
CHARWIN: Character-based
Windowing API

Version 2018.1
2024-05-02

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



CHARWIN: Character-based Windowing API
Caché   Version 2018.1    2024-05-02   
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

1 About This Book ................................................................................................................................. 1

2 Introduction ........................................................................................................................................ 3
2.1 Definitions .................................................................................................................................. 3
2.2 Syntax ......................................................................................................................................... 4
2.3 Input/Output Translation ............................................................................................................ 4

3 Commands and Functions ................................................................................................................. 7
3.1 Commands .................................................................................................................................. 7
3.2 Window Status .......................................................................................................................... 10

3.2.1 $$ZWSTATUS^%CHARWIN(wid) Function ............................................................... 10
3.2.2 $$ZWSTATUS^%CHARWIN special variable ............................................................. 11

4 Terminal Functions and Control Characters ................................................................................. 13
4.1 Terminal Functions ................................................................................................................... 13
4.2 Control Characters .................................................................................................................... 14

5 The Terminal Capabilities Database ............................................................................................... 17
5.1 The TERCAP Utility ................................................................................................................ 17
5.2 Control Sequences .................................................................................................................... 18

6 Creating and Editing Terminal Descriptions ................................................................................. 19
6.1 Terminal Names and Aliases .................................................................................................... 19
6.2 Boolean Flag Descriptions ....................................................................................................... 19
6.3 Mnemonics and Their Parameters ............................................................................................ 20

7 Creating and Editing Border Maps ................................................................................................ 23
7.1 Border Characters and Codes ................................................................................................... 24

CHARWIN: Character-based Windowing API                                                                                                                         iii





1
About This Book

See the Table of Contents for a detailed listing of the subjects covered in this document.

This book is a guide to CHARWIN, the Caché character-based windowing API. The following topics are covered:

• Introduction

• Commands and Functions

• Terminal Functions and Control Characters

• The Terminal Capabilities Database

• Creating and Editing Terminal Descriptions

• Creating and Editing Border Maps

For general information, see Using InterSystems Documentation.

CHARWIN: Character-based Windowing API                                                                                                                         1





2
Introduction

The application programming interface (API) described here allows programmers to build windowing interfaces on char-
acter-based terminals using a mnemonic space syntax.

This interface provides:

• Terminal independence — Users around the world use different terminal types, so it is not efficient to use the control
sequences of a particular model. Even ANSI-like terminals such as DEC's VT line are not universal. This API relies
on a terminal capability database similar to that provided by termcap/terminfo in UNIX®.

• Compatibility with existing NLS features — Character set, $X/$Y action table, Input/Output translation tables.

• Compatibility with existing output buffering scheme — Terminal output is accumulated in a buffer and only sent to
the line at some predefined situations like the READ and HANG commands.

• Compatibility with existing windowing APIs — CharWin is based on mnemonic space syntax and is a superset of both
DTM and Ipsum APIs. The syntax used by Extensao depends on a Z command (ZWINDOW) and is not directly source
compatible with the current implementation. However, it is easily translated to the new syntax, since all the Extensao
functionality is present in this implementation.

• Feature activation by command only — By default, the character windows feature is disabled and the system has no
overhead either in terms of memory usage or CPU cycles. Only when the programmer issues the appropriate command
to enable this feature for the current terminal does the system allocate resources and traps I/O terminal operations. The
feature may also be disabled at any time.

2.1 Definitions
The following concepts are important for a clear understanding of the character windows API:

window

A rectangular area on the screen. It may have an optional border (with an optional caption) around it. A window
must be opened and closed by command. When it is opened, the client area is cleared, the border is optionally
drawn and the cursor is positioned at the upper left corner. READ and WRITE commands are restricted to the
client area. When the window is closed, the screen characters that occupied its area before it was opened are
restored.

CHARWIN: Character-based Windowing API                                                                                                                         3



frame

The actual region inside a window where READs and WRITEs are confined. When the window is opened, the
frame occupies the whole client area. By command (/WLIM), the user may restrict the frame to a smaller rectangle
inside the window. It may then grow larger again, but not larger than the original client area.

client area

The rectangle inside the window border. If the window has no border, the client area is the whole window.

attribute

An attribute is one of the status flags set for a character on the screen, controlling HIGHLIGHT, UNDERLINE,
REVERSE, and BLINK. If the terminal is of an older type and does not keep a separate attribute byte for each
character (if it stores attributes as invisible characters, for example) it cannot be used with this implementation.

terminal capabilities

A set of terminal characteristics, including the number of lines and columns and various control sequences. Control
sequences perform functions like cursor positioning and erasing to the end of the line. The cursor position and the
clear screen sequences are indispensable to this API.

z-order

The sequence in which windows are stacked on the screen. Initially this corresponds to the order in which the
windows were opened. This can be changed by the /WUSE command. A window may be above another one in
z-order (meaning it is placed at a higher coordinate of a hypothetical z-axis coming out of the screen) but not
overlap it visually.

2.2 Syntax
The syntax makes it easy to port programs written in DTM, Ipsum MUMPS, and Extensao SuperMUMPS. It is based on
the mnemonic space syntax, so the first command to be issued is USE. For example, the following command uses terminal
device 0 and activates the %CHARWIN routine as the current mnemonic space:

   USE 0::"^%CHARWIN" 

This and future WRITEs / are translated to DOs to corresponding labels in this routine.

Users migrating from DTM may also consider using instead the mnemonic namespace %XDTM, which provides more
compatibility with the DTM commands in MUMPS.DVF. For example, the following command uses terminal device 0
and activates %XDTM2 as the current mnemonic space:

   USE 0::"^%XDTM2"

2.3 Input/Output Translation
The character windows API does not perform any input translation. If any keyboard mapping is desired, you must provide
it using the NLS tables.

The same is true for the output side. No built-in translation is performed on the text written in windows, except for border
characters. This feature is included as a convenience, because most users do not need to deal with the complexities of NLS

4                                                                                                                         CHARWIN: Character-based Windowing API

Introduction



to create nice looking windows. It can be disabled by setting the "Disable Border Mapping" boolean flag attribute. Then
the user should provide the mapping from the internal border character codes (see Border Characters and Codes) to the
desired external representation using NLS.

CHARWIN: Character-based Windowing API                                                                                                                         5

Input/Output Translation





3
Commands and Functions

3.1 Commands
All of these commands use the WRITE /<mnemonic> syntax. For basic information on this syntax, see the Overview of
I/O Commands in the Caché I/O Device Guide, and the WRITE command in the Caché ObjectScript Reference.

/INIT(type)

This command tells the system which kind of terminal will be used. It must be one of the terminals listed in the
^%SYS("tercap") global (Caché comes with some of the more common types already defined but the user may
create descriptions for other terminals as well). Issuing this command will trigger the following actions:

• Load a local table with the terminal capabilities

• The initialization string is sent to the terminal so that it behaves in a predictable way, compatible with the
character windows mode.

Here are some examples:

   W /INIT ; same as W /INIT("Terminal")
   W /INIT("vt100")
   W /INIT("vt320")
   W /INIT("SCO ANSI")

When you have finished working with characters windows and want to restore the terminal to its state prior to the
/INIT, the /END command should be issued .

/WMODE(mode)

After establishing the mnemonic space and specifying a terminal type, one must set the proper compatibility mode
for the character windows subsystem, according to the table below.

MeaningMode

Disable the character windows subsystem and continue operating without this feature.
This is a termination mode.

-1

DataTree/DTM compatibility mode.0

Ipsum MUMPS compatibility mode.1

Extensao SuperMUMPS compatibility mode.2

CHARWIN: Character-based Windowing API                                                                                                                         7



If you change the mode with windows open:

• All windows are closed.

• If the new mode is not -1, the base window is opened. It fills the whole screen and has no border.

/WOPEN

Format:

/WOPEN([wid,]col,line,width,height,border,
   attr,battr,caption,cpos,wfc,wbc,bfc,bbc)

Open a window with the following parameters:

ValuesParameter

Window identification (> 0)wid

Ipsum mode: The programmer must provide a unique numeric ID > 0 for each
window.

Other modes: The system chooses an internal window ID and so the parameter
is not present.

Character column on the screen for the left edge of the client area.col

Line on the screen for the top of the client area.line

Client area dimensions: width in character columns.width

Client area dimensions: height is number of lines.height

Border style, according to DTM conventions:border

0 - none

1 - single line

2 - double line

3 - bold line

4 - blocks

5 - light dots

6 - dark dots

7 - light bar

8 - medium bar

9 - heavy bar

10 - ASCII graphics ('-', '|' and '+')

Default = 0. The actual characters that will show up in the terminal depend on
the output translation table and on the codes chosen for the border characters
by the user (more later).

Window attribute.attr

Possible attributes are "/hon", "/ron", "/uon", "/bon", "/hoff", "/boff", "/uoff", and
"/roff". See Terminal Functions for details. Default = "" (none).

8                                                                                                                         CHARWIN: Character-based Windowing API

Commands and Functions



ValuesParameter

Border attribute. Same conventions as attr.battr

Window caption (does not appear if border style is none (0)). Default = "" (none).caption

Caption position:cpos

"tl" Top left

"tc" Top center

"tr" Top right

"bl" Bottom left

"bc" Bottom center

"br" Bottom right

"l" Bottom and top left

"c" Bottom and top center

"r" Bottom and top right

Default = "". If both a top and a bottom caption are desired, then the caption
parameter is of the form "top caption:bottom caption".

Window foreground color. Default = current color.wfc

Window background color. Default = current color.wbc

Border foreground color. Default = current color.bfc

Border background color. For all color parameters, black is assumed to be 0
and white 7. Default = current color.

bbc

/WCLOSE

Closes the active window (always the topmost). The screen characters hidden by this window are restored. The
next window in z-order is made active.

/WUSE(wid)

Selects window wid to be the active window. This window is brought to the surface even if it has been hidden by
other windows.

/WBOX

Format:

/WBOX(col,line,width,height,border,attr,battr,caption,cpos,wfc,wbc,bfc,bbc)

Draws a rectangle as if a new window was being opened. This is, however, only a visual effect, and a /WCLOSE
should not be called to "close" this pseudo-window. Coordinates are relative to the current frame in the active
window. Other parameters are the same as those of /WOPEN.

/WLIM

Format:

/WLIM(col,line,width,height,border,attr,battr,caption,cpos,wfc,wbc,bfc,bbc)

CHARWIN: Character-based Windowing API                                                                                                                         9

Commands



Defines new limits (a new frame) for the active window, normally for temporary use. A new border may be drawn
for the new area, if and only if the active window also has a border. The values of col and line are relative to the
current window. To restore the initial limits of the active window, call /WLIM.

/BOX

Format:

/BOX(x1,y1,x2,y2,border,battr,caption,cpos,char,wfc,wbc,bfc,bbc)

Draws a box with the upper left corner at (x1,y1) and lower right corner at (x2,y2), filled with character char. The
corner positions are relative to the current frame in the active window. The border style and other parameters are
the same as described under /WOPEN. If the char parameter is omitted, no filling is performed.

/FILL

Format:

/FILL(x1,y1,x2,y2,char,wfc,wbc)

Fills the rectangle with upper left corner at (x1,y1) and lower right corner at (x2,y2) with character char and color
wfc, wbc.

/WREFRESH

Forces a screen update. May be called if the programmer wants to see the individual effects of /WOPEN and
/WCLOSE commands, which otherwise would be combined and only the final image displayed.

/END

Contains a control sequence to be sent to the terminal when exiting Caché. Use this to restore the terminal to its
configuration prior to starting Caché. Also frees the terminal capabilities table and disables the I/O translation. If
the previous translation table needs to be restored, it must be done by explicit programming. It must be saved
before calling /INIT and restored after /END.

3.2 Window Status
You can use the $$ZWSTATUS^%CHARWIN() extrinsic function and $$ZWSTATUS^%CHARWIN extrinsic special
variable to obtain information about windows in use.

3.2.1 $$ZWSTATUS^%CHARWIN(wid) Function

This function works the same in all language modes. It returns the status of the window whose identification number is
wid. If the window specified by wid is not open, then all fields return -1.

The status is described by a string containing the following fields, separated by semicolons:

col;line;width;height;border;attr;battr;curcol;curline;curattr

The fields specify the following values:

10                                                                                                                       CHARWIN: Character-based Windowing API

Commands and Functions



Upper left corner of the window.col;line

Window dimensions.width;height

Border style.border

Window attribute.attr

Border attribute.battr

Current cursor position.curcol;curline

Current character attributes.curattr

Note: The attribute fields return strings such as "/hon", "/aoff", and so on. See /WOPEN for a list of attributes.

3.2.2 $$ZWSTATUS^%CHARWIN special variable

The $$ZWSTATUS^%CHARWIN special variable value varies depending on language mode.

• DTM mode — returns a null string.

• Ipsum mode — returns the number of the current window, or zero if no window is open.

• SuperMUMPS mode — returns a string of fields separated by commas, equivalent to the $ZWINDOW SuperMUMPS
special variable:

winline,wincol,winheight,winwidth,limline,limcol,limheight,limwidth,
curline,curcol,curst,border,attr,visib,proc,wid

The fields specify the following values:

Upper left corner of the active window.winline,wincol

Active window dimensions.winheight,winwidth

Upper left corner of the current limits, relative to the window area.limline,limcol

Current limits dimensions.limheight,limwidth

Current cursor position.curline,curcol

Cursor status (0=off, 1=on)curst

Border style.border

Current video attributes. The attribute fields return strings such as "/hon",
"/aoff", and so on. See /WOPEN for a list of attributes.

attr

Window visibility (0=invisible, 1=visible).visib

Current process number.proc

Active window identification number.wid

CHARWIN: Character-based Windowing API                                                                                                                       11

Window Status





4
Terminal Functions and Control
Characters

All of these functions and characters are used with the standard WRITE /<mnemonic> syntax. For basic information on
this syntax, see the Overview of I/O Commands in the Caché I/O Device Guide, and the WRITE command in the Caché
ObjectScript Reference.

4.1 Terminal Functions
The following terminal functions are used for text formatting and editing. They work inside windows and with WMODE(-
1) as well. The standard WRITE options (*, #, ! and ?n) work as expected inside windows.

ActionMnemonic

Rings the bell/bell

Blink off/boff

Blink on/bon

Backspace n positions (stop at upper left corner)/bs(n)

Clear the window./clr

Set foreground (f) and background (b) colors (0-7)/color(f,b)

Cursor backward n columns (stop at left margin)./cub(n)

Cursor down n lines (stop at bottom line)/cud(n)

Cursor forward n columns (stop at right margin)./cuf(n)

Position cursor at (line, column); origin is (1,1)./cup(l,c)

Cursor up n lines (stop at top line)./cuu(n)

Delete n characters/dch(n)

Delete n lines/dl(n)

Erase n characters (cursor does not move)/ech(n)

CHARWIN: Character-based Windowing API                                                                                                                       13



ActionMnemonic

Erase from cursor to end of screen/ed0

Erase from beginning of screen to cursor/ed1

Erase complete screen/ed2

Erase from cursor to end of line/el0

Erase from beginning of line to cursor/el1

Erase complete line/el2

Erase to the end of line/eol

Erase to the end of screen/eos

Highlight off/hoff

Highlight on/hon

Insert n blanks/ich(n)

Insert n lines/il(n)

Same as lf(n)/ind(n)

Line feed n times (scrolls if necessary)/lf(n)

Reverse line feeds n times (scrolls if necessary)/ri(n)

Reverse off/roff

Reverse on/ron

Prints n blanks/sp(n)

Underline off/uoff

Underline on/uon

4.2 Control Characters
According to the ANSI standard, the following control characters produce their usual effect:

ActionASCIICharacter

Ring the bell7BELL

Backspace 1 character8BS

Carriage return (go to column 0)13CR

Form feed (clear window)12FF

Line feed10LF

14                                                                                                                       CHARWIN: Character-based Windowing API

Terminal Functions and Control Characters



Important: All other control characters are ignored!

This means that literal control sequences (such as W $c(27),"["...) will not produce the expected
behavior. All editing and formatting functions should be coded using the WRITE /<mnemonic> syntax.

CHARWIN: Character-based Windowing API                                                                                                                       15

Control Characters





5
The Terminal Capabilities Database

The core of the character windows subsystem is completely terminal independent. At the lowest level, however, it needs
to know many details about the current terminal. The system must know, for example, how many lines and columns the
terminal has, how to position the cursor anywhere on the screen, and whether or not the cursor should automatically wrap
to the next line when it reaches the last column.

This collection of information about a terminal is referred to as the "terminal capabilities". It is stored in the ̂ %SYS("tercap")
global and loaded to memory when a /INIT command is issued. A terminal capabilities database contains the following
items:

• Terminal names and aliases (e.g., "vt220|VT220|DEC-vt220")

• A set of boolean flags (e.g., has color, auto-wrap, etc.)

• A set of numeric constants (e.g., lines x columns)

• A set of control sequences (e.g., /cup, /el, etc.)

• A border map (tells which control sequences draw the borders)

An existing terminal description may be edited and new terminal descriptions may be created using the TERCAP utility.

5.1 The TERCAP Utility
TERCAP is the utility for creating/editing terminal descriptions. At most of the utilities prompts, you can see a list of
options by entering ?. To run this utility from the %SYS namespace, enter:

   %SYS>D ^TERCAP

Enter a ? (question mark) at the Option prompt to display the three options:

   Option: ?

        1 - Edit/create terminal description
        2 - Edit/create border map
        3 - Delete terminal description

• For details on option 1, see Creating and Editing Terminal Descriptions. This option allows you to define terminal
names and aliases, set boolean flags, set numeric constants, and set control sequences.

• For details on option 2, see Creating and Editing Border Maps.

• Option 3 allows you to delete the description of a unwanted terminal.

CHARWIN: Character-based Windowing API                                                                                                                       17



5.2 Control Sequences
Control sequences sent to a terminal trigger some action at the terminal, like clearing the screen or positioning the cursor
at a certain coordinate. Some sequences, like /clr, contain only literals (i.e., constant codes), while others, like /cup(l,c),
also contain parameters. To ease the creation and maintenance of these tables, a special syntax resembling ObjectScript
was devised. Generally, a control sequence may be a literal, an expression or a function. A literal is simply a number of
ASCII characters inside double quotes (such as "[H").

If necessary, a quote symbol may be duplicated to be included as a literal. An expression is a parameter (%1, %2, and so
on) optionally added to a decimal constant. For different mnemonics, the parameters mean different things. For the /cup(l,c),
for example, %1 represents l (the line number) and %2 is c (the column number). In /ind(n), %1 is the repeat count for the
"index" operation. Examples of expressions:

   %1 %1+32 %2-1

The offset added to the parameter is limited to the range [-128,127].

A function is either $C(<list of codes>) or $A(<expression>). $C is just like the ObjectScript function of the same name.
It is used to indicate control characters to be sent to the terminal, such as:

   $c(27)
   $c(155,31)

$A, however, is not the same as its ObjectScript counterpart. It indicates that the enclosed <expression> should be evaluated
and sent to the terminal as ASCII characters and not in binary form.

$c(65) sends "A" (i.e., code 65)

$a(65) sends the string "65" (i.e., codes 54, 53)

$a(%1) sends %1 as a sequence of ASCII characters

$a(%2+32) evaluates %2+32 and sends it as a sequence of ASCII characters

For a complete example, consider the /cup(l,c) sequence for ANSI-like terminals:

   $c(27),"[",$a(%1+1),";",$a(%2+1),"H"

Both parameters have 1 added to them before being sent, because their internal forms start at 0 and not at 1.

18                                                                                                                       CHARWIN: Character-based Windowing API

The Terminal Capabilities Database



6
Creating and Editing Terminal
Descriptions

With TERCAP option 1 (see The TERCAP Utility), you can enter the following properties for a terminal:

• Terminal type name (or select from existing list)

• Number of lines and columns

• Boolean flags

• Mnemonics (entering *D deletes, after a confirmation, the source and binary forms of the current mnemonic).

6.1 Terminal Names and Aliases
When a new terminal type (name) is entered at the first prompt, the program allows you to copy the initial description from
another terminal. This is useful if the description you are creating is similar to an existing terminal description.

You can check for other terminal types by entering a question mark at the Terminal type prompt:

   DO tt^%CHARWIN
   Terminal type: ?
     Terminal
     Terminal Wide Characters
     Linux
     SCO ANSI
     vt100
     vt220
     vt320

6.2 Boolean Flag Descriptions
The following flags can be used:

CHARWIN: Character-based Windowing API                                                                                                                       19



MeaningBit

Terminal has color capability.1

Terminal has windowing firmware (eg., "Waytec").2

Terminal is configured for auto-margin (or auto-wrap).4

Writing to the last column automatically positions the cursor at the first column of the next line. This
depends on how the terminal is configured, either by a local menu or by the initialization string. The
system works either way, but if this flag is of (like the default for the VT terminals), you may write
at the lower right hand corner of the screen without scrolling it. If this flag is on, we never write to
the last column of the last line. If you see a blank when another character should be there, it is the
expected behavior.

Terminal has PC-like video attributes.8

For instance, it stores character attributes (blink and highlight) together with foreground and
background colors in a single byte. When this flag is on, bit 1 should be off. Internally we store the
attributes exactly like a PC video adapter card. This means that we spare the color byte without
sacrificing the color capability. This results in less memory consumed and faster scrolls. This flag
is intended for SCO UNIX® consoles (SCO ANSI and look alikes) and MS-DOS terminal emulators
(Telix, Procomm, etc.).

The "erase character" operation16

Writes blanks with no attributes on. It has been noted that some implementations, like the SCO
ANSI, maintain the current attribute and color when executing the "ech" function. Others, like the
VT terminals, use a "normal" (i.e., with all attributes off) blank. This flag lets the system correctly
use the "ech" operation (followed by "cursor forward") to write a long sequence of blanks without
disturbing the screen attributes.

Disable border mapping.32

By default, the user must fill in a border map with the TERCAP utility. If the NLS output translation
is being used, it may be desirable to perform the border mapping as part of this output translation.
This flag thus disables the internal border mapping so that it can be done via the NLS output
translation.

6.3 Mnemonics and Their Parameters
Mnemonics may be entered via the TERCAP utility and are loaded by /INIT. In most cases, parameters may be omitted,
and default values are assumed. For example:

   WRITE /cup /sp /ed

is equivalent to:

   WRITE /cup(1,1) /sp(1) /ed(0)

Description and parametersMnemonic

All attributes offaoff

Ring the bellbell

20                                                                                                                       CHARWIN: Character-based Windowing API

Creating and Editing Terminal Descriptions



Description and parametersMnemonic

Blinking offboff

Blinking onbon

Clear the screenclr

Cursor off (invisible)coff

Cursor on (visible)con

Switch from character set 0 to character set 1cs01

Switch from character set 0 to character set 2cs02

Switch from character set 1 to character set 0cs10

Switch from character set 2 to character set 0cs20

Cursor backward n timescub(n)

Cursor down n timescud(n)

Cursor forward n timescuf(n)

Position cursor at (line, column), origin = (0,0).cup(l,c)

Cursor up n timescuu(n)

Delete n charactersdch(n)

Delete 1 line (idem)dl1

Delete n linesdl(n)

Erase n charactersech(n)

Erase from cursor to end of screened0

Erase from cursor to beginning of screened1

Erase complete screened2

Erase from cursor to end of lineel0

Erase from cursor to beginning of lineel1

Erase complete lineel2

Termination stringend

Fill a window with a characterfill(l,t,r,b,c)

l = left column (from 0)

t = top line (from 0)

r = right column

b = bottom line

c = character code

Highlight offhoff

Highlight onhon

CHARWIN: Character-based Windowing API                                                                                                                       21

Mnemonics and Their Parameters



Description and parametersMnemonic

Insert n charactersich(n)

Insert n linesil(n)

Insert 1 line (useful if terminal does not have a generic "il")il1

Index n timesind(n)

Initialization stringinit

Repeat character c, n timesrep(c,n)

Reverse-index n timesri(n)

Reverse video offroff

Reverse video onron

Underline offuoff

Underline onuon

Draw boxwbox(l,t,r,b,s)

l = left column (from 0)

t = top line (from 0)

r = right column

b = bottom line

s = border style (0=none, 1=single, 2=double)

Close windowwclose

Redefine window framewlimits(l,t,r,b)

l = left column (from 0)

t = top line (from 0)

r = right column

b = bottom line

Open window (for terminals with windowing firmware)wopen(l,t,r,b,s)

l = left column (from 0)

t = top line (from 0)

r = right column

b = bottom line

s = border style (0=none, 1=single, 2=double)

Make wid the current (top) windowwuse(wid)

22                                                                                                                       CHARWIN: Character-based Windowing API

Creating and Editing Terminal Descriptions



7
Creating and Editing Border Maps

TERCAP Option 2 (see The TERCAP Utility), allows you to define a border map. Although the border map is part of a
terminal description, it has a separate option purely for convenience. For each border style, the programmer can specify
which control sequence should be sent to the terminal to draw each of the border characters.

A terminal is assumed to have a maximum of three different character sets or alphabets, from which to choose the border
characters. The first character set (zero) is assumed to be the default, where ASCII (and possibly the whole Latin 1) is
found. The other two (1 and 2) may be used for semi-graphical characters.

For each style, the user is prompted for the character set (0, 1 or 2) that includes the characters for that style and for the
code in that character set that maps to each of the border characters. The control sequences that select among the three
character sets are entered as if they were mnemonics at option 1:

Resulting Character SetOriginal Character SetMnemonic

10cs01

20cs02

01cs10

02cs20

Example:

Consider the case of the Digital Equipment Corporation (DEC) VT320 terminal. During the /INIT command, you set the
terminal to use the DEC Special Graphics Character Set (the one that contains the border characters) as G1. G0 is the default
Latin 1. To switch from G0 to G1, you send a SO (shift out = ASCII 14) control and to switch from G1 to G0 a SI (shift
in = ASCII 15). Therefore, the following definitions apply:

   cs01 = $c(14)
   cs10 = $c(15)

The upper left corner (UL) character occupies position 108 in the DEC Special Graphics Character Set. This is the code
that must be supplied to the TERCAP utility. Caché then takes care of switching between the two character sets and opti-
mizing the control sequences that are actually sent to the terminal. If two or more border characters occupy contiguous
positions in a line (such as in the top and bottom borders), then a single SO is sent in the beginning, followed by the border
codes in G1, ended by a single SI.

In general, cs01, cs02, cs10 and cs20 may be multi-byte character sequences.

CHARWIN: Character-based Windowing API                                                                                                                       23



7.1 Border Characters and Codes
Caché can be installed in either 8-bit or 16-bit (Unicode) mode. The 8-bit mode supports the display of the ISO Latin
character sets while the 16-bit mode uses the Unicode 2.0 character set. These sets are used to store all the characters
internally in globals, local variables and also in the window structures. By default, the Unicode collation is used for storage.
External representations may be converted to the internal character set by I/O translation tables.

These internal character sets do not include the semi-graphical characters needed for drawing window borders. Arbitrary
codes were chosen to internally represent border characters because they will be later converted to their corresponding
external representations.

The table below and the TERCAP utility use the following abbreviations:

• UL — upper left corner

• UR — upper right corner

• LL — lower left corner

• LR — lower right corner

• TO — top border

• BO — bottom border

• LE — left border

• RI — right border

Generally, these eight characters are necessary to draw a complete window border. However, in practice, they can be
reduced to six, four or even one, depending on the terminal at use and on the border style.

For those who want to provide their own output translation tables, the following list of internal codes for borders may be
useful.

CodeCharacterStyle

140BO1

138LE1

132LL1

134LR1

142RI1

136TO1

128UL1

130UR1

141BO2

139LE2

133LL2

135LR2

143RI2

24                                                                                                                       CHARWIN: Character-based Windowing API

Creating and Editing Border Maps



CodeCharacterStyle

137TO2

129UL2

131UR2

Style 3 (bold line) is like style 1 (single line) with the "bold" attribute forced on.—3

158ALL4

157ALL5

156ALL6

149BO7

150LE7

146LL7

147LL7

151RI7

148TO7

144UL7

145UR7

Style 8 (medium bar) is the same as style 7 (light bar).—8

155BO9

154TO9

152UL,LE,LL9

153UR,RI,LR9

CHARWIN: Character-based Windowing API                                                                                                                       25

Border Characters and Codes




	Table of Contents
	1 About This Book
	2 Introduction
	2.1 Definitions
	2.2 Syntax
	2.3 Input/Output Translation

	3 Commands and Functions
	3.1 Commands
	3.2 Window Status
	3.2.1 $$ZWSTATUS^%CHARWIN(wid) Function
	3.2.2 $$ZWSTATUS^%CHARWIN special variable


	4 Terminal Functions and Control Characters
	4.1 Terminal Functions
	4.2 Control Characters

	5 The Terminal Capabilities Database
	5.1 The TERCAP Utility
	5.2 Control Sequences

	6 Creating and Editing Terminal Descriptions
	6.1 Terminal Names and Aliases
	6.2 Boolean Flag Descriptions
	6.3 Mnemonics and Their Parameters

	7 Creating and Editing Border Maps
	7.1 Border Characters and Codes


