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About This Book

This book introduces Zen, the InterSystems framework for web application development.

This book contains the following sections:

• “Introducing Zen” summarizes Zen product features and where to find examples and support.

• “Zen Tutorial”  demonstrates how to create some simple web pages using Zen.

• “Zen Application Concepts”  provides background information for Zen application development.

• “Zen Component Concepts”  explains how to control layout, style, and behavior for Zen pages.

• “Zen Layout”  explores web page layout issues, featuring groups and panes.

• “Zen Style” explores web page style issues, featuring CSS and HTML.

• “Zen Wizards” introduces Studio tools for working with Zen.

There is also a detailed table of contents.

The following books provide related information:

• Using Zen Components describes each of the built-in Zen components for web application development.

• Using JSON in Caché describes how to use the %Object and %Array classes, which provide support for JSON, which
is a useful format to ship data between client and server.

• Developing Zen Applications explores programming issues and explains how to extend the Zen component library
with custom code and client-side components.

• Using Zen Reports explains how to generate reports in XHTML and PDF formats based on data stored in Caché.

For general information, see Using InterSystems Documentation.
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1
Introducing Zen

Welcome to Zen!

The Zen application framework provides a simple way to rapidly create complex, data-rich web applications by assembling
pre-built object components. These components automatically create standard HTML and JavaScript needed to render
complex web applications. Moreover, they provide a common object model that is shared between the user’s browser and
the application logic running on the server.

Zen is based on the successful Caché Server Page (CSP) and Caché Object Database technologies from InterSystems. These
technologies offer a robust, scalable, and portable platform for hosting web applications. Zen does not replace or deprecate
Caché Server Pages in any way. Instead, Zen makes the development of web-based applications easier while building upon
the basic features provided by CSP: performance, data access, security, localization, and configuration.

1.1 The Zen Demo
Zen includes a sample application, which you can try out as follows:

1. Start your browser. You may use Firefox or Internet Explorer.

2. Enter this URI:

http://localhost:57772/csp/samples/ZENDemo.Home.cls

Where 57772 is the web server port number that you have assigned to Caché.

If you are unsure of the port number, start the Management Portal. At the top of the page, click About. View the Web

Server Port setting.

1.2 Supported Browsers
For the official list of supported browsers, see the online InterSystems Supported Platforms document for this release.

Important: InterSystems works to ensure that Zen complies with the industry standards that make compatibility possible
across multiple browsers. These standards include XML, HTML, JavaScript, and Cascading Style Sheets
(CSS). As long as browsers offer differing levels of support for these standards, layout differences between
them are unavoidable. To avoid surprises, test layout results in more than one browser before completing
your design.
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1.3 The Zen Community
The Zen Community is an online forum where Zen users can find information, get questions answered, and share code and
experiences. Membership is open to InterSystems customers and employees. The Zen Community provides a library of
reusable Zen components and code examples and an archive of questions and answers submitted by its members.

The Zen Community uses Google Groups. Users that wish to participate must create a Google Groups Account. To access
the Zen Community, use this URI:

http://www.intersystems.com/community/zen

1.4 Benefits of Zen
The benefits of using Zen include:

• Rapid Development—Assembling applications from pre-built components is a proven method for creating user interfaces
rapidly. Zen makes it possible to use this approach for web-based applications.

• Simplicity—Zen uses a standard HTML client, so there are no additional client components required. There is no
“middle” tier between server and client, so Zen applications are much easier to develop, deploy, and support.

• Extensive Library of Components—The Zen library comes with a large set of pre-built components. These include all
the standard control types as well as data-aware combo boxes, tables, grids, tabs, tree controls, menus, and grouping
components.

• Object Database Integration—Zen is tightly integrated with the underlying Caché object database. The Zen client and
server communicate by sending objects back and forth. Underlying details such as encryption and data marshalling
are handled automatically using proven Caché technology.

• Code Generation—Much of the code and business logic is generated automatically from higher-level models, ensuring
consistency and rapid development.

• Extensibility—You can easily modify the look and feel of Zen applications by using standard CSS features; by supplying
different property values for the Zen components; or by creating your own custom components.

• Integrated use of SVG—Zen lets you add interactive graphics to web applications by means of a set of SVG (Scalable
Vector Graphics) components. These components include pre-built charts and meters. In addition, you can create new
graphical components.

• Client Independence—Zen applications run in most major browsers. See the section “Supported Browsers.” The Zen
components insulate applications from the differences in behavior of these browsers.

• Security—Zen offers tight integration with the security model provided by the Caché object database.

• Form Handling—The Zen framework lets you define forms that contain a variety of controls for displaying and editing
of data. The framework includes extensible support for loading data into forms; validating the contents of forms; and
saving form contents.

• Page Layout—Zen includes an extensible framework for specifying the grouping and layout of components on a web
page.

• Event Management—Zen applications can easily define how their components respond to user events. All events are
handled by invoking methods that can be defined to run within the client browser or on the data server.

• Multilingual Support—For applications that must support multiple languages, Zen includes a mechanism that tracks
which titles and captions need to be localized, and automatically builds a database of these values. This database can
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be exported as XML and given to a translator for conversion into other languages. At runtime, Zen automatically displays
pages in the user’s preferred language.

• Document Output—Zen includes an extensible framework for specifying the data contents and display layout of reports
in XHTML or PDF format.

1.5 Background Reading
Before using Zen, you need a good understanding of the following topics:

• HyperText Markup Language (HTML), eXtensible Markup Language (XML) , JavaScript, and Cascading Style Sheets
(CSS). Many excellent books are available through the Internet and commercial bookstores.

• Caché, ObjectScript, Caché Server Pages, and Caché SQL. Depending on your level of experience, you might want
to review the following books from the InterSystems documentation set:

– Using Caché Objects

– Using Caché ObjectScript

– Using Caché Server Pages (CSP)

– Using Caché SQL
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2
Zen Tutorial

This chapter describes how to create some simple web pages using Zen. The chapter is organized as a step-by-step tutorial.
Topics include:

• Hello World

• Creating a Zen Application

• Creating a Zen Page

• Zen Naming Conventions

• Zen Sample Applications

This chapter offers a foundation for topics found later in this book and in subsequent books on Zen. For a more complete
hands-on experience, also try the Zen QuickStart Tutorial, which is available from the Documentation home page.

2.1 Hello World
The following steps display “Hello world!” on a Zen page:

1. Start Studio.

2. Choose File > Change Namespace or F4.

3. Choose the SAMPLES namespace.

4.
Choose File > New or Ctrl-N or the  icon.

5. Click the Zen tab.

6. Click the Zen Page icon.

7. Click OK.

8. For Package Name choose ZENDemo.

9. In the Class Name field, type:

hello

10. For Application Name choose ZENDemo.Application.

11. Click Next.
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12. Click Finish.

13. Place the cursor at the start of this line and click to move the insertion point there:

</page>

14. Press Enter.

15. Move the cursor up to the blank line and click to move the insertion point there.

16. Type a left angle bracket (<) to display a context-sensitive list of XML elements.

17. Click button.

18. Press Enter.

19. Type a space to display a context-sensitive list of XML attributes.

20. Click caption.

21. Press Enter.

22. Type:

Hello world!"/>

23.
Choose Build > Compile or Ctrl-F7 or the  icon.

24.
Choose View > Web Page or the  icon.

Your simple new Zen page displays “Hello world!” on the face of a button.

25. Also try steps 13–24 with:

<calendar align="right"/>
<colorPicker/>
<text value="Hello world!"/>

If you encounter difficulties during this exercise, review “The Zen Demo” and “Supported Browsers” in the chapter
“Introducing Zen.” These sections provide useful background information for getting started with Zen.

2.2 Creating a Zen Application
A Zen application class extends %ZEN.application to provide application-wide styling behavior. In this exercise you create
a Zen new application class, as follows:

1. Start Studio.

2. Choose File > Change Namespace or F4.

3. Choose the SAMPLES namespace.

4.
Choose File > New or Ctrl-N or the  icon.

5. Select the Zen tab.

6. Click the Zen Application icon.

7. Click OK.

The Zen Application Wizard presents the fields shown in the following table. For this exercise, enter the values shown
in the right-hand column of the table.
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Value to EnterMeaningField

MyAppThe package that contains the new
application class.

Package Name

MyNewAppThe class name of the new application
class.

Class Name

My New Zen ApplicationThe logical name of the application.Application Name

This is my first new Zen

application.

Any text that you want to use to describe
the application.

Description

Click Finish.

8. The Zen Application Wizard creates and displays a skeletal application class. It includes some predefined class
parameters and an XData Style block as follows:

/// This is my first new Zen application.
Class MyApp.MyNewApp Extends %ZEN.application
{

  /// This is the name of this application.
  Parameter APPLICATIONNAME = "My New Zen Application";

  /// This is the URL of the main starting page of this application.
  Parameter HOMEPAGE = "";

  /// This Style block contains application-wide CSS style definitions.
  XData Style
  {
    <style type="text/css">
    </style>
  }
} 

9.
Choose Build > Compile or Ctrl-F7 or the  icon.

2.3 Creating a Zen Page
A Zen page class extends %ZEN.Component.page to define the contents and behavior of a web page. In this exercise you
create a new Zen page class in several steps.

2.3.1 Step 1: New Page Wizard

Create the new class as follows:

1. Start Studio.

2. Choose File > Change Namespace or F4.

3. Choose the SAMPLES namespace.

4.
Choose File > New or Ctrl-N or the  icon.

5. Select the Zen tab.

6. Click the Zen Page icon.

7. Click OK.
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The Zen Page Wizard presents the fields shown in the following table. For this exercise, enter the values shown in the
right-hand column of the table.

Value to EnterMeaningField

MyAppThe package that contains the page class.Package Name

MyNewPageThe page class name.Class Name

MyApp.MyNewAppThe package and class name of the
application that this page belongs to.

Application

My Home PageThe logical name of this page within its
application.

Page Name

For this exercise, leave the Domain field
empty.

The domain this page uses for localization
of caption text.

Domain

My very first Zen page class.Any text that you want to use to describe
the page.

Description

For this exercise, leave the Page type

field with its default selection of Page.
Regular page, or subclass of a template
page class.

Page type

Click Next.

8. The wizard prompts you to select an initial page layout, for example:

• Column 2 — two columns, plus space for a title along the top

• Title Page — space for a title along the top

• Default — no predefined layout

For this exercise, click Title Page. Then click Finish.

9. The New Page Wizard creates and displays a skeletal Zen page with predefined class parameters and the XML blocks
XData Style and XData Contents, as follows:

Class Definition

Class MyApp.MyNewPage Extends %ZEN.Component.page
{

  /// Class name of application this page belongs to.
  Parameter APPLICATION = "MyApp.MyNewApp";

  /// Displayed name of this page.
  Parameter PAGENAME = "My Home Page";

  /// Domain used for localization.
  Parameter DOMAIN = "";

  /// This Style block contains page-specific CSS style definitions.
  XData Style
  {
    <style type="text/css">
    /* style for title bar */
    #title {
      background: #C5D6D6;
      color: black;
      font-family: Verdana;
      font-size: 1.5em;
      font-weight: bold;
      padding: 5px;
      border-bottom: 1px solid black;
      text-align: center;
      }
    </style>
  }
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  /// This XML block defines the contents of this page.
  XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
  {
    <page xmlns="http://www.intersystems.com/zen" title="">
      <html id="title">Title</html>
      <vgroup width="100%">
        <!-- put page contents here -->
      </vgroup>
    </page>
  }
}

The XML blocks in this page class work together as follows:

• XData Style defines a style rule called #title that defines a background color, padding, borders, and font char-
acteristics for HTML output.

• XData Contents provides an XMLNamespace keyword. The value http://www.intersystems.com/zen
enables the Studio Assist type-ahead feature for built-in Zen components. You have already used this feature if
you followed the instructions in the “Hello World” section of the “Zen Tutorial.”

• XData Contents uses the <page> element to define a page object.

• XData Contents uses the <html> element to define a simple HTML excerpt for display in the browser. The id
value title creates the connection between the html object and the #title rule from XData Style. The html
object formats a string of text, Title. The resulting output functions as a simple title bar for the page.

• XData Contents provides an empty <vgroup>. Later exercises add components here.

10.
Choose Build > Compile or Ctrl-F7 or the  icon.

11.
Choose View > Web Page or the  icon.

Your new Zen page displays as follows:

If you encounter difficulties when displaying any Zen page from Studio, you can display the page by opening a browser
session and entering a URI in this format:

http://localhost:57772/csp/samples/MyApp.MyNewPage.cls

Where:

• 57772 is the web server port number assigned to Caché

• samples is the namespace that contains the Zen page class (all-lowercase)

• MyApp.MyNewPage is the Zen page package and class name (case-sensitive)

2.3.2 Step 2: XData Contents Block

In this exercise you modify the <page> element to add a simple button to the page. You can do this by typing text into the
XData Contents block, or by using templates to generate a <button> element with the correct syntax. This exercise uses
both techniques:

1. In Studio, open the page class.
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2. Select the text Title within the <html> element. Replace Title with a meaningful string, for example:

Zen Exercise Results

3. Remove this line just after the <vgroup> element:

<!-- put page contents here -->

Place the cursor between <vgroup> and </vgroup> and click to move the insertion point there.

4. Choose Tools > Templates > Templates or press Ctrl-T to display the Studio Templates dialog.

5. Choose Zen Element Wizard.

6. Click OK to display the Zen Element Wizard dialog.

7. In the drop-down list of XML elements, choose button. Click Next. Add properties as follows:

• In the caption row, click Edit. Enter a string value and click OK. For example:

Press Me

• In the id row, click Edit. Enter a string value and click OK. For example:

myButton

8. Click Finish. The XData Contents block now looks like this:

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
  <page xmlns="http://www.intersystems.com/zen" title="">
    <html id="title">Zen Exercise Results</html>
    <vgroup width="100%">
      <button id="myButton" caption="Press Me"/>
    </vgroup>
  </page>
}

New additions to this XData Contents block accomplish the following:

• Define a button object as a child of the vgroup object. This places the button at the top left-hand corner of the
display, under the title. The button is an instance of the %ZEN.Component.button class.

• The id value myButton provides a way to find and manipulate the button object programmatically.

• The caption value Press Me indicates the text that is displayed on the button when the page appears.

• At present, if you click this button it does nothing.

9.
Choose Build > Compile or Ctrl-F7 or the  icon.

10.
Choose View > Web Page or the  icon.

Your new Zen page displays as follows:
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2.3.3 Step 3: Client-Side Method

In this exercise, you add a JavaScript client-side method to your Zen page class and invoke it each time the user clicks the
<button>, as follows:

1. In Studio, open the page class.

2. Type an onclick attribute into your <button> definition as follows:

onclick="zenPage.btnClick();"

The XData Contents block now looks like this:

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
  <page xmlns="http://www.intersystems.com/zen" title="">
    <html id="title">Zen Exercise Results</html>
    <vgroup width="100%">
      <button id="myButton" caption="Press Me" onclick="zenPage.btnClick();"/>
    </vgroup>
  </page>
}

The value of the onclick attribute is a JavaScript expression that executes a method called btnClick on an object called
zenPage. zenPage is the JavaScript variable that represents the page object on the client side. The btnClick method
is available on the client side only if you define it in your Zen page class as a client-side method. The next step explains
how to do this.

3. Place the cursor just below the closing curly brace of the XData Contents block, but above the closing curly brace of
the page class. Click to move the insertion point there.

4. Choose Tools > Templates > Templates or press Ctrl-T to display the Studio Template dialog. Choose Zen Method Wizard.
Click OK to display the following dialog:

Edit the dialog as follows:

• Enter the name btnClick

• Choose is an instance method

• Choose runs on the client

• Enter a description.
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• Clear the Try/Catch check box.

• Click Finish. Your new method appears in the page class as follows:

Class Member

ClientMethod btnClick() [Language = javascript]
{
   // TODO: implement
   alert('Client Method');
}

5. Change the code within curly braces so the method now looks like this:

Class Member

ClientMethod btnClick() [Language = javascript]
{
   alert('Hello, World!');
}

6.
Choose Build > Compile or Ctrl-F7 or the  icon.

7.
Choose View > Web Page or the  icon.

8. Click the “Press Me” button to display your JavaScript alert message:

9. Click OK to close the popup.

Some important things to notice about the btnClick method:

• Its Language keyword is set to JavaScript. This means that the implementation of this method uses JavaScript. Studio
syntax-colors and validates this method as JavaScript.

• When this class is compiled, the btnClick method is not be available as a callable method on the server. It is available
as an instance method of the zenPage object on the client.

• The class compiler resolves inheritance. This means that you can define JavaScript methods within a super class and
they are automatically be available to any subclasses. While this is possible to accomplish in traditional JavaScript, it
is also very tedious and error-prone. A lot of the power of Zen comes from this ability to support inheritance on both
the server and client.

• The body of this method uses the standard JavaScript alert method to display a message on the client.

• At runtime, this method runs in the client (browser) environment.

• The method is defined in the same logical unit (that is, the class) as the page definition that references it. This makes
pages easy to develop and maintain.

2.3.4 Step 4:Viewing the HTML Output

While viewing your Zen page in the browser, use the View Source option to look at the HTML served by the Zen page.
You can see that the Zen page consists of the following elements, from top to bottom:

• A standard HTML header
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• A set of included elements such as pre-generated JavaScript (for library components) and CSS (stylesheet) files.

• HTML needed to display any components that generate HTML (such as the button component).

• Some generated JavaScript utility code (for error detection, timeout management, encrypted server calls, etc.)

• JavaScript class definitions for any user-defined classes used on this page (such as the page object itself).

• JavaScript code to create any client-side objects defined by the page. This is a client-side version of the same objects
defined in the page’s XData Contents block.

• If needed, additional JavaScript code to finalize the client-side object model.

2.3.5 Step 5: Server-Side Method

In this exercise, you make a simple modification in your new Zen page. This modification demonstrates the ability to invoke
server logic from within a client page, as follows:

1. In Studio, open the page class.

2. Using techniques from the previous exercises in this chapter, add a new button inside the XData Contents block. Give
the new button the attribute values listed in the following table.

Value to EnterAttribute

myButtonTooid

No, Me!caption

zenPage.BtnClickMe();onclick

Your XData Contents block should now resemble this one:

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
  <page xmlns="http://www.intersystems.com/zen" title="">
    <html id="title">Zen Exercise Results</html>
    <vgroup width="100%">
      <button id="myButton" caption="Press Me"
              onclick="zenPage.btnClick();"/>
      <button caption="No, Me!" id="myButtonToo"
              onclick="zenPage.BtnClickMe();"/>
    </vgroup>
  </page>
}

3. Position the cursor just below the closing curly brace of the XData Contents block, but above the closing curly brace
of the page class. Click to move the insertion point there.

4. Choose Tools > Templates > Templates or press Ctrl-T to display the Studio Template dialog. Choose Zen Method Wizard.
Click OK to display the following dialog:
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Edit the dialog as follows:

• Enter the name BtnClickMe

• Choose is an instance method

• Choose runs on the server

• Enter a description.

• Clear the Try/Catch check box.

• Click Finish. Your new method appears in the page class as follows:

Class Member

Method BtnClickMe() [ZenMethod]
{
   // TODO: implement
   &js<alert('Server Method');>
   Quit
}

5. Change the code within curly braces so the method now looks like this:

Class Member

Method BtnClickMe() [ZenMethod]
{
    Set msg = $ZVERSION
    &js<alert('#(msg)#');>
    Quit
}

Now the ObjectScript method BtnClickMe executes the ObjectScript $ZVERSION or $ZV utility, which produces a
text string that describes the Caché version that you are running.

6.
Choose Build > Compile or Ctrl-F7 or the  icon.

7.
Choose View > Web Page or the  icon to display your new Zen page as follows:
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8. Click the “No, Me!” button. The following popup message appears:

9. Click OK to close the popup.

10. Use the View Source option of your browser to look at the HTML.

Some important things to notice about the BtnClickMe method:

• It is defined as an instance method.

• It omits the Language keyword. This means that this method uses the default server scripting language, which is
ObjectScript. The possible scripting languages are ObjectScript, Caché Basic, or Caché MVBasic.

• It executes on the server but (as further notes explain) it also sends a hyperevent to the client.

• It uses the ZenMethod keyword. The ZenMethod keyword means that this is a server-side method that can be called
from the client. Even when this method is called from within the client (browser) environment, it is still executed on
the server.

• The method assigns the value of the $ZVERSION utility to the variable msg, then sends msg to the client so that the
user can see the value in a JavaScript alert popup. The statement:

&js< alert('#(msg)#'); >

is an example of embedded JavaScript syntax. While executing your BtnClickMe method on the server, Zen finds the
snippet of JavaScript code between &js< and > and sends this snippet to the client for execution.

Note: This behavior is provided by the CSP hyperevent mechanism. For details, see the section “Server-Side
Methods” in the “Tag-based Development with CSP” chapter of Using Caché Server Pages (CSP).

• Within the embedded JavaScript, the syntax:

#(msg)#

is the convention for transferring the value of the variable msg from ObjectScript code executing on the server to
embedded JavaScript executing on the client. For details, see the section “Zen Runtime Expressions” in the “Zen
Pages” chapter of Developing Zen Applications.

• The client-side zenPage object can invoke your server-side BtnClickMe method.

Because you defined BtnClickMe as an instance method, the server needs the current client-side object’s complete
state to be able to execute the method.

When zenPage invokes your server-side method, the client-side implementation of BtnClickMe gathers up any argument
and object context information available on the client side, serializes the entire page object and sends it through to the
server, then invokes the server-side method, all using the CSP session-encrypted hyperevent mechanism.
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• BtnClickMe does not return a value. This is intentional. When you use CSP hyperevents, a method with no return
value automatically runs asynchronously (does not wait for a response). This way, the user interface does not appear
to “freeze” as it would if it had to wait for a method to return a value.

Important: The “&js< ... >” should ONLY be used when working in Synchronous mode and interacting with Class-
Methods where no DOM synchronization is happening.

In an instance method, if you are modifying elements in the DOM, this code is returned by the hyperevent,
bundled into a function and executed in the browser immediately on return; then the DOM is updated,
overwriting any and all changes made by the function. If you are calling Asynchronously, there is also a
risk that these functions may not execute in the order you expect them to.

2.4 Zen Naming Conventions
Zen programs are case-sensitive. If you are not experienced with case-sensitive programming, case might be your biggest
adjustment in using Zen. Remember that a is not the same as A.

The following naming conventions apply throughout the Zen code. These conventions use case to distinguish between
different categories of method or property. myMethodName and MyMethodName are not the same name.

Table 2–1: Naming Conventions

ExampleConvention

myMethodNameClient-side methods are defined using the Language=JavaScript key phrase, and are
written in JavaScript. They can be called from the client and, when called, run on the
client.These names start with a lowercase letter and use an initial capital letter for each
successive word (in-word capitalization). The same is true of client-only properties.

MyMethodNameZen methods are defined using the keyword ZenMethod. They can be called from the
client, but are executed on the server.These methods are written in ObjectScript, Caché
Basic, or Caché MVBasic, but they may include embedded JavaScript that calls back
to the client.Their names start with an uppercase letter, use in-word capitalization, and
cannot start with the % character.

%MyMethodNameServer-side methods use no special keyword. They are written in ObjectScript, Caché
Basic, or Caché MVBasic. They are available to be called from code that is executing
on the server and, when called, they run on the server.These method names start with
the % character. Server-only properties use this naming convention too.

tablePaneTypically, Zen class names start with lowercase and use in-word capitalization, similar
to the conventions for client-side methods and properties. The exceptions to this rule
include some of the server-only utility classes, which begin with an uppercase letter.

filterOpAttribute and property names start with lowercase and use in-word capitalization, except
for event handlers and callbacks.

onmousedownAttributes that identify event handlers for components follow the JavaScript convention
of all-lowercase.

OnCreateDataSetAttributes that identify server-side callbacks for components start with On (capital letter
O) and use in-word capitalization.
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Zen offers many built-in variables, as described in the “Zen Pages” chapter of Developing Zen Applications. The most
important of these are the two variables that represent the Zen page object on the client and server sides. These two variables
conform to Zen naming conventions for client and server identifiers, as follows:

• In JavaScript code that runs on the client side, the page object is zenPage

• In ObjectScript, Caché Basic, or Caché MVBasic code that runs on the server side, the page object is %page

Important: InterSystems strongly recommends that you do not create any classes in a package called ZEN.Component

using any combination of uppercase and lowercase characters. Creating a package called ZEN.Component

breaks the Zen framework for generating client-side code.

2.5 Zen Sample Applications
If you are an experienced Caché user, you are already familiar with the SAMPLES namespace. In particular, the sample
application Cinema is a favorite with users learning about Caché Server Pages (CSP). Zen offers a large number of sample
pages, organized into packages in the SAMPLES namespace. If you have a new Caché installation, you must first run the
ZENDemo home page. Loading this page silently generates data records for the SAMPLES namespace. You only need to
do this once per Caché installation.

Enter the following URI in the browser:

http://localhost:57772/csp/samples/ZENDemo.Home.cls

Where 57772 is the web server port number that you have assigned to Caché.

Now you can view the Zen sample code at any time by following these steps:

1. Start Studio.

2. Choose File > Change Namespace or F4.

3. Choose the SAMPLES namespace.

4. In the Workspace window, choose the Namespace tab and open the Classes category.

Packages ZENApp, ZENDemo, ZENMVC, and ZENTest are available for you to explore. You can also examine any
of the other Caché samples, including the Cinema application near the top of the list.

Figure 2–1: How to Access the Sample Zen Code in Studio
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2.6 Zen Wizards
Zen supplies a rich set of application programming wizards that you can run from within Studio. The exercises in this
chapter use several of them. For a complete list and description of the available options, see the chapter “Zen Wizards.”

There is also a Studio tutorial that uses Zen wizards to create the user interface for a simple application. See the chapter
“Building a Simple Application with Studio” in the book Using Studio.
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3
Zen Application Concepts

A Zen application specifies the full set of activities that can result when a Zen client and server interact. These activities
may consist of displaying web pages, issuing queries to a database, writing data to disk, and more. When you create a Zen
application, you create a suite of Zen classes that specify these activities. The language you use for these classes is
ObjectScript — with embedded snippets of XML, HTML, SVG, and JavaScript as needed.

If you are new to Caché objects and the ObjectScript programming language, the discussion in this chapter makes most
sense after you have mastered the supporting material available in other books. The best starting points are the books Using
Caché Objects and Using Caché ObjectScript.

The examples in this book use ObjectScript, but you can also use Caché Basic, or Caché MVBasic as your programming
language. See the books Using Caché Basic or Using the MultiValue Features of Caché.

3.1 Client and Server
Zen is a client/server web technology. The terms client and server are commonly used; this section explains how Zen uses
these terms.

3.1.1 Zen and CSP

The book Using Caché Server Pages (CSP) describes the relationship between the client and server in CSP applications.
It outlines the flow of events between issuing the HTTP request and displaying the page in the browser. Zen applications
and Zen pages are CSP pages, so all of this information also applies to Zen.

Zen applications use CSP technologies to:

• Filter and respond to HTTP requests.

• Manage sessions and session lifecycle.

• Manage user identity, authentication, and access control.

• Provide the hyperevent mechanism used to call server methods from the client.

• Call from the server to execute code securely on the client.

Important: If you make use of the CSP session preserve mode, be aware that the server-side Zen page (%page) and
application (%application) objects are not preserved between server requests.
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3.1.2 Zen Pages at Runtime

A Zen page automatically responds to Hypertext Transfer Protocol (HTTP) requests from a browser and serves up a complete
HyperText Markup Language (HTML) document to satisfy such a request. Zen pages can also satisfy other types of requests,
such as for eXtensible Markup Language (XML) or Scalable Vector Graphics (SVG) content. The behavior for XML or
SVG is documented in later chapters. It is similar to the HTML behavior documented in this chapter.

The following sequence displays a Zen page in a browser window:

1. The web browser sends an HTTP request that names a specific Zen page. The Caché server receives the request and
automatically routes it to the Zen page class.

2. The page class invokes its %OnBeforeCreatePage() callback method. This method provides the opportunity for the
application to perform any setup work that may be required before %CreatePage() begins execution.

3. The page class creates an instance of itself on the Caché server and invokes its class method %CreatePage(). This
method creates the set of component objects and adds these objects as children of the page object.

When a Zen page class contains a description of the page in XML format within an XData Contents block, Zen auto-
matically generates a %CreatePage() method whenever the class is compiled. The compiler uses the information in
XData Contents to generate the method. This is by far the most common case. Alternatively, a programmer may omit
the XData Contents block and implement %CreatePage() manually. This gives the opportunity to create dynamic
page content.

However, most Zen application developers choose to set up an initial Document Object Model (DOM) for the page
using XData Contents, then add finishing touches to this model in %OnAfterCreatePage().

4. The page class invokes its %OnAfterCreatePage() callback method. In this method, the application can modify the
content generated by %CreatePage() in any way that is needed. After %OnAfterCreatePage() completes execution,
there is a page object in memory that contains some number of child component objects.

5. The page object constructs an HTML document from its DOM by invoking the page class’s %DrawHTML() method.
Every Zen page and component object has a %DrawHTML() method that knows how to render the object as HTML.
In the case of a Zen page, the %DrawHTML() method supplies:

• The page title.

• Any HTML meta-tags needed by the page.

• Any content needed to support hyperevents (the mechanism used to make in-page calls back to the server).

• Include statements for any required JavaScript or Cascading Style Sheet (CSS) include files.

• JavaScript needed to define the set of client component classes used on the page.

• JavaScript needed to create and initialize the set of client component objects used on the page. That is, a client-
side version of the server-side page object is created.

• Default CSS style definitions defined by the component classes.

• CSS style definitions defined by the application class.

• CSS style definitions defined by the page class. (This order is important as it allows the application settings to
override defaults and page settings to override application settings).

• The HTML content of every component on the page (obtained by invoking the %DrawHTML() method for every
component on the page).

As with %CreatePage(), for the most part a Zen programmer can ignore %DrawHTML(). Caché generates and
invokes it automatically. The important fact about %DrawHTML() is when it occurs. %DrawHTML() is the last
step before the page leaves the server.
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The Zen programmer must ensure that all server-side adjustments to the page are complete before the end of the
%OnAfterCreatePage() method.

6. The Caché server delivers the HTML document to the client.

7. If there is an onloadHandler() client-side method defined in the page class, it runs on the client side at this time.

8. The browser displays the HTML document

As described above, the Zen application development framework offers several opportunities to manipulate the Zen page
prior to its initial display. The most frequently used are as follows

• The XData Contents block in the Zen page class uses the syntax described in:

– The chapters “Zen Layout”  and “Zen Style” in this book

– All chapters in the book Using Zen Components

– The chapter “Client Side Menu Components”  in the book Developing Zen Applications

• The %OnAfterCreatePage() callback method runs on the server and so can be written in a server-side language such
as Caché Basic, ObjectScript, or MVBASIC. Zen invokes %OnAfterCreatePage() after the page object is initially
created; you can use statements in %OnAfterCreatePage() to add components on the page or otherwise manipulate
them, all using your server-side language of choice. For technical details and a list of server-side methods you can call
to work with components programmatically, see the section “Defining Page Contents Dynamically on the Server”  in
the “Zen Pages” chapter of Developing Zen Applications.

• After the page goes to the client, but before the user sees it, you get one more chance to finish crafting the page by
overriding the onloadHandler() client-side method. This JavaScript method runs on the client side just prior to dis-
playing the page. For technical details and a list of client-side methods you can call to work with components program-
matically, see the section “Defining Page Contents Dynamically on the Client”  in the “Zen Pages” chapter of
Developing Zen Applications.

3.2 Zen Applications
A Zen application consists of the following parts:

An Application class

A class derived from %ZEN.application that provides application-wide behavior such as a common style sheet.
The style sheet is specified as an XML block embedded within the class.

Page classes

A Zen application consists of one or more Zen pages. Each page is a class derived from %ZEN.Component.page

which is, in turn, a subclass of both %CSP.Page and %ZEN.Component.component.

Component classes

Every page contains components. Components provide “look and feel” and permit the user to interact with the
page. All components are derived from %ZEN.Component.component. They include buttons, tables, list boxes,
text fields, panels — essentially any item that can be displayed on a page.
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Figure 3–1: Zen Application with Pages and Components

This architecture works as follows:

• A Zen application consists of page classes.

• For convenience, a Zen application may also have an application class defined.

• If there is an application class, each page identifies it.

• Every Zen page consists of a page object and a set of component objects.

• The set of components for a page is defined using a block of XML embedded into the page class.

• The page class can also define a set of methods that provide additional behavior, such as responding to user actions.
These methods can run within the browser, or on the server, depending on how the code is written.

• When the client sends a page request, the page object and all of its constituent component objects are instantiated on
the Caché server. This is the object tree.

• This object tree can be further modified by user code on the Caché server.

• The object tree generates all the CSS (style sheet), JavaScript (client logic) and HTML (layout instructions) needed to
display the page within the client browser. Alternatively, a page could generate XML or SVG.

• On the client browser, the same object tree is automatically recreated as a set of JavaScript objects. The client side
object tree is identical to the server side object tree as it stands after any modifications on the server.

• Properties and methods of the object tree are thus available to the client.

• As the user interacts with a page, events are fired that invoke the various methods of the client object tree. Some of
these methods execute within the browser, while others can be defined to run back on the server (for database access,
etc.).

• Zen automatically manages any calls that a page makes back to the server, including session context, security, and
synchronizing changes between the client and the server.
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• Users create Zen applications by assembling classes (both pre-built and user-defined) into larger functional units:
components are assembled into pages, and pages are assembled into applications. The application class, if provided,
supplies application-wide conventions that apply to all pages.

For programming details, see the “Zen Applications” chapter in Developing Zen Applications.

Figure 3–2: Zen Page Synchronized on Client and Server at Runtime

3.3 Zen Pages
A Zen page class consists of:

• A contents definition—An XML block embedded within the page class. It defines the set of components that make up
the page, along with their settings. It is possible to define the contents of a page programmatically, but in most cases
an XML block is more convenient.

• Style overrides—An XML block embedded within the page class. It defines page-specific overrides of CSS styles for
the components on this page.

• Event-handling methods—A page class typically contains a number of methods that handle events associated with a
page, such as when the user interacts with a component. Some of these methods may run on the server and some on
the client. Later chapters provide details.

For programming details, see the “Zen Pages” chapter in Developing Zen Applications.
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Figure 3–3: Defining the Look and Feel of a Zen Page

3.4 Zen Components
Zen component classes define the behavior and layout of the page. Every Zen component has the following characteristics:

• Defines a set of properties and methods that determine its runtime state and behavior.

• Defines how its initial HTML is drawn (if any). It is also possible to define components that only render themselves
using client-side, dynamic HTML.

• Defines a standard CSS style sheet that specifies how it should appear on the page. Applications can selectively override
these styles without having to modify the pre-built components.

• Defines settings that adjust the appearance or behavior of a component. A Zen component class formally exposes
certain settings so that it is easy to dynamically modify these setting values while designing a Zen page.

• New component classes can be derived from existing classes. Zen automatically provides inheritance for the client
JavaScript classes it creates.

• New components are automatically ready for use within a page’s XML content definition.

Component classes vary in complexity from simple wrappers for native HTML controls to full-featured calendar and grid
controls. Components include the following specialized types:

• Controls display data and allow for user input (such as text or button controls).

• Groups contain sets of other components (such as groups, tab groups, menus, and forms).

• Panes display rich information (such as a tables retrieved from queries).

• Other components simply display data on the page.

For further details, see the next chapter, “Zen Component Concepts.”

26                                                                                                                                                                             Using Zen

Zen Application Concepts



4
Zen Component Concepts

Components provide layout, style, and behavior for the page. The following table defines these commonly used terms.
These definitions are important because each Zen component provides a large number of attributes that you can manipulate
as you program the application. Some of these attributes affect layout, some style, and some behavior. With a strong
grounding in these concepts, you can manipulate attributes fluently to get the results you want from Zen components.

Table 4–1: Component Concepts

SummaryIllustrationTerm

The rectangular display in a browser window.Page

The position of each component, and of each group of
components, on the page.

Layout

The visual appearance of components, regardless of their
position on the page.

Style

An application action that results from user input, a timer,
or some other event.

Behavior
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4.1 Page
A page is initially empty. It fills with components as you add them. A layout strategy is necessary to determine where these
components appear on the page.

4.2 Layout
As Zen constructs a page for display, it adds components individually, one after another, according to the description that
you have provided in the page class. The user is not aware of the page construction process. The user only sees that a page
appears. However, as a Zen programmer, you must understand the construction process so that your pages lay themselves
out exactly as you intend.

Components are contained within groups: a special type of component that can contain zero or more components. A group
is responsible for the placement of its components on the page. The page is itself a group. Zen generates standard HTML
table elements based on the group definition. You can cause components to line up vertically or horizontally, by enclosing
them within a vertical or horizontal group. Generally, the largest width or height of any component in a group determines
the overall width or height of the group on the page. A spacer component is available to help insert additional space between
components in the group. The entire group places itself on the page as one component.

Certain components permit layers, similar to sheets of paper that occupy one position in a stack. Only one layer is revealed
at one time, based on user clicks. Menus and tabs work on this principle.

Other components may have variable size, depending on their state. For example, if an <expando> list is closed, it contains
only one item and is short. If the list is opened, it may contain many items; then it is long. The opened list could push aside
other components later in the layout, causing a shift in the physical geography of the page. Or, the containing group may
have a fixed size larger than the maximum expected list size, allowing the list to expand and contract within the larger
boundary without affecting the page layout.

Zen manages layout by generating HTML and CSS style statements based on the inputs that you provide Zen. Essentially
there are three ways to specify your layout intentions to Zen:

• Let the containing group lay out its components.

• Provide CSS style statements to Zen.

• Use client-side JavaScript to dynamically change the geography of the page.

For details, see the chapter “Zen Layout.”

Scalable Vector Graphics (SVG) components are handled differently from other types of page content. For details, see the
“Zen and SVG” chapter in Using Zen Components.

4.3 Style
Style determines the visual appearance of a component. Zen manages style by generating standard CSS statements based
on the inputs that you provide Zen.

There are many style attributes that you can set for each component. These include background color, size, fill patterns,
line width, and font family, just to name a few. You can accept the default styles. You can also override styles at the com-
ponent, page, or application level.
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For details, see the chapter “Zen Style.”

4.4 Behavior
Behavior refers to an internal or external application action that is triggered by user input, a timer, or some other type of
event. Behavior encompasses a wide range of topics in this book, from processing user clicks and key presses to automatically
generating tables based on database queries. For the most part, component behavior is unique per component. However,
there are some attributes that all components share in common. This topic lists them.

4.4.1 Display

All Zen components provide the XML attributes listed in the following table. These attributes control basic display
behavior for the component: onshow, onhide, and onrefresh.

Table 4–2: Display Behavior Attributes

DescriptionAttribute

Client-side JavaScript expression that runs whenever this component is made hidden.onhide

Client-side JavaScript expression that runs whenever the contents of this component are refreshed
from the server.

onrefresh

Client-side JavaScript expression that runs whenever this component is made visible. Generally
this expression invokes a client-side JavaScript method defined in the page class. This method
becomes the “onshow event handler” for the component.

When providing a value for an event handler attribute such as onshow, use double quotes to
enclose the value and single quotes (if needed) within the JavaScript expression. For example:

<tablePane ondblclick="alert('HEY');"/>

onshow

4.4.2 Drag and Drop

Drag and drop describes a simple mechanical operation that permits the application user to change the positions of items
on the Zen page by direct manipulation on the client side. The user clicks on an item with the mouse and holds down the
mouse button to “drag” the item to another position on the page. Releasing the mouse causes the item to “drop” into its
new position. The item being dragged could be:

• A Zen component that the user wishes to reposition on the page. Zen provides several active group components that
permit the user to rearrange their internal layout by dragging and dropping components within the group. For details,
see the “Client Side Layout Managers” chapter in Developing Zen Applications.

• A single item within a Zen component that the user wishes to add or reposition. The <listBox> control allows the user
to reorder entries in a list, or move an entry from one list to another, using drag and drop gestures. This is in addition
to data drag and drop, which the <listBox> also supports. For details, see “<listBox> Drag and Drop” in the “Zen
Controls”  chapter of Using Zen Components.

• Data, such as the contents of a <text> control on a form. Data drag and drop means that the user picks up data from
one Zen component and drops it onto another component, replacing the value of the field where the data was dropped.
Specifically, the user moves the data by clicking on it with the mouse, dragging it into position while holding down
the mouse button, then dropping it on the destination field by releasing the mouse button. For details, see “Data Drag
and Drop” in the “Zen Controls”  chapter of Using Zen Components.
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For the most part, data drag and drop applies only to control components, each of which has a logical value and a display
value to be dragged. However, <dynaTree>, which is not a control, also supports data drag. Each of its nodes has a
logical value and a display value. For details, see “<dynaTree> Drag and Drop” in the “Other Zen Components”
chapter of Using Zen Components.

Drag and drop is enabled only when the <page> has its dragAndDrop attribute set to true. When this is the case, the following
attributes may apply to any Zen component on the page. These attributes are most frequently used to configure Zen controls,
but they are actually available for, and apply to, any Zen component.

Table 4–3: Drag and Drop Behavior Attributes

DescriptionAttribute

If true, and if dragAndDrop is enabled for the page, then this component can serve as a
drag source. That is, users can start a drag and drop operation over this component. The
default for dragEnabled is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true" or
"false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

dragEnabled

If true, and if dragAndDrop is enabled for the page, then this component can serve as a
drop target. That is, users can end a drag and drop operation over this component. The
default for dropEnabled is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true" or
"false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

dropEnabled

If dragEnabled is true and dragAndDrop is enabled for the page, this client-side JavaScript
expression runs whenever a drag operation that started within this component completes.
Generally this expression invokes a client-side JavaScript method defined in the page class.
This method becomes the “onafterdrag event handler” for the component.

When providing a value for an event handler attribute such as onafterdrag, use double
quotes to enclose the value and single quotes (if needed) within the JavaScript expression.
For example:

<tablePane ondblclick="alert('HEY');"/>

onafterdrag

If dragEnabled is true and dragAndDrop is enabled for the page, this client-side JavaScript
expression runs whenever a drag operation has been initiated within this component but
before the component has started to process the event. This is for cases in which you want
to override the default drag behavior of a component. For example, you might want to change
the visual representation of the data being dragged from a text caption to a graphical image
while it is being dragged.

onbeforedrag

If dragEnabled is true and dragAndDrop is enabled for the page, this client-side JavaScript
expression runs whenever a drag operation has been initiated within this component.

ondrag

If dropEnabled is true and dragAndDrop is enabled for the page, this client-side JavaScript
expression runs whenever a drop operation occurs within this component.

ondrop

Rather than providing values for onafterdrag, onbeforedrag, ondrag, and ondrop attributes in the previous table, it can be
more convenient to build the desired behavior into a custom component. This can be useful to ensure consistency, because
this way application developers are not required to specify the attributes for drag and drop each time they place the component
on the page. Instead, developers choose the custom component, which already has the desired drag and drop behavior built
into it. For information about customizing drag and drop behavior, see “Data Drag and Drop Methods” in the “Custom
Components”  chapter of Developing Zen Applications.
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Zen reports performs drag and drop initialization when a page is loaded. If you dynamically add or remove elements from
the page, you need to call the method ZLM.initTargetNodes to activate drag and drop behavior for the new elements. The
Document Object Model (DOM) needs to be stable when you call this method. The circumstances under which the DOM
is stabile, and ways to test for stability, vary from one browser to another.

4.5 Customization
Zen serves a wide audience range. At one end is the programmer who wants to use Zen to quickly assemble a user interface
for a data-rich web application. This programmer rapidly places Zen components on the page with the goal of allowing the
user to see and manipulate the underlying data.

At the other end of this range is the programmer who wants to use Zen for pinpoint control of the layout, style, and
behavior of each component on the page. This programmer may react to introductory topics with this phrase: “But I want
to...”

Everyone can relax.

Zen provides ample opportunities for customization. In addition to the wide range of variations available by manipulating
layout, style, and behavior of built-in components, you can create new components, or even replace the Zen layout handler
with custom code. For details, see the “Custom Components”  chapter in the book Developing Zen Applications.

On the other hand, customization is entirely optional. Everyone should begin by reading the next several chapters. Come
to appreciate the power, ease, and flexibility of Zen. Then, after understanding what Zen provides, make your own decision
about whether or not to extend it. The option is always there.
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5
Zen Layout

Previous chapters have introduced Zen components as classes. It is true that components are classes. All Zen components
extend the class %ZEN.Component.component. However, when you place Zen components on the page, your primary pro-
gramming language is usually not ObjectScript. It is XML.

This chapter explains how to lay out Zen pages using XML:

• The chapter begins with an XData Contents example.

• The next several sections discuss the XML elements in the example:

– <page> is the top-level container element.

– <html> allows you to place HTML directly on the page.

– Several types of group component may be arranged on the page to control layout, including the following simple
group elements that appear in the example:

• <hgroup> creates a horizontal row of components.

• <vgroup> creates a vertical column of components.

– <spacer> creates space between groups.

– <pane> subdivides the page into regions.

• The chapter ends by discussing:

– How to organize XData Contents using template pages.

– The HTML page that Zen generates from XData Contents.

5.1 XData Contents
When you prepare a Zen page class for an application, you place components on the page by providing an XData Contents
block that describes the layout, style, and behavior of the page using XML extensions defined by Zen. The syntax inside
XData Contents must be “well-formed XML” as defined by the World Wide Web Consortium (W3C) specification for
XML. Among the essential requirements are that each starting element, such as <page>, must have a balancing end element,
such as </page>, and nesting rules must be respected. All of the examples in this document fulfill these requirements.
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Each XML element in the document corresponds to a component class of the same name. The following sample XData
Contents block includes the XML elements <page>, <html>, <hgroup>, <vgroup>, <pane>, and <spacer>. These XML
elements represent the Zen classes %ZEN.Component.page, %ZEN.Component.html, %ZEN.Component.hgroup, and so on.

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
  {
    <page xmlns="http://www.intersystems.com/zen" title="HelpDesk">
      <html id="title">My Title</html>
      <hgroup>
        <pane paneName="menuPane"/>
        <spacer width="20"/>
        <vgroup width="100%" valign="top">
          <pane paneName="tablePane"/>
          <spacer height="20"/>
          <pane paneName="detailPane"/>
        </vgroup>
      </hgroup>
    </page>
  }

When you compile the class that contains the previous XData Contents block, Zen generates the code that displays this
page in the browser. At runtime, this code instantiates the indicated component classes as children of the page object. Zen
handles these details automatically and transparently, as described in the chapter “Zen Application Concepts.”

As the programmer laying out an XData Contents block, you do not work with component classes directly. You work with
the XML projection of the component classes. For each component, this projection consists of:

• An XML element with the same name as the class (<page>, <html>, <hgroup>, etc.)

• XML attributes, which are properties of that class (width, height, etc.)

This convention gives you the power of the Zen runtime environment for serving Zen pages, without requiring you to
understand the underlying mechanisms in detail. You use the XML projection to place components on the page, and Zen
generates the HTML that displays these components in the browser.

5.2 Pages
The XData Contents block contains one <page> element that acts as the top-level container for all the XML elements in
the block. A <page> is a group component with the attributes listed in the following table.

DescriptionAttribute

Pages have the same general-purpose attributes as any Zen group. For descriptions, see
the section “Group Layout and Style Attributes.”

Zen group
attributes
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DescriptionAttribute

If true, the data drag and drop feature is enabled for components on this page. If false, the
feature is disabled.

Data drag and drop means it is possible for the user to pick up data from one Zen component
and drop it onto another Zen component, replacing the value in that field. Specifically, the
user moves the data by clicking on it with the mouse, “dragging” it into position while holding
down the mouse button, then “dropping” it on the destination field by releasing the mouse
button.

Some controls support additional drag and drop features. For example, the <listBox> element
allows the application user to drag and drop items within a list to rearrange their order.

The dragAndDrop value must be set before the page is initially displayed; it cannot be used
to enable or disable data drag and drop once the page has been loaded. The default value
for dragAndDrop is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true" or
"false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

dragAndDrop

If true, the various JavaScript include files that support SVG components are included for
this page. This enables SVG features while increasing the overall page size. The default
value for useSVG is false.

If a <page> contains one or more <svgFrame> components, useSVG is automatically true
and there is no need to include it as an attribute of the <page>. A <page> component only
needs the useSVG attribute when the initial page definition does not contain any <svgFrame>
components but the page later creates SVG components dynamically. useSVG must be set
before the page is initially displayed, or it has no effect.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true" or
"false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

useSVG

Use this attribute to store page title text. This text is not automatically used on the page, but
the attribute is available should you want to refer to this text programmatically. If you do not
specify a value for title it takes its value from the page class parameter PAGETITLE.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long
as a language DOMAIN parameter is defined in the Zen page class.The %ZEN.Datatype.caption

data type also enables you to use $$$Text macros when you assign values to the title
property from client-side or server-side code.

The title value can be a literal string, or it can contain a Zen #()# runtime expression.

title

Allows you to include an XML namespace declaration for the <page>.

As you add custom components, chances increase for conflicts between components in
different namespaces. Adding the xmlns attribute prevents this.

xmlns
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5.3 Titles
The first item most pages need is a title bar. The title bar answers the user’s implicit question: “Where am I?” Zen offers
several elements that can serve this purpose. They work in entirely different ways:

• <titleBox> for simple titles

• <html> for complex titles

• A custom component to use as your title bar

5.3.1 Simple Titles

<titleBox> draws a title box along with an optional subtitle. You can use <titleBox> to provide a simple title for any com-
ponent, including the page itself. Simply make <titleBox> the first child component inside the component whose title you
want it to be. For example:

XML

<page>
  <titleBox id="sampleTitle"
            title="Welcome to My Application!"
            subtitle="You are Here:"
            />
  <pane paneName="Everything Else on the Page" />
</page>

Components like <button> have a caption attribute and so do not need <titleBox> to provide a label. <titleBox> is most
useful and appropriate for a <page> or <pane>. <titleBox> has the following attributes.

DescriptionAttribute

(Optional) Subtitle text.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long as a
language DOMAIN parameter is defined in the Zen page class. The %ZEN.Datatype.caption data
type also enables you to use $$$Text macros when you assign values to the subtitle property
from client-side or server-side code.

The subtitle value can be a literal string, or it can contain a Zen #()# runtime expression.

subtitle

Title text.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long as a
language DOMAIN parameter is defined in the Zen page class. The %ZEN.Datatype.caption data
type also enables you to use $$$Text macros when you assign values to the title property from
client-side or server-side code.

The title value can be a literal string, or it can contain a Zen #()# runtime expression.

title

(Optional) String containing a CSS style statement such as:

"color:red; background: yellow;"

titleStyle

There is also a <titlePane> element that omits the subtitle and titleStyle attributes and simply offers a title.

36                                                                                                                                                                             Using Zen

Zen Layout



5.3.2 Complex Titles

The <html> element permits you to insert an arbitrary HTML excerpt on the Zen page. You can use the <html> component
to output title text in the appropriate font and size. You can use <html> to quickly produce a title when you are first drafting
the page. Simply enclose the desired HTML tags inside <html> and </html>. For example:

XML

<page>
  <html id="sampleTitle">
    <h1>Welcome to My Application!</h1>
    <h2>You are Here:</h2>
  </html>
  <pane paneName="Everything Else on the Page" />
</page>

The real power of the <html> element comes from its optional OnDrawContent attribute. OnDrawContent identifies a
server-side callback method that provides HTML content by using &html<> syntax or by the WRITE command. If defined,
this callback is invoked on the server when this component is drawn. The value of OnDrawContent must be the name of
a server-only method in the page class that contains this component. This method must accept an optional %String as input
and return a %Status data type. What is significant about this feature is that server-side methods normally consist of
ObjectScript code, whereas a callback referenced by OnDrawContent may consist of ObjectScript code plus as much HTML
as you wish to embed within &html<> or WRITE.

Thus, a page class that contains an XData Contents block with this line:

<html id="msgBox" OnDrawContent="DrawMessage" />

must also contain a server-side callback method called DrawMessage that meets the above criteria. The following example
is from the ZENApp.HelpDesk class in the SAMPLES namespace:

Class Member

Method DrawMessage(pSeed As %String) As %Status
{
  #; create a random message
  Set tColors = $LB("red","green","blue","black","orange")
  Set tColor = $LG(tColors,$R($LL(tColors))+1)
  Set tMsgs = $LB("Fresh coffee in kitchen!",
                   "Company share price has gone up.",
                   "The boss is coming!",
                   "Customer crisis!",
                   "Lunch Time!")
  Set tMsg = $LG(tMsgs,$R($LL(tMsgs))+1)

  &html<#($ZDT($H,11))#<div style="color: #(tColor)#;">#(tMsg)#</div>>

  Quit $$$OK
}

For more detail, see the section <html> in the “Other Zen Components”  chapter of Using Zen Components.

5.4 Groups
A group component extends %ZEN.Component.group. A group component is the only type of component that can contain
child components. That is why components such as pages, panes, menus, forms, and composites all inherit from
%ZEN.Component.group.
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5.4.1 Layout Strategy

Each group is responsible for the layout of its children on the page. In general, a group has a horizontal or vertical layout.
With the exception of <hmenu> and <hgroup>, every Zen group and page has vertical layout by default. You can reset to
horizontal layout by providing the layout attribute for the group. layout may have the following values:

• "horizontal" — Lay out components horizontally. When Zen generates the page, it constructs an HTML table row
to contain the child components.

• "vertical" — Lay out components vertically. When Zen generates the page, it constructs an HTML table column
to contain the child components.

• "" or omitted — Default to vertical layout.

A layout value of "none" is also possible. "none" tells Zen to use a client side layout manager instead of determining
page layout statically on the server as being either horizontal or vertical. For details about this more flexible, but more
complex approach to laying out pages, see “Client Side Layout Managers” in the book Developing Zen Applications.

5.4.2 Simple Group Components

The following table lists group components such as you have seen in previous code examples. These are all derived from
%ZEN.Component.group.

DescriptionComponent

The basic group. Used to create a group of components, either for layout purposes or to treat
a set of components as a logical unit (for example making them hidden or visible as a unit).
The attributes of the group component control the layout of its child components.

<group>

A horizontal group, identical to a <group> component with its layout property set to "horizontal".
For example:

<hgroup>
  <button caption="Button 1" />
  <spacer width="10" />
  <button caption="Button 2" />
</hgroup>

<hgroup>

A specialized group component with layout set to "vertical" and cellVAlign set to "top".<page>

A specialized group component with an additional attribute, paneName, that references an
XData block outside XData Contents.

<pane>

The <spacer> is not a group component, but it is useful within groups. Use <spacer> with a
width value to inject additional space in a horizontal group, or height for additional space within
a vertical group.

<spacer>

A vertical group, identical to a <group> component with its layout property set to "vertical".
For example:

<vgroup>
  <button caption="Button 1" />
  <spacer height="10" />
  <button caption="Button 2" />
</vgroup>

<vgroup>
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5.4.3 Menu Components

Menu components are groups derived from the %ZEN.Component.group class. Being a group permits the menu to contain
child components. For more about menus, see the “Navigation Components”  chapter in Using Zen Components.

DescriptionComponent

A specialized form of group that displays a set of menu choices.<menu>

A <menu> with layout set to "horizontal".<hmenu>

A specialized <tabGroup> whose tabs present menus.<lookoutMenu>

An item within a <menu><menuItem>

A separator within a <menu>.<menuSeparator>

Defines a group of components that are used as a tab within a <tabGroup> or
<lookoutMenu>.

<tab>

A specialized group that contains <tab> components (which themselves contain
components). One tab at a time is visible. When the user selects a new tab, its contents
become visible and the other tabs are hidden.

<tabGroup>

A <menu> with layout set to "vertical".<vmenu>

5.4.4 Active Group Components

The following table lists the active group components. For full information about active groups and how to use them to
enable the user to manipulate page layout from the client, see the “Client Side Layout Managers” chapter in Developing
Zen Applications.

DescriptionComponent

A two-part split pane with left and right partitions, optionally separated by a moveable
adjustment bar.

<activeHGroup>

A two-part split pane with top and bottom partitions, optionally separated by a moveable
adjustment bar.

<activeVGroup>

A <corkboard> may contain several <dragGroup> components. These components may
overlap within the <corkboard> container. When the user drags and drops a component
within a <corkboard>, the dragged component comes to the foreground and overlays all
the other components inside the <corkboard> group. No other component is moved out
of its current position when the dragged component is dropped back onto the <corkboard>.

<corkboard>

A <desktop> “tiles” all of the components that it contains so that each one is fully visible
and none of them overlap. A <desktop> may contain several <dragGroup> components,
which the user can drag and drop into new positions. When a dragged component is
dropped, it moves all the other components in the <desktop> out of the way.

<desktop>

The only Zen group component that can be the direct child of a <desktop> or <corkboard>.
Any <dragGroup> may contain any component suitable for placing within a group.

<dragGroup>

5.4.5 Other Group Components

The Zen library contains a number of other classes derived from %ZEN.Component.group. The following table lists these
group components. The book Using Zen Components describes them as indicated in the table.
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DescriptionComponent

A specialized form of the group component that lets the user show or hide the members
of a group by clicking on a small icon: a plus sign to expand (show) the group, or a
minus sign to contract (hide) the group. See “Expanding Group” in the “Zen Navigation”
chapter of Using Zen Components.

<expando>

A group that wraps its members within an HTML <fieldSet> element. The <fieldSet>
draws an outer box around the children and displays a title within this box. <fieldSet>
creates a visual panel that organizes a large form. See “Field Sets” in the “Other
Components” chapter of Using Zen Components.

<fieldSet>

A form is defined as a group, so that it can contain the child components that provide
its controls. See the “Zen Forms” chapter of Using Zen Components.

<form>

Defines a set of components that act together as a modalGroup. This is a set of
components that are initially not displayed but can later be displayed with modal
behavior. See “Modal Groups” in the “Popup Windows and Dialogs” chapter of Using
Zen Components.

<modalGroup>

A specialized group that defines the layout for a single entry, then lays out multiple
entries of this type based on data supplied by a runtime query. See “Repeating Groups”
in the “Other Components” chapter of Using Zen Components.

<repeatingGroup>

5.4.6 Group Layout and Style Attributes

The following table lists the XML attributes that apply to all group components. These attributes can affect the positioning
or appearance of components in the groups.

Table 5–1: Group Layout and Style Attributes

DescriptionAttribute

Groups have the same general-purpose attributes as any Zen component. For descriptions,
see these sections:

• “Behavior”  in the chapter “Zen Component Concepts”

• “Component Style Attributes” in the chapter “Zen Style”

Zen
component
attributes
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DescriptionAttribute

Specifies horizontal alignment for child components within the group table. The possible
values are "left", "right", "center", and "even". cellAlign behavior depends on the layout
strategy for the group:

• Horizontal — A cellAlign value of "left" or "right" places the child components towards
the left or right edges of the group, respectively. "center" places the child components in
the horizontal center of the group with additional space added on either side of the chil-
dren. "even" places the child components in the horizontal center of the group, with no
additional space added.

• Vertical — cellAlign specifies the default vertical alignment used by the <td> elements
containing the child components. "even" is the same as "center" in this case. An individual
child component can override cellAlign by setting its own align value. For align, see the
“Component Style Attributes” section in the chapter “Zen Style.”

When specifying cellAlign, also set the height or width property of the group, to control how
the group takes up the space provided by its container. For vertical alignment, set cellVAlign
instead of cellAlign.

cellAlign

How much space (in the direction specified by the layout strategy) to allot to the <td> elements
used to contain each child component within the layout table. Possible values are:

• "same" — Attempt to allot the same amount of space to each component.

• "stretch" — Allot space to each component based on its relative value of slice. For slice,
see the “Component Style Attributes” section in the chapter “Zen Style.”

cellSize

String containing a CSS style statement such as:

"color:red; background: yellow;"

Zen applies this style to the <td> elements used to contain each child component within the
layout table. For components that also have a left-aligned label, the cellStyle also applies to
the <td> element that contains the label.

An individual child component can override cellStyle by setting its own containerStyle value.
For containerStyle, see the “Component Style Attributes” section in the chapter “Zen Style.”

cellStyle
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DescriptionAttribute

Specifies vertical alignment for child components within the group table. The possible values
are "top", "bottom", "middle", and "even". cellVAlign behavior depends on the layout strategy
for the group:

• Vertical — A cellVAlign value of "top" or "bottom" places the child components towards
the top or bottom edges of the group, respectively. "middle" places the child components
in the vertical center of the group with additional space added above and below the chil-
dren. "even" places the child components in the vertical center of the group, with no
additional space added.

• Horizontal — cellVAlign specifies the default horizonal alignment used by the <td> ele-
ments containing the child components. "even" is the same as "middle" in this case. An
individual child component can override cellVAlign by setting its own valign value. For
valign, see the “Component Style Attributes” section in the chapter “Zen Style.”

When specifying cellVAlign, also set the height or width property of the group, to control how
the group takes up the space provided by its container. For horizontal alignment, set cellAlign
instead of cellVAlign.

cellVAlign

If true, this group and its children are disabled. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true" or
"false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

disabled

Name of a CSS style class. When Zen lays out this group, it assigns this value to the HTML
<table> class attribute.

groupClass

String containing a CSS style statement such as:

"color:red; background: yellow;"

When Zen lays out this group, it assigns this value to the HTML <table> style attribute.

groupStyle

Specifies where labels should be displayed for components within this group. Possible values
are "top" and "left". "top" places the labels above the components; "left" places the
labels to the left of the components. The default is "top".

labelPosition

The layout strategy used by this group, usually "horizontal" or "vertical". If "" or
omitted, the default is vertical.

If layout is specifically set to the keyword "none" Zen turns layout management over to a
client side layout manager, rather than using its own, default layout manager.

For details about each of these options, see the section “Layout Strategy.”

layout

(Optional) Client-side JavaScript expression that Zen invokes when the user clicks on the
group. Generally this expression invokes a client-side JavaScript method. This method
becomes the “onclick handler” for the group.

When providing a value for an event handler attribute such as onclick, use double quotes to
enclose the value and single quotes (if needed) within the JavaScript expression. For
example:

<link onclick="alert('HEY');"/>

The JavaScript expression may contain Zen #()# runtime expressions. See additional details
following the table.

onclick
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To successfully specify an onclick event for a group, you must be very familiar with event handling in HTML and JavaScript.
Your event handling code must take into consideration the fact that this event is fired whenever the mouse is clicked within
the enclosing <div> element for this group. For example, clicking on a <button> within a group fires the onclick handlers
for both the button and the group.

You can detect if a click was on the group by examining the event object passed via the zenEvent special variable. The
following example retrieves the zenEvent.target value to find out whether the click was on the group itself (which
has an enclosing <div> and therefore a zen attribute) or on a component within the group.

// look at source element; IE does not support standard target property.
var target = (null == zenEvent.target) ? zenEvent.srcElement : zenEvent.target;

// all enclosing divs will define an attribute called 'zen'.
var zen = target.getAttribute('zen');
if (zen) {
    // do something
    }

For details about the zenEvent special variable, see the section “zenEvent”  in the “Zen Pages” chapter of Developing Zen
Applications.

5.5 Template Pages
You can define an page class that provides the characteristics that you want on all your pages for the application, then
define all application pages as children of the template class. This would be your template page class:

Class MyApp.TemplatePage Extends %ZEN.Component.page]
{
  /// Class details here
}

Class MyApp.AnotherPage Extends MyApp.TemplatePage
{
  /// Class details here
}

All your page classes would look like this:

Template pages offer a convenient way to organize Zen applications for a consistent look and feel. To view an example of
this practice, start Studio, and in the SAMPLES namespace, open the page classes ZENApp.Chart and ZENApp.HelpDesk.
Each of these pages inherits from the template page ZENApp.TemplatePage, which you can also view.

The effect of class inheritance on XData Contents is one of simple replacement. The child class uses the child XData if it
is present, and if not, it uses the parent XData.

ResultChild Defines
XData Contents

Parent Defines
XData Contents

Child uses its own XData Contents definition.YesYes

YesNo

Child inherits XData Contents from parent.NoYes

The page is empty.NoNo

Inheritance works a bit differently for style. Style involves a cascade of decisions that may coexist without overriding or
replacing each other. Thus, the simple rules for inheritance of XData Contents are not always true for inheritance of XData
Style. To understand how Zen applies style, see the chapter “Zen Style.”
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5.6 Panes
You can organize your page layout into panes for convenience. A <pane> is a specialized group component with an additional
attribute, paneName, that references an XData block outside XData Contents. At compile time, Zen substitutes the appro-
priate XData block wherever the <pane> element appears in XData Contents.

Consider the following Zen page. This sample was introduced at the beginning of this chapter. It organizes a page into
three panes — menuPane, tablePane, and detailPane:

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
  {
    <page xmlns="http://www.intersystems.com/zen" title="HelpDesk">
      <html id="title">My Title</html>
      <hgroup>
        <pane paneName="menuPane"/>
        <spacer width="20"/>
        <vgroup width="100%" valign="top">
          <pane paneName="tablePane"/>
          <spacer height="20"/>
          <pane paneName="detailPane"/>
        </vgroup>
      </hgroup>
    </page>
  }

The reference to a specific pane looks like this:

<pane paneName="menuPane"/>

At compile time, Zen resolves this reference by finding an XData block in the page class whose name matches paneName.
In the example above, the value of paneName is menuPane, so Zen looks for an XData block called menuPane. Zen substitutes
this block for the <pane> reference. At display time, whatever is contained within the XData menuPane block appears on
the page in the position occupied by the element <pane paneName="menuPane"/>. The following is a conceptual view
of the result.

Figure 5–1: Use of Panes on a Zen Page

The following XData block defines the menuPane referenced by the sample <pane>:
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Class Member

XData menuPane
{
  <pane xmlns="http://www.intersystems.com/zen">
    <html>
      <table cellspacing="0" cellpadding="0">
        <tr>
          <td bgcolor="#C6930A">
            <img src="images/spacer.gif"
                 alt="-"
                 width="200"
                 height="4"
                 border="0"/>
          </td>
        </tr>
      </table>
    </html>
    <lookoutMenu id="lookout" expandable="true">
      <tab caption="Home" id="tabHome">
        <menuItem caption="Home"
                  link="MyApp.Home.cls"
                  image="images/spacer.gif"
                  help="Home Page" />
        <!-- MORE ITEMS HERE -->
      </tab>
      <!-- MORE TABS HERE -->
    </lookoutMenu>
  </pane>
}

If you are using template pages, you can place a <pane> reference in the parent class and allow it to resolve in either the
parent class or the child class. Suppose the reference in the child class is:

<pane paneName="myPane"/>

The following table discusses the options for inheritance.

ResultChild Defines
XData myPane

Parent Defines
XData myPane

Child inherits XData myPane from parent.NoYes

Child uses its own XData myPane definition.The parent may reference
<pane paneName="myPane"/> and allow this reference to resolve
in the child class. This common practice is illustrated in the
ZENApp.HelpDesk sample class.

YesYes

No

Any reference to <pane paneName="myPane"/> in either class is
ignored.

NoNo

5.7 Generated HTML
The generated code from XData Contents expresses the Zen page as an HTML table, using the standard HTML elements
<table>, <tr>, <td>, and <th>. Vertical groups become columns in the table; horizontal groups become rows. If you are
familiar with encoding HTML by hand, you probably recognize this technique for ensuring the position of items on the
page.

Zen groups are easy and convenient to set up, and require no coding in HTML. Rather than arranging HTML <table>, <tr>,
<td>, and <th> elements into complex nests, all you need to do is place your Zen components into groups. Groups handle
all the layout details for you.
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6
Zen Style

The chapter “Zen Layout”  explains how to place Zen components on the page. To do this, you provide an XData Contents
block in the page class and fill it with XML elements that represent Zen components.

This chapter explains how to specify styles for Zen components. You can do this by:

• Setting style attributes while placing XML elements in the XData Contents block.

• Applying Cascading Style Sheet (CSS) style definitions in an XData Style block.

• Referencing external CSS files in a variety of ways.

6.1 Component Style Attributes
All Zen components provide the XML attributes listed in the following table. These attributes control how a component
appears within its enclosing group. For attributes that control component behavior, see the “Behavior”  section in the
chapter “Zen Component Concepts.”

Table 6–1: Component Style Attributes

DescriptionAttribute

Possible values are "left", "right", or "center". This becomes the align value for the <td>
element that contains the child component in the generated HTML.

align

Server-side expression that, if true, allows this component to be added to the set of page
components. This server-only attribute is not defined on the client side.

condition

Overrides the parent group’s cellStyle, to provide extra padding or alignment values for
the <td> element that contains the child component in the generated HTML.

containerStyle is a string containing a CSS style statement such as:

"color:red; background: yellow;"

containerStyle

Name of a CSS style class. When Zen lays out this group, it applies this style to the
component’s enclosing <div> element.

enclosingClass
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DescriptionAttribute

String containing a CSS style statement such as:

"color:red; background: yellow;"

When Zen lays out this group, it applies this style to the component’s enclosing <div>
element.

enclosingStyle

CSS length value (integer or percentage). This becomes the height value for the <td>
element that contains the child component in the generated HTML.

height

If true, the component is hidden (placed on the page, but not displayed). If the status of
a component is hidden, its label text (if any) is also hidden. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. It has the value "true"
or "false" in XData Contents, 1 or 0 in server-side code, true or false in client-side code.

The hidden value can be a literal string, or it can contain a Zen #()# runtime expression.

hidden

The hint attribute supplies additional text that displays below the component. The hint
text can be styled, using the hintClass and hintStyle attributes.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long
as a language DOMAIN parameter is defined in the Zen page class. The
%ZEN.Datatype.caption data type also enables you to use $$$Text macros when you assign
values to the label property from client-side or server-side code.

hint

CSS class to apply to the hint.hintClass

CSS style to apply to the hint.hintStyle

This value can be used to select a CSS style definition for the component. It becomes
the id value for the component’s enclosing <div> element.

id

Comma-separated list of additional component classes that this component needs to
have defined on the client side. Use import for cases in which the client needs classes
that are not directly defined in the original object tree.

When constructing the import string, use the full package and class name for each class
in the list, and be sure that there are no space characters between any items in the list.
The correct format is as follows:

import="ZENDemo.Component.demoMenu,ZENTest.customComponent"

This server-only attribute is not defined on the client side.

import

A text label for the component. The component simply supplies the label text. Styles for
laying out this label are the responsibility of the component’s parent group. For details
about this, see the showLabel description in this section.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long
as a language DOMAIN parameter is defined in the Zen page class. The
%ZEN.Datatype.caption data type also enables you to use $$$Text macros when you assign
values to the label property from client-side or server-side code.

label
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DescriptionAttribute

Name of a CSS style class. When Zen lays out this group, it applies this style to the label
displayed for the component.

labelClass

String containing a CSS style statement such as:

"color:red; background: yellow;"

When Zen lays out this group, it applies this style to the label displayed for the component.

labelStyle

Specifies the name of the component. Typically, this is used to identify a control within a
form. See the “Zen Forms” chapter in Using Zen Components.

name

Server-side expression that determines if this component should be added to the set of
page components. This server-only attribute is not defined on the client side.

If a resource is specified, the current user must hold USE privileges on this resource or
the component is not added to the set of page components. If you are not familiar with
Caché resources, see the “Assets and Resources” chapter in the Caché Security
Administration Guide.

resource

If true, Zen displays the label for this component. If false, it does not. The default is true.
The showLabel attribute has the underlying data type %ZEN.Datatype.boolean. It has the
value "true" or "false" in XData Contents, 1 or 0 in server-side code, true or false in client-
side code.

For information of the interaction of showLabel with a containing group, see the discussion
that follows this table.

showLabel

Used when this component’s parent group has a cellSize value of "stretch", slice is an
integer value indicating the size of this component relative to other components within
the group. Zen computes this size by dividing this component’s slice value by the sum of
all slice values for all child components in the same group. The minimum value for slice
is 0.

slice

Help text that displays as a tooltip when the user hovers the mouse over this component
(or its label). Also see the hint attribute.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. This makes it easy to localize its text into other languages, as long
as a language DOMAIN parameter is defined in the Zen page class. The
%ZEN.Datatype.caption data type also enables you to use $$$Text macros when you assign
values to the title property from client-side or server-side code.

title

Possible values are "top", "bottom", or "middle". This becomes the valign value for the
<td> element that contains the child component in the generated HTML.

valign

CSS length value (integer or percentage). It may be "*" to indicate that the element should
take up the remaining space in the layout table. This becomes the width value for the
<td> element that contains the child component in the generated HTML.

width

If a component, such as a control, is displayed within a group, such as a form, the component’s label and showLabel
attributes interact with the group’s layout, labelPosition, and cellStyle attributes.

Suppose the group has:

• layout set to "vertical" (the default)
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• labelPosition set to "left"

• cellStyle with some CSS style definitions

XML

<form labelPosition="left" cellStyle="padding: 4px;">
  <text label="Name" hint="Last Name, First"/>
    Enter your city using the field below:
  <text label="City"/>
  <button caption="Save"/>
</form>

Then while laying out the page, the Zen layout manager adds the space allocated for the child component’s label to the
total width allowed for the component within the group. Any style information in the cellStyle for the group also applies
to the table cell that has been reserved for laying out the component label.

This is the case even when showLabel is false for that component (that is, if no label actually appears in the space allowed
for it). You can use this to your advantage in laying out different areas within a group.

For more about layout, labelPosition, and cellStyle, see “Group Layout and Style Attributes” in the chapter “Zen Layout.”

You can apply component style attributes while placing the component in the XData Contents block. The following
example applies the style attributes valign, height, and width to the Zen components <vgroup> and <spacer>:

Class Member

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
  {
    <page xmlns="http://www.intersystems.com/zen" title="HelpDesk">
      <html id="title">My Title</html>
      <hgroup>
        <vgroup valign="top">
          <pane paneName="menuPane"/>
        </vgroup>
        <spacer width="20"/>
        <vgroup width="100%" valign="top">
          <pane paneName="tablePane"/>
          <spacer height="20"/>
          <pane paneName="detailPane"/>
        </vgroup>
      </hgroup>
    </page>
  }

6.2 Enclosing <div> Element
To facilitate use of CSS styles as well as dynamic HTML, every Zen component that you place on a Zen page is enclosed
within an <div> element on the generated HTML page. This is the enclosing <div> for the component.

If you have assigned a specific value to the component’s id attribute, this becomes the HTML id of the enclosing <div>.
This convention makes it possible to directly select the enclosing element from a CSS style sheet. For example, suppose
you define a button as follows:

XML

<button id="myButton" caption="Press Me" onclick="zenPage.btnClick();"/>

You could then use the following CSS definition in your page’s XData Style block, to set the color of this button:
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Class Member

XData Style
{
<style type="text/css">
#myButton input {
    color: red;
}
</style>
}

Note: When a component is within a composite component, the conventions for creating an HTML id are a bit different.
Zen prepends the composite’s id string to the name used for the component. If the composite does not have an
id, Zen manufactures one by prepending the letters id to the index number of the component on the page.

It is also possible to work with a component’s enclosing <div> programmatically. Every component has a client-side
getEnclosingDiv method that returns the HTML <div> element that Zen is using as the component’s enclosing <div>. The
following example retrieves the value of div by first invoking the client-side function zen with the id specified in the com-
ponent definition, and then invoking the client-side component method getEnclosingDiv:

Class Member

ClientMethod GiveMyButtonStyleToAbc() [ Language = javascript ]
{
  var comp = zen('abc');
  var div = comp.getEnclosingDiv();

  // div is an HTML div element
  div.className = 'myButton';
}

6.3 XData Style
Any Zen component class, page class, or application class can provide an XData Style block to define CSS styles. The
“Zen Tutorial”  chapter introduced XData Style when it displayed the skeleton class generated by the New Zen Application
wizard, as follows:

Class Definition

Class MyApp.MyNewApp Extends %ZEN.application
{

  /// This is the name of this application.
  Parameter APPLICATIONNAME = "My New Zen Application";

  /// This is the URL of the main starting page of this application.
  Parameter HOMEPAGE = "";

  /// This Style block contains application-wide CSS style definitions.
  XData Style
  {
    <style type="text/css">
    </style>
  }
} 

To define styles for the application class shown above, you would add CSS statements between the <style
type="text/css"> tag and the closing </style> tag.

The following example shows an XData Style block in a page class. This class defines styles in the XData Style block and
then references them from XData Contents by using the id attribute with components. The following example defines and
then references the styles title, vg1, and vg2.
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Class Definition

Class MyApp.MyNewPage Extends %ZEN.Component.page
{

  /// Class name of application this page belongs to.
  Parameter APPLICATION = "MyApp.MyNewApp";

  /// Displayed name of this page.
  Parameter PAGENAME = "My Home Page";

  /// Domain used for localization.
  Parameter DOMAIN = "";

  /// This Style block contains page-specific CSS style definitions.
  XData Style
  {
    <style type="text/css">
    /* style for title bar */
    #title {
      background: #C5D6D6;
      color: black;
      font-family: Verdana;
      font-size: 1.5em;
      font-weight: bold;
      padding: 5px;
      border-bottom: 1px solid black;
      text-align: center;
    }

    #vg1 {
      border-right: 1px solid black;
       background: #E0E0FF;
      height: 600px;
    }

    #vg2 {
    }
    </style>
  }

  /// This XML block defines the contents of this page.
  XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
  {
    <page xmlns="http://www.intersystems.com/zen" title="My Page">
      <html id="title">Title</html>
      <hgroup width="100%">
        <vgroup id="vg1" width="200px">
        </vgroup>
        <vgroup id="vg2" width="*">
        </vgroup>
      </hgroup>
    </page>
  }
}

6.4 Inheritance of Styles
The following table explains the effect of class inheritance on XData Style.
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ResultChild Defines
XData Style

Parent Defines
XData Style

Child inherits XData Style from the parent.NoYes

Child inherits all of the styles defined in the XData Style block of the
parent class. If any of these styles are redefined in the child class, the
style definition in the child class takes precedence.

YesYes

Child uses its own XData Style definition.YesNo

Some parent of both classes probably defines XData Style. If not, the
browser applies its own style defaults.

NoNo

Style inheritance does not cross over the boundaries of class inheritance. A <page> is a component, but no component
actually inherits from <page>. So a component that appears on a page within an application does not override any of the
style definitions in the XData Style block in either the page class or the application class. The XData Style blocks provided
by the component class, page class, and application class all coexist, subject to the rules described in the section “Cascade
of Styles.”

6.5 Cascade of Styles
When a Zen page constructs itself, it collects all the CSS style information that you have provided for each component on
the page, and applies it to the component. There may be many sources for this information: page classes, application classes,
and component classes. Zen applies the information in these sources in the following order. Note that when conflicts exist,
the styles that are defined last take precedence:

1. Styles defined by the CSS files for the Zen component library. The filenames have the form:ZEN_Component_*.css.

2. Styles defined by base component classes.

The default styles for the built-in Zen components are provided via an XData Style block in the corresponding
%ZEN.Component class (or one of its parents). However, if you want to change the style of a built-in Zen component,
do not edit the class directly. Either subclass the component to create a custom component, or override the corresponding
style definitions in the page or application class.

3. Styles defined by subclasses of base component classes (that is, custom components).

Any subclass of %ZEN.Component.component can provide an XData Style block. If the child has an XData Style block,
this replaces the XData Style from the parent class. If not, the child inherits XData Style from the parent.

4. Styles defined within the application class for the current application. These may come from any of the following
sources. Styles from each source are evaluated in the sequential order as shown:

• An XData Style block containing CSS statements

• A reference to an external CSS file using the CSSINCLUDES parameter.

5. Styles defined within the template page class (if there is one for the current page). These may come from any of the
following sources. Styles from each source are evaluated in the sequential order as shown:

• A reference to an external CSS file using the CSSINCLUDES parameter

• An XData Style block containing CSS statements

• Style attributes in XData Contents. For an individual component, these may provide:

– Simple values for HTML attributes, such as "300" for height
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– Literal CSS statements, such as "color:red; background: yellow;")

– The name of a CSS style that is defined somewhere in the cascade of styles

6. Styles defined within the page class. For example:

• A reference to an external CSS file using the CSSINCLUDES parameter

• An XData Style block containing CSS statements

• Style attributes in XData Contents. For an individual component, these may provide:

– Simple values for HTML attributes, such as "300" for height

– Literal CSS statements, such as "color:red; background: yellow;")

– The name of a CSS style that is defined somewhere in the cascade of styles

The following diagram gives a general idea of where styles originate. For details, see the previous list.

Figure 6–1: Cascade of Style Definitions

This order of precedence makes it easier to ensure a consistent “look and feel” for your application. You can override the
style definition within the application class (for an application-wide style override), within a template page class (to override
a value for a suite of pages) or within an ordinary page class (to override a value for a specific page).

However, it is important to note that this order of precedence does not exactly match the hierarchy of these objects when
ZEN constructs the page for display. Compare this discussion and diagram with the “Zen Applications” section in the
chapter “Zen Application Concepts.”
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6.6 Overriding Built-in Styles
Suppose you want to override the style of a built-in Zen component such as <tablePane>. There is no requirement to do
this, but once you get your table onto the page, you might discover that you want to change its appearance. If so, you must
override the CSS styles for <tablePane>. To accomplish this, you need to know:

• The name of the CSS style definition that you want to change

• Where, in the cascade of styles, you want to interject changes to this style

• Which technique you want to use to apply changes to the style:

– Referencing an external CSS file from a Zen class

– Providing an XData Style block in a Zen class

The following XData Style block changes the background color, border style, and font family choices for a CSS rule called
table.tpTable. How did the developer choose this rule to change? How does this XData Style block fit into the cascade
of styles? And why did the developer choose to provide an XData Style block rather than an external CSS file? The next
several sections provide answers.

Class Member

XData Style
{
<style type="text/css">
       table.tpTable {
         background: green;
         border: 1px solid red;
         font-family: courier new;
       }
</style>
}

6.6.1 Finding the CSS Style Name

You can determine which CSS rules to override for a specific Zen component as follows:

1. Somewhere in the inheritance tree for each Zen component, there is an XData Style block that defines the CSS rules
for this component. To find the correct one, usually you must know something about the inheritance of the component
class. For example, %ZEN.Component.tablePane inherits from %ZEN.Component.simpleTablePane. It is the
simpleTablePane class that contains the relevant XData Style block. There is no XData Style block in the tablePane

class.

You can use the online class documentation to trace inheritance. Start the documentation in one of the following ways:

• From Studio, choose Tools > Class Browser. Under the %ZEN.Component package, find the class you are interested
in. Right-click on the class name and choose Documentation.

• Start the InterSystems online documentation. Choose Class Reference from the navigation bar near the top of the
page. Choose the %SYS namespace and %ZEN.Component package. Click on the class name.

Once you have found the documentation page for the class of interest, see if it inherits from another Zen component
class. If so, the XData Style block is probably in the parent class. You can click on the parent class name to navigate
to its documentation page.

2. When you know the class name of the component you want to research, you need to view its CSS style definitions.
You can do this in one of the following ways:
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• In Studio, run the Zen Style Wizard to see if the component or its parent are listed. The Zen Style Wizard is the
easiest way to modify styles. It does not include every style, but lists the most popular styles for modification.
simpleTablePane is there, with the entry:

table.tpTable

Described as:

Main table for tablePane

• In Studio, in the %SYS namespace and %ZEN.Component package, open the component class for viewing. Find
its XData Style block or that of its parent, and see what CSS rules it contains.

• Examine the CSS files for the Zen component library. The files are located in the following directory, where
C:\MyCache is the name of your installation directory:

C:\MyCache\CSP\broker\. The filenames have the form: ZEN_Component_*.css. The text following the
underscore helps you determine which file to examine.

Search for the component name in the code comments. The styles that follow (until the next component name)
are those for the component. For example:

/* %ZEN.Component.simpleTablePane */

/* table */
table.tpTable {
  background: white;;
  border: 1px solid black;
  font-family: arial;
  width: 100%;
  table-layout: fixed;
  empty-cells: show;
  }

6.6.2 Overriding a CSS Style Rule

Once you have found the CSS rule that applies to the component whose appearance you want to modify, you can override
the CSS rule in one of two ways:

• Referencing an external CSS file from a Zen application or page class

• Providing an XData Style block in a Zen application, page, or custom component class

To effectively predict the results of your changes, keep in mind the order of precedence rules described in the “Cascade
of Styles” section. The following table restates these rules in terms of the results that you are trying to accomplish.

Table 6–2:Where and How to Override Built-in Styles

Where to Interject Style ChangesWhat to
Accomplish

Place the revised CSS rule in an external CSS file and reference from the application
class using the CSSINCLUDES class parameter.

Application-wide
styling rules.You can
override these styles
in template pages or
in individual page
classes.

Place an XData Style block in the application class and place the revised CSS rule
definition within it.You can either type rule syntax into XData Style or use the Zen
Style Wizard for convenient style editing. If there are style conflicts between XData
Style and CSSINCLUDES for the application, XData Style takes precedence.
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Where to Interject Style ChangesWhat to
Accomplish

Create a template page class. Ensure that all the pages you want to have consistent
style are subclasses of this template page.

Styles that apply to a
group of pages within
an application.You
can override these
styles in individual
page classes.

Place the revised CSS rule in an external CSS file and reference from the template
page class using the CSSINCLUDES class parameter.

Place an XData Style block in the template page class and place the revised CSS
rule definition within it.You can either type rule syntax into XData Style or use the
Zen Style Wizard for convenient style editing. If there are style conflicts between
XData Style and CSSINCLUDES for the template page class, XData Style takes
precedence.

Place the revised CSS rule in an external CSS file and reference from the page class
using the CSSINCLUDES class parameter.

Styles that apply to
only one page within
an application.

Place an XData Style block in the page class and place the revised CSS rule definition
within it.You can either type rule syntax into XData Style or use the Zen Style Wizard
for convenient style editing. If there are style conflicts between XData Style and
CSSINCLUDES for the page class, XData Style takes precedence.

Any styles defined in application or page classes automatically override styles defined
in component classes, so for stylistic consistency and control you should make changes
near the end of the cascade, in the application or page class, rather than in the
component class.

Styles that apply to
all instances of a
particular
component.

However, if you wish, you may create a custom component that is a subclass of the
built-in Zen component whose styles you wish to change. Place an XData Style block
in the custom component class and place the revised CSS rule definition within this
XData Style.You can either type rule syntax into XData Style or use the Zen Style
Wizard for convenient style editing.

In any case, do not edit the XData Style block in a built-in Zen component class or
its parent. Do not edit the built-in stylesheet files. These files have names in the form:
ZEN_Component_*.css. Changes of this kind are lost next time you upgrade the
Caché server version.

6.7 Applying New Styles
The above topics explain how to modify styles that are already in use by a built-in Zen component. If you want to define
an entirely new CSS style (with a new name) and apply that style to a component, there are additional steps to perform. In
that case you must not only subclass the component and define the CSS style, but also reference that CSS style from the
portion of the subclass that renders the component on the page as HTML. For details about these steps, see the “Custom
Components”  chapter in the book Developing Zen Applications.
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7
Zen Wizards

This chapter describes the Studio wizards that Zen provides:

• Wizards for creating new application, component, page, or report classes.

• Studio Assist (word completion) to help you rapidly add components to page classes.

• Wizards for adding charts, tables, elements, methods, and styles to page classes.

There is also a Studio tutorial that uses Zen wizards to create the user interface for a simple application. See the chapter
“Building a Simple Application with Studio” in the book Using Studio.

7.1 New Zen Application Wizard
Note: For background information, see the chapter “Zen Application Concepts.”  For a sample wizard session, see the

“Creating a Zen Application” exercise in the chapter “Zen Tutorial.”

You can use the New Zen Application Wizard as follows:

1. Start Studio.

2.
Choose File > New or Ctrl-N or the  icon.

3. Click the Zen tab.

4. Click the New Zen Application icon.

5. Click OK to display the Zen Application Wizard dialog.

6. Enter data in the following fields:

• Package Name — Package that contain the new application class.

• Class Name — Class name of the new application class.

• Application Name — Logical name of the application.

• Description — Any text that you want to use to describe the application.

7. Click Finish to close the dialog and display your new Zen application class in Studio.

8. Modify the Zen application class as desired.

Using Zen                                                                                                                                                                             59



To supply style definitions that apply to all pages in this application, use the Zen Style Wizard to edit XData Style or
set the CSSINCLUDES class parameter.

9.
Choose Build > Compile or Ctrl-F7 or the  icon.

7.2 New Zen Component Wizard
Note: For background information, see the “Custom Components”  chapter in the book Developing Zen Applications

You can use the New Zen Component Wizard as follows:

1. Start Studio.

2.
Choose File > New or Ctrl-N or the  icon.

3. Click the Zen tab.

4. Click the New Zen Component icon.

5. Click OK to display he Zen Component Wizard dialog.

6. Enter data in the following fields:

• Package Name — Package that contain the new component class.

Important: InterSystems strongly recommends that you do not create any classes in a package called
ZEN.Component using any combination of uppercase and lowercase characters. Creating a package
called ZEN.Component breaks the Zen framework for generating client-side code.

• Class Name — Class name of the new component class.

• Type — Choose a parent class for the component:

– component. See “Creating Custom Components”  in the “Custom Components”  chapter of Developing Zen
Applications.

– composite. See “Composite Components”  in the “Custom Components”  chapter of Developing Zen Appli-
cations.

– control. See the “Zen Controls”  chapter in Using Zen Components and the “Custom Components”  chapter
in Developing Zen Applications.

– svgComponent. See “Creating Custom Meters”  in the “Custom Components”  chapter of Developing Zen
Applications.

• XML Namespace — If the component is a composite, you must reference this namespace when you place the
component on a Zen page, using the syntax <namespace:componentName>. For details, see the section “XML
Namespace for Custom Component Classes” in the “Custom Components” chapter of Developing Zen Applications.

• Description — Any text that you want to use to describe the component.

7. Click Finish to close the dialog and display your new Zen component class in Studio.

8. Modify the Zen component class as desired:

• Be sure to implement the %DrawHTML method. The wizard provides a template for this method in the class.
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• If you want to supply style definitions for the custom component, consult the section “Custom Style” in the
“Custom Components”  chapter of Developing Zen Applications. You can use the Zen Style Wizard to add style
definitions.

9.
Choose Build > Compile or Ctrl-F7 or the  icon.

7.3 New Zen Page Wizard
Note: For background information, see the chapter “Zen Application Concepts” . For a sample wizard session, see the

“Creating a Zen Page” exercise in the chapter “Zen Tutorial.”

You can use the New Zen Page Wizard as follows:

1. Start Studio.

2.
Choose File > New or Ctrl-N or the  icon.

3. Click the Zen tab.

4. Click the New Zen Page icon.

5. Click OK to display the Zen Page Wizard dialog.

6. Enter data in the following fields:

• Package Name — Package that contain the new page class.

• Class Name — Class name of the new page class.

• Application — Package and class name of the application that this page belongs to.

• Page Name — Logical name of this page within its application.

• Domain — Domain this page uses for localization of caption text.

• Description — Any text that you want to use to describe the page.

• Page type — Choose one of the following:

– Page — Normal page class.

– Subclass of Template Page — Subclass of a template page class. Choose this option to display the Super class

assisted text control. Once the control is visible, click the text field to display an alphabetical list of first level
packages. Double-click to select a package from the list. The list refreshes to show classes available for the
selected package. You can also type a package name ending with a period (".") into the field, and follow
with a carriage return, and the list refreshes to show available classes.

7. Click Next.

8. Choose an initial page layout:

• Column 2 — Two columns, plus space for a title along the top

• Title Page — Space for a title along the top

• Default — No predefined layout

9. Click Finish to close the dialog and display your new Zen page class in Studio.
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10. Modify the Zen page class as desired:

• To supply style definitions for the page, use the Zen Style Wizard to edit XData Style.

• To supply page contents, edit XData Contents. Within XData Contents you may add components using Studio
Assist or the Zen Element Wizard. A Zen Chart Wizard is also available.

• To add server-side and client-side methods, use the Zen Method Wizard.

11.
Choose Build > Compile or Ctrl-F7 or the  icon.

12.
Choose View > Web Page or the  icon to display the page in the browser.

7.4 New Zen Report Wizard
Note: For background information and a sample wizard session, see the “Building a Zen Report” chapter in Zen Reports.

You can use the New Zen Report Wizard as follows:

1. Start Studio.

2.
Choose File > New or Ctrl-N or the  icon.

3. Select the Zen tab.

4. Click the New Zen Report icon.

5. Click OK to display yhe Zen Report Wizard dialog.

6. Enter data in the following fields:

• Package Name — Package that contains the report class.

• Class Name — Report class name.

• Application — Package and class name of the application that this report belongs to. The default value is
%ZEN.Report.defaultApplication.

• Report Name — Logical name of this report within its application. Supplies the value of the name attribute of the
generated <report> element in the XData ReportDefinition and XData ReportDisplay blocks.

• Description — Any text that you want to use to describe the report.

7. Click Next. The wizard prompts for an SQL query to provide data for the report.

8. You can type an SQL query into the text box.

Note: If you leave the box blank, you can and add a query during later editing, or use other methods to acquire data
as described in the “Building the <report> or <group> Query” section.

9. Click Finish to close the dialog and display your new Zen report class in Studio.

10. Find the following text in the XData ReportDefinition block:

<!-- add definition of the report here. -->

Delete this comment. Add a <group> element between <report> and the closing </report> element.
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Note: For background information, see the “Gathering Report Data” chapter in Using Zen Reports.

11. The <report> element in the XData ReportDisplay block contains a series of optional page formatting elements, followed
by the required <body> element.

Note: For additional information, see the “Formatting Report Data” chapter in Using Zen Reports.

12. Set the DEFAULTMODE class parameter value to indicate the report output format.

13. Modify the Zen report class as desired.

14.
Choose Build > Compile or Ctrl-F7 or the  icon.

15.
Choose View > Web Page or the  icon to display the report in the browser.

7.5 Studio Assist
Note: For background information and a sample wizard session, see the sections “Hello World” and “Creating a Zen

Page” in the chapter “Zen Tutorial.”

You can use Studio Assist (word completion as you type) within Zen classes as follows:

1. Start Studio.

2. Open a Zen page or report class.

3. Position the cursor in one of the following elements and click to move the insertion point there:

• XData Contents, between <page> and </page>

• XData ReportDefinition, between <report> and </report>

• XData ReportDisplay, between <report> and </report>

4. Begin typing. At the first meaningful character, Studio provides a context-sensitive list of appropriate XML elements
and attributes. This list includes the built-in Zen components as well as any custom or composite components that you
have defined.

5. To choose an item from this list, click on it and press Enter.

6. Studio completes the word and adds it to the code.

7.6 Zen Chart Wizard
Note: Every chart is an SVG component as described in the “Zen and SVG” chapter of Using Zen Components. This

means that charts follow the layout and style conventions for SVG components, with the additional characteristics
described in the “Zen Charts”  chapter of Using Zen Components. Most importantly, a Zen chart must appear
within an <svgFrame> container. Remember this when adding a chart to XData Contents.

You can use the Zen Chart Wizard as follows:

1. Start Studio.
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2. Open the class.

3. Place the cursor inside XData Contents and click to move the insertion point there.

4. Choose Tools > Templates > Templates or press CTRL-T to display the list of Zen templates.

5. Select the Zen Chart Wizard.

6. Click OK to display the Zen Chart Wizard dialog.

7. The Type field presents a list of chart types. Each has documentation in the “Zen Charts”  chapter of Using Zen Com-
ponents:

• barChart. See “Bar Charts.”

• diffChart. See “Difference Charts.”

• hilowChart. See “High/Low Charts.”

• lineChart. See “Line Charts.”

• pieChart. See “Pie Charts.”

• xyChart. See “Scatter Diagrams.”

8. Choose a chart type.

9. Click Next to display the Zen Chart Wizard a split screen:

• At left is an illustration of how the current attributes affect chart style.

• At right is a list of attributes. Above this list, you can click Chart, X Axis, or Y Axis to view the attributes for these
different aspects of the chart.

10.
To provide a value for any attribute, click in the field beside it to display a popup button  in the field. Click on the
popup button. The Zen Value Editor dialog pops up. The entry field in this dialog is sensitive to the data type of the
property. For example:

• If the type is boolean, the dialog provides a check box.

• If one value must be selected from a set, the dialog displays radio buttons.

• If the type is a CSS style definition, the CSS Declaration Editor pops up. To use this editor, see the instructions
in the “Zen Style Wizard” section beginning at step 10.

• If the type is a JavaScript expression, a text area offers room to type the entry.

In all cases, a brief description of the property appears on the dialog, below the entry field. For details, and for
descriptions of how the individual properties work together, you can find documentation in the “Zen Charts”  chapter
of Using Zen Components.

Click OK to save your changes and return to the Zen Chart Wizard. The list of chart attributes now contains your entry.
You may repeat this step as often as needed to supply attributes for this chart.

11. To accept the result of all your changes to this chart definition, click Finish. The Zen Chart Wizard dialog closes and
the completed chart definition appears in the XData Contents block of your Zen page class.

7.7 Zen TablePane Wizard
Note: For background information, see the chapter “Zen Tables.”
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You can use the Zen TablePane Wizard as follows:

1. Start Studio.

2. Open the class.

3. Place the cursor inside XData Contents and click to move the insertion point there.

4. Choose Tools > Templates > Templates or press CTRL-T to display the list of Zen templates.

5. Select the Zen TablePane Wizard.

6. Click OK to display the Zen TablePane Wizard dialog.

7. The two radio buttons let you select a data source for the table pane:

• Select Table, to specify the name of an SQL table. To display Caché objects, enter a class name, such as
Sample.Person.

• Select Class query to specify the name of a class and the name of a query in the class.

8. Click Next to display the Zen TablePane Wizard in a split screen:

• At left is an area labeled Columns. Enter the names of columns in the data source, one at a time, pressing Enter

between entries. When you have entered names of all the columns you want in the table, press Tab or click outside
the Columns box. This triggers a refresh and data load to the grid below

• At right is an area labeled tablePane Attributes which list attributes of the <tablePane>. You can use the Value

column to edit attribute values. See the following step for details about how to edit attribute values.

• Below these two areas is an area that displays a preview of the table.

9.
To provide a value for any attribute, click in the field beside it to display a popup button  in the field. Click on the
popup button. The Zen Value Editor dialog pops up. The entry field in this dialog is sensitive to the data type of the
property. For example:

• If the type is boolean, the dialog provides a check box.

• If one value must be selected from a set, the dialog displays radio buttons.

• If the type is a CSS style definition, the CSS Declaration Editor pops up. To use this editor, see the instructions
in the “Zen Style Wizard” section beginning at step 10.

• If the type is a JavaScript expression, a text area offers room to type the entry.

In all cases, a brief description of the property appears on the dialog, below the entry field.

10. To accept the result of all your changes to this table definition, click Finish. The Zen TablePane Wizard dialog closes
and the completed table definition appears in the XData Contents block of your Zen page class.

7.8 Zen Element Wizard
Note: For background information, see the chapter “Zen Layout.”

You can use the Zen Element Wizard as follows:

1. Start Studio.

2. Open the class.
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3. Place the cursor inside XData Contents and click to move the insertion point there.

4. Choose Tools > Templates > Templates or press CTRL-T to display the list of Zen templates.

5. Select the Zen Element Wizard.

6. Click OK to display the Zen Element Wizard dialog.

7. In the Element field, click the down-arrow to display a drop-down list of Zen components. This list includes the built-
in Zen components as well as any custom or composite components that you have defined. Components in this list are
sorted alphabetically by package name, so the order is:

• Auxiliary components, such as <column> for <tablePane>

• Built-in Zen components, such as <tablePane>

• User-defined components, such as composites or custom components

8. Click on a component name.

9. Click Next. The Zen Element Wizard displays an alphabetical list of the properties of the component that you selected.

10. To provide a value for any property, click the Edit button beside its name. The Zen Value Editor dialog pops up. The
entry field in this dialog is sensitive to the data type of the property. For example:

• If the type is boolean, the dialog provides a check box.

• If one value must be selected from a set, the dialog displays radio buttons.

• If the type is a CSS style definition, the CSS Declaration Editor pops up. To use this editor, see the instructions
in the “Zen Style Wizard” section beginning at step 10.

• If the type is a JavaScript expression, a text area offers room to type the entry.

In all cases, a brief description of the property appears on the dialog, below the entry field. If you need more detail,
you can find documentation in the corresponding chapters of this book:

• Zen Layout

• Zen Style

Or in the book Using Zen Components:

• Zen Tables

• Zen and SVG

• Zen Charts

• Zen Forms

• Zen Controls

• Model View Controller

• Zen Navigation

• Popup Windows and Dialogs

• Other Zen Components

Or in the book Developing Zen Applications:

• Custom Components
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11. Make changes as desired and click OK to save your changes and return to the Zen Element Wizard. The list of properties
now contains your entry. You may repeat the previous step and this one as often as needed to supply values for prop-
erties of this component.

12. To accept the result of all your changes to this component definition, click Finish. The Zen Element Wizard dialog
closes and the completed component definition appears in the XData Contents block of your Zen page class.

7.9 Zen Method Wizard
Note: For background information and a sample wizard session, see “Step 3: Client-side Method” and “Step 5: Server-

side Method” in the “Creating a Zen Page” exercise in the chapter “Zen Tutorial.”

You can use the Zen Method Wizard as follows:

1. Start Studio.

2. Open a Zen page class.

3. Position the cursor at the end of the class, but before the final curly bracket character. Click to move the insertion point
above the curly bracket.

4. Choose Tools > Templates > Templates or press CTRL-T to display the list of Zen templates.

5. Select the Zen Method Wizard.

6. Click OK to display the Zen Method Wizard dialog.

7. Choose a method Scope, either instance or class.

8. Choose a Location where the method executes, and enter a Method Name.

By convention, method execution and names are related as follows.

Naming ConventionMethod TypeLocation Choice

myMethodClient-onlyruns on the client

MyMethodZen methodruns on the server

%MyMethodServer-only utilityis only available on the server

MyMethodServer-only callbackis a server-side callback for a component

For details, see the “Zen Naming Conventions” section in the chapter “Zen Tutorial.”

9. If you choose the option is a server-side callback for a component in the step 8, the Zen Method Wizard dialog adds a
Server-side callback field. This field offers a drop-down list of attributes whose value is the name of a server-side
callback method. These include attributes such as <form> OnSubmitForm or <html> OnDrawContent. Choose a
component and attribute from this list.

The Server-side callback entry adds a comment to your method body, reminding you which component and attribute
you intend to associate with this callback method. You must still add the relevant attribute to the component definition
in XData Contents, but the reminder can be useful as you work with the class.

10. In the Description field, enter any text that you want to use to describe the method.

11. Leave the Try/Catch check box selected if you want the wizard to write a try/catch error processing template into your
method. For details, see the “Error Processing” chapter in the book Using Caché ObjectScript.
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In a client-side method the template looks like this:

Class Member

ClientMethod mMethod() [Language = javascript]
{
  try {
    alert('Client Method');
    // TODO: implement
  }
  catch (ex) {
    zenExceptionHandler(ex,arguments);
  }
}

In a server-side method the template looks like this

Class Member

Method MyMethod() [ZenMethod]
{
  Try {
    // TODO: implement
    &js<alert('Server Method');>
  }
  Catch(ex) {
    &js<alert('Error:\n#($ZCVT(ex.DisplayString(),"O","JS"))#');>
  }
  Quit
}

To skip this feature, clear the Try/Catch check box.

12. Click Finish to close the dialog and display your new method definition within the Zen page class in Studio.

13. Implement the method as desired.

7.10 Zen Style Wizard
Note: For background information, see the chapter “Zen Style.”

You can use the Zen Style Wizard as follows:

1. Start Studio.

2. Open the class whose XData Style block you want to edit.

3. Within the XData Style block, place the cursor between <style> and </style>. Click to move the insertion point there.

4. Choose Tools > Templates > Templates or press CTRL-T to display the list of Zen templates.

5. Select the Zen Style Wizard.

6. Click OK. A list of predefined styles appears. This list is organized alphabetically by component name. The “Overriding
Built-in Styles” section in the chapter “Zen Style” explains that some of the component names may be unfamiliar.
These are the parent classes for components that you actually place on the Zen page. For example, to edit styles for
tablePane (the child) you must select styles from the list provided for simpleTablePane (the parent).

7. Scroll down the list to see the styles that it offers.

8. Select the radio button next to the name of the CSS style you want to edit.

9. Click Next. The Zen Style Wizard echoes your selection and provides a sample of its current appearance.
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10. Click Edit to display the CSS Declaration Editor. You can add, remove, or edit statements as many times as needed to
define the CSS rule.

11. To add a CSS name-value pair:

• Click on the item --New-- in the CSS Declarations text box.

• Click the down-arrow on the Property box to display an alphabetized list of CSS argument names (background-color,
font-weight, width, etc). Click on a name to choose it.

• Either type a CSS value in the Value field or click the Edit button to display the CSS Value Editor.

• The CSS Value Editor is sensitive to the values that can be entered for the CSS argument you chose. If there is a
fixed list of options, you can choose them from a drop-down list. If there is the option of typing in a value other
than the fixed list, you can do that too.

• If you choose a compound CSS style argument such as border-top, the editor prompts you for each choice inde-
pendently, for example:

– width — thin, medium, thick, 1px, 2px, 3px, 4px, inherit

– style — none, hidden, dotted, dashed, solid, double, groove, ridge, inset, outset, inherit

– color — A drop-down list of standard CSS color names including black, blue, red, darkred, etc. Alternatively
you can click the Browse button to display a detailed color choice dialog where you can make a visual color
selection. When you click on a color sample in this dialog and click OK, Zen provides this color to your CSS
statement as an HTML color value.

The result is then something like this: border-top: 1px solid #70DFF0;

• Click OK to save your changes and return to the CSS Declaration Editor. The CSS Declarations text box now
contains the new name-value pair, as well as any others you have previously added.

12. To remove a CSS name-value pair:

• Click on the corresponding line in the CSS Declarations text box.

• Click the Remove button to the right of the Property box.

• Click OK to save your changes and return to the CSS Declaration Editor. The CSS Declarations text box no longer
displays the name-value pair that you removed.

13. To edit a CSS name-value pair:

• Click on the corresponding line in the CSS Declarations text box.

• Either type a CSS value in the Value field or click the Edit button to display the CSS Value Editor.

• Use the CSS Value Editor to choose and enter values as in step 11.

• Click OK to save your changes and return to the CSS Declaration Editor. The CSS Declarations text box now
contains the modified version of the name-value pair, as well as any others you have previously added.

14. When you are satisfied with your modifications in the CSS Declaration Editor dialog, click OK. The Zen Style Wizard
echoes your choices and displays a sample of the resulting style. After examining this sample you may do one of the
following:

• To resume changes to this style definition, return to step 10.

• To accept the result of all your changes to this style definition, click Finish. The Zen Style Wizard dialog closes
and the completed style definition appears in the XData Style block of your class.
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