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About This Book

This book describes how to migrate schemas and stored procedures from Sybase or SQL Server and it will provide you
with an understanding of the TSQL (Transact-SQL) implementation in Caché.

The book addresses a number of topics:

An Overview, which includes configuring TSQL, migrating source code and data, and dynamic execution of TSQL
code.

Caché TSQL Constructs including temporary tables, stored procedures, and transaction management.
Caché TSQL Language Elements: data types, operators, literals, reserved words.

Caché TSQL Commands

Caché TSQL Settings

Caché TSQL Functions

Caché TSQL Variables

For a detailed outline, see the Table of Contents.

When using Caché TSQL, you may find the following additional sources useful:

The Caché SQL Reference provides details on individual SQL commands and functions, as well as information on the
Caché SQL configuration settings, error codes, data types, and reserved words.

“Using the Caché SQL Gateway” in Using Caché SQL describes how to use the Caché SQL Gateway, which enables
you to treat external tables as if they were native Caché tables.

Using Caché with ODBC describes how to use Caché ODBC, which enables you to access Caché tables via ODBC
from external applications.

Using Caché with JDBC describes how to use the Caché JDBC driver, which enables you to access Caché tables via
JDBC from external applications.

For general information, see Using InterSystems Documentation.
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Overview

InterSystems TSQL is an implementation of Transact-SQL which supports many of the features of both the Microsoft and
Sybase implementations. Transact-SQL is used with Microsoft SQL Server (MSSQL) and Sybase Adaptive Server.

InterSystems TSQL also contains a few proprietary extensions not found in either of these implementations. These are
described in the Commands chapter.

Regardless of which Caché interface is used, TSQL code is used to generated corresponding Caché SQL executable code.
Caché does not provide system-level support for native TSQL.

This document will help you to quickly migrate schemas and stored procedures from Microsoft or Sybase databases and
it will provide you with an understanding of the TSQL (Transact-SQL) implementation for InterSystems Caché™,

Microsoft provides good TSQL reference material at: https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-
verls.

1.1 Migrating Existing TSQL Applications

To migrate existing TSQL applications to InterSystems TSQL, you need to perform three operations: configure Caché for
TSQL, migrate the TSQL source code, and migrate the data.

1.1.1 Configuring TSQL

To configure your system for TSQL.:

e Go into the Caché Management Portal. Select System Administration, Configuration, SQL and Object Settings, then
select TSQL Compatibility. Here you can specify the system-wide default DIALECT (Sybase or MSSQL), and turn on
or off the ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings for TSQL system-wide. The default
for all three is “off”. These values are used to set the ~%SYS(“tsql”,”SET”,...) global array values.

»  From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then SQL. From
here, you can set the Default Schema. This is the default schema name (which maps to a package) for all unqualified
DDL entities.

»  From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then User DDL
Mappings. You can use this option to map any needed user-defined data types.
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1.1.2 Migrating Source Code

The initial application migration is simple:

1.

Import the DDL: Import table and view definitions using either the %SYSTEM.SQL.DDL Import() method (for
single files) or the %SYSTEM.SQL.DDLImportDir() method (for multiple files in a directory). Within these methods,
you set the DDLMode parameter to either "MSSQLServer'" or *'Sybase'"'. These methods import DDL statements,
as well as DML statements such as INSERT, convert them to equivalent Caché SQL, and execute them. For further
details, see Importing SQL Code.

Alternatively, you can invoke the $SYSTEM.SQL.Sybase() or $SYSTEM.SQL.MSSQL Server() method to import
the schema. For further details, see Importing SQL Code.

If the TSQL source contains CREATE PROC statements, then a class method containing the CREATE PROC source
is created. Caché places this class method in either an existing class or in a new class whose name is based on the
schema and procedure name. If the procedure already exists, then the existing version is replaced by the new version.
If a class matching the class name generated from the schema and procedure already exists, then this class name is
used — if it was previously generated by the TSQL utility. If not, then a unique class name is generated, based on the
schema and procedure name. The resulting class is compiled once the procedure has been successfully created. If logging
is requested then the source statements are logged along with the name of the containing class, class method, and the
formal arguments generated. Any errors encountered by the process are also reported in the log. If an error is detected
during CREATE PROC processing, Caché deletes any new class that was generated for that procedure.

Inspect the log file for errors: Search by Error #. A summary count of errors and successful imports will appear at the
end of the log. In most cases, errors can be worked around or addressed by using information found in this document.

Compile: When you import DDL, table and view definition compilation is automatically performed. To compile other
TSQL source code, it is best to use the command as follows:
ObjectScript

DO $SYSTEM.OBJ.CompileAll("-1')

The lowercase “L” qualifier flag specifies that locking is not applied for the duration of the compile. For a full list of
flag qualifiers, call DO $SYSTEM.OBJ.ShowFlags().

1.1.3 Migrating the Data

In the Management Portal select System Explorer, SQL, then from the Wizards drop-down list select the Data Migration
Wizard. This runs a wizard to migrate data from an external source and creates a Caché class definition to store it.

1.2 Writing and Executing TSQL on Caché

Writing TSQL class methods and stored procedures
Create a class method stored procedure and enter the language as tsql. You can use the following template as a starting
point:

ClassMethod MyTestMethod() As %Integer
[ Language = tsql, ReturnResultSets, SqglName=name, SqlProc ]

{
}

See the Language keyword for method definition in the Class Definition Reference.
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You can write and maintain TSQL stored procedures (SPs) in Studio. A TSQL SP can be either a class method or a
query. A class method takes parameters and returns a single scalar result, a query takes parameters and returns rows.
If you put plain SELECT statements into a class method they will be executed but you won't be able to get the rows.

TSQL procedures are converted to Caché methods or queries with a Language type equal to TSQL. Use the following
command:

DO ##class(%TSQL-Manager).load(*'sybase',<filename>,<logname>)

When compiling TSQL methods, ObjectScript code is generated. There is no system-level support for native TSQL.
It is best to maintain the methods in TSQL to retain the familiar look of the original stored procedures.

*  Using Dynamic SQL
Caché Dynamic SQL can be used to execute TSQL code queries and a limited subset of other DML and DDL statements.

— You can create a Dynamic SQL statement class instance, then set the %Dialect property to Sybase or MSSQL.
You then prepare and execute a TSQL command within that object instance.

— You can execute Dynamic SQL without creating a statement class instance by invoking the
%SYSTEM.SQL.Execute() method, which both prepares and executes an SQL command. This method provides
a Dialect parameter.

See “Using Dynamic SQL” in the Using Caché SQL manual.
e Using the Management Portal SQL Interface

The SQL interface Dialect option allows you to set the SQL dialect to Cache, Sybase, or MSSQL.. The default is Cache.
Note that the dialect you select becomes the user customized default the next time you access the Management Portal.
See “Using the Management Portal SQL Interface” in the Using Caché SQL manual.

e Using the TSQL Shell

The InterSystems TSQL Shell can be used to execute Transact-SQL code from Caché. To use the TSQL Shell, invoke
the TSQLShell() (or TSQL()) method from the Terminal as follows: DO $SYSTEM.SQL.TSQLShell1(). This
invokes the InterSystems SQL Shell and sets its DIALECT configuration parameter to the currently configured TSQL
dialect (MSSQL or Sybase). The initial configuration default is MSSQL.

When entering SQL code interactively, the TSQL Shell supports, but does not require, the semicolon (;) statement
delimiter at the end of each SQL statement.

You can use the Shell’s RUN command to execute a TSQL script file. The RUN command displays a series of prompts,
includingPlease enter the end-of-statement delimiter (Default is "GO"): GO=>.Thisenables
you to specify the TSQL semicolon (;) as the statement delimiter in your script file, rather than the Caché default GO
statement. See “Using the SQL Shell Interface™ in the Using Caché SQL manual.

» Using the InterSystems SQL Shell

The InterSystems SQL Shell can be used to execute lines of TSQL code by using the SET DIALECT command to set
the Shell’s dialect to Sybase or MSSQL.

When the Shell’s dialect is set to Sybase or MSSQL, the SQL Shell supports, but does not require, the semicolon (;)
statement delimiter at the end of each SQL statement. When the Shell’s dialect is set to Cache, a semicolon (;) statement
delimiter results in an SQLCODE -25 error.

You can use the Shell’s RUN command to execute a TSQL script file. The RUN command displays a series of prompts,
includingPlease enter the end-of-statement delimiter (Default is "GO"): GO=>.Thisenables
you to specify the TSQL semicolon (;) as the statement delimiter in your script file, rather than the Caché default GO
statement. See “Using the SQL Shell Interface™ in the Using Caché SQL manual.

e Using Triggers
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You can write and maintain triggers, which are sets of instructions that appear in TSQL code and that are executed in
response to certain SQL events. You can use the Language=tsql class definition keyword to specify that a trigger is
written in TSQL. The UpdateColumnList class definition keyword is only supported for TSQL. Row-level triggers
are not supported for TSQL. See “Using Triggers” in the Using Caché SQL manual.
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2.1 Table References

Caché TSQL supports table references with the Caché SQL format:

schema. table
The only mandatory table reference component is table. If the schema is omitted, TSQL uses the system-wide default
schema name.

Other forms of Transact-SQL may use table references with up to four components, separated by dots. Here is how a
Transact-SQL table reference is processed:

» The server. prefix, if present, is ignored.
» The database. prefix, if present, is removed. Caché only supports one database hame: 'master'.
e The user. prefix, if present, is mapped to the schema name.

For the purposes of name translation, a field name has the field suffix removed while translation is performed and then
replaced afterwards.

2.2 Temporary Tables

Caché TSQL supports #tablename temporary tables. A #tablename temporary table is visible to the current procedure
of the current process. It is also visible to any procedure called from the current procedure. #tablename syntax is only
supported in TSQL procedures (class methods projected as procedures with language tsql).

A temporary table is defined by using CREATE TABLE with a table name starting with "#". The temporary table is created
at runtime. A #tablename table definition goes out of scope when you exit the procedure. All temporary table definitions
go out of scope when the connection is dropped. You can also explicitly delete a temporary table using DROP TABLE.

However, if a temporary table is referenced by an active result set, the temporary table may become invisible to the process,
but the data and definition are retained until the result set goes out of scope.

A #tablename temporary table is visible both to the creating procedure and to any procedures called from that procedure.
Temporary tables are visible to nested procedure calls. It is not necessary to declare the temporary table in the called pro-
cedure. If the called procedure also creates a temporary table with the same name, Caché uses the most recently created
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table definition. Because a temporary table is defined using an ObjectScript local variable, the creation, modification, and
deletion of these tables are not journaled transaction events; rolling back the transaction has no effect on these operations.

2.3 System Tables

System tables exist per Caché namespace.

Systypes
Partially supported.

2.4 Transactions

Code generated for BEGIN TRAN, COMMIT and ROLLBACK uses explicit transaction mode, but following a transaction
TSQL always restores the mode which was active before the BEGIN TRAN statement. TSQL restores this mode when
the procedure is exited from, or when a COMMIT or ROLLBACK is issued, whichever comes first.

2.5 Cursor Name Management

You can declare the same cursor more than once, so long as only one version of the cursor is open at runtime. If the same
cursor is declared more than once in a stored procedure, all but the first declaration are associated with renamed cursors.
OPEN, FETCH, CLOSE, and DEALLOCATE statements are assumed to refer to the most recent DECLARE for the
given cursor. Note that the lexical position of a statement within a stored procedure is all that is used to match up a cursor
name with its DECLARE — no account is taken of runtime paths through the code.

Cursors inside queries are named using an extension of the scheme used in Caché SQL queries. For example:

TSQL

DECLARE C CURSOR FOR SELECT A FROM B
OPEN C

FETCH C

CLOSE C

DEALLOCATE C

DECLARE C CURSOR FOR SELECT D FROM E
OPEN C

FETCH C

CLOSE C

DEALLOCATE C

Would be effectively translated to:
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TSQL

DECLARE C CURSOR FOR SELECT A FROM B

OPEN C
FETCH C
CLOSE C
DEALLOCATE C

DECLARE Cv2 CURSOR FOR SELECT D FROM E

OPEN Cv2
FETCH Cv2
CLOSE Cv2
DEALLOCATE Cv2

2.6 SYSOBJECTS References

Commonly, an application will have setup procedures that create tables, views, and the metadata for the application envi-
ronment. Such procedures will have expressions like:
TSQL

IF EXISTS (SELECT * FROM SYSOBJECTS
WHERE 1D = OBJECT_ID("People®))

This determines if a table exists, in this example. It’s usually followed by a DROP and CREATE statement to reestablish the
table metadata.

TSQL procedures and triggers can reference the SYSOBJECTS system table. Caché TSQL supports the following columns
in the SYSOBJECTS table (%TSQL.sys.objects class properties):

name Object name.
id Object Id.
type Object type: can be one of the following values:

K=PRIMARY KEY or UNIQUE constraint; P=stored
procedure; RI=FOREIGN KEY constraint; S=system
table; TR=trigger; U=user table; V=view.

deltrig Object ID of a delete trigger if the entry is a table.
Table ID of a table if the entry is a trigger.

instrig Object ID of a table’s insert trigger if the entry is a
table.

updtrig Object ID of a table’s update trigger if the entry is a
table.

parent_obj Object identification number of parent object. For
example, the table ID if a trigger or constraint.

schema Name of the schema in which the object resides.

parent_obj name Object name of parent_obj. If parent_obj=0,

parent_obj_name is the same as name.

The SYSOBJECTS table is read-only. The SYSOBJECTS table may be referenced from outside a TSQL procedure or
trigger by the name %TSQL_sys.objects. SYSOBJECTS is not supported for tables mapped across namespaces.
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Note:  Caché provides the %Dictionary package of class objects that can perform the same operations as SYSOBJECTS
references. For further details, refer to the %Dictionary package in the InterSystems Class Reference.
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This chapter describe the following TSQL language elements for InterSystems Caché:
o  Literals, Reserved Words, and Comments

* ldentifiers

e Data Types

»  Arithmetic, Comparison, String, Logical, and Bitwise Operators

3.1 Literals

3.1.1 String Literals

A string literal must be delimited by quote characters. The preferred delimiter characters are single quote characters. You
can also use double quote characters as string delimiters if you specify SET DELIMITED_IDENTIFER OFF. Otherwise,
double quote characters are parsed as delimiting an identifier.

If you delimit a string literal with single quote characters, you can include literal double quote characters within the string.
To include a literal single quote character within the string, double it by typing two single quotes.

A string containing literal single quotes, such as "this is an ""embedded®" string", is compiled by Caché to
single quotes within double quotes: "this is an "embedded® string".

3.1.2 Empty Strings

When migrating Transact-SQL code to Caché TSQL, it may be necessary to redefine the empty string. You can do this by
setting the following Caché system global:

NSYS('sqllt, 'sys™, "namespace' ,nspace, "‘'empty string')
All of these specified values are keyword literals, except nspace, which is a namespace name specified as a quoted string.

CAUTION: Changing the empty string definition should be done with extreme caution. It can result in data containing
different representations for an empty string. It can also cause existing programs to fail when executed in
this namespace. After defining the empty string, you must purge all cached queries and recompile all classes
and routines for that namespace that use the former empty string definition.
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The following ObjectScript example changes the empty string definition for the SAMPLES namespace. It first sets the
empty string value to a single blank space. It then sets the empty string value to the non-printing character represented by
the ASCII code 0. (This example then immediately resets the empty string value to the Caché default):

ObjectScript

SET ~%SYS(*'sql*,''sys", "'namespace’,''SAMPLES","empty string'")=" "
WRITE I,"Empty string set to:"

ZZDUMP ~"%SYS(*'sql™,''sys", ""namespace"’, SAMPLES "empty string')

SET A%SYS("sqI","sys","namespace",'SAMPLES empty string')= $CHAR(0)
WRITE I,"Empty string set to:"

ZZDUMP ~%SYS(*'sql',''sys', ""namespace’,''SAMPLES",""'empty string'")

SET ~%SYS(*'sql*,''sys", "namespace’,'"'SAMPLES",""empty string')=""
WRITE I1,"Empty string reset to:"

ZZDUMP ~%SYS(*'sql',''sys', ""namespace','"SAMPLES",""'empty string'")
WRITE !1,!1,"End of sample program"

3.1.3 NULL

In TSQL a NULL supplied to a boolean operation returns as FALSE, as shown in the following example:

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var PRINT "true"™ ELSE PRINT "false"

In Sybase dialect, NULL is equal to NULL. A NULL=NULL comparison returns TRUE, and a NULL '= NULL comparison
returns FALSE.

In MSSQL dialect, a comparison of NULL with any value returns FALSE. Thus NULL=NULL and NULL != NULL
comparisons both return FALSE.

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var=NULL PRINT "true'"™ ELSE PRINT "false"

In Sybase dialect, NULL is not equal to any value. Therefore, Not Equals (!=) comparison involving NULL and any boolean,
numeric, or string value (including the empty string ("'")) returns TRUE. All Equals (=), Greater Than (>) or Less Than (<)
comparisons return FALSE.

In MSSQL dialect, NULL cannot be compared to a value. Thus all Equals (=), Not Equals (=), Greater Than (>) or Less
Than (<) comparisons return FALSE.

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0.

3.1.4 Hexadecimal

Caché TSQL automatically converts hexadecimal numeric literals in TSQL source code to the corresponding decimal (base-
10) numeric literals.

3.1.5 Reserved Words

Caché TSQL cannot use as identifiers the SQL Server reserved words. Caché TSQL can use Caché SQL reserved words
(that are not also SQL Server reserved words) if the QUOTED_IDENTIFIER SQL configuration setting is set to Yes.

3.1.6 Comments, Blank Lines, and Semicolons

Caché TSQL supports both single-line and multi-line comments.
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» Asingle line comment continues to the rest of the line. When used in the TSQL shell, a comment does not encompass
the end-of-line qualifier, such as /x or /c. Caché TSQL supports both — and // as single-line comment delimiters.

* A multi-line comment begins with /* and ends with */. A comment can include nested /* ... */ comments.

TSQL

PRINT “"these are comments”

-- this is a single-line comment

// this is a single-line comment

/* This is a multi-line comment

The command

PRINT *"do not print*

is part of the comment and is not executed */

3.1.6.1 TSQL-only Statements

Caché TSQL provides the means to include executable statements within Caché TSQL code which are parsed as nonexecutable
comments in Transact-SQL. A statement prefixed with two hyphens and a vertical bar is parsed by Caché as an executable
statement. Sybase Adaptive Server and Microsoft SQL Server consider this to be a Transact-SQL comment.

TSQL

PRINT "any context”
-- PRINT "commented out”
--] PRINT "InterSystems only*

3.1.6.2 Semicolons

You can specify a blank line by using either two hyphens or a semicolon.

A semicolon either before or after a TSQL statement is ignored. They are supported for compatibility with Transact-SQL
code, such as stored procedures, that ends statements with a semicolon.

TSQL

PRINT "no semicolon”

PRINT "trailing semicolon”;

;PRINT “leading semicolon”

3.2 ldentifiers

An identifier is a name for a TSQL object, such as a table, column, view, key, index, trigger, or stored procedure. Naming
conventions for identifiers are as follows:

e The first character of an identifier must be a letter, an underscore () or a percent (%) character.

e Subsequent characters of an identifier may be letters, numbers, underscores (), dollar signs ($), or pound signs (#).
» ldentifiers can be of any length, but must be unique within their first 30 characters.

» ldentifiers are not case-sensitive.

e Anidentifier cannot be an SQL reserved word.

» A pound sign (#) prefix to an identifier specifies that it is the name of a temporary table.

e Anatsign (@) prefix to an identifier specifies that it is the name of a variable.
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Some identifiers are qualified with a schema name. For example, schema.tablename or schema.storedprocedure. If the
schema name is omitted, the identifier is unqualified. TSQL resolves unqualified identifiers by using either the system-
wide default schema (for DDL) or the schemaPath property (for DML), which provides a search path of schemas to check
for the specified table name or stored procedure name.

3.2.1 Delimited and Quoted Identifiers

A delimited identifier is not restricted by the naming conventions of ordinary identifiers. For example, a delimited identifier
can be the same word as an SQL reserved word; a delimited identifier can contain space characters.

By default, both square brackets and double quotation marks can be used to delimit an identifier. These delimiters are
interchangeable; you can define a delimited identifier by enclosing it with square brackets, and invoke the same delimited
identifier by specifying it enclosed with double quotation marks.

You can specify a quoted identifier if the QUOTED_IDENTIFIER SQL configuration setting is set to Yes. You specify a
quoted identifier by enclosing it in double quotation marks. When QUOTED_IDENTIFIER is on, double quotes are parsed
as delimiting an identifier. When QUOTED _IDENTIFIER is off, double quotes are parsed as alternative delimiters for
string literals. The preferable delimiters for string literals are single quotes. A quoted identifier can contain any characters,
including blank spaces.

3.3 Data Types

The following data types are supported for local variables and table columns. These data types are supported in that they
are parsed as valid data types; however, no range or value validation is performed.

BINARY (n) and VARBINARY (n). The (n) size specification is mandatory.

BIT

BOOLEAN

CHAR and VARCHAR

CHAR(n), NCHAR(n), VARCHAR(n), and NVARCHAR(n)

VARCHAR(MAX), and NVARCHAR(MAX). By default, these map to %Stream.GlobalCharacter.
DATETIME and SMALLDATETIME

DECIMAL, DECIMAL(p), and DECIMAL(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

DOUBLE and DOUBLE PRECISION
FLOAT and FLOAT(n)

INT, BIGINT, SMALLINT, and TINYINT
MONEY and SMALLMONEY
NATIONAL

NUMERIC, NUMERIC(p), and NUMERIC(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

REAL
TIMESTAMP
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Note:  The Microsoft SQL Server TIMESTAMP data type is not used for date or time information. It is an integer counter
of the number of times a record is inserted or updated in a table. It should not be confused with the Caché SQL
and ODBC TIMESTAMP data type, which represents a date and time in YYYY-MM-DD HH:MM:SS.nnnnnnnnn
format. In TSQL, use DATETIME and SMALLDATETIME for date and time values.

ROWVERSION

SQL_VARIANT

The following SQL Server data types are supported in a specific context:

CURSOR

NTEXT, TEXT By default, these map to %Stream.GlobalCharacter.

IMAGE

TABLE

The following are not implemented:

* UNIQUEIDENTIFIER stored as a 16-byte binary string. Instead use VARCHAR(32) as the data type for a globally
unique 1D.

e SQL92 and TSQL options
e UPDATE OF

3.4 Operators

3.4.1 Arithmetic and Equality Operators

Caché TSQL supports + (addition), — (subtraction), * multiplication, / division, and % modulo arithmetic operators.
Caché TSQL supports the following equality and comparison operators:

e =(equal to)

e <> (not equal to) and !'= (not equal to)

o < (less than), I< (not less than), <= (less than or equal to)

* > (greater than), !> (not greater than), >= (greater than or equal to)

When performing equality comparisons (= or <>) between date values with different data types, all date and time values

are compared using the TIMESTAMP data type. Thus two dates in different formats can be meaningfully compared. A
date value declared as a STRING data type can be compared to a date value declared as a DATETIME data type.

3.4.2 Concatenation Operator

Caché TSQL supports the + (plus sign) as both a concatenation operator and the addition operator. The plus sign functions
as a concatenation operator with strings. You can concatenate several strings together using this operator. If all item are
strings, TSQL performs concatenation; however, if one of the items is a number, TSQL performs addition, treating non-
numeric strings as 0.

‘world'+'wide'+'web' concatenates to ‘worldwideweb'

‘world'+'33'+'web' concatenates to 'world33web'
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‘world'+33+'web’ performs addition (0+33+0=33)

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0. Note that because the plus sign (+) is used for both concatenation and addition, the data type declaration
of the NULL variable is critical. The following examples all return “bigdeal”:

DECLARE @varl BINARY(1)
DECLARE @var2 VARCHAR(10)
SELECT @varl=NULL,@var2=NULL
PRINT "big"+NULL+"deal™
PRINT *“big"+@varl+'deal™
PRINT "big"+@var2+"deal™

The following example returns 0; it treats the + as an arithmetic operator and interprets the argumentas 0 + 0+ 0=0:

DECLARE @varl INT
SELECT @varl=NULL
PRINT "big"+@varl+"deal™

Caché TSQL also supports || as a concatenation operator.
3.4.3 Comparison Operators

3.4.3.1 BETWEEN

Caché TSQL supports the BETWEEN range check operator of the form: BETWEEN numl AND num2. BETWEEN is
inclusive of the specified range limits.

3.4.3.2 1S NULL

Caché TSQL supports the IS NULL match operator. A variable is NULL if it has been declared but not assigned a value,
or if it has been explicitly specified as NULL. The empty string is not NULL.

3.4.3.3 LIKE

Caché TSQL supports the LIKE pattern match operator. LIKE performs not case-sensitive matching of letters. Caché TSQL
also supports NOT LIKE.

3.4.4 NOT Logical Operator

The NOT logical operator inverts the truth value of the statement that follows it. For example, IF NOT EXISTS(...).
NOT is not case-sensitive.

3.4.5 Bitwise Logical Operators

Caché TSQL supports the AND (&), OR (]), XOR (?), and NOT (~) bitwise operators for the integer data type. The decimal
integers are converted to binary, the logical operation is performed, and the resulting binary is converted to a decimal
integer value. The NOT (~) operator is a unary operator that inverts bits.
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This chapter lists the supported TSQL commands in the following groups:
» Data Definition Language (DDL) statements:
ALTER TABLE, CREATE TABLE, DROP TABLE
CREATE INDEX, DROP INDEX
CREATE TRIGGER, DROP TRIGGER
CREATE VIEW, DROP VIEW
Parsed but ignored: CREATE DATABASE, DROP DATABASE
» Data Management Language (DML) statements:
INSERT, UPDATE, DELETE, TRUNCATE TABLE
READTEXT, WRITETEXT, UPDATETEXT
e Query statements:
SELECT, JOIN, UNION, FETCH cursor
*  Flow of control statements:
IF, WHILE, CASE, GOTO, WAITFOR
»  Assignment statements:
DECLARE, SET
¢ Transaction statements:
SET TRANSACTION ISOLATION LEVEL, BEGIN TRANSACTION, COMMIT, ROLLBACK, LOCK TABLE
Parsed but ignored: SAVE TRANSACTION
»  Procedure statements
CREATE PROCEDURE, DROP PROCEDURE
CREATE FUNCTION, ALTER FUNCTION, DROP FUNCTION
RETURN, EXECUTE, CALL
*  Other statements
CREATE USER, GRANT, REVOKE, PRINT, RAISERROR, UPDATE STATISTICS

e Caché extensions
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CACHE, IMPORTASQUERY

» Data Definition Language (DDL) statements

» Data Management Language (DML) statements
e Query statements

*  Flow of control statements

*  Assignment statements

»  Transaction statements

»  Procedure statements

e Other statements

»  Caché extensions

Caché implementation of TSQL accepts, but does not require, a semicolon command terminator. When importing TSQL
code to Caché SQL, semicolon command terminators are stripped out.

4.1 Data Definition Language (DDL) Statements

The following DDL statements are supported.

4.1.1 CREATETABLE

Defines a table, its fields, and their data types and constraints.
CREATE TABLE [schema. | #]tablename (fieldname datatype constraint [,.-.1)

A CREATE TABLE can create a temporary table by prefixing a # character to the table name. A temporary table can only
be defined from a stored procedure; you cannot define a temporary table from Dynamic SQL outside of a stored procedure.
To create a fully-qualified temporary table name, use quotes around each hame element such as the following:
"SQLUser" . ""#mytemp".

A valid table name must begin with a letter, an underscore character (), or a # character (for a local temporary table).
Subsequent characters of a table name may be letters, numbers, or the #, $, or _ characters. Table names are not case-sensitive.

A field name must be a valid TSQL identifier. A field name can be delimited using square brackets. This is especially
useful when defining a field that has the same name as a reserved word. The following example defines two fields named
Check and Result:

TSQL

CREATE TABLE mytest ([Check] VARCHAR(50),[Result] VARCHAR(5))

The optional CONSTRAINT keyword can be used to specify a user-defined constraint name for a column constraint or a
table constraint. You can specify multiple CONSTRAINT name type statements for a column.

Caché SQL does not retain constraint names. Therefore these names cannot be used by a subsequent ALTER TABLE
statement.
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The table column constraints DEFAULT, IDENTITY, NULL, NOT NULL, PRIMARY KEY, [FOREIGN KEY] REFER-
ENCES (the keywords FOREIGN KEY are optional), UNIQUE, CLUSTERED, and NONCLUSTERED are supported.
The table constraint FOREIGN KEY REFERENCES is supported.

The column definition DEFAULT values can include the following TSQL functions: CURRENT_TIMESTAMP, CUR-
RENT_USER, GETDATE, HOST_NAME, ISNULL, NULLIF, and USER.

The column definition IDENTITY constraint is supported and assigned a system-generated sequential integer. The IDENTITY
arguments seed and increment are parsed, but ignored.

The table constraint clauses WITH, ON, and TEXTIMAGE ON are parsed for compatibility, but are ignored. The <index
options> clause for the UNIQUE or PRIMARY KEY constraint is parsed for compatibility, but is ignored.

The following SQL Server parenthesized WITH options in a table constraint are parsed but ignored:
ALLOW_PAGE_LOCKS, ALLOW_ROW_LOCKS, DATA_COMPRESSION, FILLFACTOR, IGNORE_DUP_KEY,
PAD_INDEX, and STATISTICS_NORECOMPUTE.

The column constraints CLUSTERED and NONCLUSTERED are parsed for compatibility, but are ignored.

The CHECK column constraint is not supported. If a CHECK constraint is encountered while compiling TSQL source
Caché generates an error message indicating that CHECK constraints are not supported. This error is logged in the compile
log (if active), and the source is placed in the unsupported log (if active).

If the table already exists, an SQLCODE -201 error is issued.

The following Dynamic SQL example creates a temporary table named #mytest with four fields, populates it with data,
then displays the results. The LastName field has multiple constraints. The FirstName field takes a default. The DateStamp
field takes a system-defined default:

ObjectScript

SET sql=9

SET sql(1)="CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql(2)="LastName VARCHAR(20) CONSTRAINT unq_Iname UNIQUE "

SET sql(3)=" CONSTRAINT nonull_Iname NOT NULL,'

SET sqgl(4)="FirstName VARCHAR(20) DEFAULT '***TBD***' "

SET sql(5)="DateStamp DATETIME DEFAULT CURRENT TIMESTAMP)

SET sql(6)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224, "Smith","John")"
SET sgl(7)=""INSERT INTO #mytest(MyId,LastName) VALUES (1225, "Jones®™)"
SET sql(8)="SELECT Myld,FirstName,LastName,DateStamp FROM #mytest"
SET sql(9)=""DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect=""MSSQL"

SET status=statement.%Prepare(.sql)

WRITE status,!

SET result=statement.%Execute()

DO result.%Display()

4.1.2 ALTERTABLE

Modifies the definition of a table, its fields, and their data types and constraints.

The following syntactical forms are supported:

ALTER TABLE t abl ename ADD fi el dnane dat at ype [DEFAULT val ue]
[{UNIQUE ] NOT NULL} | CONSTRAINT constrai nt name {UNIQUE | NOT NULL} ]
ALTER TABLE t abl enamre ALTER COLUMN fi el dnane newdat at ype
ALTER TABLE t abl ename DROP COLUMN fi el dname [,fiel dname2]
ALTER TABLE t abl enane ADD tabl econstrai nt FOR fi el dnane
ALTER TABLE t abl enane DROP t abl econstr ai nt
ALTER TABLE t abl enane DROP FOREIGN KEY rol e
ALTER TABLE t abl enane ADD CONSTRAINT constrai nt DEFAULT def aul t val ue FOR fi el dnane
ALTER TABLE t abl enane ADD CONSTRAINT constrai nt FOREIGN KEY
ALTER TABLE t abl enane DROP CONSTRAINT constr ai nt

Specify tablename as described in Table References.
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» ALTER TABLE...ADD fieldname can add a field definition or a comma-separated list of field definitions:
— DEFAULT is supported.

— NOT NULL is supported if the table contains no data. If the table contains data, you can only specify NOT NULL
if the field also specifies a DEFAULT value.

— UNIQUE is parsed but ignored. To establish a unique constraint use the CREATE INDEX command with the
UNIQUE keyword.

The full supported syntax for ALTER TABLE...ADD fieldname is as follows:

ALTER TABLE t abl enane
[ WITH CHECK | WITH NOCHECK 7]
ADD fi el dnanme dat at ype [DEFAULT val ue]
[{UNIQUE | NOT NULL} | CONSTRAINT constraintname {UNIQUE | NOT NULL} ]
[ FOREIGN KEY (fieldl[,field2[,...11)
REFERENCES t abl ename(fi el d1[,fi el d2[,---1D 1

WITH CHECK | WITH NOCHECK is parsed by Caché, but is ignored. In Transact-SQL, WITH CHECK | WITH
NOCHECK provides an execution time check of existing data for a new or newly enabled constraint. InterSystems
TSQL does not specifically support that, although InterSystems SQL will check existing data against a new constraint.

The Sybase PARTITION BY clause is not supported.

* ALTERTABLE..ALTER COLUMN fieldname datatype can change the data type of an existing field. This command
completes without error when the specified datatype is the same as the field’s existing data type.

* ALTERTABLE...DROP [COLUMN] fieldname can drop a defined field or a comma-separated list of defined fields.
The keyword DELETE is a synonym for the keyword DROP.

—  Sybase: the COLUMN keyword is not permitted, the CONSTRAINT keyword is required: ALTER TABLE...DROP
fieldname, CONSTRAINT constraint

— MSSQL: the COLUMN keyword is required, the CONSTRAINT keyword is optional: ALTER TABLE...DROP
COLUMN fieldname, constraint

* ALTERTABLE..DROP [CONSTRAINT] constraintname can drop a constraint from afield. The keyword DELETE
is a synonym for the keyword DROP.
—  Sybase: the CONSTRAINT keyword is required.
— MSSQL: the CONSTRAINT keyword is optional.

» ALTER TABLE...ADD CONSTRAINT...DEFAULT syntax does not create a field constraint. Instead, it performs
the equivalent of an ALTER TABLE... ALTER COLUMN...DEFAULT statement. This means that Caché establishes

the specified field default as the field property’s initial expression. Because no field constraint is defined, this “constraint”
cannot be subsequently dropped or changed.

CHECK | NOCHECK CONSTRAINT is not supported by Caché TSQL. Specifying this CHECK or NOCHECK
keyword generates an error message.

4.1.3 DROP TABLE
Deletes a table definition.
DROP TABLE [IF EXISTS] t abl ename

Deletes a table definition. You can delete both regular tables and temporary tables. (Temporary table names begin with a
'# character.) DROP TABLE ignores a nonexistent temporary table name and completes without error.
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Specify tablename as described in Table References.
If tablename has an associated view, you must delete the view before you can delete the table.

The IF EXISTS clause is parsed but ignored.

4.1.4 CREATE INDEX

Creates an index for a specified table or view.
CREATE [UNIQUE] INDEX i ndexname ON tabl enane (fiel dnane [,fiel dname2])

You can create an index on a field or a comma-separated list of fields.

You can create an index on the IDKEY (which is treated as a clustered index), on an IDENTITY field (which create an
index on the %%ID field), on the Primary Key, or on other fields.

Specify tablename as described in Table References.
The UNIQUE keyword creates a unique value constraint index for the specified field(s).
The following Transact-SQL features are parsed, but ignored:

* The CLUSTERED/NONCLUSTERED keywords. Other than the IDKEY, which is implicitly treated as a clustered
index, InterSystems TSQL does not support clustered indices.

e The ON dbspace clause.
e The ASC/DESC keywords.
e The INCLUDE clause.

*  WITH clause options, such as WITH FILLFACTOR=n or WITH DROP_EXISTING=0ON. The comma-separated list
of WITH clause options can optionally be enclosed in parentheses.

*  The ON filegroup or IN dbspace-name clause.

The following Transact-SQL features are not currently supported:
e Sybase index types.

»  The IN dbspace clause.

* The NOTIFY integer clause.

e The LIMIT integer clause.

» Using a function name as an alternative to a field name.

The ALTER INDEX statement is not supported.

4.1.5 DROP INDEX

Deletes an index definition. You can delete a single index or a comma-separated list of indices, using either of the following
syntax forms:

DROP INDEX t abl enanme.i ndexnanme [,tabl enane.i ndexnane]

DROP INDEX i ndexnanme ON tabl ename [WITH (...)] [.,i ndexnanme ON tabl enane [WITH (...)]

tablename is the name of the table containing the indexed field. Specify tablename as described in Table References.
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indexname is the name of the index. It can be a regular identifier or a quoted identifier.

The WITH (...) clause, with any value within the parentheses, is accepted by syntax checking for compatibility, but is not
validated and performs no operation.

The IF EXISTS clause is not supported.

4.1.6 CREATE TRIGGER

Creates a statement-level trigger.

CREATE TRIGGER triggernane ON tabl ename

[WITH ENCRYPTION]

{FOR | AFTER | INSTEAD OF} {INSERT | DELETE | UPDATE}
[WITH APPEND]

[NOT FOR REPLICATION]

AS tsqgl _trigger_code

You can create a trigger for one event (INSERT), or for a comma-separated list of events (INSERT,UPDATE).
Specify tablename as described in Table References.

The FOR, AFTER, and INSTEAD OF keywords are synonyms. A trigger is always pulled after the event operation is per-
formed.

If there are multiple triggers for the same event or comma-separated list of events they are executed in the order the triggers
were created.

The following clauses are parsed but ignored: WITH ENCRYPTION, WITH APPEND, NOT FOR REPLICATION.
InterSystems TSQL does not support row-level triggers.

You cannot include a CREATE TRIGGER statement in CREATE PROCEDURE code.

4.1.7 DROP TRIGGER

Deletes a trigger definition.

DROP TRIGGER [owner .]tri gger name

4.1.8 CREATEVIEW

Creates a view definition.

CREATE VIEW [owner .]vi ewnane
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}]
AS sel ect _st at enent
[WITH CHECK OPTION]

A viewname must be a unique TSQL identifier. Specify viewname as described in Table References. If the view already
exists, an SQLCODE -201 error is issued. A viewname can be a delimited identifier. For example, CREATE VIEW
Sample.[Name/Age View].

By default, the view fields have the same names as the fields in the SELECT table. To specify different names for the view
fields, specify field aliases in the SELECT statement. These aliases are used as the view field names:
TSQL

CREATE VIEW NameAgeV
AS SELECT Name AS FullName,Age AS Years FROM Sample.Person
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You can specify a WITH clause with a single keyword or a comma-separated list of keywords. For example: WITH
SCHEMABINDING, ENCRYPTION, VIEW_METADATA. The ENCRYPTION, SCHEMABINDING, and VIEW_META-
DATA keywords are parsed but ignored.

The select_statement can only include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to
include all of the rows in the view, you can pair an ORDER BY clause with a TOP ALL clause. You can include a TOP
clause without an ORDER BY clause. However, if you include an ORDER BY clause without a TOP clause, an SQLCODE
-143 error is generated.

The select_statement can contain a UNION or UNION ALL.

The optional WITH CHECK OPTION clause prevents an update through the view that makes the record inaccessible to
that view. It does this by checking the WITH clause in the SELECT statement. WITH CHECK OPTION binds to InterSystems
SQL using the default of CASCADE.

The ALTER VIEW statement is not supported.

4.1.9 DROP VIEW

Deletes a view definition.
DROP VIEW vi ewnanme [,viewname2 [,---] ]

You can delete a single view, or a comma-separated list of views. Specify viewname as described in Table References.

DROP VIEW is not an all-or-nothing operation. It deletes existing views in the list of views until it encounters a nonexistent
view in the list. At that point the delete operation stops with an SQLCODE -30 error.

The IF EXISTS clause is not supported.

4.1.10 CREATE DATABASE

CREATE DATABASE syntax is parsed to provide compatibility. No functionality is provided.
CREATE DATABASE dbnane

Only this basic CREATE DATABASE syntax is parsed.
Sybase additional CREATE DATABASE clauses are not supported.
MSSQL attach a database and create a database snapshot syntax options are not supported.

The ALTER DATABASE statement is not supported.

4.1.11 DROP DATABASE

DROP DATABASE syntax is parsed to provide compatibility. No functionality is provided.

DROP DATABASE dbnane

4.2 Data Management Language (DML) Statements

»  TSQL can resolve an unqualified table name using a schema search path for a single DML statement in Dynamic SQL.
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*  TSQL cannot resolve an unqualified table name using a schema search path for multiple DML statements in Dynamic
SQL. This includes multiple statements such as an explicit BEGIN TRANSACTION followed by a single DML
statement.

4.2.1 DELETE

Deletes rows of data from a table. Both DELETE and DELETE ... FROM are supported:

DELETE FROM t abl enane WHERE condi ti on

DELETE FROM t abl enane FROM mat cht abl enane WHERE t abl enane.fi el dnanme =
mat cht abl enane.fi el dnane

Only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries).

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

DELETE sets the @ @ROWCOUNT system variable to the number of rows deleted, and the @ @IDENTITY system
variable to the IDENTITY value of the last row deleted.

The following options are not supported:
e MSSQL rowset functions.
e MSSQL OPTION clause.

4.2.2 INSERT

Inserts rows of data into a table. The following syntactic forms are supported:

INSERT [INTO] tabl enane (fiel dname[,fiel dnane2[,.--1]) VALUES (list_of _val ues)
INSERT [INTO] tabl enane (fiel dnanme[,fiel dname2[,..-]]) SELECT select |i st

The INTO keyword is optional. Specify tablename as described in Table References.

For the VALUES syntax, the VALUES keyword is mandatory for both MSSQL and Sybase. The (fieldname) list is optional
if the list_of_values lists all user-specified fields in the order defined in the table. If field names are specified, the
list_of_values is a comma-separated list of values that matches the list of field names in number and data type.

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

INSERT sets the @ @ROWCOUNT system variable to the number of rows inserted, and the @ @IDENTITY system
variable to the IDENTITY value of the last row inserted.

The following options are not supported:

e (fieldnane) DEFAULT VALUESor (fi el dnane) VALUES (DEFAULT). A field’s default value is used when
the field is not specified in the INSERT statement.

e« (fieldnane) EXECUTE procname.
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»  Sybase insert load option clauses: LIMIT, NOTIFY, SKIP, or START ROW ID.

»  Sybase insert select load option clauses: WORD SKIP, IGNORE CONSTRAINT, MESSAGE LOG, or LOG
DELIMITED BY.

»  Sybase LOCATION clause.
e MSSQL INSERT TOP clause.
e MSSQL rowset functions.

4.2.3 UPDATE

Updates values of existing rows of data in a table.

UPDATE t abl enane SET fi el dname=val ue [,fi el dnane2=val ue2[,...1]
[FROM t abl enane [,tabl ename2]] WHERE fi el dnane=val ue

UPDATE t abl enane SET fi el dnane=val ue[,fi el dnane2=val ue2[,-.-1]1
WHERE [t abl enanme.]fi el dname=val ue

These syntactic forms are vendor-specific:

e  Sybase: the optional FROM keyword syntax is used to specify an optional table (or joined tables) used in a condition.
Only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries).

e MSSQL.: the tablename.fieldname syntax is used to specify an optional table used in a condition.

The value data type and length must match the fieldname defined data type and length. A value can be a expression that
resolves to a literal value or it can be the NULL keyword. It cannot be the DEFAULT keyword.

Specify tablename as described in Table References.

UPDATE supports the use of a local variable on the left-hand-side of a SET clause. This local variable can be either instead
of a field name or in addition to a field name. The following example shows a SET to a field name, a SET to a local variable,
and a SET to both a field name and a local variable:

UPDATE tablle SET x=3,@v=b,@c=Count=Count+1

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

UPDATE sets the @ @ROWCOUNT system variable to the number of rows updated, and the @@IDENTITY system
variable to the IDENTITY value of the last row updated.

The following Dynamic SQL example shows a simple UPDATE operation:
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ObjectScript

SET sql=9

SET sql (1)="CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sqgl(2)="LastName VARCHAR(20) CONSTRAINT nonull_lIname NOT NULL,"

SET sql(3)="FirstName VARCHAR(20) DEFAULT =***TBD***")"

SET sql(4)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224, "Smith","John")"
SET sgl(5)="INSERT INTO #mytest(Myld,LastName) VALUES (1225, "Jones")"

SET sql(6)="INSERT INTO #mytest(Myld,LastName) VALUES (1226, "Brown")"

SET sql (7)="UPDATE #mytest SET FirstName="Fred" WHERE #mytest.LastName="Jones""
SET sql(8)="SELECT FirstName,LastName FROM #mytest ORDER BY LastName"

SET sql(9)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

WRITE status,!

SET result=statement.%Execute()

DO result.%Display()

The following options are not supported:
e Sybase ORDER BY clause.

e MSSQL OPTION clause.

e MSSQL TOP clause.

e MSSQL rowset functions.

4.2.4 READTEXT

Reads data from a stream field.
READTEXT tablename.fieldname textptr offset size

The MSSQL READTEXT statement returns stream data from a field of a table. It requires a valid text pointer value, which
can be retrieved using the TEXTPTR function, as shown in the following example:

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
READTEXT Sample.Person.Notes @ptrval 0 O

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The offset can be 0, a positive integer value, or NULL: 0 reads from the beginning of the text. A positive integer reads from
the offset position. NULL reads from the end of the text; that is, it completes successfully but returns no value.

The size can be 0 or a positive integer value, or NULL.: 0 reads all characters from the offset position to the end of the text.
A positive integer reads the size number of characters from the offset position. NULL completes successfully but returns
no value.

The MSSQL HOLDLOCK keyword is parsed but ignored.

4.2 5 WRITETEXT

Writes data to a stream field, replacing the existing data value.
WRITETEXT tablename.fieldname textptr value

The MSSQL WRITETEXT statement writes data to a stream field of a table. It requires a valid text pointer value, which
can be retrieved using the TEXTPTR function, as shown in the following example:
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TSQL

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
WRITETEXT Sample.Person.Notes @ptrval "This is the new text value®

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The MSSQL BULK keyword is not supported.
The MSSQL WITH LOG keyword phrase is parsed but ignored.

4.2.6 UPDATETEXT

Updates data in a stream field.
UPDATETEXT tablename.fieldname textptr offset deletelength value

The MSSQL UPDATETEXT statement updates stream data from a field of a table. It requires a valid text pointer value,
which can be retrieved using the TEXTPTR function. The following example updates the contents of the Notes stream
data field by inserting the word ‘New’ at the beginning of the existing data value:

TSQL

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
WRITETEXT Sample.Person.Notes @ptrval O O "New*

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The offset can be an integer value or NULL.: 0 inserts the value at the beginning of the existing text. NULL inserts the value
at the end of the existing text.

The deletelenth can be an integer value or NULL: 0 or NULL deletes no existing characters from the offset position before
inserting the value. A positive integer deletes that number of existing characters from the offset position before inserting
the value.

The MSSQL BULK keyword is not supported.
The MSSQL WITH LOG keyword phrase is parsed but ignored.

4.2.7 TRUNCATE TABLE

Deletes all of the data from a table.
TRUNCATE TABLE tablename

Deletes all rows from the specified table. Supported to the extent that it is a synonym for DELETE FROM table with no
WHERE clause. However, TRUNCATE TABLE does not reset the Rowld (ID), IDENTITY, or SERIAL (%Counter)
row counters. The InterSystems SQL TRUNCATE TABLE command does reset these counters.
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4.3 Query Statements

4.3.1 SELECT

SELECT [DISTINCT | ALL]
[ToP [A{ int | evar | 2 | ALL}D1]
select-item {, select-itent
[INTO #temptable]
[FROM table [[AS] t-alias] [,table2 [[AS] t-alias2]] ]
[[WITH] [ tablehint=val [,tablehint=val] D] ]
[WHERE condition-expression]
[GROUP BY scalar-expression]
[HAVING condition-expression]
[ORDER BY item-order-list [ASC | DESC] 1]

The above SELECT syntax is supported. The following features are not supported:
e TOP nn PERCENT or TOP WITH TIES

e OPTION

* WITH CUBE

e WITH ROLLUP

e GROUP BY ALL

e GROUP WITH

e COMPUTE clause

* FOR BROWSE

TOP nn specifies the number of rows to retrieve. Caché TSQL supports TOP nn with a integer, ?, local variable, or the

keyword ALL. The TOP argument can be enclosed in parentheses TOP (nn). These parentheses are retained, preventing

preparser substitution. If SET ROWCOUNT specifies fewer rows than TOP nn, the SET ROWCOUNT value is used. The
following Dynamic SQL example shows the use of TOP with a local variable:

ObjectScript

SET sql=3

SET sql (1)="DECLARE @var INT"

SET sql (2)="SET @var=4"

SET sql(3)=""SELECT TOP @var Name,Age FROM Sample.Person"
SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The select-item list can contain the following:

» field names, functions, and expressions

» the SIDENTITY pseudo-column name, which always returns the RowID value, regardless of the field name assigned

to the RowID.

» anasterisk: SELECT * is supported. The asterisk means to select all columns in the specified table. You can qualify

the asterisk with the table name or table alias: SELECT mytable.*.
e asubquery

» stream fields. A SELECT on a stream field returns the oref (object reference) of the opened stream object.
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An INTO clause can be used to copy data from an existing table into a new table. By default, SELECT creates the INTO
table with the same field names and data types as the fields selected from the source table. The INTO table cannot already
exist. This INTO table can be a permanent table, or a temporary table, as shown in the following examples:

TSQL

SELECT Name INTO Sample.NamesA_G FROM Sample.Person WHERE name LIKE "[A-G]%"

TSQL

SELECT Name INTO #MyTemp FROM Sample.Person WHERE name LIKE "[A-G]%"
SELECT * FROM #MyTemp

You can specify a different name for an INTO table field by using a field alias, as shown in the following example:

TSQL

SELECT Name AS Surname INTO Sample.NamesA_G FROM Sample.Person WHERE name LIKE "[A-G]%"

An INTO clause cannot be used when the SELECT is a subquery or is part of a UNION.

The FROM clause is not required. A SELECT without a FROM clause can be used to assign a value to a local variable,
as follows:

TSQL

DECLARE @myvar INT
SELECT @myvar=1234
PRINT @myvar

The FROM clause supports table hints with either of the following syntactic forms:

FROM tablename (INDEX=indexname)
FROM tablename INDEX (indexname)

Table hints can be optionally preceded by the WITH keyword, and optionally enclosed in parentheses. A list of table hints
can be separated by either commas or blank spaces. The following table hints are parsed but ignored: FASTFIRSTROW,
HOLDINDEX, NOLOCK, PAGLOCK, READCOMMITTED, READPAST, READUNCOMMITTED, REPEAT-
ABLEREAD, ROWLOCK, SERIALIZABLE, SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK.

A WHERE clause can use AND, OR, and NOT logic keywords. It can group multiple search conditions using parentheses.
The WHERE clause supports the following search conditions:

»  Equality comparisons: = (equals), <> (not equals), < (less than). > (greater than), <= (less than or equals), >= (greater
than or equals)

e ISNULL and IS NOT NULL comparisons

e« BETWEEN comparisons: Age BETWEEN 21 AND 65 (inclusive of 21 and 65); Age NOT BETWEEN 21 AND 65
(exclusive of 21 and 65). BETWEEN is commonly used for a range of numeric values, which collate in numeric order.
However, BETWEEN can be used for a collation sequence range of values of any data type. It uses the same collation
type as the column it is matching against. By default, string data types collate as not case-sensitive.

e IN comparisons: Home_State IN ("MA",*RI","CT")

e LIKE and NOT LIKE comparisons, specified as a quoted string. The comparison string can contain wildcards: _ (any
single character); % (any string); [abc] (any value in the set specified as a list of items); [a-c] (any value in the set
specified as a range of items). Caché TSQL does not support the ” wildcard. A LIKE comparison can include an
ESCAPE clause, such as the following: WHERE CategoryName NOT LIKE *D\_%" ESCAPE *"\".

e EXISTS comparison check: used with a subquery to test whether the subquery evaluates to the empty set. For example
SELECT Name FROM Sample.Person WHERE EXISTS (SELECT LastName FROM Sample.Employee

Caché Transact-SQL (TSQL) Migration Guide 29



TSQL Commands

WHERE LastName="Smith"). In this example, all Names are returned from Sample.Person if a record with Last-
Name="'Smith' exists in Sample.Employee. Otherwise, no records are returned from Sample.Person.

* ANY and ALL comparison check: used with a subquery and an equality comparison operator. The SOME keyword
is a synonym for ANY.

WHERE clause and HAVING clause comparisons are not case-sensitive.

A HAVING clause can be specified after a GROUP BY clause. The HAVING clause is like a WHERE clause that can
operate on groups, rather than on the full data set. HAVING and WHERE use the same comparisons. This is shown in the
following example:

TSQL

SELECT Home_State, MIN(Age) AS Youngest,
AVG(Age) AS AvgAge, MAX(Age) AS Oldest
FROM Sample.Person

GROUP BY Home_State

HAVING Age < 21

ORDER BY Youngest

The following Dynamic SQL example selects table data into a result set:

ObjectScript

SET sql=7

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql(2)="LastName VARCHAR(20),"

SET sql(3)="FirstName VARCHAR(20))"

SET sql (4)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224, "Smith","John")"
SET sql(5)=""INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1225, "Jones”, "Wilber®)"
SET sql (6)="SELECT FirstName,LastName FROM #mytest"

SET sql(7)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The following Dynamic SQL example selects a single column value into a local variable:

ObjectScript

SET sql=9

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"
SET sql (2)="LastName VARCHAR(20),"

SET sql(3)="FirstName VARCHAR(20))"

SET sql(4)=""INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224,"Smith*","*John®)"
SET sql(5)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1225, "Jones”, *Wilber®)"
SET sql (6)="DECLARE @nam VARCHAR(20)"

SET sql(7)=""SELECT @nam=LastName FROM #mytest"

SET sql(8)="PRINT @nam"

SET sql(9)=""DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

DO statement.%Execute()

An ORDER BY clause can specify ascending (ASC) or descending (DESC) order. The default is ascending. Unlike Caché
SQL, an ORDER BY may be used in subqueries and in queries that appear in expressions. For example:

TSQL

SET @var = (SELECT TOP 1 name FROM mytable ORDER BY name)
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4.3.2 JOIN

JOIN (equivalent to INNER JOIN), INNER JOIN, and LEFT JOIN supported. Parentheses can be used to rationalize
parsing of multiple joins.

Note:  Caché TSQL uses the following symbolic representations for outer joins:

=* |eft Outer Join
*= Right Outer Join

These correspond to Caché SQL usage. They are the exact opposite of the SQL Server and Sybase join syntax
(where =* is a Right Outer Join). It is strongly recommended that you represent outer joins using ANSI standard
keyword syntax, rather than this symbolic syntax.

4.3.3 UNION

A union of two (or more) SELECT statements is supported. Caché TSQL supports UNION and UNION ALL. If you
specify UNION ALL, only the first SELECT can specify an INTO table. This INTO table can be a defined table, or a
temporary table generated from the SELECT column list.

4.3.4 FETCH Cursor

The OPEN, FETCH, CLOSE, and DEALLOCATE commands are mainly supported. The following features are not
supported:

e OPEN/FETCH/CLOSE @local
»  FETCH followed by any qualifier other than NEXT (the qualifier can be omitted).
* Note that DEALLOCATE is supported, but that, by design, it generates no code.

4.4 Flow of Control Statements

44.11F

Executes a block of code if a condition is true.

The IF command is supported with four syntactic forms:
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IF...ELSE syntax:

IF condition
statement
[ELSE statement]

IF..THEN...ELSE single-line syntax:
IF condition THEN statement [ELSE statement]
ELSEIF...END IF syntax:

IF condition THEN

statements

{ELSEIF condition THEN statements}
[ELSE statements]

END IF

ELSE IF (SQL Anywhere) syntax:

IF condition THEN statement
{ELSE IF condition THEN statement}
[ELSE statement]

The first syntactic form is the TSQL standard format. No THEN keyword is used. You may use white space and line breaks
freely. To specify more than one statement in a clause you must use BEGIN and END keywords to demarcate the block of
statements. The ELSE clause is optional. This syntax is shown in the following example:

ObjectScript

SET sql=4

SET sql (1)="DECLARE @var INT"

SET sql(2)="SET @var=RANDQ)"

SET sql(3)="1F @var<.5 PRINT "The Oracle says No""
SET sql(4)="ELSE PRINT "The Oracle says Yes" "

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The second syntactic form is single-line syntax. The THEN keyword is required. A line break restriction requires that 1F
condition THEN statement all be on the same line, though only the first keyword of the statement must be on that
line. Otherwise, you may use white space and line breaks freely. To specify more than one statement in a clause you must
use BEGIN and END keywords to demarcate the block of statements. The ELSE clause is optional. This syntax is shown
in the following example:

ObjectScript

SET sql=3

SET sql (1)="DECLARE @var INT "

SET sql (2)="SET @var=RAND() "

SET sql(3)="IF @var<.5 THEN PRINT "No" ELSE PRINT "Yes®™ "
SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The third syntactic form provides an ELSEIF clause. You can specify zero, one, or more than one ELSEIF clauses, each
with its own condition test. Within an IF, ELSEIF, or ELSE clause you can specify multiple statements. BEGIN and END
keywords are permitted but not required. A line break restriction requires a line break between IF condition THEN
and the first statement. Otherwise, you may use white space and line breaks freely. The ELSE clause is optional. The END
IF keyword clause is required. This syntax is shown in the following example:
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ObjectScript

SET sql=14

SET sql (1)="DECLARE @var INT "

SET sql(2)="SET @var=RAND() "

SET sql(3)="IF @var<.2 THEN "

SET sql(4)="PRINT "The Oracle™ "

SET sgl(5)="PRINT "says No" "

SET sql(6)="ELSEIF @var<.4 THEN "

SET sql(7)="PRINT "The Oracle™ "

SET sql(8)="PRINT "says Possibly® *
SET sql (9)="ELSEIF @var<.6 THEN "

SET sql (10)="PRINT "The Oracle™ "

SET sgl(11)="PRINT "says Probably® *
SET sql (12)="ELSE PRINT "The Oracle® ™
SET sql(13)="PRINT "says Yes" "

SET sql(14)="END IF"

SET statement=##class(%SQL.Statement) .%New()
SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)
SET result=statement.%Execute()

DO result.%Display()

The fourth syntactic form is compatible with SQL Anywhere. It provides an ELSE IF clause (note space between keywords).
You can specify zero, one, or more than one ELSE IF clauses, each with its own condition test. To specify more than one
statement in a clause you must use BEGIN and END keywords to demarcate the block of statements. You may use white

space and line breaks freely. The ELSE clause is optional. This syntax is shown in the following example:

ObjectScript

SET sql=6

SET sql (1)="DECLARE @var INT "

SET sql(2)="SET @var=RAND() "

SET sql(3)="IF @var<.2 THEN PRINT "The Oracle says No""

SET sql (4)="ELSE IF @var<.4 THEN PRINT "The Oracle says Possibly™"
SET sgl(5)="ELSE IF @var<.6 THEN PRINT "The Oracle says Probably""
SET sql(6)="ELSE PRINT "The Oracle says Yes""

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

4.4.2 WHILE

Repeatedly executes a block of code while a condition is true.
WHILE conditi on BEGIN statenments END

The BREAK keyword exits the WHILE loop.
The CONTINUE keyword immediately returns to the top of the WHILE loop.
The BEGIN and END keywords are required if statements is more than one command.

The following example returns four result sets, each containing a pair of records in ascending ID sequence:

DECLARE @n INT;

SET @n=0;

WHILE @n<8 BEGIN
SELECT TOP 2 1D,Name FROM Sample.Person WHERE 1D>@n
SET @n=@n+2
END;
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4.4.3 CASE

Returns a value from the first match of multiple specified values.

CASE expressi on WHEN val ue THEN rt nval
[WHEN val ue2 THEN rtnval 2] [---]
[ELSE rtndefaul t]

END

The WHEN value must be a simple value. It cannot be a boolean expression.

The ELSE clause is optional. If no WHEN clause is satisfied and the ELSE clause is not provided, the CASE statement
returns expression as NULL.

For example:

SQL

SELECT CASE Name WHEN "Fred Rogers® THEN "Mr. Rogers*
WHEN "Fred Astare® THEN “Ginger Rogers*®
ELSE "Somebody Else® END
FROM Sample.Person

The returned value does not have to match the data type of expression.

CASE parses but ignores WHEN NULL THEN rtnval cases.

4.4.4 GOTO and Labels

Caché TSQL supports the GOTO command and labels. A label must be a valid TSQL identifier followed by a colon (;).
A GOTO reference to a label does not include the colon.

4.4 5 WAITFOR

Used to delay execution until a specific elapse of time or clock time.

WAITFOR DELAY ti meperi od
WAITFOR TIME cl ockti me

timeperiod is the amount of time to wait before resuming execution, expressed as ‘hh:mm[:ss[.fff]] Thus WAITFOR DELAY
"00:00:03" provides a time delay of 3 seconds; WAITFOR DELAY "00:03" provides a time delay of 3 minutes;
WAITFOR DELAY "00:00:00.9" provides a time delay of nine-tenths of a second. Note that the fractional second
divider is a period, not a colon.

clocktime is the time at which to resume execution, expressed as 'hh:mm[:ss[.fff]], using a 24-hour clock. Thus WAITFOR
TIME "14:35:00" resumes execution at 2:35pm; WAITFOR TIME *00:00:03" resumes execution at 3 seconds after
midnight.

The following options are not supported:

*  Sybase CHECK EVERY clause.

»  Sybase AFTER MESSAGE BREAK clause.
* MSSQL RECEIVE clause.
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4.5 Assignment Statements

4.5.1 DECLARE

Declares the data type for a local variable.
DECLARE @var [AS] datatype [ = initval ]
Only the form which declares local variables is supported; cursor variables are not supported. The AS keyword is optional.
Unlike InterSystems SQL, you must declare a local variable before you can set it.
@var can be any local variable name. Local variable names are not case-sensitive.

The datatype can be any valid data type, such as CHAR(12) or INT. TEXT, NTEXT, and IMAGE data types are not allowed.
For further details on data types, refer to the TSQL Constructs chapter of this document.

The optional initval argument allows you to set the initial value of the local variable. You can set it to a literal value or to
any of the following: NULL, USER, CURRENT DATE (or CURRENT_DATE), CURRENT TIME (or CURRENT_TIME),
CURRENT TIMESTAMP (or CURRENT_TIMESTAMP), or CURRENT_USER. The DEFAULT and CUR-
RENT_DATABASE keywords are not supported. Alternatively, you can set the value of a local value using the SET
command or the SELECT command. For example:

DECLARE @c INT;
SELECT @c=100;

You can specify multiple local variable declarations as a comma-separated list. Each declaration must have its own data
type and (optionally) its own initial value:

DECLARE @a INT=1,@b INT=2,@c INT=3

452 SET

Assigns a value to a local variable or an environment setting.

Used to assign a value to a local variable:

TSQL

DECLARE @var CHAR(20)
SET @var="hello world"

Used to set an environment setting:

TSQL
SET option ON
These settings have immediate effect at parse time, whether inside a stored procedure or not. The change persists until

another SET command alters it — even if the SET is made inside a stored procedure, and accessed outside the SP or in
another SP.

The following SET environment settings are supported:

e SET ANSI_NULLS Permitted values are SET ANSI_NULLS ON and SET ANSI_NULLS OFF. If ANSI_NULLS
OFF, a=bistrue if (a=b OR (aISNULL) AND (b ISNULL)). See the ANSI_NULLS TSQL system-wide configuration
setting.
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SET DATEFIRST integer specifies which day is treated as the first day of the week. Permitted values are 1 through
7, with 1=Monday and 7=Sunday. The default is 7.

SET IDENTITY_INSERT Permitted values are SET IDENTITY_INSERT ONand SET IDENTITY_INSERT OFF.
If ON, an INSERT statement can specify an identity field value. This variable applies exclusively to the current process
and cannot be set on linked tables. Therefore, to use this option you should define a procedure in TSQL to perform
both the SET IDENTITY_INSERT and the INSERT, then link the procedure and execute the procedure in Caché via
the gateway.

SET NOCOUNT Permitted values are SET NOCOUNT ON and SET NOCOUNT OFF. When set to ON, messages indi-
cating the number of rows affected by a query are suppressed. This can have significant performance benefits.

SET QUOTED_IDENTIFIER Permitted valuesare SET QUOTED_IDENTIFIER ONand SET QUOTED_ IDENTIFIER
OFF. When SET QUOTED_IDENTIFIER is on, double quotes are parsed as delimiting a quoted identifier. When SET
QUOTED_IDENTIFIER is off, double quotes are parsed as delimiting a string literal. The preferable delimiters for
string literals are single quotes. See the QUOTED_IDENTIFIER TSQL system-wide configuration setting.

SET ROWCOUNT Set to an integer. Affects subsequent SELECT, INSERT, UPDATE, or DELETE statements to limit
the number of rows affected. In a SELECT statement, ROWCOUNT takes precedence over TOP: if ROWCOUNT is
less than TOP, the ROWCOUNT number of rows is returned; if TOP is less than ROWCOUNT, the TOP number of
rows is returned. ROWCOUNT remains set for the duration of the process or until you revert it to default behavior.
To revert to default behavior, SET ROWCOUNT O. If you specify a fractional value, ROWCOUNT is set to the next
larger integer.

SET TRANSACTION ISOLATION LEVEL See Transaction Statements below.

The following SET environment setting is parsed, but ignored:

SET TEXTSIZE integer

4.6 Transaction Statements

Caché TSQL provides support for transactions, including named transaction names. It does not support savepoints. Distributed
transactions are not supported.

4.6.1 SETTRANSACTION ISOLATION LEVEL

Supported for the following forms only:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

READ VERIFIED and other options are not supported.

Sybase SET TRANSACTION ISOLATION LEVEL n integer option codes (0, 1, 2, 3) are not supported.

36
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4.6.2 BEGIN TRANSACTION

Begins the current transaction.

BEGIN TRAN [name]
BEGIN TRANSACTION [name]

Initiates a transaction. The optional name argument can be used to specify a named transaction, also known as a savepoint.
The name value must be supplied as a literal; it cannot be a variable.

You can issue multiple BEGIN TRANSACTION statements to create multiple nested transactions. You can use the
@@trancount special variable to determine the current transaction level. Each transaction level must be resolved by a
COMMIT statement or a ROLLBACK statement.

Note: A Data Management Language (DML) statement that is within an explicit transaction cannot resolve an unqualified
table name using a schema search path.

4.6.3 COMMIT TRANSACTION

Commits the current transaction.

COMMIT

COMMIT TRAN
COMMIT TRANSACTION
COMMIT WORK

These four syntactical forms are functionally identical; the COMMIT keyword, as specified below, refers to any of these
syntactical forms. A COMMIT statement commits all work completed during the current transaction, resets the transaction
level counter, and releases all locks established. This completes the transaction. Work committed cannot be rolled back.

If multiple BEGIN TRANSACTION statements have created nested transactions, COMMIT completes the current nested
transaction. A transaction is defined as the operations since and including the BEGIN TRANSACTION statement. A
COMMIT restores the transaction level counter to its state immediately prior to the BEGIN TRANSACTION statement
that initialized the transaction. You can use the @ @trancount special variable to determine the current transaction level.

A COMMIT cannot specify a named transaction. If you specify a transaction name as part of a COMMIT statement, the
presence of this name is parsed without issuing an error, but the transaction name is not validated and it is ignored.

Sybase performs no operation and does not issue an error if a COMMIT is issued when not in a transaction.

4.6.4 ROLLBACK TRANSACTION

Rolls back the specified transaction or all current transactions.

ROLLBACK [nane]

ROLLBACK TRAN [nane]
ROLLBACK TRANSACTION [nane]
ROLLBACK WORK [nane]

These four syntactical forms are functionally identical; the ROLLBACK keyword, as specified below, refers to any of
these syntactical forms. The optional name argument specifies a named transaction, as specified by a BEGIN
TRANSACTION name statement. The name value must be supplied as a literal; it cannot be a variable.

A ROLLBACK rolls back a transaction, undoing work performed but not committed, decrementing the transaction level
counter, and releasing locks. It is used to restore the database to a previous consistent state.
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A ROLLBACK rolls back all work completed during the current transaction (or series of nested transactions), resets
the transaction level counter to zero and releases all locks. This restores the database to its state before the beginning
of the outermost nested transaction.

A ROLLBACK name rolls back all work done since the specified named transaction (savepoint) and decrements the
transaction level counter by the number of savepoints undone. When all savepoints have been either rolled back or
committed and the transaction level counter reset to zero, the transaction is completed. If the named transaction does
not exist, or has already been rolled back, ROLLBACK rolls back the entire current transaction.

Sybase performs no operation and does not issue an error if a ROLLBACK is issued when not in a transaction.

4.6.5 SAVE TRANSACTION

The SAVE TRANSACTION [savepoint-name] statement is parsed but ignored in InterSystems TSQL. It performs no
operation.

4.6.6 LOCKTABLE

Enables the current user to lock a table.
LOCK TABLE tabl enane IN {SHARE | EXCLUSIVE} MODE [WAIT nunsecs | NOWAIT]

The LOCK TABLE statement locks all of the records in the specified table. You can lock a table in SHARE MODE or in
EXCLUSIVE MODE. The optional WAIT clause specifies the number of seconds to wait in attempting to acquire the table
lock. The LOCK TABLE statement immediately releases any prior lock held by the current user on the specified table.

LOCK TABLE is only meaningful within a transaction. It locks the table for the duration of the current transaction. When
not in a transaction, LOCK TABLE performs no operation.

Specify tablename as described in Table References. LOCK TABLE supports locking a single table; it does not support
locking multiple tables.

LOCK TABLE supports SHARE and EXCLUSIVE modes; it does not support WRITE mode.
LOCK TABLE does not support the WITH HOLD clause.

WAIT time is specified as an integer number of seconds; LOCK TABLE does not support WAIT time specified as clock
time.

4.7 Procedure Statements

The following standard Transact-SQL statements are supported.
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4.7.1 CREATE PROCEDURE / CREATE FUNCTION

Creates a named executable procedure.

CREATE PROCEDURE procname [[@var [AS] datatype [= | DEFAULT value] [,---11 [RETURNS
datatype] [AS] code

CREATE PROC procname [[@var [AS] datatype [= | DEFAULT value] [,---11 [RETURNS
datatype] [AS] code

CREATE FUNCTION procname [[@var [AS] datatype [= | DEFAULT value] [,---11 [RETURNS
datatype] [AS] code

You can return a single scalar value result from either a PROCEDURE or a FUNCT ION. OUTPUT parameters and default
values are also supported. These commands convert the return type from a TSQL type declaration to a Caché type
descriptor. Currently, result sets and tables can't be returned.

Supported as either CREATE PROCEDURE or CREATE PROC. CREATE FUNCTION is very similar to CREATE
PROCEDURE, but the routine type argument value is "FUNCTION", rather than "PROCEDURE".

*  Any statements can be used in a CREATE FUNCTION.

e The RETURN keyword is allowed in a CREATE PROCEDURE. If a procedure completes without invoking a
RETURN or RAISERROR statement, it returns an integer value of 0.

* The WITH EXECUTE keyword clause is allowed in a CREATE PROCEDURE and CREATE FUNCTION. It
must appear after the RETURN keyword.

A CREATE PROCEDURE can specify a formal parameter list. Formal parameters are specified as a comma-separated
list. Enclosing parentheses are optional. The AS keyword between the parameter variable and its data type is optional.
Optionally, you can use the DEFAULT keyword or = symbol to assign a default value to a formal parameter; if no actual
parameter value is specified, this default value is used. In TSQL an input formal parameter has no keyword indicator; an
output formal parameter can be specified by the OUTPUT keyword following the data type. Alternatively, these formal
parameters can be prefaced by the optional keywords IN, OUT, or INOUT.

The following example shows the creation of the procedure AvgAge with two formal parameters:

TSQL

CREATE PROCEDURE AvgAge @min INT, @max INT
AS

BEGIN TRY
SELECT AVG(Age) FROM Sample.Person
WHERE Age > @min AND Age < @max
END TRY
BEGIN CATCH
PRINT “error!*
END CATCH

The following statement executes this procedure. In this case, the specified actual parameter values limit the averaging to
ages 21 through 65:

TSQL

EXEC AvgAge 20,66

The following example creates a procedure that returns the results of a division operation. The RETURNS keyword limits
the number of decimal digits in the return value:

CREATE PROCEDURE SQLUser.MyDivide @a INTEGER, @b INTEGER, OUT @rtn INTEGER RETURNS DECIMAL(2,3)
BEGIN

SET @rtn = @a / @b;

RETURN @rtn;

END
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The following statement executes this procedure:

TSQL

SELECT SQLUser.MyDivide(7,3)

The following example shows the creation of procedure OurReply:

TSQL

CREATE PROCEDURE OurReply @var CHAR(16) DEFAULT "No thanks®" AS PRINT @var

When executed without a parameter, OurReply prints the default text (“No thanks™); when executed with a parameter
OurReply prints the actual parameter value specified in the EXEC statement.

Note that CREATE FUNCTION and CREATE PROCEDURE cannot be issued from a stored procedure.

4.7.1.1 Importing a CREATE PROCEDURE

If imported TSQL source contains a CREATE PROC statement, then a class method containing the CREATE PROC source
will be created. This class method is either placed in an existing class, or in a new class whose name is based on the schema
and procedure name.

If the procedure already exists, the existing implementation is replaced. If a class matching the class name generated from
the schema and procedure already exists, it is used if it was previously generated by the TSQL utility. If not, then a unique
class name is generated, based on the schema and procedure name. The schema defaults to the default schema defined in
the system configuration. The resulting class is compiled once the procedure has been successfully created.

If logging is requested, the source statements are logged along with the name of the containing class, class method, and the
formal arguments generated. Any errors encountered by the process are also reported in the log. If errors are detected during
CREATE PROC processing and a new class was generated, that class is deleted.

4.7.2 ALTER FUNCTION

Supported. The WITH EXECUTE keyword clause is supported.

4.7.3 DROP FUNCTION

Deletes a function or a comma-separated list of functions.
DROP FUNCTION funcname [,funcname2 [,---] 1

The IF EXISTS clause is not supported.

4.7.4 DROP PROCEDURE

Deletes a procedure or a comma-separated list of procedures.

DROP PROCEDURE [IF EXISTS] procnane [,procnane2 [,

---11
DROP PROC [IF EXISTS] procnane [,procname2 [,---]1 1]

The optional IF EXISTS clause suppresses errors if you specify a non-existent procname. If this clause is not specified, an
SQLCODE -362 error is generated if you specify a non-existent procname. DROP PROCEDURE is an atomic operation;
either all specified procedures are successfully deleted or none are deleted.
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4.7.5 RETURN

Halts execution of a query or procedure. Can be argumentless or with an argument. Argumentless RETURN must be used
when exiting a TRY or CATCH block. When returning from a procedure, RETURN can optionally return an integer status
code. If you specify no status code, it returns the empty string ("").

4.7.6 EXECUTE

Executes a procedure, or executes a string of TSQL commands.

EXECUTE [@rtnval = ] procnanme [paranil [,param?2 [,---71 1 1
EXECUTE ("TSQ._conmmands ™)

EXEC is a synonym for EXECUTE.

« EXECUTE procname can be used to execute a stored procedure. Parameters are supplied as a comma-separated list.
This parameter list is not enclosed in parentheses. Named parameters are supported.

EXECUTE procname can optionally receive a RETURN value, using the EXECUTE @rtn=Sample._MyProc
paraml,param2 syntax.

EXECUTE procname s similar to the CALL statement, which can also be used to execute a stored procedure. CALL
uses an entirely different syntax.
TSQL

CREATE PROCEDURE Sample.AvgAge @min INT, @max INT
AS
SELECT Name,Age,AVG(Age) FROM Sample.Person
WHERE Age > @min AND Age < @max
RETURN 99

TSQL

DECLARE @rtn INT;
EXECUTE @rtn=Sample.AvgAge 18,65
SELECT @rtn

If the specified procedure does not exist, an SQLCODE -428 error (Stored procedure not found) is issued.

The WITH RECOMPILE clause is parsed, but ignored.

The following EXECUTE procname features are not supported: procedure variables, and procedure numbers (i.e.
I;nl).

« EXECUTE (TSQL commands) can be used to execute dynamic SQL. The TSQL command(s) are enclosed in paren-
theses. The TSQL commands to be executed are specified as a string enclosed in single quote characters. A TSQL
command string can contain line breaks and white space. Dynamic TSQL runs in the current context.

TSQL

EXECUTE("SELECT TOP 4 Name,Age FROM Sample.Person®)
or

TSQL

DECLARE @DynTopSample VARCHAR(200)
SET @DynTopSample="SELECT TOP 4 Name,Age FROM Sample.Person*
EXECUTE (@DynTopSample)
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The following example shows an EXECUTE that returns multiple result sets:

TSQL

EXECUTE("SELECT TOP 4 Name FROM Sample.Person
SELECT TOP 6 Age FROM Sample.Person®)

4.7.7 CALL

Executes a procedure.
[@var = ] CALL procnanme ([paranml [,paran?2 [,---1 1 D

The CALL statement is functionally identical to the EXECUTE procname statement. It differs syntactically.
The procedure parameters are optional. The enclosing parentheses are mandatory.

The optional @var variable receives the value returned by the RETURN statement. If execution of the stored procedure
does not conclude with a RETURN statement, @var is set to 0.

The following example calls a stored procedure, passing two input parameters. It receives a value from the procedure’s
RETURN statement:

DECLARE @rtn INT
@rtn=CALL Sample.AvgAge(18,34)
SELECT @rtn

4.8 Other Statements

4.8.1 CREATE USER

CREATE USER creates a new user.

CREATE USER user nane

Executing this statement creates a Caché user with its password set to the specified user name. You can then use the Man-
agement Portal System Administration interface to change the password. You cannot explicitly set a password using CREATE
USER.

User names are not case-sensitive. InterSystems TSQL and InterSystems SQL both use the same set of defined user names.
Caché issues an error message if you try to create a user that already exists.

By default, a user has no privileges. Use the GRANT command to give privileges to a user.
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4.8.2 GRANT

Grants privileges to a user or list of users.

GRANT priviligelist ON tablelist TO granteeli st

GRANT EXECUTE ON proclist TO granteeli st

»  privilegelist: a single privilege or a comma-separated list of privileges. The available privileges are SELECT, INSERT,
DELETE, UPDATE, REFERENCES, and ALL PRIVILEGES. ALL isasynonym for ALL PRIVILEGES. The ALTER
privilege is not supported directly, but is one of the privileges granted by ALL PRIVILEGES.

» tablelist: a single table name (or view name) or a comma-separated list of table names and view names. Specify a table
name as described in Table References.

»  proclist: asingle SQL procedure or a comma-separated list of SQL procedures. All listed procedures must exist, otherwise
an SQLCODE -428 error is returned.

» granteelist: a single grantee (user to be assigned privileges) or a comma-separated list of grantees. A grantee can be a
user name, "PUBLIC" or "*". Specifying * grants the specified privileges to all existing users. A user created using
CREATE USER initially has no privileges. Specifying a non-existent user in a comma-separated list of grantees has
no effect; GRANT ignore that user and grants the specified privileges to the existing users in the list.

Specifying privileges for specified fields is not supported.
The WITH GRANT OPTION clause is parsed but ignored.

Granting a privilege to a user that already has that privilege has no effect and no error is issued.

4.8.3 REVOKE

Revokes granted privileges from a user or list of users.

REVOKE privil egelist ON tablelist FROM granteelist CASCADE

REVOKE EXECUTE ON proclist FROM granteeli st

Revoking a privilege from a user that does not have that privilege has no effect and no error is issued.

See GRANT for further details.

4.8.4 PRINT

Displays the specified text to the current device.
PRINT expression [,expression2 [,---1]

An expression can be a literal string enclosed in single quotes, a number, or a variable or expression that resolves to a string
or a number. You can specify any number of comma-separated expressions.

PRINT does not support the Sybase arg-list syntax. A placeholder such as %3! in an expression string is not substituted
for, but is displayed as a literal.

Caché Transact-SQL (TSQL) Migration Guide 43



TSQL Commands

4.8.5 RAISERROR

RAISERROR err_num "message”
RAISERROR(error,severity,state,arg) WITH LOG

Both syntactic forms (with and without parentheses) are supported. Both spellings, RAISERROR and RAISEERROR, are
supported and synonymous. RAISERROR sets the value of @ @ERROR to the specified error number and error message
and invokes the %SYSTEM.Error.FromXSQL () method.

The Sybase-compatible syntax (without parentheses) requires an err_num error number, the other arguments are optional.

TSQL

RAISERROR 123 "this is a big error”
PRINT @@ERROR

A RAISERROR command raises an error condition; it is left to the user code to detect this error. However, if RAISERROR
appears in the body of a TRY block, it transfers control to the paired CATCH block. If RAISERROR appears in a CATCH
block it transfers control either to an outer CATCH block (if it exists) or to the procedure exit. RAISERROR does not
trigger an exception outside of the procedure. It is up to the caller to check for the error.

When an AFTER statement level trigger executes a RAISEERROR, the returned %msg value contains the err_num and
message values as message string components separated by a comma: %msg="err_num,message".

The Microsoft-compatible syntax (with parentheses) requires an error (either an error number or a quoted error message).
If you do not specify an error number, it defaults to 50000. The optional severity and state arguments take integer values.
TSQL

RAISERROR("this is a big error®,4,1) WITH LOG
PRINT @@ERROR

4.8.6 UPDATE STATISTICS

Optimizes query access for a specified table. The specified table can be a standard table or a # temporary table (see CREATE
TABLE for details.) Caché passes the specified table name argument to the $SYSTEM.SQL.TuneTable() method for
optimization. UPDATE STATISTICS calls $SYSTEM.SQL.TuneTable() with update=1 and display=0. The returned
%msg is ignored and KeepClassUpToDate defaults to ‘false’. All other UPDATE STATISTICS syntax is parsed for
compatibility only and ignored. In a batch or stored procedure, only the first UPDATE STATISTICS statement for a given
table generates a call to $SYSTEM.SQL.TuneTable(). For further details, see Tune Table in SQL Optimization Guide.

If the TSQL TRACE configuration option is set, the trace log file will contain records of the tables that were tuned.

4.8.7 USE database

Supported, also an extension: USE NONE to select no database. Effective at generation-time, persists as long as the transform
object exists (e.g. in the shell or loading a batch).

4.9 InterSystems Extensions

TSQL supports a number of InterSystems extensions to Transact-SQL. To allow for the inclusion of these InterSystems-
only statements in portable code, Caché TSQL also supports a special form of the single-line comment: two hyphens followed
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by a vertical bar. This operator is parsed as a comment by Transact-SQL implementations, but is parsed as an executable
statement in Caché TSQL. For further details, refer to the Comments section of the TSQL Constructs chapter of this document.

TSQL includes the following InterSystems extensions:

4.9.1 CACHE

This extension allows you to include Caché ObjectScript code or Caché SQL code in the compiled output. It takes one or
more lines of InterSystems code inside curly brackets.

The following Dynamic SQL example uses CACHE because TSQL does not support the InterSystems SQL %STARTSWITH
predicate:

TSQL

SET myquery = "CACHE {SELECT Name FROM Sample.Person WHERE Name %STARTSWITH "A"}"
SET tStatement = ##class(%SQL.Statement) .%New(, ,"'Sybase'™)
WRITE "language mode set to ",tStatement.%Dialect,!
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()
WRITE !,"End of data"

The following Dynamic SQL example uses CACHE to include Caché ObjectScript code in a TSQL routine:

TSQL

SET newtbl=2
SET newtbl (1)="CREATE TABLE Sample.MyTest(Name VARCHAR(40),Age INTEGER)"
SET newtbl (2)=""CACHE {DO $SYSTEM.SQL.TuneTable(''"'Sample.MyTest"™") WRITE ""TuneTable Done'"*,61}"
SET tStatement = ##class(%SQL.Statement) .%New(, ,''Sybase'™)
WRITE "language mode set to ",tStatement.%Dialect,!
SET qStatus = tStatement.%Prepare(.newtbl)
IF gStatus®=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()
WRITE !,"End of data"

Note that in the above example the WRITE command specifies a new line (,!); this is necessary because the CACHE
extension does not issue a new line following execution.

4.9.2 IMPORTASQUERY

This extension forces a stored procedure to be imported as a query rather than as a class method. This is useful for stored
procedures that contain only an EXEC statement, because Caché cannot otherwise determine at import whether such a
stored procedure is a query or not.
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Settings are used to tailor the behavior of the compiler and colorizer. The TSQL configuration options are part of the standard
Caché configuration.

InterSystems Caché supports the following TSQL settings:

DIALECT

ANSI_NULLS

CASEINSCOMPARE (String comparison is not case-sensitive.)
QUOTED_IDENTIFIER

TRACE

These values are used to set the corresponding ~%SYS("tsql","SET",...) global array values.

For further details, see TSQL Compatibility in the Configuration Parameter File Reference.

You can view and modify these settings using the Caché Management Portal or the %SYSTEM.TSQL Get and Set class
methods.

Go into the Caché Management Portal. Go to System Administration, Configuration, SQL and Object Settings, TSQL
Compatibility. Here you can specify the DIALECT (Sybase or MSSQL, default is Sybase), and turn on or off the
ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings.

If you change one or more configuration options, the TSQL Settings heading will be followed by an asterisk, indicating
that changes have been made but not yet saved. You must press the Save button for configuration changes to take
effect.

Invoke the $SYSTEM.TSQL.CurrentSettings() method to display the settings:

ObjectScript

DO ##class(%SYSTEM.TSQL) .CurrentSettings()

You can use %SYSTEM.TSQL class methods to get or set the ANSI_NULLS, CaselnsCompare, and Quoted_ldentifier
settings. These methods take a dialect string and change both the current dialect and the specified setting. There are
not separate ANSI_NULLS, CaselnsCompare, and Quoted_ldentifier settings for each TSQL dialect. For example,
changing CaselnsCompare changes this configuration setting for both Sybase and MSSQL.
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5.1 DIALECT

The DIALECT configuration option allows you to select the Transact-SQL dialect. The available options are Sybase and
MSSQL. The default is Sybase. This option is set system-wide using the Caché Management Portal or by using the following
method:

ObjectScript

WRITE ##class(%SYSTEM.TSQL) .SetDialect(*'Sybase')

This method returns the prior Dialect setting.
If DIALECT=MSSQL: a DECLARE statement binds host variable values.
If DIALECT=Sybase: host variable values are refreshed for each cursor OPEN.

5.2 ANSI_NULLS

The ANSI_NULLS configuration option allows you to specify whether comparisons to a null value return true or false.
The default is OFF.

*  ON: All comparisons to a null value evaluate to Unknown. For example, Age = Null returns false, even when Age is
null. Null is unknown, so it is false/unknown to specify null=null.

»  OFF: Comparisons of a non-Unicode value to a null value evaluates to True if both values are null. For example: Age
= Null returns true for null values for Age.

You can determine the current ANSI_NULLS setting using %SYSTEM.TSQL class methods, or from the TSQLAnsiNulls
property, as follows:
ObjectScript

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLAnsiNulls

You can activate (ON) or deactivate (OFF) ANSI_NULLS system-wide using the following method:
ObjectScript
WRITE ##class(%SYSTEM.TSQL) .SetAnsiNul ls("'Sybase",""OFF")

This method returns the prior ANSI_NULLS setting.

5.3 CASEINSCOMPARE

The CASEINSCOMPARE setting specifies non-case-sensitive equality comparisons, such as 'A'="a". The default is OFF.
If this option is set to ON, the comparison operators = and <> operate without regard to case in most contexts. However,
there are a few contexts where such insensitivity does not apply:

e Where a comparison is the ON condition for a JOIN.

*  Where either operand is a subquery.
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These exceptions exist because InterSystems SQL does not accept the %SQLUPPER operator in these contexts.
You can determine the current CASEINSCOMPARE setting using %SYSTEM.TSQL class methods, or from the
TSQLCaselnsCompare property, as follows:

ObjectScript

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLCaselnsCompare

You can activate (ON) or deactivate (OFF) CASEINSCOMPARE system-wide using the following method:

ObjectScript

WRITE ##class(%SYSTEM.TSQL) .SetCaselnsCompare(*'Sybase","OFF')

This method returns the prior CASEINSCOMPARE setting.

5.4 QUOTED _IDENTIFIER

The QUOTED_IDENTIFIER configuration option allows you to select whether quoted identifiers are supported. The
default is OFF (not supported). This option is set using the Caché Management Portal. When QUOTED_IDENTIFIER is
on, double quotes are parsed as delimiting an identifier. When QUOTED _IDENTIFIER is off, double quotes are parsed
as alternative delimiters for string literals. The preferable delimiters for string literals are single quotes.

You can determine the current QUOTED _IDENTIFIER setting using %SYSTEM.TSQL class methods, or from the
TSQLQuotedldentifier property, as follows:
ObjectScript

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLQuotedldentifier

You can activate (ON) or deactivate (OFF) QUOTED _IDENTIFIER system-wide using the following method:

ObjectScript

WRITE ##class(%SYSTEM.TSQL) .SetQuotedldentifier(*'Sybase™,"OFF™)

This method returns the prior QUOTED_IDENTIFIER setting.

5.5TRACE

The TRACE configuration option creates a log file of the execution of TSQL procedures. When a TSQL stored procedure
(or method) is compiled with TRACE active, running a TSQL procedure will log trace messages to the active tsql log file.

A separate tsqgl trace log file is created for each process from which TSQL procedures are run. Trace is activated system-
wide; trace log files are namespace-specific.

TRACE is not set using the Management Portal. It You can activate (1) or deactivate (0) TRACE system-wide using the
following ObjectScript command:
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ObjectScript

SET ~%SYS('tsql'," " TRACE™)=1
To return the current trace setting:

ObjectScript

WRITE ~%SYS('tsql™,"TRACE™)

The TRACE log file is created in your Caché instance in the mgr directory, in the subdirectory for the current namespace.
It is named using the current process number. For example: Cache/mgr/user/ tsql16392.1og.
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6.1 Supported Functions

The following TSQL functions are implemented.

6.1.1 ABS

ABS(num)

Returns the absolute value of num. Thus both 123.99 and —123.99 return 123.99.

6.1.2 ACOS

ACOS(float)

Arc cosine: returns the angle in radians whose cosine is float. Thus 1 returns 0.

6.1.3 ASCI

ASCI1(char)

Returns the integer value corresponding to the first character in string char. Thus, ASCI1(*A*™) returns 65.

ASCII is functionally identical to UNICODE. The reverse of this function is CHAR.

6.1.4 ASIN

ASIN(float)

Arc sine: returns the angle in radians whose sine is float. Thus 1 returns 1.570796326...

6.1.5 ATAN

ATAN(float)

Arc tangent: returns the angle in radians whose tangent is float. Thus 1 returns .785398163...
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6.1.6 AVG

AVG(numfield)
AVG(DISTINCT numfield)

Aggregate function: used in a query to return the average of the values in the numfield column. For example, SELECT
AVG(Age) FROM Sample.Person. AVG(DISTINCT numfield) averages the number of unique values in the field column.
Fields with NULL are ignored.

6.1.7 CAST

CAST(expression AS datatype)

Returns the expression converted to the specified datatype. CAST can be used with any supported data type. For further
details, refer to Data Types in the Caché SQL Reference.

When expression is a date value string, such as '2004-11-23' and datatype is TIMESTAMP or DATETIME, a time value
of '00:00:00' is supplied.

When expression is a time value string, such as '1:35PM" and datatype is TIMESTAMP or DATETIME, the time is converted
to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the default date
value of '1900-01-01" is supplied. Thus '1:35PM" is converted to '1900-01-01 13:35:00'".

When expression is a date value string, such as '2004-11-23' and datatype is DATE, the date is returned in Caché
$HOROLOG date format, such as 60703 (March 14, 2007).

Caché TSQL does not support data type XML. However, instead of generating an error during compilation, CAST(x AS
XML) in SQL mode generates CAST(x AS VARCHAR(32767)). In procedure mode, CAST(x AS XML) does not generate
any conversion.

See CONVERT.

6.1.8 CEILING

CEILING(num)

Returns the closest integer greater than or equal to num. Thus 123.99 returns 124, —-123.99 returns —-123.

The Sybase CEIL synonym is not supported.

6.1.9 CHAR

CHAR(num)

Returns the character corresponding to the integer value num. Thus CHAR(65) returns A.

CHAR is functionally identical to NCHAR. The reverse of this function is ASCII.

6.1.10 CHAR_LENGTH / CHARACTER_LENGTH

CHAR_LENGTH(string)
CHARACTER_LENGTH(string)

Returns the number of characters in string.
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6.1.11 CHARINDEX

CHARINDEX(seekstring, target[,startpoint])

Returns the position in target (counting from 1) corresponding to first character of the first occurrence of seekstring. You
can use the optional startpoint integer to specify where to begin the search. The return value counts from the beginning of
target, regardless of the startpoint. If startpoint is not specified, specified as 0, 1, or as a negative number, target is searched
from the beginning. CHARINDEX returns 0 if seekstring is not found.

6.1.12 COALESCE

COALESCE(expressionl,expression2,...)

Returns the first non-null expression from the specified list of expressions.

6.1.13 COL_NAME

COL_NAME(object_id,column_id)

Returns the name of the column. Can be used in procedure code or trigger code.
TSQL supports the two-argument form of this function. It does not support a third argument.

The following example returns the column name of the 4th column of Sample.Person:

ObjectScript

SET sqgl=2

SET sql(1)=""SELECT "column name®"=COL_NAME(id,4) FROM Sample.Person"
SET sql (2)="WHERE i1d=0BJECT_ID("Sample.Person®)"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

COL_NAME does not support the Sybase third argument.

6.1.14 CONVERT

CONVERT (datatype,expression [,style])

Returns the expression converted to the specified datatype.

When datatype is BIT and expression is a boolean value: if the input value is a non-zero number, the result is 1. if the input
value is 0, the result is 0. If the input value is the string 'TRUE' (case insensitive), the result is 1. If the input value is the
string 'FALSE' (case insensitive), the result is 0. If the input value is NULL, the result is NULL. Any other input value
generates an SQLCODE -141 error.

When datatype is datetime or timestamp and expression is a date value string, such as '2004-11-23', a time value of '00:00:00'
is supplied. When expression is a time value string, such as '1:35PM' and datatype is datetime or timestamp, the time is
converted to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the
default date value of '1900-01-01" is supplied. Thus '1:35PM'" is converted to '1900-01-01 13:35:00'".
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CONVERT supports the DATETIME?2 data type. Caché maps DATETIME?2 to system-defined DDL mapping
%L ibrary. TimeStamp. This mapping is supplied with new installs; if you are using an upgrade install, you may need to
create this mapping.

The optional style argument is used to specify a date/time format when converting a datetime or timestamp value to a string.
By specifying various style codes you can return a dates and times in a variety of different formats. The available style
codes are 100 through 114, 120, 121, 126, 130, and 131 (the corresponding codes 0 through 7 and 10 through 12 return the
same values with two-digit years); The default style for a datetime is 0:

mon dd yyyy hh:mmAM

The 20 & 21 (120 & 121) style codes return the ODBC timestamp format; 20 truncates to whole seconds, 21 returns fractional
seconds:

yyyy-mm-dd hh:mm:ss.fff

For further details, refer to the functionally identical InterSystems SQL CONVERT function in the InterSystems SQL Ref-
erence.

See CAST.

6.1.15 COS

COS(float)

Cosine: returns the cosine of the angle specified in float. Thus 1 returns .540302305...

6.1.16 COT

COT(Float)

Cotangent: returns the cotangent of the angle specified in float. Thus 1 returns .64209261593...

6.1.17 COUNT

COUNT(Field)
COUNT(DISTINCT Field)
COUNT(*)
COUNT(1)

Aggregate function: used in a query to return the count of the values in the field column. Fields with NULL are not counted.
For example, SELECT COUNT(Name) FROM Sample.Person. COUNT(*) and COUNT(1) are synonyms, they count
all rows. COUNT(DISTINCT field) counts the number of unique values in the field column. Fields with NULL are not
counted.

6.1.18 CURRENT_DATE

CURRENT_DATE
CURRENT DATE

Returns the current local date in the following format:
yyyy-mm-dd

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.
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This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

6.1.19 CURRENT_TIME

CURRENT_TIME
CURRENT TIME

Returns the current local time in the following format:

hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.
The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

6.1.20 CURRENT_TIMESTAMP

CURRENT_T IMESTAMP
CURRENT TIMESTAMP

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

6.1.21 CURRENT_USER

CURRENT_USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.1.22 DATALENGTH

DATALENGTH(expression)

Returns an integer specifying the number of bytes used to represent expression. Thus ‘fred' returns 4, and +007.500 returns
3.

6.1.23 DATEADD

DATEADD(code, num,date)

Returns the value of date modified by adding the interval specified in code the num number of times. The date can be a
date, time, or date/time string in a variety of formats. You can specify any of the following code values, either the abbrevi-
ation (left column) or the name (right column):
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vy Year

aq Quarter
mm Month

dy DayofYear
dd Day

dw, w Weekday
wk Week

hh Hour

mi Minute

Ss Second
ms Millisecond

Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.
The value returned by DATEADD always includes both date and time in the format:

yyyy-mm-dd hh:mm:ss.n

Fractional seconds are only returned if the source contained fractional seconds.
If a date is not specified (that is, if date contains only a time value), it defaults to 1/1/1900.

If a time is not specified in date, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock.

6.1.24 DATEDIFF

DATEDIFF(code,startdate,enddate)

Returns the number of code intervals between startdate and enddate. The two dates can be a date, a time, or a date/time
string. in the following format:

yyyy-mm-dd hh:mm:ss.n

You can specify any of the following code values, either the abbreviation (left column) or the name (right column):

yy Year

mm Month

dd Day

dw, w Weekday
wk Week

hh Hour

mi Minute

SS Second

ms Millisecond
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Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.

If a date is not specified (that is, if startdate or enddate contains only a time value), it defaults to 1/1/1900.

If a time is not specified in startdate or enddate, it defaults to 00:00:00.

6.1.25 DATENAME

DATENAME (code,date)

Returns the value of the part of the date specified by code as a string. The date can be a date, time, or date/time string in a
variety of formats. date must be specified as a quoted string; code permits, but does not require enclosing quotes. Available

code values are:

YYYY. Yy

year

ad. q

quarter

mm, m

month

dy, y
dayofyear
dd, d

day

wk, ww

week

dw, w

weekday

hh

hour
mi, n
minute

SS, S

second

ms

millisecond

Year. Returns a four-digit year. If a two-digit year is
specified, DATENAME supplies '19' as first two digits.

Quarter. Returns an integer 1 through 4.

Month. Returns the full name of the month. For
example, 'December’.

Day of Year. Returns an integer count of days 1
through 366.

Day of Month. Returns an integer count 1 through 31.

Week of Year. Returns an integer count 1 through 53.

Day of Week. Returns the number of the day of the
week, counting from Sunday. For example, 3 is
Tuesday.

Hour. Returns the hour of the day (24—hour clock),
an integer 0 through 23.

Minute. Returns an integer 0 through 59.

Second. Returns a decimal number 0 through 59
which may have a fractional part representing
milliseconds.

Millisecond. Returns the fractional part of a second
as an integer.
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Code values are not case-sensitive.
If a date is not specified, it defaults to 1/1/1900. Two-digit years default to 19xx.

If a time is not specified, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock. Seconds are always
returned with fractional seconds, if fractional seconds are defined. Milliseconds are returned as an integer, not a decimal
fraction.

6.1.26 DATEPART

DATEPART (code ,date)

Returns the value of the part of the date specified in code as an integer. The date can be a date, time, or date/time string in
a variety of formats. Available code values are listed in DATENAME.

6.1.27 DAY

DAY (date)

Returns the day portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date must contain a date component. The date separator must be a hyphen (-).

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).

6.1.28 DB_NAME

DB_NAMEQ)

Returns the current namespace name. No argument is permitted.

6.1.29 DEGREES

DEGREES(Float)

Converts an angle measurement in radians to the corresponding measurement in degrees.

6.1.30 ERROR_MESSAGE

When invoked from within a CATCH block, returns the current error message. Otherwise, returns NULL.

6.1.31 ERROR_NUMBER

When invoked from within a CATCH block, returns the current SQLCODE error. Otherwise, returns NULL.

6.1.32 EXEC

EXEC(@var)

Executes dynamic SQL at runtime, as shown in the following example:
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TSQL

DECLARE @dyncode VARCHAR(200)
SELECT @dyncode="SELECT TOP 4 Name,Age FROM Sample.Person*
EXEC(@dyncode)

Compare this dynamic execution with the EXECUTE command that executes a stored procedure.

6.1.33 EXP

EXP(num)

Returns the exponential of num. This is the e constant (2.71828182) raised to the power of num. Thus EXP(2) returns
7.3890560989.

6.1.34 FLOOR

FLOOR(num)

Returns the closest integer less than or equal to num. Thus 123.99 returns 123, —123.99 returns —124.

6.1.35 GETDATE

GETDATEQ)

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.1.36 GETUTCDATE

GETUTCDATE()

Returns the current UTC (Greenwich Mean Time) date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.1.37 HOST_NAME

HOST_NAMEQ)

Returns the system name of the current host system.
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6.1.38 INDEX_COL

INDEX_COL(table_name, index_id,key, [,user_id])

Returns the name of the indexed column in the specified table. table_name can be fully qualified. index_id is the number
of the table's index. key is a key in the index, a value between 1 and sysindexes.keycnt (for a clustered index) or sysin-
dexes.keycnt+1 (for a non-clustered index). user_id is parsed but ignored.

6.1.39 ISNULL

ISNULL (expr,defaul t)

If expr is NULL, returns default. If expr is not NULL, returns expr.

6.1.40 ISNUMERIC

ISNUMERIC(expr essi on)

A boolean function that returns 1 if expression is a valid numeric value; otherwise, returns 0.

If the specified expression is a field with a null value, ISNUMERIC returns null.

6.1.41 LEFT

LEFT(string, int)

Returns int number of characters from string, counting from the left. If int is larger than string, the full string is returned.
See RIGHT.

6.1.42 LEN

LEN(string)

Returns the number of characters in string.

6.1.43 LOG

LOG(num)

Returns the natural logarithm of num. Thus LOG(2) returns .69314718055.

6.1.44 LOG10

LOG10(num)

Returns the base-10 logarithm of num. Thus LOG10(2) returns .301029995663.
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6.1.45 LOWER

LOWER(string)

Returns string with all uppercase letters converted to lowercase. See UPPER.

6.1.46 LTRIM

LTRIM(string)

Removes leading blanks from string. See RTRIM.

6.1.47 MAX

MAX(numFfield)

Aggregate function: used in a query to return the largest (maximum) of the values in the numfield column. For example:

TSQL

SELECT MAX(Age) FROM Sample.Person

Fields with NULL are ignored.

6.1.48 MIN

MINCnumFfield)

Aggregate function: used in a query to return the smallest (minimum) of the values in the numfield column. For example:

TSQL

SELECT MIN(Age) FROM Sample.Person

Fields with NULL are ignored.

6.1.49 MONTH

MONTH(date)

Returns the month portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator must be a hyphen (-). Dates in any other format return 0.

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).

6.1.50 NCHAR

NCHAR(num)

Returns the character corresponding to the integer value num. Thus NCHAR(65) returns A.
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NCHAR is functionally identical to CHAR. The reverse of this function is ASCII.

6.1.51 NEWID

NEWIDQ)

Returns a unique value of a type compatible with the SQL Server UNIQUEIDENTIFIER data type. UNIQUEIDENTIFIER
is a system-generated 16-byte binary string, also known as a a globally unique ID (GUID). A GUID is used to synchronize
databases on occasionally connected systems. A GUID is a 36-character string consisting of 32 hexadecimal numbers
separated into five groups by hyphens. Caché TSQL does not support UNIQUEIDENTIFIER; it instead uses VARCHAR(36)
as the data type for a Globally Unique ID.

The NEWID function takes no arguments. Note that the argument parentheses are required.
NEWID() can be used to specify the DEFAULT value when defining a field.
The corresponding Caché SQL function is $TSQL_NEWID:

SELECT $TSQL_NEWID()

6.1.52 NOW

NOW(*)

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

Note that the asterisk within the parentheses is required.

6.1.53 NULLIF

NULLIF(exprl,expr2)

Returns NULL if exprl is equivalent to expr2. Otherwise, returns exprl.

6.1.54 OBJECT_ID

OBJECT__ID(objname,objtype)

Takes the object name as a quoted string, and optionally the object type, and returns the corresponding object ID of the
specified object as an integer. The available objtype values are as follows: Rl = FOREIGN KEY constraint; K = PRIMARY
KEY or UNIQUE constraint; P = Stored procedure; S = System table; TR = Trigger; U = User table; V = View.

TSQL

CREATE PROCEDURE GetName
AS SELECT OBJECT_ID("Person®,*U")
GO

Returns the NULL if objname does not exist, or if the optional objtype is specified and does not match the objname. Can
be used within procedure code or trigger code. The inverse of OBJECT _NAME.
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6.1.55 OBJECT_NAME

OBJECT_NAME(id)

Takes the object ID integer and returns the corresponding object name of the specified object. Returns the empty string if
id does not exist. Can be used within procedure code or trigger code. The inverse of OBJECT _ID.
TSQL

CREATE PROCEDURE GetlID
AS SELECT OBJECT_NAME(22)
GO

6.1.56 PATINDEX

PATINDEX(pattern,string)

Returns an integer specifying the beginning position of the first occurrence of pattern in string, counting from 1. If pattern
is not found in string, 0 is returned. Specify pattern as a quoted string. Comparisons are case-sensitive. The pattern can
contain the following wildcard characters:

% Zero or more characters. For example, '%a%' returns
the position of the first occurrence of 'a’ in string,
including 'a’ as the first character in string.

Any single character. For example, '_1%' returns 1 if
string begins with a substring such as 'Al', 'el', and 'il'.

[xyz] Any single character from the specified list of
characters. For example, '[ai]l%' returns 1 if string
begins with the substring 'al' or il', but not 'el' or "Al'.

[a-2] Any single character from the specified range of
characters. For example, "%s[a-z]t%" matches 'sat’,
'set’, and 'sit'. A range must be specified in ascending
ASCII sequence.

The caret (*) character is a not a wildcard character; if included within square brackets it is treated as a literal. A pattern
commonly consists of a search string enclosed in percent (%) characters "%Chicago%” indicating that the entire string
should be searched.

6.1.57 Pl

P10

Returns the constant pi. The parentheses are required; no argument is permitted. Thus PI() returns 3.141592653589793238.

6.1.58 POWER

POWER(num, exponent)

Returns the value num raised to exponent.
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6.1.59 QUOTENAME

QUOTENAME(value)

Returns value as a delimited identifier. TSQL supports double quotes ("value™) as delimiter characters. For example:

TSQL

PRINT 123
// returns 123
PRINT QUOTENAME(123)
// returns 123"

6.1.60 RADIANS

RADIANS(Float)

Converts an angle measurement in degrees to the corresponding measurement in radians.

6.1.61 RAND

RAND([seed])

Returns a random number as a fractional number less than 1. The optional seed integer argument is ignored; it is provided
for compatibility. If RAND is used more than once in a query it returns different random values.

6.1.62 REPLACE

REPLACE(target,search, replace)

Finds every instance of the search string in the target string and replaces it with the replace string, and returns the resulting
string. To remove the search string from the target string, specify replace as an empty string.

6.1.63 REPLICATE

REPLICATE(expr essi on,r epeat - count )

REPLICATE returns a string of repeat-count instances of expression, concatenated together.

If expression is NULL, REPLICATE returns NULL. If expression is the empty string, REPLICATE returns an empty
string.

If repeat-count is a fractional number, only the integer part is used. If repeat-count is 0, REPLICATE returns an empty
string. If repeat-count is a negative number, NULL, or a non-numeric string, REPLICATE returns NULL.

6.1.64 REVERSE

REVERSE(string)

Reverses the order of the characters in string.

64 Caché Transact-SQL (TSQL) Migration Guide



Supported Functions

6.1.65 RIGHT

RIGHT(string, int)

Returns int number of characters from string, counting from the right. If int is larger than string, the full string is returned.
See LEFT.

6.1.66 ROUND

ROUND(num, length)

Returns num rounded to the number of decimal digits specified by the integer length. If length is greater than the number
of decimal digits, no rounding is performed. If length is 0, num is rounded to an integer. If the length argument is omitted,
it defaults to 0. If length is a negative integer, num is rounded to the left of the decimal point. A third argument is not
accepted by ROUND.

6.1.67/ RTRIM

RTRIM(string)

Removes trailing blanks from string.

6.1.68 SCOPE_IDENTITY

Returns the last identity value inserted into an IDENTITY column in the same scope. However, the last IDENTITY is not
limited to the scope of the current procedure. Therefore, you should only use SCOPE_IDENTITY when you know that
a statement within the current procedure has generated an IDENTITY value. For example, SCOPE_IDENTITY should
be used after an INSERT command in the same procedure.

The following Dynamic SQL example returns the IDENTITY value from the second INSERT:

ObjectScript

SET sql=6

SET sql (1)=""CREATE TABLE #mytest (Myld INT IDENTITY(1,1),"
SET sql(2)="Name VARCHAR(20))"

SET sql(3)="INSERT INTO #mytest(Name) VALUES ("John Smith")"
SET sql(4)=""INSERT INTO #mytest(Name) VALUES (“Walter Jones®)"
SET sql(5)="PRINT SCOPE_IDENTITY("

SET sql (6)=""DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

6.1.69 SIGN

SIGN(num)

Returns a value indicating the sign of num. If num is negative (for example, -32), it returns -1. If num is positive (for
example, 32 or +32), it returns 1. If num is zero (for example, 0 or -0), it returns 0.
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6.1.70 SIN

SIN(Float)

Sine: returns the sine of the angle specified in float. Thus 1 returns .841470984807...

6.1.71 SPACE

SPACE(num)

Returns a string of blank spaces of length num.

6.1.72 SQRT

SQRT (num)

Returns the square root of num. Thus SQRT(9) returns 3.

6.1.73 SQUARE

SQUARE (num)

Returns the square of num. Thus SQUARE(9) returns 81.

6.1.74 STR

STR(num, [length[,precision]])

Returns a string of length characters. If the integer length is equal to or greater than the number of characters in the numeric
num (including decimal point and sign characters), STR returns num converted to a string and padded with leading blanks
to make the resulting string of length characters.

If the optional integer precision is specified, num is truncated to the specified number of decimal digits before string con-
version. If precision is omitted, num is truncated to its integer portion. If precision is larger than the number of decimal
digits, num is padded with trailing zeros before string conversion.

If length is omitted, it defaults to 10. If length is less than the number of characters in num (after adjustment by precision)
a dummy string consisting of all asterisks of length number of characters is returned.

6.1.75 STUFF

STUFF(string,start, length, replace)

Returns string with length number of characters removed and the replace string inserted. The point of removal and insertion
is specified by the start integer, counting from the beginning of string. If length is 0, no characters are removed. If replace
is the empty string, no characters are inserted.

If start is greater than the number of characters in string, no value is returned. If start is 1, length number of characters are
removed from the beginning of string and the replace string inserted. If start is 0, length minus 1 number of characters are
removed from the beginning of string and the replace string inserted.
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If length is greater than or equal to the number of characters in string, the replace string is returned. The replace string
length is not limited by the length of string or length.

6.1.76 SUBSTRING

SUBSTRING(string,start, length)

Returns a substring of string beginning at the location start for the length number of characters. If start is greater than the
length of string, or if length is 0, no string is returned.

6.1.77/ SUM

SUM(numFfield)
SUM(DISTINCT numfield)

Aggregate function: used in a query to return the sum of the values in the numfield column. For example:

TSQL

SELECT SUM(Age) FROM Sample.Person

SUM(DISTINCT numfield) sums the unique values in the field column. Fields with NULL are ignored.

6.1.78 SUSER_NAME

SUSER_NAMEQ)

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the Caché SQL USER function, and the ObjectScript SJUSERNAME special variable.

6.1.79 SUSER_SNAME

SUSER_SNAMEQ)

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the Caché SQL USER function, and the ObjectScript SUSERNAME special variable.

6.1.80 TAN

TAN(Float)

Tangent: returns the tangent of the angle specified in float. Thus 1 returns 1.55740772465...

6.1.81 TEXTPTR

TEXTPTR(Field)

Returns an internal pointer to the image or text column data specified in field. The data type of this pointer is
VARBINARY (16).
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6.1.82 TEXTVALID

TEXTVALID("table.field",textpointer)

Takes an internal pointer to an image or text column from TEXTPTR, and compares it to a specified in table.field. Returns
1 if the pointer points to the specified table.field. Otherwise, returns 0.

6.1.83 UNICODE

UNICODE(char)

Returns the Unicode integer value corresponding to the first character in the string char. Thus, UNICODE("A*") returns
65.

UNICODE is functionally identical to ASCII. The reverse of this function is CHAR.

6.1.84 UPPER

UPPER(string)

Returns string with all lowercase letters converted to uppercase. See LOWER.

6.1.85 USER

USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.1.86 USER_NAME

USER_NAME([userid])

Returns the name of the user specified by user ID. If the optional userid is omitted, returns the name of the current user.
The argument is optional; the parentheses are mandatory.

6.1.87 YEAR

YEAR(date)

Returns the year portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator can be either a hyphen (-) or a slash (/).

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).
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6.2 Unsupported Functions

The following Microsoft Transact-SQL functions are not supported by TSQL at this time: APP_NAME, ATN2,
BINARY_CHECKSUM, CHECKSUM, COL_LENGTH, COLLATIONPROPERTY, COLUMNPROPERTY, CUR-
SOR_STATUS, DATABASEPROPERTY, DATABASEPROPERTYEX, DB_ID, DIFFERENCE, FILE_ID, FILE_NAME,
FILEGROUP_ID, FILEGROUP_NAME, FILEGROUPPROPERTY, FILEPROPERTY, FORMATMESSAGE, FULL-
TEXTCATALOGPROPERTY, FULLTEXTSERVICEPROPERTY, GETANSINULL, HOST_ID, IDENT_CURRENT,
IDENT_INCR, IDENT_SEED, IDENTITY, INDEXKEY_PROPERTY, INDEXPROPERTY, ISDATE, IS_ MEMBER,
IS_SRVROLEMEMBER, OBJECTPROPERTY, PARSENAME, PERMISSIONS, ROWCOUNT_BIG, SERVERPROP-
ERTY, SESSIONPROPERTY, SESSION_USER, SOUNDEX, SQL_VARIANT_PROPERTY, STATS_DATE, STDEV,
STDEVP, SYSTEM_USER, TYPEPROPERTY.
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7.1 Local Variables

By default, TSQL local variables are specified using an At Sign (@) prefix. For example, @myvar. You can override this
default to also allow PLAINLOCALS, TSQL local variables specified without an At Sign (@) prefix. For example, myvar.

7.1.1 Declaring a Local Variable

A local variable must be declared (using DECLARE or as a formal parameter) before use. A variable name must be a valid
identifier. Local variable names are not case-sensitive. The declaration must specify a data type, though strict data typing
is not enforced in InterSystems TSQL. For a list of supported data types, refer to the TSQL Constructs chapter of this
document.

The DECLARE command has the following syntax:
DECLARE @var [AS] datatype [ = initval]

If declaring variables is inconvenient, you can switch this check off using the NDC setting. However, cursors must be
declared, even if NDC is used.

Stored procedure arguments are automatically declared as local variables.

7.1.2 Setting a Local Variable

A local variable can be set using either the SET command or the SELECT command. A local variable can be displayed
using either the PRINT command or the SELECT command. The following Dynamic SQL examples show two local
variables being declared, set, and displayed:

ObjectScript

SET myquery = 3
SET myquery(l) = "DECLARE @a CHAR(20),@b CHAR(20) ™
SET myquery(2) "SET @a="hello " SET @b="world!® "
SET myquery(3) "PRINT @a,@b"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL")
SET gStatus = tStatement.%Prepare(.myquery)
IF gStatus™"=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()
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ObjectScript

SET myquery = 3
SET myquery(1)
SET myquery(2)

"DECLARE @a CHAR(20),@b CHAR(20) ™
"SELECT @a="hello ", @b="world!""
SET myquery(3) "SELECT @a,@b"
SET tStatement = ##class(%SQL.Statement) .%New(, ,"'MSSQL')
SET gStatus = tStatement.%Prepare(.myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

7.1.3 Initial and Default Values

By default, DECLARE initializes local variables to **** (SQL NULL). Optionally, you can specify an initial value (initval)
for a local variable in the DECLARE command.

If a declared variable is set to the results of a scalar subquery, and the subquery returns no rows, InterSystems TSQL sets
the variable to **** (SQL NULL). This default is compatible with MS SQLServer; it is not compatible with Sybase.

7.1.4 Plain Local Variables

By default, local variables require an @ prefix. However, you can specify plain locals, local variables that do not require
an @ prefix. The following command activates plain local variables:

TSQL

SET PLAINLOCALS ON

You must activate plain local variables before declaring these variables. With plain local variables activated you can declare
both local variables with an @ prefix and local variables without an @ prefix. However, you cannot declare two variables
that only differ by the @ prefix. For example, @myvar and myvar are considered the same variable. When declaring,
selecting, or printing a plain local variable, you can specify the same variable with or without the @ prefix.

Plain local variables follow all of the other TSQL variable conventions.

The following TSQL class method specifies PLAINLOCALS ON and declares and uses both an @ local variable and a
plain local variable:

ClassMethod Hello() As %String [Language=tsql,ReturnResultsets,SqlProc ]
{ SET PLAINLOCALS ON;
DECLARE @a CHAR(20),b CHAR(20);
SET @a="hello " SET b="world!";
PRINT @a,b;
b

7.2 @@ Special Variables

TSQL special variables are identified by an @@ prefix. @@ variables are system-defined; they cannot be created or
modified by user processes. @@ variables are global in scope (available to all processes). They are thus sometimes referred
to elsewhere in the Transact-SQL literature as “global variables.” Because the term “global variable” is used widely in
Caché and differs significantly in meaning, these TSQL @@ variables are referred to here as “special variables” to avoid
confusion.

The following special variables are implemented. Invoking an unimplemented special variable generates a #5001 *@@nnn*
unresolved symbol error or a #5002 <UNDEFINED> error. The corresponding ObjectScript and InterSystems SQL
generated code for each special variable is provided:
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7.2.1 @@ERROR

Contains the error number of the most recent TSQL error. O indicates that no error has occurred. A 0 value is returned when
either SQLCODE=0 (successful completion) or SQLCODE=100 (no data, or no more data). To differentiate these two
results, use @@SQLSTATUS.

ObjectScript SQLCODE
SQL :SQLCODE

7.2.2 @@FETCH_STATUS

Contains an integer specifying the status of the last FETCH cursor statement. The available options are: 0=row successfully
fetched; —1=no data could be fetched; —2 row fetched is missing or some other error occurred. A value of -1 can indicate
that there is no data to FETCH, or that the fetch has reached the end of the data.

ObjectScript

SET myquery = "SELECT @@FETCH_STATUS AS FetchStat™
SET tStatement = ##class(%SQL.Statement) .%New(, , "MSSQL™")
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_FETCH_STATUSQ)

ObjectScript $Case ($6et(SQLCODE,0),0:0,100:-1, 1 -2)
SQL CASE :SQLCODE WHEN O THEN O WHEN 100 THEN —1 ELSE —2 END

7.2.3 Q@IDENTITY

Contains the IDENTITY field value of the most recently inserted, updated, or deleted row.
ObijectScript %ROWID
SQL :%ROWID

7.2.4 @@LOCK_TIMEOUT

Contains an integer specifying the timeout value for locks, in seconds. Lock timeout is used when a resource needs to be
exclusively locked for inserts, updates, deletes, and selects. The default is 10.

ObjectScript

SET myquery = "SELECT @@LOCK_TIMEOUT AS LockTime"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL")
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus®=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_LOCK_TIMEOUT()

ObjectScript LOCK command
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SQL SET OPTION LOCK_TIMEOUT

7.2.5 @Q@NESTLEVEL

Contains an integer specifying the nesting level of the current process.

ObjectScript

SET myquery = "PRINT @@NESTLEVEL"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL"™)
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_NESTLEVELQ)

ObjectScript $STACK

7.2.6 @@ROWCOUNT
Contains the number of rows affected by the most recent SELECT, INSERT, UPDATE, or DELETE command. A single-
row SELECT always returns a @ @ROWCOUNT value of either 0 (no row selected) or 1.

When invoking an AFTER statement level trigger, the @ @ROWCOUNT value upon entering the trigger is the
@@ROWCOUNT immediately prior to the trigger. Rows affected within the scope of the trigger code are reflected in the
@@ROWCOUNT value. Upon completion of the trigger code, @ @ROWCOUNT reverts to the value immediately prior
to the trigger invocation.

ObjectScript %ROWCOUNT
SQL -%ROWCOUNT

7.2.7 @@SERVERNAME

Contains the Caché instance name.

ObjectScript

SET myquery = "SELECT @@SERVERNAME AS Cachelnstance"
SET tStatement = ##class(%SQL.Statement) .%New(, , "MSSQL™")
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_SERVERNAME(Q)

ObjectScript $P1ECE($system,  :**,2)

7.2.8 @@SPID

Contains the server process ID of the current process.
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ObjectScript

SET myquery = "SELECT @@SPID AS ProcesslID"
SET tStatement = ##class(%SQL.Statement) .%New(, ,"'MSSQL')
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_SPIDQ)

ObjectScript $J0OB

7.2.9 @@SQLSTATUS

Contains an integer specifying the completion status of the most recent SQL statement. Available values are: 0=successful
completion; 1=failure; 2=no (more) data available.

ObjectScript

SET myquery = "SELECT @@SQLSTATUS AS SQLStatus"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL')
SET qStatus = tStatement.%Prepare(myquery)
IF gStatus®™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_SQLSTATUSQ

ObjectScript $Case ($6et(SQLCODE,0),0:0,100:2,:1)
SQL CASE :SQLCODE WHEN O THEN O WHEN 100 THEN 2 ELSE 1 END

7.2.10 @Q@TRANCOUNT

Contains the number of currently active transactions.

ObjectScript

SET myquery = "SELECT @@TRANCOUNT AS ActiveTransactions"
SET tStatement = ##class(%SQL.Statement) .%New(, , "MSSQL™")
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_TRANCOUNT()

ObjectScript $TLEVEL

7.2.11 @@VERSION

Contains the Caché version number and date and time of its installation.
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ObjectScript

SET myquery = "'SELECT @@VERSION AS CacheVersion"
SET tStatement = ##class(%SQL.Statement) .%New(, ,"'MSSQL')
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding InterSystems SQL function is:
SELECT $TSQL_VERSIONQ)

ObjectScript $ZVERSION

76 Caché Transact-SQL (TSQL) Migration Guide



	Table of Contents
	About This Book
	1 Overview
	1.1 Migrating Existing TSQL Applications
	1.1.1 Configuring TSQL
	1.1.2 Migrating Source Code
	1.1.3 Migrating the Data

	1.2 Writing and Executing TSQL on Caché

	2 Caché TSQL Constructs
	2.1 Table References
	2.2 Temporary Tables
	2.3 System Tables
	2.4 Transactions
	2.5 Cursor Name Management
	2.6 SYSOBJECTS References

	3 Caché TSQL Language Elements
	3.1 Literals
	3.1.1 String Literals
	3.1.2 Empty Strings
	3.1.3 NULL
	3.1.4 Hexadecimal
	3.1.5 Reserved Words
	3.1.6 Comments, Blank Lines, and Semicolons

	3.2 Identifiers
	3.2.1 Delimited and Quoted Identifiers

	3.3 Data Types
	3.4 Operators
	3.4.1 Arithmetic and Equality Operators
	3.4.2 Concatenation Operator
	3.4.3 Comparison Operators
	3.4.4 NOT Logical Operator
	3.4.5 Bitwise Logical Operators


	4 TSQL Commands
	4.1 Data Definition Language (DDL) Statements
	4.1.1 CREATE TABLE
	4.1.2 ALTER TABLE
	4.1.3 DROP TABLE
	4.1.4 CREATE INDEX
	4.1.5 DROP INDEX
	4.1.6 CREATE TRIGGER
	4.1.7 DROP TRIGGER
	4.1.8 CREATE VIEW
	4.1.9 DROP VIEW
	4.1.10 CREATE DATABASE
	4.1.11 DROP DATABASE

	4.2 Data Management Language (DML) Statements
	4.2.1 DELETE
	4.2.2 INSERT
	4.2.3 UPDATE
	4.2.4 READTEXT
	4.2.5 WRITETEXT
	4.2.6 UPDATETEXT
	4.2.7 TRUNCATE TABLE

	4.3 Query Statements
	4.3.1 SELECT
	4.3.2 JOIN
	4.3.3 UNION
	4.3.4 FETCH Cursor

	4.4 Flow of Control Statements
	4.4.1 IF
	4.4.2 WHILE
	4.4.3 CASE
	4.4.4 GOTO and Labels
	4.4.5 WAITFOR

	4.5 Assignment Statements
	4.5.1 DECLARE
	4.5.2 SET

	4.6 Transaction Statements
	4.6.1 SET TRANSACTION ISOLATION LEVEL
	4.6.2 BEGIN TRANSACTION
	4.6.3 COMMIT TRANSACTION
	4.6.4 ROLLBACK TRANSACTION
	4.6.5 SAVE TRANSACTION
	4.6.6 LOCK TABLE

	4.7 Procedure Statements
	4.7.1 CREATE PROCEDURE / CREATE FUNCTION
	4.7.2 ALTER FUNCTION
	4.7.3 DROP FUNCTION
	4.7.4 DROP PROCEDURE
	4.7.5 RETURN
	4.7.6 EXECUTE
	4.7.7 CALL

	4.8 Other Statements
	4.8.1 CREATE USER
	4.8.2 GRANT
	4.8.3 REVOKE
	4.8.4 PRINT
	4.8.5 RAISERROR
	4.8.6 UPDATE STATISTICS
	4.8.7 USE database

	4.9 InterSystems Extensions
	4.9.1 CACHE
	4.9.2 IMPORTASQUERY


	5 TSQL Settings
	5.1 DIALECT
	5.2 ANSI_NULLS
	5.3 CASEINSCOMPARE
	5.4 QUOTED_IDENTIFIER
	5.5 TRACE

	6 TSQL Functions
	6.1 Supported Functions
	6.1.1 ABS
	6.1.2 ACOS
	6.1.3 ASCII
	6.1.4 ASIN
	6.1.5 ATAN
	6.1.6 AVG
	6.1.7 CAST
	6.1.8 CEILING
	6.1.9 CHAR
	6.1.10 CHAR_LENGTH / CHARACTER_LENGTH
	6.1.11 CHARINDEX
	6.1.12 COALESCE
	6.1.13 COL_NAME
	6.1.14 CONVERT
	6.1.15 COS
	6.1.16 COT
	6.1.17 COUNT
	6.1.18 CURRENT_DATE
	6.1.19 CURRENT_TIME
	6.1.20 CURRENT_TIMESTAMP
	6.1.21 CURRENT_USER
	6.1.22 DATALENGTH
	6.1.23 DATEADD
	6.1.24 DATEDIFF
	6.1.25 DATENAME
	6.1.26 DATEPART
	6.1.27 DAY
	6.1.28 DB_NAME
	6.1.29 DEGREES
	6.1.30 ERROR_MESSAGE
	6.1.31 ERROR_NUMBER
	6.1.32 EXEC
	6.1.33 EXP
	6.1.34 FLOOR
	6.1.35 GETDATE
	6.1.36 GETUTCDATE
	6.1.37 HOST_NAME
	6.1.38 INDEX_COL
	6.1.39 ISNULL
	6.1.40 ISNUMERIC
	6.1.41 LEFT
	6.1.42 LEN
	6.1.43 LOG
	6.1.44 LOG10
	6.1.45 LOWER
	6.1.46 LTRIM
	6.1.47 MAX
	6.1.48 MIN
	6.1.49 MONTH
	6.1.50 NCHAR
	6.1.51 NEWID
	6.1.52 NOW
	6.1.53 NULLIF
	6.1.54 OBJECT_ID
	6.1.55 OBJECT_NAME
	6.1.56 PATINDEX
	6.1.57 PI
	6.1.58 POWER
	6.1.59 QUOTENAME
	6.1.60 RADIANS
	6.1.61 RAND
	6.1.62 REPLACE
	6.1.63 REPLICATE
	6.1.64 REVERSE
	6.1.65 RIGHT
	6.1.66 ROUND
	6.1.67 RTRIM
	6.1.68 SCOPE_IDENTITY
	6.1.69 SIGN
	6.1.70 SIN
	6.1.71 SPACE
	6.1.72 SQRT
	6.1.73 SQUARE
	6.1.74 STR
	6.1.75 STUFF
	6.1.76 SUBSTRING
	6.1.77 SUM
	6.1.78 SUSER_NAME
	6.1.79 SUSER_SNAME
	6.1.80 TAN
	6.1.81 TEXTPTR
	6.1.82 TEXTVALID
	6.1.83 UNICODE
	6.1.84 UPPER
	6.1.85 USER
	6.1.86 USER_NAME
	6.1.87 YEAR

	6.2 Unsupported Functions

	7 TSQL Variables
	7.1 Local Variables
	7.1.1 Declaring a Local Variable
	7.1.2 Setting a Local Variable
	7.1.3 Initial and Default Values
	7.1.4 Plain Local Variables

	7.2 @@ Special Variables
	7.2.1 @@ERROR
	7.2.2 @@FETCH_STATUS
	7.2.3 @@IDENTITY
	7.2.4 @@LOCK_TIMEOUT
	7.2.5 @@NESTLEVEL
	7.2.6 @@ROWCOUNT
	7.2.7 @@SERVERNAME
	7.2.8 @@SPID
	7.2.9 @@SQLSTATUS
	7.2.10 @@TRANCOUNT
	7.2.11 @@VERSION



