InterSystems-

Ensemble

Developing BPL Processes

\Version 2018.1
2024-05-02

Developing BPL Processes

Ensemble Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
L ADOUL BPL PrOCESSESccutetirteitistisiesieseesieseeseetesteeeessessessessestessessessasseseensansensensesessessessessessessessessessans 3
1.1 Using the BUSINESS ProCESS WIZANMcoiveuirieiirieiirieisieesie sttt 3

1.2 BUSINESS PrOCESS LIST ...vcviiiiiiiieiiieisie sttt sttt ettt 4

1.3 BPL FRALUIES ...coteieei ettt st e e e e s renn e n e mn e nn e nr e nneennesreennas 5

1.4 Using a Business Process as @ COMPONENTceieruerierierieriereeieeeeeieetesie e sre i e s e e eens 5

1.5 BusSiness Process EXECULION CONTEXEeiueiueriirieieieeieiieiese sttt sttt e 6
1.5.1 THhe CONEXE ODJECTcverveeirietiieeierteieeiee ettt sttt eb e ebe e 7

1.5.2 THe reqUESE ODJECT ...ccviuiiiiiitiieeie ettt ettt 7

1.5.3 The reSPONSE ODJECE ..uvivviuiiieiiiirere et re e resresresrenes 7

1.5.4 The CallreqUESE ODJECTcviieicicece st s ns 7

1.5.5 The callreSPONSE ODJECT ...cuiiviiieriiriiieiee ettt 8

1.5.6 The syncresponses COIECTIONoiiiiriiiiie e e 8

1.5.7 The SyNCtMEAOUL VAIUEc.eiuiiiiiiiieici ettt 8

1.5.8 TE STATUS VAIUEveeeieeiee et ettt sttt e neens 8

1.5.9 The ProCeSS ODJECLuvivieierieriiresiesterie e e e sttt sr et e e neeseesesnesresresresrenes 9

1.6 BPL BUSINESS Process EXAMPIEccveiveiieiciiieicis et ne e 9

2 Using the BUSINESS ProCeSS DESIGNENccviceeieeeesieeieeseeiesteeiesteeteseessesseessesseessessasseeensessnsssessnnns 13
2.1 BPL DeSIgNer TOOIDANeiuiiiiieie ettt bbb sttt sbe e 13

2.2 BPL DIAOIAM ..ttt stttk b bbbt b et b et b et b e b ekt et e nn bt sn b e aneneanas 14
2.2.1 BPL Diagram SRAPESccoouoiriiirieirieesieie sttt ettt 16

2.2.2 BPL Diagram CONNECLIONSvievveriereirieierieeesieresessestesiestestesteseessessesassssssssessessessessessens 18

2.2.3 BPL Diagram LAYOULccueiveiieeeeeteeesesiesesiesresiesesaessessesassessessessessessesssssessessessensenens 19

2.2.4 Drilling Down into @ BPL DIagramc.cccveveveeieereieese e e sieesieseeses e seeessesseeveseeenns 20

2.3 Adding Activities t0 8 BPL DIGQIAMcoiiiririeiieieieeeeeeeiese st s e e 22
2.3. 1 AddINgG @ CaAll ACHIVILY ...cveeeeiieiiiieeireere e 24

2.4 BPL DeSigner PrOPErtY TADScoicerieerieirieerieese ettt ettt sne e 24
2.4.1 Setting General Properties of the BPL BUSINESS PrOCESScccovevereeeeereneseeseesenseenens 25

2.4.2 Defining the conteXt ODJECTcivieiiriiiciesee et 25

2.4.3 Setting BPL Diagram PreferenNCeScceeiieieiieesiese e 26

2.5 Notes on Creating BPL N StUAIOoc.ooviiiiieiiieeec e 26

B SYNEAX RUIES ...ttt e b e s b e bbb et b et b e se b e se b e seebeseenesneneas 29
3.1 References t0 MeSSage PrOPEITIESc.cieiiiiieiiie ettt sttt et 29

3.2 LILEIAl VAIUBS ...ttt ettt sttt b e b ettt ebe e 29
3.2.1 XML RESEIVEA CharaClersceiviveriiiiertiietesieiisieieseeiesiesesteesse e ssesesessesaeseseens 30

3.2.2 Separator Characters in Virtual DOCUMENLSc.ccoirereiirenienienieee et 30

3.2.3 When XML Reserved Characters Are AlSO SEPAratorscccccceeerererieresesesieseeseeens 30

3.2.4 NUMEIIC CharaCter COUEScoiriirieiiriirie ettt ettt sttt st ne s 31

3.3 VAlid EXPrESSIONSviiitiieiiieiiitei ettt bbbt bbbttt et 31

KT [4o [T =Tt Ao 4 OSSOSO R TR 31

A LISt Of BPL EIBMENTS ..c.ecviiieiiiieeiiiecrie sttt ettt be sttt se st se st enensenensanes 33
4.1 BUSINESS PIOCESSeueetirieittatistestesteste st st ste st sttt bt e be bt ebe b e sbesbesb e besb e b et e b e e e e seeneeneebeers 33

4.2 EXECULION CONEEXL .viveviitiiteitestete ettt ettt be bbb bbbt b b e b st e bt et e ne e b e e beeneebenbe e 33

4.3 CONIOL FIOW ..ttt ettt b et e st e st bt et e b e e e 34

4.4 IMIESSAGING +.vvervetertereetes ettt ettt sttt etttk e bbbt bbb bR b e h bbbt bRt b h bbbt b e b 35

Developing BPL Processes

T =T [oo SRS 35

4.6 RUIES AN DECISIONS ...c.viviiiitiitiite sttt sttt sttt be bbbt sb e bbb e b e b e e e et e e et eneebesbe e 35
4.7 Data ManiPUIBTIONc.oiveeiieiirieiieeis ettt 36
G K=Y Y g =T T O o [36
e oo o 11 o P 36
O Xy oYl o - Ua o | S 36
S HaNAlING EFrorSin BPLccccciieeie et sie st e e e te ettt ete e e te e e sneeaesaeetesaaensesnaensesnnansenns 39
5.1 System Error with No Fault HandliNgcccooeriiiiiee e e 39
5.1.1 EVENE LOG ENTIIES .oveitiiitiiceret ettt 40
5.1.2 XData fOr THIS BPLociiieieicicesesie sttt ettt seeneenens 40

5.2 System Error With CatChallc.ccoiiiiiiiiiicise e e 41
5.2.1 EVENE LOQG ENTIES ..oovveeicieeeccce ettt ettt sttt sn e enaens 43
5.2.2 XData fOr THIS BPLooiiiiiiieiieiiseiesene ettt bbb s e 44

5.3 Thrown Fault with CatChallcooiiiie e 44
5.3 L EVENE LOG ENTIIES ..ottt 46
5.3.2 XData fOr THIS BPL ...eocieieieieieesese ettt seeneenens 46

5.4 Thrown Fault With CAtCcciiiiiiiiie et 47
5.4.1 EVENE LOQG ENTIES ..ocuveeicieece ettt ettt sttt n s enaens 49
5.4.2 XData fOr THIS BPLoouiiiiiiiieiisese ettt s e e 49

5.5 Nested Scopes, Inner Fault Handler Has Catchall ... 50
5.5. 1 EVENE LOG ENTIIES ..ovvitiiitiieeieee ettt s 52
5.5.2 XData fOr THIS BPL ...cccueieieieieesesc ettt s ne s 53

5.6 Nested Scopes, Outer Fault Handler Has Catchallcccovvviiviiiinnnninnn e 53
5.6.1 EVENE LOQG ENTIES ..ecvveeiciececcce ettt sttt st st sn e n e enaens 56
5.6.2 XData fOr THIS BPLocuiiiiiiiieiireitesere sttt e 56

5.7 Nested Scopes, NO Match in Either SCOPEcc.oiveriiiiiiieieire e e 56
5.7. 1 EVENE LOG ENTIIES .ovviviiitiiei ettt 58
5.7.2 XData fOr THIS BPL ...eocieieieicieesese e ettt seeneenens 59

5.8 Nested Scopes, Outer Fault Handler Has CatChccooveveivieiivinsnse e 59
5.8.1 EVENE LOQG ENTIES ..ecvveeicteeeccce ettt sttt sttt n s enaens 61
5.8.2 XData fOr THIS BPLoouiuiiiiiiieieierie sttt s s 61

5.9 Thrown Fault with Compensation HandIerccocoiiiiiiniieie e 62
5.9.1 EVENE LOG ENTIIES ..ottt 64
5.9.2 XData fOr TS BPL ...eocieieieieieisese ettt st s neeneenens 65

Developing BPL Processes

About This Book

This book describes how to write Ensemble business processes using the Business Process Language (BPL). It contains
the following chapters:

About BPL Processes

Using the Business Process Designer
Syntax Rules

List of BPL Elements

Handling Errors in BPL

For a detailed outline, see the table of contents.

The following books provide related information:

Ensemble Best Practices describes best practices for organizing and developing Ensemble productions.

Developing Ensemble Productions explains how to perform the development tasks related to creating an Ensemble
production. Many of these tasks require Studio, and this book is intended primarily for developers.

Configuring Ensemble Productions explains how to perform the configuration tasks related to creating an Ensemble
production.

Ensemble Business Process Language Reference describes BPL and the context variables.

Monitoring Ensemble describes how to monitor Ensemble. In particular, see the chapter “Viewing Business Process
Instances.”

For general information, see the InterSystems Documentation Guide.

Developing BPL Processes

About BPL Processes

The Ensemble Business Process Language (BPL) is a language used to describe executable business processes within a
standard XML document. BPL syntax is based on several of the proposed XML standards for defining business process
logic. A BPL business process class is derived from Ens.BusinessProcessBPL. It is identical in every way to a class derived
from Ens.BusinessProcess, except that it supports BPL.

To create BPL classes in the Management Portal, navigate to Ensemble > Build > Business Processes. Ensemble then
displays the Business Process Designer page. (When you open a BPL class in Studio, you also invoke the Business Process
Designer; see “Notes on Creating BPL in Studio.”)

When you navigate to the Business Process Designer page in the Management Portal, it opens with the last business process
you worked on in this namespace. The tab at the left of the title bar contains the name of the BPL class. You can also choose
to work on a different business process in one of the following ways:

e Click New to create a BPL business process using the Business Process Wizard.
» Click open to edit an existing BPL business process using the Business Process Designer.

Note that there is overlap among the options available in business processes, data transformations, and business rules. For
a comparison, see “Comparison of Business Logic Tools” in Developing Ensemble Productions.

1.1 Using the Business Process Wizard

The Business Process Wizard enables you to quickly create a BPL business process class inherited from
Ens.BusinessProcessBPL. It provides the following dialog where you can define the preliminary characteristics of your
BPL business process.

Developing BPL Processes 3

About BPL Processes

Business Process Wizard

o Create a new Business Process definition.

Package
v
Class package containing this Business Process
Name
Name of this Business Process
Description
Cancel 0K

Enter values for the following fields:

Package

Enter a package name to contain the business process class or select from a list of packages in the namespace.

Name

Enter a name for your BPL business process class.

Description
(Optional) Enter a description for the data transformation; this becomes the class description.

When you complete the wizard by clicking OK, the start and end points of the BPL diagram display in the Business Process
Designer, ready for you to add activities to your BPL business process.

1.2 Business Process List

The Business Process List page displays a list of business process classes defined in the active Ensemble namespace. To
navigate to this page in the Management Portal, select Ensemble > List > Business Processes.

BPL business processes are displayed in blue; you can double-click one to open it in the Business Process Designer. Business
processes displayed in black are custom classes you must edit in Studio.

You can select a business process class to be the target of one of the following commands in the ribbon bar:
» New — Click this to launch the Business Process Wizard, discussed earlier in this chapter.

e Open (BPL classes only) — Click this to edit the selected business process.

e Export — Click to export the selected business process class to an XML file.

* Import — Click to import a business process that was exported to an XML file.

» Delete — Click to delete the selected business process class.

» Instances — Click to list any current instances of the business process in the running production. If a business process
has completed its work, there is no entry for it on this page.

See Monitoring Ensemble.

4 Developing BPL Processes

BPL Features

* Rule Log — Click to view the business rule log for rules invoked by this business process.

See Monitoring Ensemble.

You can also export and import business process classes as you do any other class in Ensemble. You can use the Classes
page of the Management Portal (System Explorer > Classes) or use the Export and Import commands on the Tools menu in
Studio.

1.3 BPL Features

BPL is a language used to describe executable business processes within a standard XML document. BPL syntax is based
on several of the proposed XML standards for defining business process logic, including the Business Process Execution
Language for Web Services (BPEL4AWS or BPEL) and the Business Process Management Language (BPML or BPMI).

BPL is a superset of other proposed XML-based standards, in that it provides additional elements whose purpose is to help
you build integration solutions. These additional elements include support for the following:

e Execution flow control elements such as <branch>, <if>, <switch>, <foreach>, <while>, and <until>. For information
about how to use these and other BPL syntax elements, see the Ensemble Business Process Language Reference.

» Generation of executable code from business process logic.
» Embedding SQL and custom-written code into the business process logic.

» The Business Process Designer, a full-featured, visual modeling tool for graphically viewing and editing business
process logic. This tool includes complete round-trip engineering between the visual and BPL representations of the
business process. Changes to one representation are automatically reflected in the other.

» Automatic support for both asynchronous and synchronous messaging between business processes and other members
of an integration solution. BPL streamlines this difficult and error-prone programming task.

e Persistent state. BPL permits a long-running business process to automatically suspend execution — and efficiently
save its execution state to the built-in, persistent cache embedded in Ensemble — whenever it is inactive; for example,
when it is waiting for an asynchronous response. Ensemble automatically manages all state preservation and the ability
to smoothly resume processing.

* Rich and varied data transformation services, including SQL queries embedded within the business process.
You can create a BPL business process using the Management Portal or Studio. The recommended way is to use the Business

Process Wizard from the Business Process Designer page of the Management Portal. See later chapters of this book for
details.

1.4 Using a Business Process as a Component

A business process component or BPL component is a BPL business process that a programmer wishes to identify as a
modular, reusable sequence of steps in the BPL language. A BPL component is analogous to a function, macro, or subroutine
in other programming languages.

Only another BPL business process can call a BPL component. It does this using the BPL <call> element. The BPL business
process component performs tasks, then returns control to the BPL business process that called it.

Developing BPL Processes 5

About BPL Processes

The Ensemble architecture already allows one BPL business process to call another BPL business process. The optional
component designation simply provides convenience. It allows you to classify certain BPL business processes as simpler,
lower-level components that:

» Are not intended to run as stand-alone business processes (although nothing in the architecture prevents this)

» May be reusable (in the sense of a function, macro, or subroutine in the BPL language)

Business processes that are not components are assumed to have more complex, special-purpose designs, and to operate
at a higher conceptual level than components. It is expected that BPL non-components call BPL components to accomplish
tasks.

Important: There is no requirement that you use the component designation for any BPL business process. It is available
as a convenience for any BPL programmer who prefers it.

You make a business process into a component by setting an attribute of the top-level <process> container for the BPL
business process. The attribute is called component and you can set it to 1 (true) or 0 (false). For syntax details, see the
Ensemble Business Process Language Reference.

To set the value of the component attribute, you can do either of the following:

e Inthe General tab of the Business Process Designer, select Is component to include this process in the Component
Library.

» Edit the BPL <process> element within the XData BPL block in the class code using Studio.

To set up a <call> to a component from a BPL business process, see “Adding a Call Activity,” later in this book.

1.5 Business Process Execution Context

The life cycle of a business process requires it to have certain state information saved to disk and restored from disk,
whenever the business process suspends or resumes execution. This feature is especially important for long-running business
processes, which may take days or weeks to complete.

A BPL business process supports the business process life cycle with a group of variables known as the execution context.
Ensemble automatically save the variables in the execution context and restores them each time the BPL business process
suspends and resumes execution. These variables are available to every BPL business process; that is, to every business
process class that inherits from Ens.BusinessProcessBPL.

Important: Custom business processes that inherit from Ens.BusinessProcess do not have access to a built-in execution
context and must handle similar issues using custom code.

Some of the execution context variables are available to every activity within a BPL business process. Others are generally
available, but go in and out of scope, depending on the type of activity that the business process is executing at the time.
The following topics describe the execution context variables and when they are available to a BPL business process. The
variables are:

¢ context
e request
e response

» callrequest

» callresponse

6 Developing BPL Processes

Business Process Execution Context

e syncresponses
e synctimedout
» status

» process

Tip: For detailed information about BPL syntax on BPL elements such as <process>, <context>, and <call>, see the
Ensemble Business Process Language Reference, which also provides reference information for the context variables.

1.5.1The context Object

The context object is available to a BPL business process anywhere inside the <process> element. context is a general-
purpose container for any data that needs to be persisted during the life cycle of the business process. You define each data
item as a property on the context object when creating the BPL business process. See “Defining the context Object” for
the recommended procedure.

Once you have defined properties on the context object, you can refer to them anywhere in BPL using ordinary dot syntax
and the property name, as in: context.MyData

1.5.2The request Object

The request object contains the properties that were in the original request message object — the incoming message that
first caused this business process to be instantiated. This is known as the primary request.

The request object is available to a BPL business process anywhere inside the <process> element. You can refer to the
properties of the request object using dot syntax and the property name, as in: request.OriginalThought

1.5.3The response Object

The response object contains the properties that are required to build the final response message object to be returned by
this business process instance. The business process returns this final response either when it reaches the end of its life
cycle, or when it encounters a <reply> activity.

The response object is available to a BPL business process anywhere inside the <process> element. You can refer to the
properties of the response object using dot syntax and the parameter name, as in: response .BottomLine

1.5.4The callrequest Object

The callrequest object contains any properties that are required to build the request message object to be sent by a <call>.

A <call> activity sends a request message and, optionally, receives a response. A BPL <call> element must include a
<request> activity to put values into the properties on the request message object. In order to accomplish this, the <request>
provides a sequence of <assign> activities that place values into properties on the callrequest object. Typically, some of
these values are derived from properties on the original request object, but you are free to assign any value.

As soon as the <assign> activities inside the <request> are completed, the message is sent, and the associated callrequest
object goes out of scope. callrequest has no meaning outside its associated <request> activity; it is already out of scope
when the associated <call> begins processing its next activity, the optional <response>.

Within the scope of the relevant <request> element, you can refer to the properties on callrequest using dot syntax, as in:
callrequest.UserData

Developing BPL Processes 7

About BPL Processes

1.5.5The callresponse Object

Upon completion of a <call> activity, the callresponse object contains the properties of the response message object that
was returned to the <call>. If the <call> was designed with no response, there is no callresponse. Similarly, if you use
<sync> to wait for a response, but the response does not return within the timeout period specified by the <sync> element,
there is no callresponse.

Every <call> that expects a response must provide a <response> activity within the <call>. The purpose of the <response>
activity is to retrieve the response values and make them available to the business process as a whole. The callresponse
object is available anywhere inside the <response> activity. However, as soon as the <response> activity completes, the
associated callresponse object goes out of scope. Therefore, if you want to use the values in callresponse elsewhere in the
business process, you must <assign> these values to properties on the context or response objects, and you must do so
before the end of the <response> activity in which they were received.

You can refer to the properties on callresponse using dot syntax, as in: cal lresponse.UserAnswer

1.5.6 The syncresponses Collection

syncresponses is a collection, keyed by the names of the <call> activities being synchronized by a <sync>.

When a <sync> activity begins, syncresponses is cleared in preparation for new responses. As the <call> activities return,
responses go into the collection. When the <sync> activity completes, syncresponses may contain all, some, or none of the
desired responses (see synctimedout). syncresponses is available anywhere inside the <sequence> that contains the relevant
<call> and <sync> activities, but goes out of scope outside that <sequence>.

To refer to the response value from one of the synchronized calls, use the syntax: syncresponses.GetAt(*'name')

Where the relevant <call> was defined as: <call name=""name"">

1.5.7The synctimedout Value

synctimedout is an integer value that may be 0, 1, or 2. synctimedout indicates the outcome of a <sync> activity after several
calls. You can test the value of synctimedout after the <sync> and before the end of the <sequence> that contains the calls
and <sync>. synctimedout has one of three values:

» If 0, no call timed out. All the calls had time to complete. This is also the value if the <sync> activity had no timeout
set.

» If 1, at least one call timed out. This means not all <call> activities completed before the timeout.

» If 2, at least one call was interrupted before it could complete.

synctimedout is available to a BPL business process anywhere inside the <sequence> that contains the relevant <call> and
<sync> activities, but goes out of scope outside that <sequence>. Generally you will test synctimedout for status and then

retrieve the responses from completed calls out of the syncresponses collection. You can refer to synctimedout with the
same syntax as for any integer variable name, that is: synctimedout

1.5.8 The status Value

status is a value of type %Status that indicates success or failure.

Note: Error handling for a BPL business process happens automatically without your ever needing to test or set the
status value in the BPL source code. The status value is documented here in case you need to trigger a BPL
business process to exit under certain special conditions.

8 Developing BPL Processes

BPL Business Process Example

When a BPL business process starts up, status is automatically assigned a value indicating success. To test that status has
a success value, you can use the macro $$$1SOK (st at us) in ObjectScript and the method
$SYSTEM.Status. IsOK(st at us) in Basic. If the test returns a True value, status has a success value.

As the BPL business process runs, if at any time status acquires a failure value, Ensemble immediately terminates the
business process and writes the corresponding text message to the Event Log. This happens regardless of how status acquired
the failure value. Thus, the best way to cause a BPL business process to exit suddenly, but gracefully is to set status to a
failure value.

status can acquire a failure value in any of the following ways:

» status automatically receives the returned %Status value from any <call> that the business process makes to another
business host. If the value of this %Status indicates failure, status automatically receives the failure value. This is the
most common way in which status is set, and it happens automatically, without any special statements in the BPL
code.

» An <assign> activity can set status to a failure value. The usual convention for doing this is to use an <if> element to
test the result of some prior activity, and then within the <true> or <false> element use <assign> to set status to a
failure value when failure conditions exist.

» Statements within a <code> activity can set status to a failure value. The BPL business process does not perceive the
change in the value of status until the <code> activity has fully completed. Therefore, if you want a failure status to
cause an immediate exit from a <code> activity, you must place a quit command in the <code> activity immediately
after setting a failure value for status.

To test that status has a failure value, use the macro $$$1SERR(st at us) in ObjectScript and the method
$system._Status. IsError(st at us) in Basic. If the test returns a True value, status has a failure value. You will be
able to perform this test only within the body of a <code> activity before it returns to the main BPL business process, since
the business process will automatically quit with an error as soon as it detects that status has acquired a failure value fol-
lowing any <call>, <assign>, or <code> activity.

status is available to a BPL business process anywhere inside the <process>. You can refer to status with the same syntax
as for any variable of the %Status type, that is: status

CAUTION: Like all other execution context variable names, status is a reserved word in BPL. Do not use it except as
described in this topic.

1.5.9The process Object

The process object represents the current instance of the BPL business process object. The process object is provided so
that you can invoke any business process method, such as SendRequestSync() or SendRequestAsync(), from any context
within the flow of the BPL business process, for example from within the text block of a <code> activity.

The process object is available to a BPL business process anywhere inside the <process> element, but is typically needed
only within the <code> activity. You can refer to methods of the process object using dot syntax and the method name, as
in: process.SendRequestSync() or process.ClearAl IPendingResponses

1.6 BPL Business Process Example

The following sample business process is similar to a class in the sample production package Demo.Loan in the ENSDEMO
namespace. In this business process, three different banks can be consulted for prime rate and credit approval information.

Developing BPL Processes 9

About BPL Processes

Class Definition

/// Loan Approval Business Process for Bank Soprano.

/// Bank Soprano simulates a bank with great service but

/// somewhat high interest rates.

Class Demo.Loan.BankSoprano Extends Ens.BusinessProcessBPL

XData BPL

<process request="Demo.Loan.Msg.Application™
response="'Demo.Loan.Msg.Approval''>

<context>

<property name='CreditRating" type="%Integer"/>

<property name="PrimeRate" type="%Numeric"/>
</context>

<sequence>

<trace value=""received application for "_request.Name"/>

<assign name="Init Response~
property="response.BankName"
value=""BankSoprano" ">
<annotation>
<I[CDATA[Initialize the response object.]]>
</annotation>
</assign>

<call name="PrimeRate"
target=""Demo.Loan.WebOperations"
async="1">
<annotation>

<I[CDATA[Send an asynchronous request for the Prime Rate.]]>

</annotation>

<request type="Demo.Loan.Msg.PrimeRateRequest'/>

<response type="Demo.Loan.Msg.PrimeRateResponse'>

<assign property="context.PrimeRate"
value="cal Iresponse.PrimeRate"/>
</response>
</call>

<call name="CreditRating"
target=""Demo.Loan.WebOperations"
async="1">
<annotation>

<I[CDATA[Send an asynchronous request for the Credit Rating.]]>

</annotation>

<request type="Demo.Loan.Msg.CreditRatingRequest'>

<assign property="callrequest.TaxID" value="request.TaxID"/>

</request>

<response type="Demo.Loan.Msg.CreditRatingResponse"'>

<assign property="context.CreditRating"
value="cal lIresponse.CreditRating"/>
</response>
</call>

<sync name="Wait"
calls="PrimeRate,CreditRating"
type="all"
timeout="10">
<annotation>

<I[CDATA[Wait for the response from the async

Wait for up to 10 seconds.]]>
</annotation>
</sync>

<switch name="Approved?">

<case name="No PrimeRate®
condition="context.PrimeRate="""">
<assign name="Not Approved~
property="response. IsApproved"
value="0"/>
</case>

<case name="No Credit”
condition="context.CreditRating="""">
<assign name="Not Approved*
property="response. IsApproved"
value="0"/>
</case>

requests.

10

Developing BPL Processes

BPL Business Process Example

<default name="Approved® >
<assign name="Approved®
property="response. IsApproved"
value="1"/>
<assign name="InterestRate”
property="response. InterestRate"
value=""context.PrimeRate+10+(99*(1-(context.CreditRating/100)))">
<annotation>
<I[CDATA[Copy InterestRate into response object.]]>
</annotation>
</assign>
</default>

</switch>

<delay
name="Delay"”
duration=""2+($zcrc(request.Name,4)#5)"">
<annotation>
<I[CDATA[Wait for a random duration.]]>
</annotation>
</delay>

<trace value=""application is "
_$s(response. IsApproved:approved for
1:"denied™)"/>

response. InterestRate"'%",

</sequence>
</process>

}

Developing BPL Processes 11

Using the Business Process Designer

The Business Process Designer is a tool that permits you to create a BPL business process as a visual diagram. When you
save a diagram from the Business Process Designer, it generates a class description — that is, a text document — in correct
BPL syntax. The BPL diagram and the BPL document are equally valid descriptions of the same BPL business process
class.

When you open a BPL business process in the Management Portal or Studio, or when you create a new BPL business process
using a wizard, its BPL diagram displays in the Business Process Designer. To the right of the diagram is a pane containing
a set of property tabs; you can expand and collapse this right pane as desired using the double arrow icons. The following
sections describe the details of using the BPL designer tool.

e BPL Designer Toolbar

e BPL Diagram

» BPL Designer Property Tabs

* Notes on Creating BPL in Studio

2.1 BPL Designer Toolbar

The ribbon bar of the Ensemble Business Process Designer page contains the options and commands that form the BPL
designer toolbar:

Commands that are not valid at the focus of the diagram appear dimmed. The following table describes the action you ini-
tiate for each command and, if applicable, provides a link to a detailed description of the process.

Command Description
New Launch the Business Process Wizard to create a new BPL business process.

Open Launch the Finder Dialog to choose an existing BPL business process class to load and begin
editing using the Business Process Designer.

Save Save any changes you have made to the business process diagram.
Save As Save your changes as a hew BPL business process class.

Compile Compile the BPL business process class.

Developing BPL Processes 13

Using the Business Process Designer

Command

100%

Add
Activity

Group
Items

a

o

=

Description

Choose from a list of percentage values to shrink or enlarge the size of the BPL diagram. Choose
a large factor to view details, a small factor to gain an overview.

Choose a BPL element from the list of activities to add to your BPL diagram as described in the
Adding Activities to BPL section.

Group the selected items to form a group diagram, into which you can drill down for details; the
group is represented as one shape on the higher level diagram. You can select whether to group
the selected elements as a <sequence>, as a specific type of loop: <foreach>, <while>, or
<until>, or as a <scope> or <flow> element.

Undo your most recent action, such as adding, moving, or editing an activity.

Remove the selected item from the diagram. You can select one activity at a time by clicking
on it. The selected activity changes color to yellow.

Cut the selected items and places them on the BPL clipboard.

Copy the selected items to the BPL clipboard.

Paste items from the BPL clipboard at the selected location.

Display the BPL diagram of the activity details that you have grouped together. This drills down
into a nested diagram. Only available for a shape representing a group (you can also click the
plus sign in at the bottom of the shape).

Display the current group as a single shape in the higher level diagram. This drills up the nested
diagram. Only available if you have previously drilled down into a group.

Arrange the layout of items in the diagram; this aligns shapes in the diagram without changing
the underlying BPL document.

Display a printer friendly version of the diagram in a new browser page.

2.2 BPL Diagram

The left pane below the ribbon bar displays the BPL diagram which consists of shapes that correspond to activities in a
BPL file, with additional shapes and connections that correspond to logic in the BPL file. The following is a sample BPL

diagram.

14

Developing BPL Processes

BPL Diagram

Business Process

Demo.ZenService.Bproc.WeatherReport

fied:Wednesday,

business process responsible for

=assign=

Store Location

(]

i

i —

Get Weather Report

=

[

| = Saguence>

Convert Temp

T

=Seguenia:

Translate

2]

L

=transformes

Transform Response

¥

= 0ole=

Add Scale

" Mssign the StringValue from the request to the business

process context property called Location.

“Make a synchronous call to the business operation Get

Weather Report, sending it the context property Location
and placing the response in the context property OperationRepart.

Invoke the TempScale rule. Depending on location the
temperature should be reported in Fahrenheit or Celsius.
Store the resultin the context property TempScale.

Invoke the LanguageFromLocation rule which maps a country
name to the language spoken there. If the language is
other than English, translate the weather repart.

~"Beqin transforming the context property OperationReport

into the response object required by the business service
that invoked this business process,

“Complete the creation of the response object required

by the business service by invoking code to place the
TempScale value in the object.

To view a similar diagram, click Open on the Business Process Designer page and navigate to the
Demo.ZenService.Bproc.WeatherReport BPL business process class in the ENSDEMO namespace using the Finder Dialog.
The class opens to the BPL diagram view.

Editing Tips
When using the Business Process Designer to work with a BPL diagram, you can:

Select a shape by clicking it.

Select multiple shapes by holding down the cCtrl key while selecting.

Connect one element to another by clicking on its input or output connection point and dragging to the desired element.
The Business Process Designer does not allow you to make an illegal connection.

Display or edit the properties of an element by selecting it and viewing its properties in the Activity tab to the right.
You can also select a connector to see its properties; click the other property tabs to see the properties of the process

itself.

Insert and connect a new shape in one operation: select the connector between the two elements where the new shape
should go, then add an activity. The new shape appears between the existing elements with connections automatically

in place.

Developing BPL Processes

15

Using the Business Process Designer

« Automatically validate activities as you add them to the diagram. If Ensemble detects an element with a logical error,
it displays a red warning on the Activity tab for the element along with the reason for the error.

The following topics provide details about the diagram and how it represents the different elements of BPL.

* BPL Diagram Shapes

» BPL Diagram Connections

e BPL Diagram Layout

e Drilling Down in a BPL Diagram

2.2.1 BPL Diagram Shapes

A BPL diagram uses certain shapes to indicate that a BPL element is present in the code.

BPL Shape Meaning
<cal> ACtiVity *
Get Weather Report
<foreach> Loop

Loop throu@gh Results

<sequence> Sequence
Conver$ Temp

""""""""""""""" Scope
<sCopes

St

‘@ Decision

Mo\ Special

Split

Join

4D E

Example

<assign>, <call>, <sync>, and most others.

<foreach>, <while>, or <until>. Reveal the loop details by
clicking on the arrow at the bottom of the shape, or by

clicking <

<catch>, <catchall>, or <sequence>. Reveal the sequence
by clicking on the plus sign at the bottom of the shape, or

by selecting the shape, or by clicking <

The start of a BPL <scope> for error handling purposes. A
shaded rectangular background encloses all the BPL
elements that fall within this <scope>. If the <scope>
includes a <faulthandlers> element, the rectangle includes
a horizontal dashed line across the middle; the area below
this line displays the contents of the <faulthandlers>. For
examples, see the chapter “Handling Errors in BPL.”

The start of an <if>, <switch>, or <branch>.

<alert>, <reply>, or <label>.

The start of a BPL <flow> element, where various logical
paths diverge from a single point

The end of any branching element — <if>, <flow>, <branch>,
<scope>, or <switch> — where all possible paths come
together.

16

Developing BPL Processes

BPL Diagram

BPL Shape Meaning Example
fr:;;\\) Start/End The start or end of a BPL diagram.
N/

* Many activity shapes display an icon, as shown in the right portion of the <call> activity box. The following table lists
and describes the meaning of these icons.

Icon BPL Element Icon BPL Element Icon BPL Element
— <assign> S <code> o <sgl>
) Asynchronous £ <delay> <sync>
<call> W N
! Synchronous <milestone> N <trace>
] <call> ~
I <catch> Y <rule>
- '(L X

In general the interior color of a BPL diagram shape is white, with a blue outline. If the shape is in error, its outline is red.
If the shape is disabled, its interior color is gray, with a gray outline.

When you click a shape in a BPL diagram, it becomes selected. Its attributes display in the Activity tab, where you can edit
their values. Its interior color changes to yellow. If it is in error, its outline remains red; if not, its outline changes to a bolder
blue. When you select a disabled shape it shows a dotted outline.

You can select multiple shapes by holding down the ctrl key while clicking on shapes. To clear the selection of a shape,
click on it while it is selected.

When a shape represents a complex activity such as <if> or <switch> that has multiple branches, joins, or other types of
related shapes elsewhere in the BPL diagram, clicking on one of these shapes highlights the related shapes in green with a
purple outline. Clicking on a <sync> element highlights the <call> elements that it synchronizes. Clicking on an <if> shape
highlights the Join where the <true> and <false> branches come together, and so on. For example:

Developing BPL Processes 17

Using the Business Process Designer

o Invoke the TempScde ruke. If the Location & LS or
- b USA then the temperature scae & F; otherwieitis

Temp Scale

C. Put the resultin the context property TempScae.

7
Test whether the context property TempScae & F. If
50, do the conversion to Fahrenheit.

" <cal>
‘ Convert Min Temp
i \

Call the Convert Temperature busness operation to convert
the day's minmum temperature from Celsus to Fahrenheit.
Put the result in the context property OperationReport.

Call the Convert Temperature busness operation to convert
the day's maximum temperature from Ceksius to Fahrenhsit,
Put the result in the context property OperationReport.

(<cal>
‘ Convert Max Temp

2.2.2 BPL Diagram Connections

In a BPL diagram, the lines between shapes specify logical relationships and sequencing among the elements. These lines
are called connections. The start of each line is a circular nub and the end is a triangular point. One triangular input nub
and one circular output nub are built into each shape that you add to the BPL diagram.

You can connect one shape to another by clicking on its input or output nub and dragging the cursor to the desired shape.
When you release the mouse, a connection appears. Another way to connect shapes is to insert and auto-connect a new
shape in one step. Select the two elements on either side of where the new shape should go. You can select multiple elements
by holding down the ctrl key while clicking on the shapes. If two elements are selected with no existing connection between
them, you can add a new shape and it appears between the existing elements, with connections automatically in place. To
add a new shape between two connected elements, click on the connection to highlight it, then add the new element. The
new shape appears between the existing elements, with connections automatically in place.

Once two shapes are connected, the connection is preserved no matter where you drag the respective shapes. You can drag
shapes to any layout position you wish, within the same diagram. Connections reroute automatically, and the underlying
BPL document is not changed. On the other hand, if you change the logic of the connections, for example to reorder calls,
create loops, or cut and paste, then the underlying BPL document does change to reflect your actions in the Business Process
Designer.

Within a <switch> activity, each possible path is automatically labeled with the corresponding <switch> value. All of the
possible paths from a <switch> activity converge at a Join shape before a single arrow connects from the Join shape to the
next activity in the BPL diagram.

18 Developing BPL Processes

BPL Diagram

e - Determine which type of response was reguesbad.
RESponse

Dafault

=

The Business Process Designer provides many types of validation of your diagram as you work on it. One useful validation
feature is that the editor detects if the output branches of an <if>, <flow>, or <switch> element are connected to the wrong
Join shape in the diagram. If so, the connector that is in error displays in red until you correct the diagram.

2.2.3 BPL Diagram Layout

After you add shapes or create new connections, you can tidy the diagram by clicking the arrange icon 2 on the tool bar.

For example, if you do not have the auto arrange feature set in your preferences, when you add a shape to a BPL diagram
it looks something like the following figure.

When you click the auto arrange tool 2 the shapes are aligned as shown in the following figure.

Developing BPL Processes 19

Using the Business Process Designer

If you want your diagrams to always use this type of structured layout, select the Auto arrange check box on the Preferences
tab.

By default, when you open a BPL diagram in the Business Process Designer for the first time, the auto arrange feature is
enabled. This choice may or may not be appropriate for a particular drawing. You can disable automatic arrangement to
ensure that your diagram always displays with exactly the layout you want by clearing the Auto arrange check box on the
Preferences tab. This way, when the diagram is displayed in the Business Process Designer, it does not take on any layout
characteristics except what you have specified.

2.2.4 Drilling Down into a BPL Diagram

A loop activity displays a cyclic arrow to indicate that it provides drill-down details. The following is an example of the
<foreach> loop activity. Others include <while> and <until>. For example:

v " Loop over the results received from the banks.
[<foreach>] Drill into this shape to see the details of the loop.

Loop throyagh Results

~7

If you select the loop activity and then click the “« tool or click the ‘! in the loop shape, a BPL diagram of the loop displays.
This is a full BPL diagram showing all the logic between the start and end of the loop. For example:

20 Developing BPL Processes

BPL Diagram

Contents op thio sults ki
g = s cop through Results
Demo,Loan, FindRateDedsionProcessBPL " = 2
Last meod 2. Der emmider o)
g
ThisResult
=y
.--"'--::J:f.:-"'--. Wens we zporoved by tHs bank?
< hpproved?
L
e
e kE tHs 2 better ram?
Compere rate with curmert et rate

" BetterRate? >

e
v TS IS e Dest [aie 50 Far;
Pr— Copy T =ik Infp the oottt et
BankName
3 < s
shpproved
g
nterestRate
g
~ 7
ol

To return to the higher logical level, where one shape represents the entire loop, click the 4 tool.
A sequence displays a plus sign to indicate that it, too, can provide drill-down details. For example:

.~ Make a request to each of three banks.

] LRI "
Try Each Bark
. [+ A

When you drill down into a sequence, the resulting BPL diagram shows all the logic between the start and end of the

sequence. To return to the higher logical level, where one shape represents the entire sequence, click the 4 tool. For

example:

21

Developing BPL Processes

Using the Business Process Designer

Contents of Try Each Bank'

Dema.Loan. FindRateCecisionProcessBPL

Loan Approval Business. Process for Find Rate.

Last Modified: 2004-03-02 1045045

o SEOUENCOE .

Try Each Bank

|

Send an asynchronous request o Bank US.

Send an asynchronous request o Bank Soprana.

" Bend an asynchronous request to Bank Manana,

i il
Banklls y
(X
i el
BankSoprana
_{'-F -':;l 2
BankManana
by

|

If there is an error anywhere in a lower-level diagram, the Business Process Designer highlights the group shape (<foreach>,
<sequence>, <while>, or <until>) in red. To fix the error, you must drill down into the group shape to see the activity that

has the error highlighted in red in the lower-level diagram.

2.3 Adding Activities to a BPL Diagram

The Add Activity list is available in the Business Process Designer toolbar whenever you have a BPL diagram open in the
Management Portal or Studio. When you click on an item in this list, you add its shape to the BPL diagram. The list is
divided into the following categories:

* Activities

Adds this Activity

Alert
Assign
Break
Call
Code
Continue
Delay
Empty
Reply
Rule

SQL

View documentation for this element

<alert>
<assign>
<break>
<call>
<code>
<continue>
<delay>
<empty>
<reply>
<rule>

<sql>

22

Developing BPL Processes

Adding Activities to a BPL Diagram

Sync <sync>
Trace <trace>
Transform <transform>
XPATH <xpath>
XSLT <xslt>

Decisions and Placeholders

If <if>

Switch <switch>

Branch <branch>

Label <label>

Milestone <milestone>
e Logic

Flow <flow>
Join (required for the diagram, no corresponding BPL element)
Scope <scope>
Sequence <sequence>
* Loops

ForEach <foreach>
While <while>
Until <until>

e Error Handling

Throw <throw>

Catch <catch>

Catch All <catchall>

Compensate <compensate>
Compensation <compensationhandlers>
Handler

Developing BPL Processes

N

3

Using the Business Process Designer

When you add an element to the diagram, the Activity tab displays with the properties applicable to the element. At the top
of the tab is the corresponding BPL element and a description along with an active link to the BPL reference entry for that
element. This is the most accurate place to get information about the settings that follow.

Except for the <start> and <end> shapes, the following settings are common to all elements:

Name

Enter a name for the caption inside the shape.
The x axis coordinate for the location of the selected shape in the diagram.

The y axis coordinate for the location of the selected shape in the diagram.

Disabled

Select this check box to disable the activity; clear it to enable. The default is enabled.

Annotation

Enter text to appear as comments next to the shape in the diagram.

Note: The <start> and <end> shapes only have the x and y coordinates, so you can move them manually if you wish.

2.3.1 Adding a Call Activity

A common task in a BPL business process is to add a Call activity. The following information is necessary to properly
create a new <call> to one of the available business processes or business operations in the production:

* Input

e Output
* Name

e Target

* Request

2.4 BPL Designer Property Tabs

To the right of the BPL diagram is a pane containing a set of property tabs; you can expand and collapse this right pane as
desired using the double arrow icons. Three of the tabs relate to the BPL business process itself and one relates to the
selected shape:

* General — contains settings for the overall definition of the BPL business process. See Setting General Properties of
the BPL Business Process.

» Context — provides the interface for defining the context object for this BPL business process.

* Activity — contains settings for the selected item in the BPL diagram; the Adding Activities to a BPL Diagram section
discusses the contents of this tab in detail.

24 Developing BPL Processes

BPL Designer Property Tabs

* Preferences — contains settings pertaining to the appearance of the BPL diagram. See Setting BPL Diagram Preferences
for details.

2.4.1 Setting General Properties of the BPL Business Process

The General tab contains the following settings that apply to the BPL business process:
* Language — Select either ObjectScript or Basic for the language of all code included in the BPL.

e Layout — Select either Automatic or Manual for the size of the diagram. If you select Manual you can enter a Width
and Height.

* Annotation — Enter text to include in the class description.
* Includes — An optional comma-delimited list of include file names, so that you can use macros in your <code> segments.
* Version — Enter an optional version number of the BPL diagram

* Is component — If true, include this process in the component library where it can be called by other processes.

See the <process> entry in the Ensemble Business Process Language Reference for details on these properties.

2.4.2 Defining the context Object

You can define the context object of a BPL business process from the Context tab of the Business Process Designer. You
can click the magnifying glass to launch the Finder Dialog for each of the following fields:

* Request Class — Choose the class of the incoming request for this process.
* Response Class — Choose the class of the response returned by this process.

e Context Superclass — Use this option to provide custom context properties, in a different way than adding to the
Context properties list, described next. To use Context Superclass, create a custom subclass of Ens.BP.Context. In this
subclass, define class properties to use as context properties. Use the name of this class as the value of Context Superclass
in the business process. Then when you create <assign> actions, for example, you can choose these custom properties
in addition to the standard properties of the context object.

You can add to the list of Context properties by clicking the plus sign to launch the Business Process Context Property
wizard. Then enter values in the following fields:

* Property Name — Must be a valid identifier.

» Choose if the property data is one of the following: Single Value, List Collection, Or Array Collection

* Property Type — Type of this property including parameters.

Enter a data type class name in the Type field or click the magnifying glass to browse for a class you want to use as a
data type.

» Default Value (ignored for collections) — Enter an initial expression for a single value data type.

* Instantiate — Select this check box for object-valued properties if you want the object to be instantiated when it is
created.

* Description — Enter an optional description of the context property.
Click oK to save your changes, Cancel to discard them. The Business Process Designer generates the necessary <context>
and <property> elements in the BPL code.

To set property parameters such as MINVAL, MAXVAL, MINLEN, MAXLEN, or others in the Business Process Designer,
add data type parameters to a context property when you first add the property, or at any subsequent time, by inserting a

Developing BPL Processes 25

Using the Business Process Designer

comma-separated list of parameters enclosed in parentheses after the data type class name. That is, rather than simply
entering %String or %Integer, you can enter data types such as:

%String(MAXLEN=256)
%Integer (MINVAL=0, MAXVAL=100)
%String(VALUELIST="",Buy,Sell,Hold")

The Business Process Designer generates the necessary <parameters> element in the BPL code.

Once you have defined properties on the context object, you can refer to them anywhere in BPL using ordinary dot syntax
and the property name, as in: context.MyData

For reference details, see the following resources:

e Typically you choose the property type from the system library of data types described in “Data Types” in Using
Caché Objects. These include %String, %Integer, %Boolean, etc.

» System data types have optional parameters. For details, see the Parameters section in the chapter “Data Types” in
Using Caché Objects. These include the MINLEN and MAXLEN parameters that set the minimum and maximum
allowed lengths of a %String property. The default maximum %String length is 50 characters; you can reset this by
setting the MAXLEN for that %String property to another value.

By default, the ruleContext passed to the rule is the business process execution context. If you specify a different object as
a context, there are some restrictions on this object: It must have a property called %Process of type Ens.BusinessProcess;
this is used to pass the business process calling context to the rules engine. You do not need to set the value of this property,
but it must be present. Also, the object must match what is expected by the rule itself. No checking is done to ensure this;
it is up to the developer to set this up correctly.

2.4.3 Setting BPL Diagram Preferences

The Preferences tab contains the following settings that apply to the appearance of the BPL diagram:

» Gridlines — Select one of the following choices for the appearance of the grid lines on the diagram: None, Light,
Medium, Or Dark.

» Show annotations — Reveal or conceal the text notes that explain each shape. When you reveal annotations, they
appear to the upper right of each shape that has an <annotation> element in the BPL document.

* Auto arrange — Cause each new shapes in the diagram to automatically conform to a structured arrangement without
needing to select #& after adding each shape.

Changing the position of shapes does not change the underlying BPL code. Only a change to the connecting lines
changes the code.

2.5 Notes on Creating BPL in Studio

When you save a diagram from the Business Process Designer, it generates a class description — that is, a text document
—incorrect BPL syntax. The BPL diagram and the BPL document are equally valid descriptions of the same BPL business
process class. Studio recognizes each format interchangeably. A change to one automatically generates a change to the

other. Therefore, while viewing the class in Studio, you can switch between diagram and text views of the BPL document

by clicking Bl View Other Code Of pressing Ctrl-Shift-V.

Note: When switching from the text view to the graphical view, sometimes it is necessary to close and reopen the class
to see the graphical view again.

26 Developing BPL Processes

Notes on Creating BPL in Studio

Some of the tools in the Management Portal do not appear with the others; existing Studio commands provide the same
functions.

Command Studio Equivalent

New On the File menu, click New and then click Business Process on the Production tab.

Open On the File menu, click open to launch the finder dialog to choose an existing BPL business
process class to load and begin editing using the Business Process Designer.

Save On the File menu, click save to save any changes you have made to the business process
diagram.

Save As On the File menu, click save As to save your changes as a hew BPL business process class.
Compile On the Build menu, click compile to compile the BPL business process class.

= On the File menu, click Print to open the Print dialog.

You can export a BPL diagram to an XML file which can later be imported back into another Ensemble installation. The
rules for doing this are the same as for importing or exporting any other Ensemble class to a file: In Studio, use the Tools
Export and Tools Import commands.

Defining the context Object
There are tasks you can do in the BPL code when defining the context object:

In BPL code, insert <property> elements inside the <context> element, one for each property, as described in the Ensemble
Business Process Language Reference.

To set property parameters such as MINVAL, MAXVAL, MINLEN, MAXLEN, or others in BPL code, you must allow
the <property> element to specify the data type with its type attribute (class name only!) and include a <parameters> element
inside the <property> element to describe any data type parameters that you want to include, as described in the Ensemble
Business Process Language Reference. For example:

XML

<context>
<property name="Test" type="%lInteger® initialexpression="342" >
<parameters>
<parameter name="MAXVAL" value="1000" />
</parameters>
</property>
<property name="Another® type="%String" initialexpression="Yo" >
<parameters>
<parameter name="MAXLEN® value="2" />
<parameter name="MINLEN® value="1" />
</parameters>
</property>
</context>

Developing BPL Processes 27

Syntax Rules

This chapter describes the syntax rules for referring to properties and for creating expressions within various BPL activities.
It contains the following sections:

» References to Message Properties
» Literal Values
» Valid Expressions

e Indirection

3.1 References to Message Properties

In activities within a BPL process, it may be necessary to refer to properties of the message. The rules for referring to a
property are different depending on the kind of messages you are working with.

» For messages other than virtual documents, use syntax like the following:
message . propertyname
Or:
message . propertyname.subpropertyname

Where propertyname is a property in the message, and subpropertyname is a property of that property.

» For virtual documents other than XML virtual documents, use the syntax described in “Syntax Guide for Virtual
Property Paths” in Ensemble Virtual Documents.

* For XML virtual documents, see the Ensemble XML Virtual Document Development Guide.

3.2 Literal Values

When you assign a value to a property, you often specify a literal value. Literal values are also sometimes suitable in other
places, such as the value in a trace action.

A literal value is either of the following:

Developing BPL Processes 29

Syntax Rules

* Anumeric literal is just a number. For example: 42.3

» Astring literal is a set of characters enclosed by double quotes. For example: **ABD**

Note: This string cannot include XML reserved characters. For details, see “XML Reserved Characters.”

For virtual documents, this string cannot include separator characters used by that virtual document format.
See “Separator Characters in Virtual Documents” and “When XML Reserved Characters Are Also Separa-
tors.”

Important: Due to the limitations of single-byte encoding format for HL7, the numeric value in character codes in
literal strings placed in HL7 messages can be no higher than the decimal value 255 or hexadecimal x00FF.

3.2.1 XML Reserved Characters

Because BPL processes are saved as XML documents, you must use XML entities in the place of XML reserved characters:

To include this character... Use this XML entity...
> >

< <

& &

- '

" "

For example, to assign the value Joe”s ''Good Time'"™ Bar & Grill toa property, set Value equal to the following:
""Joe's "Good Time" Bar & Grill™

This restriction does not apply inside <code> and <sqgl> activities, because Ensemble automatically wraps a CData block
around the text that you enter into the editor. (In the XML standard, a CData block encloses text that should not be parsed
as XML. Thus you can include reserved characters in that block.)

3.2.2 Separator Characters in Virtual Documents

In most of the virtual document formats, specific characters are used as separators between segments, between fields,
between subfields, and so on. If you need to include any of these characters as literal text when you are setting a value in
the message, you must instead use the applicable escape sequence, if any, for that document format.

These characters are documented in the applicable books. For details, see:

e “Separators” in the reference section of the Ensemble HL7 Version 2 Development Guide
e “Separators” in the reference section of the Ensemble ASTM Development Guide

e “Separators” in the reference section of the Ensemble EDIFACT Development Guide

e “Separators” in the reference section of the Ensemble X12 Development Guide

3.2.3When XML Reserved Characters Are Also Separators

» Ifthe character (for example, &) is a separator and you want to include it as a literal character, use the escape sequence
that applies to the virtual document format.

30 Developing BPL Processes

Valid Expressions

* Inall other cases, use the XML entity as shown previously in “XML Reserved Characters.”

3.2.4 Numeric Character Codes

You can include decimal or hexadecimal representations of characters within literal strings.

The string &#n; represents a Unicode character when n is a decimal Unicode character number. One example is é
for the Latin e character with acute accent mark (€).

Alternatively, the string &#xh; represents a Unicode character when h is a hexadecimal Unicode character number. One
example is ¿ for the inverted question mark (¢).

3.3Valid Expressions

When you assign a value to a property, you can specify an expression, in the language that you selected for the BPL process.
You also use expressions in other places, such as the condition for an <if> activity, the value in a <trace> activity, statements
in a <code> activity, and so on.

The following are all valid expressions:
» Literal values, as described in the previous section.

» Function calls (Ensemble provides a set of utility functions for use in business rules and data transformations. For
details, see “Ensemble Utility Functions” in Developing Business Rules.)

» References to properties, as described in “References to Properties.”

» Any expression that combines these, using the syntax of the scripting language you chose for BPL process. Note the
following:

— In ObjectScript, the concatenation operator is the _ (underscore) character, as in:
value=""prefix"_source.{MSH:ReceivingApplication}_ "suffix""
In Basic, the concatenation operator is & (ampersand).

— To learn about useful ObjectScript string functions, such as SCHAR and $PIECE, see the Caché ObjectScript
Reference. For Basic equivalents, see the Caché Basic Reference.

— For ageneral introduction, see Using Caché ObjectScript or Using Caché Basic.

3.4 Indirection

Ensemble supports indirection in values for the following BPL element-and-attribute combinations only:
e <call name=
o <call target=
e <sync calls=

o <transform class=

The at sign symbol, @, is the indirection operator.

Developing BPL Processes 31

Syntax Rules

For example, the <call> element supports indirection in the values of the name or target attributes. The name identifies the
call and may be referenced in a later <sync> element. The target is the configured name of the business operation or business
process to which the request is being sent. Either of these strings can be a literal value:

<call name="Call" target="MyApp.MyOperation" async="1">
Or the @ indirection operator can be used to access the value of a context variable that contains the appropriate string:

<call name="@context.nextCallName" target="@context.nextBusinessHost" async="1">

This book describes @ indirection syntax in the documentation of each element that supports it: <call>, <sync>, and
<transform>.

Important: BPL and DTL are similar in many ways, but DTL does not support indirection.

32 Developing BPL Processes

List of BPL Elements

This chapter divides BPL elements into functional groups and explains the purpose of each element:
* Business Process

» Execution Context

* Control Flow

* Messaging

e Scheduling

* Rules and Decisions
o Data Manipulation

» User-written Code

e Logging

e Error Handling

4.1 Business Process

A BPL document consists of a <process> element and its various child elements. The <process> element is the container
for the business process.

4.2 Execution Context

The life cycle of a business process requires it to have certain state information saved to disk and restored from disk,
whenever the business process suspends or resumes execution. This feature is especially important for long-running business
processes, which may take days or weeks to complete.

A BPL business process supports the business process life cycle with a group of variables known as the execution context.
The variables in the execution context are automatically saved and restored each time the BPL business process suspends
and resumes execution. The variables are:

. context

Developing BPL Processes 33

List of BPL Elements

* request

* response

» callrequest

» callresponse

* syncresponses

e synctimedout

e status

Most of the execution context variables are automatically defined for the business process. The exception to this rule is the

general-purpose container object called context, which a BPL developer defines by providing <context>, <property>, and
<parameters> elements at the beginning of the BPL document.

For complete details on these variables, see the Ensemble Business Process Language Reference.

Also see documentation of the <assign> element and see “Business Process Execution Context.”

4.3 Control Flow

Within a business process, activities are either executed sequentially or in parallel:
» Sequential execution is specified using the <sequence> element
» Parallel execution is specified using the <flow> element in combination with <sequence> elements.

BPL includes a number of control flow elements that you can use to control the order of execution inside a BPL business
process.

BPL Purpose Description

Element

<branch> Branch Conditionally cause an immediate change in the flow of execution.
<break> Loop Break out of a loop and exit the loop activity.

<continue> Loop Jump to the next iteration within a loop, without exiting the loop.
<flow> Group Perform activities in a non-determinate order.

<foreach> Loop Define a sequence of activities to be executed iteratively.

<if> Branch Evaluate a condition and perform one action if true, another if false.
<label> Branch Provide a destination for a conditional branch operation.

<sequence> | Group Organize one or more calls to other business operations and business processes.
Structures parts of the BPL diagram.

<switch> Branch Evaluate a set of conditions to determine which of several actions to perform.

<until> Loop Define a sequence of activities to be repeatedly executed until a condition is true.

<while> Loop Define a sequence of activities to be repeatedly executed as long as a condition
is true.

34 Developing BPL Processes

Messaging

Note: BPL business process code can initiate a sudden, but graceful exit by setting the business process execution context
variable status to a failure value using an <assign> or <code> statement.

4.4 Messaging

BPL includes elements that allow you to make synchronous and asynchronous requests to business operations, and to other
business processes.

BPL Element Purpose

<call> Send a request and (optionally) receive a response from a business operation or business
process. The call may be synchronous or asynchronous.

<request> Prepare the request for a call to another business operation or business process.

<response> Receive the response returned from a call to another business operation or business process.

<sync> Wait for a response from one or more asynchronous calls to other business operations and
business processes.

<reply> Return a primary response from the business process before execution of the process is fully
complete.

4.5 Scheduling

The <delay> element can be used to delay execution of a business process for a specified duration or until a future time.

4.6 Rules and Decisions

The <rule> element executes a business rule. This element specifies the business rule name, plus parameters to hold the
result of the decision and (optionally) the reason for that result.

The parameters for the <rule> element can include any property in the general-purpose execution context variable called
context. Therefore, a typical design approach, for a business process that invokes a rule, is to ensure that the business process
accomplishes the following:

1. Provides <property> and <context> elements so that the context object contains properties with appropriate names and
types.

For example, if the rule determines eligibility for a state education loan, you might add properties such as Age, State,
and Income.

2. Gathers values for the properties in whatever way you wish, for example by sending requests to business operations
or business processes, and as responses return, assigning values to the properties in context.

3. Provides a <rule> element that invokes a business rule that returns an answer based on these input values.

For details on the execution context variables, see “Business Process Execution Context” earlier in this book.

For information on creating business rules, see Developing Business Rules.

Developing BPL Processes 35

List of BPL Elements

4.7 Data Manipulation

BPL includes several elements that allow you to move data from one location to another. For example, a typical business
process makes a series of calls to business operations or other business processes. To set up these calls, as well as to process
the data they return, the business process shuffles data between the various execution context variables — context, request,
response, and others. This “shuffling” and other data manipulation tasks are accomplished using the elements described
below.

BPL Element = Purpose

<assign> Assign a value to a property.

<sql> Execute an embedded SQL SELECT statement.

<transform> | Transform one object into another using a data transformation.
<xpath> Evaluate XPath expressions on a target XML document.

<xslt> Execute an XSLT transformation to modify a data stream.

4.8 User-written Code

For cases where BPL is not expressive enough to solve a specific problem, Ensemble provides mechanisms to embed user-
written code within the automatically generated business process code.

BPL Element Purpose
<code> Allows you to specify the required code within a CDATA block.

<empty> Performs no action; acts as a placeholder until code can be written.

4.9 Logging

BPL includes elements you can use to log informational and error messages.

BPL Element Purpose
<alert> Write a text message to an external alert mechanism.
<milestone> | Store a message to acknowledge a step achieved by a business process.

<trace> Write a text message to a console window and to the Event Log.

4.10 Error Handling

BPL includes elements that you can use to throw and catch faults, and perform compensation for errors or faults. These
elements are closely interrelated. For details, see the section “Handling Errors in BPL” in this chapter. The list of elements
is as follows:

36 Developing BPL Processes

Error Handling

BPL Element

<catch>

<catchall>
<compensate>
<compensationhandler>
<compensationhandlers>
<faulthandlers>

<scope>

<throw>

Purpose

Catch a fault produced by a <throw> element.

Catch a fault or system error that does not match any <catch>.
Invoke a <compensationhandler> from <catch> or <catchall>.
Perform a sequence of activities to undo a previous action.
Contain one or more <compensationhandler> elements.
Provide zero or more <catch> and one <catchall> element.
Wrap a set of activities with its fault and compensation handlers.

Throw a specific, named fault.

Developing BPL Processes

37

Handling Errors in BPL

This topic explains how BPL business processes support error handling. BPL provides fault handlers that allow your business
process to throw and catch errors, and compensation handlers that allow your business process to specify how it recovers
from errors by undoing the actions that led to the error condition.

The BPL elements involved in error handling are <scope>, <throw>, <catch>, <catchall>, <compensate>, <compensation-
handlers>, <compensationhandler>, and <faulthandlers>. This topic introduces these elements and explains how they work
together to support the following error handling scenarios:

» System Error with No Fault Handling

e System Error with Catchall

* Thrown Fault with Catchall

* Thrown Fault with Catch

* Nested Scopes, Inner Fault Handler has Catchall
* Nested Scopes, Outer Fault Handler has Catchall
» Nested Scopes, No Match in Either Scope

» Nested Scopes, Outer Fault Handler Has Catch

e Thrown Fault with Compensation Handler

5.1 System Error with No Fault Handling

The following is an example of a BPL business process that produces an error condition and provides no error handling:

Developing BPL Processes 39

Handling Errors in BPL

This BPL business process does the following:

1. The first <trace> element generates the message before assign.

2. The <assign> element tries to set SomeProperty equal to the expression 1/0. This attempt produces a divide-by-zero

system error.

3. The business process ends and sends a message to the Event Log.

The second <trace> element is never used.

5.1.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this.

ERROR <Ens>ErrBPTerminated: Terminating BP Test.Scope.BusinessProcess
#6 due to error: ERROR <Ens>ErrException:
<DIVIDE>z51+2"Test.Scope.BusinessProcess.Thread1.1 - logged as '18 Apr
2007' number 2 @' Set SomeProperty=1/0'

ERROR <Ens>ErrException:

<DIVIDE>zS51+2"Test.Scope.BusinessProcess.Thread1.1 - logged as '18 Apr
2007' number 2 @' Set SomeProperty=1/0'

before assign

—— Time —»

For background information, see the “Event Log” chapter in Managing Ensemble Productions.

5.1.2 XData for This BPL

This BPL is defined by the following XData block:

40

Developing BPL Processes

System Error with Catchall

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response” >
<sequence>
<trace value=""before assign""/>
<assign property="SomeProperty" value="1/0"/>
<trace value=""after assign'"/>
</sequence>
</process>

5.2 System Error with Catchall

To enable error handling, BPL defines an element called <scope>. A scope is a wrapper for a set of activities. This scope
may contain one or more activities, one or more fault handlers, and zero or more compensation handlers. The fault handlers
are intended to catch any errors that activities within the <scope> produce. The fault handlers may invoke compensation
handlers to compensate for those errors.

The following example provides a <scope> with a <faulthandlers> block that includes a <catchall>. Because the <scope>
includes a <faulthandlers> element, the rectangle includes a horizontal dashed line across the middle; the area below this
line displays the contents of the <faulthandlers>.

Developing BPL Processes 41

Handling Errors in BPL

[<trace=]

This BPL business process does the following:

1. The first <trace> element generates the message before scope.
The <scope> element starts the scope.

The second <trace> element generates the message before assign.

The <assign> element tries to evaluate the expression 1/0. This attempt produces a divide-by-zero system error.

o > w0

Control now goes to the <faulthandlers> defined within the <scope>. The <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, there is no <catch>, but there is a <catchall> element, so control goes there.

Note that Ensemble skips the <trace> element message immediately after the <assign> element.

If we drill down into <catchall>, we see this:

42 Developing BPL Processes

System Error with Catchall

il R’
FiY
i
=
[
[n]
]
W
M,
=
=
(1]
[n]
1]
W

6. Within <catchall>, a <trace> element generates the message in catchall faulthandler.

7. Within <catchall>, another <trace> element generates a message that explores the nature of the error using $System.Status
methods and the special variables %Context and %LastError. See the details in “Event Log Entries.”

8. The <scope> ends.

9. The last <trace> element generates the message after scope.

5.2.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

after scope

ScLastError S002 : Cache error:
<DIVIDE>zS2+3"Test.Scope.BusinessProcess.Thread1.1

in catchall faulthandler

Time

before assign

before scope

If an unexpected system error occurs, and a <faulthandlers> block is present inside a <scope>, the BPL business process
does not automatically place entries in the Event Log as shown in the “System Error with No Fault Handling” example.
Rather, the <faulthandlers> block determines what the business process will do. In the current example, it outputs a <trace>
message that contains information about the error. Event Log entry 4 above is produced by the following statement within
the <catchall> block:

XML

<trace value=
""%LastError '_
$System.Status.GetErrorCodes(. -%Context.%lLastError)_

$S§st€m-Status-GetOneStatusText(--%Context-%LastError)'
/7>

The BPL context variable %LastError always contains a %Status value. If the error was an unexpected system error such
as <UNDEF> this %Status value is created from the Error “CacheError,” which has code 5002, and the text of the $ZERROR

Developing BPL Processes 43

Handling Errors in BPL

special variable. To get the corresponding error code and text out of %LastError, use the $System.Status methods
GetError Codes and GetOneStatusText, then concatenate them into a <trace> string, as shown above.

5.2.2 XData for This BPL
This BPL is defined by the following XData block:

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response*® >
<sequence>
<trace value=""before scope'"/>
<scope>
<trace value=""before assign'"/>
<assign property="SomeProperty" value="1/0"/>
<trace value=""after assign""/>
<faulthandlers>
<catchall>
<trace value=""in catchall faulthandler""/>
<trace value=
""YlLastError '_
$System.Status.GetErrorCodes(. .%Context.%lLastError)_

$S§st€m.Status.GetOneStatusText(..%Context.%LastError)'
/>

</catchall>
</faulthandlers>
</scope>
<trace value=""after scope'"/>
</sequence>
</process>

5.3 Thrown Fault with Catchall

When a <throw> statement executes, its fault value is an expression that evaluates to a string. Faults are not objects, as in
other object-oriented languages such as Java; they are string values. When you specify a fault string it needs the extra set
of quotes to contain it, as shown below:

XML

<throw fault=""thrown""/>

When a <throw> statement executes, control immediately goes to the <faulthandlers> block inside the same <scope>,
skipping all intervening statements after the <throw>. Inside the <faulthandlers> block, the program attempts to find a
<catch> block whose value attribute matches the fault string expression in the <throw> statement. This comparison is case-
sensitive.

If there is a <catch> block that matches the fault, the program executes the code within this <catch> block and then exits
the <scope>. The program resumes execution at the next statement following the closing </scope> element.

If a fault is thrown, and the corresponding <faulthandlers> block contains no <catch> block that matches the fault string,
control goes from the <throw> statement to the <catchall> block inside <faulthandlers>. After executing the contents of
the <catchall> block, the program exits the <scope>. The program resumes execution at the next statement following the
closing </scope> element. It is good programming practice to ensure that there is always a <catchall> block inside every
<faulthandlers> block, to ensure that the program catches any unanticipated errors.

Suppose you have the following BPL. For reasons of space, the <start> and <end> elements are not shown.

44 Developing BPL Processes

Thrown Fault with Catchall

This BPL business process does the following:
1. The first <trace> element generates the message before scope.
The <scope> element starts the scope.

2

3. The second <trace> element generates the message before assign.
4. The <throw> element throws a specific, named fault (*"MyFault").

5

Control now goes to the <faulthandlers> defined within the <scope>. The <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, there is no <catch> but there is a <catchall> element, so control goes there.

Note that Ensemble skips the third <trace> element.

If we drill down into <catchall>, we see this:

Developing BPL Processes 45

Handling Errors in BPL

10.

=trace: - S : N
(=irace=] ll'f =trace=] { =trace=
\, o7 L

8]

]

Within <catchall>, the first <trace> element generates the message in catchall faulthandler.

Within <catchall>, the second <trace> element generates the message that provides information on the fault using
$System.Status methods and the special variables %Context and %LastError. The %LastError value as the result of a
thrown fault is different from its value as the result of a system error:

e GetErrorCodesreturns <Ens>ErrBPLThrownFault

» GetOneStatusText returns text derived from the fault expression in the <throw> statement

Within <catchall>, the third <trace> element generates a message that provides information on the fault using the BPL
context variable %LastFault. It contains the text derived from the fault expression from the <throw> statement.

The <scope> ends.

The last <trace> element generates the message after scope.

5.3.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

after scope

%tLastFault MyFault

YeLastError <Ens>ErrBPLThrownFault : MyFault

in catchall faulthandler

Time

before assign

before scope

5.3.2 XData for This BPL

This BPL is defined by the following XData block:

46

Developing BPL Processes

Thrown Fault with Catch

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response” >
<sequence>
<trace value=""before scope'"/>
<scope>
<trace value=""before assign'"/>
<throw fault=""MyFault""/>
<trace value=""after assign'""/>
<faulthandlers>
<catchall>
<trace value=""in catchall faulthandler""/>
<trace value=
""YlLastError "_
$System.Status.GetErrorCodes(. .%Context.%LastError)_

$S§st€m.Status.GetOneStatusText(..%Context.%LastError)'
/>

<trace value=""%LastFault "_._%Context.%LastFault®/>
</catchall>
</faulthandlers>
</scope>
<trace value=""after scope'""/>
</sequence>
</process>

5.4 Thrown Fault with Catch

A thrown fault may reach a <catchall>, as in the previous example, or it may have a specific <catch>.

Suppose you have the following BPL:

Developing BPL Processes

47

Handling Errors in BPL

This BPL business process does the following:

1.

a &~ 0w D

The first <trace> element generates the message before scope.
The <scope> element starts the scope.

The second <trace> element generates the message before throw.
The <throw> element throws a specific, named fault (*"MyFault"").

Control now goes to the <faulthandlers> defined within the <scope>. The <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, a <catch> element exists whose fault value is **"MyFault'*, so control goes there. The <catchall> element is
ignored.

Note that Ensemble skips the <trace> element message after the <throw> element.

If we drill down into <catch>, we see this:

48

Developing BPL Processes

Thrown Fault with Catch

f !
M
i
=
1]
[n]
]
w

Note: If a <catchall> is provided, it must be the last statement in the <faulthandlers> block. All <catch> blocks
must appear before <catchall>.

6. Within <catch>, the <trace> element generates the message in catch faulthandler for “MyFault’.
7. The <scope> ends.

8. The last <trace> element generates the message after scope.

5.4.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

after scope

In catch faulthandler for '"MyFault'

before throw

before scope

— Time

5.4.2 XData for This BPL
This BPL is defined by the following XData block:

Class Member

XData BPL

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response”™ >
<sequence>
<trace value=""before scope'"/>
<scope>
<trace value=""before throw""/>
<throw fault=""MyFault"*"/>
<trace value=""after throw""/>
<faulthandlers>
<catch fault=""MyFault'"">

Developing BPL Processes 49

Handling Errors in BPL

<trace value=""In catch faulthandler for 'MyFault'""/>

</catch>
<catchall>
<trace value=""in catchall faulthandler'"/>
<trace value=
""YlLastError "_
$System.Status.GetErrorCodes(. .%Context.%LastError)_

$S§st€m.Status.GetOneStatusText(..%Context.%LastError)'
/>

<trace value=""%LastFault "_._%Context.%LastFault®/>
</catchall>
</faulthandlers>
</scope>
<trace value=""after scope'""/>
</sequence>
</process>

5.5 Nested Scopes, Inner Fault Handler Has Catchall

It is possible to nest <scope> elements. An error or fault that occurs within the inner scope may be caught within the inner
scope, or the inner scope may ignore the error and allow it to be caught by the <faulthandlers> block in the outer scope.
The next several topics illustrate how BPL handles errors and faults that occur within an inner scope, when two or more

scopes are nested.

Suppose you have the following BPL (shown here without the <start> and <end> elements):

50

Developing BPL Processes

Nested Scopes, Inner Fault Handler Has Catchall

This BPL business process does the following:
The first <trace> element generates the message before outer scope.
The first <scope> element starts the outer scope.

The second <trace> element generates the message in outer scope, before inner scope.

The next <trace> element generates the message in inner scope, before assign.

1

2

3

4. The second <scope> element starts the inner scope.

5

6. The <assign> element tries to evaluate the expression 1/0. This attempt produces a divide-by-zero system error.
7

Control now goes to the <faulthandlers> defined within the inner <scope>. This <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, there is no <catch> but there is a <catchall>, so control goes there.

Developing BPL Processes 51

Handling Errors in BPL

Note that Ensemble skips the <trace> element immediately after the <assign> element.

If we drill into this <catchall>, we see this:

~7
<trace=

8. Within this <catchall>, the <trace> element generates the message in inner scope, catchall.
9. The inner <scope> ends.
10. The next <trace> element generates the message in outer scope, after inner scope.

11. The outer <scope> rectangle includes a horizontal dashed line across the middle; the area below this dashed line displays
the contents of the <faulthandlers> element that contains a <catchall>. Because there is no fault, this <catchall> is
ignored.

12. The outer <scope> ends.

13. The last <trace> element generates the message after outer scope.

5.5.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

after outer scope

in outer scope, after inner scope

in inner scope, catchall

Time

in inner scope, before assign

in outer scope, before inner scope

before outer scope

52 Developing BPL Processes

Nested Scopes, Outer Fault Handler Has Catchall

5.5.2 XData for This BPL
This BPL is defined by the following XData block:

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response™ >

<sequence>
<trace value=""before outer scope'""/>
<scope>
<trace value=""iIn outer scope, before inner scope""/>
<scope>

<trace value=
<assign property="SomeProperty" value="1/0"/>
<trace value=""iIn inner scope, after assign""/>
<faulthandlers>
<catchall>
<trace value=
</catchall>

in inner scope, catchall""/>

</faulthandlers>
</scope>
<trace value=""In outer scope, after inner scope""/>

<faulthandlers>
<catchall>
<trace value=
</catchall>
</faulthandlers>
</scope>
<trace value=""after outer scope'"/>
</sequence>
</process>

5.6 Nested Scopes, Outer Fault Handler Has Catchall

Suppose you have the following BPL (partially shown):

Developing BPL Processes

53

Handling Errors in BPL

.
|
—

i

The rest of this BPL is as follows:

54 Developing BPL Processes

Nested Scopes, Outer Fault Handler Has Catchall

3
SR

This BPL business process does the following:

The first <trace> element generates the message before outer scope.

The first <scope> element starts the outer scope.

The next <trace> element generates the message in outer scope, before inner scope.
The second <scope> element starts the inner scope.

The next <trace> element generates the message in inner scope, before assign.

The <assign> element tries to evaluate the expression 1/0. This attempt produces a divide-by-zero system error.

N o o~ w b P

Control now goes to the <faulthandlers> defined within the inner <scope>. This <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, a <catch> exists, but its fault value does not match the thrown fault. There is no <catchall> in the inner scope.

Note that Ensemble skips the <trace> element that is immediately after <assign>.

8. Control now goes to the <faulthandlers> block in the outer <scope>. No <catch> matches the fault, but there is a
<catchall> block. Control goes to this <catchall>.

If we drill into this <catchall>, we see this:

Developing BPL Processes 55

Handling Errors in BPL

9.

10. The outer <scope> ends.

11. The last <trace> element generates the message after outer scope.

5.6.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

Within this <catchall>, the <trace> element generates the message in outer scope, catchall.

after outer scope

in outer scope, catchall

£ | ininner scope, before assign

in outer scope, before inner scope

before outer scope

F—.

5.6.2 XData for This BPL

This BPL is defined by the following XData block:

Class Member

XData BPL

<process language="objectscript”

request="Test.Scope.Request~
response="Test.Scope.Response® >

<sequence>
<trace value=""before outer scope'""/>
<scope>
<trace value=""iIn outer scope, before inner scope""/>
<scope>

<trace value=""iIn inner scope, before assign'""/>
<assign property="SomeProperty" value="1/0"/>
<trace value=""In inner scope, after assign""/>
<faulthandlers>
<catch fault=""MismatchedFault"">
<trace value=
“"In catch faulthandler for 'MismatchedFault'""/>
</catch>
</faulthandlers>
</scope>
<trace value=""iIn outer scope, after inner scope""/>
<faulthandlers>
<catchall>
<trace value=""in outer scope, catchall'"/>
</catchall>
</faulthandlers>

</scope>
<trace value=""after outer scope'"/>

</sequence>
</process>

5.7 Nested Scopes, No Match in Either Scope

Suppose you have the following BPL (partially shown):

56

Developing BPL Processes

Nested Scopes, No Match in Either Scope

The rest of this BPL is as follows:

Developing BPL Processes 57

Handling Errors in BPL

r--I---1
W
(=trace:- b
h, . v
i -::?!:z"::- 3
-
\ * r,
I
__ y SRS S D N S S S D S S S
<7
[=trace=]
(]
=z
«/-:5"::; "
.-'/:I

This BPL business process does the following:

The first <trace> element generates the message before outer scope.

The first <scope> element starts the outer scope.

The next <trace> element generates the message in outer scope, before inner scope.
The second <scope> element starts the inner scope.

The next <trace> element generates the message in inner scope, before assign.

The <assign> element tries to evaluate the expression 1/0. This attempt produces a divide-by-zero system error.

N o o~ w b PP

Control now goes to the <faulthandlers> block in the inner <scope>. The <scope> rectangle includes a horizontal
dashed line across the middle; the area below this dashed line displays the contents of the <faulthandlers> element. In
this case, a <catch> exists, but its fault value does not match the thrown fault. There is no <catchall> in the inner scope.

8. Control now goes to the <faulthandlers> block in the outer <scope>. No <catch> matches the fault, and there is no
<catchall> block.

9. The BPL immediately stops, sending a message to the Event Log.

5.7.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

ERROR <Ens>ErrBPTerminated: Terminating BP
Test.Scope.BusinessProcess #6 due to error: ERROR #5002: Cache error:
<DIVIDE>254+3"Test.Scope.BusinessProcess.Thread1.1

OEJ in inner scope, before assign
i—

in outer scope, before inner scope

before outer scope

58 Developing BPL Processes

Nested Scopes, Outer Fault Handler Has Catch

There is an important difference between this Event Log illustration and the one in the “System Error with No Fault Han-
dling” example. The two examples have this in common: Each fails to provide adequate fault handling for the case when
the divide-by-zero error occurs.

The difference is that the “System Error with No Fault Handling” example has no <scope> and no <faulthandlers> block.
Under these circumstances, Ensemble automatically outputs the system error to the Event Log, as shown in the first
example.

The current example is different because each <scope> does include a <faulthandlers> block. Under these circumstances,
Ensemble does not automatically output the system error to the Event Log, as it did in the “System Error with No Fault
Handling” example. It is up to the BPL business process developer to decide to output <trace> messages to the Event Log
in case of an unexpected error. In the current example, no <faulthandlers> block catches the fault, so the only information
that is traced regarding the system error is contained in the automatic message about business process termination (item 4
above).

The system error message does appear in the Terminal window, however:

ERROR #5002: Cache error: <DIVIDE>zS4+3"Test.Scope.BusinessProcess.Threadl.l

5.7.2 XData for This BPL
This BPL is defined by the following XData block:

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response™ >

<sequence>
<trace value=""before outer scope'""/>
<scope>
<trace value=""iIn outer scope, before inner scope""/>
<scope>

<trace value=
<assign property="SomeProperty" value="1/0"/>
<trace value="""iIn inner scope,after assign""/>
<faulthandlers>
<catch fault=""MismatchedFault"">
<trace value=
“"In catch faulthandler for 'MismatchedFault'""/>
</catch>
</faulthandlers>
</scope>
<trace value=""iIn outer scope, after inner scope""/>
<faulthandlers>
<catch fault=""MismatchedFault"">
<trace value=
""In catch faulthandler for 'MismatchedFault'""/>
</catch>
</faulthandlers>
</scope>
<trace value=""after outer scope'"/>
</sequence>
</process>

5.8 Nested Scopes, Outer Fault Handler Has Catch

Suppose you have the following BPL (partially shown):

Developing BPL Processes 59

Handling Errors in BPL

<trace=

J

[

L
N

<trace=
AN

i

L
i b
L) L
W - W
o -
L]] E-
v v
L L] L

\/

The rest of this BPL is as follows:

- 7 5
—catchall> <catch= - <trace=
- v N
4
e o o

This BPL business process does the following:

1. The first <trace> element generates the message before outer scope.

60 Developing BPL Processes

Nested Scopes, Outer Fault Handler Has Catch

The first <scope> element starts the outer scope.

The next <trace> element generates the message in outer scope, before inner scope.
The second <scope> element starts the inner scope.

The next <trace> element generates the message in inner scope, before throw.

The <throw> element throws a specific, named fault (*"MyFault"").

N o g k~ w Db

Control now goes to the <faulthandlers> defined within the inner <scope>. A <catch> exists, but its fault value is
"MismatchedFault". There is no <catchall> in the inner scope.

8. Control goes to the <faulthandlers> block in the outer <scope>. It contains a <catch> whose fault value is "*"MyFaul t*".
9. The next <trace> element generates the message in outer scope catch faulthandler for "MyFault®.
10. The second <scope> ends.

11. The last <trace> element generates the message after outer scope.

5.8.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

after outer scope

In outer scope catch faulthandler for 'MyFault

in inner scope, before throw

in outer scope, before inner scope

before outer scope

— Time

5.8.2 XData for This BPL
This BPL is defined by the following XData block:

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request*”
response="Test.Scope.Response”™ >

<sequence>
<trace value=""before outer scope'"/>
<scope>
<trace value=""iIn outer scope, before inner scope""/>
<scope>

<trace value=""in inner scope, before throw""/>
<throw fault=""MyFault""/>
<trace value="""1i
<faulthandlers>
<catch fault=""MismatchedFault"">
<trace value=
“"In inner scope catch faulthandler for 'MismatchedFault''"/>
</catch>
</faulthandlers>
</scope>
<trace value=""in outer scope, after inner scope""/>
<faulthandlers>
<catch fault=""MyFault'"">
<trace value=

Developing BPL Processes 61

Handling Errors in BPL

""In outer scope catch faulthandler for 'MyFault''"/>
</catch>
</faulthandlers>
</scope>
<trace value=""after outer scope'"/>
</sequence>
</process>

5.9 Thrown Fault with Compensation Handler

In business process management, it is often necessary to reverse some segment of logic. This convention is known as
“compensation.” The ruling principle is that if the business process does something, it must be able to undo it. That is, if
a failure occurs, the business process must be able to compensate by undoing the action that failed. You need to be able to
unroll all of the actions from that failure point back to the beginning, as if the problem action never occurred. BPL enables
this with a mechanism called a compensation handler.

BPL <compensationhandler> blocks are somewhat like subroutines, but they do not provide a generalized subroutine
mechanism. You can “call” them, but only from <faulthandler> blocks, and only within the same <scope> as the <compen-
sationhandler> block. The <compensate> element invokes a <compensationhandler> block by specifying its name as a
target. Extra quotes are not needed for this syntax:

XML

<compensate target="general'/>

Compensation handlers are only useful if you can undo the actions already performed. For example, if you transfer money
into the wrong account, you can transfer it back again, but there are some actions that cannot be neatly undone. You must
plan compensation handlers accordingly, and also organize them according to how far you want to roll things back.

Suppose you have the following BPL:

62 Developing BPL Processes

Thrown Fault with Compensation Handler

7

[<trace=]

<5Cope>

€L A AT

[<trace>]/[<assign:]/[<trace>]
= catchall= A <catch> <throw:>
- - ;
il * > t E

7 % 7

<compensationhandlers
Resto re+Ba lance

[<trace>]

[

This BPL business process does the following:

© N o g ~ w N PP

The Context tab (not shown) defines a property called MyBalance and sets its value to 100.

The first <trace> element generates the message before scope balance is, followed by the value of MyBalance.
The <scope> element starts the scope.

The next <trace> element generates the message before debit.

The <assign> element decrements MyBalance by 1.

The next <trace> element generates the message after debit.

The <throw> element throws a specific, named fault (*'BuyersRegret").

Control now goes to the <faulthandlers>. A <catch> exists whose fault value is *'‘BuyersRegret'’, so control goes
there.

If we drill down into this <catch> element, we see the following:

Developing BPL Processes 63

Handling Errors in BPL

10.

11.

12.

13.
14.

. hvd .

(<traces N (<trace: 1 < COmpensate:s)
5, AN ’ \)

[} I‘_ U
' J—— '
IM -

(i8]

Bl
" zend="

Within this <catch>, the first <trace> element generates the message in catch faulthandler for
"BuyersRegret”.

Within this <catch>, the second <trace> element generates the message before restore balance is, followed
by the current value of MyBalance.

The <compensate> element is used. For this element, target is a <compensationhandler>whose name is RestoreBalance.
Within this <compensationhandler> block:

e A <trace> statement outputs the message “Restoring Balance”

» An <assign> statement increments MyBalance by 1.

Note: It is not possible to reverse the order of <compensationhandlers> and <faulthandlers>. If both blocks are
provided, <compensationhandlers> must appear first and <faulthandlers> second.

The next <trace> element generates the message after restore balance is, followed by the current value of
MyBalance.
The <scope> ends.

The last <trace> element generates the message after scope balance is, followed by the current value of
MyBalance.

5.9.1 Event Log Entries

The corresponding Ensemble Event Log entries look like this:

64

Developing BPL Processes

Thrown Fault with Compensation Handler

after scope balance is 100

after restore balance is 100

Restoring Balance

before restore balance is 99

L]

Time

In catch faulthandler for 'BuyersRegret

after debit

before debit

before scope balance is 100

5.9.2 XData for This BPL

This BPL is defined by the following XData block:

Class Member

XData BPL
{

<process language="objectscript”
request="Test.Scope.Request”
response="Test.Scope.Response™ >
<context>
<property name="MyBalance" type="%Library.Integer" initialexpression="100"/>
</context>
<sequence>
<trace value=
<scope>
<trace value=""before debit""/>
<assign property="context.MyBalance® value="context.MyBalance-1"/>
<trace value=""after debit""/>
<throw fault=""BuyersRegret'"/>
<compensationhandlers>
<compensationhandler name="RestoreBalance'>
<trace value=""Restoring Balance""/>
<assign property="context.MyBalance® value="context.MyBalance+1"/>
</compensationhandler>
</compensationhandlers>
<faulthandlers>
<catch fault=""BuyersRegret' ">
<trace value=""In catch faulthandler for 'BuyersRegret''"/>
<trace value=""before restore balance is "_context.MyBalance"/>
<compensate target="RestoreBalance'/>
<trace value=""after restore balance is "_context.MyBalance"/>
</catch>
<catchall>
<trace value=""in catchall faulthandler""/>
<trace value=
""%LastError "_
$System.Status.GetErrorCodes(. .%Context._%LastError)_

before scope balance is *_context.MyBalance®/>

$S§st€m-Status-GetOneStatusText(--%Context-%LastError)'
/>

<trace value=""%LastFault "_._%Context.%LastFault*/>
</catchall>
</faulthandlers>
</scope>
<trace value=
</sequence>
</process>

after scope balance is "_context.MyBalance®/>

Developing BPL Processes

65

	Table of Contents
	About This Book
	1 About BPL Processes
	1.1 Using the Business Process Wizard
	1.2 Business Process List
	1.3 BPL Features
	1.4 Using a Business Process as a Component
	1.5 Business Process Execution Context
	1.5.1 The context Object
	1.5.2 The request Object
	1.5.3 The response Object
	1.5.4 The callrequest Object
	1.5.5 The callresponse Object
	1.5.6 The syncresponses Collection
	1.5.7 The synctimedout Value
	1.5.8 The status Value
	1.5.9 The process Object

	1.6 BPL Business Process Example

	2 Using the Business Process Designer
	2.1 BPL Designer Toolbar
	2.2 BPL Diagram
	2.2.1 BPL Diagram Shapes
	2.2.2 BPL Diagram Connections
	2.2.3 BPL Diagram Layout
	2.2.4 Drilling Down into a BPL Diagram

	2.3 Adding Activities to a BPL Diagram
	2.3.1 Adding a Call Activity

	2.4 BPL Designer Property Tabs
	2.4.1 Setting General Properties of the BPL Business Process
	2.4.2 Defining the context Object
	2.4.3 Setting BPL Diagram Preferences

	2.5 Notes on Creating BPL in Studio

	3 Syntax Rules
	3.1 References to Message Properties
	3.2 Literal Values
	3.2.1 XML Reserved Characters
	3.2.2 Separator Characters in Virtual Documents
	3.2.3 When XML Reserved Characters Are Also Separators
	3.2.4 Numeric Character Codes

	3.3 Valid Expressions
	3.4 Indirection

	4 List of BPL Elements
	4.1 Business Process
	4.2 Execution Context
	4.3 Control Flow
	4.4 Messaging
	4.5 Scheduling
	4.6 Rules and Decisions
	4.7 Data Manipulation
	4.8 User-written Code
	4.9 Logging
	4.10 Error Handling

	5 Handling Errors in BPL
	5.1 System Error with No Fault Handling
	5.1.1 Event Log Entries
	5.1.2 XData for This BPL

	5.2 System Error with Catchall
	5.2.1 Event Log Entries
	5.2.2 XData for This BPL

	5.3 Thrown Fault with Catchall
	5.3.1 Event Log Entries
	5.3.2 XData for This BPL

	5.4 Thrown Fault with Catch
	5.4.1 Event Log Entries
	5.4.2 XData for This BPL

	5.5 Nested Scopes, Inner Fault Handler Has Catchall
	5.5.1 Event Log Entries
	5.5.2 XData for This BPL

	5.6 Nested Scopes, Outer Fault Handler Has Catchall
	5.6.1 Event Log Entries
	5.6.2 XData for This BPL

	5.7 Nested Scopes, No Match in Either Scope
	5.7.1 Event Log Entries
	5.7.2 XData for This BPL

	5.8 Nested Scopes, Outer Fault Handler Has Catch
	5.8.1 Event Log Entries
	5.8.2 XData for This BPL

	5.9 Thrown Fault with Compensation Handler
	5.9.1 Event Log Entries
	5.9.2 XData for This BPL

