InterSystems:

Caché

Using C++ with Cache

\Version 2018.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using C++ with Caché

Caché Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 ADOUL THIS BOOK ..ottt bbbt bbb 1
2 The CaChé C BINGING ..c.eiiiiiiiiiriieieie ittt ettt ettt s 3
2.1 C++ Binding ATChITECTUIE ..ottt ettt 4
2.1.1 The Caché C++ LIDIarycocvccivieiiiise ettt 5

2.2 Installation and CoNfIQUIALIONeiiiiieiericiee e e e re e sresne e 5
2.2.1 Building the Caché C++ Binding from SOUICEcccccviviieiiiiieienese e 6

2.2.2 Configuring Microsoft Visual Studio 2008cceierireieieeieisesere e 6

2.2.3 Using the C++ Binding With ACE LiDraries ..o 8

2.3 Installing the Light C++ BINAING ..c.vcviviiiiiieireresere et 9
2.3.1 Additional LCB REQUIFEMENTS ..ecververiereeeeiereeeeesiesiestestestessessesseseessessessesssssssessessessessenes 9

2.3.2 Installation on the Windows 64 bit PIatform ... 10

2.3.3 Running Trusted Applications 0N UNIX®cccooeviiiiiiiiiiiinesesese e 10

2.4 SAMPIE PIOGIAIMS ...veieettetieieeie ettt sttt sttt bt e st et es e e e et e st et e e beebeebeebesbeebesbesbesbesbenbesee s anne e eneans 10

3 GENEFAtING PrOXY CIASSESeviuiiieirieiirieiirte sttt bbbttt et en s 13
K T0 O 1010 [T o] PSSR 13

3.2 Standard Proxy Class MEtNOUSccceverieierieieeisiese st sne s 13

3.3 Implementing ProXy IMELNOGScoveieieiiiicisesie et sne e e 14

3.4 Implementing ProXy PIOPEITIEScoiiiieriirieieieieie ettt st s s e 14

3.5 NAMING CONVENTIONScuiiiiitiriiiie ittt sttt et sttt ettt e bbbt sbe b e besee s et e e e e e e eneans 15

3.6 USING the Ctd GENETALOLc.eveviietirietisieie sttt sttt sttt ettt bbbt sb et 16
4.USING the CH+ BINAING .ooviiiiieieiesese ettt sttt st eneesae e e e esessesnesseseeneennens 19
4.1 CH+ BINAING BASICS ..vvverirerereiresiereeesier e 19
4.1.1 Connecting to the Caché Databasecccceverererieiieeiecrces e 20

4.1.2 A Sample C++ Binding APPliCAtIoNcooiiiriiiicc s 21

4.2 USING PrOXY ODJECES ...vitiitiieieeieie ettt ettt b et b e sb e b bbb e 22
4.2.1 Casting ProXy ODJECEScurueirieirieirieisiesi ettt 22

4.2.2 ReSOUICe MaNAQEMENTcoeiiiiiriiriertesrese sttt 22

G U 1o TR o] | 1=Tt 4T LS 23
4,31 INEEITACE .ot 23

4.3.2 EXAMPIES oot b et bbb bbbt et re e 23

4.3.3 Using Collection Elements in Methodscocoeiriiiiinieneiese e 24

4.3.4 Data in COIIECTION PrOXIES ...ccviiiiiiriiieiiesieie ettt 25

4.4 USING SEIEAMS .ottt ettt sttt ettt s b et b e bbbtk stk e bbb et e s b et s b b s bt b st b 25

L a0 R =] F A0 T o 26

L 1o O LU= T 26

O A YT 1o I =V 7 (ot o SRS 28
4.7.1 Using Database Class MEthOUScccoueiiiiicinic e 28

4.7.2 Using Transaction Class MEthOdSccoeoiiriiniineneies e 29
RV = Vo (o3 =1 e To 11 T ST 31
5.1 Construction 0f @ DYN_0D] PIOXYccoririiirmireiinireeense s 31

5.2 Construction of Values from Calling Dyn_obj Methodsccccovviviiniinienie i 32

5.3 Properties and METNOScoveriiiiieeiiee ettt 32

6 The Light Cd BINGING .eooviieiiieiieieecee ettt b e b bbbt ne e ens 35
6.1 Light C++ Binding ArChITECIUIEciiieiiieiiee e 36

6.2 LCB Classes in the Caché CH+ LIDIarycccocooieiiineenee st 37

Using C++ with Caché

6.3 Connections and MUILItNIEATINGccvviveii i 37

6.3.1 IMUILITNIEAAING ...ttt bbbttt 37
6.3.2 Connections and MUItiple TRreads ... 38
6.3.3 Attaching and Detaching LCB ODJECLSccoveiriririiiriiriesieeseee s 38
6.3.4 Transactions and MUItItreadingccocvverereriieeee e 38

6.4 USING ODJECES IN LCB ...veciiciiceieccic sttt e ettt n et e st st sn e e sn e eneenes 39
6.4.1 Using Persistent Object References as PrOPertiescocooeirerienenenienesenie e 39
6.4.2 Using Classes that Inherit from Other Persistent Classescccoverereieneicinienceeen 39
6.4.3 Using Embedded Serial Object PrOperties ... 40
6.4.4 Using List and Array PrOPEITIESccurririeirieirieisiesieesi et 40

6.5 Standard LCB Projection Class Methodsccccuevveriirieiinisin e sese e 41
6.6 Using Queries in LCB APPIICALIONScceiiiiieieiecececese ettt s 44
6.7 USING LCB BatCh INSEITvciiceieiecese ettt ettt sre e aesreenenneas 44
6.8 LCB @N0 COMNCUITEICYvititeitestesieseestesteseeeesesses ittt stesbe b sbesbesbesbesbesbessesbesaeseeneeneeseeneeneebesseens 45
6.8.1 UPAALe SEMANTICSeviveitiiiitiiitereet ettt sttt 46

6.9 Optimization and TroubIESNOOTINGcoveiiiiiiiie e 46
6.9.1 Workarounds for SUSE 12 Linux Build Problems ..o 46
6.9.2 Detecting “object N0t fOUNT™ EITOISccccvviieieiericiereee e se e eenens 47
6.9.3 Calling the LC_Database and d_connection DeStructorscccevvvvveevivrieeresieesnnnnenns 47
6.9.4 USING IC_CONNIICONNECT ...viviiiie ettt bbbttt sbe s 48

7 Reference for Simple Datatype CIASSEScoiiriiriiirieirieirieisiee et 49
7. L INUMEIIC CIASSES ..veuveveeereiierieieneeseese st esestestestestesteseessesaesaessessesseseensesenseaseasessessessessessessessensees 49
7.1.1 Class INterSystemS::0_INt ..o.uvcvieiiririe e re e 50

7.2 BINAY CIASSES ..veuviueiuierieeeiietesesestesese s e te e st et e e e e e s e e e seeaeetessestesbesbeseestesbestesnenseee e eneeneanes 50
7.2.1 Class InterSystems::d_DINAIYcccoeiieieiieieie et ene e 50
7.2.2 Class INterSYStEMS: 10 SEALUSveivereeieieieieier ettt e 51
7.2.3 Class INterSYStemMS:i0_SIFNG .ccvevrveirrerieririeririeie ettt 51
7.2.4 Class INterSystemMS:i0_TIST ...c..oviiiiiiciiee et 53

7.3 TIMeE aNd DALE CIASSES ...verviveeeterieteriete sttt sttt sttt sttt et bbbt bbbt 56
7.3.1 Class INterSystems:id_ tIME ..ocvieierieiieieceees et sre e 56
7.3.2 Class InterSYstemS:id_ALEcceeveiieeieriee e nreens 56
7.3.3 Class InterSystems::d_tIMESTAMPoovriririiiiire et 57

8 Reference for Object DAtatyPe CIASSESccvrcirieirieirieerieesee ettt 59
ST o 1 [=Tod 1 o] O - TSP 59
8.1.1 Class Template d_vector<S> (List COHECLIONS)cveviveiiiirsere e 59
8.1.2 Class Template d_map<S> (Array CollECtiONS)cccveveveieriesere e 61

8.2 SIIBAIMS ...ttt ettt b bbbt e bt e b e bt kb e Rt e Re e e Rt e R e eRe e e eRe e e nRe e R nreenrenreen 62
8.2.1 Stream AdapLer CIASSESc.ciiiiiirieiie ettt ettt sbe bbb e ss e be e 63
8.2.2 ClaSS A_SIIBAMiiuiiiiitirie ittt ettt sttt st s b et e e e b e e e eeneeneas 64

8.3 Class Template d_relationShip<S>co.ciiiiiiiiie e 64
9 Reference for Connectivity and Inherited ProxXy CIaSsSesc.cccveiereieneriniennense e 67
9.1 PrOXY BaSE CIASSES ...cuveurerrireiueatesiesiestestestestestestessessessesaessessesessessessessessessessessessessessessessensessensens 67
9.1.1 Class InterSystems::PerSiStENT Tccvciieiieiiiieie et 67
9.1.2 Class InterSystems::REGISTEIEU_tccuorueieeieieiii et 69
9.1.3 Class InterSystems::LC_PersiStENT {cceveeeieieieieire st 70
9.1.4 Class INterSystems:iLC_Serial_tccooiiiiiiieeeree e 73

0.2 DataDASE CIASSES ...viieierieiirieiesieie sttt sttt sttt 74
9.2.1 InterSystems::Database ClaSssccccerueieieeireieesie e sese e ae e sre e 74
9.2.2 InterSystems::LC_Database Classcccceviriieiieiiii e este e 79

Using C++ with Caché

9.3 CONNECLION CIASSES ...uvvieiiiiii it ctte ettt sttt e s s e s s b e s s ebb e s s sab e e s s eb b e e sabbesssabeessrbaessabaessnees 84

9.3.1 ClaSS d_CONNEBCTION ...viititeieetiieie ettt ettt sttt bbb et e b e se e e et ebesbesneene 84
9.3.2 Class INterSyStemMS:ICONN_T ...c.iiciiieiiieisieesie ettt 84
9.3.3 Class INterSYStEMSIIICP_COMN ..c..oviieeiririerieierieie sttt ettt sttt s snenea 85
9.3.4 Class INterSystems::IC_CONMN ...cucvveiierieicieiee sttt sre e 87

9.4 ODJECt RETEIENCE CIASSES ...vevvereerrerieesieetestesiestesesestestestesaess et e sesee e eseesesseeresrestesresresresresreneees 88
9.4.1 Class Template InterSystems:id_ref<T> ..o 88
9.4.2 Class Template InterSystems::Ic_d_ref<T> ... 92

10 Reference fOr ULIIILY CIASSEScciiiiiiriiirieisiese et 93
10.1 Data ProCesSiNg CIASSEScerieiirieirieirieesie sttt sttt sbe e 93
10.1.1 Class InterSystems::TranSACLIONcvcerveereseseseseseesteseseesseeeseeseessesessessessesressesnens 93
10.1.2 Class InterSystems::LC_BatChccccoveiicieieeicice e 94
10.1.3 Class INterSYStEMS:i0_QUETY ...ocueiueriiieieieieiietese ettt sttt sne 95
10.2 EXTOF CIASSES ...vivititeieeeeieiieeeie ettt sttt st bbb e et et b e be bt eb e s b e s besbesbesbesb et e nee e e e eneens 101
10.2.1 Class INterSYStEMSIIDD_BIT ..c.ocviieiiiieierieterieie ettt 101

Using C++ with Caché

List of Figures

Figure 2—1: C++ Client/Server Class ArChItECIUIEoieieiiriieieeeee e 4

Figure 6-1: Light C++ Binding Architecture

vi

Using C++ with Caché

List of Tables

Table 3=1: CH+ GENErator PATAMETETScceeeiieiieiieii e sieee et e eete e stve e s st e e s sba e e s sabe s s sabe s s sabaessbaessbansssaens 17

Using C++ with Caché vii

About This Book

See the Table of Contents for a detailed listing of the subjects covered in this document.
This book is a guide to the Caché C++ Language Binding. The following topics are covered:
e The Caché C++ Binding

» Generated Proxy Classes

* Using the C++ Binding

* Dynamic Binding

* The Light C++ Binding

» Class Reference for Simple Datatype Classes

e Class Reference for Complex Datatype Classes

» Class Reference for Inherited Proxy Classes

» Class Reference for Connection and Utility Classes

For general information, see Using InterSystems Documentation.

Using C++ with Caché

The Caché C++ Binding

The Caché C++ binding provides a simple, direct way to use Caché objects within a C++ application. You can create C++
applications that work with the Caché database in the following ways:

The Caché C++ binding

The Caché C++ binding lets C++ applications work with objects on a Caché server. The Caché Class Generator can
create a C++ proxy class for any Caché class. Proxy classes contain standard C++ code that can be compiled and used
within your C++ application, providing access to the properties and methods of the corresponding Caché class.

The C++ binding offers complete support for object database persistence, including concurrency and transaction control.
In addition, there is a sophisticated data caching scheme to minimize network traffic when the Caché server and C++
applications are located on separate machines.

Dynamic binding

Instead of using compiled C++ proxy classes, you can work with Caché classes dynamically, at runtime. This can be
useful for writing applications or tools that deal with classes in general and do not depend on particular Caché classes.

Light C++ Binding

The Light C++ Binding (LCB) is a limited subset of the Caché C++ library intended primarily for loading simple data
at very high speed. It combines your C++ application and the Caché Object Server into a single process, using
intraprocess communications rather than TCP/IP to exchange data between them. For basic object manipulation (cre-
ating objects, opening objects by Id, updating, and deleting), it is ten to twenty times faster than the standard C++
binding.

The Caché ODBC driver

Caché includes a standard ODBC driver that offers high-performance relational access to Caché, including the ability
to execute SQL queries against the database. The C++ binding provides special classes to encapsulate the complexity
of ODBC. For maximum flexibility, applications can use ODBC and the Caché C++ Binding at the same time.

Each of these features is discussed in the following chapters.

This document assumes a prior understanding of C++ and the C++ standard library. Several C++ compilers are supported,
but Caché does not include a C++ compiler or development environment.

Using C++ with Caché 3

The Caché C++ Binding

2.1 C++ Binding Architecture

The Caché C++ Binding gives C++ applications a way to access and manipulate objects contained within a Caché server.
These objects can be persistent objects stored within the Caché object database, or they can be transient objects that perform
operations within a Caché server.

The Caché C++ Binding consists of the following components:
» The Caché C++ Generator

The C++ Generator is a program that generates C++ proxy classes (source and header files) from classes defined in
the Caché Class Dictionary.

e The Caché C++ library

The C++ library is a set of C++ classes used by the Caché C++ Generator to implement all the functionality of the
C++ proxy classes. The library also includes a set of proxy classes for Caché server classes that require specialized
adaptations to fit into the framework of the C++ standard library.

» The Caché Object Server

The Caché Object Server is a high performance server process that manages communication between C++ clients and
a Caché database server. It communicates using standard networking protocols (TCP/IP), and can run on any platform
supported by Caché. The Caché Object Server is used by all Caché language bindings, including C++, Java, JDBC,
ODBC, Perl, and Python.

The Caché C++ Generator can create C++ client classes for any classes contained within the Caché Class Dictionary. These
generated C++ classes communicate at runtime (using TCP/IP sockets) with their corresponding Caché class on a Caché
server. This is illustrated in the following diagram:

Figure 2-1: C++ Client/Server Class Architecture

........................ T

Design Time : Runtime i

C++ Application

"1 | C++ proxy objects
in memory

C++ Classes

C++ Generator

In memary ObjEClS

TCP/P i
: : Caché Server - 5
1 - H e —
' Caché Class : .
H Dictionary : g Caché objects Stored Caché

...

The basic mechanism works as follows:

* You define one or more classes within Caché. These can be persistent objects stored within the Caché database or
transient objects that run within a Caché server.

* The Caché C++ Class Generator creates C++ classes that correspond to your Caché classes. These classes include
“stub” methods that invoke the corresponding Caché method on the server as well as accessor (get and set) methods
for object properties.

» Atruntime, your C++ application connects to a Caché server. It can then create C++ objects that correspond to Caché
objects maintained by the Caché Object Server. You can use these objects as you would any other C++ objects.

4 Using C++ with Caché

Installation and Configuration

» The system automatically manages all communications as well as client-side data caching. The actual deployment
configuration is up to the application developer. The C++ client application and Caché server may reside on the same
physical machine or they may be located on different machines. All communications between the C++ application and
the Caché server use the standard TCP/IP protocol.

The runtime architecture consists of the following:

» A Caché database server (or servers). The Caché server is responsible for database operations as well as the execution
of Caché object methods.

» A C++ "client" application into which your generated and compiled C++ proxy classes have been linked. (Although
C++ is typically used for developing specialized tools and middle-ware, this document refers to such code as a client
to differentiate it from the server code).

» A connection between the application and the server provided by the connection classes included with the Caché C++
library.

Note: The architecture of the Light C++ binding is quite different. It trades flexibility for speed by running all client
and server operations on the same machine, using intraprocess communications instead of TCP/IP to exchange
data between the C++ application and the Caché Object Server.

2.1.1The Caché C++ Library

The Caché C++ binding's dynamic library of C++ classes implements the basic connection and caching mechanisms required
to communicate with a Caché server.

The C++ components required to connect to Caché are contained within the C++ library file, which is located in the
<cachesys>\dev\cpp\lib directory (see Default Caché Installation Directory in the Caché Installation Guide for the location
of <cachesys> on your system). This directory contains different versions of the library that correspond to different build
configurations for different platforms. A corresponding set of include files is located in the <cachesys>\dev\cpp\include
subdirectory.

This library includes C++ versions of a number of the classes within the Caché class library, including %Persistent,
%RegisteredObject, %SerialObject, the various Caché collection classes, and C++ versions of the various data type classes.
In addition, the library contains the various classes used within a C++ application to manage communication with the Caché
server.

The classes that are available for use in your C++ binding applications are listed and discussed in the following chapters:
« Reference for Simple Datatype Classes — describes literal datatypes containing simple data such as strings or numbers.

» Reference for Object Datatype Classes — describes the predefined proxy classes that correspond to standard Caché
object datatype classes such as lists, arrays, and streams.

» Reference for Connectivity and Inherited Proxy Classes — lists the classes that provide functions necessary to generate
proxy classes and connect them to the server.

» Reference for Utility Classes — lists some special classes for transactions, batch processing, and SQL queries.

2.2 Installation and Configuration

The Caché C++ binding software is not part of the standard Caché installation, but is offered as a option in the custom
installation. For a list of the platforms that support the C++ Binding, see “Supported Client Platforms™ in the online
InterSystems Supported Platforms document for this release.

Using C++ with Caché 5

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

The Caché C++ Binding

Caché C++ binding applications require a C++ compiler that supports the C++ standard library. When you compile, your
path should include the following directories (see Default Caché Installation Directory in the Caché Installation Guide for
the location of <cachesys> on your system):

<cachesys>\bin
<cachesys>\dev\cpp\lib

A compiled C++ binding application will be able to access existing Caché classes with no additional setup, and can run on
client machines that do not have Caché installed.

If Caché is installed with level 3 ("locked down") security, %Service_Bindings must be enabled in order to run the
Caché C++ Generator.

The Light C++ Binding has additional requirements (see Installing the Light C++ Binding).

2.2.1 Building the Caché C++ Binding from Source

In some special situations, it may be useful to build the Caché C++ Binding from source code. The source code is installed
if you select the "C++ SDK" option during a custom install of Caché. Windows MSVC projects or UNIX® makefiles can
be customized as desired to use different versions of compilers or standard libraries. On UNIX®, gmake is required. As
shipped, the sources, projects, and makefiles are identical to those used to build the production version of the C++ binding,
but they can be used, without modification, to rebuild with different gcc versions on Linux. This may be necessary, since
C++ code built with different gcc versions is often not binary-compatible.

2.2.2 Configuring Microsoft Visual Studio 2008

The following instructions describe the procedure for configuring a Caché C++ binding project in Microsoft Visual Studio
2008 under Windows XP. Some details may be different in other environments.

Setting Windows Environment Variables
Before you configure a project, you must set some Windows environment variables. The procedure is as follows:

e Inthe Windows Start menu, select Settings > Control Panel > System. The System Properties dialog box opens.

e Inthe System Properties dialog box, select the Advanced tab and then click the Environment Variables button. The
Environment Variables dialog box opens.

* Inthe System Variables section of the Environment Variables dialog box, add the following variables (see Default Caché
Installation Directory in the Caché Installation Guide for the location of <cachesys> on your system):

variable name variable value
CACHEBIN <cachesys>\bin
CACHECPPLIB <cachesys>\dev\cpp\lib

* Append the following to the PATH system variable:

; CACHEB IN% ; %CACHECPPL IB%

Configuring the Project
Open the Visual Studio 2008 Project References window:

» Open the project to be configured in Visual C++. In the following instructions, it is assumed that you have opened the
Samples project located in <cachesys>\Dev\cpp\samples\msvc90\.

* On the main menu, select Project > samples Properties. The samples Property Pages dialog box opens.

6 Using C++ with Caché

Installation and Configuration

2
Configuration: |AI Configurations j Blatform: |A:n-.e{‘.';‘-n]2‘.- lJ Cgnfiguration Manager...
- Common Praperties Disable Language Extensons ™ |
El- Configuration Properties Default Char Unsigned Na
General Treat wchar_t as Builtn Type Yes
Debugging Force Conformance In For Loop Scope Yes
=G+ Enable Run-Time Type Info |
Genera OpenhP Support ™
Optimzation
Preprocessor
Code Generation
Larguage
Precompiled Headers
Cuiput Fles

Browse Information
Advanoed
Command Line
[+ Linker
+]- Manifest Tool
+- XML Document Generator
+|- Browse Information
+|- Build Events
+- Custom Buld Step
+- Web Deployment
Enable Run-Time Type Info
Adds code for checking C-+-+ chject types at run time (runtime type information). (fGR, /GR-)

[ox | comm | ol |

Click on the topmost item in the tree displayed on the left side of the dialog box. If this is not done, some of the tabs
on the right side may be hidden.

In the samples Project Pages dialog box, make the changes described in the following procedures.

Enable wchar_t and Run-Time Type Information (RTTI) support:

In the Configuration drop-down box on the top left, select All Configurations.

In the menu tree on the left, select Configuration Properties > C/C++ > Language.
Make sure that the Treat wchar_t as Built-in Type has a value of Yes.

Make sure that the Enable Run-Time Type Info has a value of Yes.

Click the Apply button.

Specify the location of the C++ Binding header files:

In the menu tree on the left, select Configuration Properties > C/C++ > General.
In the Additional Include Directories text field, add:

"*<cachesys>\dev\cpp\include\"

where <cachesys> refers to your Caché installation directory. Use a semicolon to separate it from any previous
entries.

Click the Apply button.

Specify the location of the C++ Binding library directory:

In the Configuration drop-down box on the top left, select All Configurations.
In the menu tree on the left, select Configuration Properties > Linker > General.
In the Additional Library Directories text field, add:

""$(CACHECPPLIB)\"

Use a semicolon to separate it from any previous entries.

Click the Apply button.

Specify the location of the C++ Binding release library:

Using C++ with Caché 7

The Caché C++ Binding

* Inthe Cconfiguration drop-down box on the top left, select Release.
* Inthe menu tree on the left, select Configuration Properties > Linker > Input.
* Inthe Additional Dependencies text field, add:

cppbind_msvc90.lib

Use a space to separate it from any previous entries.
* When using the Light C++ Binding, add the following files:

Icbind_msvc90.lib
Icbclient.lib

* Click the Apply button.

Specify the location of the C++ Binding debug library:

* Inthe configuration drop-down box on the top left, select Debug.

* Inthe menu tree on the left, select Configuration Properties > Linker > Input.
e In the Additional Dependencies text field, add:

cppbind_msvc90d. lib

Use a space to separate it from any previous entries.
» When using the Light C++ Binding, add the following file:

Icbind_msvc9o0d. lib

* Click the Apply button.

Specify the runtime library for Release code generation:

* In the Configuration drop-down box on the top left, select Release.

* Inthe menu tree on the left, select Configuration Properties > C/C++ > Code Generation.
* From the Runtime Library drop-down box, select Multi-threaded DLL (/MD).

» Click the Apply button.

Specify the runtime library for Debug code generation:

e Inthe Configuration drop-down box on the top left, select Debug.

e Inthe menu tree on the left, select Configuration Properties > C/C++ > Code Generation.
* From the Runtime Library drop-down box, select Multi-threaded Debug DLL (/MDd).

» Click the oKk button to close the samples Property Pages dialog.

2.2.3 Using the C++ Binding with ACE Libraries

When using C++ binding (regular or light) with ACE libraries on Windows, Caché header files must appear after ACE
header files. This is because ACE headers include Microsoft winsock2.h, and the Caché C++ binding class headers include
Microsoft windows.h. When both files are included, winsock2.h must appear before windows.h, or the MSVC compiler will
fail due to definition conflicts.

8 Using C++ with Caché

Installing the Light C++ Binding

Here is an example that includes ACE headers. Since Sample_Person.h and Sample_Address.h are Caché C++ Binding
class headers, they must appear after all of the ACE headers:

#include "ace/0S_main.h"
#include "ace/streams.h"
#include "ace/Log_Msg.h"
#include "ace/SOCK_Acceptor.h"
#include "ace/INET_Addr.h"
#include "ace/Service_Config.h"

#include "CPP-acceptor.h"
ACE_RCSID (non_blocking,
test_sock_acceptor,
""test_sock_acceptor.cpp,v 4.11 2004/10/27 21:06:58 shuston Exp'™)

typedef Svc_Handler<ACE_SOCK_STREAM> SVC_HANDLER;
typedef IPC_Server<SVC_HANDLER, ACE_SOCK_ACCEPTOR> IPC_SERVER;

#include "Sample_Person.h" // C++ binding projected class header
#include "Sample_Address.h™ // C++ binding projected class header

2.3 Installing the Light C++ Binding

The Light C++ Binding (LCB) is a special purpose subset of the Caché C++ Binding, and has some extra requirements.
For a list of the platforms that support the Light C++ Binding, see “Supported Client Platforms” in the online InterSystems
Supported Platforms document for this release.

2.3.1 Additional LCB Requirements

The design of LCB imposes the following extra requirements:

» Anenvironment variable named GLOBALS_HOME must be set to the full path of your Caché installation's <cache-root>
directory (see “Default Caché Installation Directory” for the location of <cache-root> on your system). All connection
attempts will fail if this environment variable is not set.

Note: CACHEMGRDIR Deprecated

In previous releases, the required environment variable was CACHEMGRDIR, set to the <cache-root>/mgr directory
rather than <cache-root>. Although this variable can still be used, it is deprecated. GLOBALS_HOME will be used
instead of CACHEMGRDIR if both variables are set.

» Unlike the regular C++ binding, the LCB architecture requires that Caché and the LCB application be installed on the
same machine. This is necessary because they must share the same process (see Light C++ Binding Architecture).

» Because LCB depends on the low-level Callin interface, the directory containing any LCB application must have a
full path that uses fewer than 232 characters.

» LCB uses a separate set of DLLs or shared libraries. For Windows, the files are: Icbind_msvc90.dll, Ichind_msvc90.lib,
Icbclient.dll, Ichbclient.lib, Ichind_msvc90d.dll, Icbind_msvc90d.lib

For UNIX®, they are: liblchind.so, liblchclient.so

e LINUX must be #defined when building LCB applications on Linux. The compile flags should include -DL INUX. See
the Linux LCB sample application makefiles for examples.

» LCB supports both level 1 ("minimal™) and level 2 ("normal™) security level installations. If Cache is installed with
level 2 security, %Service_cal l in must be enabled to permit LCB to be connected.

Using C++ with Caché 9

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/
https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

The Caché C++ Binding

2.3.2 Installation on the Windows 64 bit Platform

The Light C++ Binding is available for the Windows 64 bit platform. The Caché installation for 64 bit Windows still installs
a 32 bit version of the standard Caché C++ Binding, since this is required for Studio. To build 64 bit versions of the LCB
sample applications, use the "win64 Release" or "win64 Debug" configurations in the MSVC project files for these appli-
cations.

In order to run debug versions of LCB applications, you will need to download the Microsoft Platform SDK, which contains
64 bit debug versions of the libraries msvcrtd.dll and msvep60d.dil. On 64 bit systems, installing Microsoft Visual Studio
only provides the 32 bit versions of these files. (This is a general issue for C++ development on 64 bit systems, not specific
to Caché or to the Light C++ Binding.)

2.3.3 Running Trusted Applications on UNIX®

Light C++ Binding applications on UNIX® must be run either by root, or by a user belonging to the cacheusr group,
unless the application has been made a "trusted application”. The recommended approach for deployed applications is to
make them trusted applications. When this is done, the application runs with cacheusr as the effective group, but any
user who has execute access to the application's executable file can run it (where execute access is controlled in the usual
UNIX® manner using chmod).

To make a trusted application, do the following:

» Inthe application makefile, among the flags for linking the application, specify -rpath <pathname> for the runtime
pathnames of each of the libraries libcachet.so, liblcbind.so, and liblcbclient.so. For g++, use:

-Xlinker -rpath -Xlinker <pathname>

The runtime pathname is the pathname of the library in the environment in which the application will be run, which
may be completely different from its pathname in the environment in which the application is built.

» Alternatively, you could create soft links in Zusr/lib for each of the libraries:

cd Zusr/lib

In -s <path>/libcachet.so libcachet.so

In -s <path>/liblcbind.so liblcbind.so

In -s <path>/liblcbclient.so liblcbclient.so

If a trusted application uses shared libraries, the runtime locations of those shared libraries must be known at build
time, so users can't use LD_L IBRARY_PATH to point to an untrusted version of the shared library. If no runtime path
was specified for a given shared library at build time, the path /usr/lib/<libraryname> is assumed by default.

» Set the owner, group, and suid bits of the LCB application. For example:

chown <whoever> Icbdemo
chgrp cacheusr Icbdemo
chmod g+s Icbdemo

2.4 Sample Programs

The standard Caché installation includes several short sample programs, located in the C++ samples directory,
<cachesys>\dev\cpp\samples\ (see Default Caché Installation Directory in the Caché Installation Guide for the location of
<cachesys> on your system). The following sample programs are available:

* samples.cpp — a simple program to demonstrate the standard Caché C++ binding.

10 Using C++ with Caché

Sample Programs

* Icbdemo.cpp — a demonstration of the Light C++ Binding.
* mttest.cpp — a multi-threaded LCB test, to verify thread safety.
* gtest.cpp — a query program using both the regular binding and multithreaded LCB.

MS Visual Studio project files for these programs are available in:.\samples\msvc90
For UNIX® platforms, run_samples.sh can be used in Caché 2008.1 and later.

Required Proxy Classes

The samples.cpp program uses classes from the Sample package in the SAMPLES namespace, which is also part of the
standard Caché installation. The following C++ proxy class files must be generated (see Generating Proxy Classes) for
Sample.Person and Sample.Address if they are not already present in the main C++ samples directory:

e Sample_Person.h, Sample_Person.cpp

* Sample_Address.h, Sample_Address.cpp

The Icbhdemo.cpp program uses classes from the User package in the SAMPLES namespace. The following C++ proxy class
files must be generated for User.Person and User.testidkey? if they are not already present in the main C++ samples directory:
e LC_User_Person.h, LC_User_Person.cpp

* LC_User_testidkey2.h, LC_User_testidkey2.cpp

Using C++ with Caché 11

Generating Proxy Classes

Proxy classes are generated by the Caché C++ Class Generator (see Using the C++ Generator), which reads the definition
of a Caché class and uses the information to generate a corresponding C++ class. The generated class provides remote
access to an instance of a Caché object from within a C++ application.

3.1 Introduction

The C++ Generator produces C++ proxy classes that have the same inheritance hierarchy as the corresponding Caché
classes. The type of a class (such as persistent or serial) determines its corresponding C++ superclass. For example, persistent
classes have corresponding C++ classes derived from the C++ Persistent_t class included in the Caché C++ library. In
case of multiple inheritance, a class becomes a subclass of the first superclass in Caché, and all methods and properties
from other direct superclasses are generated as members of the proxy class.

The Caché C++ class library includes C++ versions of a number of the classes within the Caché class library, including
%Persistent, %RegisteredObject, %SerialObject, the various Caché collection classes, and C++ versions of the various data
type classes. In addition, the library contains the various classes used within a C++ application to manage the communication
with the Caché server.

Note: The C++ binding doesn't check at runtime to see whether metadata has changed since code was generated. In
particular, it doesn't check whether the application is connecting to the same namespace as at code generation
time, and doesn't check whether the classes are defined in the runtime namespace. If they aren't, it will go ahead
and insert data anyway, but this data won't be accessible via SQL or via the object interface.

3.2 Standard Proxy Class Methods

In addition to any methods defined by a Caché class, all C++ proxy classes inherit a set of methods from the standard Caché
C++ library classes Persistent_t (for persistent classes) or Registered_t (for serial classes).

The C++ Generator also adds a set of static create and open methods to the generated classes. To protect the C++ classes
from incorrect usage, the proxy class constructors are made private. The only way to instantiate a generated class T is to

call one of the static methods T::create_new(), T::open(), or T::openid(), each of which returns a d_ref<T> object (see
Using Proxy Objects). These methods are generated only if the corresponding Caché methods exist for a given class.

The static methods are defined as follows (where My Class is the name of the proxy class):

Using C++ with Caché 13

Generating Proxy Classes

» create_new() — Creates an object on the server by calling the %oNew method.

static d_ref<My_Class> create_new(
Database* db,

const_str_t init_val =0, // const_str_t is a typedef of const wchar_t*
Db_err* err = 0)

open() — Generated for persistent classes only. Calls %Open on the server to open an object using its complete Object
ID.

static d_ref<My_ Class> open(
Database* db,
const d_binary& ident,
int concurrency = -1,
int timeout
Db_err* err

-1,
0
« openid() — Calls %0Openid on the server to open an object using its extent-specific 1D value.

static d_ref<My_Class> openid(
Database* db,
const const_str_t ident, // const_str_t is a typedef of const wchar_t*
int concurrency = -1,
int timeout
Db_err* err

-1,
0)

3.3 Implementing Proxy Methods

C++ instance methods are generated for Caché instance methods and C++ static methods are generated for Caché class
methods. When called on the client, a C++ method invokes the actual method implementation on the Caché server. If a
method signature includes arguments with default values, Caché uses the same default values within the generated C++
method. For example, suppose you define a simple Caché class with one method:

Class MyApp.Simple Extends %RegisteredObject {
Method LookupName(id As %String) As %String {
// lookup a name using embedded SQL
Set name = "

&sql (SELECT Name INTO :name FROM Person WHERE ID = :id)
Quit name

}
}

The resulting C++ class header would look similar to the following:

class MyApp_Simple : public Persistent_t {
friend d_ref<MyApp_Simple>;
public:
// code

virtual d_string LookupName(d_string id);
3

When a method is invoked from C++, the C++ client first synchronizes the server object cache, then invokes the method

on the Caché server, and finally, returns the resulting value (if any). If any method arguments are specified as call-by-ref-
erence then their value is updated as well.

3.4 Implementing Proxy Properties

Properties in C++ proxy classes are accessed through a pair of accessor methods. Each property has a corresponding
get<Property>() method to get its value and a set<Property>() method to set its value.

14 Using C++ with Caché

Naming Conventions

The values for literal properties (such as strings or integers) are represented using the appropriate C++ data type classes
provided with the Caché C++ class library (such as d_string or d_int).

The values for object-valued properties are represented using the d_ref template class (see Using Proxy Objects).

For example, suppose you have defined a persistent class within Caché containing two properties, one literal and the other
object-valued:

Class MyApp.Student Extends %Persistent {
// Student®s name
Property Name As %String;
// Reference to a school object
Property School As School;

The C++ representation of MyApp.Student contains get and set accessor methods for both the Name and School properties.
In addition, it provides accessors for the object Id for the referenced School object.

For example, in the Caché sample class, Sample.Person, the DOB property is defined as follows:
Property DOB As %Date(POPSPEC = "Date()™);

The POPSPEC content is for populating the class with sample data and would not appear in an actual application. The C++
accessor methods for Sample.Person are:

virtual d_date getDOB() const;
virtual void setDOB(const d_date&);

When a C++ object is instantiated within C++, it fetches a copy of its property values from the Caché server and copies
them into a local client-side cache. Subsequent access to the object's property values are made against this cache, reducing
the number of messages sent to and from the server. Caché automatically manages this local cache and ensures that it is
synchronized with the corresponding object state on the Caché server.

Property values for which you have defined a Get or Set method within your Caché class definition (to create a property
whose value depends on other properties for example) are not stored within the local cache. Instead when you access such
properties the corresponding accessor method is invoked on the Caché server. As this can entail higher network traffic, you
should exercise care when using such properties within a client/server environment.

3.5 Naming Conventions

A generated C++ identifier, such as the name of a class, method, or variable, is usually the same as that of the corresponding
Caché identifier. This section describes the exceptions to that rule.

Note: It is important to remember that, unlike ObjectScript, C++ identifiers must contain only characters A-Z, a-z,
1-9,and """ (underscore). If a Caché identifier contains characters that are not permitted in C++, those characters
will be replaced by underscores. If the Caché identifier consists of high-order Unicode characters, this may result
in a C++ identifier that contains nothing but underscores. Alternate class and package names can be defined in
Caché, as described below.

» Class and Package Names

Because C++ does not support packages, the Caché package name for a class is added to the start of the C++ class
name with the **_** character replacing the **.** character. The class name itself is unchanged.

If your Caché code defines both the package client name and the ClientName parameter of a class, the Caché C++
Generator will use these parameters instead of the class and package names. In Studio, you can set the package name

Using C++ with Caché 15

Generating Proxy Classes

by right-clicking on the package name, choosing Package Information in the context menu, and then entering
the value of the Client Name field. The ClientName parameter of a class can be defined using the Class Inspector.

* Method Names
Typically, method names are mapped directly to C++ methods, without changes. Exceptions are:
— If the method name starts with *'%"", this is replaced by "'sys_"".

— If the method name is a C++ reserved word, **_'* is prepended to the name.

* Property Names

On the server you can refer directly to a Caché object's properties. To encapsulate property behavior for C++, two C++
accessor methods are generated for each Caché property. For a given property Prop, the accessor methods are getProp()
and setProp(). If the property name starts with "*%"", it is replaced by "'sys_"'. Hence, the accessor methods of a Color
property would be getColor() and setColor(). The accessor methods of a %Concurrency property would be
get_sys_Concurrency() and set_sys_Concurrency().

e Formal Variable Names

If a variable within a method formal list starts with "%, it is replaced by **_"*. If the name is a reserved word, **_*" is
prepended to the name.

For details on Caché Basic and ObjectScript naming conventions, see Variables in Using Caché ObjectScript, Naming
Conventions in Using Caché Objects, Identifiers and Variables in Using Caché Basic, and Rules and Guidelines for Iden-
tifiers in the Caché Programming Orientation Guide.

3.6 Using the C++ Generator

The Caché C++ Generator is a program that generates a C++ class and header file from a Caché class definition. It is
available either as a command line program, or as an option in Studio. If Caché is installed with level 3 ("locked down")
security, %Service_Bindings must be enabled in order to run the Generator.

To access the Generator from Studio, select Tools > Generate C++ projection from the main menu. This option
does not allow you to generate projections for the Light C++ Binding, which must use the command line program with the
-1 c parameter.

The command line program, cpp_generator.exe, is installed in the <cachesys>\dev\cpp\lib directory, which must be in your
Path. (See Default Caché Installation Directory in the Caché Installation Guide for the location of <cachesys> on your
system).

The syntax for the program is:

cpp_generator

-conn <conn>

-user <user>

-pswd <password>

-path <path>

[-class <class>] | [-class-list <filename>]
[-Ic]

[-help]

16 Using C++ with Caché

Using the C++ Generator

For example:

cpp_generator

-conn "localhost[1972] :SAMPLES"
-user "'MyUserName"

-pswd "‘MyPassword"

-path "_/cppfiles"”

—?Iass ""'Sample.Person”

-Ic

Table 3-1; C++ Generator Parameters

-conn A connection string with the format <host>[<port>] :<namespace>.
For example:

-conn "localhost[1972] :SAMPLES"

-user A string specifying the username.

-pswd A string specifying the password.

-class Either a classname or the name of a file containing a list of classnames.

or The -class <class> option specifies a Caché server classname. For example:
-class-list -class ""Sample.Person

The -class-list <filename> option specifies the name of a file containing Caché
server class name strings (and nothing else), one per line. For example:

—-class-list "\Mydir\classlist._txt"
where classlist. txt contains the following lines:
Sample.Person

Sample.Company

-path A string specifying the directory in which the generated C++ class is to be placed.
-lIc Optional. If the -1 ¢ switch is used, the generator will produce Light C++ Binding classes.
-help Optional. Displays the list of C++ Generator parameters.

The C++ Generator will automatically generate code for any other classes required to implement the specified class. For
example, if you specify -class "Sample.Employee", code will also be generated for the Sample.Person and Sample.Address
classes, because Sample.Employee is derived from Sample.Person, and Sample.Person has properties of type Sample.Address.

Using C++ with Caché 17

Using the C++ Binding

This chapter provides concrete examples of code that uses the Caché C++ binding. The following subjects are discussed:

C++ Binding Basics — the basics of accessing and manipulating Caché database objects.
Using Proxy Objects — manipulating objects that are references to a proxy object.

Using Collections — iterating through Caché lists and arrays.

Using Relationships — manipulating embedded objects.

Using Streams — using properties that hold large sequences of character or binary data.
Using Queries — running Caché queries and dynamic SQL queries.

Using Transactions — controlling transactions with commit and rollback methods.

Many of the examples presented here are modified versions of the sample programs. The argument processing and error
trapping (try/catch) statements have been removed to simplify the code. See Sample Programs for details about loading
and running the complete sample programs.

4.1 C++ Binding Basics

A Caché C++ binding application can be quite simple. Here is a complete sample program:

#include "Sample_Person.h"
#include "Sample_Address.h"

int mainQ)

}

// Connect to the Cache® database

d_connection conn = tcp_conn::connect(" Iocalhost[1972] Samples",
"'_system', "SYS™);

Database db(conn);

// Create and use a Cache" object

d_ref<Sample_Person> person = Sample_Person::create_new(&db);
person- >setName('Doe, Joe A'™);

person->setSSN(*'123- 45-6789" Y

person->save();
// Print the result
std::cout << "w p.Name\n"
<< person->getName() << "\n";
return O;

This code imports the Sample header files, and then performs the following actions:

Using C++ with Caché

19

Using the C++ Binding

» Connects to the Samples namespace in the Caché database:
— Defines the information needed to connect to the Caché database.
— Creates a d_connection object (conn).

— Uses the d_connection object to create a Database object (db).

» Creates and uses a Caché object:
— Uses the Database object to create an instance of the Caché Sample.Person class.
— Sets the Name property of the Sample.Person object.

— Gets and prints the Name property.

The following sections discuss these basic actions in more detail.

4.1.1 Connecting to the Caché Database

To establish a physical connection to the Caché database, create an instance of the d_connection class. d_connection is a
proxy class that acts as a smart pointer to a Conn_t (connection) class instance. It automatically calls Conn_t::disconnect()
when the last reference of the Conn_t object that it refers to goes out of scope. This means that the user never has to call
Conn_t::disconnect() directly and that a Database object will always have a valid connection that will not be accidentally
disconnected. Conn_t provides a common interface for all these connections.

Before initializing a Database object with a d_connection object, the Conn_t object that the d_connection object refers to
has to be connected and not be in use by some other Database instance. In order to test whether a d_connection object sat-
isfies these requirements, you can use the is_connected() and is_busy() functions. For example, if you want to test a
d_connection object called conn:

if (Iconn->is_connected())
// code that makes conn point to an active connection

Because a d_connection object that doesn't point to an active connection is useless, its constructor is made private and the
only way to create a d_connection object is to call Conn_t::connect() that returns a d_connection object that points to an
active connection. If a connection could not be established, the d_connection object refers to an inactive connection.

The TCP/IP connection class is tcp_conn. Its static connect() method takes the following arguments:
» connection string — in format “host[port]:namespace”

e username

» password

* timeout

» error — optional address of a Db_err that will contain the error information if the connect fails.

20 Using C++ with Caché

C++ Binding Basics

For example:

Db_err conn_err;
d_connection conn = tcp_conn::connect("localhost[1972]:Samples",

" _SYSTEM"™, "'SYS", 0, &conn_err);

if (conn_err) {
// error handling
std::cerr << conn_err << "\n";
return -1;

b
tr

y {
// establish the logical connection to Cache*

Database db(conn);
// code to use db here

}

catch(const Db_erré& err) {
// handle an error from the C++ binding library
std::cout << err << std::endl;

}

4.1.2 A Sample C++ Binding Application

This section contains a simple C++ application that demonstrates the use of the Caché C++ Binding.

The sample program connects to the Caché SAMPLES database, opens and modifies an instance of a Sample.Person object
saved within the database, and saves it back to the database.

#include "../Sample_Person.h"
#include "../Sample_Address.h"

typedef d_ref<Sample_Person> d_Sample_ Person;

int mainQ)

// establish the physical connection to Cache*
Db_err conn_err;
d_connection conn = tcp_conn::connect(''localhost[1972]:Samples",

" _SYSTEM™, "SYS", 0, &conn_err);

if (conn_err)

std::cerr << conn_err << "\n~;
return -1;

try {

// establish the logical connection to Cache®
Database db(conn);

std::wstring id;
std::cout << "Enter ID of Person object to be opened:\n";
std::wcin >> id;

// open a Sample.Person object using %Openld
d_Sample_Person person = Sample_Person::openid(&db, id.c_str());

// Fetch some properties of this object

std::cout << "Name " << person->getName() << "\n*
~<< "City " << person->getHome()->getCity() << "\n*
~<< "\n";

// Modify some properties
person->getHome()->setCity(*"Ulan Bator™);

// Save the object to the database
person->save();

// Report the new residence of this person
std::cout << "New City: " << person->getHome()->getCity() << "\n";

return O;

}
catch(const Db_erré& err) {

//

std::cerr << err << "\n";
return -1;

all objects are closed automatically

Using C++ with Caché 21

Using the C++ Binding

4.2 Using Proxy Objects

Object-valued proxy types are represented using the d_ref< > template class (or the Ic_d_ref< > class for Light C++
Binding classes). The template takes the corresponding C++ classname as its parameter. For example, a reference to a
Company object would be represented as d_ref<Company>.

An instance of d_ref<T> is a smart pointer to a proxy object of the referenced type T. This means that you can:
» Call methods of the proxy object using the **->** (pointer) operator.
» Copy one d_ref< > to another. The two d_ref< > instances will point to the same proxy object.

e Passad_ref< >as an argument to a proxy method that may change the d_ref< > to point to another proxy object.

Note: Two variables that represent the same server object may still point to two different proxy objects.
While the library tries to use only one proxy object for each open server object, it may have to use a different proxy object

inequality test) to test whether a d_ref<P> and a d_ref<Q> point to the same server object

Even though d_ref<T> acts as a pointer to T, it is not a real pointer, so testing for null or making a d_ref<T> point to null
should be done via method calls is_null() and make_null(). For example,

d_ref<Sample_Person> pl = Sample_Person::openid(&db, L"1");
it (pl.is_nullQ))

std::cerr << "the object is null";
pl.make _null();

These methods are used for data type classes as well.

4.2.1 Casting Proxy Objects

It is possible to cast a d_ref<P> to a d_ref<Q> if P is a subclass of Q and the type checking will work at compile time. For
example,

d_ref<Sample_Employee> el = Sample_Employee::openid(&db, L"1'™);
d_ref<Sample_Person> pl = el; // ok
d_ref<Sample_Employee> e2 = pl; // gives a compile time error

It is also possible to cast d_ref<Q> to d_ref<P> if you know that Q is really a subclass of P, but, similarly to the interface
related to null, it should be done via a function call conv_to(), not dynamic_cast(). The reason is that the **isa"" relationship
is really between P and Q. conv_to takes the d_ref< > that will contain the result as an argument passed by reference and
if conversion is impossible sets it to null. For example:

d_ref<Sample_Employee> el = Sample_Employee::openid(&db, L"1");
d_ref<Sample_Person> p2 = el;
d_ref<Sample_Employee> e2; p2.conv_to(e2);

4.2.2 Resource Management

A d_ref< > automatically takes care of all system resources associated with the proxy object that it points to. For example:

d_ref<Sample_Person> pl = Sample_Person::openid(&db, L"1");
pl->setDOB(1970,2,1);

d_ref<Sample_Person> p2 = pl->getSpouse();

change_to_spouse(p2); // p2 points to the same server object as pl

22 Using C++ with Caché

Using Collections

In the first line, openid(), a static method of Sample_Person, creates an instance of the d_ref<Sample_Person>. In the second
line, the instance is used to modify the date of birth of the Person object. In the third line, p2 is set to point to the person's
spouse, and in the fourth line, p2 is changed to point to the same person as p1. All the resources taken by p1 and p2 are
released automatically when p1 and p2 go out of scope.

4.3 Using Collections

The proxies for collections are designed to fit into the framework of the C++ standard library. Proxies for %ListOfObjects
and %ListOfDataTypes provide an interface which is almost identical to the interface of std::vector. Similarly, proxies for
%ArrayOfObjects and %ArrayOfDataTypes provide an interface which is almost identical to the interface of std::map.

Object Collections

Proxies for collections of objects of type T contain objects of type d_obj_coln_type<T> that can be manipulated as d_ref<T>.
They are different from d_ref<T> in that they ensure that all changes with the objects that they point to also take place in
collections on the server. In order to change the value of an object for a particular collection and a given key;, it is enough
to assign the object a different d_ref<T>. These objects also amortize the cost of opening objects in collections by delaying
opening of objects on the server until they are needed on the client.

Primitive Data Type Collections

Proxies for collections of data type T contain objects of type d_prim_coln_type<T> that can be manipulated as T. They
are similar to the objects contained in collections of objects, but their initialization is not delayed because the overhead is
insignificant.

4.3.1 Interface

A %ListOfObjects that holds elements of type T is generated as d_obj_vector<T> that holds elements of type
d_obj_coln_type<T> that can be manipulated as d_ref<T>. An %ArrayOfObjects that holds elements of type T is generated
as d_obj_map<T> that also holds elements of type d_obj_coln_type<T>.

A %ListOfDataTypes that holds elements of type T is generated as d_prim_vector<T> that holds elements of type
d_prim_coln_type<T> that can be manipulated as T. An %ArrayOfDataTypes that holds elements of type T is generated as
d_prim_map<T> that also holds elements of type d_prim_coln_type<T>.

Similar to other objects, collections have to be manipulated via d_ref<T>, which means that they can be instantiated by
calling the static methods create_new(), and openref(), the methods used to initialize proxies for serial objects.

d_obj_coln_type<T>and d_prim_coln_type<T> can be constructed from T, which means that any function that takes
d_obj_coln_type<T> or d_prim_coln_type<T> can be also called with T if the argument is constant.

4.3.2 Examples

The following are simple examples of collections in use.

Constructors

If a class CPP.Coln has a property, Lst, which is a %ListOfObjects that holds one or more instances of Sample.Person, then
that property can be accessed in the C++ binding by

d_ref< d_obj_vector<Sample_Person> > list = obj->getLst();

where obj is an object of type d_ref<CPP_Coln>.

Using C++ with Caché 23

Using the C++ Binding

Element Access
The third Sample.Person in the collection pointed to by list can be accessed by

Clist)[2]
or
*(list->begin()+2)
The person's name can be accessed by
(*list)[2]->getName)
or
C*(list->begin()+2))->getName()
"->"is used instead of **."* because list is a d_ref<T>, so it acts like a pointer to the actual object.

Methods
p(of type d_ref<Sample.Person>) can be inserted into the collection pointed to by list by

list->push_back(p);
the second Sample.Person in the collection pointed to by list can be erased by
list->erase(list->begin()+1);

Algorithms
All persons of the collection pointed to by list can be printed by

class Print_person : public std::unary_function<d_ref<Sample_Person>, int> {
private:
std: :ostream& out;
public:
explicit Print_person(std::ostream& o)
: out(o)

resulf_type operator() (const argument_type& p) const;
{ out << p->getName() << std::endl; return 0; };

}:
void print_people(d_ref<CPP_Coln>& obj)

d_ref< d_obj_vector<Sample_Person> > list = obj->getLst();
std::for_each(list->begin(), list->end(), Print_person(std::cout));

¥

4.3.3 Using Collection Elements in Methods

Most of the time, it is possible to forget that the actual type of a collection proxy is d_prim_coln_type<T> or
d_obj_coln_type<T> (instead of T or d_ref<T>). However, these types (T or d_ref<T>) cannot be used as non-constant
arguments to functions, although they can be used as constant arguments. Even if it's possible to get around the compilation
error that should result from this incorrect usage, the seemingly changed value will not change in the collection. The proper
way to change an element of a collection this way is to use a temporary and then assign the changed value to the element
of the proxy object. For example:

d_ref<Sample_Person> p = (*list)[2];
change_to_someone_else(p);
Clist)[2] = p;

24 Using C++ with Caché

Using Streams

But the following works fine if calc_some_value() does not change its argument:

int val = calc_some_value((*list)[2]);

4.3.4 Data in Collection Proxies

In order to fit into the C++ standard library framework, the proxies for collections have to contain data. This means that
two different proxies of the same collection may change the data on the server and their representation of the collection,
but they may not know about each other, so they may lose synchronization. This problem does not exist if a collection is
accessed via proxy objects of the same type (which is the intended usage) but if the types are different, loss of synchronization
is possible.

4.4 Using Streams

Caché allows you to create properties that hold large sequences of characters, either in character or binary format; these
sequences are known as streams. Character streams are long sequences of text, such as the contents of a free-form text field
in a data entry screen; binary streams are usually image or sound files, and are akin to BLOBs (binary large objects) in
other database systems. When you are writing to or reading from a stream, Caché monitors your position within the stream,
so that you can move backward or forward.

Here is a simple program that creates and manipulates a Caché stream object:

#include <database.h>
#include <streams.h>

int mainQ{
// establish the physical connection to Cache*
Db_err conn_err;
d_connection conn = tcp_conn::connect(''localhost[1972]:Samples",
" _SYSTEM™, "'SYS", 0, &conn_err);

// establish the logical connection to Cache”
// database and create a low level stream object.
db(conn);
d_ref<d_char_stream> stream = d_char_stream: :create_new(&db);

// create an 10Streams extension stream object, put

// "Hello, World!" in the stream, and rewind the stream
d_iostream io(stream);
io << "Hello, World!";
io.rewind();

// read each word and copy it to standard output
std::string s;
while (io.good()) {
io >> s;
std::cout << s << " 73

std::cout << "\n";
return O;

Using C++ with Caché 25

Using the C++ Binding

4.5 Using Relationships

As in Caché, relationships are treated as properties. For example, the relationship between Sample.Employee and
Sample.Company results in the following generated code:

class Sample_Employee : public Sample_Person {
// code
virtual d_ref<Sample_Company> getCompany() const;
//virgual void setCompany(const d_ref<Sample_Company>&);
code

class Sample_Company : public Persistent_t {
// code
virtual d_ref< d_relationship<Sample Employee> > getEmployees() const;
virtual void setEmployees(const d_ref< d_relationship<Sample_Employee> >&);
// code

The d_relationship<T> class template is a standard container that supports iterators begin() and end(), and reverse iterators
rbegin() and rend(). Here is a simple program that uses this relationship to access a list of employees:

#include "Sample_Company.h"
#include "Sample_Employee.h"

#include <algorithm>

class Print_person : public std::unary_function<d_ref<Sample_Person>, int> {
private:
std: :ostream& out;
public:
explicit Print_person(std::ostream& o)
- out(o)

}
result_type operator()(argument_type p) const
{ out << p->getName() << std::endl; return O; }

}:
int mainQ)

// establish the connection to Cache*
Db_err conn_err;
d_connection conn = tcp_conn::connect(
"localhost[1972]:Samples™, *_SYSTEM", "SYS", 0, &conn_err);
Database db(conn);

d_ref<Sample_Company> obj = Sample_Company::openid(&db, L"1"™);
d_ref< d_relationship<Sample_Employee> > r = obj->getEmployees();
// print the names of all employees in the order they are
// stored in the relationship
std::for_each(r->begin(), r->end(), Print_person(std::cout));
std::cout << std::endl;

// print the names of all employees in the reverse order
std: :for_each(r->rbegin(), r->rend(), Print_person(std::cout));

return O;

4.6 Using Queries

A Caché query is treated as type d_query, which is designed to fit into the framework of ODBC but provides a higher level
of abstraction by hiding direct ODBC calls behind a simple and complete interface of a dynamic query. It has methods for
preparing an SQL statement, binding parameters, executing the query, and traversing the result set.

The basic procedure for using a Caché query is as follows:

26 Using C++ with Caché

Using Queries

* Prepare

The method for preparing a query is:
void prepare(const wchar_t* sql_query, int len);
where sgl_query is the query to execute.

e Set Parameters

Assign values for any parameters.
template<typename D_TYPE> void set_par(int index, const D_TYPE& val);

This function sets parameter index to val. The function works for any C++ binding data type. This function can be
called several times for the same parameter. The previous value for the parameter will be lost. The new value need not
be of the same type.

e Execute

This function executes the query. Do not call it until all parameters are bound.
void execute();

e Fetch

Determine if there is data available for retrieval.
bool fetch();

This function tries to get the next row from the result set. It returns true if it succeeds and false if it fails. This function
does not fetch any data. It only checks if there is more data to be fetched.

e Retrieve Data

If the query successfully executes, it returns a result set with one row for each record. The data in each row can be
accessed by iterating the row from left to right by calling

void get_data(T* val);
where T can be any data type of C++ binding. For d_string, you may specify how you want the data to be converted:
void get_data(d_string* val, str_conv_t conv = NO_CONV);

The default is not to convert the data (the “NO_CONV” value). Using “CONV_TO_MB” converts the data to multibyte;
using “CONV_TO_UNI” converts the data to Unicode.

After each call, the implicit iterator moves to the next column (S0 you cannot access the data in the same column twice
by calling get_data() twice). This eliminates the need for the implementation to store all the data on the client. Otherwise,
using queries could result in large memory overhead. Applications that need random access to the data should read all
the data in a row first.

You can skip one or several columns by calling:
void skip(int num_cols = 1)
You can get the index of the column that will be processed next by calling:

int get_cur_idx(Q);

Using C++ with Caché 27

Using the C++ Binding

Here is a simple function that queries Sample.Person:

void example(Database& db)
{
d_query query(&db);
d_string name;
d_int id;
d_date dob;

const wchar_t* sql_query = L"select ID, Name, DOB from Sample.Person

where ID > ? and FavoriteColors = ? ";
int size = wcslen(sgl_query);

query.prepare(sql_query, size);

query.set_par(l, 1);
query.set_par(2, "Blue™, 4);

query.execute();

std::wcout << L"results from " << std::wstring(sgl_query) << std::endl;

¥hile (query.fetch(Q))
query.get_data(&id);
query.get_data(&name);
query.get_data(&dob);
std::cout << std::setw(4) << id
~<< std::setw(30) << std::string(name)
~<< std::setw(20) << dob << std::endl;

T
std::cout << std::endl;

4.7 Using Transactions

There are two options for performing transactions.

* Database class methods — Perform standard nested transactions.

» Transaction class methods — No nesting, but guarantees an automatic rollback if an exception is encountered.

4.7.1 Using Database Class Methods

Nested transactions can be performed using following methods of the Database class (also inherited by the LC_Database

class):

» tstart() — Starts a new level of nested transaction.

» tcommit() — Marks the current level of the transaction as committed. Committing the outermost level causes the entire

transaction to be committed.
« trollback() — Rolls back all levels of the transaction.

» tlevel() — Returns the current transaction level.

For example:

for (i = 0; 1 < numPersons; i++) {
db->tstart()
// perform the transaction

if (goodtransaction)
db->tcommit();

else
db->trollback(Q);

28

Using C++ with Caché

Using Transactions

The tstart() and tcommit() methods are also called implicitly whenever a proxy object's save(), insert(), update(), or
delete_object() member functions are called. This ensures a transaction scope for temporary locks, and for rollback in case
of error.

4.7.2 Using Transaction Class Methods

The Transaction class provides a guaranteed automatic rollback in case of exceptions. When a Transaction object goes
out of scope, the transaction is rolled back if neither commit() nor rollback() has been called. This class does not allow
nested transactions.

The Transaction methods are:
* Transaction() — The constructor starts the transaction (unlike a Database object, which requires a call to tstart()).

* Transaction::commit() — Commits the transaction. Calling commit() more than once for the same Transaction object
does nothing (unlike Database::tcommit(), which can be called repeatedly to commit multiple levels of a nested
transaction).

» Transaction::rollback() — Rolls back the transaction. Called automatically if the Transaction object goes out of scope
before the transaction is committed or rolled back.

For example:

for (i = 0; 1 < numPersons; i++) {
Transaction tran(db);
// perform the transaction

// transaction will rolled back if an exception
// occurs before this point
if (goodtransaction)
tran->commit();
else
tran->rollback();

3

As shown above, the Transaction object must be instantiated with:
Transaction tran(db);

rather than:
Transaction tran = new Transaction(db);

If the object is allocated from the heap using new, it will not automatically be destroyed when it goes out of scope, and
therefore the transaction will not be rolled back.

Using Transactions with the Light C++ Binding

In Light C++ Binding applications, if an exception is thrown within the projection class member functions save(),
delete_object(), insert(), or update(), automatic rollback occurs. Exceptions thrown in other contexts do not cause transactions
to be automatically rolled back, unless an instance of the Transaction class has been declared as an automatic variable in a
scope within which the exception is thrown, and the exception is not caught within that scope.

Using C++ with Caché 29

Dynamic Binding

Instead of generating C++ classes, you can use a Dyn_obj, a class that allows you to work with Caché classes dynamically.
This can be useful for writing applications or tools that work with classes in general and that do not depend on particular
Caché classes. However, this generality comes at the price of the lack of static analysis of the code by a C++ compiler and
a slightly slower performance. InterSystems recommends that you work with generated classes if you know what classes
you need at the time of writing a program.

5.1 Construction of a Dyn_obj Proxy

As any other proxy, Dyn_obj has the following methods for creating a proxy object:

static d_ref<Dyn_obj> openref(Database* db,
int ref,
const_name_t type); // const_name_t is a typedef for const wchar_t*

static d_ref<Dyn_obj> create_new(Database* db,
const_name_t type,
const_str_t init_val = 0, // const_str_t is a typedef of const wchar_t*
Db_err* err = 0);

static d_ref<Dyn_obj> open(Database* db,
const d_binary& oid,
int concurrency = -1,
int timeout = -1,
Db_err* err = 0);

static d_ref<Dyn_obj> openid(Database* db,
const_name_t type,
const_str_t id,
int concurrency = -1,
int timeout -1,
Db_err* err 0);

They differ from the same methods for generated classes only in the additional parameter for the name of the class.

In addition, Dyn_obj has a method, init(), that allows you to construct a Dyn_obj instance from the result of get_property(),
run_obj_method(), and run_class_method() methods from Dyn_obj:

static d_ref<Dyn_obj> init(t_istream& in, Database* db);

Using C++ with Caché 31

Dynamic Binding

5.2 Construction of Values from Calling Dyn_obj Methods

All values returned from calling Dyn_obj methods are returned inside t_istream (transport input stream). If the value is an
instance of a data type, then it can be constructed from t_istream alone, such as:

d_int val(in);

where in is of type t_istream.

If the value is an object, then t_istream contains its OREF and class name. This means that you will also need a Database
object. If you know the type of the returned object at compile time, then you can use the openref() method of that type. For
example, if the returned object is of type Sample.Person, then the object can be constructed as

d_ref<Sample_Person> p = Sample_Person::openref(db, d_int(in));

d_int(in) creates a temporary d_int value that contains the OREF, and the d_int value is converted to an int. Otherwise, it
can be constructed as

d_ref<Dyn_obj> p = Dyn_obj::openref(in, db);

and the type of the object will be read from the input stream. The signature of the init() method matches constructors from
other D_type instances, except that the Database pointer is not 0.

5.3 Properties and Methods

Once you construct a Dyn_obj proxy, you can use it to get or set property values, run queries, and run and methods:

t_istream& get_property(const_name_t prop_name);

void set_property(const_name_t prop_name, D_type* val);

void get_query(const_name_t query_name, d_query& query) const;
// const_name_t is a typedef for const wchar_t*

In order to run a method, you should pass an array of pointers to arguments (D_type*) and the number of arguments. You
can use the buffer allocated by a Database object, such as:

D_type* args[2];
args[0] = &argl;
args[1] = &arg2;
// code

it can store max_num_obj_args pointers (the maximum allowed number of arguments). The signature of run_obj_method()
is:

t_istream& run_obj_method(
const_name_t mtd_name, // const_name_t is a typedef for const wchar_t*
D_type** args,
int num_args);

32 Using C++ with Caché

Properties and Methods

To run a class method, you can use run_class_method():

static t_istream& run_class_method(Database* db,
const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
const_name_t mtd_name,
D_type** args,
int num_args);

The values for arguments passed by reference will be changed inside these methods. For example,

const_name_t cl_name = _ NAME_V(Sample.Person);
D_type* args[2];

d_ref<Dyn_obj> p = Dyn_obj::openid(db, cl_name, _ STRING_V(1));
// create a proxy

d_string dob(p->get_property(_ _NAME_V(DOB)));
// get date of birth

d_int argl(2);
d_int arg2(3);

args[0] = &argl;
args[1] = &arg2;
d_int res = p->run_obj_method(__NAME_V(Addition), args, 2);

args[0] = &dob;
d_int age =

Dyn_obj::run_class_method(db, cl_name, NAME_V(CurrAge), args, 1);

d_query by _name(db);
p->get_query(__NAME_V(ByName), by name);

Note: The pointers in the array of arguments cannot point to temporary variables. Code such as the following may result
in a crash:

args[ii] = &d_int(1); // DO NOT USE!

Using C++ with Caché 33

The Light C++ Binding

The Light C++ Binding (LCB) is most useful in applications where high performance is the primary concern, and class
design is relatively simple. It is a special purpose, limited subset of the C++ binding, intended primarily for applications
that must load data into a persistent database at very high speed. For example, some applications capture raw real-time data
at such a high rate that it must typically be stored it in an in-memory database before it can be processed and transferred
to persistent storage. LCB can offer a similar level of performance while also offering failover, which is not possible with
an in-memory database.

For basic object manipulation (creating objects, opening objects by Id, updating, and deleting), LCB is ten to twenty times
faster than the standard C++ binding.

Constraints on LCB Applications

The most significant tradeoff for this added speed is a limitation in the complexity of the objects to be stored. The primary
constraints on LCB applications are as follows:

e Caché must be installed with the “minimal” or “normal” security option.
* No dynamic binding (classes must be known at code generation time)

» Since projected LCB objects do not have corresponding Caché objects in memory on the Server, Caché method calls
cannot be used.

e The default storage structure must be used.

* Nointegrity constraints or data validation, except checking for duplicate idkeys during insert (see Error Checking) and
checking for duplicates in unique indexes.

* No registered (transient) classes

» No transient or calculated properties

» No collections except lists or arrays of datatype.
e No streams, relationships, or stored OIDs

» Only the following Caché datatype classes are supported for properties and indices: %Integer, %Float, %Decimal,
%Double, %String, %Date, % Time, % TimeStamp, and %Currency.

» Idkey properties must be of type %String, %Integer, or %Date

» Regular and bitmap indices only (no bitslice indices).

* No triggers (except through SQL)

* No non-standard LogicalToStorage or StorageToLogical conversions

» The only supported collation types are SQL string, SQL upper, and exact

Using C++ with Caché 35

The Light C++ Binding

See Installing the Light C++ Binding for LCB installation requirements.

6.1 Light C++ Binding Architecture

LCB gains much of its improved performance because it provides a much faster way for the C++ application to communicate
with the Caché Object Server. LCB does not use the standard binding's client/server architecture, with Caché running as a
separate server process. Instead, Caché is loaded as a DLL or shared object, allowing it to execute as part of the application
process. The following diagram illustrates this structure:

Figure 6-1: Light C++ Binding Architecture

e e s ey L L L mE m R m R m R .

Design Time i) Runtime i
i (single process on local machine)

C++ Application

C++ objacts
in memary Callin direct

i Toadfi !
i I Caché Callin Interface | cadile :
N ek’ <=~ :

C++ Classes

Y

C++ Generator

4T—

Cache Class
Dictionary

Intraprocess
communication

Caché Kernel
and Server

{DLL or 50)

h 4

Stored Caché
objects

Both LCB and the standard C++ binding use the Caché C++ Generator and the Caché C++ Binding Library, but there are
major differences at runtime:

e Rather than using TCP/IP to communicate with Caché, LCB uses the Callin API to make intraprocess calls to the
Caché kernel and Object Server. Although the server and the C++ application must be on the same machine, Caché
ECP can still be used by the application to access data on remote machines.

» For simple classes, LCB will use Callin functions to perform object loading and filing directly, entirely bypassing the
server routines. The Callin interface provides extremely efficient low-level functions for accessing Caché databases.

e Obijects are loaded directly from a Caché database into a corresponding C++ object. The Caché Server does not
maintain copies of these objects in memory. The C++ objects are not just proxies for objects on the Server, but contain
actual data.

» Since the C++ objects contain the only in-memory copy of the data, the C++ application can continue to work with
them even if there is no connection between the Caché Object Server and the persistent database. This is especially
important for multithreaded applications that want to share a connection between two or more threads.

« Although most LCB properties behave just as they do in the standard binding, getters for non-numeric types return a
reference, as optimization. For example, the getter for a string property might have the following signature:

virtual const d_string& getname() const;

36 Using C++ with Caché

LCB Classes in the Caché C++ Library

6.2 LCB Classes in the Caché C++ Library

The Caché C++ library implements the Light C++ Binding with a special set of classes, most of which are LCB versions
of classes used by the standard binding. The following classes provide the functions that you will need for an LCB application:

* LC_Persistent_t — is the base class used to generate LCB persistent projection classes. It is the LCB version of
Persistent_t (see Generating Proxy Classes).

e LC Serial_t —isthe base class used to generate LCB serial projection classes.
» LC Database — is the LCB version of Database.
e lc_conn —isthe LCB version of tcp_conn.

e lc_d_ref<T>—is the reference class template for LCB objects (see Using Proxy Objects). It is the LCB version of
d_ref<T>.

o LC Batch — is a special batch insert class that provides an alternate interface for high speed inserts.

6.3 Connections and Multithreading

An LCB connection uses the following classes:
e d_connection — is the physical connection handle. This class is used by both LCB and the standard binding.

e LC Database — is a subclass of the standard Database class. It is initialized from an open d_connection, just like
Database.

e lc_conn —is the LCB connection class, used in place of the standard tcp_conn class. The connect method,
Ic_conn::connect() has the same syntax as tcp_conn::connect().

The following code fragment demonstrates how these classes are used. Compare the calls in this code to the example in
Connecting to the Caché Database. Only the class names have changed.

include "lc_connection.h"
include "lc_database.h"
Db_err conn_err;

d_connection conn = lIc_conn::connect(
conn_str, user, pwd, timeout, &conn_err);
LC_Database db(conn);

Important: For all LCB applications, the GLOBALS_HOME environment variable must be set to the root directory of
the Caché instance (see “Additional LCB Requirements™). All connection attempts will fail if this envi-
ronment variable is not set.

6.3.1 Multithreading

LCB is thread-safe, and uses the Callin API to provide parallel multithreading on multiprocessor machines. Performance
is similar to that of multithreaded Callin applications. Unlike Callin applications, LCB applications do not require detailed
knowledge of class implementations, since the C++ code can be regenerated whenever class definitions change.

A separate database connection (including both d_connection and LC_Database objects) must be used in each thread. If
member functions of LC_Database, or of projection objects connected to an LC_Database instance, are called in a different

Using C++ with Caché 37

The Light C++ Binding

thread than the thread in which the LC_Database object was created, the following exception is thrown: ""Database
connection may not be shared by multiple threads"

For examples of multithreaded LCB code, see the mttest.cpp and gtest.cpp sample programs located in
<cachesys>\Dev\cpp\samples (see Default Caché Installation Directory in the Caché Installation Guide for the location of
<cachesys> on your system).

6.3.2 Connections and Multiple Threads

Projection objects can only be connected to one database connection at a time, and can only be used in the thread in which
that database connection was created. To use a projection object in more than one thread, use the projection object methods
disconnect() and connect(). The is_connected() method can be used to determine the connection state.

e A projection object is connected when it has been returned by create_new() or openidy().

» Aprojection object must be detached (see Attaching and Detaching LCB Objects) before being disconnected, and must
be disconnected before being (re)connected to a different database connection

» Using connect() and disconnect() permits one thread to be a factory for projection objects, which are inserted into the
database in a different thread.

» Projection object member functions that access the database enforce thread affinity, but get<name>() and set<name>()
functions do not, and are not thread-safe.

» Separate database connections can be used in parallel in different threads.

6.3.3 Attaching and Detaching LCB Objects

Since the C++ objects contain the only in-memory copy of the data, the C++ application can continue to work with them
even if there is no connection between the Caché Object Server and the persistent database. This is especially important
for multithreaded applications that want to share an object between two or more threads.

An object is attached when:

» It has been returned from openid(), or it has just been created and save() or insert() has been called.

An object is detached when:
* It has just been returned from create_new()
» it has just been deleted by calling delete_object()

e detach() has been called

6.3.4 Transactions and Multithreading

Each thread / database connection has its own transaction context:
e Threads look just like separate processes to Caché. Two threads may not use the same connection object.
» Locks acquired by one thread block attempt to acquire the same lock in another thread.

» Database transaction methods tstart(), tcommit(), and trollback() (see Using Transactions) only affect the calling
thread.

38 Using C++ with Caché

Using Objects in LCB

6.4 Using Objects in LCB

LCB projected objects are different from standard C++ binding objects in a number of ways. It is important to understand
these differences in the following situations:

» Using persistent object references as properties
» Using classes that inherit from other persistent classes
» Using embedded serial object properties

» Using list and array properties

6.4.1 Using Persistent Object References as Properties

When a Caché class uses a persistent class as a property, LCB projects the property as a reference to a persistent object.
Each persistent reference property consists of an Ic_d_reT that points to the referenced object, and a string representing
the id of the object.

Property accessors get and set Ic_d_ref<LC_xxx>& where LC_xxx is the client type of the property (for example,
LC_User_Person is the client type for Caché class User . Person). Logically, the accessors work as follows:

» getters — If the object pointer is null and the id string is not null, the getter calls openid() and sets the id string to
the returned id, then returns the object pointer. If the object pointer and the id string are both null, it returns a null
object pointer.

e setters — The setter sets the object pointer to the referenced object. If the object has an id, the setter puts it in the id
string, or otherwise sets the id string to null/empty.

For example, assume a Caché class Sample .Employee that contains a property OFfice of persistent class
Sample.OfFice. Each class has a user-assigned idkey (OfFice on the office's city, and Employee on the employee's
name). The following example opens the OFFi ce object for the New York office, and the Employee object for John Kent.
If Kent is currently assigned to the Boston office, he is reassigned to the New York office:

Ic_d_ref<LC_Sample_Office> o = LC_Sample_Office::openid(db, "New York™);
Ic_d_ref<LC_Sample_Employee> e = LC_Sample_Employee: :openid(db, "Kent, John');
if (e->getOffice()->getCity() = "Boston) {

e->setOffice(0);

e->save();

In generated code for classes that contain persistent reference properties, the save () function, and getter and setter functions
for persistent reference properties, are generated in the . cpp file rather than inline in the _h file, as is normally the case.
This prevents the _h file of a projected class from indirectly including itself due to circular references.

Getter functions for persistent reference properties, unlike other getter functions, are not declared as const, since they
must modify the referencing object when they cause it to swizzle.

6.4.2 Using Classes that Inherit from Other Persistent Classes

The Light C++ Binding supports retrieval and update of persistent objects whose classes inherit from other persistent
classes. Batch insert is not supported for classes that inherit.

The LCB projection class for a Caché class inherits from the projection class of that Caché class's superclass. With multiple
inheritance, this applies only to first class in the list of superclasses. Other superclasses are transparent to LCB, which
simply sees their properties as belonging directly to the subclass.

Using C++ with Caché 39

The Light C++ Binding

Opening a Subclass Object from its Superclass

An object of a class that inherits from another class can be opened by the openid method of the inherited superclass,
provided that the C++ code for the subclass has been generated and linked into the application.

For example, assume a class LC_Sample_Employee that inherits from class LC_Sample_Person. If variable sub_id
contains the id of an LC_Sample_Employee object, the following statement can be used to open it:

Ic_d_ref<LC_Sample_Person> newemployee = LC_Sample_Person::openid(db, sub_id);

LCB will detect the actual class of the object to be opened, and will transparently open newemp loyee as an object of
subclass LC_Sample_Employee.

Since LCB performs its storage operations in client-side code, it needs to be aware of the actual class of the object. If the
generated code for a subclass is not linked into the application, LCB cannot open the object as that class. Instead, it will
open the object as the nearest ancestor of the subclass for which linked code is available. In that case, an exception is thrown
if the application attempts to update or delete the object, because LCB cannot ensure that all index entries will be properly
updated or deleted.

Because LCB transparently opens an object as the most specific-possible subclass, if the same object is opened once from
the superclass and once from the subclass, both Ic_d_refs will reference the same subclass object in memory.

Note: Unlike LCB, the standard C++ binding does not have the ability to transparently open an object as a more specific
subclass than the class whose openid method was called. However, since the standard binding performs all of the
actual storage operations on the Caché Server (which knows the actual class of the object), it is still possible to
update or delete objects opened from a superclass that are actually of a subclass.

6.4.3 Using Embedded Serial Object Properties

LCB objects can have embedded serial objects as properties. An LCB serial property has a getter function that returns a
pointer to the type of the property. For example, assume that Caché class Sample.Person contains a property Home of
serial class Sample .Address. The getter function for the projected serial property would be LC_Sample_Address
*getHome (). The following example retrieves the old street from a person's home address, and then assigns a new street
value:

Ic_d_ref<LC_Sample_Person> p = LC_Sample_Person::openid(db, 1);
d_string oldStreet;
d_string newStreet(‘'Broadway');

oldStreet = p->getHome()->getStreet();
p->getHome()->setStreet(newStreet);
p->save();

LCB serial classes (projected from Caché classes based on %SerialObject) inherit from LC_Serial_t. The generated code
for an LCB serial class consists only of a header file (unlike persistent LCB classes, which have code in both .hand .cpp
files). For example, a header file named LC_Sample_Address. h would contain the only projection code generated for
Caché class Sample.Address.

6.4.4 Using List and Array Properties

The only collection types that can be used with LCB are lists or arrays of datatype. The following Caché datatype classes
are supported: %Integer, %Float, %Decimal, %Double, %String, %Date, %Time, %TimeStamp, and %Currency (see the
Reference for Simple Datatype Classes for a discussion of these datatypes).

Long strings must be enabled in order to store lists or arrays larger than 32K. To enable support for long strings system-
wide, open the Management Portal and select System Administration > Configuration > System Configuration > Memory and
Startup, then select the Enable Long Strings check box. The long string setting can also be overridden temporarily using
$ZUTIL(69,69).

40 Using C++ with Caché

Standard LCB Projection Class Methods

Lists of Datatypes

LCB projects list properties as std: : vector<d_xxx>, where d_xxx is a valid LCB datatype class. For example, a list
of %String would be projected as std: :vector<d_string>.

Arrays of Datatypes

LCB projects array properties as std: :map<d_string,d_xxx>, where d_xxx is the property's array element datatype.
For example, an array of %String would be projected as std: :map<d_string,d_string>.

Important: When defining an array property in a Caché class, the property parameter STORAGEDEFAULT must be set
to list. For example, a Caché class might define a %String array as follows:

Property MyArray As array Of %String(STORAGEDEFAULT = "list");

The default parameter value, array, is not supported in LCB.

6.5 Standard LCB Projection Class Methods

The C++ Generator provides LCB projection classes with a set of methods similar to those generated for standard proxy
classes (see Standard Proxy Class Methods). The methods listed in this section are added to all projection classes.

Buildindices()

Invokes the Caché %oBuildIndices class method (see %lLibrary.Persistent) to completely rebuild all indices of the
class. It can enhance performance when used after save() or delete_object() (called with defer_indices set
to true).

static InterSystems::d_status BuildIndices(
InterSystems::LC_Database * db)

connect()

Connects (or reconnects) a projection object to a database connection. An exception will be thrown if the object
is not disconnected.

void connect(
InterSystems: :LC_Database * db)

create_new()

Creates a new projection object. The projection object is not saved to the database until save() or insert() is called.
Once save() is called, the object is attached. If save() is called again, the object is updated. To cause save() to
create a different new object, you must first call create_new() again, or call detach().

static Ic_d_ref<LCBclass> create_new(
LC_Database* db,
const_str_t init_val = 0, // const_str_t is a typedef of const wchar_t*
Db_err* err = 0)

The create_new() method inherited from LC_Persistent_t is overridden by a version that returns a reference to
the specific class (Ic_d_ref<L.CBclass> where LCBclass is the name of the projection class).

Using C++ with Caché 41

The Light C++ Binding

delete_object()

Deletes an open object from the database. This method allows you to delete an open object from the database
without destroying the projection object.

d_status delete_object(
bool defer_indices = false,
int timeout = -1,
Db_err* err = 0)

After delete_object() is called, the projection object still contains property data values, but is no longer attached.
If the object was locked, the lock is released.

Calling save() right after delete_object() will create a new database object with the same values, except for any
properties explicitly set to different values

detach()

Detaches a projection object from an object in database. This is a no-op if the object is not attached). If a retained
lock is held on the object, it is released.

void detach()

Property values are retained in the projection object. This permits reusing the projection object to create multiple

new database objects, avoiding the overhead of calling create_new() and copying properties that have same values
in multiple objects.

direct_save()

A very-high-performance alternate interface for creating new objects while avoiding the overhead of projection
object instantiation and data conversions. It can only be used to insert new objects, not to update existing objects.
direct_save() can be used with a Unicode database, but it only supports ASCII characters in strings.

static d_status direct_save(
LC_Database* db,
const char *<propl>,

const char *<propN>)
The parameters <propl>. . .<propN> are properties of the class.

This method does not create index entries (although you can use BuildIndices() after saving).
disconnect()

Disconnects a projection object from a database connection. An exception will be thrown if the object is not
detached, or if the object's current database connection was created in a different thread.

void disconnect()
id()
Gets an id from an attached object. The *buf parameter can be either a multibyte string or a Unicode string.
int id(
wchar_t *buf,
size_t bufsiz)
int id(

char *buf,
size_t bufsiz)

42 Using C++ with Caché

Standard LCB Projection Class Methods

insert()

Inserts a new object into the database.

d_status insert(
bool defer_indices = false,
int timeout = -1,
Db_err* err = 0)

If called for an attached object, insert() detaches the object, and attempts to insert a new object with the same
property values. For a user-assigned idkey, this causes a duplicate idkey exception.

is_attached()
Returns true if the projection object is attached.
bool is_attached()
is_connected()
Returns true if the projection object currently has a connection to the database.
bool is_connected()
openid()

Opens an existing object, specified by id. Projection object data members are set to current values from the database
object, and the projection object is attached to the database object.

static Ic_d_ref<LCBclass> openid(
LC Database* db,
const_str_t ident,
int concurrency = -1,
int timeout = -1,
Db_err* err = 0)

// const_str_t is a typedef of const wchar_t*

static Ic_d_ref<LCBclass> openid(
LC Database* db,
const char * ident,
int concurrency = -1,
int timeout
Db_err* err

-1,
0)

The ident parameter can be either a multibyte string or a Unicode string. The openid() method inherited from

LC_Persistent_t is overridden by a version that returns a reference to the specific class (Ic_d_ref<LCBclass>
where LCBclass is the name of the projection class).

release_shared_lock()

Explicitly releases a shared lock when the projection object has been opened with concurrency mode
LC_CONCURRENCY_SHARED_RETAINED (see LCB and Concurrency).

void release_shared_lock()

save()

Saves the projection object to the database. It must be explicitly called to save a newly-created object to the
database, or to save changes to the database.

d_status save(
bool defer_indices = false,
int timeout -1,
Db_err* err = 0)

Using C++ with Caché 43

The Light C++ Binding

If the projection object is attached, save() updates the object. If the object is detached, save() creates a new object.
In transactions, save() brackets the update with implicit calls to tstart() and tcommit() (see Using Transactions).
set_from_err_list()

Sets the projection object's property values from the error list entry returned by a batch insert (see Using LCB
Batch Insert).

void set_from_err_list(
const std::pair<d_status,d_binary> & list_entry)

update()

Updates an existing database object.

d_status update(
bool defer_indices = false,
int timeout = -1,
Db_err* err = 0)

The object must already be attached. If not, the following exception is thrown: *Object must be opened
or inserted before being updated".

6.6 Using Queries in LCB Applications

Queries in LCB applications use the same API calls as the regular binding (see Using Queries), and provide similar perfor-
mance. To run a query in an LCB application, pass an instance of LC_Database as a database argument to the d_query
constructor. For example:

LC Database *db;
d_query q(db);

LCB queries do have some limitations compared to the regular binding:
* Queries cannot reference or return stream-type properties.
* Only ad-hoc queries are currently supported, not pre-defined named queries and stored procedures.

» For authentication and security under UNIX®, users running LCB applications must belong to the cacheusr group, or
be running a trusted application (see Running Trusted Applications on UNIX®).

6.7 Using LCB Batch Insert

The LC_Batch class provides methods for batch insertion using the Light C++ Binding. The << operator is used to seri-
alize objects and add them to a batch. When a batch is saved with the flush() method, there is a separate implicit transaction
for each object, and the transaction is rolled back if there is any error. The get_errors() method returns a list of failed
transactions.

Performance is only slightly better than with save(), but a single projection object can be serialized repeatedly with different
property values, which may significantly reduce the processing overhead compared to calling create_new() for each insert.

» Use the << operator to add objects to a batch.

Once a projection object has been created with create_new() and its properties have been set, it can be serialized into
a batch using the << operator. The same projection object can be reused, or different projection objects can be used

44 Using C++ with Caché

LCB and Concurrency

for each serialization in the batch. In the former case, any properties which are intended to have the same value in
every object in the batch only need to be set once.

e Use clear() to remove an object from the batch.

If an application does not wish a batch to be saved, after objects have already been serialized into it, the application
should call clear(), which resets the batch's number of objects to 0 (but does not reset the error or id lists).

e Use flush() to save the batch.

Once all objects to be inserted have been serialized into the batch, the batch is saved by calling its flush() method either
directly or indirectly. The close() method calls flush(), and the LC_Batch destructor calls close().

» After flush() is called, the get_errors() method can return an error list.
— Each list entry is pairing of error status and object serialization.
— If there were no errors, size() of the list is 0.

— Theset_from_err_list() method can be used to examine properties of the objects that had errors.

Transaction Handling

If the _do_tx parameter of the LC_Batch() constructor is set to true, there is a separate implicit transaction for each
object when a batch is saved. The implicit transaction is committed if the object is saved successfully, or rolled back if
there is any error. If the entire batch should be either committed or rolled back, the call to flush() should be bracketed with
calls to LC_Database methods tstart() and tcommit() (see Using Transactions). This will cause the entire batch insert to
be rolled back if an error is encountered.

Optimization
» Compile classes with optimization level 02.

In Visual Studio, go to the Tools Menu > Options > Compi le tab and check the Optimize within class
and calls to library classes checkbox. This will improve performance 5 to 10 percent.

» When creating a new LC_Batch object, set the reserve_size parameter appropriately.

Performance is enhanced by reserving as many bytes as will actually be needed for the batch's serialization buffer.
This will avoid the cost of enlarging the buffer and copying data as objects are added to the batch. Specify
reserve_size as at least equal to the average object size multiplied by the number of objects to be inserted.

e Setthe do_tx parameter to false.

Performance is substantially faster if do_tx is set to False (the default). If it is set to true, a tstart() and a tcommit()
or trollback() (see Using Transactions) is performed for each insert within the batch.

6.8 LCB and Concurrency

LCB supports the standard Caché concurrency model (see Object Concurrency in Using Caché Objects). Use the following
constants to specify concurrency level:

* Nolocking at all:
#define LC_CONCURRENCY_NO_LOCKING 0
e No lock during create; exclusive lock during update:

#define LC_CONCURRENCY_ATOMIC 1

Using C++ with Caché 45

The Light C++ Binding

» Shared lock during create; exclusive lock during update:
#define LC_CONCURRENCY_SHARED 2

» Shared lock retained after openid():
#define LC_CONCURRENCY_SHARED_RETAINED 3

» Exclusive lock retained after openid():

#define LC_CONCURRENCY_EXCLUSIVE 4
#define LC_CONCURRENCY_DEFAULT LC_CONCURRENCY_ATOMIC

Specify concurrency level when opening an object. For example:

d_ref<User_Person> person =
User_Person::openid(db, id, LC_CONCURRENCY_EXCLUSIVE);

Note: You cannot specify a non-default concurrency level when creating a new object (although you can subsequently
call openid() to set the desired concurrency level). LCB concurrency always defaults to
LC_CONCURRENCY_ATOMIC.

6.8.1 Update Semantics
Calling save() or update() sets all properties of a database object from the projection object, whether or not the C++
application has modified them.

An object is protected from modification by other applications if it was opened with concurrency level SHARED RETAINED
or EXCLUSIVE.

If the object was opened with a lower concurrency level, save() may overwrite properties set by someone else's intervening
update, or re-create the object after an intervening delete. This will not corrupt the object or indices, because appropriate
locks are taken. You can explicitly call openid() again with a higher concurrency level, to lock an object that wasn't previously
locked. This always reloads the current property values from the database.

When updating an object that was opened with a concurrency level lower than SHARED-RETAINED, if index updating
is enabled and an object's indexed properties have been modified, the object is locked and the old property values are
reloaded from the database. This is necessary so that the old index entries can be deleted.

6.9 Optimization and Troubleshooting

For best performance:

» Avoid use of wchar_t strings if not needed.

» Avoid unnecessary indices

e For the initial load, save with defer_indices = true, then build indices at the end.

» Define properties as %Double rather than %Float when possible.

6.9.1 Workarounds for SUSE 12 Linux Build Problems

Light C++ Binding applications on SUSE 12 Linux systems require one of the following two simple workarounds to build
without error, due to a change in Id (the linker) from previous versions of SUSE Linux:

46 Using C++ with Caché

Optimization and Troubleshooting

» Option 1: Add - Ipthread to the library specifications in the Id or g++ command line in the makefile used to build
the application. For example, if using a makefile based on one of the Master.mak files installed with Light C++ Binding
sample applications, change the line:

CACHETLIB = -L$(CACHETPATH) -Ilcachet

to

CACHETLIB = -L$(CACHETPATH) -lcachet -Ipthread

e Option 2: Set the environment variable MULTITHREADED to 1 in the environment in which make is invoked. In
Bourne shell the syntax is:

export MULTITHREADED=1

Either option resolves the issue, or both options can be used together. The workarounds are made necessary because the
linker now requires application makefiles to explicitly specify dependent libraries of other libraries with which they link,
even if those other libraries specified the dependent libraries when they were linked. In this case, libcachet.so depends on
libpthread.so, so starting with SUSE 12 Linux, both libraries must be explicitly specified.

6.9.2 Detecting “object not found” Errors

If openid() is called with the optional Db_err* parameter and no object with the specified id exists, the Db_err code is
setto -3, and msg is set to "object not found'. The d_ref to which the result of openid() is assigned is set to nul I,
which can be detected by calling its is_null() member function.

It is the caller's responsibility to either test whether the Db_err code is non-zero, or to test whether the d_ref is null, before
dereferencing the d_ref. Dereferencing a null d_ref causes an exception to be thrown, with code -2 and msg **Can not
dereference a null d_ref<> value". For example, assume the following code fragment is executed for id 2",
and no object with id value 2 exists:

Db_err openerr;

person = User_Person::openid(db, id, concurrency, timeout, &openerr);
if (openerr)

std::cerr << openerr << ",\n source = " << openerr.get_src() << "\n";
else

printf(""Object was found\n');
it (person.is_null())

std::wcout << L"Person with id " << id << L" doesn"t exist\n";
// Go ahead and dereference the d_ref whether or not it is null
d_string name = person->get_name();

Since the object was not found, the output is:

Error: code = -3, msg = object not found,

source = LC Database::lc_openid_obj

Person with id 2 doesn"t exist

Error: code = -2, msg = Can not dereference a null d_ref<> value,
source = abs_d_ref::operator->()

6.9.3 Calling the LC_Database and d_connection Destructors

It is important to call the LC_Database and d_connection destructors, in order to cleanly disconnect the application
from Caché, causing the license and other resources to be released. The Icbdemo sample application shows an example
of this.

If d_connection or LC_Database instances are declared as local variables, their destructors will automatically be
called when they go out of scope. But if they are allocated via new and assigned to pointers, they must be explicitly destroyed
using C++ "delete".

Using C++ with Caché 47

The Light C++ Binding

6.9.4 Using Ic_conn::connect

Ic_conn::connect changes the calling application's working directory

Ic_conn: :connect has the side effect (by default) of changing the calling application's current working directory,
because it uses ZN to change namespace to the namespace specified in the connect string.

This behavior can be disabled via a system configuration option in the Management Portal: Configuration->Advanced,
ObijectScript: SwitchOSDirectory. Set this to "true" to cause Caché to not switch the OS current working directory
when changing the namespace (the name “SwitchOSDirectory” is counter-intuitive). This affects any use of ZN, not
just via Ic_conn: :connect.

Avoid signal handling when using Ic_conn::connect

Ic_conn: :connect uses the Callin APl CacheStart() function, which sets handlers for various signals. These
handlers may conflict with signal handlers set by the calling application.

Ic_conn::connect() does not set a SIGINT handler

No handler is set for SIGINT when Ic_conn: :connect() invokes CacheStart(). This permits a user application
to set its own handler. However, the user's handler should not terminate execution unless it can ensure that all threads
which have active LCB connections have terminated them (by explicitly or implicitly destroying the d_connection
object for the connection, or by directly calling CacheEnd()).

48

Using C++ with Caché

Reference for Simple Datatype Classes

Caché uses a set of special classes for literal datatypes (containing simple data such as strings or numbers). See Data Types
in Using Caché Objects for information about how datatype classes differ from standard object classes.

Every Caché data type is mapped to an appropriate C++ object, such as d_int or d_string. If a literal type instance is not
null, it is possible to convert it to a standard C++ type: d_int can be converted to int, d_string to std::string or std::wstring,
d_time, d_date, and d_timestamp to tm. The C++ object that represents a Caché datatype is determined via the CLIENT-
DATATYPE keyword value of the datatype class.

All simple types have:

» Conversion operators that makes it possible to use them as C++ types. For example, d_int can be converted to int and
d_double to double.

» Avalue() method (for use in templates).
e make_null() and is_null() methods.
* Anoverloaded ""<<" operator for output streams.

* Anoverloaded "'="" operator.

The following datatypes are supported:

* Numeric—d_bool, d_int, d_double, d_numeric, d_decimal, and d_currency.
e Binary —d_binary, d_longbinary, d_oid, d_status, d_string, and d_list.

e Wide Strings — d_wstring, d_id, d_longwstring, and d_longstring.

» Date and Time — d_date, d_timestamp, and d_timestamp.

7.1 Numeric Classes

These are simple numbers.

» d_bool — %Library.Boolean corresponds to CLIENTDATATYPE keyword INTEGER.
e d_int — %Library.Integer corresponds to keyword INT or LONG.

e d_double — %Library.Double corresponds to keyword DOUBLE.

e d_numeric — %Library.Numeric corresponds to keyword NUMERIC. d_numeric is a typedef of d_double.

Using C++ with Caché 49

Reference for Simple Datatype Classes

» d_decimal — %Library.Decimal corresponds to keyword DECIMAL.

* d_currency — %Library.Currency corresponds to keyword CURRENCY.

7.1.1 Class InterSystems::d_int

A d_int can be converted to int and be assigned an int. It doesn't have other overloaded operators. The intended usage is to
get the int value and assign a changed value back to the object if the object should be changed. For example,

d
d

_int t = 2;

_int g int(t) + 2;

in many cases like this one the conversion is implicit, so the second line can be just
dintq=1t + 2;

but there are cases where it is necessary.

7.2 Binary Classes

These are classes containing variable-length binary data.

» d_binary — %Library.Binary corresponds to CLIENTDATATYPE keyword BINARY.

» d_longbinary —

» d_oid — A complete Object ID. corresponds to keyword OID. d_oid is a typedef of d_binary.
e d_status — %Library.Status corresponds to keyword STATUS.

e d_string — %Library.String corresponds to keyword VARCHAR or LONG VARCHAR.

e d_list— %Library.List corresponds to Caché $1ist structure.

7.2.1 Class InterSystems::d_binary

A d_binary holds binary data. d_oid is a typedef of d_binary that represents a complete Object ID.
Member list

* d_binary constructors

No parameters.

d_binary(Q;

From null terminated string

d_binary(const char* cstr);

From std::string

d_binary(const std::string& s);

From string of size sz, starting at cstr

d_binary(const char* cstr, int sz);

50 Using C++ with Caché

Binary Classes

e std::string() operator — Return the data as std::string
operator std::string() const;
» Comparison operators — Compare to another d_binary

bool operator==(const d_binary& t);
bool operator!=(const d_binary& t);

» append_bin() — Append binary data
void append_bin(const char* buf, byte size_t size);
e assign() — Assign binary data
void assign(const char* buf, byte size_t size);
» get_buf() — Get the address of the binary buffer
const char* get_buf() const;
» get_size() — Get the size of the binary buffer

long get_size() const;

7.2.2 Class InterSystems::d_status

A d_status encapsulates %Library.Status. It should be used only for interpreting a status from the server.
Member list

» operator int() — Convert to int with the value of the error code

operator int() const;

» get_code() — Get the error code (returns O if no error)
int get_code() const;

e get_msg() — Get the error message
const d_string& get _msg() const;

» get_from_srv() — Analyze the status on the server with potential translation of the message to language lang (if it's
a system error)

void get_from_srv(Database* db, const char* lang = ", Db_err* err = 0);
e throw_err() — Throw a Db_err with the code and the message of the error

void throw_err() const;

7.2.3 Class InterSystems::d_string

A d_string holds string data. It differs from d_binary in that it automatically converts data when necessary and also provides
conversion methods.

Using C++ with Caché 51

Reference for Simple Datatype Classes

Member list

d_string constructors

— No parameters.
d_string(Q;
— From null terminated string or wide null terminated string

d_string(const char* cstr);
d_string(const wchar_t* cstr);

— From std::string or std::wstring

d_string(const std::string& s);
d_string(const std::wstring& s);

— From string or wide string of size sz, starting at cstr

d_string(const char* cstr, int sz);
d_string(const wchar_t* cstr, int sz);

is_unicode() — Test whether the string is in unicode format
bool is_unicode() const;

to_mb() — Convert to multibyte.

— in buffer buf of capacity cap, return the number of bytes put in buf.
byte_size_t to_mb(char* buf, char_size_t cap) const;
— Convert to multibyte in place

void to_mb(Q);

to_uni() — Convert to unicode.

— Store the result in buffer buf of capacity cap, return the number of characters put in buf
char_size_t to_uni(wchar_t* buf, char_size_t cap) const;
— Convert to unicode in place

void to_uniQ);

std::string() operator — Convert to std::string or std::wstring.

operator std::string() const;
operator std::wstring() const;

Comparison operators — Compare to another d_string

bool operator==(const d_string& val) const;
bool operator!=(const d_string& val) const;
bool operator<(const d_string& val) const;

assign()

52

Using C++ with Caché

Binary Classes

— From null terminated string or wide null terminated string.

void assign(const char* buf);
void assign(const wchar_t* buf);

— From string or wide string of size sz, starting at cstr

void assign(const char* buf, char_size_t size);
void assign(const wchar_t* buf, char_size_t size);

7.2.4 Class InterSystems::d_list

A d_list object is a C++ implementation of the $1ist structure in Caché. In addition to its standard methods, the d_list
class has a set of static methods that allow you to extract data from a buffer containing a $1 i st without copying it into a
d_list object.

7.2.4.1 d_list methods

A d_list object is essentially a forward iterator, but it also provides methods for inserting, deleting and replacing an element
at the current position, as well as other methods that work with $list as a whole. A d_list position is 0 based. Since $list is
stored in contiguous memory, any operation that changes a $list element may cause a dynamic memory reallocation or
copying, which may be expensive.

Member list
o d_list()

d_list(const char* buf, byte_size_t size)

e append_elem()

void append_elem(__int64 val);

void append_elem(double val);

void append_elem(const d_string& val);

void append_elem(const d_binary& val);

void append_elem(const wchar_t* p, char_size_t size);
void append_elem(const char* p, char_size_ t size);

* append_elem_null()
void append_elem_null();
 at end()
bool at_end() const;
» clear() — Delete all elements
void clear();
e count() — Count the number of elements
int count();
» del_elem() — Delete the current element

void del_elem(Q);

Using C++ with Caché 53

Reference for Simple Datatype Classes

elem_null()
void ins_elem_null();
get_elem()

void get_elem(__int64* val) const;

void get_elem(double* val) const;

void get_elem(d_string& val) const;

void get_elem(d_binary& val) const;

void get_elem(bool* is_uni, const char** p_buf,
byte_size_t* p_size) const;

get_elem_idx() — Get the index of the current element
int get_elem_idx() const;

get_elem_type()
char get_elem_type() const;

ins_elem()

void ins_elem(__int64 val);

void ins_elem(double val);

void ins_elem(const d_string& val);

void ins_elem(const d_binary& val);

void ins_elem(const wchar_t* p, char_size_t size);
void ins_elem(const char* p, char_size_t size);

is_elem_double()
bool is_elem_double() const;

is_elem_int()
bool is_elem_int() const;

is_elem_null()
bool is_elem_null() const;

is_elem_str()
bool is_elem_str() const;

move_to() — Change the current position to idx (0 based)
void move_to(int idx) const;

move_to_front() — Same as move_to(0) but optimized
void move_to_front() const;

next() — Similar to move_to(), but optimized for moving to the next element
void next() const;

reset() — Reset the buffer

void reset(const char* buf, byte_size_t size);

54

Using C++ with Caché

Binary Classes

o set elem()

void set_elem(__int64 val);

void set_elem(double val);

void set_elem(const d_string& val);

void set_elem(const d_binary& val);

void set_elem(const wchar_t* p, char_size_t size);
void set_elem(const char* p, char_size_t size);

* set_elem_null()

void set_elem_null();

7.2.4.2 d_list static member functions

The static member functions allow you to extract data from a buffer that is a $list without copying it into a d_list object.
The interface deals with the $list element specified by the buffer. The next element starts at buffer +
d_list::get_elem_size(buffer).

Member list
» get_elem() — Get an element

— Getan element as _int64, double, d_string, or d_binary.

static void get_elem(const char* buf, __ int64* val);
static void get_elem(const char* buf, double* val);

static void get_elem(const char* buf, d_string& val);
static void get_elem(const char* buf, d_binary& val);

— Getan element as a pointer to the string, the string size, and find whether it's unicode or narrow

static void get_elem(const char* buf, bool* is_uni,
const char** p_buf, byte size t* p_size);

» get_elem_size() — Get element size
static byte_size_t get_elem_size(const char* buf);
e is_elem_double() — Test whether an element is stored as double
static bool is_elem _double(const char* buf);
* is_elem_int() — Test whether an element is stored as int
static bool is_elem_int(const char* buf);
o is_elem_null() — Test whether an element is null
static bool is_elem _null(const char* buf);
* is_elem_str() — Test whether an element is stored as string

static bool is_elem _str(const char* buf);

Using C++ with Caché 55

Reference for Simple Datatype Classes

7.3Time and Date Classes

Obijects of these types can be converted to a tm structure object with all irrelevant values set to -1. They can also be assigned
atm object. The irrelevant values from the tm structure will be ignored. Interfaces of these classes differ only in constructors
and assignment operators.

d_date — %Library.Date corresponds to CLIENTDATATYPE keyword DATE.
d_time — %Library.Time corresponds to keyword TIME.

d_timestamp — %Library. TimeStamp corresponds to keyword TIMESTAMP.

7.3.1 Class InterSystems::d_time

Member list

d_time

From tm
d_time(const tm& ts);
From ODBC structure for time
d_time(const TIME_STRUCT& t);
From hour, minute, second
d_time(int h, int m, int s);
From ODBC structure for time

d_time& operator=(const TIME_STRUCT& t);

7.3.2 Class InterSystems::.d_date

Member list

d_date

From tm
d_date(const tm& ts);
From ODBC structure for date
d_date(const DATE_STRUCT& d);
From year, month, day
d_date(int y, int m, int d);
From ODBC structure for date

d_date& operator=(const DATE_STRUCT& d);

56

Using C++ with Caché

Time and Date Classes

7.3.3 Class InterSystems::d_timestamp

Member list
e d_timestamp

— Fromtm
d_timestamp(const tm& ts);
— From ODBC structure for timestamp

d_timestamp(const TIMESTAMP_STRUCT& ts);

Using C++ with Caché 57

Reference for Object Datatype Classes

This chapter describes a set of predefined proxy classes that correspond to Caché object datatype classes such as lists,
arrays, and streams. All of these proxy classes inherit from both Dyn_obj and Obj_t classes. All of them have the standard
open(), create_new(), openid(), and openref() methods.

Collection classes:
e d_vector<S> — list collections

e d_map<S> — array collections

Stream classes:

e d_char_stream

e d_bin_stream

e d_file_bin_stream

e d_file_char_stream

Relationships:

e d_relationship<T>

8.1 Collection Classes

Caché supports two kinds of collections: lists and arrays. These are two different kinds of groupings of elements of a single
type:
» d_vector list collections — correspond to the Caché %ListOfObjects and %ListOfDataTypes classes.

» d_map array collections — correspond to the Caché %ArrayOfObjects and %ArrayOfDataTypes classes.

Operations on a C++ client usually assume the collection's prior existence.

8.1.1 Class Template d_vector<S> (List Collections)

Proxies for %ListOfObjects and %ListOfDataTypes provide an interface which is almost identical to the interface of std::vector.

Because Caché list objects are generated as d_obj_vector<T> and d_prim_vector<T> classes, they provide the same interface
that is specified by d_vector.

Using C++ with Caché 59

Reference for Object Datatype Classes

List Operations, Stack Operations, and Element Access

» erase() — Deletes the element at position pos.
iterator erase(iterator pos);
» insert() — Inserts at position pos an element of value val.
iterator insert(iterator pos, const value_type& val);
» pop_back() — Removes the final element of the list, which must be non-empty.
void pop_back(Q);
» push_back() — Inserts an element of the value val at the end of a list.
void push_back(const value_type& val);
» [] operator — Supports unchecked element access by overloading the **[]** operator:

reference operator[](size_type index);
const;_reference operator[](size_type index) const;

» at() — Provides checked element access. Returns a reference to the list element at position index. If index is not a
valid position, the method throws an out_of range error.

reference at(size_type index);
const;_reference at(size_type index) const;

Size and Capacity

» capacity() — Returns the storage currently allocated for the list.
size_type capacity() const;

» empty() — Checks if the list is empty and returns true if it is.
bool empty() const;

* max_size() — Returns the maximum allowable length of the list.
size_type max_size() const;

» reserve() — Allocates space for a total number of n elements. This method only allocates memory for the n elements,
but it does not create them.

void reserve(size_type n);
» size() — Returns the length of the list.
size_type size();
[terators
» begin() — Returns a random-access iterator pointing to the list's first element.

iterator begin();

60 Using C++ with Caché

Collection Classes

» end() — Returns a random-access iterator pointing to the one-past-last element of the array.
iterator end();

» rbegin() — Returns a reverse random-access iterator pointing to the beginning of the list's reverse sequence (just
beyond the list's last element).

reverse_iterator rbegin();

* rend() — Returns a reverse random-access iterator pointing to the end of the list's reverse sequence (just before the
list's first element).

reverse_iterator rend();

8.1.2 Class Template d_map<S> (Array Collections)

Proxies for %ArrayOfObjects and %ArrayOfDataTypes provide an interface which is almost identical to the interface of
std::map.

Because Caché array objects are generated as d_obj_map<T> and d_prim_map<T> classes, they provide the same interface
that is specified by d_map.

List Operations and Element Access
» erase() — Removes an element

— Removes the array element specified by pos.
iterator erase(iterator pos);
— Removes the element uniquely identified by the key k (if present).

size_type erase(const key_ type& k);

e insert() — Inserts an element.

— Inserts an element of value val, using pos as a hint
iterator insert(iterator pos, const value_type& val);
— Inserts an element of value val.

std: :pair<iterator, bool> insert(const value_type& val);

e [] operator — thd

mapped_type& operator[](const key type& key);
const mapped_type& operator[](const key type& key) const;

Size and Capacity

» capacity() — Returns the storage currently allocated for the array.
size_type capacity() const;
e empty() — Returns true if the array is empty.

bool empty() const;

Using C++ with Caché 61

Reference for Object Datatype Classes

* max_size() — Returns the maximum number of elements that the array can contain.
size_type max_size() const;
e size() — Returns the number of elements in the array.

size_type size();

[terators

» begin() — Returns a bi-directional iterator pointing to the array's first element.
iterator begin();

» end() — Returns a bi-directional iterator to the one-past-last element of the array.
iterator end();

» rbegin() — Returns a reverse iterator pointing to the beginning of the array's reverse sequence (just beyond the array's
last element).

reverse_iterator rbegin();

* rend() — Returns a reverse iterator pointing to the end of the array's reverse sequence (just before the array's first
element).

reverse_iterator rend();

« find() — Returns a bi-directional iterator designating the element in the array whose sort key has the equivalent
ordering to key.

iterator find(const key_ type& key);

8.2 Streams

Proxies for Caché streams use adapters that fit them into the standard C++ library streams framework and optimize their
performance. There are also a set of proxy classes for streams that inherit their common interface from the d_stream class.
The adapters are the recommended way of working with streams. The adapters make the streams buffered, so avoid mixing
calls to adapters and proxy objects that change the stream read/write position (as a result of reading or writing to a stream
or a direct change in position).

Stream Objects
The following table describes the mapping of Caché stream classes:

Caché Class C++ Class
%Library.GlobalCharacterStream d_char_stream
%Library.GlobalBinaryStream d_bin_stream
%Library.FileBinaryStream d_file_bin_stream
%Library.FileCharacterStream d_file_char_stream

62 Using C++ with Caché

Streams

All stream classes have static open() and create_new() methods. The d_file_char_stream class has an is_unicode() method,
which checks if the stream contains Unicode data.

C++ Stream Adapters

The stream adapters can be used exactly as streams from the C++ standard library, and all the unique to Caché methods
that are common to all Caché streams can be also accessed from them.

The adapter classes are:
* d_basic_istream with typedefs for d_istream and d_wistream
e d_basic_ostream with typedefs for d_ostream and d_wostream

* d_basic_iostream with typedefs for d_iostream and d_wiostream

All C++ adapter objects can be constructed from a d_ref to a stream object proxy. For example;

// create a low level stream object

d_ref<d_char_stream> stream = d_char_stream: :create_new(&db);
// create an 10Streams extension stream object

d_iostream io(stream);

All adapters have helper methods that allow you to work with a stream only via its adapter. All C++ adapter objects can
be constructed from a d_ref to a stream object proxy. For example:

// create a low level stream object

d_ref<d_char_stream> stream = d_char_stream: :create_new(&db);
// create an 10Streams extension stream object

d_iostream io(stream);

8.2.1 Stream Adapter Classes

d_basic_ostream

There are typedefs d_ostream and d_wostream. In addition to std::basic_ostream interface, the class provides the following
methods:

d_binary oid(Q);
long size();
d_status erase();
d_status save();

d_basic_istream

There are typedefs d_istream and d_wistream. In addition to std::basic_istream interface, the class provides the following
methods:

d_binary oid(Q);
long size();
d_status rewind();

d_basic_iostream

There are typedefs d_iostream and d_wiostream. In addition to std::basic_iostream interface, the class provides the following
methods:

d_binary oid(Q);

long size();

d_status rewind();
d_status move_to_end();
d_status erase();
d_status save();

Using C++ with Caché 63

Reference for Object Datatype Classes

8.2.2 Class d_stream

The d_stream class provides the common interface for all streams. The d_file_stream class adds to it the common interface
for all file streams.

d_stream Methods

The d_stream methods in common between character and binary streams are:

d_binary oid(Q);

d_status save();

d_status clear();

d_status rewind();

d_status move_to_end();

long size();

d_stream& copy(const abs_d_ref& stream);

Methods specific to character streams are:

void read(d_int& len, d_string& res);
void readline(d_int& len, d_string& res);
void write(const d_string& data);

Methods specific to binary streams are:

void read(d_int& len, d_binary& res);
void write(const d_binary& data);

d_file_stream Methods
The additionally available methods from the d_file_stream class are:

d_string get_filename();

void set_filename(const d_string& fname);
d_timestamp last_modified();

d_status link_to_file(const_name_t fname);

// const_name_t is a typedef for const wchar_t*

8.3 Class Template d_relationship<S>

As in Caché, relationships are treated as properties. If there is a relationship between classes P and Q where P is the single-
valued side and Q is the multi-valued side, then the single-valued side is generated as a property of type P (d_ref<P>), and
the multi-valued side is generated as a property of type d_relationship<Q> (d_ref<d_relationship<Q>>). As with other
properties, when P or Q can be determined only at runtime, P or Q (or both) become Dyn_obj (a dynamic object).

d_relationship Methods
The d_relationship<P> class is a standard container that supports the following methods:

» begin() — Returns a bi-directional iterator.
iterator begin(Q);

e end() — Returns a bi-directional iterator.
iterator end();

* rbegin() — Returns a reverse iterator.

reverse_iterator rbegin();

64 Using C++ with Caché

Class Template d_relationship<S>

* rend() — Returns a reverse iterator.

reverse_iterator rend();

Using C++ with Caché 65

Reference for Connectivity and Inherited
Proxy Classes

This chapter describes the classes that are most important for an understanding of how proxy classes interact with the Caché
database.

» Proxy base classes — Persistent_t, Registered_t, LC_Persistent_t, and LC_Serial_t are base classes for generated
proxy classes.

» Database classes — Database and LC_Database
e Connection classes — Conn_t (d_connection), tcp_conn, and Ic_conn

* Obiject reference class templates — d_ref<T>and Ic_d_ref<T>

9.1 Proxy Base Classes

The following classes are available:

» Persistent_t — base class used to generate most persistent proxy classes.

* Registered_t — base class used to generate all serial proxy classes.

e LC Persistent_t — base class used to generate persistent projection classes for the Light C++ Binding.

» LC_Serial_t — base class used to generate serial projection classes for the Light C++ Binding.

9.1.1 Class InterSystems::Persistent_t

Base class used to generate persistent proxy classes. Inherits from Registered_t.

9.1.1.1 Constructor

Persistent_t()

Constructor is a PROTECTED member function (see Standard Proxy Class Methods).

InterSystems: :Persistent_t: :Persistent_t
() [inline, protected]

Using C++ with Caché 67

Reference for Connectivity and Inherited Proxy Classes

9.1.1.2 Member list

_delete()
d_status Persistent_t::_delete
(Database * db,
const d_binary & oid,
int conc = -1
) [static]
_is_null()

bool InterSystems::Obj_t::_is_null
() const [inline, inherited]

create_new()

static d_ref<Registered_t> InterSystems::Registered_t::create_new

(Database * db,
const_str_t init_val =0, // const_str_t is a typedef of const wchar_t*
Db_err * err = 0

) [inline, static, inherited]

delete_id()

d_status Persistent_t::delete_id
(Database * db,

const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
const_str_t id, // const_str_t is a typedef of const wchar_t*
int conc = -1

) [static]

downgrade_concurrency()

d_status Persistent_t::downgrade_concurrency
(int conc)

exists_id()

bool Persistent_t::exists_id
(Database * db,

const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
const_str_t id // const_str_t is a typedef of const wchar_t*
) [static]

get_cl_name()

const wchar_t* InterSystems::0bj_ t::get_cl_name
() const [inline, inherited]

get_db()
Database* InterSystems::0Obj_t::get_db
() const [inline, inherited]
get_id()
d_string Persistent_t::get_id
() const
get_ref()

int InterSystems::0bj_t::get_ref
() const [inline, iInherited]

68 Using C++ with Caché

Proxy Base Classes

get val()
const Oref _t& InterSystems::Obj_t::get val
() const [inline, inherited]
id()
d_string Persistent_t::id
() const
oid()
d_oid InterSystems::Persistent_t::oid
() const [inline]
openref()
static d_ref<Registered_t> InterSystems::Registered_t: :openref
(Database * db,
int oref,
const_name_t cl_name // const_name_t is a typedef for const wchar_t*
) [inline, static, inherited]
static d_ref<Registered_t> InterSystems::Registered_t: :openref
(t_istream & in,
Database * db
) [inline, static, inherited]
reload()
d_status Persistent_t::reload
save()
d_status Persistent_t::save
(int related = 1) const
to_xml()

void InterSystems::0bj_t::to_xml
(xml_writer & out) [inline, inherited]

upgrade_concurrency()

d_status Persistent_t: :upgrade_concurrency
(int conc)

9.1.2 Class InterSystems::Registered t

Base class used to generate all serial proxy classes.

9.1.2.1 Constructor
Registered_t()
Constructor is a PROTECTED member function (see Standard Proxy Class Methods).

InterSystems: :Registered_t::Registered_t
() [inline, protected]

Using C++ with Caché

69

Reference for Connectivity and Inherited Proxy Classes

9.1.2.2 Member list

_is_null()

bool InterSystems::Obj_t::_is_null
() const [inline, inherited]

get_cl_name()

const wchar_t* InterSystems::0Obj_t::get_cl_name
() const [inline, inherited]

create_new()

static d_ref<Registered_t> InterSystems::Registered_t::create_new

(Database * db,
const_str_t init_val =0, // const_str_t is a typedef of const wchar_t*
Db_err * err = 0

) [inline, static]

get _db()

Database* InterSystems::0Obj_t::get _db
() const [inline, inherited]

get_ref()

int InterSystems::0bj_t::get_ref
() const [inline, inherited]

get val()

const Oref_t& InterSystems::Obj_t::get val
() const [inline, iInherited]

openref()

static d_ref<Registered_t> InterSystems::Registered_t::openref
(Database * db,

int oref,

const_name_t cl_name // const_name_t is a typedef for const wchar_t*
) [inline, static]

static d_ref<Registered_t> InterSystems::Registered_t::openref
(t_istream & in,

Database * db
) [inline, static]

to_xml()

void InterSystems::Obj_t::to_xml
(xml_writer & out) [inline, inherited]

9.1.3 Class InterSystems::LC_Persistent t

This is the base class used to generate persistent classes for the Light C++ Binding. This class can only be used in Light
C++ Binding applications.

70 Using C++ with Caché

Proxy Base Classes

9.1.3.1 Constructor

LC Persistent t
Both constructors are PROTECTED member functions (see Standard Proxy Class Methods).

LC Persistent_t::LC_Persistent_t
() [inline, protected]

LC_Persistent_t::LC_Persistent_t
(Database * db,

int oref,

const wchar_t * cl_name
) [inline, protected]

9.1.3.2 Member list

_is_null()
Do not use (reserved for InterSystems internal use).
connect()

void LC_Persistent_t::connect
(LC_Database * db)

detach()
void LC_Persistent_t::detach ()
disconnect()
void LC_Persistent_t::disconnect ()
get_cl_name()
Do not use (reserved for InterSystems internal use).
get_classname()

virtual const unsigned char* LC_Persistent_t::get_classname
() const [pure virtual]

get_classname_length()

virtual int LC Persistent_t::get_classname_length
() const [pure virtual]

get_db()

Database* InterSystems::0Obj_t::get_db
() const [inline, inherited]

get_ref()

Do not use (reserved for InterSystems internal use).

get val()

Do not use (reserved for InterSystems internal use).

Using C++ with Caché 71

Reference for Connectivity and Inherited Proxy Classes

has_idkey()

virtual DLL_DECL bool LC_Persistent_t::has_idkey
() [inline, virtual]

id()

const wchar_t * LC Persistent_t::id
() const [inline]

int LC Persistent_t::id
(char * buf,

size_t bufsiz
) [inline]

int LC_Persistent_t::id

(wchar_t * buf,
size_t bufsiz

) [inline]

id_is_uni()

bool LC Persistent_t::id_is_uni
() const [inline]

insert()

d_status LC Persistent_t::insert
(bool defer_indices = false,
int timeout = -1,
Db_err * err = 0)

is_attached()

bool LC_Persistent_t::is_attached

() [inline]
is_connected()

bool LC_Persistent_t::is_connected

() [inline]

save()
virtual DLL_DECL d_status LC Persistent_t::save
(bool defer_indices = false,
int timeout = -1,
Db_err * err = 0
) [pure virtual]
serialize()

virtual DLL_DECL void LC_Persistent_t::serialize
(lc_dlist out * ,

LC Database *
) [inline, virtual]

serialize_idkey()

virtual DLL_DECL void LC_Persistent_t::serialize_idkey
(Ic_dlist out * ,

LC Database *
) [inline, virtual]

72 Using C++ with Caché

Proxy Base Classes

set_id_from_properties()

virtual DLL_DECL void LC_Persistent_t::set_id_from_properties
() [inline, virtual]

to_xml()
Do not use (reserved for InterSystems internal use).
unlock()

virtual void LC_Persistent_t::unlock
() [pure virtual]

update()

d_status LC_Persistent_t::update
(bool defer_indices = false,
int timeout = -1,
Db_err * err = 0)

9.1.4 Class InterSystems::LC_Serial t

This is the base class used to generate serial classes for the Light C++ Binding. This class can only be used in Light C++
Binding applications.

9.1.4.1 Constructor
LC_Serial_t()
Constructor is a PROTECTED member function (see Standard Proxy Class Methods).

InterSystems::LC_Serial_t::LC Serial_t
() [inline, protected]

9.1.4.2 Member list

dirty()

bool LC Serial_t::dirty
() const [inline]

getProperties()

virtual void LC Serial_t::getProperties
(lIc_dlist_in &in,

bool unicode_srv
)=0 [pure virtual]

serialize()

virtual void LC_Serial_t::serialize
(lIc_dlist_out *outlist,

LC Database *db
)=0 [pure virtual]

set_clean()

void LC_Serial_t::set_clean

(C) [inline]

Using C++ with Caché 73

Reference for Connectivity and Inherited Proxy Classes

set_dirty()

void LC_Serial_t::set_dirty
() [inline]

9.2 Database Classes

The following database classes are available:
» Database — used by the standard Caché C++ binding.
» LC_Database — used only in Light C++ Binding applications.

9.2.1 InterSystems::Database Class

This is the database class used by the standard Caché C++ binding.

9.2.1.1 Constructor

Database()

Database: :Database

(const d_connection & conn,
bool use_cache = true,
bool is_Ic_db = false)

9.2.1.2 Member list

del_obj()

void InterSystems::Database::del_obj
(const d_binary & oid,

int concurrency
) [inline]

get_class_global_info()

t_istream & Database::get_class_global_info
(const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
cl_meta_info_kind info_kind)

get_class_info()

t_istream & Database::get _class_info
(const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
cl_meta_info_kind info_kind)

get_classes_info()

t_istream & Database::get_classes_info
(const char * msg,
const std::vector< std::wstring > & cl_names)

74 Using C++ with Caché

Database Classes

get_coln_property()

void Database::get_coln_property
int oref,
const_name_t prop_name, // const_name_t is a typedef for const wchar_t*
int ii,
int idx,
d_double & res)

void Database::get_coln_property
int oref,
const_name_t prop_name,
int ii,
int idx,
d_int & res)

void Database::get_coln_property
int oref,
const_name_t prop_name,
int ii,
int idx,
d_string & val)

get_conn()

d_connection InterSystems::Database::get_conn

() Linline]
get_hdbc()

HDBC InterSystems::Database::get_hdbc
() [inline]

get_indexes_info()

t_istream & Database::get_indexes_info
(const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
cl_meta_info_kind info_kind)

get_job_id()

int InterSystems::Database::get_job_id
() [inline]

get_Ic_class_info()

t_istream & Database::get_Ic_class_info
(const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
cl_meta_info_kind info_kind)

get_methods()

t_istream & Database::get_methods
(const_name_t class_name) // const_name_t is a typedef for const wchar_t*

get_nsp()

const d_string& InterSystems::Database::get _nsp
() const [inline]

get_oid()

d_oid Database::get oid
(int oref)

Using C++ with Caché 75

Reference for Connectivity and Inherited Proxy Classes

get_properties()

t_istream & Database::get_properties
(const_name_t class_name) // const_name_t is a typedef for const wchar_t*

get_property()

t_istream & Database::get_property
(int oref,
int ii,
int jj,
d_type_id type_id,
const_name_t name) // const_name_t is a typedef for const wchar_t*

void Database::get_property
(int oref,
const_name_t prop_name,
int ii,
int jj,
Args_mgr & args_mgr)

get_proxies_info()

Proxies_info* InterSystems::Database::get _proxies_info

() [inline]
get_queries()

t_istream & Database::get_queries
(const_name_t class_name) // const_name_t is a typedef for const wchar_t*

get_query_info()

t_istream & Database::get_query_info
(const wchar_t * class_name,
const wchar_t * query_name)

get_run_mtd_level()

int InterSystems: :Database::get_run_mtd_level
() const [inline]

get_serialization_info()

t_istream & Database::get_serialization_info
(const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
cl_meta_info_kind info_kind)

get_srv_ver()

double InterSystems::Database::get_srv_ver
() const [inline]

get_status_info()

void Database::get_status_info
(const d_status & status,
d_int & code,
d_string & msg,
const char * lang = """,
Db_err * err = 0)

get_term_input_callback()

b i

db_in
L

put_callback* InterSystems::Database::get_term_input_callback
inline]

76 Using C++ with Caché

Database Classes

get_term_output()

db_output& InterSystems::Database::get_term_output
() [inline]

init_coln()

template<typename C>
void InterSystems::Database::init_coln
(int oref,

C & coln
) [inline]
make_obj()
t_istream & Database::make_obj
(const_name_t type_name, // const_name_t is a typedef for const wchar_t*
const_str_t init_val = 0, // const_str_t is a typedef of const wchar_t*

Db_err * err = 0)
open_cl_def()

const Class_def* InterSystems: :Database::open_cl_def

(const_name_t class_name, // const_name_t is a typedef for const wchar_t*
bool check_exists = false
) [inline]

openid_obj()

t_istream & Database::open_obj
(const d_binary & oid,

int concurrency = -1,

int timeout = -1,

Db_err * err = 0)

t_istream & Database: :openid_obj

const_name_t name, // const_name_t is a typedef for const wchar_t*
const_str_t id, // const_str_t is a typedef of const wchar_t*
int concurrency = -1,

int timeout = -1,

Db_err * err = 0)
reset_term_input_callback()

void InterSystems::Database::reset_term_input_callback

() [inline]
reset_term_output_callback()

void InterSystems::Database::reset_term_output_cal Iback

() [inline]
run_method()

t_istream & Database::run_method
(int obj_ref,
const_name_t cl_name, // const_name_t is a typedef for const wchar_t*
const_name_t mtd_name,
D_type ** args,
int num_args,
const int * refs,
int num_refs,
d_type_id ret_t)

void Database: :run_method
int oref,
const_name_t cl_name,
const_name_t mtd_name,
Args_mgr & args_mgr)

Using C++ with Caché 77

Reference for Connectivity and Inherited Proxy Classes

set_property()

void Database::set_property
int oref,
const_name_t prop_name, // const_name_t is a typedef for const wchar_t*
int ii,
int jj,
int mod_flag,
Args_mgr & args_mgr)

void Database::set_property
int oref,
int ii,
int jj,
int mod_flag,
const_name_t name, // const_name_t is a typedef for const wchar_t*

D_type * val)
set_term_input_callback()

void InterSystems: :Database: :set_term_input_cal Iback
(db_input_callback * ¥) [inline]

set_term_output_callback()

void InterSystems::Database::set_term_output_callback
(db_output_callback * ¥) [inline]

sync()

void Database::sync ()

tcommit()

See Using Transactions for an example.

void InterSystems::Database: :tcommit
(Db_err * err = 0) [inline]

tlevel()
See Using Transactions for an example.

int InterSystems::Database: :tlevel
(Db_err * err = 0) [inline]

trollback()
See Using Transactions for an example.

void InterSystems::Database: :trollback
(Db_err * err = 0) [inline]

tstart()
See Using Transactions for an example.

void InterSystems::Database::tstart
(Db_err * err = 0) [inline]

unicode_srv()

bool InterSystems::Database: :unicode_srv
() const [inline]

78 Using C++ with Caché

Database Classes

9.2.2 InterSystems::LC_Database Class

This is the database class used by the Light C++ Binding. This class can only be used in Light C++ Binding applications.

9.2.2.1 Constructor

LC_Database()

InterSystems: :LC_Database::LC_Database
(const d_connection & conn,

bool use_cache = true
) [inline]

9.2.2.2 Member list

add_key prop()

Do not use (reserved for InterSystems internal use).

build_indexes()

void LC_Database::build_indexes
(const unsigned char * classname,
int classname_length)

check_thread()

Do not use (reserved for InterSystems internal use).

create_index_entry()

Do not use (reserved for InterSystems internal use).

cvtForCollation()

Do not use (reserved for InterSystems internal use).

del_obj()

Do not use (reserved for InterSystems internal use).

delete_direct()

Do not use (reserved for InterSystems internal use).

delete_index_entry()

Do not use (reserved for InterSystems internal use).

delete_object()

Do not use (reserved for InterSystems internal use).

get_coln_property()

Do not use (reserved for InterSystems internal use).

Using C++ with Caché 79

Reference for Connectivity and Inherited Proxy Classes

get_conn()

d_connection InterSystems::Database::get_conn

() [inline, inherited]

get_default_concurrency_level()

int InterSystems::LC_Database: :get_default_concurrency_level

() [inline]

get_default_max_locks()

int InterSystems::LC Database::get _default_max_locks

() [inline]

get_default_timeout()

int InterSystems::LC Database::get _default_timeout

() [inline]
get_hdbc()

Do not use (reserved for InterSystems internal use).

get_idkey out_list()

Do not use (reserved for InterSystems internal use).

get_in_list()

Do not use (reserved for InterSystems internal use).

get_indexes_info()

Do not use (reserved for InterSystems internal use).

get_job_id()

Do not use (reserved for InterSystems internal use).

get _Ic_class_info()

Do not use (reserved for InterSystems internal use).

get_methods()

Do not use (reserved for InterSystems internal use).

get_nsp()
Do not use (reserved for InterSystems internal use).

get oid()

Do not use (reserved for InterSystems internal use).

get_out_list()

Do not use (reserved for InterSystems internal use).

get_properties()

Do not use (reserved for InterSystems internal use).

80

Using C++ with Caché

Database Classes

get_property()

Do not use (reserved for InterSystems internal use).

get_proxies_info()

Do not use (reserved for InterSystems internal use).

get_queries()

Do not use (reserved for InterSystems internal use).

get_query_info()

Do not use (reserved for InterSystems internal use).

get_run_mtd_level()

Do not use (reserved for InterSystems internal use).

get_serialization_info()

Do not use (reserved for InterSystems internal use).

get_srv_info()

Do not use (reserved for InterSystems internal use).

get_srv_ver()

Do not use (reserved for InterSystems internal use).

get_status_info()

Do not use (reserved for InterSystems internal use).

get_term_input_callback()

Do not use (reserved for InterSystems internal use).

get_term_output()

Do not use (reserved for InterSystems internal use).

init_coln()

Do not use (reserved for InterSystems internal use).

Ic_batch_save()

void LC_Database::lc_batch_save
(int num_objs,
Ic_nested_list_iterator & buf,

std::vector< std::pair< d_status, d_binary > > & errors,

std::vector< d_string > & ids,
const unsigned char * classname,
int classname_length,

int concurrency

bool use_idkeys = faise,
bool return_ids = false,
byte_size_t cap = 0,

bool do_tx = true)

Using C++ with Caché

81

Reference for Connectivity and Inherited Proxy Classes

Ic_openid_obij()

Do not use (reserved for InterSystems internal use).

make_obj()

Do not use (reserved for InterSystems internal use).

open_cl_def()

Do not use (reserved for InterSystems internal use).

open_obij()

Do not use (reserved for InterSystems internal use).

openid_obj()

Do not use (reserved for InterSystems internal use).

reset()

Do not use (reserved for InterSystems internal use).

reset_idkey props()

Do not use (reserved for InterSystems internal use).

reset_term_input_callback()

Do not use (reserved for InterSystems internal use).

reset_term_output_callback()

Do not use (reserved for InterSystems internal use).

run_method()

Do not use (reserved for InterSystems internal use).

save()

Do not use (reserved for InterSystems internal use).

save_direct()

Do not confuse this with the direct_save() method used by Light C++ Binding projection classes (see Standard

LCB Object Methods).

Do not use (reserved for InterSystems internal use).

set_key props_id()

Do not use (reserved for InterSystems internal use).

set_key_props_index()

Do not use (reserved for InterSystems internal use).

set_Icb_option ()

Do not use (reserved for InterSystems internal use).

82

Using C++ with Caché

Database Classes

set_property()

Do not use (reserved for InterSystems internal use).

set_term_input_callback()

Do not use (reserved for InterSystems internal use).

set_term_output_callback()

Do not use (reserved for InterSystems internal use).

sync()
Do not use (reserved for InterSystems internal use).

tcommit()

See Using Transactions for an example.

void InterSystems: :Database: :tcommit
(Db_err * err = 0) [inline, inherited]

time_to_string()

void LC_Database::time_to_string
(d_time & in,
d_string & out)

timestamp_to_string()

void LC_Database::timestamp_to_string
(d_timestamp & in,
d_string & out)

tlevel()

See Using Transactions for an example.

int InterSystems: :Database: :tlevel
(Db_err * err = 0) [inline, inherited]

transaction()

See Using Transactions for an example.

void LC_Database::transaction
(trans_flag_t flag,

Db_err * err,

int * level = 0
) [virtual]

trollback()

See Using Transactions for an example.

void InterSystems: :Database: :trol Iback
(Db_err * err = 0) [inline, inherited]

tstart()
See Using Transactions for an example.

void InterSystems: :Database::tstart
(Db_err * err = 0) [inline, inherited]

Using C++ with Caché

83

Reference for Connectivity and Inherited Proxy Classes

unicode_srv()

bool InterSystems::Database: :unicode_srv
() const [inline, inherited]

unlock()

Do not use (reserved for InterSystems internal use).

unlock_after_delete()

Do not use (reserved for InterSystems internal use).

9.3 Connection Classes

The following connection classes are available:

e d_connection — acts as a smart pointer to a Conn_t class instance.
» Conn_t — the base connection class.

» tcp_conn — connection class for the standard binding.

* lc_conn — connection class used only in Light C++ Binding applications.

9.3.1 Class d_connection

d_connection is a proxy class that acts as a smart pointer to a Conn_t class instance. See Connecting to the Caché Database
for more information.

9.3.2 Class InterSystems::Conn_t

This is the base connection class. Always use d_connection rather than accessing this class directly.

9.3.2.1 Constructor

Conn_t()

InterSystems::Conn_t::Conn_t () [inline]
9.3.2.2 Member list

alloc_messenger()

virtual int InterSystems::Conn_t::alloc_messenger
(void ** ppm) [inline, virtual]

free_messenger()

virtual int InterSystems::Conn_t::free_messenger
(C void * pm) [inline, virtual]

get_thread_check()

virtual LC_Thread_Check* InterSystems::Conn_t::get_thread_check
() const [inline, virtual]

84 Using C++ with Caché

Connection Classes

is_busy()

bool InterSystems::Conn_t::is_busy
() const [inline]

is_connected()

bool InterSystems::Conn_t::is_connected
() const [inline]

is_uni_srv()

bool InterSystems::is_uni_srv_info::is_uni_srv
() const [inline, inherited]

lock()

void InterSystems::Conn_t::lock

() [inline]
release_to_pool()

virtual void InterSystems::Conn_t::release_to_pool
() [inline, virtual]

set_uni_srv()

void InterSystems::is_uni_srv_info::set_uni_srv
(bool val) [inline, inherited]

unlock()

void InterSystems::Conn_t: :unlock

() [inline]

9.3.3 Class InterSystems::tcp_conn

This is the connection class for the standard C++ binding. It inherits from Conn_t and uses TCP/IP to implement the con-
nection.

9.3.3.1 Constructor

tcp_conn()

InterSystems::tcp_conn::tcp_conn () [inline]
9.3.3.2 Member list

alloc_messenger()

int tcp_conn::alloc_messenger
(void ** ppm) [virtual]

Using C++ with Caché 85

Reference for Connectivity and Inherited Proxy Classes

connect()

d_connection tcp_conn::connect
const d_string & conn_str,
const d_string & srv_principal_name,
int security_level,
int timeout = O,
Db_err * err = 0
) [static]

d_connection tcp_conn::connect
(const d_string & conn_str,
const d_string & user,
const d_string & pwd,
int timeout = O,
Db_err * err = 0
) [static]

free_messenger()

int tcp_conn::free_messenger
(void * pm) [virtual]

get_connection()

d_connection tcp_conn::get_connection
(const d_string & conn_str,

const d_string & user,

const d_string & pwd,

int timeout = O,

Db_err * err = 0
) [static]

get_namespaces()

void tcp_conn::get_namespaces
const wchar_t * host,
const wchar_t * port,
const wchar_t * srv_principal_name,
int security_level,
int timeout,
std::list< std::wstring > & res,
Conn_err * err = 0
) [static]

void tcp_conn::get_namespaces
const wchar_t * host,
const wchar_t * port,
const wchar_t * user,
const wchar_t * pwd,
int timeout,
std::list< std::wstring > & res,
Conn_err * err = 0
) [static]

get_thread_check()

LC_Thread_Check* InterSystems::tcp_conn::get_thread_check

() const [inline, virtual]
is_busy()

bool InterSystems::Conn_t::is_busy
() const [inline, inherited]

is_connected()

bool InterSystems::Conn_t::is_connected
() const [inline, inherited]

86

Using C++ with Caché

Connection Classes

is_uni_srv()

bool InterSystems::is_uni_srv_info::is_uni_srv
() const [inline, inherited]

lock()

void InterSystems::Conn_t::lock
() [inline, inherited]

parse_conn_str()

void Conn_t::parse_conn_str

(const std::wstring & conn_str,
std::wstring * host,
std::wstring * port,
std::wstring * ns

) [static, protected, inherited]

set_uni_srv()

void InterSystems::is_uni_srv_info::set_uni_srv
(bool val) [inline, inherited]

unlock()

void InterSystems::Conn_t::unlock
() [inline, inherited]

9.3.4 Class InterSystems::lc_conn

This is the connection class for the Light C++ Binding. It inherits from Conn_t and uses intraprocess communications to

implement the connection. This class can only be used in Light C++ Binding applications.

9.3.4.1 Constructor

Ic_conn()

Ic_conn::lIc_conn () [inline]
9.3.4.2 Member list

alloc_messenger()

Do not use (reserved for InterSystems internal use).

connect()

static d_connection Ic_conn::connect
const d_string & conn_str,
const d_string & user,
const d_string & pwd,
int timeout = O,
Db_err * err = 0
) [inline, static]

disconnect()

void lIc_conn::disconnect
() [Lvirtual]

Using C++ with Caché

87

Reference for Connectivity and Inherited Proxy Classes

free_messenger()

Do not use (reserved for InterSystems internal use).

get_thread_check()

Do not use (reserved for InterSystems internal use).

is_busy()

Do not use (reserved for InterSystems internal use).

is_connected()
Do not use (reserved for InterSystems internal use).
is_uni_srv()

bool InterSystems::is_uni_srv_info::is_uni_srv
() const [inline, inherited]

lock()

Do not use (reserved for InterSystems internal use).

release_to_pool()

Do not use (reserved for InterSystems internal use).

set_uni_srv()

Do not use (reserved for InterSystems internal use).

unlock()

Do not use (reserved for InterSystems internal use).

9.4 Object Reference Classes

The following classes are available:
e d_ref<T>— reference class template used by the standard binding.

* lc_d_ref<T>— reference class template used only in Light C++ Binding applications.

9.4.1 Class Template InterSystems::d_ref<T>

See Generating Proxy Classes and Using Proxy Objects for more information about this class.

9.4.1.1 Constructor

d_ref()
template<class T>
InterSystems::d_ref< T >::d_ref
() Linline]
88 Using C++ with Caché

Object Reference Classes

template<class T>
InterSystems: :d_ref<
(T *p) [inline]

template<class T>
InterSystems::d_ref<
(bool dummy,

*

T*p
) [inline]

template<class T>
InterSystems::d_ref<
T*p,
int * ref_cnt
) [inline]

template<class T>
InterSystems::d_ref<
(bool dummy,

T*

P,
int * ref_cnt
) [inline]

template<class T>
template<typename P>

InterSystems::d_ref< T >::
(const d_ref< P > & p)

template<class T>

InterSystems::d_ref< T >:
(const d ref< T >8&r)

9.4.1.2 Member list

conv_to()

get()

template<class T>
template<typename P>

void InterSystems::d_ref< T >::conv_to

id_ref

::d_ref

::d_ref

::d_ref

:d_ref
[inline]

(d_ref< P > & res) [inline]

template<typename T>

void InterSystems::d_ref< T >::get
(t_istream & in, Database * db) [virtual]

void D_type::get

(char * buf,
byte_size_t size,
Database * db = 0

) [inherited]

get_conv_ptr()

template<class T>

const T* InterSystems::d_ref< T >::get_conv_ptr

() const [inline]

get_cpp_type()

static SQLSMALLINT InterSystems::abs_d_ref::get_cpp_type

() [inline, static, inherited]

Using C++ with Caché

89

Reference for Connectivity and Inherited Proxy Classes

get_data()

oid D_type::get_data
d_s

\Y/
(eq_query & query) [virtual, inherited]

get_ignore_null()

static bool InterSystems::D_type::get_ignore_null
() [inline, static, inherited]

get_is_lc_dref()

bool InterSystems::abs_d_ref::get_is_Ilc_dref
() const [inline, inherited]

get_oref_n_name()

void abs_d_ref::get_oref_n_name
(t_istream & in,

int * oref,

cl_name_t name
) [static, inherited]

get_type_id()

d_type_id InterSystems::abs_d_ref::get_type_id
() const [inline, virtual, inherited]

is_null()

bool InterSystems::D_type::is_null
() const [inline, inherited]

is_obj()

bool InterSystems::D_type::is_obj
() const [inline, inherited]

make_not_null()

void InterSystems::D_type::make_not_null
() [inline, inherited]

make_null()

void InterSystems::abs_d_ref: :make_null
() [inline, virtual, inherited]

make_undef()

void InterSystems::D_type::make_undef
() [inline, inherited]

operator =

bool InterSystems::abs_d_ref::operator!=

(const abs_d_ref & r) const [inline, inherited]
operator ->

template<class T>

T* InterSystems::d_ref< T >::operator->

() const [inline]
90

Using C++ with Caché

Object Reference Classes

operator =

template<class T>

template<typename P>

d_ref& InterSystems::d_ref< T >::operator=

(const d_ref< P > & p) [inline]
operator ==

bool InterSystems::abs_d_ref::operator==

(const abs_d_ref & r) const [inline, inherited]
operator *

template<class T>
T& InterSystems::d_ref< T >::operator *
() const [inline]

operator <<

std::ostream& operator <<

(std::ostream & out,
const abs_d_ref & r

) [friend, inherited]

put()

byte size t D_type::put
(char * buf,
byte_size_t cap,

bool uni_srv,

Database * db = 0

) [inherited]

void InterSystems::abs_d_ref::put
(t_ostream & out,
Database * db = 0
) const [inline, virtual, inherited]

put_empty()

void InterSystems::D_type: :put_empty
(t_ostream & out) const [inline, inherited]

put_null()

void InterSystems::D_type: :put_null
(t_ostream & out) const [inline, inherited]

set_ignore_null()

static void InterSystems::D_type::set_ignore_null
(bool val) [inline, static, inherited]

set_par()
void D_type::set_par
(abs_d_query & query,
int idx
) const [virtual, inherited]
to_xml()

void abs_d_ref::to_xml
(xml_writer & out) const [virtual, inherited]

Using C++ with Caché

91

Reference for Connectivity and Inherited Proxy Classes

to_xml_null_value()

void InterSystems::D_type::to_xml_null_value
(xml_writer & out) const [inline, inherited]

9.4.2 Class Template InterSystems::lc_d_ref<T>

This is the reference class template used by the Light C++ Binding. The information on d_ref in Generating Proxy Classes
and Using Proxy Objects also applies to this class. This class can only be used in Light C++ Binding applications.

9.4.2.1 Constructor

Ic_d_ref()

template<class T>
Ic_d_ref< T >::lc_d_ref
() [inline]

template<class T>
Ic_d ref< T >::lc_d_ref
(T*p) [inline]

template<class T>
Ic_d_ref< T >::lc_d_ref

CT* p,
int * ref_cnt
) [inline]

9.4.2.2 Member list

(This class has no public member functions).

92

Using C++ with Caché

10

Reference for Utility Classes

This chapter describes some useful classes that do not correspond to Caché datatypes and are not automatically inherited
by proxies.

» Data Processing Classes — transaction control, batch inserts with the Light C++ Binding, and standard queries.

» Error Classes — error reporting.

10.1 Data Processing Classes

» Transaction — provides automatic rollback if the program encounters an exception.
e LC_Batch — batch insert class for the Light C++ Binding.

e d_query — provides methods for preparing an SQL query, binding parameters, executing the query, and traversing
the result set.

10.1.1 Class InterSystems::Transaction

This class provides a guaranteed automatic rollback in case of exceptions. When a Transaction object goes out of scope,
the transaction is rolled back if neither commit() nor rollback() has been called. Unlike the Database transaction methods,
this class does not allow nested transactions. For more information about both types of transaction, see Using Transactions.

10.1.1.1 Constructor
Transaction()
Class constructor starts the transaction (unlike a Database object, which requires a call to Database::tstart()).

InterSystems: :Transaction: :Transaction
(Database * _db) [inline]

10.1.1.2 Member list
commit()

commits the transaction.

void InterSystems::Transaction::commit

() [inline]

Using C++ with Caché 93

Reference for Utility Classes

Calling commit() more than once for the same Transaction object does nothing (unlike Database::tcommit(),
which can be called repeatedly to roll back multiple levels of a nested transaction).
rollback()

rolls back the current transaction.

void InterSystems::Transaction::rollback

() [inline]

Called automatically if the Transaction object goes out of scope before the transaction is committed or rolled back.

10.1.2 Class InterSystems::LC_Batch

This class provides methods for batch insertion using the Light C++ Binding. For more information, see Batch Insert.

10.1.2.1 Constructor

LC_Batch()

InterSystems::LC_Batch::LC_Batch

(LC_Database * _db,
int _concurrency)
bool _return_ids = false,
bool _throw_errs = true,
size_t reserve_size = 32768,
bool _do_tx = false

) [inline]

1

10.1.2.2 Member list

clear()

To avoid saving objects already added to batch, call clear()

void InterSystems::LC_Batch::clear

() [inline]
clear_errors()

void InterSystems::LC_Batch::clear_errors

() [Linline]
clear_ids()

void InterSystems::LC_Batch::clear_ids

() [inline]
close()

void LC Batch::close

)

flush()

To save objects to database, call flush(), close(), or destroy the batch object

void LC_Batch::flush
o)

94 Using C++ with Caché

Data Processing Classes

get_errors()

Return a list of errors.

const std::vector< std::pair<d_status, d_binary> >&
InterSystems: :LC_Batch::get_errors
() const [inline]

After flush(), get_errors() returns list:
» Ifnoerrors, size() of listis 0
» Iferrors, each list entry is pairing of error status and object serialization

» Projection object has set_from_err_list() member function, which can be used to examine properties of objects
which had errors

get_ids()

const std::vector<d_string>& InterSystems::LC_Batch::get_ids
() const [inline]

operator <<

template<typename T>
LC_Batch& InterSystems::LC_Batch: :operator<<
(const d_ref< T > & obj) [inline]

template<typename T>
LC_Batch& InterSystems::LC_Batch::operator<<
(const Ic_d ref< T > & obj) [inline]

template<typename T>
LC_Batch& InterSystems::LC_Batch::operator<<
(T * obj) [inline]

10.1.3 Class InterSystems::d_query

Provides methods for preparing an SQL query, binding parameters, executing the query, and traversing the result set. For
more information on this class, see Using Queries.

10.1.3.1 Constructor

d_query()

InterSystems: :d_query::d_query
() [inline]

InterSystems::d_query::d_query
(Database * db) [inline]

10.1.3.2 Member list

close()

bool abs_d_query::close
() [inherited]

execute()

void abs_d_query::execute
() [inherited]

Using C++ with Caché 95

Reference for Utility Classes

void InterSystems::abs_d_query::execute
(const wchar_t * sql_query) [inline, inherited]

fetch()

bool InterSystems::d_seq_query::fetch
() [inline, inherited]

get_col_name()

const SQLWCHAR* InterSystems::abs d_query::get_col_name
(int 1dx) const [inline, inherited]

get_col_name_len()

SQLSMALLINT InterSystems::abs_d_query::get_col_name_len
(int 1dx) const [inline, inherited]

get_col_sql_type()

SQLSMALLINT InterSystems::abs_d_query::get_col_sql_type
(int idx) const [inline, inherited]

get_cur_idx()

int InterSystems::d_seq_query::get_cur_idx
() const [inline, inherited]

get_data()

void d_seq_query::get_data
(char * buf,

int * size,

int cap,

bool * is_null =0
) [inherited]

_seq_query: :get_data

oid d
d_binary * val) [inherited]

~<

oid d_seq_query::get_data
d_bool * val) [inherited]

~<

void d_seq_query::get_data
(d_currency * val) [inherited]

void d_seq_query::get_data
(d_date * val) [iInherited]

oid d_seq_query::get_data
d_double * val) [inherited]

~<

oi |_seq_gquery: :get_data

d_s
_int * val) [inherited]

void d_seq_query::get_data

(d_string * val,
str_conv_t conv = NO_CONV

) [inherited]

oid d_seq_query::get _data
d_time * val) [inherited]

Vi
(

96

Using C++ with Caché

Data Processing Classes

~<

Vi
(

Vi
(

oid d
dt

_seq_query::get_data
imestamp * val) [inherited]

oid d_seq_query::get _data
D_

oid
d

type * val) [Inherited]

d_seq_query::get_data
wstring * val) [inherited]

void d_seq_query::get_data
(DATE_STRUCT * val,

bool * is_null =0
) [inherited]

void d_seq_query::get_data
(double * val,

bool * is_null =0
) [inherited]

void d_seq_query::get_data
long * val,

bool * is_null =0

) [inherited]

(

void d_seq_query::get_data
(std::string * val,

bool * is_null =0
) [inherited]

void d_seq_query::get_data

(std::wstring * val,
bool * is_null =0

) [inherited]

void d_seq_query::get_data
(TIME_STRUCT * val,

bool * is_null =0
) [inherited]

void d_seq_query::get_data

(TIMESTAMP_STRUCT * val,
bool * is_nuol =0

) [inherited]

void d_seq_query::get_data
(void * buf,

int * size,

int cap,

bool * is_null =0
) [inherited]

void d_seq_query::get_data
(wchar_t * buf,

int * size,

int cap,

bool * is_null =0
) [inherited]

void InterSystems::d_seq_query

(bool * val,
bool * is_null =0
) [inline, inherited]

::get_data

Using C++ with Caché

97

Reference for Utility Classes

get_job_id()

int InterSystems::abs_d_query::get_job_id

() [inline, inherited]

get_num_cols()

int InterSystems::abs_d_query::get_num_cols

() const [inline, inherited]

get_num_pars()

int InterSystems::abs_d_query::get_num_pars

() const [inline, inherited]

get_par_col_size()

SQLUINTEGER InterSystems::abs_d_query:

(int 1dx) const [inline, inherited]

get_par_num_dec_digits()

SQLSMALLINT InterSystems::abs_d_query:

(int 1dx) const [inline, inherited]

get_par_sql_type()

SQLSMALLINT InterSystems::abs_d_query:

(int idx) const [inline, inherited]

is_par_nullable()

SQLSMALLINT InterSystems::abs_d_query:

(int idx) const [inline, inherited]

is_par_unbound()

:get_par_col_size

:get_par_num_dec_digits

zget_par_sql_type

ris_par_nullable

bool InterSystems::abs_d_query::is_par_unbound

(int idx) const [inline, inherited]

prepare()
void abs_d_query::prepare
(const char * cl_name,
const char * proc_name
) [inherited]
void abs_d_query::prepare
(const char * sql_query,
int len
) [inherited]
void abs_d_query::prepare
(const wchar_t * cl_name,
const wchar_t * proc_name
) [inherited]
void abs_d_query::prepare
(const wchar_t * sql_query,
int len
) [inherited]
98

Using C++ with Caché

Data Processing Classes

void abs_d_query::prepare

(d_string & sgl_name,
int num_pars

) [inherited]

void InterSystems::abs _d_query::prepare
(const char * sql_query) [inline, inherited]

void InterSystems::abs _d_query::prepare
(const wchar_t * sql_query) [inline, inherited]

set_cur_idx()

set_par()

void InterSystems::d_query::set_cur_idx
(C int idx) [inline]

void abs_d_query::set_par

(int idx) [inherited]

void abs_d_query::set_par
(int idx,
const char * buf,
char_size_t size
) [inherited]

void abs_d_query::set_par
(int idx,

const d_binary & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_bool & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_currency & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_date & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_double & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_int & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_string & val
) [inherited]

Using C++ with Caché

99

Reference for Utility Classes

void abs_d_query::set_par
(int idx,

const d_time & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_timestamp & val
) [inherited]

void abs_d_query::set_par
(int idx,

const D_type & val
) [inherited]

void abs_d_query::set_par
(int idx,

const d_wstring & val
) [inherited]

void abs_d_query::set_par
(int idx,
const void * buf,
byte_size_t size
) [inherited]

void abs_d_query::set_par
(int idx,
const wchar_t * buf,
char_size_t size
) [inherited]

void abs_d_query::set_par
(int idx,

double val
) [inherited]

void abs_d_query::set_par
(int idx,

int val
) [inherited]

void InterSystems::abs_d_query:

(int idx,
const char * val
) [inline, inherited]

void InterSystems::abs_d_query:

(int idx,
const std::string & val
) [inline, inherited]

void InterSystems::abs_d_query:

(int idx,
const std::wstring & val
) [inline, inherited]

void InterSystems::abs_d_query:

(int idx,
const wchar_t * val
) [inline, inherited]

set_par_default()

:set_par

zset_par

zset_par

:set_par

void abs_d_query::set_par_default

(int idx) [inherited]

100

Using C++ with Caché

Error Classes

set_stored_proc()

void InterSystems::abs_d_query::set_stored_proc
(bool is_stored_proc) [inline, inherited]

skip()

void InterSystems::d_seq_query: :ski
(unsigned int num_cols = 1) [inline, inherited]

throw_err()

void abs_d_query::throw_err

(SQLSMALLINT err_src,
SQLHANDLE handle

) [static, inherited]

unbind_pars()

void abs_d_query::unbind_pars
() [inherited]

10.2 Error Classes

Provides error reporting.

10.2.1 Class InterSystems::Db_err

See A Sample C++ Binding Application for an example that uses this class.

10.2.1.1 Constructor

Db_err()

InterSystems: :Db_err::Db_err

() [inline]

InterSystems::Db_err::Db_err
(int c¢) [inline]

InterSystems: :Db_err::Db_err

(intec,
const char * m,
int 1,
const char * s
) [inline]

InterSystems: :Db_err::Db_err

(intec,
const std::string & m
) [inline]

InterSystems: :Db_err::Db_err
(intec,
const std::string & m,
const char * s
) [inline]

Using C++ with Caché

101

Reference for Utility Classes

10.2.1.2 Member list

clear()
void InterSystems::Db_err::clear
() [inline]
get()
void Db_err::get
(t_istream & in)
get_code()
int InterSystems::Db_err::get_code
() const [inline]
get_msg()
const std::string& InterSystems::Db_err::get_msg
() const [inline]
get_src()
const std::string& InterSystems::Db_err::get_src
() const [inline]
log()

void Db_err::log
() const

make_err_msg()

std::string Db_err::make_err_msg

const char * msg,

const char * argl = O,
const char * arg2 = 0,
const char * arg3 = 0,
const char * arg4 = 0,
const char * args = 0

) [static]

std::string Db_err::make_err_msg
const char * msg,

const wchar_t * argl = O,
const wchar_t * arg2 = 0,
const wchar_t * arg3 = 0,
const wchar_t * arg4 = 0,
const wchar_t * args = 0

) [static]

operator bool()

InterSystems: :Db_err: :operator-bool
() const [inline]

reset()

void InterSystems::Db_err::reset
(intec,
const char * m

) [inline]

102 Using C++ with Caché

Error Classes

set_code()

void InterSystems::Db_err::set_code
(int code) [inline]

set_msg()

void InterSystems::Db_err::set_msg
(const char * m) [inline]

void InterSystems::Db_err::set_msg
(const char * m,

int 1
) [inline]
set_src()
void InterSystems::Db_err::set_src
(const char * s) [inline]
to_xml()

void Db_err::to_xml
(xml_writer & out) const

Using C++ with Caché 103

	Table of Contents
	1 About This Book
	2 The Caché C++ Binding
	2.1 C++ Binding Architecture
	2.1.1 The Caché C++ Library

	2.2 Installation and Configuration
	2.2.1 Building the Caché C++ Binding from Source
	2.2.2 Configuring Microsoft Visual Studio 2008
	2.2.3 Using the C++ Binding with ACE Libraries

	2.3 Installing the Light C++ Binding
	2.3.1 Additional LCB Requirements
	2.3.2 Installation on the Windows 64 bit Platform
	2.3.3 Running Trusted Applications on UNIX®

	2.4 Sample Programs

	3 Generating Proxy Classes
	3.1 Introduction
	3.2 Standard Proxy Class Methods
	3.3 Implementing Proxy Methods
	3.4 Implementing Proxy Properties
	3.5 Naming Conventions
	3.6 Using the C++ Generator

	4 Using the C++ Binding
	4.1 C++ Binding Basics
	4.1.1 Connecting to the Caché Database
	4.1.2 A Sample C++ Binding Application

	4.2 Using Proxy Objects
	4.2.1 Casting Proxy Objects
	4.2.2 Resource Management

	4.3 Using Collections
	4.3.1 Interface
	4.3.2 Examples
	4.3.3 Using Collection Elements in Methods
	4.3.4 Data in Collection Proxies

	4.4 Using Streams
	4.5 Using Relationships
	4.6 Using Queries
	4.7 Using Transactions
	4.7.1 Using Database Class Methods
	4.7.2 Using Transaction Class Methods

	5 Dynamic Binding
	5.1 Construction of a Dyn_obj Proxy
	5.2 Construction of Values from Calling Dyn_obj Methods
	5.3 Properties and Methods

	6 The Light C++ Binding
	6.1 Light C++ Binding Architecture
	6.2 LCB Classes in the Caché C++ Library
	6.3 Connections and Multithreading
	6.3.1 Multithreading
	6.3.2 Connections and Multiple Threads
	6.3.3 Attaching and Detaching LCB Objects
	6.3.4 Transactions and Multithreading

	6.4 Using Objects in LCB
	6.4.1 Using Persistent Object References as Properties
	6.4.2 Using Classes that Inherit from Other Persistent Classes
	6.4.3 Using Embedded Serial Object Properties
	6.4.4 Using List and Array Properties

	6.5 Standard LCB Projection Class Methods
	6.6 Using Queries in LCB Applications
	6.7 Using LCB Batch Insert
	6.8 LCB and Concurrency
	6.8.1 Update Semantics

	6.9 Optimization and Troubleshooting
	6.9.1 Workarounds for SUSE 12 Linux Build Problems
	6.9.2 Detecting “object not found” Errors
	6.9.3 Calling the LC_Database and d_connection Destructors
	6.9.4 Using lc_conn::connect

	7 Reference for Simple Datatype Classes
	7.1 Numeric Classes
	7.1.1 Class InterSystems::d_int

	7.2 Binary Classes
	7.2.1 Class InterSystems::d_binary
	7.2.2 Class InterSystems::d_status
	7.2.3 Class InterSystems::d_string
	7.2.4 Class InterSystems::d_list

	7.3 Time and Date Classes
	7.3.1 Class InterSystems::d_time
	7.3.2 Class InterSystems::d_date
	7.3.3 Class InterSystems::d_timestamp

	8 Reference for Object Datatype Classes
	8.1 Collection Classes
	8.1.1 Class Template d_vector<S> (List Collections)
	8.1.2 Class Template d_map<S> (Array Collections)

	8.2 Streams
	8.2.1 Stream Adapter Classes
	8.2.2 Class d_stream

	8.3 Class Template d_relationship<S>

	9 Reference for Connectivity and Inherited Proxy Classes
	9.1 Proxy Base Classes
	9.1.1 Class InterSystems::Persistent_t
	9.1.2 Class InterSystems::Registered_t
	9.1.3 Class InterSystems::LC_Persistent_t
	9.1.4 Class InterSystems::LC_Serial_t

	9.2 Database Classes
	9.2.1 InterSystems::Database Class
	9.2.2 InterSystems::LC_Database Class

	9.3 Connection Classes
	9.3.1 Class d_connection
	9.3.2 Class InterSystems::Conn_t
	9.3.3 Class InterSystems::tcp_conn
	9.3.4 Class InterSystems::lc_conn

	9.4 Object Reference Classes
	9.4.1 Class Template InterSystems::d_ref<T>
	9.4.2 Class Template InterSystems::lc_d_ref<T>

	10 Reference for Utility Classes
	10.1 Data Processing Classes
	10.1.1 Class InterSystems::Transaction
	10.1.2 Class InterSystems::LC_Batch
	10.1.3 Class InterSystems::d_query

	10.2 Error Classes
	10.2.1 Class InterSystems::Db_err

