 0 to the bit value 0. This results in
the binary string 0, the integer value of which is 0:

PRINT BITRESET(0,0); ! Returns O

See Also

* BITSET function

* BITNOT function
e BITTEST function

Caché MultiValue Basic Reference 247

Caché MultiValue Basic Functions

BITSET

Sets the specified bit in a bitstring to 1.

BITSET(bitstring,bitno)

Arguments
bitstring The bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
bitno The bit position in bitstring to set to 1. An expression that resolves to a positive integer.
Bit positions are counted right to left, beginning with position 0. The maximum bitno
value is 62. A fractional bitno is truncated to its integer portion. A negative bitno generates
a <FUNCTION> error.
Description

The BITSET function sets a single bit of bitstring to 1 at the bit location specified by bitno. Both values are specified as
positive integers. bitno always sets the specified bit to 1. If the bit specified by bitno has a value of 0, BITSET sets it to 1.
If the bit specified by bitno already has a value of 1, BITSET sets it to 1 (leaves it unchanged).

Both bitstring and bitno can be expressed as either numbers or as strings. These numbers are converted to canonical form,
with leading plus signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-
numeric string it is assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered.
Thus “7dwarves” is parsed as 7.

If bitno is specified as a decimal fraction it is truncated to its integer component.

The BITSET function sets a specified bit to 1. The BITRESET function sets a specified bit to 0. The BITNOT function
sets a specified bit to its opposite value.

Examples

The following example specifies a bitstring of either 0 or 1. It then sets the bit position specified in bitno to bit value 1:

PRINT BITSET(0,0); ! Sets bit position 0 to
PRINT BITSET(0,1); ! Sets bit position 1 to
PRINT BITSET(1,0); ! Sets bit position 0 to
PRINT BITSET(1,1); ! Sets bit position 1 to

returns integer 1
returns integer 2
returns integer 1
returns integer 3

RPRRR
MM

The following example specifies a bitstring of 64 (binary 1000000), and bitno sets bit position 0 to the bit value 1. This
results in the binary string 1000001, the integer value of which is 65:

PRINT BITSET(64,0); ! Returns 65

The following example specifies a bitstring of 64 (binary 1000000), and bitno sets bit position 4 to the bit value 1. This
results in the binary string 1010000, the integer value of which is 80:

PRINT BITSET(64,4); ! Returns 80

The following example specifies a bitstring of 65 (binary 1000001), and bitno specifies setting bit position 0 to the bit value
1. But because bit position 0 already has a bit value of 1, the binary string 1000001 (integer value 65) is returned unchanged:

PRINT BITSET(65,0); ! Returns 65

248 Caché MultiValue Basic Reference

BITSET

The following example specifies a bitstring of 8 (binary 1000), and bitno specifies setting bit position 4 to the bit value 1.
The bitstring has an implicit bit position of 4 with a value of 0. Setting this bit to 1 returns the binary string 11000, the
integer value of which is 24:

PRINT BITSET(8,4); ! Returns 24
The following example specifies bitstring and bitno with null string values. The null string is parsed as O:

PRINT BITSET(""",1); 1 Returns 2; same as BITSET(0,1)
PRINT BITSET(1,""); I Returns 1; same as BITSET(1,0)
PRINT BITSET(","); ! Returns 1; same as BITSET(0,0)

See Also

* BITRESET function
* BITNOT function

* BITTEST function

Caché MultiValue Basic Reference 249

Caché MultiValue Basic Functions

BITTEST

Tests the value of the specified bit in a bitstring.

BITTEST(bitstring,bitno)

Arguments
bitstring The bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
bitno The bit position in bitstring to return the value of. An expression that resolves to a positive
integer. Bit positions are counted right to left, beginning with position 0. The maximum
bitno value is 62. A fractional bitno is truncated to its integer portion. A negative bitno
generates a <FUNCTION> error.
Description

The BITTEST function defines a bit string using bitstring and tests the value of one bit of that bit string at the location
specified by bitno. If the bit specified by bitno has a value of 0, BITTEST returns 0. If the bit specified by bitno has a value
of 1, BITTEST returns 1.

Both bitstring and bitno are specified as positive integers. These arguments can be expressed as either numbers or as strings.
Numbers are converted to canonical form, with leading plus signs and leading and trailing zeros omitted. If either argument
evaluates to the null string or a non-numeric string it is assumed to have a value of 0. A string is parsed as a number until
a non-numeric character is encountered. Thus “7dwarves” is parsed as 7.

You can use the BITSET function to set individual bits.

Examples

The following examples specify a bitstring of 14 (binary 1110), and use bitno to specify each bit in turn, returning the value
of the bit:

x = BITSET(14,3); ! Returns 14
PRINT BITTEST(%,0); 1 Returns 0
PRINT BITTEST(X,1); I Returns 1
PRINT BITTEST(X,2); I Returns 1
PRINT BITTEST(X,3); 1 Returns 1

The following example specifies a bitstring of 8 (binary 1000), and bitno specifies bit position 4. The bitstring has an
implicit bit position of 4 with a value of 0.

PRINT BITTEST(8,4); ! Returns O

See Also

e BITRESET function
e BITSET function

250 Caché MultiValue Basic Reference

BITXOR

BITXOR

Returns the bitwise XOR for two bit strings.

BITXOR(bitstringl,bitstring2)

Arguments
bitstring A bit string, specified as an expression that resolves to a positive integer. For example,
the integer 64 specifies the bitstring 1000000. The maximum bitstring value is
9223372036854775807.
Description

The BITXOR function compares two bit strings bit-by-bit, and returns a bitstring that is the logical exclusive or (XOR)
bitwise comparison of the two strings. Both bitstring values are specified as positive integers. The returned value is also
expressed as a positive integer.

The following is the truth table for BITXOR:

bitstringl = 0 bitstringl =1
bitstring2 = 0 0 1
bitstring2 =1 1 0

A bitstring can be expressed as either a number or as a string. A number are converted to canonical form, with leading plus
signs and leading and trailing zeros omitted. If either argument evaluates to the null string or a non-numeric string it is
assumed to have a value of 0. A string is parsed as a number until a non-numeric character is encountered. Thus “7dwarves”
is parsed as 7.

Examples

The following example specifies a bitstringl of 14 (binary 1110), and a bitstring2 of 9 (binary 1001). Bitwise XOR com-
parison results in the binary string 0111, the integer value of which is 7:

PRINT BITXOR(14,9); ! Returns 7

The following example specifies a bitstringl of 14 (binary 1110), and a bitstring2 of 6 (binary 110). Bitwise XOR compar-
ison results in the binary string 1000, the integer value of which is 8:

PRINT BITXOR(14,6); ! Returns 8

The following example specifies a bitstring1 of 65 (binary 1000001), and a bitstring2 of 62 (binary 111110). Bitwise XOR
comparison results in the binary string 1111111, the integer value of which is 127:

PRINT BITXOR(65,62); ! Returns 127

The following example specifies two bitstrings with the same integer value. Bitwise XOR comparison of a number with
itself always results in 0:

PRINT BITXOR(64,64); ! Returns O

See Also
e BITAND function

Caché MultiValue Basic Reference 251

Caché MultiValue Basic Functions

* BITOR function

* BITNOT function

* BITSET function

* BITRESET function
* BITTEST function

252

Caché MultiValue Basic Reference

BYTE

BYTE

Returns the character corresponding to the specified character code.

BYTE(charcode)

Arguments

charcode An expression that resolves to an integer code that identifies a character. For 8-bit
characters, the value in charcode must evaluate to a positive integer in the range 0 to
255. For 16-hit characters, specify integers in the range 256 through 65534.

Description

The BYTE function takes a character code and returns the corresponding character. The SEQ function takes a character
and returns the corresponding ASCII character code. The charcode must be a positive, base-10 integer. A fractional number
is truncated to its integer portion. A negative number, empty string, or non-numeric value returns the empty string.

Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes. For example, BYTE(10) returns a linefeed
character.

Note: BYTE, CHAR, and UNICHAR are functionally identical. On Unicode systems both can be used to return 16-
bit Unicode characters. On 8-bit systems, these functions return a null string for character codes beyond 255.

The Caché MVBasic BYTE function returns a single character. The corresponding ObjectScript SCHAR function can
return a string of multiple characters by specifying a comma-separated list of ASCII codes. The Caché MVBasic CHARS
function takes a dynamic array of ASCII codes and returns the corresponding single characters as a dynamic array.

Examples

The following example uses the BYTE function to return the character associated with the specified character code:

PRINT BYTE(65); 1 Returns A.
PRINT BYTE(97); I Returns a.
PRINT BYTE(37); I Returns %.
PRINT BYTE(62); 1 Returns >.

The following example uses the BYTE function to return the lowercase letter characters of the Russian alphabet on a
Unicode version of Caché. On an 8-bit version of Caché it returns a null string for each letter:

letter=1072
FOR x=1 TO 32
PRINT BYTE(letter)
letter=letter+1
NEXT

See Also

* CHAR function

* UNICHAR function

* CHARS function

e SEQ function

» ObjectScript: $CHAR function

Caché MultiValue Basic Reference 253

Caché MultiValue Basic Functions

BYTELEN

Returns the number of bytes in a string.

BYTELEN(string)

Arguments

string An expression that resolves to a string or number.

Description

The BYTELEN function returns the number of bytes in a specified string. BY TELEN counts bytes. Therefore, on a Unicode
implementation of Caché each character is counted as 2 bytes; a Unicode instance of Caché counts two bytes per character
even when string contain no Unicode characters. Use the LEN function to count characters, rather than bytes.

For numerics, prior to determining the length MVBasic performs all arithmetic operations and converts numbers to
canonical form, with leading and trailing zeroes, a trailing decimal point, and all signs removed except a single minus sign.
Note that BY TELEN does count the decimal point and the minus sign. Numeric strings are not converted to canonical
form. An empty string (") returns a length of 0.

Examples

The following example uses the BY TELEN function to return the number of bytes in a string on a Unicode system:
PRINT BYTELEN("InterSystems'); Returns 24

PRINT BYTELEN(+0099.900); Returns 8

PRINT BYTELEN(CHAR(960)); Returns 2

!
!
PRINT BYTELEN(''0099.900™); I Returns 16
!
PRINT BYTELEN(""); I Returns O

See Also

e COUNT function
e LEN function

254 Caché MultiValue Basic Reference

CALCULATE

CALCULATE

Returns the results of an I-type calculation.

CALCULATE(ITypeDictltem)

Arguments

ITypeDictltem A valid virtual attribute. Must be a compiled I-type in the dictionary opened as @DICT.

Description

The CALCULATE function evaluates an itype expression defined in a dictionary item against data in an MVBasic program
and returns the result.

CALCULATE reads the dictionary item ITypeDictltem from the file opened to the @DICT variable. It then evaluates the
itype expression defined in attribute 2 of the dictionary item, using the data in @ID and @RECORD. Calculate also sets
the @CONV, @FORMAT, and @HEADER system variables to attributes 3, 5, and 4 of the dictionary item respectively.
These can be used with the OCONV and FMT functions to format the results of CALCULATE.

Before using CALCULATE you must open afile to the @DICT system variable, and assign values to @1D and @RECORD.
If the itype expression uses other @variables (for example @FILE.NAME) then these need to be set as well.

CALCULATE and ITYPE Compared
The CALCULATE function is similar to the ITYPE function:

» The ITYPE function argument is a variable into which a dictionary item has already been read, or an itype expression
assigned. The ITYPE function allows on-the-fly creation of itype expressions

e The CALCULATE function argument must be the name of an existing dictionary item which will be read by the
function.

Example

The following example opens the Myfile file to the item variable, and the Myfile dictionary to the @DICT special variable.
It then reads through the item variable by @ID, and uses CALCULATE to calculate a total of the records in item.
CALCULATE also sets values for the @CONV and @FORMAT system variables used by the OCONV and FMT functions.

OPEN “Myfile® TO item ELSE STOP 201, "*MyFile*
OPEN "DICT","Myfile® TO @DICT ELSE STOP 201, "DICT MyFile*
SELECT item TO O
LOOP WHILE READNEXT @ID FROM O
DO
READ @RECORD FROM item,@ID
total += CALCULATE(amt_due)
REPEAT
convtotal = OCONV(total,@CONV)
fmttotal = FMT(convtotal,@FORMAT)
PRINT fmttotal
END

See Also

e System Variables

Caché MultiValue Basic Reference 255

Caché MultiValue Basic Functions

CATS

Concatenates the values of corresponding elements in two dynamic arrays.

CATS(dynarrayl,dynarray2)

Arguments

dynarray An expression that resolves to a dynamic array.

Description

The CATS function concatenates the value of each element in dynarrayl to the corresponding element in dynarray?2. It
then returns a dynamic array containing the results of these concatenations. If a dynamic array element contains an empty
string or an element is missing, no concatenation is performed for that element, and the element value from the other
dynamic array is returned.

For two elements to be concatenated, they must be on the same dynamic array level. For example, you cannot concatenate
a value mark (@VM) dynamic array element to a subvalue mark (@SM) dynamic array element.

Caché MVBasic converts numbers to canonical form (resolving signs, removing leading and trailing zeros, removing a
leading plus sign, removing a trailing decimal point) before concatenating. Caché MVBasic does not convert numeric
strings to canonical form before concatenating.

If the two dynamic arrays have different numbers of elements, the returned dynamic array has the number of elements of
the longer dynamic array. By default, the shorter dynamic array is padded with null string (") value elements for the purpose
of the concatenation operation. You can use the REUSE function to concatenate a default value (instead of the null string)
when the dynamic arrays differ in length.

You can use the REUSE function with CATS to concatenate the same value to all of the elements of a dynamic array. You
can use the SPLICE function to concatenate the elements of two dynamic arrays, supplying a separator character (or string
of characters) that is inserted between the components of each element.

Examples

The following example uses the CATS function to concatenate the elements of two dynamic arrays:

ucase="A":@VM:"B":@VM:"C":@VM:"'D"
Icase=""aa":@VM:"bb" :@VM:""cc' :@VM:"'dd"
PRINT CATS(ucase, Icase)

! returns AaayBbbyCccyDdd

The following example concatenates two dynamic arrays of different lengths containing empty strings and missing elements:

ucase="A":@VM:""":@VM:@VM:"'D"
Icase=""aa"" :@VM:@VM:""cc":@VM:""dd" :@VM: """ - @VM: ""FF""
PRINT CATS(ucase, Icase)

1 returns AaayyccyDddyyff

See Also

* REUSE function
e SPLICE function

e Dynamic Arrays

256 Caché MultiValue Basic Reference

CHANGE

CHANGE

Replaces a substring in a string.

CHANGE(string,subout,subin[,occurrences[,begin]])

Arguments

string

subout

subin

occurrences

begin

Description

The string in which substring substitutions are made. An expression that resolves to a
string or numeric. string may be a dynamic array.

The substring to be replaced. An expression that resolves to a string or numeric.

The substring to be inserted in place of subout. An expression that resolves to a string
or numeric.

Optional — The number of occurrences of subout to replace with subin. An expression
that resolves to a positive integer. If omitted, all occurrences are replaced. If used with
begin, you can specify an occurrences value of -1 indicating that all occurrences of
subout from the begin point to the end of the string are to be replaced.

Optional — Which occurrence of subout to begin replacement with. An expression that
resolves to a positive integer. If omitted, or specified as 0 or 1, replacement begins with
the first occurrence of subout.

The CHANGE function edits the value of string by replacing some or all instances of subout with subin. The subout and
subin values may be of different lengths. Matching of strings is case-sensitive.

The value of subout and subin can be a string or a numeric. If numeric, the value is converted to canonical form (plus sign,
leading and trailing zeros removed) before performing the CHANGE operation.

To remove all instances of subout from string, specify the null string (") as the subin value. The null string (") cannot be

used as the subout value.

The value of occurrences may be larger than the actual number of occurrences. If occurrences is omitted, or set to a value
of 0, a negative number, the null string, or a non-numeric string, all occurrences are replaced. If occurrences is set to a
decimal number, it is truncated to an integer; if set to a mixed numeric string, it resolves to the numeric portion of the string.

Note: Caché MVBasic supports both the UniVerse CHANGE function and the UniData SWAP statement, both of
which perform substring replacement.

You can use the CONVERT function to perform character-for-character substitutions.

Examples

The following example illustrates use of the CHANGE function, replacing a substring value in all the elements of a dynamic

array:

cities="Pittsburg Penn.":@VM:"Philadephia Penn."

CHANGE(cities,"Penn."

STPA™)

Caché MultiValue Basic Reference 257

Caché MultiValue Basic Functions

The following example illustrates use of the CHANGE function, replacing the third and fourth occurrences of a substring
value:

teststr=123test123testl123test123testl23testl23test
CHANGE (teststr,"test","RETRY",2,3)
I Returns "123testl123testl123RETRY123RETRY123testl123test"

See Also

e SWAP statement
« CONVERT function

258 Caché MultiValue Basic Reference

CHAR

CHAR

Returns the character corresponding to the specified character code.

CHAR(charcode)

Arguments

charcode An expression that resolves to a base-10 integer that identifies a character. For 8-bit
characters, charcode must be a positive integer in the range 0 through 255. For 16-bit
characters, charcode must be a positive integer in the range 256 through 65534.

Description

The CHAR function takes a character code and returns the corresponding character. The SEQ function takes a character
and returns the corresponding ASCII code.

Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes. For example, CHAR(10) returns a linefeed
character.

Note: CHAR, BYTE, and UNICHAR are functionally identical. On Unicode systems both can be used to return 16-
bit Unicode characters. On 8-bit systems, these functions return a null string for character codes beyond 255.

The Caché MVBasic CHAR function returns a single character. The corresponding ObjectScript $CHAR function can
return a string of multiple characters by specifying a comma-separated list of ASCII codes. The Caché MVBasic CHARS
function takes a dynamic array of ASCII codes and returns the corresponding single characters as a dynamic array.

Examples

The following example uses the CHAR function to return the character associated with the specified character code:
PRINT CHAR(65); Returns A.

PRINT CHAR(97); Returns a.

1
1

PRINT CHAR(37); I Returns %.

PRINT CHAR(62); 1 Returns >.

The following example uses the CHAR function to return the lowercase letter characters of the Russian alphabet on a
Unicode version of Caché. On an 8-bit version of Caché it returns a null string for each letter:

letter=1072
FOR x=1 TO 32
PRINT CHAR(letter)
letter=letter+1
NEXT

See Also

* BYTE function

* UNICHAR function

* CHARS function

* SEQ function

* ObjectScript: $CHAR function

Caché MultiValue Basic Reference 259

Caché MultiValue Basic Functions

CHARS

Returns the character corresponding to the specified character code for each element of a dynamic array.

CHARS (dynarray)
Arguments
dynarray An expression that resolves to a dynamic array of base-10 integers that identify
characters. For 8-bit characters, each element value must be a positive integer in the
range 0 through 255. For 16-bit characters, each element value must be a positive
integer in the range 256 through 65534.
Description

The CHARS function takes a dynamic array of character codes and returns the corresponding characters. It returns these
values as a dynamic array. The SEQS function takes a dynamic array of characters and returns the corresponding character
codes.

Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes. For example, CHARS(10) returns a linefeed
character.

Note: CHARSand UNICHARS are functionally identical. On Unicode systems both can be used to return 16-bit Unicode
characters. On 8-bit systems, these functions return a null string for character codes greater than 255.

The Caché MVBasic CHARS function returns a dynamic array of characters. The corresponding ObjectScript SCHAR
function returns a string of characters by specifying a comma-separated list of character codes.

Examples

The following example uses the CHARS function to return the characters associated with each specified character code:

a=65:@VM:66:@VM:67:QVM:68
PRINT CHARS(a); ! returns AyByCyD

The following example uses the CHARS function to return the first four letters of the Greek alphabet. On a Unicode version
of Caché it returns the Greek letters in a dynamic array; on an 8-bit version of Caché it returns a dynamic array with a null
string for each letter:

b=945:@VM: 946 : @VM: 947 : GVM:948
PRINT CHARS(b)

See Also

* UNICHARS function
* CHAR function

« SEQS function

e Dynamic Arrays

» ObjectScript: SCHAR function

260 Caché MultiValue Basic Reference

CHECKSUM

CHECKSUM

Returns a checksum number for a string.

CHECKSUM(string)

Arguments

string An expression that resolves to a string.

Description

The CHECKSUM function generates a cyclic redundancy code (also called a checksum) corresponding to string. It returns
this checksum as a positive 5-digit integer. A checksum can be used to determine if data has been modified or if it was
incompletely transmitted. CHECKSUM uses an 8-bit byte sum mode to calculate the checksum.

CHECKSUM returns the same checksum number for a numeric and the corresponding numeric string. However, numerics
are converted to canonical form before checksum processing, whereas numeric strings are not converted to canonical form.
Canonical and non-canonical forms of the same number have different checksums.

All string and numeric values, including zero, return a 5-digit checksum. However, if string is a null string a checksum of
0 is returned.

Examples
The following examples all return the same checksum:

PRINT CHECKSUM(123.4)
PRINT CHECKSUM(''123.4'")
PRINT CHECKSUM(+00123.400)

The following examples do not return the same checksum:

PRINT CHECKSUM(123.400)
PRINT CHECKSUM(''123.400")

See Also
e Strings
e $ZCRC function in ObjectScript

Caché MultiValue Basic Reference 261

Caché MultiValue Basic Functions

COL1

Returns the FIELD substring start position.

coL1Q)

Arguments

The COL1 function takes no arguments. The parentheses are mandatory.

Description

The COL1 function returns the starting position for the most recently called FIELD function. FIELD extracts a substring
from a string by specifying a delimiter character. The specified delimiter immediately precedes the extracted substring.
COL.1 returns the string position (counting from 1) of this delimiter character.

If the FIELD count is 1, COL1 returns 0. If the FIELD count is greater than the number of delimited substrings, COL1
returns 0. If the FIELD delimiter is not located in string, COL1 returns 0

The initial COL1 value is 0. The COL1 value is preserved until it is overwritten by the next FIELD function call.

COL1 returns a substring's start delimiter position. COL2 returns a substring's end delimiter position.

Examples

The following example shows the use of the COL1 function:

colors="Red"Green”™Blue”Yel lowOrange”Black"
FOR x=1 TO 5
PRINT FIELD(colors," ™" ,x)
PRINT "Start delimiter position: ":COL1()
! Returns: 0, 4, 10, 15, 22
NEXT

See Also

e FIELD function
e COL2 function

262 Caché MultiValue Basic Reference

CcoL2

COL2

Returns the FIELD substring end position.

coL2Q)

Arguments

The COL2 function takes no arguments. The parentheses are mandatory.

Description

The COL2 function returns the ending position for the most recently called FIELD function. FIELD extracts a substring
from a string by specifying a delimiter character. This substring is limited by encountering the next delimiter character.
COL.2 returns the string position (counting from 1) of this substring-ending delimiter character.

If the FIELD delimiter is not located in string and count=1, COL2 returns the full length of string. If FIELD returns a
null string, COL2 returns 0.

The initial COL2 value is 0. The COL2 value is preserved until it is overwritten by the next FIELD function call.

COL2 returns a substring's end delimiter position. COL1 returns a substring's start delimiter position.

Examples

The following example shows the use of the COL2 function:

colors="Red"Green”™Blue”Yel lowOrange”Black"
FOR x=1 TO 5
PRINT FIELD(colors,"~",x)
PRINT "End delimiter position: ":COL2()
! Returns: 4, 10, 15, 22, 29
NEXT

See Also

e FIELD function
e COL1 function

Caché MultiValue Basic Reference 263

Caché MultiValue Basic Functions

CONVERT

Replaces single characters in a string.

CONVERT (remove, replace,string)

Arguments
remove One or more characters to be removed and replaced. An expression that resolves to a
string or numeric.
replace One or more characters to be inserted in place of the corresponding characters in
remove. An expression that resolves to a string or numeric.
string The string in which character substitutions are made. An expression that resolves to a
string or numeric. string may be a dynamic array.
Description

The CONVERT function edits the value of string by replacing all instances of each single character in remove with the
corresponding single characters in replace and returning the resulting string. CONVERT performs a character-for-character
substitution. Matching of characters is case-sensitive.

CONVERT can be used as follows:

To remove all instances of a character from a string, specify the character to be removed in remove and a null string
in replace. For example, to remove the # character from mystring: CONVERT(*'#"*, """ ,mystring)

To replace all instances of a character in a string with another character, specify the character to be replaced in remove
and the replacement character in replace. For example, to replace all instances of the # character with the * character
in mystring: CONVERT (""#","**"" ,mystring)

To replace all instances of a list of single characters with corresponding other single characters, specify those characters
to be replaced in remove and the corresponding replacement characters in replace. For example, to replace all instances
in mystring of the each lowercase letter a, b, ¢, and d with the corresponding uppercase letter:

CONVERT("*abcd™, ""ABCD" ,mystring)

To both replace some single characters and remove others, specify those characters to be replaced or removed in
remove. First specify those to be replaced, then those to be removed. Specify the corresponding replacement characters
in replace, and nothing for the characters to be removed. For example, to replace all instances of + with &, and to
remove all instances of # in mystring: CONVERT (**+#"*,"'&"" ,mystring)

The value of remove and replace can be a string or a numeric. If numeric, the value is converted to canonical form (plus
sign, leading and trailing zeros removed) before performing the CONVERT operation.

If remove contains more characters than replace, the unpaired characters are deleted from the returned string. If replace
contains more characters than remove, the unpaired characters are ignored and have no effect.

Note: CONVERT performs single character one-for-one substitution for all instances in a string. The CHANGE

function performs substring replacement, and can specify how many instances to replace and where to begin
replacement.

The CONVERT statement and the CONVERT function perform the same operation, with the following difference:
the CONVERT statement changes the supplied string; the CONVERT function returns a new string with the
specified changes and leaves the supplied string unchanged.

264

Caché MultiValue Basic Reference

CONVERT

Emulation

The order of the CONVERT arguments differs in different emulation modes. In Caché MVBasic, the order is
remove, replace, string. In MultiValue emulation modes, the argument order is as follows:

* remove,replace,string: for UniVerse, UniData, PICK, Prime, INFORMATION, PIOpen.
» string,remove,replace: for jBASE, Reality, Ultimate, MVBase, D3, POWER95, IN2, R83.

Examples

The following example illustrates use of the CONVERT function in converting a string to a dynamic array by replacing
the # character with a Value Mark level delimiter character:

cities="New York#Chicago#Boston#Los Angeles"
dynacities=CONVERT("'#",CHAR(253),cities)
PRINT cities

PRINT dynacities

See Also

» CONVERT statement
* CHANGE function

* SWAP statement

e Strings

Caché MultiValue Basic Reference 265

Caché MultiValue Basic Functions

COS

Returns the cosine of an angle.

COS(number)

Arguments

number An expression that resolves to a number that expresses an angle in degrees.

Description

The COS function takes an angle in degrees and returns the ratio of two sides of a right triangle. The ratio is the length of
the side adjacent to the angle divided by the length of the hypotenuse. This ratio is in the range of 1 to -1 (inclusive).

Examples
The following example uses the COS function to return the cosine of an angle:

Dim MyAngle
MyAngle = 1.3; I Define angle in degrees.
PRINT COS(MyAngle); I Returns cosine ratio.

The following example uses the COS function to return the secant of an angle:

Dim MyAngle, MySecant

MyAngle = 1.3; I Define angle in degrees.
MySecant = 1 / Cos(MyAngle); ! Calculate secant.

Print MySecant; 1 Secant iIn radians.

See Also

» ATAN function

* COSH function

* SIN function

* TAN function

* Derived Math Functions

* ObjectScript: $ZCOS function

266 Caché MultiValue Basic Reference

COSH

COSH

Returns the hyperbolic cosine of an angle.

COSH(number)

Arguments

number An expression that resolves to a number that expresses an angle in degrees.

Description

The COSH function takes an angle in degrees and returns the ratio of two sides of a right triangle. The ratio is the length
of the side adjacent to the angle divided by the length of the hypotenuse. This ratio is in the range of 1 to -1 (inclusive).

Examples

The following example uses the COSH function to return the hyperbolic cosine of an angle:

Dim MyAngle
MyAngle = 1.3; I Define angle in degrees.
PRINT COSH(MyAngle); ! Returns hyperbolic cosine ratio.

See Also

» ATAN function
+ COS function
» SIN function

* TAN function

e Derived Math Functions

Caché MultiValue Basic Reference 267

Caché MultiValue Basic Functions

COUNT

Returns the number of instances of a substring in a string.

COUNT (string, substring)

Arguments
string The string to search for instances of substring. An expression that resolves to a string.
substring A substring to match against string. An expression that resolves to a string.
Description

The COUNT function returns the number of times a specified substring appears in string.

String matching is case-sensitive. Numbers are converted to canonical form, with leading and trailing zeroes and plus signs
removed. Numeric strings are not converted to canonical form.

If string is an empty string (") COUNT returns a count of 0. If substring is an empty string, COUNT returns a count equal
to the number of characters in string.

Examples

The following example uses the COUNT function to return the number of appearance of a substring in a string:
PRINT COUNT("InterSystems™,"s"); ! Returns 2

PRINT COUNT("InterSystems™,"S"); I Returns 1

PRINT COUNT("InterSystems","te'); ! Returns 2

PRINT COUNT(+0099.900,0); I Returns 0O

PRINT COUNT(**0099.900",0); I Returns 4

PRINT COUNT("InterSystems","'); ! Returns 12

The following example shows that overlapping substrings are only counted once:

PRINT COUNT('AAAAA™,"AA™); ! Returns 2

See Also

* LEN function

* DCOUNT function
* COUNTS function

268 Caché MultiValue Basic Reference

COUNTS

COUNTS

Returns the number of instances of a substring in each element of a dynamic array.

COUNTS(dynarray,substring)

Arguments
dynarray The array of elements that are to be searched for instances of substring. An expression
that resolves to a dynamic array.
substring A substring to match against each element in dynarray. An expression that resolves to
a string.
Description

The COUNTS function returns the number of times a specified substring appears in each element of dynarray. These values
are returned as a dynamic array of integer counts. A missing dynarray element or an element containing the empty string
("") always returns a count of 0.

String matching is case-sensitive. Numbers are converted to canonical form, with leading and trailing zeroes and plus signs
removed. Numeric strings are not converted to canonical form.

If a dynamic array element is an empty string (") or a missing element, COUNTS returns a count of O for that element. If
substring is an empty string, COUNTS returns a count for each element equal to the number of characters in that element.

Examples

The following example uses the COUNTS function to return the number of appearance of a substring in each element of
a dynamic array:

citystate="Springfield IL":@VM:"Springfield MA":@VM:
"Somerville MA":@VM:"Somerville NJ":@VM:"Somerville ME"
PRINT COUNTS(citystate,"Somerville™)

PRINT COUNTS(citystate,"Springfield™)

PRINT COUNTS(citystate, 'MA™)

PRINT COUNTS(citystate,'VA™)

The following example returns the count of the zeros in each element. Conversion of numbers to canonical form eliminates
leading and trailing zeros. Numeric strings are not converted to canonical form. The missing element and the null string
element return O regardless of the substring value:

NUMs=000.1:@VM:0:@VM:@VM: """ @M:0123.00: @VM: 1230: @VM: *'007 00"
PRINT COUNTS(nums,0); ! Returns OylyOyOyOy1ly4

The following example specifies the null string as the substring value. It returns the count of characters in each element.
Conversion of numbers to canonical form eliminates leading and trailing zeros. Numeric strings are not converted to
canonical form. The missing element and the null string element return 0:

nums=000.1:@VM:0:@VM:@VM:""":@VM:0123.00:@VM:-1230:@VM:"'007.00"
PRINT COUNTS(nums,'""); ! Returns 2ylyOyOy3y4y6

See Also
e COUNT function
* LENS function

e Dynamic Arrays

Caché MultiValue Basic Reference 269

Caché MultiValue Basic Functions

$DATA ($D)

Checks if a variable contains data.

$DATA(variable, target)

$D(variable, target)
Parameters
variable The variable whose status is to be checked. variable may be specified as a variable or

an object property with the syntax obj->property. If variable is not a valid variable or property
name, MVBasic issues a syntax error.

target Optional — A variable into which $DATA returns the current value of variable. target
may be specified as a variable or an object property with the syntax obj->property. If target
is not a valid variable or property name, MVBasic issues a syntax error.

Description

You can use $DATA to test whether a variable contains data before attempting an operation on it. $DATA returns status
information about the specified variable. The variable parameter can be the name of any variable (local variable, process-
private global, or global), and can include a subscript (an array element).

The possible status values that may be returned are as follows:

Status Value Meaning

0 The variable is undefined and has no descendents.

1 The variable contains data and has no descendants. Note that the null string (") qualifies as
data.

10 The variable is undefined, but has descendants that contain data. Status 10 identifies an

array element that has descendants (contains a downward pointer to another array element)
but does not itself contain data.

11 The variable contains data and has descendents. Status 11 identifies a defined array element
that has descendants (contains a downward pointer to another array element that also contains
data). Variables of this type can be referenced in expressions.

Note: Status values 1 and 11 indicate only the presence of data, not the type of data.

If $SDATA(var) returns either 0 or 10, any direct reference to var will result in an <UNDEFINED> error. For more infor-
mation on <UNDEFINED> errors, refer to the $ZERROR special variable.

You can also use the EXISTS function to determine if a variable is defined and whether a dimensioned array element has
descendants (subnodes).

Parameters

variable

The variable can be a local variable, a process-private global, or a global, with or without subscripts. It can be a multidi-
mensional object property. If a global variable, it can include an extended global reference. If a subscripted global variable,
it can be a naked global reference.

270 Caché MultiValue Basic Reference

$DATA ($D)

Note: $DATA should not be used on system variables (@ variables). It always returns O for all @ variables, whether
or not the @ variable currently has a value.

target

An optional parameter. Specify the name of a local variable, a process-private global, or a global variable, with or without
subscripts. This target variable does not need to be defined.

» Ifvariable contains data and target is defined, $DATA copies the variable value to target.

» Ifvariable contains data and target is undefined, SDATA creates the target variable and copies the variable value to
target.

» Ifvariable does not contain data and target is undefined, target remains undefined.

« Ifvariable does not contain data and target is defined, the existing target value remains unchanged.

variable and target may be the same variable.

Examples

In the following example, a multidimensional property is used as the variable value. This example returns the names of all
defined namespaces to the target parameter:

obj = "%ResultSet'->%New(''%SYS.Namespace:List'")
obj->Execute()

crt $DATA(obj->Data) 1 returns O

obj->Next()

crt $DATA(obj->Data) 1 returns 10

crt $DATA(obj->Data(*'Nsp'),targ) I returns 1

crt targ I returns namespace name
obj->Next()

crt $DATA(obj->Data(*'Nsp'),targ) I returns 1

crt targ I returns namespace name

A similar program returns the same information using the $GET function.

Notes

Naked Global References

$DATA sets the naked indicator when used with a global variable. The naked indicator is set even if the specified global
variable in not defined (Status Value = 0).

Subsequent references to the same global variable can use a naked global reference.

For further details on using $DATA with global variables and naked global references, see Using Multidimensional Storage
(Globals) in Using Caché Globals.

Global References in a Networked Environment

Using $DATA to repeatedly reference a global variable that is not defined (for example, $DATA(~x(1)) where ~x is not
defined) always requires a network operation to test if the global is defined on the ECP server.

Using $DATA to repeatedly reference undefined nodes within a defined global variable (for example, $DATA(*x (1))
where any other node in ”x is defined) does not require a network operation once the relevant portion of the global (*x) is
in the client cache.

For further details, refer to Developing Distributed Applications in the Caché Distributed Data Management Guide.
$DATA and $ORDER

For related information, see SORDER. Since $ORDER selects the next element in an array that contains data, it avoids
the need to perform $DATA tests when looping through array subscripts.

Caché MultiValue Basic Reference 271

Caché MultiValue Basic Functions

See Also

* ASSIGNED function

* EXISTS function

» $ORDER function

* UNASSIGNED function

e Using Multidimensional Storage (Globals) in Using Caché Globals

272 Caché MultiValue Basic Reference

DATE

DATE

Returns the current local system date in internal format.

DATE()

Arguments

None. The parentheses are mandatory.

Description

The DATE function returns the current date in a format such as the following:
14122

This represents the elapsed number of days since December 31, 1967. DATE returns the current date at the moment when
the function is executed.

Caché MultiValue determines local time (and date) as follows:

e It determines the current Coordinated Universal Time (UTC) from the system clock.

e ltadjusts UTC to the local time zone by using the value of the Caché special variable $ZTIMEZONE.

» It applies local time variant settings (such as Daylight Saving Time) for that time zone from the host operating system.
Caché MVBasic also supplies @DATE, @DAY, @MONTH, @YEAR, and @YEAR4 system variables. These values are

set when the process is initialized, and are only updated when a program is initiated from the MV shell. For further details,
see the Variables page of this manual.

Examples

The following example calls the DATE function to return the current date in internal format, then uses the OCONYV function
to convert date from internal format to display format.

PRINT DATEQ
PRINT OCONV(DATE(),"D")

See Also

» TIMEDATE function

* OCONV function

e System Variables

e ObjectScript: SHOROLOG special variable
e SQL: NOW function

Caché MultiValue Basic Reference 273

Caché MultiValue Basic Functions

DCOUNT

Returns the number of delimited substrings in a string.

DCOUNT(string,delimiter)

Arguments
string The string to search for instances of delimiter. An expression that resolves to a string.
delimiter One or more characters used as a delimiter in string. An expression that resolves to a
string.
Description

The DCOUNT function returns the number of delimited substrings that appears in string.

String matching is case-sensitive. Numbers are converted to canonical form, with leading and trailing zeroes and plus signs
removed. Numeric strings are not converted to canonical form.

If delimiter doesn't appear in string, DCOUNT returns 1. If delimiter is the null string, DCOUNT returns the number of
characters in the string, plus 1.

If string is an empty string (") DCOUNT returns a count of 0.

Examples

The following example uses the DCOUNT function to return the number of Value Mark delimited substrings in a dynamic
array:

colors="Red":@VM:"Green'" :@VM:"Blue" :@VM:"Yel low"
PRINT DCOUNT(colors,CHAR(253)); ! Returns 4

See Also

e LEN function
e COUNT function

274 Caché MultiValue Basic Reference

DELETE

DELETE

Deletes an element from a dynamic array.

DELETE(dynarray, f[,v[,s11)

Arguments
dynarray An expression that resolves to a dynamic array.
f An expression that resolves to an integer. Specifies the Field level of the dynamic array
on which to perform the deletion. Fields are counted from 1.
v Optional — An expression that resolves to an integer. Specifies the Value level of the
dynamic array on which to perform the deletion. Values are counted from 1 within a
Field.
S Optional — An expression that resolves to an integer. Specifies the Subvalue level of
the dynamic array on which to perform the deletion. Subvalues are counted from 1 within
a Value.
Description

The DELETE function returns a dynamic array with one element deleted. It deletes both the data and the dynamic array
delimiter. Which element to delete is specified by the f, v, and s integers. For example, if f=2 and v=3, this means delete
the third value from the second field. If f=2 and v is not specified, this means to delete the entire second field.

The DELETE function and the DEL statement perform the same operation, with the following difference: DEL changes
the supplied dynamic array; DELETE creates a new dynamic array with the specified change and leaves the supplied
dynamic array unchanged.

Examples

The following example uses the DELETE function to delete the second value from the first field of a dynamic array:

cities="New York":@VM:"London":@VM:
"Chicago':@VM:""Boston':@VM:""Los Angeles"
PRINT cities

I Returns: "New YorkylLondonyChicagoyBostonylLos Angeles"
PRINT DELETE(cities,1,2)

1 Returns: "New YorkyChicagoyBostonylLos Angeles"

Emulation
UniData systems differ in how they handle f, v, and s arguments set to 0. The SOPTIONS ATTR.0IS1 (“zero is one™) provides

support for this UniData feature. UniData systems ignore v and s arguments that are set to a negative number.
See Also

 DEL statement

e COUNTS function

* EXTRACT function

e Dynamic Arrays

Caché MultiValue Basic Reference 275

Caché MultiValue Basic Functions

DIV

Integer division of two values.

DIV(numstrl,numstr2)
Arguments
numstrl The dividend. An expression that resolves to a number or numeric string.
numstr2 The divisor. An expression that resolves to a non-zero number or numeric string.
Description

The DIV function divides the value of numstrl by numstr2, and returns the integer quotient. It discards the fractional
remainder. If a numstr value is a null string or a non-numeric value, DIV parses its value as 0 (zero).

Attempting to divide by zero generates a <DIVIDE> error, ending execution of the function and invoking an error trap
handler, if available.

To perform exact division with a fractional quotient, use the division operator (/). To perform modulo division, use the
MOD or REM function.

To perform division on the elements of a dynamic array, use the DIVS (divide corresponding elements, generate error on
a zero divisor value), DIVSZ (divide corresponding elements, return O for a zero divisor value), and MODS (modulo
division of corresponding elements) functions The DIVS and DIVSZ functions can return fractional numbers as the result
(quotient) of a division operation.

Examples
The following examples use the DIV function to return the integer quotient of a division operation:
PRINT DIV(10,5); returns 2
PRINT DIV(10,4); returns 2
PRINT DIV(10,3.3); returns 3
2
3

PRINT DIV(10.2,3.4);
PRINT DIV(10,-3);
PRINT DIV(-10,3);

returns
returns -3

1
1
!

PRINT DIV(10,3.4); = returns
!
! returns -3

See Also

* MOD function
* REM function

« DIVS function
* DIVSZ function
» MODS function

* Operators

276 Caché MultiValue Basic Reference

DIVS

DIVS

Divides the corresponding elements in two dynamic arrays (zero divide not allowed).

DIVS(dynarrayl,dynarray2)

Arguments
dynarrayl The dividend. An expression that resolves to a dynamic array of numeric values.
dynarray2 The divisor. An expression that resolves to a dynamic array of non-zero numeric values.
Description

The DIVS function divides the value of each element in dynarrayl by the corresponding element in dynarray?2. It then
returns a dynamic array containing the results of these divisions. If an element value is an empty string or a non-numeric
value, DIVS parses its value as 0 (zero).

DIVS can return fractional numbers as the result (quotient) of a division operation. The DIV function can only return the
integer portion of the result (quotient) of a division operation; the fractional portion is truncated.

The DIVS and DIVSZ functions are identical, with one difference:

e When DIVS encounters a 0 divisor, attempting to divide by zero generates a <DIVIDE> error, ending execution of
the function and invoking an error trap handler, if available.

* When DIVSZ encounters a 0 divisor, it returns 0 for that element.

If the two dynamic arrays have different numbers of elements, by default the shorter dynamic array is padded so that the
returned dynamic array has the number of elements of the longer dynamic array. If the shorter dynamic array is the dividend
(dynarrayl), it is padded with the required number of elements with the value of 0. If the shorter dynamic array is the

divisor (dynarray?2), it is padded with the required number of elements with the value of 1. You can also use the REUSE
function to define behavior when specifying two dynamic arrays with different numbers of elements.

You can use the NUMS function to determine if the elements in a dynamic array are numeric. You can use the ADDS
(addition), SUBS (subtraction), MULS (multiplication), MODS and MODSZ (modulo division), and PWRS (exponentiation)
functions to perform other arithmetic operations on the corresponding elements of two dynamic arrays.

Examples

The following example uses the DIVS function to divide the elements of two dynamic arrays:

a=11:0VM:22:@VM:0:@VM:-7
b=10:@VM: .5:@VM:10:@VM:42
PRINT DIVS(a,b)
I returns 1.1y44y0y-.1666666666667

See Also

* ADDS function

* DIVSZ function
* MODS function

* MODSZ function
e MULS function

* PWRS function

Caché MultiValue Basic Reference 277

Caché MultiValue Basic Functions

» SUBS function

* Dynamic Arrays

278 Caché MultiValue Basic Reference

DIVSZ

DIVSZ

Divides the corresponding elements in two dynamic arrays (zero divide allowed).

DIVSZ(dynarrayl,dynarray2)

Arguments
dynarrayl The dividend. An expression that resolves to a dynamic array of numeric values.
dynarray2 The divisor. An expression that resolves to a dynamic array of numeric values.
Description

The DIVSZ and DIVS functions are identical, with one difference:
* When DIVSZ encounters a 0 divisor, it returns 0 for that element.

* When DIVS encounters a 0 divisor, it generates a <DIVIDE> error, ending execution of the function.

The DIVSZ function divides the value of each element in dynarrayl by the corresponding element in dynarray?2. It then
returns a dynamic array containing the results of these divisions. If an element value is an empty string or a non-numeric
value, DIVSZ parses its value as 0 (zero).

DIVSZ and DIVS can return fractional numbers as the result (quotient) of a division operation. The DIV function can only
return the integer portion of the result (quotient) of a division operation; the fractional portion is truncated.

If the two dynamic arrays have different numbers of elements, by default the shorter dynamic array is padded so that the
returned dynamic array has the number of elements of the longer dynamic array. If the shorter dynamic array is the dividend
(dynarrayl), it is padded with the required number of elements with the value of 0. If the shorter dynamic array is the
divisor (dynarray?2), it is padded with the required number of elements with the value of 1. You can also use the REUSE
function to define behavior when specifying two dynamic arrays with different numbers of elements.

You can use the NUMS function to determine if the elements in a dynamic array are numeric. You can use the ADDS
(addition), SUBS (subtraction), MULS (multiplication), MODS and MODSZ (modulo division), and PWRS (exponentiation)
functions to perform other arithmetic operations on the corresponding elements of two dynamic arrays.

Examples

The following example uses the DIVSZ function to divide the elements of two dynamic arrays:

a=11:@VM:22:@VM:0:@VM:-7
b=10:@VM: .5:@VM:10:@VM:42
PRINT DIVSZ(a,b)
! returns 1.1y44y0Oy-.1666666666667

The following example uses DIVSZ to divide the elements of two dynamic arrays, when the divisor array contains zero
values:

a=11:0VM:22:@VM:0:@VM:-7:-@VM:6
b=10:@VM:0:@VM:10:@VM: """ :@VM:2
PRINT DIVSZ(a,b)

! returns 1.1y0yOyOy3

See Also

 ADDS function
 DIVS function

Caché MultiValue Basic Reference 279

Caché MultiValue Basic Functions

* MODS function

* MODSZ function
* MULS function

* PWRS function

* SUBS function

e Dynamic Arrays

280

Caché MultiValue Basic Reference

DOWNCASE

DOWNCASE

Coverts alphabetic characters to lowercase.

DOWNCASE(string)

Arguments

string An expression that resolves to a string.

Description

The DOWNCASE function returns a string of characters with all uppercase letters converted to lowercase. Characters
other than uppercase letters are passed through unchanged. If you specify a null string, DOWNCASE returns a null string.

By default, DOWNCASE performs case conversion on ANSI Latin-1 letters. By default it does not convert Unicode letters
on a Unicode Caché instance; it passes Unicode letters through unmodified. To perform case conversion on letters in other
character sets, you must set the appropriate locale.

The OCONV function with the “MCL” option is functionally identical to the DOWNCASE function. To convert lowercase
to uppercase, use the UPCASE function.

Examples
The following example uses the DOWNCASE function to return a string in all lowercase:

PRINT DOWNCASE(InterSystems'™); ! Returns "intersystems"

See Also

 UPCASE function
e OCONYV function

Caché MultiValue Basic Reference 281

Caché MultiValue Basic Functions

DQUOTE

Encloses a value in double quotation marks.

DQUOTE(string)

Arguments

string An expression that resolves to a string or a humeric. string may be a dynamic array.

Description

The DQUOTE function returns string enclosed in double quotation marks. The quotation marks are part of the resulting
string. Therefore, using DQUOTE increases the length of string by 2 characters. If string is the null string ("), DQUOTE
returns a string consisting of two quotation mark characters, a string with a length of 2. This should not be confused with
the null string ("), which has a length of 0.

The DQUOTE function converts a numeric to canonical form before enclosing it in quotation marks. DQUOTE does not
convert a numeric string to canonical form.

The QUOTE function is functionally identical to DQUOTE. The SQUOTE function is similar, except that it encloses
string with single quotation marks, rather than double quotation marks.

Note: Some MultiValue Basic implementations (D3, for example) use DQUOTE and SQUOTE to extract quoted
substrings from within a string. The Caché MVBasic quote functions do not support this functionality. Use the
FIELD function or the [] operator to extract quoted substrings.

Examples

The following example uses the DQUOTE function to convert a numeric to a string enclosed in double quotation marks:

quoted = DQUOTE(+007.000)
PRINT quoted; ! Returns "7"
PRINT LEN(quoted); 1 Returns 3

The following example uses the DQUOTE function to enclose a string in double quotation marks:

strl = "Hello™
str2 = "Hello"
str3 = \Hello\
PRINT strl:str2:str3; ! Returns HelloHelloHello

PRINT LEN(strl),LEN(str2),LEN(str3); ! Returns 5 5 5
gl = DQUOTE(strl)

g2 = DQUOTE(str2)

g3 = DQUOTE(str3)

PRINT gl1:92:93; I Returns "Hello""'Hello""'Hello"
PRINT LEN(ql) LEN(q2) LEN(g3); 1 Returns 7 7 7

Note that the quote marks are not simply string delimiters, but are part of the returned string.

See Also

* QUAOTE function
e SQUOTE function
* LEN function

* PRINT statement

282 Caché MultiValue Basic Reference

DTX

DTX

Converts a number from decimal to hexadecimal.

DTX(decnum[,width])
Arguments
decnum An expression that resolves to an integer.
width Optional — An expression that resolves to a positive integer. width specifies the number

of digits of the returned value, for the purpose of zero-padding.

Description

The DTX function returns a decimal integer converted to hexadecimal. The decnum value can be a positive or negative
integer. If decnum is a positive integer, DTX returns the number of hexadecimal digits needed to express it. If decnum is
a negative integer, DTX returns high values. For example, DTX(-1) returns FFFFFFFFFFFFFFFF. If you specify dechum
as a fractional number, DTX generates a <FUNCTION> error.

The optional width argument pads the return value with leading zeros. If width is equal to or smaller than the number of
hexadecimal digits in the return value, width is ignored. If width is larger than the needed number of hexadecimal digits,
DTX pads the returned hexadecimal number with leading zeros. With a negative decnum, if width is larger than 16, it pads
the returned hexadecimal number with leading zeros. If you specify width as a fractional number, DTX truncates it to the
integer portion. If you specify width as a negative number, width is ignored.

If decnum is zero, the null string, or a non-numeric string, DTX returns 0; width padding is applied. If decnum is a mixed
numeric string, the numeric part is parsed until a non-numeric character is encountered. Thus “7dwarves” is parsed as 7.

Use XTD to convert from hexadecimal to decimal.

Examples

The following examples return positive integers converted to hexadecimal:

PRINT DTX(12); ! Returns "C"
PRINT DTX(12,4); 1 Returns "000C"
PRINT DTX(199); 1 Returns "C7"
PRINT DTX(199,1); 1 Returns "C7"

The following examples return negative integers converted to hexadecimal:

PRINT DTX(-199); I Returns "FFFFFFFFFFFFFF39"
PRINT DTX(-199,4); ! Returns "FFFFFFFFFFFFFF39™
PRINT DTX(-199,17); I Returns "OFFFFFFFFFFFFFF39"

The following examples all return zero. Zero padding is provided, if specified:

PRINT DTX(0); 1 Returns "0"
PRINT DTX(-0); ! Returns 0"
PRINT DTX(0,4); 1 Returns "0000"
PRINT DTX("",4); ! Returns *"0000"
PRINT DTX(""foo0™",4); ! Returns "0000"

See Also
e« XTD function

Caché MultiValue Basic Reference 283

Caché MultiValue Basic Functions

EBCDIC

Converts a string from ASCII to EBCDIC.

EBCDIC(string)

Arguments

string An expression that resolves to a string.

Description

The EBCDIC function takes a string of characters and returns the ASCII code representation for each character. If you
supply a string of ASCII code characters, EBCDIC returns the corresponding EBCDIC character(s). This is the inverse of
the ASCII function. The string cannot contain Unicode characters.

If string is a number, it is converted to canonical representation before EBCDIC processing. If string is a quoted numeric
string, no conversion is performed before EBCDIC processing.

The CHAR function takes an ASCII code and returns the corresponding character. The SEQ function takes a character
and returns the corresponding ASCII code.

Examples

The following example uses the EBCDIC function to return the characters associated with the specified ASCII code string:

astring=ASCI 1 (*"ABCDEFG')
estring=EBCDIC(astring)
PRINT estring

I returns "ABCDEFG"

The following example shows the use of the SEQ and CHAR functions with the EBCDIC function:

PRINT SEQCASCII("A™))
! returns 159

PRINT EBCDIC(CHAR(159))
! returns "A"

See Also

* ASCII function
* CHAR function
* SEQ function

e Strings

284 Caché MultiValue Basic Reference

EOF(ARG.)

EOF(ARG.)

Returns whether the command line pointer is past the last argument.

EOF(ARG)

Arguments

None. The keyword ARG . (note the period at end of this keyword) is the only allowed value, and is mandatory. The ARG .
keyword is not case-sensitive.

Description

The EOF(ARG.) function returns a boolean value indicating whether the command line pointer is positioned beyond the
last command line argument. It returns 1 if the command line pointer is positioned beyond the last command line argument.
Otherwise, it returns 0.

The GET(ARG.) statement moves the command line argument pointer and retrieves the argument value. The SEEK(ARG.)
statement moves the command line argument pointer without retrieving a value.
See Also

* GET(ARG.) statement
* SEEK(ARG.) statement

Caché MultiValue Basic Reference 285

Caché MultiValue Basic Functions

EQS

Performs an equality comparison on elements of two dynamic arrays.

EQS(dynarrayl,dynarray2)
Arguments

dynarray An expression that resolves to a dynamic array of numeric values.

Description

The EQS function compares each corresponding humeric element from two dynamic arrays for equality. It returns a dynamic
array of boolean values, in which each element comparison is represented by a 1 (equal) or a 0 (not equal). EQS converts
numeric values to canonical form, removing signs and leading and trailing zeros, before making the comparison. EQS does
not convert numeric strings to canonical form before making the comparison. If an element is missing, or has a null string
value or a non-numeric value, EQS assigns it a value of 0 for the purpose of this comparison.

For two elements to be compared, they must be on the same dynamic array level. For example, you cannot compare a value
mark (@VM) dynamic array element to a subvalue mark (@SM) dynamic array element.

If the two dynamic arrays have different numbers of elements, the returned dynamic array has the number of elements of
the longer dynamic array. By default, unmatched elements return O (not equal). That is, the EQS comparison of each element
in the longer dynamic array that has no corresponding element in the shorter dynamic array always returns 0 (not equal),
even when the value of the longer array element is 0 or the null string, or is a missing element within the dynamic array.
You can also use the REUSE function to define behavior when specifying two dynamic arrays with different numbers of
elements.

The EQS function is the functional opposite of the NES function.

Examples

The following example uses the EQS function to return an equality comparison for each of the elements in dynamic arrays
aand b:

a=11:@VM:-22:@VM:-33:@QVM:44
b=11:0VM:-24:@VM:0:@VM:44
PRINT EQS(a,b)

! returns 1lyOyOyl

The following example compares various element values to O:

a=0:@VM:0:@VM:0:@VM:0
b=""":@VM:-0.00:@VM:@VM:""foo"
PRINT EQS(a,b)

I returns lylylyl

See Also

* GES function
* GTS function
* LES function
e LTS function
* NES function

* Dynamic Arrays

286 Caché MultiValue Basic Reference

EREPLACE

EREPLACE

Replaces a substring in a string.

EREPLACE(string,substring,replacement[,occurrence[,begin]])

Arguments
string An expression that resolves to a string.
substring An expression that resolves to a substring found within string.
replacement An expression that resolves to the substring used to replace substring.
occurrence Optional — An expression that resolves to an integer count specifying how many
occurrences of substring to replace. The default is to replace all occurrences. A value
of 0 replaces all occurrences. When using begin, you must specify an occurrence value.
begin Optional — An integer count specifying the instance of substring with which to begin
replacement. The default is to begin with the first instance of substring.
Description

The EREPLACE function replaces each occurrence of substring in a string with a new value. Whether to replace all
instances of substring is specified by the optional occurrence and begin arguments. If these are omitted, all occurrences of
substring are replaced by replacement. The replacement string can be longer or shorter than the substring it replaces.

If substring is not found in string, EREPLACE returns string unchanged. If substring is the empty string (
string is appended to the beginning of string.

) the replacement

If replacement is the empty string ("), EREPLACE removes instances of substring from string.

Examples

The following example uses the EREPLACE function to replace all instances of a substring:

x="The slow brown fox slowly leapt"
PRINT EREPLACE(X,"slow","quick')
! Returns "The quick brown fox quickly leapt™

The following example also replaces the specified instances of a substring:

x="The slow brown fox slowly leapt"
PRINT EREPLACE(X,"slow","quick™,1)

! Returns "The quick brown fox slowly leapt"”
PRINT EREPLACE(X,"slow","quick",0,2)

I Returns "The slow brown fox quickly leapt"

The following example appends the replacement value to the string:

x=""there was a slow brown fox"
PRINT EREPLACE(X,'',"Once upon a time ')
I Returns ""Once upon a time there was a slow brown fox"

See Also

e REMOVE statement
e EXTRACT function
e Strings

Caché MultiValue Basic Reference 287

Caché MultiValue Basic Functions

EXISTS

Returns the existence status of variables and their dimensioned array subnodes.

EX1STS(varname)

Arguments

varname Name of a variable to test for existence, and/or the presence of dimensioned array subnodes.

Description

The EXISTS function returns an integer code indicating whether a variable is defined (1) or not defined (0). It can also
indicate that the specified variable is not defined, but that the variable has defined subscripts. The varname parameter can
be the name of any variable (local variable, process-private global, or global), and can include a subscript (an array element).

EXISTS returns an integer code indicating that the specified variable is:
* 0: undefined and has no subnodes.

» 1: defined and has no subnodes.

» 2: undefined but has defined subnodes.

» 3:defined and has defined subnodes.

Similar information can be returned using the $SDATA function.

Note: EXISTS should not be used on system variables (@ variables). It always returns 0 for all @ variables, whether
or not the @ variable currently has a value.

Example

The following example shows the four possible EXISTS return values. The specified variables are all process-private
globals:

~la="salt"
~lIb(1)="carrot"
Ae="Ffruit”

~ le(1)="apple™

PRINT EXISTS(™||a); ! returns 1
PRINT EXISTS(™]|b); ! returns 2
PRINT EXISTS(™]]c); ! returns 3
PRINT EXISTS(™||z); ! returns O

See Also

* DIM statement

* ASSIGNED function
» $DATA function

* ISOBJECT function

e Variables

288 Caché MultiValue Basic Reference

EXP

EXP

Returns e (the base of natural logarithms) raised to a power.

EXP(number)
Arguments
number An expression that resolves to a number within the following range: On a Windows
system, if the value of number is greater than 335.601, a <MAXNUMBER> error occurs;
if the value of number is less than -295.424, EXP returns zero (0).
Description

The EXP function takes the natural log constant e and raises it to the power specified by the number argument. The constant
e (EXP(1)) is approximately 2.718282. If number is 0, the null string ("), or a non-numeric value, EXP parses number as
0 and returns 1.

The EXP function complements the action of the LN function and is sometimes referred to as the antilogarithm.

In ObjectScript, the corresponding function is $ZEXP.

Examples

The following example uses the EXP function to calculate e raised to the power of each of the integers -10 through 10:

FOR x = -10 TO 10
PRINT "Natural log to the power of ",x," = ",EXP(X)
NEXT

The following example uses the EXP function to return the hyperbolic sine of an angle:

MyAngle = 1.3
I Define angle in radians.

MyHSin = (EXP(MyAngle) - EXP(-1 * MyAngle)) 7/ 2
1 Calculate hyperbolic sine.

PRINT MyHSin

See Also

e LN function

e Derived Math Functions

Caché MultiValue Basic Reference 289

Caché MultiValue Basic Functions

EXTRACT

Finds the data value of an element of a dynamic array by delimiter position.

EXTRACT(dynarray,f[,v[.,sll)

Arguments
dynarray An expression that resolves to a dynamic array.
f An expression that resolves to an integer specifying the Field level of the dynamic array
from which to access the data. Fields are counted from 1.
v Optional — An expression that resolves to an integer specifying the Value level of the
dynamic array from which to access the data. Values are counted from 1 within a Field.
S Optional — An expression that resolves to an integer specifying the Subvalue level of
the dynamic array from which to access the data. Subvalues are counted from 1 within
a Value.
Description

The EXTRACT function returns the data value from one element of a dynamic array. Which element to access is specified
by the f, v, and s integers. For example, if f=2 and v=3, this means access the third value from the second field. If f=2 and
v is not specified, this means to access the entire second field.

If lower level delimiters exist in dynarray, setting an upper level to 0, the null string, or a non-numeric value is equivalent
to setting it to 1.

If lower level delimiters do not exist in dynarray, setting this non-existent lower level to 1, 0, the null string, or a non-
numeric value has no effect on retrieving the data value in the level above it.

You can also use the <> operator to extract an element value from a dynamic array. For further details, see the Dynamic
Arrays page of this manual.

Examples

The following example uses the EXTRACT function to access the second value from the first field of a dynamic array:

cities="New York":@VM:"London":@VM:
"Chicago':@VM:""Boston' :@VM:""Los Angeles"
PRINT EXTRACT(cities,1,2)

! Returns: "London™

The following examples all return “London”, because the higher level Field Mark value is equivalent to 1:

cities="New York":@VM:"London":@VM:
"Chicago":@VM:""Boston":@VM:"Los Angeles"
PRINT EXTRACT(cities,1,2)

PRINT EXTRACT(cities,0,2)

PRINT EXTRACT(cities,"",2)

The following examples all return “London”, because the lower Subvalue Mark level does not exist:

cities="New York":@VM:"London":@VM:
"Chicago":@VM:""Boston":@VM:"Los Angeles"
PRINT EXTRACT(cities,1,2,0)

PRINT EXTRACT(cities,1,2,1)

PRINT EXTRACT(cities,1,2,"")

290 Caché MultiValue Basic Reference

EXTRACT

Emulation

UniData systems differ in how they handle f, v, and s arguments set to 0. The SOPTIONS ATTR.0IS1 (“zero is one”) provides
support for this UniData feature. UniData systems ignore v and s arguments that are set to a negative number.

See Also

* FIND statement

* FINDSTR statement
» REMOVE statement
* REPLACE function
» Dynamic Arrays

e Variables

Caché MultiValue Basic Reference 291

Caché MultiValue Basic Functions

FADD

Adds two floating point numbers.

FADD(numl, num2)

Arguments

num An expression that resolves to a numeric value.

Description

The FADD function adds two numbers and returns the result. If a num value is a null string or a non-numeric value, FADD
parses its value as 0 (zero).

You can perform the same operation using the addition operator (+). Refer to the Operators page of this manual.

Arithmetic Operations

» To perform arithmetic operations on floating point numbers, use the FADD, FSUB, FMUL, and FDIV functions, or
use the standard arithmetic operators.

e To perform arithmetic operations on numeric strings, use the SADD, SSUB, SMUL, and SDIV functions.
» To perform integer division, use the DIV function. To perform modulo division, use the MOD function.

» Toperform arithmetic operations on corresponding elements of dynamic arrays, use the ADDS, SUBS, MULS, DIVS,
and MODS functions.

» Toadd together the element values within a single dynamic array, use either the SUM function (for single-level dynamic
arrays) or the SUMMATION function (for multi-level dynamic arrays).

e To perform numeric comparison operations, use the SCMP function, or use the standard comparison operators.

Examples

The following example uses the FADD function to add two floating point numbers:

a=11.95
b=10.25
PRINT FADD(a,b); ! returns 22.2

See Also

» SADD function

+ ADDS function

* SUM function
SUMMATION function

» Operators

292 Caché MultiValue Basic Reference

FDIV

FDIV

Divides two floating point numbers.

FDIV(numl,num2)
Arguments

numl The dividend. An expression that resolves to a number or numeric string.

num2 The divisor. An expression that resolves to a non-zero number or numeric string.
Description

The FDIV function divides the value of num1 by num2, and returns the quotient. If a value is 0, a null string, or a non-
numeric value, FDIV parses it as 0 (zero). If num1is 0, FDIV returns a result of 0. If num2 is 0, FDIV generates a <DIVIDE>
error.

You can perform the same operation using the Division operator (/). Refer to the Operators page of this manual.

Arithmetic Operations

» To perform arithmetic operations on floating point numbers, use the FADD, FSUB, FMUL, and FDIV functions, or
use the standard arithmetic operators.

» To perform arithmetic operations on humeric strings, use the SADD, SSUB, SMUL, and SDIV functions.
» To perform integer division, use the DIV function. To perform modulo division, use the MOD function.

» Toperform arithmetic operations on corresponding elements of dynamic arrays, use the ADDS, SUBS, MULS, DIVS,
and MODS functions.

» To perform numeric comparison operations, use the SCMP function, or use the standard comparison operators.

Examples

The following example uses the FDIV and the DIV functions to divide the same two floating point numbers:

a=11.95

b=10.25

PRINT FDIV(a,b); ! returns 1.165853658536585366
PRINT DIV(a,b); ! returns 1

See Also

* SDIV function
» DIVS function
» DIV function
* MOD function
« MODS

e Operators

Caché MultiValue Basic Reference 293

Caché MultiValue Basic Functions

FIELD

Returns the specified substring, based on a delimiter.

FIELD(string,delimiter,count[,range])

Arguments

string An expression that resolves to a string. The target string from which a substring is to
be returned. If you specify a null string (") as the target string, FIELD always returns
a null string.

delimiter An expression that resolves to a single character, specified as a number or a string.
This character is used as a delimiter to identify substrings. This character cannot also
be used as a data value within string. The delimiter characters used in dynamic arrays
are listed in the Dynamic Arrays general concepts page of this manual.

count An expression that resolves to an integer that specifies which substring to return from
the target string. Substrings are separated by a delimiter, and counted from 1. A decimal
number is truncated to an integer. A string is parsed as a number until a non-numeric
character is encountered. Thus “7dwarves”is parsed as 7. A count value of 0, a negative
number, the null string, or a non-numeric string is the same as count=1.

range Optional — An expression that resolves to an integer specifying the number of delimited
substrings to return, starting with count. If omitted, the default is 1.

Description

The FIELD function returns the substring which is the nth piece of string, where the integer n is specified by the count
parameter, and substrings are separated by a delimiter character. The delimiter itself is not returned.

If count is 1, FIELD returns the first piece of the string. This is the piece of the string from the beginning of the string to
the first delimiter. If the first character of the string is a delimiter, count=1 returns the null string.

You can follow the FIELD function with the COL1 function to determine the string position of the start delimiter for the
returned substring. If count is 1, COL1 returns 0. You can determine the end delimiter position by calling the COL2
function.

If count is greater than the number of delimited substrings, FIELD returns the null string. In this case, COL1 and COL2
both return 0.

If you specify a delimiter that is not located in string and count=1, FIELD returns the entire string. If count>1, FIELD
returns the null string.

If you specify the null string as a delimiter, FIELD returns the entire string, regardless of the value of count.

If the optional range argument is set to an integer value greater than 1, that number of sequential delimited substrings is
returned as a single string. Delimiters within the string are included. If range is a decimal number, it is truncated to its
integer value. Setting range to any value other than a numeric 2 or greater is treated as setting it to 1. If range is larger than
the number of remaining substrings in the string, the remaining substrings are returned.

Note: The FIELD and GROUP functions are functionally identical.

Emulation

By default Caché MV Basic permits only a single-character delimiter. jJBASE emulation permits a multi-character delimiter.
This option is set using the FULL.DELIM option.

294 Caché MultiValue Basic Reference

FIELD

Examples

The following example uses the FIELD function to return the first five delimited items in a string:

colors="Red"Green”™Blue~Yel low*Orange”Black"
FOR x=1 TO 5

PRINT FIELD(colors,"~",x)
NEXT

The following example uses the FIELD function to return the first three elements in a dynamic array:

colors="Red":@VM:""Green":@QVM:"Blue":@VM:""Yel low"
FOR x=1 TO 3

PRINT FIELD(colors,CHAR(253),x)
NEXT

The following example uses count and range:

colors="Red"Green”™Blue~Yel low*Orange”Black"
PRINT FIELD(colors,"",2,3)

Returns “Green”Blue”Yellow”.

See Also

* FIELDS function
* GROUP function
* COL1 function

* COL2 function

e Strings

* Dynamic Arrays

Caché MultiValue Basic Reference 295

Caché MultiValue Basic Functions

FIELDS

Returns a dynamic array of substrings, based on a delimiter.

FIELDS(dynarray,delimiter,count[,range])

Arguments

dynarray An expression that resolves to a dynamic array. The source dynamic array from which
a dynamic array of substrings is to be extracted.

delimiter An expression that resolves to a single character, specified as a number or a string.
This character is used as a delimiter to identify substrings within elements. This
character cannot also be used as a data value within dynarray. The delimiter characters
used in dynamic arrays are listed in the Dynamic Arrays general concepts page of this
manual.

count An expression that resolves to an integer that specifies which substring to return from
each element of dynarray. Substrings are separated by a delimiter, and counted from
1. A decimal number is truncated to an integer. A string is parsed as a number until a
non-numeric character is encountered. Thus “7dwarves” is parsed as 7. A count value
of 0, a negative number, the null string, or a non-numeric string is the same as count=1.

range Optional — An expression that resolves to an integer specifying the number of delimited
substrings to return for each element, starting with count. If omitted, the default is 1.

Description

The FIELDS function returns a dynamic array of substrings. Each substring is the nth piece of each element, where the
integer n is specified by the count parameter, and substrings are separated by a delimiter character. The delimiter itself is
not returned.

If count is 1, FIELDS returns the first piece of each element. This is the piece of the string from the beginning of the element
to the first delimiter. If the first character of the element is a delimiter, count=1 returns the null string.

If count is greater than the number of delimited substrings in an element, FIELDS returns the null string for that element.

If you specify a delimiter that is not located in dynarray and count=1, FIELDS returns the entire dynarray as a single element.
If count>1, FIELDS returns the null string.

If you specify the null string as a delimiter, FIELDS returns the entire dynarray, regardless of the value of count.

If the optional range argument is set to an integer value greater than 1, that number of sequential delimited substrings is
returned as a single string. Delimiters within the string are included. If range is a decimal number, it is truncated to its
integer value. Setting range to any value other than a numeric 2 or greater is treated as setting it to 1. If range is larger than
the number of remaining substrings in the element, the remaining substrings are returned.

The FIELDS function returns delimited substrings from a dynamic array. The FIELD and GROUP functions can be used
to return a delimited substring from a string.

Examples

The following example uses the FIELDS function to return the area code from each telephone number element in an array,
using the hyphen (-) as a delimiter:

tele="617-123-4567":@VM:""401-555-4321":@VM:"'603-987-6543" : @VM: "'508-246-8024
areacodes=FIELDS(tele,"-"",1)
PRINT areacodes

1 Returns: 617y401y603y508

296 Caché MultiValue Basic Reference

FIELDS

See Also

* FIELD function
* GROUP function
e Strings

e Dynamic Arrays

Caché MultiValue Basic Reference 297

Caché MultiValue Basic Functions

FIELDSTORE

Replaces data in a delimited string.

FIELDSTORE(string,delimiter,count,multiple,newval)

Arguments
string An expression that resolves to a string. The source string to be modified. string can be
a dynamic array.
delimiter An expression that resolves to a single character that serves as a delimiter within string
count An expression that resolves to an integer that specifies which delimited string to use as
the starting point for the replacement operation.
multiple An expression that resolves to an integer specifying how many delimited strings to
replace with newval.
newval An expression that resolves to a string. The data to be inserted.
Description

The FIELDSTORE replaces one or more delimited substrings in string with a specified newval, then returns the resulting
string. The source string remains unchanged. FIELDSTORE adds and removes delimiters as needed.

» Toreplace a delimited substring with another substring, specify a count that corresponds to an existing delimited string
and multiple=1.

» To replace more than one delimited substrings with a single delimited substring, specify a count that corresponds to
an existing delimited string and a multiple greater than one. Both the replaced substrings and their delimiters are
removed.

» Toappend a delimited substring to the end of string, specify a count greater than the number of existing delimited
strings. FIELDSTORE adds the appropriate number of delimiter characters, if necessary, before the newval substring.

e Toprepend adelimited substring to the beginning of string, specify a count=1 and multiple=0. FIELDSTORE appends
a delimiter character and the newval substring.

» To delete a delimited substring, specify a count that corresponds to an existing delimited string and specify newval as
the empty string.

If delimiter is not found in string, and count is 1, 0, or the null string, newval replaces string and is returned with no
delimiters. If delimiter is not found in string, and count is > 1, the specified delimiter and newval are appended to string.
The number of delimiters appended being count minus 1.

Examples

The following example uses the FIELDSTORE function to return a string that replaces the first delimited substring in the
string:

cities="New York~London”~Chicago”Boston”~Los Angeles"
PRINT FIELDSTORE(cities,"~",1,1,"Providence™)
I Returns: "Providence”London”Chicago”Boston”Los Angeles"

298 Caché MultiValue Basic Reference

FIELDSTORE

The following example uses the FIELDSTORE function to return a string that replaces the second Value Mark delimited
substring in the dynamic array:

cities="New York":@VM:"London":@VM:"'*Chicago":@VM:"'Boston":@VM:"'Los Angeles"
PRINT cities

1 Returns: "New YorkylLondonyChicagoyBostonylLos Angeles"
PRINT FIELDSTORE(cities,CHAR(253),2,1,"Providence™)

1 Returns: "New YorkyProvidenceyChicagoyBostonylLos Angeles™

The following example uses the FIELDSTORE function to replace the second Value Mark delimited substring and the
next two substrings in a dynamic array:

cities="New York":@VM:"London":@VM:"'*Chicago":@VM:"'Boston":@VM:"'Los Angeles"
PRINT cities

I Returns: "New YorkylLondonyChicagoyBostonylLos Angeles"
PRINT FIELDSTORE(cities,CHAR(253),2,3,"Providence™)

I Returns: "New YorkyProvidenceyLos Angeles"

See Also

* NS statement

* COUNTS function
* DELETE function

* INSERT function

* EXTRACT function

e Dynamic Arrays

Caché MultiValue Basic Reference 299

Caché MultiValue Basic Functions

FILEINFO

Returns information about an open file.

FILEINFO(Filevar,key)

Arguments
filevar An expression that resolves to a file variable name used to refer to the file in Caché
MVBasic.
key An expression that resolves to an integer code used to specify what file information to
return. Available values are 0 through 3.
Description

The FILEINFO function returns various types of information about an open file. You must specify a filevar supplied by
an open statement, such as OPEN or OPENSEQ. You can use FILEINFO(Filevar,0) to determine if filevar is valid.
If filevar is not valid and key is 1 through 3 (inclusive), FILEINFO returns the empty string.

The following are the available key options and return values:

0 File variable: 1 if filevar is valid. Otherwise 0.

1 VOC name: The VOC name of a MultiValue file. For example, myfile. If filevar does not
refer to a MultivValue file, returns a null string.

2 Pathname or global name: For a MultiValue file, the name of a Caché global variable. For
example, 2| ""'USER" |myfi le. For a sequential file, the fully-qualified pathname of the file,
as specified in the OPENSEQ statement. If the file does not exist, this is returned as a
directory path.

3 File storage type: O=unknown. 1=top level global (static hashed file) the default for MultiValue
data files. 2=subscripted global subnode. 4=directory. 5=sequential file.

Other MultiValue implementations may support higher key option values; these are not supported by Caché MVBasic.

Examples

The following example opens a sequential file, tests the file variable, then uses the file variable to return the file's pathname
and the file type (in this case, type 5):

OPENSEQ "'C:\temp\filel" TO myfile
IF FILEINFO(myfile,0)=1

THEN PRINT "valid file variable"

ELSE PRINT *"file variable not valid"”

END
PRINT "File pathname is:",FILEINFO(myfile,2)
PRINT "File type is:",FILEINFO(myfile,3)
CLOSESEQ myfile

See Also

e OPEN statement
e OPENSEQ statement

300 Caché MultiValue Basic Reference

FIX

FIX

Returns a floating point number with the specified number of decimal digits.

FIX(number[,precision[,mode]])

Arguments
number An expression that resolves to a number or a numeric string.
precision Optional — An expression that resolves to an integer specifying the number of decimal
digits of precision. The default is 4.
mode Optional — An expression that resolves to a boolean flag that specifies whether to round
or truncate number. O=round; 1=truncate. The default is O.
Description

The FIX function takes a floating point number and returns this number rounded or truncated to the specified number of
fractional digits. The precision is the maximum number of fractional digits. FIX does not pad a number with trailing zeros,
and removes trailing zeros that result from the rounding process. Thus FIX(12.99, 1) returns 13, not 13.0.

The precision argument is optional. If not specified, FIX either takes its precision from a preceding PRECISION command,
or takes the default precision of 4. A value of 0, the null string, or a non-numeric string does not set precision, and the
default precision is taken. You must specify a precision value to specify a mode value.

Examples

The following example shows the uses of the FIX function:

PRINT FIX(123.987654);
PRINT FIX(123.987654,2);
PRINT FIX(123.987654,1);
PRINT FIX(123.987654,0):
PRINT FIX(123.987654,2,0);
PRINT FIX(123.987654,2,1):

Returns 123.9877
Returns 123.99
Returns 124
Returns 123.9877
Returns 123.99
Returns 123.98

See Also
e PRECISION command

Caché MultiValue Basic Reference 301

Caché MultiValue Basic Functions

FMT

Formats a value for display.

FMT(string,format)
Arguments
string An expression that resolves to a string or number to be formatted for display.
format An expression that resolves to a string consisting of positional letter and number codes specifying

the display format for string.

Description

The FMT function returns the string value formatted as specified by format. This formatting may include padding or
rounding/truncating of string. The most common use for FMT is to provide a uniform display format for decimal numbers.

The format string has the following format:

wFRnm

w Optional — The overall width of the display field, specified as a positive integer. Used to
impose a uniform width (number of characters) on string. Different operations are performed
if w is larger or smaller than the length of string, as described below.

f Optional — A fill character, specified as a single character. (Certain fill characters, as described
below, must be specified as a quoted string.) You must specify w to use f. If you specify w,
but do not specify f, it defaults to the space character.

R Optional — The letter “R” or “L specifying right or left justification. This letter code is not
case-sensitive. If you do not specify a letter code, FMT defaults to left justification. (The letters
“T" and “U” are synonyms for “L”).

n Optional — A positive integer in the range 0 through 9 that specifies the number of fractional
digits to the right of the decimal place. If you specify n, it must either be the only code in
format, or it must be preceded by the letter “R” or “L". If you do not specify n, FMT defaults
to number of fractional digits in string. Zero-padding and rounding are applied as needed.

m Optional — A positive integer in the range 0 through 9 that specifies the repositioning of the
decimal point. Both n and m must be specified. The number 4 specifies do not reposition the
decimal point (the default). Integers higher than 4 move the decimal point to the left; integers
lower than 4 move the decimal point to the right. Zero-padding and rounding are applied as
needed.

There are two basic uses of format:
e To return fractional numbers in a standard form.

e Toreturn strings in a standard form.

FMT also supports a different format to support other legacy platform styles: Rfw.

302 Caché MultiValue Basic Reference

FMT

Formatting Numbers

For fractional numbers, the most basic format is "'Rn**, where “R” is either the letter “R” specifying right justification or
the letter “L” specifying left justification, and n is the number of digits to the right of the decimal point to display. If string
is an integer or has fewer fractional digits than n, zero padding is added. If string has more digits than n, the number is
rounded to the specified number of fractional digits. If n is zero, the number is rounded to an integer and the decimal point
is removed. If string is less than 1, specifying n supplies a zero (0) to the left of the decimal point. If string contains any
character other than a number, the decimal point character, or a plus or minus sign, FMT does no zero padding or rounding.

A more complex example of format is "*10#R5"", where “10” is the overall width of the display field elements, “#” is the
fill character to use to fill out a display field element. Because “R” indicates right justification, these fill characters will
appear to the left of the string value. The n value of 5 indicates that the string value is to have 5 digits to the right of the
decimal place. When an n value is present, FMT only formats a number; a non-numeric string is returned unchanged.

If string is 0, FMT applies numeric formatting; it returns the value zero with n fractional digits and m shifting of the decimal
point. If string is the null string ("), FMT numeric formatting returns the null string. This null string behavior is emulation-
dependent: Caché, jBASE, and UniData emulations treat a null string as null. The other MultiValue emulations treat a null
string as zero, and apply numeric formatting.

Formatting Strings

For strings, the most basic format is **wf**, where “w” is an integer specifying width and f is a literal fill character (for
example "*9'). You can use w (width) and f (fill) formatting to make a display field a standard width. By default, the
justification is “L” (left); you can, of course, specify “R” for right justification.

The w (width) value may be larger than, equal to, or smaller than the number of characters (including the decimal point)
of string. If string is a fractional number, w is applied after FMT adjusts the number of fractional digits (by rounding or
zero padding).

» Ifwis greater than the length of string, FMT appends f fill characters to string making the resulting string w characters
in length. If “L” (left justification) fill characters are applied to the end of the string; if “R” (right justification) fill
characters are applied to the beginning of string.

» Ifwisequal to the length of string (after rounding or zero padding of fractional digits), no operation is performed.

e Ifwis less than the length of string, FMT inserts a Text Mark (@TM, CHAR(251)) character after every w count of
characters. If “L” (left justification), characters are counted forward from the beginning of the string; if “R” (right
justification), characters are counted backward from the end of the string. FMT then appends f fill characters so that
all Text Mark delimited substring elements are w characters long (the Text Mark itself is not counted). If “L” (left
justification) fill characters are applied to the end of the string; if “R” (right justification) fill characters are applied to
the beginning of string.

For example:

e InwfRnm format: FMT(**ABC",""15.R"), where '15' is the Width, and "." is the Fill character.

e InRfw format: FMT(*"ABC","'R.15""), where '15' is the Width, and "." is the Fill character.

The fill character is optional; if omitted, filling is done with blank spaces. The fill character cannot be the same as the
format string delimiter character. If the fill character is a number, the backslash (\), or the letters “L”, “R”, “T”, or “U” it

must be enclosed in string delimiter quotes that are different than the format string. For example: **10"0"R2"". You cannot
use the backslash as a string delimiter for the fill character.

FMT is CEMU dependent. So, for example, for CEMU ULTIMATE, the fill character must be one of the following: '#%*".

Caché MultiValue Basic Reference 303

Caché MultiValue Basic Functions

Implicit Formatting

The same formatting codes can be used with the CRT, PRINT, or DISPLAY commands. This is known as implicit format-
ting, because the FMT function is not specified. For example:

PRINT 1.2 "R4" ;1 Returns 1.2000
Which is exactly equivalent to:
PRINT FMT(1.2,"R4™) ;! Returns 1.2000

The formatting codes apply only to the argument that they immediately precede. For example, the following two statements
are functionally identical:

CRT "Over':"There' "R#20"
CRT "Over':FMT("There",""R#20'"")

Implicit formatting is just one of the ways that these commands can interpret a second argument. Many of the OCONV
function conversion codes can also be used with implicit (or explicit) formatting. For example, date conversion:

PRINT OCONV(14100,"D*); 1 08 AUG 2006
PRINT 14100 "'D"; 1 08 AUG 2006"
PRINT FMT(14100,"D"); 1 08 AUG 2006

Because the letter codes “R” and “L” are used as formatting (FMT) codes, the corresponding OCONV conversion codes
cannot be used for implicit formatting.

An expression can be used to specify an implicit formatting string, with the following limitation: a Caché global variable
cannot be used for implicit formatting. This is because the caret () that Caché uses to indicate a global is often interpreted
in these contexts as the exponentiation operator. A Caché global can be used for explicit formatting in the FMT function.

Examples

The following examples use “Rn” formatting to format a numeric values so that it displays 4 decimal digits. Note that both
zero padding and rounding are performed as needed:

PRINT FMT(1.2,"R4"); I Returns 1.2000
PRINT FMT(1.77777,"R4'"); ! Returns 1.7778
PRINT FMT(.4,"R4'); ! Returns 0.4000
PRINT FMT(O,""R4"); I Returns 0.0000

See Also

* FMTS function

* LEN function

* OCONV function

* RIGHT function

* DISPLAY statement

* CRT statement

* PRINT statement

» ObjectScript SMVFMT function, described in the Caché ObjectScript Reference

304 Caché MultiValue Basic Reference

FMTS

FMTS

Formats each element of a dynamic array for display.

FMTS(dynarray, format)

Arguments
dynarray An expression that resolves to a dynamic array to be formatted for display.
format An expression that resolves to a string consisting of positional letter and number codes specifying
the display format for the elements of dynarray.
Description

The FMTS function returns the dynarray value with each element formatted as specified by format. This formatting may
include justification, character filling, and the rounding or zero padding of numeric element values. The most common use
for FMTS is to provide a uniform display format for fractional numbers.

The format string has the following format:

wfRn

w Optional — The overall width of the display field, specified as a positive integer. Used to
impose a uniform width (humber of characters) for each element of dynarray. Different
operations are performed if w is larger or smaller than the length of an element, as described
in the FMT function.

f Optional — A fill character, specified as a single character. If the fill character is a number,
the backslash (\), or the letters “L”, “R”, or “T” it must be enclosed in string delimiter quotes.
You must specify w to use f. If you specify w, but do not specify f, it defaults to the space
character.

R Optional — The letter “R” or “L’ specifying right or left justification. This letter code is not
case-sensitive. If you do not specify a letter code, FMTS defaults to left justification.

n Optional — The number of fractional digits to the right of the decimal place, specified as a

positive integer. If you specify n, it must either be the only code in format, or it must be
preceded by the letter “R” or “L”". If you do not specify n, FMTS defaults to number of fractional
digits in string.

There are two basic uses of format:

e Toreturn fractional numbers in a standard form. FMTS can be used to round a fractional number to an integer or to a
specified number of fractional digits. If the specified number of fractional digits is larger than the number of fractional
digits in the element value, FMTS zero pads the additional digits.

e Toreturn strings in a standard form. FMTS can left justify or right justify a string and add a fill character before or
after to make each element contain the same number of characters.

For further details on format codes, refer to the FMT function.

Caché MultiValue Basic Reference 305

Caché MultiValue Basic Functions

Examples

The following example uses “Rn” formatting to format the elements of a dynamic array so that all elements display 4 dec-
imal digits. Note that both zero padding and rounding are performed as needed:

nums=""1_2":@VM:""2.45":@VM:""'3" :@VM:""'4.123456" :@VM:""0"
PRINT FMTS(nums,''R4™)
I Returns: 1.2000y2.4500y3.0000y4.1235y0.0000

The following example uses “wfL” formatting to format the elements of a dynamic array so that all elements display seven
characters. Note that the character is used as the fill character:

Fflints="FRED'" :@VM:""BARNEY" :@VM:""WILMA" :@VM: ""PEBBLES"
PRINT EMTS(Flints,"7/L™)

! Returns: FREDMYBARNEY/YWILMANMYPEBBLES
PRINT FMTS(Fflints,"7/R™)

I Returns: "M/2FREDy”BARNEYy~WILMAYPEBBLES

See Also

* FMT function

* LEN function

* RIGHT function

e Dynamic Arrays

306 Caché MultiValue Basic Reference

FMUL

FMUL

Multiplies two floating point numbers.

FMUL(num1,num2)

Arguments

num An expression that resolves to a number or numeric string.

Description

The FMUL function multiplies two numbers and returns the product. If a num value is a null string or a non-numeric value,
FMUL parses its value as 0 (zero).

You can perform the same operation using the multiplication operator (*). Refer to the Operators page of this manual.

Arithmetic Operations

» To perform arithmetic operations on floating point numbers, use the FADD, FSUB, FMUL, and FDIV functions, or
use the standard arithmetic operators.

e To perform arithmetic operations on numeric strings, use the SADD, SSUB, SMUL, and SDIV functions.
» To perform integer division, use the DIV function. To perform modulo division, use the MOD function.

» Toperform arithmetic operations on corresponding elements of dynamic arrays, use the ADDS, SUBS, MULS, DIVS,
and MODS functions.

e To perform numeric comparison operations, use the SCMP function, or use the standard comparison operators.

Examples

The following examples use the FMUL function to multiply two floating point numbers:
PRINT FMUL(3.33,78.0); ! returns 259.74

See Also

e SMUL function
¢ MULS function

e Operators

Caché MultiValue Basic Reference 307

Caché MultiValue Basic Functions

FOLD

Divides a string into substring units separated by a delimiter.

FOLD(string, length[,delim])

Arguments
string An expression that resolves to a string or numeric expression.
length An expression that resolves to an integer specifying the maximum number of characters
per substring. If you specify a fractional value, FOLD truncates it to its integer portion.
By default, any value less than 1 returns the empty string (see Emulation section below).
delim Optional — An expression that resolves to the delimiter character to use. If omitted or
set to the empty string (") the default is @FM. This argument is provided for D3
compatibility. (Note that in D3 the default delimiter is @VM.)
Description

The FOLD function returns the specified string as a string divided into subunits by delimiter characters. This delimiter
character by default is the @FM (also known as @AM) field mark character. FOLD places field mark delimiters as follows:

» Ifaspace character is encountered within length number of characters, FOLD replaces the space character with a field
mark delimiter, then begins counting length characters from that point. If there are multiple space characters within
length, FOLD only replaces the last space character prior to reaching the length character count. If the length character
is a space character, FOLD replaces it with a field mark delimiter.

» Ifaspace character is not encountered within length number of characters, FOLD inserts a field mark delimiter, then
begins counting length characters from that point.

FOLD does not place a field mark delimiter before the first character or after the last character of string, unless the first or
the last character is a space character. If the input string contains a field mark delimiter character, it is counted as an ordinary
character. Note that because field mark delimiters replace spaces, but are inserted between non-space characters, the returned
string can be vary from being the same length to being significantly longer than the input string.

FOLD counts characters, not bytes. You can use the LEN function to determine the number of characters in a string. You
can use the LENS function to determine the number of characters in each delimited substring.

The string argument can be a quoted string or a numeric expression. If string is the empty string, FOLD returns the empty
string.

If length is equal to or larger than the number of characters in string, string is returned unchanged. If length is less than 1
or a non-numeric string, FOLD returns the empty string.

If string is a numeric expression, prior to performing the FOLD operation MVBasic performs all arithmetic operations and
converts numbers to canonical form, with leading and trailing zeroes, a trailing decimal point, and all signs removed except
a single minus sign. Numeric strings are not converted to canonical form.

Emulation
You can change the behavior of FOLD by setting the following $OPTIONS statement values:

e FOLD.DELIM.VM sets the delimiter character to @VM (value mark) rather than @FM (field mark). This provides
compatibility with D3 applications.

* FOLD.LEN.1 sets the behavior for a length of less than 1, by having FOLD default to a length of 1. Otherwise, a value
less than 1 (for example, 0, .5, or —1) returns the empty string. This provides compatibility with jBASE applications.

308 Caché MultiValue Basic Reference

FOLD

Examples

The following example uses the FOLD function to return a string delimited by Field Marks (p) into fixed-length units
specified by length:

PRINT FOLD("InterSystems',3); ! Returns "IntperSpystpems"
PRINT FOLD(+0099.900,2); I Returns ""99p.9"
PRINT FOLD(''+0099.900",2); I Returns "+0p09p9.p90p0""

The following example uses the FOLD function to return a string delimited according to the spaces in the source string
and the length count:

PRINT FOLD(*'The quick brown fox',19);
1 Returns "The quick brown fox"
PRINT FOLD(*'The quick brown fox',16);
1 Returns ""The quick brownpfox"
I (b delimiter replaces the last space;
1 character 16 is a space)
PRINT FOLD(*'The quick brown fox',15);
1 Returns "The quick brownpfox"
1 (b delimiter inserted at count=15)
PRINT FOLD(*'The quick brown fox',14);
1 Returns "The quickpbrown fox"
1 (b delimiter replaces the last space prior
1 to count=14)
PRINT FOLD("'The quick brown fox'",5);
1 Returns "Thepquickpbrownpfox""
PRINT FOLD(*'The quick brown fox',4);
1 Returns ""Thepquicpkpbrowpnpfox™
PRINT FOLD(*'The quick brown fox',3);
I Returns ""Thepquipckpbropwnpfox"
PRINT FOLD("The quick brown fox",2);
1 Returns "Thpepqupicpkpbrpowpnpfopx""

See Also

* BYTELEN function
* LEN function

* LENS function

Caché MultiValue Basic Reference 309

Caché MultiValue Basic Functions

FSUB

Subtracts two floating point numbers.

FSUB(numl1, num2)
Arguments
numl The minuend. An expression that resolves to a number or numeric string.
num2 The subtrahend. An expression that resolves to a number or numeric string.
Description

The FSUB function subtracts num2 from num1, expressed as either numbers or as strings, and returns the result. Leading
plus signs and leading and trailing zeros are ignored. A string is parsed as a number until a non-numeric character is
encountered. Thus “7dwarves” is parsed as 7. If a num value is a null string or a non-numeric value, FSUB parses its value
as 0 (zero).

The FSUB function performs a subtraction on two numbers and returns the result. You can perform the same operation
using the subtraction operator (-). Refer to the Operators page of this manual.

Arithmetic Operations

» To perform arithmetic operations on floating point numbers, use the FADD, FSUB, FMUL, and FDIV functions, or
use the standard arithmetic operators.

e To perform arithmetic operations on humeric strings, use the SADD, SSUB, SMUL, and SDIV functions.
e To perform integer division, use the DIV function. To perform modulo division, use the MOD function.

» To perform arithmetic operations on corresponding elements of dynamic arrays, use the ADDS, SUBS, MULS, DIVS,
and MODS functions.

e To perform numeric comparison operations, use the SCMP function, or use the standard comparison operators.

Examples

The following example uses the FSUB function to subtract two floating point numbers:

a=11.95
b=10.25
PRINT FSUB(a,b); ! returns 1.7

See Also

e SSUB function
e SUBS function

e Operators

310 Caché MultiValue Basic Reference

GES

GES

Performs a greater than or equal to comparison on elements of two dynamic arrays.

GES(dynarrayl,dynarray2)

Arguments

dynarray An expression that resolves to a dynamic array.

Description

The GES function compares each corresponding numeric element from two dynamic arrays and determines if the first
value is greater than or equal to the second. It returns a dynamic array of boolean values in which each element comparison
is represented. It returns a 1 if the dynarrayl element value is greater than or equal to the dynarray2 element value. It
returns a 0 if the dynarrayl element value is less than the dynarray2 element value.

GES converts numbers to canonical form, resolving multiple signs and removing leading and trailing zeros from element
values before making the comparison. If an element value is a missing element, a null string, or a non-numeric value, GES
assigns it a value of 0 for the purpose of this comparison.

If the two dynamic arrays have different numbers of elements, the returned dynamic array has the number of elements of
the longer dynamic array. By default, the shorter dynamic array is padded with 0 value elements for the purpose of compar-
ison. You can also use the REUSE function to define behavior when specifying two dynamic arrays with different numbers
of elements.

For two elements to be compared, they must be on the same dynamic array level. For example, you cannot compare a value
mark (@VM) dynamic array element to a subvalue mark (@SM) dynamic array element.

Examples

The following example uses the GES function to return a greater than comparison for each of the elements in dynamic
arrays a and b:

a=10:@VM:-22:@VM:-33:@VM:45
b=10:@VM:-23:@VM:0:@VM:44
PRINT GES(a,b)

! returns 1lylyOyl

The following example compares dynamic arrays of different lengths. Note that missing elements within the dynamic array
(@VM:@VM) are compared, but unmatched elements from the longer array always return 1:

a=11:@VM:21:@VM:@VM:41
b=10:@VM:@VM:30:@VM:40:@VM:50:@VM:60
PRINT GES(a,b)

See Also

» EQS function
* GTS function
* LES function
e LTS function

e Dynamic Arrays

Caché MultiValue Basic Reference 311

Caché MultiValue Basic Functions

$GET

Returns the data value of a specified variable.

$CGET(variable[,default])

Parameters
variable A local, global, or process-private global variable, subscripted or unsubscripted. The
variable may be undefined. variable may be specified as an object property with the
syntax obj->property.
default Optional — An expression that resolves to a value to be returned if the variable is
undefined. If default is a variable it must be defined, even when not used.
Description

$GET returns the data value of a specified variable. The handling of undefined variables depends on whether you specify
a default parameter.

» $GET(variable) returns the value of the specified variable, or the null string if the variable is undefined. The variable
parameter value can be the name of any variable, including a subscripted array element (either local or global).

» $GET(variable,default) provides a default value to return if the variable is undefined. If the variable is defined, $GET
returns its value.

Handling Undefined Variables

$GET defines handling behavior if a specified variable is undefined. The basic form of $GET returns a null string (") if
the specified variable is undefined.

$DATA tests if a specified variable is defined. It returns 0 if the variable is undefined.

The Undefined property of the Config.Miscellaneous class defines handling behavior for all undefined variables system-
wide. The Undefined() method of the %SYSTEM.Process class defines handling behavior for all undefined variables for
the current process. Setting this property or method has no effect on $GET or $DATA handling of specified variables.

Parameters

variable

The variable whose data value is to be returned. It can be a local variable, a global variable, or a process-private global
variable. It can be either subscripted or unsubscripted. It can be a multidimensional object property. The variable does not
need to be a defined variable. The variable can be defined and set to the null string ("*"). If a global variable, it can contain
an extended global reference. If a subscripted global variable, it can be specified using a naked global reference. Even when
referencing an undefined subscripted global variable, variable resets the naked indicator, affecting future naked global
references, as described below.

$GET should not be used on system variables (@ variables). It always returns the null string for all @ variables, whether
or not the @ variable currently has a value.

default

The data value to be returned if variable is undefined. It can be any expression, including a local variable, a global variable,
or a process-private global variable, either subscripted or unsubscripted. default can be a system variable (@ variable), with
or without a non-null value.

312 Caché MultiValue Basic Reference

$GET

If default is a local variable, a global variable, or a process-private global variable, it must be defined variable. If default
is an undefined variable, $GET issues an <UNDEFINED> error, even when variable is defined.

If default is a global variable, it can contain an extended global reference. If a subscripted global variable, it can be specified
using a naked global reference. If present, default resets the naked indicator, affecting future naked global references.

Examples

In the following example, the variable test is defined and the variable xtest is undefined:

test="banana"
tdef=$GET (test)
tundef=$GET (xtest)
PRINT tdef 1 $GET returned value of test
PRINT tundef ! $GET returned null string for xtest
PRINT $GET(xtest," none')
1 $GET returns default of "none"™ for undefined xtest

In the following example, a multidimensional property is used as the variable value. This example returns the names of
defined namespaces:

obj = "%ResultSet"->%New(""%SYS.Namespace:List")
obj->Execute()

crt $GET(obj->Data,'none'™) ! returns "none"
obj->Next()

crt $GET(obj->Data,''none'™) ! returns "none"

crt $GET(obj->Data(*'Nsp')) ! returns "%SYS"
obj->Next()

crt $GET(obj->Data('Nsp')) ! returns next namespace
obj->Next()

crt $GET(obj->Data(*'Nsp')) ! returns next namespace

A similar program returns the same information using the $DATA function.

Notes

$GET Compared to $DATA

$GET provides an alternative to $DATA tests for both undefined variables (SDATA=0) and array nodes that are downward
pointers without data ($DATA=10). If the variable is either undefined or a pointer array node without data, $GET returns
a null string (") without an undefined error.

Note that SDATA tests are more specific than SGET tests because they allow you to distinguish between undefined elements
and elements that are downward pointers only.

See Also

» $DATA function

e $ZUTIL(18) Set Undefined Variable Handling function in Caché ObjectScript Reference

e $ZUTIL(69,0) Set Undefined Variable Handling System-wide function in Caché ObjectScript Reference
» Using Multidimensional Storage (Globals) in Using Caché Globals

Caché MultiValue Basic Reference 313

Caché MultiValue Basic Functions

GETENV

Returns the value of the specified environment variable.

GETENV(name)
Arguments
name An expression that resolves to the name of an environment variable, specified as a
quoted string.
Description

The GETENYV function returns the current value of the specified environment variable. Environment variable names are
not case-sensitive.

If the specified name is a literal or a defined variable that is not an environment variable, GETENV returns an empty string.
If name is a system variable (@ variable) that has a current value, GETENV returns an empty string; if name is an @
variable that does not have a current non-null value, GETENV generates an <ILLEGAL VALUE> error.

On a Windows system, you can display a list of all of your environment variables by issuing the SH MultiValue command
from the MultiValue Shell prompt, as follows:

USER:SH set
To create a file containing this list, you can use the following MultiValue command:
USER:[WRITE $ZF(-1,"set>c:\temp\myenvset.txt')
Examples
The following example returns the PATH environment variable:
PRINT GETENV(''PATH')
The following example returns the operating system environment variable:
PRINT GETENV(''0S™)
The following example returns the current username environment variable:

PRINT GETENV("'USERNAME'™)

See Also

e SYSTEM function

314 Caché MultiValue Basic Reference

GETPTR

GETPTR

Returns print channel details.

GETPTR(channel)

Arguments

channel An expression that resolves to an integer specifying an existing print channel. Valid
values are 0 through 255.

Description

The GETPTR function returns a string consisting of a comma-separated list of channel settings. These are the same settings
defined using the SETPTR command, as described in The Caché MultiValue Spooler.

The channel can be specified as an integer from 0 through 255 (inclusive). Integers outside this range return the empty
string. Fractional values are truncated to the integer portion. If channel is the empty string (") or a non-numeric value,
GETPTR returns channel settings for Channel 0.

Example
The following example uses the GETPTR function to return the channel settings for channel 1:
PRINT GETPTR(1)

It returns a string such as the following: 0,132,66,3,3,1, EJECT. For an explanation of these values, refer to SETPTR
in The Caché MultiValue Spooler.

See Also

* GETPU function
e SETPTR command, in The Caché MultiValue Spooler.

Caché MultiValue Basic Reference 315

Caché MultiValue Basic Functions

GETPU

Returns the name of the output device for a print channel.

GETPU(channel)

Arguments

channel An expression that resolves to an integer specifying an existing print channel. Valid
values are 0 through 255.

Description

The GETPU function returns the name of the output device most recently used by the specified print channel. GETPU
can be used both for SETPTR mode 1 (spooler) and SETPTR mode 3 (&HOLD& file) channel assignments.

» For mode 1 (spooler) output, the returned value is a Caché global name, such as *%MV.SPOOL(13). This global is
the spooler to which the job is being spooled. GETPU in this mode only returns a value when a print job is open;
otherwise, it returns a null string, with one exception. If the print job is closed, but the previous print job was marked
as a HOLD job using the SETPTR HOLD option, GETPU returns the global name for that print job.

e For mode 3 (&HOLD&) output, the returned value is the full path name of a file that GETPU creates to contain the
spooler output. For example, a Windows file such as:
c:\InterSystems\cache\mgr\user\&hold&\P#0000_0025. Ifaprintjob is currently open, GETPU returns
details about the print job. If there is no print job open and the application executed a SETPTR command, GETPU
returns the job 1D that will be created when the next print job is created. If there is neither an open print job nor a
SETPTR setting, GETPU returns the last job created.

If the channel value is a nonexistent print channel or an invalid value, GETPU returns the empty string.

See Also

 GETPTR function
e SETPTR command in the “Spooler Commands™ chapter of The Caché MultiValue Spooler.

316 Caché MultiValue Basic Reference

GETREM

GETREM

Returns the position of the Remove pointer in a dynamic array.

GETREM(dynarray)

Arguments

dynarray An expression that resolves to a dynamic array. dynarray must be a variable, it cannot
be a literal dynamic array string.

Description

The GETREM function returns a positive integer indicating the current position of the remove pointer within a dynamic
array. This remove pointer can be explicitly incremented by the SETREM statement, and is automatically incremented/decre-
mented by the REMOVE function, the REMOVE statement, and the REVREMOVE statement. GETREM returns this
pointe