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1
About This Book

See the Table of Contents for a detailed listing of the subjects covered in this document.

XEP event persistence is a set of .NET technologies enabled in the XEP API, allowing Caché to be leveraged as a high
performance persistence storage engine.

The following topics are covered:

• Introduction — provides an overview of XEP and describes common installation procedures.

• Using XEP Event Persistence — describes the XEP API, which allows .NET objects to be projected as persistent
events.

• XEP Quick Reference — Provides a quick reference for all XEP methods.

Related Documents
The following documents also contain related material:

• The .NET help file (<cache-root>/dev/dotnet/help/CacheExtreme.chm).

• Using the Caché Managed Provider for .NET — explains how to access Caché from .NET client applications over
TCP/IP, using either the Caché object interface for .NET or the ADO.NET API.

• Using Java with Caché XEP — describes how to use the Java version of XEP.
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2
Introduction

XEP is a lightweight .NET API that provides high-performance .NET persistence technology for simple to medium com-
plexity object hierarchies. XEP projects the data in .NET objects as persistent events (database objects that store a persistent
copy of the data fields), accessing the Caché database over a TCP/IP link. XEP is optimized for transaction processing
applications that require extremely high speed data persistence and retrieval.

2.1 Installation and Configuration
This section provides specifies requirements and provides instructions for installing Caché and configuring your environment
to use XEP.

2.1.1 Requirements

• The .NET Framework, versions 2.0, 3.0, or 4.0.

• Caché 2012.2 or higher.

• The Caché User namespace must exist and must be writable if your application uses XEP (see “Using XEP Event
Persistence”).

2.1.2 Installation

• When installing Caché in Windows, select the Setup Type: Development option.

• If Caché has been installed with security level 2, open the Management Portal and go to System Administration > Security

> Services, select %Service_CallIn, and make sure the Service Enabled box is checked.

If you installed Caché with security level 1 (minimal) it should already be checked.

2.1.3 Required Environment Variables

In order to run XEP applications, the following environment variable must be properly set:

• Your PATH environment variable must include <install-dir>/bin.

If your PATH variable includes more than one <install-dir>/bin path (for example, if you have installed more than one
instance of Caché) only the first one will be used, and any others will be ignored.
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2.1.4 Required Files

Your .NET project must include references to the following files:

• InterSystems.CacheExtreme.dll — located in <install-dir>/dev/dotnet/bin/v2.0.50727

• InterSystems.Data.CacheClient.dll — is provided in three different versions, one for each supported release of the .NET
Framework. The different versions are located in appropriately named subdirectories of <install-dir>/dev/dotnet/bin (for
example, <install-dir>/dev/dotnet/bin/v4.0.30319 contains the file for .NET 4.0). Use the appropriate file for the release
that will be used to compile your project.

2.2 XEP Samples
XEP sample files are in <install-dir>/dev/dotnet/samples/xep/ (see “Default Caché Installation Directory” for the location
of <install-dir> on your system). To run them, compile the XEPTest40.csproj project, which includes the following components
(located in subdirectory /xep/test/):

• RunAll.cs — is a program that runs all of the other sample programs in sequence.

This program connects to Caché with a hard-coded superserver port value of 1972 (see “DefaultPort”  in the Caché
Parameter File Reference). If your system does not use this default value, change the port number in the first line of
the program and recompile.

• Coverage.cs — tests basic functionality such as connecting, importing a schema, storing, querying, updating and
deleting XEP events. It also exercises most of the supported data types.

• SingleString.cs — is the most basic XEP test program. It connects to the database, imports a simple class containing
only one string field, then stores and loads a number of events corresponding to that class.

• FlightLog.cs — is an example that demonstrates the XEP full inheritance model. It tracks airline flight information
such as times, locations, personnel, and passengers.

• Benchmark.cs — is a performance test for the XEP API.

• IdKeys.cs — extends the Benchmark test by adding the composite IdKey feature.

• Threads.cs — is a multithreaded XEP test program.

See the help file (<install-dir>/dev/dotnet/help/CacheExtreme.chm) for detailed documentation of these programs. Supporting
files located in <install-dir>/dev/dotnet/samples/xep/samples/ provide test data for the sample programs. The
xep.samples.SingleStringSample class is used by several examples in this book.
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3
Using XEP Event Persistence

XEP provides extremely rapid storage and retrieval of .NET structured data, communicating with the Caché database over
a TCP/IP connection. It provides ways to control schema generation for optimal mapping of complex data structures, but
schemas for simpler data structures can often be generated and used without modification.

The following topics are discussed in this chapter:

• Introduction to Event Persistence — introduces persistent event concepts and terminology, and provides a simple
example of code that uses the XEP API.

• Creating and Connecting an EventPersister — describes how to create an instance of the EventPersister class and use
it to open, test, and close a TCP/IP database connection.

• Importing a Schema — describes the methods and attributes used to analyze a .NET class and generate a schema for
the corresponding persistent event.

• Storing and Modifying Events — describes methods of the Event class used to store, modify, and delete persistent
events.

• Using Queries — describes methods of the XEP classes that create and process query resultsets.

• Calling Caché Methods from XEP — describes EventPersister methods that can call ObjectScript methods, functions,
and procedures from an XEP application.

• Schema Mapping and Customization — provides a detailed description of how .NET classes are mapped to event
schemas, and how to generate customized schemas for optimal performance.

3.1 Introduction to Event Persistence
A persistent event is a Caché database object that stores a persistent copy of the data fields in a .NET object. By default,
XEP stores each event as a standard %Persistent object. Storage is automatically configured so that the data will be acces-
sible to Caché by other means, such as objects, SQL, or direct global access.

Before a persistent event can be created and stored, XEP must analyze the corresponding .NET class and import a schema,
which defines how the data structure of a .NET object is projected to a persistent event. A schema can use either of the
following two object projection models:

• The default model is the flat schema, where all referenced objects are serialized and stored as part of the imported
class, and all fields inherited from superclasses are stored as if they were native fields of the imported class. This is
the fastest and most efficient model, but does not preserve any information about the original .NET class structure.
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• If structural information must be preserved, the full schema model may be used. This preserves the full .NET inheritance
structure by creating a one-to-one relationship between .NET source classes and Caché projected classes, but may
impose a slight performance penalty.

See “Schema Import Models”  for a detailed discussion of both models.

When importing a schema, XEP acquires basic information by analyzing the .NET class. You can supply additional infor-
mation that allows XEP to generate indexes and override the default rules for importing fields (see “Schema Customization”).

Once a schema has been imported, XEP can be used to store, query, update and delete data at very high rates. Stored events
are immediately available for querying, or for full object or global access. The EventPersister, Event, and EventQuery<>

classes provide the main features of the XEP API. They are used in the following sequence:

Fields of a persistent event can be simple numeric types and their associated System types, strings, objects (projected as
embedded/serial objects), enumerations, and types derived from collection classes. These types can also be contained in
arrays, nested collections, and collections of arrays. See “Schema Mapping Rules” for detailed information.

• The EventPersister class provides methods to establish and control a TCP/IP database connection (see “Creating and
Connecting an EventPersister”).

• Once the connection has been established, other EventPersister methods can be used to import a schema (see
“Importing a Schema”).

• The Event class provides methods to store, update, or delete events, create queries, and control index updating (see
“Storing and Modifying Events”).

• The EventQuery<> class is used to execute simple SQL queries that retrieve sets of events from the database. It provides
methods to iterate through the resultset and update or delete individual events (see “Using Queries”).

The following section describes two very short applications that demonstrate all of these features.

3.1.1 Simple Applications to Store and Query Persistent Events

This section describes two very simple applications that use XEP to create and access persistent events:

• The StoreEvents program — opens a TCP/IP connection to a specified namespace, creates a schema for the events to
be stored, uses an instance of Event to store the array of objects as persistent events, then closes the connection and
terminates.

• The QueryEvents program — opens a new connection accessing the same namespace as StoreEvents, creates an instance
of EventQuery<> to read and delete the previously stored events, then closes the connection and terminates.

Note: It is assumed that these applications have exclusive use of the system, and run in two consecutive processes.

Both programs use instances of xep.samples.SingleStringSample, which is one of the classes defined in the XEP
sample programs (see “XEP Samples” for details about the sample programs).

3.1.1.1 The StoreEvents Program

In StoreEvents, a new instance of EventPersister is created and connected to a specific namespace on the server. A schema
is imported for the SingleStringSample class, and the test database is initialized by deleting all existing events from the
extent of the class. An instance of Event is created and used to store an array of SingleStringSample objects as persistent
events. The connection is then terminated. The new events will persist in the Caché database, and will be accessed by the
QueryEvents program (described in the next section).
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The StoreEvents Program: Creating a schema and storing events

using System;
using InterSystems.XEP;
using xep.samples; // compiled XEPTest.csproj

public class StoreEvents {
  private static String className = "xep.samples.SingleStringSample";
  private static SingleStringSample[] eventData = SingleStringSample.generateSampleData(12);

  public static void Main(String[] args) {
    for (int i=0; i < eventData.Length; i++) {
      eventData[i].name = "String event " + i;
    }
    try {
      Console.WriteLine("Connecting and importing schema for " + className);
      EventPersister myPersister = PersisterFactory.CreatePersister();
      myPersister.Connect("User", "_SYSTEM", "SYS");
      try { // delete any existing SingleStringSample events, then import new ones
        myPersister.DeleteExtent(className);
        myPersister.ImportSchema(className);
      }
      catch (XEPException e) { Console.WriteLine("import failed:\n" + e); }
      Event newEvent = myPersister.GetEvent(className);
      long[] itemIDs = newEvent.Store(eventData);  // store array of events
      Console.WriteLine("Stored " + itemIDs.Length + " of "
        + eventData.Length + " objects. Closing connection...");
      newEvent.Close();
      myPersister.Close();
    }
    catch (XEPException e) { Console.WriteLine("Event storage failed:\n" + e); }
  } // end Main()
} // end class StoreEvents

Before StoreEvents.Main() is called, the xep.samples.SingleStringSample.generateSampleData() method is called
to generate sample data array eventData (see “XEP Samples” for information on sample classes).

In this example, XEP methods perform the following actions:

• PersisterFactory.CreatePersister() creates myPersister, a new instance of EventPersister.

• EventPersister.Connect() establishes a TCP/IP connection to the User namespace.

• EventPersister.ImportSchema() analyzes the SingleStringSample class and imports a schema for it.

• EventPersister.DeleteExtent() is called to clean up the database by deleting any previously existing test data
from the SingleStringSample extent.

• EventPersister.GetEvent() creates newEvent, a new instance of Event that will be used to process
SingleStringSample events.

• Event.Store() accepts the eventData array as input, and creates a new persistent event for each object in the
array. (Alternately, the code could have looped through the eventData array and called Store() for each indi-
vidual object, but there is no need to do so in this example.)

• Event.Close() and EventPersister.Close() are called for newEvent and myPersister after the events have been
stored.

All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister”  for
information on opening, testing, and closing a connection. See “Importing a Schema” for details about schema creation.
See “Storing and Modifying Events”  for details about using the Event class and deleting an extent.

3.1.1.2 The QueryEvents Program

This example assumes that QueryEvents runs immediately after the StoreEvents process terminates (see “The StoreEvents
Program”). QueryEvents establishes a new TCP/IP database connection that accesses the same namespace as StoreEvents.
An instance of EventQuery<> is created to iterate through the previously stored events, print their data, and delete them.
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The QueryEvents Program: Fetching and processing persistent events

using System;
using InterSystems.XEP;
using SingleStringSample = xep.samples.SingleStringSample; // compiled XEPTest.csproj

public class QueryEvents {
  public static void Main(String[] args) {
    EventPersister myPersister = null;
    EventQuery<SingleStringSample> myQuery = null;
    try {
// Open a connection, then set up and execute an SQL query
      Console.WriteLine("Connecting to query SingleStringSample events");
      myPersister = PersisterFactory.CreatePersister();
      myPersister.Connect("User","_SYSTEM","SYS");
      try {
        Event newEvent = myPersister.GetEvent("xep.samples.SingleStringSample");
        String sql = "SELECT * FROM xep_samples.SingleStringSample WHERE %ID BETWEEN 3 AND ?";

        myQuery = newEvent.CreateQuery<SingleStringSample>(sql);
        newEvent.Close();
        myQuery.AddParameter(12);  // assign value 12 to SQL parameter
        myQuery.Execute();
      }
      catch (XEPException e) {Console.WriteLine("createQuery failed:\n" + e);}

// Iterate through the returned data set, printing and deleting each event
      SingleStringSample currentEvent;
      currentEvent = myQuery.GetNext(); // get first item
      while (currentEvent != null) {
        Console.WriteLine("Retrieved " + currentEvent.name);
        myQuery.DeleteCurrent();
        currentEvent = myQuery.GetNext(); // get next item
      }
      myQuery.Close();
      myPersister.Close();
    }
    catch (XEPException e) {Console.WriteLine("QueryEvents failed:\n" + e);}
  } // end Main()
}  // end class QueryEvents

In this example, XEP methods perform the following actions:

• EventPersister.CreatePersister() and EventPersister.Connect() are called again (just as they were in
StoreEvents) and a new connection to the User namespace is established.

• EventPersister.GetEvent() creates newEvent, a new instance of Event that will be used to create a query on
the SingleStringSample extent. After the query is created, newEvent will be discarded by calling its Close()
method.

• Event.CreateQuery() creates myQuery, an instance of EventQuery<> for SingleStringSample events. The SQL
statement defines a query that will retrieve all persistent SingleStringSample events with object IDs between
3 and a variable parameter value.

• EventQuery<>.AddParameter() assigns value 12 to the SQL parameter.

• EventQuery<>.Execute() executes the query. If the query is successful, myQuery will now contain a resultset
that lists the object IDs of all SingleStringSample events that match the query.

• EventQuery<>.GetNext() is called to fetch the first item in the resultset and assign it to variable currentEvent.

• In the while loop:

– The name field of currentEvent is printed

– EventQuery<>.DeleteCurrent() deletes the most recently fetched event from the database.

– EventQuery<>.GetNext() is called again to fetch the next event and assign it to variable currentEvent.

If there are no more items, GetNext() will return null and the loop will terminate.

• EventQuery<>.Close() and EventPersister.Close() are called for myQuery and myPersister after all events
have been printed and deleted.
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All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister”  for
information on opening, testing, and closing a connection. See “Using Queries” for details about creating and using an
instance of EventQuery<>.

3.2 Creating and Connecting an EventPersister
The EventPersister class is the main entry point for the XEP API. It provides the methods for connecting to the database,
importing schemas, handling transactions, and creating instances of Event to access events in the database.

An instance of EventPersister is created and destroyed by the following methods:

• PersisterFactory.CreatePersister() — returns a new instance of EventPersister.

• EventPersister.Close() — closes this EventPersister instance and releases the resources associated with it.

The following method is used to create a TCP/IP connection:

• EventPersister.Connect() — takes arguments for namespace, username, password, host and port, and establishes a
TCP/IP connection to the specified Caché namespace.

The following example establishes a connection:

Creating and Connecting an EventPersister: Creating a TCP/IP connection

// Open a TCP/IP connection
  string host = "127.0.0.1";
  int port = 1972;
  string namespc = "USER";
  string username = "_SYSTEM";
  string password = "SYS";
  EventPersister myPersister = PersisterFactory.CreatePersister();
  myPersister.Connect(host, port, namespc,username,password);
  // perform event processing here . . .
  myPersister.Close();

The PersisterFactory.CreatePersister() method creates a new instance of EventPersister. Only one instance is
required in a process.

The EventPersister.Connect() method establishes a connection to the specified port and namespace of the host
machine. If no connection exists in the current process, a new connection is created. If a connection already exists,
the method returns a reference to the existing connection object.

When the application is ready to exit, the EventPersister.Close() method should always be called.

Note: Always call Close() to release resources
Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

3.3 Importing a Schema
Before an instance of a .NET class can be stored as a persistent event, a schema must be imported for the class. The schema
defines the database structure in which the event will be stored. XEP provides two different schema import models: flat
schema and full schema. The main difference between these models is the way in which .NET objects are projected to
Caché events. A flat schema is the optimal choice if performance is essential and the event schema is fairly simple. A full
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schema offers a richer set of features for more complex schemas, but may have an impact on performance. See “Schema
Mapping and Customization” for a detailed discussion of schema models and related subjects.

The following methods are used to analyze a .NET class and import a schema of the desired type:

• EventPersister.ImportSchema() — imports a flat schema. Takes an argument specifying a .dll file name, a fully qual-
ified class name, or an array of class names, and imports all classes and any dependencies found in the specified locations.
Returns a String array containing the names of all successfully imported classes.

• EventPersister.ImportSchemaFull() — imports a full schema. Takes the same arguments and returns the same class
list as ImportSchema(). A class imported by this method must declare a user-generated IdKey (see “Using IdKeys”).

• Event.IsEvent() — a static Event method that takes a .NET object or class name of any type as an argument, tests to
see if the specified object can be projected as a valid XEP event (see “Requirements for Imported Classes”), and
throws an appropriate error if it is not valid.

The import methods are identical except for the schema model used. The following example imports a simple test class
and its dependent class:

Importing a Schema: Importing a class and its dependencies

The following classes are to be imported:

namespace test {
  public class MainClass {
    public MainClass() {}
    public String  myString;
    public test.Address  myAddress;
  }

  public class Address {
    public String  street;
    public String  city;
    public String  state;
  }
}

The following code uses ImportSchema() to import the main class, test.MainClass, after calling IsEvent() to
make sure it can be projected. Dependent class test.Address is also imported automatically when test.MainClass

is imported:

  try {
    Event.IsEvent("test.MainClass"); // throw an exception if class is not projectable
    myPersister.ImportSchema("test.MainClass");
  }
  catch (XEPException e) {Console.WriteLine("Import failed:\n" + e);}

In this example, instances of dependent class test.Address will be serialized and embedded in the same Caché object as
other fields of test.MainClass. If ImportSchemaFull() had been used instead, stored instances of test.MainClass would
contain references to instances of test.Address stored in a separate Caché class extent.

3.4 Storing and Modifying Events
Once the schema for a class has been imported (see “Importing a Schema”), an instance of Event can be created to store
and access events of that class. The Event class provides methods to store, update, or delete persistent events, create queries
on the class extent, and control index updating. This section discusses the following topics:

• Creating and Storing Events — describes how to create an instance of Event and use it to store persistent events of the
specified class.
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• Accessing Stored Events — describes Event methods for fetching, changing, and deleting persistent events of the
specified class.

• Controlling Index Updating — describes Event methods that can increase processing efficiency by controlling when
index entries are updated.

3.4.1 Creating and Storing Events

Instances of the Event class are created and destroyed by the following methods:

• EventPersister.GetEvent() — takes a className String argument and returns an instance of Event that can store and
access events of the specified class. Optionally takes an indexMode argument that specifies the default way to update
index entries (see “Controlling Index Updating” for details).

Note: Target Class
An instance of Event can only store, access, or query events of the class specified by the className argument
in the call to GetEvent(). In this chapter, class className is referred to as the target class.

• Event.Close() — closes the Event instance and releases the resources associated with it.

The following Event method stores .NET objects of the target class as persistent events:

• Store() — adds one or more instances of the target class to the database. Takes either an event or an array of events
as an argument, and returns a long database ID (or 0 if the database id could not be returned) for each stored event.

Important: When an event is stored, it is not tested in any way, and it will never change or overwrite existing
data. Each event is appended to the extent at the highest possible speed, or silently ignored if an event
with the specified key already exists in the database.

The following example creates an instance of Event with SingleStringSample as the target class, and uses it to project an
array of .NET SingleStringSample objects as persistent events. The example assumes that myPersister has already been
created and connected, and that a schema has been imported for the SingleStringSample class. See “Simple Applications
to Store and Query Persistent Events”  for an example of how this is done. See “XEP Samples” for information on
SingleStringSample and the sample programs that define and use it.

Storing and Modifying Events: Storing an array of objects

  SingleStringSample[] eventItems = SingleStringSample.generateSampleData(12);
  try {
    Event newEvent = myPersister.GetEvent("xep.samples.SingleStringSample");
    long[] itemIdList = newEvent.Store(eventItems);  // store all events
    int itemCount = 0;
    for (int i=0; i < itemIdList.Length; i++) {
      if (itemIdList[i]>0) itemCount++;
    }
    Console.WriteLine("Stored " + itemCount + " of " + eventItems.Length + " events");
    newEvent.Close();
  }
  catch (XEPException e) { Console.WriteLine("Event storage failed:\n" + e); }

• The generateSampleData() method of SingleStringSample generates twelve SingleStringSample objects and
stores them in an array named eventData.

• The EventPersister.GetEvent() method creates an Event instance named newEvent with SingleStringSample

as the target class.

• The Event.Store() method is called to project each object in the eventData array as a persistent event in the
database.
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The method returns an array named itemIdList, which contains a long object ID for each successfully stored
event, or 0 for an object that could not be stored. Variable itemCount is incremented once for each ID greater
than 0 in itemIdList, and the total is printed.

• When the loop terminates, the Event.Close() method is called to release associated resources .

Note: Always call Close() to release resources
Always call Close() on an instance of Event before it goes out of scope to ensure that all locks, licenses, and other
resources associated with the connection are released.

3.4.2 Accessing Stored Events

Once a persistent event has been stored, an Event instance of that target class provides the following methods for reading,
updating, deleting the event:

• DeleteObject() — takes a database object ID or IdKey as an argument and deletes the specified event from the database.

• GetObject() — takes a database object ID or IdKey as an argument and returns the specified event.

• UpdateObject() — takes a database object ID or IdKey and an Object of the target class as arguments, and updates
the specified event.

If the target class uses a standard object ID, it is specified as a long value (as returned by the Store() method described in
the previous section). If the target class uses an IdKey, it is specified as an array of Object where each item in the array is
a value for one of the fields that make up the IdKey (see “Using IdKeys”).

In the following example, array itemIdList contains a list of object ID values for some previously stored SingleStringSample

events. The example arbitrarily updates the first six persistent events in the list and deletes the rest.

Note: See “Creating and Storing Events”  for the example that created the itemIdList array. This example also assumes
that an EventPersister instance named myPersister has already been created and connected to the database.

Storing and Modifying Events: Fetching, updating, and deleting events

  // itemIdList is a previously created array of SingleStringSample event IDs
  try {
    Event newEvent = myPersister.GetEvent("xep.samples.SingleStringSample");
    int itemCount = 0;
    for (int i=0; i < itemIdList.Length; i++) {
      try { // arbitrarily update events for first 6 Ids and delete the rest
        SingleStringSample eventObject = (SingleStringSample)newEvent.GetObject(itemIdList[i]);

        if (i<6) {
          eventObject.name = eventObject.name + " (id=" + itemIdList[i] + ")" + " updated!";
          newEvent.UpdateObject(itemIdList[i], eventObject);
          itemCount++;
        } else {
          newEvent.DeleteObject(itemIdList[i]);
        }
      }
      catch (XEPException e) {Console.WriteLine("Failed to process event:\n" + e);}
    }
    Console.WriteLine("Updated " + itemCount + " of " + itemIdList.Length + " events");
    newEvent.Close();
  }
  catch (XEPException e) {Console.WriteLine("Event processing failed:\n" + e);}

• The EventPersister.GetEvent() method creates an Event instance named newEvent with SingleStringSample

as the target class.

• Array itemIdList contains a list of object ID values for some previously stored SingleStringSample events (see
“Creating and Storing Events”  for the example that created itemIdList).
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In the loop, each item in itemIdList is processed. The first six items are changed and updated, and the rest of
the items are deleted. The following operations are performed:

– The Event.GetObject() method fetches the SingleStringSample object with the object ID specified in
itemIdList[i], and assigns it to variable eventObject.

– The value of the eventObject name field is changed.

– If the eventObject is one of the first six items in the list, Event.UpdateObject() is called to update it in
the database. Otherwise, Event.DeleteObject() is called to delete the object from the database.

• After all of the IDs in itemIdList have been processed, the loop terminates and a message displays the number
of events updated.

• The Event.Close() method is called to release resources.

See “XEP Samples” for information on the sample programs that define and use the SingleStringSample class.

See “Using Queries” for a description of how to access and modify persistent events fetched by a simple SQL query.

Deleting Test Data
When initializing a test database, it is frequently convenient to delete an entire class, or delete all events in a specified
extent. The following EventPersister methods delete classes and extents from the Caché database:

• DeleteClass() — takes a className string as an argument and deletes the specified Caché class.

• DeleteExtent() — takes a className string as an argument and deletes all events in the extent of the specified class.

These methods are intended primarily for testing, and should be avoided in production code. See “Classes and Extents”
in the Caché Programming Orientation Guide for a detailed definition of these terms.

3.4.3 Controlling Index Updating

By default, indexes are not updated when a call is made to one of the Event methods that act on an event in the database
(see “Accessing Stored Events”). Indexes are updated asynchronously, and updating is only performed after all transactions
have been completed and the Event instance is closed. No uniqueness check is performed for unique indexes.

Note: This section only applies to classes that use standard object IDs or generated IdKeys (see “Using IdKeys”).
Classes with user-assigned IdKeys can only be updated synchronously.

There are a number of ways to change this default indexing behavior. When an Event instance is created by
EventPersister.GetEvent() (see “Creating and Storing Events”), the optional indexMode parameter can be set to specify
a default indexing behavior. The following options are available:

• Event.INDEX_MODE_ASYNC_ON — enables asynchronous indexing. This is the default when the indexMode parameter
is not specified.

• Event.INDEX_MODE_ASYNC_OFF — no indexing will be performed unless the StartIndexing() method is called.

• Event.INDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be inefficient
for large numbers of transactions. This index mode must be specified if the class has a user-assigned IdKey.

The following Event methods can be used to control asynchronous index updating for the extent of the target class:

• StartIndexing() — starts asynchronous index building for the extent of the target class. Throws an exception if the
index mode is Event.INDEX_MODE_SYNC.

• StopIndexing() — stops asynchronous index building for the extent. If you do not want the index to be updated when
the Event instance is closed, call this method before calling Event.Close().
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• WaitForIndexing() — takes an int timeout value as an argument and waits for asynchronous indexing to be completed.
The timeout value specifies the number of seconds to wait (wait forever if -1, return immediately if 0). It returns true
if indexing has been completed, or false if the wait timed out before indexing was completed. Throws an exception
if the index mode is Event.INDEX_MODE_SYNC.

3.5 Using Queries
The Event class provides a way to create an instance of EventQuery<>, which can execute a limited SQL query on the extent
of the target class. EventQuery<> methods are used to execute the SQL query, and to retrieve, update, or delete individual
items in the query resultset.

The following topics are discussed:

• Creating and Executing a Query — describes how use methods of the EventQuery<> class to execute queries.

• Processing Query Data — describes how to access and modify items in an EventQuery<> resultset.

• Defining the Fetch Level — describes how to control the amount of data returned by a query.

Note: The examples in this section assume that EventPersister object myPersister has already been created and connected,
and that a schema has been imported for the SingleStringSample class. See “Simple Applications to Store and
Query Persistent Events”  for an example of how this is done.

3.5.1 Creating and Executing a Query

The following methods create and destroy an instance of EventQuery<>:

• Event.CreateQuery() — takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<E>, where parameter E is the target class of the parent Event.

• EventQuery<>.Close() — closes this EventQuery<> instance and releases the resources associated with it.

Queries submitted by an instance of EventQuery<E> will return .NET objects of the specified generic type E (the target
class of the Event instance that created the query object). Queries supported by the EventQuery<> class are a subset of SQL
select statements, as follows:

• Queries must consist of a SELECT clause, a FROM clause, and (optionally) standard SQL clauses such as WHERE and
ORDER BY.

• The SELECT and FROM clauses must be syntactically legal, but they are actually ignored during query execution. All
fields that have been mapped are always fetched from the extent of target class E.

• SQL expressions may not refer to arrays of any type, nor to embedded objects or fields of embedded objects.

• The Caché system-generated object ID may be referred to as %ID. Due to the leading %, this will not conflict with
any field called id in a .NET class.

The following EventQuery<> methods define and execute the query:

• AddParameter() — binds a parameter for the SQL query associated with this EventQuery<>. Takes Object value as
the argument specifying the value to bind to the parameter.

• Execute() — executes the SQL query associated with this EventQuery<>. If the query is successful, this EventQuery<>

will contain a resultset that can be accessed by the methods described later (see “Processing Query Data”).
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The following example executes a simple query on events in the xep.samples.SingleStringSample extent (see “XEP Samples”
for information on the sample programs that define and use the SingleStringSample class.).

Using Queries: Creating and executing a query

  Event newEvent = myPersister.GetEvent("xep.samples.SingleStringSample");
  EventQuery<SingleStringSample> myQuery = null;
  String sql =
    "SELECT * FROM xep_samples.SingleStringSample WHERE %ID BETWEEN ? AND ?";

  myQuery = newEvent.CreateQuery<SingleStringSample>(sql);
  myQuery.AddParameter(3);  // assign value 3 to first SQL parameter
  myQuery.AddParameter(12);  // assign value 12 to second SQL parameter
  myQuery.Execute();   // get resultset for IDs between 3 and 12

The EventPersister.GetEvent() method creates an Event instance named newEvent with SingleStringSample as the
target class.

The Event.CreateQuery() method creates an instance of EventQuery<> named myQuery, which will execute the
SQL query and hold the resultset. The sql variable contains an SQL statement that selects all events in the target
class with IDs between two parameter values.

The EventQuery<>.AddParameter() method is called twice to assign values to the two parameters.

When the EventQuery<>.Execute() method is called, the specified query is executed for the extent of the target
class, and the resultset is stored in myQuery.

By default, all data is fetched for each object in the resultset, and each object is fully initialized. See “Defining the Fetch
Level”  for options that limit the amount and type of data fetched with each object.

3.5.2 Processing Query Data

After a query has been executed, the following EventQuery<> methods can be used to access items in the query resultset,
and update or delete the corresponding persistent events in the database:

• GetNext() — returns the next object of the target class from the resultset. Returns null if there are no more items in
the resultset.

• UpdateCurrent() — takes an object of the target class as an argument and uses it to update the persistent event most
recently returned by GetNext().

• DeleteCurrent() — deletes the persistent event most recently returned by GetNext() from the database.

• GetAll() — uses GetNext() to get all items from the resultset, and returns them in a List. Cannot be used for updating
or deleting. GetAll() and GetNext() cannot access the same resultset — once either method has been called, the other
method cannot be used until Execute() is called again.

See “Accessing Stored Events”  for a description of how to access and modify persistent events identified by Id or IdKey.

Using Queries: Updating and Deleting Query Data

  myQuery.Execute();   // get resultset
  SingleStringSample currentEvent = myQuery.GetNext();
  while (currentEvent != null) {
    if (currentEvent.name.StartsWith("finished")) {
      myQuery.DeleteCurrent();   // Delete if already processed
    } else {
      currentEvent.name = "in process: " + currentEvent.name;
      myQuery.UpdateCurrent(currentEvent);    // Update if unprocessed
    }
    currentEvent = myQuery.GetNext();
  }
  myQuery.Close();
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In this example, the call to EventQuery<>.Execute() is assumed to execute the query described in the previous
example (see “Creating and Executing a Query”), and the resultset is stored in myQuery. Each item in the
resultset is a SingleStringSample object.

The first call to GetNext() gets the first item from the resultset and assigns it to currentEvent.

In the while loop, the following process is applied to each item in the resultset:

• If currentEvent.name starts with the string "finished", DeleteCurrent() deletes the corresponding persistent
event from the database.

• Otherwise, the value of currentEvent.name is changed, and UpdateCurrent() is called. It takes currentEvent
as its argument and uses it to update the persistent event in the database.

• The call to GetNext() returns the next SingleStringSample object from the resultset and assigns it to
currentEvent.

After the loop terminates, Close() is called to release the resources associated with myQuery.

Note: Always call Close() to release resources
Always call Close() on an instance of EventQuery<> before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

3.5.3 Defining the Fetch Level

The fetch level is an Event property that can be used to control the amount of data returned when running a query. This is
particularly useful when the underlying event is complex and only a small subset of event data is required.

The following EventQuery<> methods set and return the current fetch level:

• GetFetchLevel() — returns an int indicating the current fetch level of the Event.

• SetFetchLevel() — takes one of the values in the Event fetch level enumeration as an argument and sets the fetch level
for the Event.

The following fetch level values are supported:

• Event.OPTION_FETCH_LEVEL_ALL — This is the default. All data is fetched, and the returned event is fully initialized.

• Event.OPTION_FETCH_LEVEL_DATATYPES_ONLY — Only datatype fields are fetched. This includes all simple
numeric types and their associated System types, strings, and enumerations. All other fields are set to null.

• Event.OPTION_FETCH_LEVEL_NO_ARRAY_TYPES — All types are fetched except arrays. All fields of array types,
regardless of dimension, are set to null. All datatypes, object types (including serialized types) and collections are
fetched.

• Event.OPTION_FETCH_LEVEL_NO_COLLECTIONS — All types are fetched except implementations of collection
classes.

• Event.OPTION_FETCH_LEVEL_NO_OBJECT_TYPES — All types are fetched except object types. Serialized types
are also considered object types and are not fetched. All datatypes, array types and collections are fetched.

3.6 Calling Caché Methods from XEP
The following EventPersister methods call Caché class methods:
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• CallClassMethod() — calls the specified ObjectScript class method. Takes String arguments for className and
methodName, plus 0 or more arguments that will be passed to the class method. Returns an Object that may be of type
int, long, double, or String.

• CallBytesClassMethod() — identical to CallClassMethod() except that string values are returned as instances of
byte[].

• CallListClassMethod() — identical to CallClassMethod() except that string values are returned as instances of
ValueList.

• CallVoidClassMethod() — identical to CallClassMethod() except that nothing is returned.

The following EventPersister methods call Caché functions and procedures (see “User-defined Code” in Using Caché
ObjectScript):

• CallFunction() — calls the specified ObjectScript function. Takes String arguments for functionName and routineName,
plus 0 or more arguments that will be passed to the function. Returns an Object that may be of type int, long, double,
or String.

• CallBytesFunction() — identical to CallFunction() except that string values are returned as instances of byte[].

• CallListFunction() — identical to CallFunction() except that string values are returned as instances of ValueList.

• CallProcedure() — calls the specified ObjectScript procedure. Takes String arguments for procedureName and
routineName, plus 0 or more arguments that will be passed to the procedure.

3.7 Schema Mapping and Customization
This section provides details about how a .NET class is mapped to a Caché event schema, and how a schema can be cus-
tomized for optimal performance. The following subjects are discussed:

• Schema Import Models — describes the two schema import models supported by XEP.

• Schema Customization — describes various options for customizing a schema by adding indexes or overriding the
default rules for importing a field.

• Schema Mapping Rules — provides a detailed description of how .NET classes are mapped to Caché event schemas.

3.7.1 Schema Import Models

XEP provides two different schema import models: flat schema and full schema. The main difference between these models
is the way in which .NET objects are projected to Caché events.

• The Embedded Object Projection Model (Flat Schema) — imports a flat schema where all objects referenced by the
imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. All data for an instance of the class is stored as a single Caché
%Library.Persistent object, and information about the original .NET class structure is not preserved.

• The Full Object Projection Model (Full Schema) — imports a full schema where all objects referenced by the imported
class are projected as separate Caché %Persistent objects. Inherited fields are projected as references to fields in the
ancestor classes, which are also imported as Caché %Persistent classes. There is a one-to-one correspondence between
.NET source classes and Caché projected classes, so the .NET class inheritance structure is preserved.
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Full object projection preserves the inheritance structure of the original .NET classes, but may have an impact on performance.
Flat object projection is the optimal choice if performance is essential and the event schema is fairly simple. Full object
projection can be used for a richer set of features and more complex schemas if the performance penalty is acceptable.

3.7.1.1 The Embedded Object Projection Model (Flat Schema)

By default, XEP imports a schema that projects referenced objects by flattening. In other words, all objects referenced by
the imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. The corresponding Caché event extends %Library.Persistent, and contains
embedded serialized objects where the original .NET object contained references to external objects.

This means that a flat schema does not preserve inheritance in the strict sense on the Caché side. For example, consider
these three .NET classes:

class A {
    String a;
}
class B : class A {
    String b;
}
class C : class B {
    String c;
}

Importing class C results in the following Caché class:

Class C : %Persistent ... {
     Property a As %String;
     Property b As %String;
     Property c As %String;
}

No corresponding Caché events will be generated for the A or B classes unless they are specifically imported. Event C on
the Caché side does not extend either A or B. If imported, A and B would have the following structures:

Class A : %Persistent ... {
     Property a As %String;
}
Class B : %Persistent ... {
     Property a As %String;
     Property b As %String;
}

All operations will be performed only on the corresponding Caché event. For example, calling Store() on objects of type
C will only store the corresponding C Caché events.

If a .NET child class hides a field of the same name that is also declared in its superclass, the XEP engine always uses the
value of the child field.

3.7.1.2 The Full Object Projection Model (Full Schema)

The full object model imports a schema that preserves the .NET inheritance model by creating a matching inheritance
structure in Caché. Rather than serializing all object fields and storing all data in a single Caché object, the schema establishes
a one-to-one relationship between the .NET source classes and Caché projected classes. The full object projection model
stores each referenced class separately, and projects fields of a specified class as references to objects of the corresponding
Caché class.

Referenced classes must include an attribute that creates a user-defined IdKey (either [Id] or [Index] — see “Using IdKeys”).
When an object is stored, all referenced objects are stored first, and the resulting IdKeys are stored in the parent object. As
with the rest of XEP, there are no uniqueness checks, and no attempts to change or overwrite existing data. The data is
simply appended at the highest possible speed. If an IdKey value references an event that already exists, it will simply be
skipped, without any attempt to overwrite the existing event.
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The [Embedded] class level attribute can be used to optimize a full schema by embedding instances of the marked class as
serialized objects rather than storing them separately.

Note: See the FlightLog sample program (listed in “XEP Samples”) for a demonstration of how to use the full object
model.

3.7.2 Schema Customization

In many cases, a schema can be imported for a simple class without providing any meta-information. In other cases, it may
be necessary or desirable to customize the way in which the schema is imported. The following sections describe various
options for generating customized schemas by adding indexes and overriding the default rules for importing fields:

• Using Attributes — XEP attributes can be added to a .NET class to specify the indexes that should be created. They
can also be added to optimize performance by specifying fields that should not be imported or fields that should be
serialized.

• Using IdKeys — Attributes can be used to specify IdKeys (index values used in place of the default object ID), which
are required when importing a full schema.

• Implementing an InterfaceResolver — By default, fields declared as interfaces are not imported into a flat schema.
Implementations of the InterfaceResolver interface can be used to during schema import to specify the actual class of
a field declared as an interface.

3.7.2.1 Using Attributes

The XEP engine infers XEP event metadata by examining a .NET class. Additional information can be specified in the
.NET class via attributes, which can be found in the Intersystems.XEP.attributes namespace. As long a .NET object conforms
to the definition of an XEP persistent event (see “Requirements for Imported Classes”), it is projected as a Caché event,
and there is no need to customize it.

Some attributes are applied to individual fields in the class to be projected, while others are applied to the entire class:

• Field Attributes — are applied to a field in the class to be imported:

– [Id] — specifies that the field will act as an IdKey.

– [Serialized] — indicates that the field should be stored and retrieved in its serialized form.

– [Transient] — indicates that the field should be excluded from import.

• Class Attributes — are applied to the entire class to be imported:

– [Embedded] — indicates that a field of this class in a full schema should be embedded (as in a flat schema) rather
than referenced.

– [Index] — declares an index for the class.

[Id] (field level attribute)

The value of a field marked with [Id] will be used as an IdKey that replaces the standard object ID (see “Using
IdKeys”). Only one field per class can use this attribute, and the field must be a String, int, or long (double is per-
mitted but not recommended). To create a compound IdKey, use the [Index] attribute instead. A class marked with
[Id] cannot also declare a compound primary key with [Index]. An exception will be thrown if both attributes
are used on the same class.

The following parameter must be specified:

• generated — a bool specifying whether or not XEP should generate key values.
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– generated = true — (the default setting) key value will be generated by Caché and the field marked
as [Id] must be Int64. This field is expected to be null prior to insert/store and will be filled automatically
by XEP upon completion of such an operation.

– generated=false — the user-assigned value of the marked field will be used as the IdKey value.
Fields can be String, int, Int32, long or Int64.

In the following example, the user-assigned value of the ssn field will be used as the object ID:

using Id = InterSystems.XEP.Attributes.Id;
public class Person {
  [Id(generated=false)]
  Public String  ssn;
  public String  name;
  Public String dob;
}

[Serialized] (field level attribute)

The [Serialized] attribute indicates that the field should be stored and retrieved in its serialized form.

This attribute optimizes storage of serializable fields (including arrays, which are implicitly serializable). The XEP
engine will call the relevant read or write method for the serial object, rather than using the default mechanism
for storing or retrieving data. An exception will be thrown if the marked field is not serializable.

Example:

using Serialized = InterSystems.XEP.Attributes.Serialized;
public class MyClass {
  [Serialized]
  public  xep.samples.Serialized   serialized;
  [Serialized]
  public  int[,,,]   quadIntArray;
  [Serialized]
  public  String[,]   doubleStringArray;
}

// xep.samples.Serialized:
[Serializable]
public class Serialized {
  public  String  name;
  public  int     value;
}

[Transient] (field level attribute)

The [Transient] attribute indicates that the field should be excluded from import. The marked field will not
be projected to Caché, and will be ignored when events are stored or loaded.

Example:

using Transient = InterSystems.XEP.Attributes.Transient;
public class MyClass {
  // this field will NOT be projected:
  [Transient]
  public  String  transientField;

  // this field WILL be projected:
  public  String  projectedField;
}

[Embedded] (class level attribute)

The [Embedded] attribute can be used when a full schema is to be generated (see “Schema Import Models”).
It indicates that a field of this class should be serialized and embedded (as in a flat schema) rather than referenced
when projected to Caché.
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Examples:

using Embedded = InterSystems.XEP.Attributes.Embedded;
[Embedded]
public class Address {
  String  street;
  String  city;
  String  zip;
  String  state;
}

[Index] (class level attribute)

The [Index] attribute can be used to declare one or more composite indexes.

Arguments must be specified for the following parameters:

• name — a String containing the name of the composite index

• fields — an array of String containing the names of the fields that comprise the composite index

• type — the index type. The xep.attributes.IndexType enumeration includes the following possible types:

– IndexType.none — default value, indicating that there are no indexes.

– IndexType.bitmap — a bitmap index (see “Bitmap Indices” in Using Caché SQL).

– IndexType.bitslice — a bitslice index (see “Overview” in Using Caché SQL).

– IndexType.simple — a standard index on one or more fields.

– IndexType.idkey — an index that will be used in place of the standard ID (see “Using IdKeys”).

Example:

using Index = InterSystems.XEP.Attributes.Index;
using IndexType = InterSystems.XEP.Attributes.IndexType;

[Index(name="indexOne",fields=new string[]{"ssn","dob"},type=IndexType.idkey)]
public class Person {
  public String  name;
  public String dob;
  public String  ssn;
}

3.7.2.2 Using IdKeys

IdKeys are index values that are used in place of the default object ID. Both simple and composite IdKeys are supported
by XEP, and a user-generated IdKey is required for a .NET class that is imported with a full schema (see “Importing a
Schema”). IdKeys on a single field can be created with the [Id] attribute. To create a composite IdKey, add an [Index]
attribute with IndexType idkey. For example, given the following class:

  class Person {
    String name;
    int id;
    String dob;
  }

the default storage structure uses the standard object ID as a subscript:

^PersonD(1)=$LB("John",12,"1976-11-11")

The following attribute uses the name and id fields to create a composite IdKey named newIdKey that will replace the
standard object ID:

  [Index(name="newIdKey", fields=new String[]{"name","id"},type=IndexType.idkey)]
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This would result in the following global structure:

^PersonD("John",12)=$LB("1976-11-11")

XEP will also honor IdKeys added by other means, such as SQL commands (see “Using the Unique, PrimaryKey, and
IDKey Keywords with Indices” in Using Caché SQL). The XEP engine will automatically determine whether the underlying
class contains an IdKey, and generate the appropriate global structure.

There are a number of limitations on IdKey usage:

• An IdKey value must be unique. If the IdKey is user-generated, uniqueness is the responsibility of the calling application,
and is not enforced by XEP. If the application attempts to add an event with a key value that already exists in the
database, the attempt will be silently ignored and the existing event will not be changed.

• A class that declares an IdKey cannot be indexed asynchronously if it also declares other indexes.

• There is no limit of the number of fields in a composite IdKey, but the fields must be String, int, or long, or their corre-
sponding System types. Although double can also be used, it is not recommended.

• There may be a performance penalty in certain rare situations requiring extremely high and sustained insert rates.

See “Accessing Stored Events”  for a discussion of Event methods that allow retrieval, updating and deletion of events
based on their IdKeys.

See “SQL and Object Use of Multidimensional Storage” in Using Caché Globals for information on IdKeys and the
standard Caché storage model. See “Defining and Building Indices” in Using Caché SQL for information on IdKeys in
SQL.

Sample programs IdKeyTest and FlightLog provide demonstrations of IdKey usage (see “XEP Samples” for details about
the sample programs).

3.7.2.3 Implementing an InterfaceResolver

When a flat schema is imported, information on the inheritance hierarchy is not preserved (see “Schema Import Models”).
This creates a problem when processing fields whose types are declared as interfaces, since the XEP engine must know
the actual class of the field. By default, such fields are not imported into a flat schema. This behavior can be changed by
creating implementations of Intersystems.XEP.InterfaceResolver to resolve specific interface types during processing.

Note: InterfaceResolver is only relevant for the flat schema import model, which does not preserve the .NET class
inheritance structure. The full schema import model establishes a one-to-one relationship between .NET and
Caché classes, thus preserving the information needed to resolve an interface.

An implementation of InterfaceResolver is passed to EventPersister before calling the flat schema import method,
ImportSchema() (see “Importing a Schema”). This provides the XEP engine with a way to resolve interface types during
processing. The following EventPersister method specifies the implementation that will be used:

• EventPersister.SetInterfaceResolver() — takes an instance of InterfaceResolver as an argument. When ImportSchema()
is called, it will use the specified instance to resolve fields declared as interfaces.

The following example imports two different classes, calling a different, customized implementation of InterfaceResolver

for each class:
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Schema Customization: Applying an InterfaceResolver

  try {
    myPersister.SetInterfaceResolver(new test.MyFirstInterfaceResolver());
    myPersister.ImportSchema("test.MyMainClass");

    myPersister.SetInterfaceResolver(new test.MyOtherInterfaceResolver());
    myPersister.ImportSchema("test.MyOtherClass");
  }
  catch (XEPException e) {Console.WriteLine("Import failed:\n" + e);}

The first call to SetInterfaceResolver() sets a new instance of MyFirstInterfaceResolver (described in the next
example) as the implementation to be used during calls to the import methods. This implementation will be used
in all calls to ImportSchema() until SetInterfaceResolver() is called again to specify a different implementation.

The first call to ImportSchema() imports class test.MyMainClass, which contains a field declared as interface
test.MyFirstInterface. The instance of MyFirstInterfaceResolver will be used by the import method to resolve the
actual class of this field.

The second call to SetInterfaceResolver() sets an instance of a different InterfaceResolver class as the new
implementation to be used when ImportSchema() is called again.

All implementations of InterfaceResolver must define the following method:

• InterfaceResolver.GetImplementationClass() returns the actual type of a field declared as an interface. This method
has the following parameters:

– interfaceClass — the interface to be resolved.

– declaringClass — class that contains a field declared as interfaceClass.

– fieldName — string containing the name of the field in declaringClass that has been declared as an interface.

The following example defines an interface, an implementation of that interface, and an implementation of InterfaceResolver

that resolves instances of the interface.

Schema Customization: Implementing an InterfaceResolver

In this example, the interface to be resolved is test.MyFirstInterface:

namespace test {
  public interface MyFirstInterface{ }
}

The test.MyFirstImpl class is the implementation of test.MyFirstInterface that should be returned by the
InterfaceResolver:

namespace test {
  public class MyFirstImpl : MyFirstInterface {
    public MyFirstImpl() {}
    public MyFirstImpl(String s) { fieldOne = s; }
    public String  fieldOne;
  }
}
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The following implementation of InterfaceResolver returns class test.MyFirstImpl if the interface is
test.MyFirstInterface, or null otherwise:

using Intersystems.XEP;
namespace test {
  public class MyFirstInterfaceResolver : InterfaceResolver {
    public MyFirstInterfaceResolver() {}
    public Type GetImplementationType(Type declaringClass,
           String fieldName, Type interfaceClass) {
      if (interfaceClass == typeof(test.MyFirstInterface)) {
        return typeof(test.MyFirstImpl);
      }
      return null;
    }
  }

When an instance of MyFirstInterfaceResolver is specified by SetInterfaceResolver(), subsequent calls to
ImportSchema() will automatically use that instance to resolve any field declared as test.MyFirstInterface. For
such each field, the GetImplementationClass() method will be called with parameter declaringClass set to the
class that contains the field, fieldName set to the name of the field, and interfaceClass set to test.MyFirstInterface.
The method will resolve the interface and return either test.MyFirstImpl or null.

3.7.3 Schema Mapping Rules

This section provides details about how an XEP schema is structured. The following topics are discussed:

• Requirements for Imported Classes — describes the structural rules that a .NET class must satisfy to produce objects
that can be projected as persistent events.

• Naming Conventions — describes how .NET class and field names are translated to conform to Caché naming rules.

3.7.3.1 Requirements for Imported Classes

The XEP schema import methods cannot produce a valid schema for a .NET class unless it satisfies the following require-
ments:

• If the imported Caché class or any derived class will be used to execute queries and access stored events, the .NET
source class must explicitly declare an argumentless public constructor.

• The .NET source class cannot contain fields declared as Object, or arrays or collections that use Object as part of their
declaration. An exception will be thrown if the XEP engine encounters such fields. Use the [Transient] attribute
(see “Using Attributes”) to prevent them from being imported.

The Event.IsEvent() method can be used to analyze a .NET class or object and determine if it can produce a valid event in
the XEP sense. In addition to the conditions described above, this method throws an XEPException if any of the following
conditions are detected:

• a circular dependency

• an untyped collection

• a Dictionary key value that is not a String, a simple numeric type or its associated System type, or an enumeration.

Fields of a persistent event can be simple numeric types or their associated System types, objects (projected as embedded/serial
objects), enumerations, and types derived from collection classes. These types can also be contained in arrays, nested col-
lections, and collections of arrays.

By default, projected fields may not retain all features of the .NET class. Certain fields are changed in the following ways:
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• Although the .NET class may contain static fields, they are excluded from the projection by default. There will be no
corresponding Caché properties. Additional fields can be excluded by using the [Transient] attribute (see “Using
Attributes”).

• In a flat schema (see “Schema Import Models”), all object types, including inner (nested) .NET classes, are projected
as %SerialObject classes in Caché. The fields within the objects are not projected as separate Caché properties, and the
objects are opaque from the viewpoint of ObjectScript.

• A flat schema projects all inherited fields as if they were declared in the child class.

3.7.3.2 Naming Conventions

Corresponding Caché class and property names are identical to those in .NET, with the exception of two special characters
allowed in .NET but not Caché:

• $ (dollar sign) is projected as a single "d" character on the Caché side.

• _ (underscore) is projected as a single "u" character on the Caché side.

Class names are limited to 255 characters, which should be sufficient for most applications. However, the corresponding
global names have a limit of 31 characters. Since this is typically not sufficient for a one-to-one mapping, the XEP engine
transparently generates unique global names for class names longer than 31 characters. Although the generated global
names are not identical to the originals, they should still be easy to recognize. For example, the
xep.samples.SingleStringSample class will receive global name xep.samples.SingleStrinA5BFD.
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4
XEP Quick Reference

This chapter is a quick reference for the classes that are most important to an understanding of XEP. The InterSystems.XEP

namespace contains the public API described in Using XEP Event Persistence.

Note: This is not the definitive reference for this API. For the most complete and up-to-date information, see the help
file, located in <install-dir>/dev/dotnet/help/CacheExtreme.chm.

4.1 XEP Quick Reference
This section is a reference for the XEP API (namespace InterSystems.XEP). See Using XEP Event Persistence for a details
on how to use the API. It contains the following classes and interfaces:

• Class PersisterFactory — provides a factory method to create EventPersister objects.

• Class EventPersister — encapsulates an XEP database connection. It provides methods that set XEP options, establish
a connection or get an existing connection object, import schema, produce XEP Event objects, call Caché functions
and methods on the server, and control transactions.

• Class Event — encapsulates a reference to an XEP persistent event. It provides methods to store or delete events, create
a query, and start or stop index creation.

• Class EventQuery<> — encapsulates a query that retrieves individual events of a specific type from the database for
update or deletion.

• Interface InterfaceResolver — resolves the actual type of a property during flat schema importation if the property was
declared as an interface.

• Class XEPException — is the exception thrown by most XEP methods.

4.1.1 List of XEP Methods

The following classes and methods of the XEP API are described in this reference:

PersisterFactory

• CreatePersister() — creates a new EventPersister object.
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EventPersister

• CallBytesClassMethod() — calls a Caché class method, returning strings as byte[].

• CallBytesFunction() — calls a Caché function, returning strings as byte[].

• CallClassMethod() — calls a Caché class method.

• CallFunction() — calls a Caché function.

• CallListClassMethod() — calls a Caché class method, returning strings as ValueList.

• CallListFunction() — calls a Caché function, returning strings as ValueList.

• CallProcedure() — calls a Caché procedure.

• CallVoidClassMethod() — calls a Caché class method with no return value.

• Close() — releases all resources held by this instance.

• Commit() — commits one level of transaction.

• Connect() — connects to Caché via TCP/IP using the arguments specified.

• DeleteClass() — deletes a Caché class.

• DeleteExtent() — deletes all objects in the given extent.

• GetAdoNetConnection() — returns the .NET DbConnection object.

• GetEvent() — returns an event object that corresponds to the class name supplied.

• GetInterfaceResolver() — returns the currently specified instance of InterfaceResolver.

• GetTransactionLevel() — returns the current transaction level (or 0 if not in a transaction).

• ImportSchema() — imports a flat schema.

• ImportSchemaFull() — imports a full schema.

• Rollback() — rolls back the specified number of transaction levels, or all levels if no level is specified.

• SetInterfaceResolver() — specifies the InterfaceResolver object to be used.

• StartTransaction() — starts a transaction (which may be a nested transaction).

Event

• Close() — releases all resources held by this instance.

• CreateQuery() — creates an EventQuery<> instance.

• DeleteObject() — deletes an event given its database Id or IdKey.

• GetObject() — returns an event given its database Id or IdKey.

• IsEvent() — checks whether an object (or class) is an event in the XEP sense.

• StartIndexing() — starts index building for the underlying class.

• StopIndexing() — stops index building for the underlying class.

• Store() — stores the specified object or array of objects.

• UpdateObject() — updates an event given its database Id or IdKey.

• WaitForIndexing() — waits for asynchronous indexing to be completed for this class.

28                                                                                                                                                Using .NET with Caché XEP

XEP Quick Reference



EventQuery<>

• AddParameter() — binds a parameter for this query.

• Close() — releases all resources held by this instance.

• DeleteCurrent() — deletes the event most recently fetched by GetNext().

• Execute() — executes this XEP query.

• GetAll() — fetches all events in the resultset as an array.

• GetFetchLevel() — returns the current fetch level.

• GetNext() — fetches the next event in the resultset.

• SetFetchLevel() — controls the amount of data returned.

• UpdateCurrent() — updates the event most recently fetched by GetNext()

InterfaceResolver

• GetImplementationClass() — if a property was declared as an interface, an implementation of this method
can be used to resolve the actual property type during schema importation.

4.1.2 Class PersisterFactory

Class InterSystems.XEP.PersisterFactory creates a new EventPersister object.

PersisterFactory() Constructor

Creates a new instance of PersisterFactory.

PersisterFactory()

CreatePersister()

PersisterFactory.CreatePersister() returns an instance of EventPersister.

static EventPersister CreatePersister()

see also:

Creating and Connecting an EventPersister

4.1.3 Class EventPersister

Class InterSystems.XEP.EventPersister is the main entry point for the XEP module. It provides methods that can be used
to control XEP options, establish a connection, import schema, and produce XEP Event objects. It also provides methods
to control transactions and perform other tasks.

CallBytesClassMethod()

EventPersister.CallBytesClassMethod() — calls an ObjectScript class method and returns an Object that may be
of type int, long, double, or byte[].

This method is identical to CallClassMethod() except that it returns string values as instances of byte[] rather than
String.

Object CallBytesClassMethod(string className, string methodName, params Object[] args)
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parameters:

• className — fully qualified name of the Caché class to which the called method belongs.

• methodName — name of the Caché class method.

• args — a list of 0 or more arguments to pass to the class method.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallBytesFunction()

EventPersister.CallBytesFunction() calls an ObjectScript function (see “User-defined Code” in Using Caché
ObjectScript) and returns an Object that may be of type int, long, double, or byte[].

This method is identical to CallFunction() except that it returns string values as instances of byte[] rather than
String.

Object CallBytesFunction(string functionName, string routineName, params Object[] args)

parameters:

• functionName — name of the function.

• routineName — name of the routine containing the function.

• args — a list of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallClassMethod()

EventPersister.CallClassMethod() — calls an ObjectScript class method and returns an Object that may be of
type int, long, double, or String. Use CallVoidClassMethod() to call a method that doesn’t return a value,
CallBytesClassMethod() to return string values as byte[], or CallListClassMethod() to return string values as
ValueList.

Object CallClassMethod(string className, string methodName, params Object[] args)

parameters:

• className — fully qualified name of the Caché class to which the called method belongs.

• methodName — name of the Caché class method.

• args — a list of 0 or more arguments to pass to the class method.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.
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CallFunction()

EventPersister.CallFunction() — calls an ObjectScript function (see “User-defined Code” in Using Caché
ObjectScript) and returns an Object that may be of type int, long, double, or String. Use CallBytesFunction() to
return string values as byte[], or CallListFunction() to return string values as ValueList.

Object CallFunction(string functionName, string routineName, params Object[] args)

parameters:

• functionName — name of the function.

• routineName — name of the routine containing the function.

• args — a list of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallListClassMethod()

EventPersister.CallListClassMethod() — calls an ObjectScript class method and returns an Object that may be
of type int, long, double, or ValueList.

This method is identical to CallClassMethod() except that it returns string values as instances of ValueList rather
than String.

Object CallListClassMethod(string className, string methodName, params Object[] args)

Throws an exception if the return value is a string but is not in valid ValueList format.

parameters:

• className — fully qualified name of the Caché class to which the called method belongs.

• methodName — name of the Caché class method.

• args — a list of 0 or more arguments to pass to the class method.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallListFunction()

EventPersister.CallListFunction() calls an ObjectScript function (see “User-defined Code” in Using Caché
ObjectScript) and returns an Object that may be of type int, long, double, or ValueList.

This method is identical to CallFunction() except that it returns string values as instances of ValueList rather than
String.

Object CallListFunction(string functionName, string routineName, params Object[] args)

Throws an exception if the return value is a string but is not in valid ValueList format.

parameters:

• functionName — name of the function.
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• routineName — name of the routine containing the function.

• args — a list of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallProcedure()

EventPersister.CallProcedure() calls an ObjectScript procedure (see “User-defined Code” in Using Caché
ObjectScript).

void CallProcedure(string procedureName, string routineName, params Object[] args)

parameters:

• procedureName — name of the procedure.

• routineName — name of the routine containing the procedure.

• args — a list of 0 or more arguments to pass to the procedure.

Arguments may be of type int, long, double, String, or byte[]. Trailing arguments may be omitted, causing
default values to be used for those arguments, either by passing fewer than the full number of arguments, or
by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right of
a null argument.

CallVoidClassMethod()

EventPersister.CallVoidClassMethod() — calls an ObjectScript class method with no return value, passing 0 or
more arguments. This method may be used to call any Caché class method (regardless of whether it normally
returns a value) when the caller does not need the return value. Use CallClassMethod() to call a method that
returns a value.

void CallVoidClassMethod(string className, string methodName, params Object[] args)

parameters:

• className — fully qualified name of the Caché class to which the called method belongs.

• methodName — name of the Caché class method.

• args — a list of 0 or more arguments to pass to the class method.

• Arguments may be of any of the types int, long, double, String, or byte[]. Trailing arguments may be omitted,
causing default values to be used for those arguments, either by passing fewer than the full number of arguments,
or by passing null for trailing arguments. Throws an exception if a non-null argument is passed to the right
of a null argument.

Close()

EventPersister.Close() releases all resources held by this instance. Always call Close() on the EventPersister object
before it goes out of scope to ensure that all locks, licenses, and other resources associated with the connection
are released.

void Close()
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Commit()

EventPersister.Commit() commits one level of transaction

void Commit()

Connect()

EventPersister.Connect() establishes a connection to the specified namespace.

void Connect(string host, int port, string nmspace, string username, string password)

parameters:

• nmspace — namespace to be accessed.

• username — username for this connection.

• password — password for this connection.

• host — host address for TCP/IP connection.

• port — port number for TCP/IP connection.

see also:

Creating and Connecting an EventPersister

DeleteClass()

EventPersister.DeleteClass() deletes a Caché class definition. It does not delete objects associated with the extent
(since objects can belong to more than one extent), and does not delete any dependencies (for example, inner or
embedded classes).

void DeleteClass(string className)

parameter:

• className — name of the class to be deleted.

If the specified class does not exist, the call silently fails (no error is thrown).

see also:

“Deleting Test Data” in Accessing Stored Events

DeleteExtent()

EventPersister.DeleteExtent() deletes the extent definition associated with a .NET event, but does not destroy
associated data (since objects can belong to more than one extent). See “Extents”  in Using Caché Objects for
more information on managing extents.

void DeleteExtent(string className)

• className — name of the extent.

Do not confuse this method with the deprecated Event.DeleteExtent(), which destroys all extent data as well as
with the extent definition.

see also:

“Deleting Test Data” in Accessing Stored Events
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GetAdoConnection()

EventPersister.GetAdoNetConnection() returns the .NET DbConnection object underlying an EventPersister

connection.

System.Data.Common.DbConnection GetAdoNetConnection()

see also:

Creating and Connecting an EventPersister

GetEvent()

EventPersister.GetEvent() returns an Event object that corresponds to the class name supplied, and optionally
specifies the indexing mode to be used.

Event GetEvent(string className)
Event GetEvent(string className, int indexMode)

parameter:

• className — class name of the object to be returned.

• indexMode — indexing mode to be used.

The following indexMode options are available:

• Event.INDEX_MODE_ASYNC_ON — enables asynchronous indexing. This is the default when the indexMode
parameter is not specified.

• Event.INDEX_MODE_ASYNC_OFF — no indexing will be performed unless the StartIndexing() method is
called.

• Event.INDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be
inefficient for large numbers of transactions. This index mode must be specified if the class has a user-assigned
IdKey.

The same instance of Event can be used to store or retrieve all instances of a class, so a process should only call
the GetEvent() method once per class. Avoid instantiating multiple Event objects for a single class, since this can
affect performance and may cause memory leaks.

see also:

Creating Event Instances and Storing Persistent Events, Controlling Index Updating

GetInterfaceResolver()

EventPersister.GetInterfaceResolver() — returns the currently set instance of InterfaceResolver that will be used
by ImportSchema() (see “Implementing an InterfaceResolver”). Returns null if no instance has been set.

InterfaceResolver GetInterfaceResolver()

see also:

SetInterfaceResolver(), ImportSchema()

GetTransactionLevel()

EventPersister.GetTransactionLevel() returns the current transaction level (0 if not in a transaction)

int GetTransactionLevel()
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ImportSchema()

EventPersister.ImportSchema() produces a flat schema (see “Schema Import Models”) that embeds all referenced
objects as serialized objects. The method imports the schema of each event declared in the class or a .dll file
specified (including dependencies), and returns an array of class names for the imported events.

string[] ImportSchema(string classOrDLLName)
string[] ImportSchema(string[] classes)

parameters:

• classes — an array containing the names of the classes to be imported.

• classOrDLLName — a class name or the name of a .dll file containing the classes to be imported. If a .dll

file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .dll file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the .NET schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

ImportSchemaFull()

EventPersister.ImportSchemaFull() — produces a full schema (see “Schema Import Models”) that preserves
the object hierarchy of the source classes. The method imports the schema of each event declared in the class or
.dll file specified (including dependencies), and returns an array of class names for the imported events.

string[] ImportSchemaFull(string classOrDLLName)
string[] ImportSchemaFull(string[] classes)

parameters:

• classes — an array containing the names of the classes to be imported.

• classOrDLLName — a class name or the name of a .dll file containing the classes to be imported. If a .dll

file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .dll file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the .NET schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

Rollback()

EventPersister.Rollback() rolls back the specified number of levels of transaction, where level is a positive integer,
or roll back all levels of transaction if no level is specified.

void Rollback()
void Rollback(int level)

parameter:

Using .NET with Caché XEP                                                                                                                                                35

XEP Quick Reference



• level — optional number of levels to roll back.

This method does nothing if level is less than 0, and stops rolling back once the transaction level reaches 0 if level
is greater than the initial transaction level.

SetInterfaceResolver()

EventPersister.SetInterfaceResolver() — sets the instance of InterfaceResolver to be used by ImportSchema()
(see “Implementing an InterfaceResolver”). All instances of Event created by this EventPersiser will share the
specified InterfaceResolver (which defaults to null if this method is not called).

void SetInterfaceResolver(InterfaceResolver interfaceResolver)

parameters:

• interfaceResolver — an implementation of InterfaceResolver that will be used by ImportSchema() to
determine the actual type of properties declared as interfaces. This argument can be null.

see also:

GetInterfaceResolver(), ImportSchema()

StartTransaction()

EventPersister.StartTransaction() starts a transaction (which may be a nested transaction)

void StartTransaction()

4.1.4 Class Event

Class InterSystems.XEP.Event provides methods that operate on XEP events (storing events, creating a query, indexing
etc.). It is created by the EventPersister.GetEvent() method.

Close()

Event.Close() releases all resources held by this instance. Always call Close() on the Event object before it goes
out of scope to ensure that all locks, licenses, and other resources associated with the connection are released.

void Close()

CreateQuery()

Event.CreateQuery() takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<T>, where parameter T is the target class of the parent Event.

EventQuery<T> CreateQuery(string sqlText)

parameter:

• sqlText — text of the SQL query.

see also:

Creating and Executing a Query
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DeleteObject()

Event.DeleteObject() deletes an event identified by its database object ID or IdKey.

void DeleteObject(long id)
void DeleteObject(object[] idkeys)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

see also:

Accessing Stored Events

GetObject()

Event.GetObject() fetches an event identified by its database object ID or IdKey. Returns null if the specified
object does not exist.

object GetObject(long id)
object GetObject(object[] idkeys)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

see also:

Accessing Stored Events

IsEvent()

Event.IsEvent() throws an XEPException if the object (or class) is not an event in the XEP sense (see “Requirements
for Imported Classes”). The exception message will explain why the object is not an XEP event.

static void IsEvent(object objectOrClass)

parameter:

• objectOrClass — the object to be tested.

StartIndexing()

Event.StartIndexing() starts asynchronous index building for the extent of the target class. Throws an exception
if the index mode is Event.INDEX_MODE_SYNC (see “Controlling Index Updating”).

void StartIndexing()
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StopIndexing()

Event.StopIndexing() stops asynchronous index building for the extent. If you do not want the index to be updated
when the Event instance is closed, call this method before calling Event.Close().

void StopIndexing()

see also:

Controlling Index Updating

Store()

Event.Store() stores a .NET object or array of objects as persistent events. Returns a long database ID for each
newly inserted object, or 0 if the ID could not be returned or the event uses an IdKey.

long Store(object obj)
long[] Store(object[] objects)

parameters:

• obj — .NET object to be added to the database.

• objects — array of .NET objects to be added to the database. All objects must be of the same type.

UpdateObject()

Event.UpdateObject() updates an event identified by its database ID or IdKey.

void UpdateObject(long id, object obj)
void UpdateObject(object[] idkeys, object obj)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

• obj — new object that will replace the specified event.

see also:

Accessing Stored Events

WaitForIndexing()

Event.WaitForIndexing() waits for asynchronous indexing to be completed, returning true if indexing has been
completed, or false if the wait timed out before indexing was completed. Throws an exception if the index mode
is Event.INDEX_MODE_SYNC.

bool WaitForIndexing(int timeout)

parameter:

• timeout — number of seconds to wait before timing out (wait forever if -1, return immediately if 0).

see also:

Controlling Index Updating
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4.1.5 Class EventQuery<>

Class InterSystems.XEP.EventQuery<> can be used to retrieve, update and delete individual events from the database.

AddParameter()

EventQuery<>.AddParameter() binds the next parameter in sequence for the SQL query associated with this
EventQuery<>.

void AddParameter(object val)

parameter:

• val — the value to be used for the next parameter in this query string.

see also:

Creating and Executing a Query

Close()

EventQuery<>.Close() releases all resources held by this instance. Always call Close() before the EventQuery<>

object goes out of scope to ensure that all locks, licenses, and other resources associated with the connection are
released.

void Close()

DeleteCurrent()

EventQuery<>.DeleteCurrent() deletes the event most recently fetched by GetNext().

void DeleteCurrent()

see also:

Processing Query Data

Execute()

EventQuery<>.Execute() executes the SQL query associated with this EventQuery<>. If the query is successful,
this EventQuery<> will contain a resultset that can be accessed by other EventQuery<> methods.

void Execute()

see also:

Creating and Executing a Query

GetAll()

EventQuery<>.GetAll() returns objects of target class E from all rows in the resultset as a single list.

System.Collections.Generic.List<E> GetAll()

Uses GetNext() to get all target class E objects in the resultset, and returns them in a List. The list cannot be used
for updating or deleting (although Event methods UpdateObject() and DeleteObject() can be used if you have
some way of obtaining the Id or IdKey of each object). GetAll() and GetNext() cannot access the same resultset
— once either method has been called, the other method cannot be used until Execute() is called again.

see also:
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Processing Query Data, Event.UpdateObject(), Event.DeleteObject()

GetFetchLevel()

EventQuery<>.GetFetchLevel() returns the current fetch level (see “Defining the Fetch Level”).

int GetFetchLevel()

GetNext()

EventQuery<>.GetNext() returns an object of target class E from the next row of the resultset. Returns null if
there are no more items in the resultset.

E GetNext()

see also:

Processing Query Data

SetFetchLevel()

EventQuery<>.SetFetchLevel() controls the amount of data returned by setting a fetch level (see “Defining the
Fetch Level”).

For example, by setting the fetch level to Event.FETCH_LEVEL_DATATYPES_ONLY, objects returned by this
query will only have their datatype properties set, and any object type, array, or collection properties will not get
populated. Using this option can dramatically improve query performance.

void SetFetchLevel(int level)

parameter:

• level — fetch level constant (defined in the Event class).

Supported fetch levels are:

• Event.FETCH_LEVEL_ALL —default, all properties populated

• Event.FETCH_LEVEL_DATATYPES_ONLY —only datatype properties filled in

• Event.FETCH_LEVEL_NO_ARRAY_TYPES —all arrays will be skipped

• Event.FETCH_LEVEL_NO_OBJECT_TYPES —all object types will be skipped

• Event.FETCH_LEVEL_NO_COLLECTIONS —all collections will be skipped

UpdateCurrent()

EventQuery<>.UpdateCurrent() updates the event most recently fetched by GetNext().

void UpdateCurrent(E obj)

parameter:

• obj — the .NET object that will replace the current event.

see also:

Processing Query Data

40                                                                                                                                                Using .NET with Caché XEP

XEP Quick Reference



4.1.6 Interface InterfaceResolver

By default, properties declared as interfaces are ignored during schema generation. To change this behavior, an implemen-
tation of InterfaceResolver can be passed to the ImportSchema() method, providing it with information that allows it to
replace an interface type with the correct concrete type.

GetImplementationClass()

InterfaceResolver.GetImplementationClass() returns the actual type of a property declared as an interface. See
“Implementing an InterfaceResolver”  for details.

Type GetImplementationType(Type declaringClass, string fieldName, Type interfaceClass)

parameters:

• declaringClass — class where fieldName is declared as interfaceClass.

• fieldName — name of the property in declaringClass that has been declared as an interface.

• interfaceClass — the interface to be resolved.

4.1.7 Class XEPException

Class InterSystems.XEP.XEPException implements the exception thrown by most methods of Event, EventPersister, and
EventQuery<>. This class inherits methods and properties from System.SystemException.
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