
Using ActiveX with Caché

Version 2018.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using ActiveX with Caché
Caché Version 2018.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Introduction .. 1

2 The Elements of the ActiveX Interface ... 3
2.1 ActiveX Components .. 3
2.2 The Caché Object Server for ActiveX .. 4
2.3 Upgrading from CacheObject.dll ... 4
2.4 Configuring a Visual Basic Project for Early Binding ... 5

3 Working with Caché ActiveX Objects .. 7
3.1 Connecting to a Server ... 7

3.1.1 Defining a Connection String .. 8
3.2 Creating a New Object Instance ... 10
3.3 Saving an Object .. 11
3.4 Opening an Existing Object ... 11
3.5 Manipulating Caché Objects .. 12
3.6 Using Callback Functionality ... 12
3.7 Running a Query .. 13
3.8 Using Streams .. 13
3.9 Using Lists .. 14
3.10 Error Trapping .. 14

4 Caché ActiveX API Reference ... 17
4.1 The Objinstance Class .. 17
4.2 The Factory Class ... 18

4.2.1 Connect() .. 18
4.2.2 ConnectDlg() .. 19
4.2.3 Disconnect() ... 19
4.2.4 DynamicSQL() ... 20
4.2.5 GetClassName() ... 21
4.2.6 GetConnectionList() ... 21
4.2.7 GetErrorText() .. 22
4.2.8 GetId() .. 22
4.2.9 GetLastErrorCount() .. 22
4.2.10 GetLastErrorNumber() ... 23
4.2.11 GetLastErrorParam() .. 23
4.2.12 GetLastErrorParamCount() .. 24
4.2.13 IsConnected() ... 24
4.2.14 IsMultibyte() .. 25
4.2.15 New() .. 25
4.2.16 Open() .. 25
4.2.17 OpenId() ... 26
4.2.18 ResultSet() .. 26
4.2.19 SetOutput() ... 27
4.2.20 Static() .. 27
4.2.21 TransactionCommit() ... 28
4.2.22 TransactionLevel() ... 28
4.2.23 TransactionRollBack() ... 29
4.2.24 TransactionStart() ... 29

4.3 The ResultSet Class .. 29

Using ActiveX with Caché iii

4.3.1 Close() .. 30
4.3.2 ContainsID() ... 30
4.3.3 Execute() .. 31
4.3.4 Get() ... 31
4.3.5 GetColumnCount() ... 32
4.3.6 GetColumnHeader() ... 32
4.3.7 GetColumnName() ... 33
4.3.8 GetData() .. 33
4.3.9 GetDataAsString() ... 34
4.3.10 GetDataByName() ... 34
4.3.11 GetParamCount() ... 35
4.3.12 GetParamName() .. 35
4.3.13 IsDataNull() ... 36
4.3.14 Next() ... 36
4.3.15 Prepare() ... 36
4.3.16 SetParam() .. 37
4.3.17 SetRunTimeMode() .. 37

4.4 The SysList Class ... 38
4.4.1 Count Property ... 38
4.4.2 IsMultibyte Property .. 39
4.4.3 Item Property .. 39
4.4.4 ItemList Property ... 40
4.4.5 Add() .. 41
4.4.6 Clear() .. 41
4.4.7 Get() ... 41
4.4.8 Remove() .. 42
4.4.9 Set() .. 42

4.5 BinaryStream Class .. 42
4.5.1 Data Property ... 43
4.5.2 Clear() .. 43
4.5.3 DeleteAttribute() .. 44
4.5.4 FileRead() ... 44
4.5.5 FileWrite() .. 44
4.5.6 GetAttribute() ... 45
4.5.7 GetPicture() .. 45
4.5.8 IsDefinedAttribute() ... 45
4.5.9 NextAttribute() ... 46
4.5.10 Read() ... 46
4.5.11 Rewind() ... 47
4.5.12 SetAttribute() .. 47
4.5.13 SetPicture() ... 48
4.5.14 Write() .. 48

4.6 CharStream Class ... 48
4.6.1 Data Property ... 49
4.6.2 Clear() .. 49
4.6.3 DeleteAttribute() .. 49
4.6.4 FileRead() ... 50
4.6.5 FileWrite() .. 50
4.6.6 GetAttribute() ... 50
4.6.7 IsDefinedAttribute() ... 51
4.6.8 NextAttribute() ... 51

iv Using ActiveX with Caché

4.6.9 Read() ... 52
4.6.10 Rewind() ... 52
4.6.11 SetAttribute() .. 52
4.6.12 Write() .. 53

Using ActiveX with Caché v

List of Figures

Figure 2–1: Caché Object Server for ActiveX ... 3
Figure 2–2: Automatic Continuation in Visual Basic Code ... 5
Figure 2–3: Pop-Up Help Window in Visual Basic ... 6

vi Using ActiveX with Caché

List of Tables

Table 3–1: ActiveX Error Codes .. 15

Using ActiveX with Caché vii

1
Introduction

See the Table of Contents for a detailed listing of the subjects covered in this document.

The Caché ActiveX binding provides access to Caché from any application that supports ActiveX objects.

Note: ActiveX is Not Recommended for New Applications
ActiveX is a deprecated software framework. InterSystems Caché will continue to support ActiveX for existing
applications, but strongly recommends migrating to newer, more secure technologies with a viable upgrade path.
See “Using the Caché Object Binding for .NET” for one possible option. If you are planning to upgrade to
InterSystems IRIS, you can use either the Object Binding or the InterSystems IRIS Native SDK (see Using the
Native SDK for .NET).

The examples in this book were written for Visual Basic 6 or earlier (including VBA and VBS scripting languages),
and may not work in .NET Basic without modification.

The following topics are covered:

• The Elements of the ActiveX Interface

• Working with Caché ActiveX Objects

• Caché ActiveX API Reference

For general information, see Using InterSystems Documentation.

Using ActiveX with Caché 1

2
The Elements of the ActiveX Interface

The Caché ActiveX binding provides access to Caché from any application that supports ActiveX objects. This binding
allows you to instantiate and manipulate Caché objects within client applications, and provides a transparent interface to
their server-side object instantiations.

Note: ActiveX is not recommended for new development
The examples in this book were written for Visual Basic 6 or earlier (including VBA and VBS scripting languages),
and may not work in .NET Basic without modification. InterSystems strongly recommends migrating to newer
and more secure technologies (see the Introduction for more information).

2.1 ActiveX Components
Caché objects provide connectivity with a wide variety of client applications and development tools via an ActiveX interface:

Figure 2–1: Caché Object Server for ActiveX

Caché objects include the following ActiveX components:

• Caché Object Server for ActiveX — An ActiveX automation server that exposes Caché objects as ActiveX objects.

Using ActiveX with Caché 3

• Caché List Control — An ActiveX control written for Visual Basic that aids in the display of query results. You must
provide the interface for selecting queries and query parameters for execution.

• Caché Query Control — An ActiveX control written for Visual Basic that provides a simple interface for executing
queries and displaying the results. The Caché Query Control provides an interface for selecting at runtime any query
that returns the ID and for specifying any query parameters.

• Caché Object Form Wizard — A Visual Basic add-in that allows you to quickly and easily create a simple form to
access properties of a single Caché class.

2.2 The Caché Object Server for ActiveX
The Caché Object Server for ActiveX (CacheActiveX.dll or CacheActiveX64.dll depending on your system) is a complete
ActiveX in-process automation server that gives client applications access to server-based Caché objects. Internally, the
Caché Object Server for ActiveX creates an ActiveX proxy object that mirrors an object on a Caché server. Object properties
are exposed as ActiveX properties. Similarly, methods are exposed as ActiveX methods. When a method of an ActiveX
proxy object is called, it causes the corresponding method to be called by the mirrored Caché object on the server machine.

Every client-side ObjInstance proxy object refers to a Caché object on a server. It is possible for several client-side objects
to refer to the same server-side object. With each added reference, the server-side object's reference count is increased by
one as long as any client-side objects are connected to it.

Client-side objects that perform special functions, such as the SysList and ResultSet objects, are not based on a Caché object
and do not refer to an object on a server. See the Caché ActiveX API Reference for more information on the types of objects
available from ActiveX.

The client-side proxy object is an ActiveX object and is referred to using a pointer to the IDispatch interface. For example,
to access the properties and methods of a patient object from Visual Basic, use the following code:

Basic example:

Print patient.Name
'returns the value of Name for the referenced patient object
Print patient.Admit
'runs the Admit() method of the patient object on the server

As an improvement on typical ActiveX automation servers, the Caché Object Server for ActiveX does not require you to
register every object class that you define with the client operating system. Instead, it determines class information at run
time. This lets you develop large applications with many client machines and many server-based objects without having
to maintain ActiveX registry entries.

Note: DLL File Location
All versions of the DLLs (CacheActiveX.dll and CacheActiveX64.dll, as well as the earlier CacheObject.dll) are
installed in your InterSystems Common Files directory, which may be either C:\Program Files (x86)\Common

Files\InterSystems\Cache\ or C:\Program Files\Common Files\InterSystems\Cache\, depending on your system.

2.3 Upgrading from CacheObject.dll
Although CacheActiveX.dll has been the preferred version of the Caché ActiveX binding since Caché 5.1, the binding is
also available through an older DLL, CacheObject.dll. This DLL is slower and has some small differences, as noted in this

4 Using ActiveX with Caché

The Elements of the ActiveX Interface

documentation. You should use CacheActiveX.dll for all new development. The older DLL is provided only for backward
compatibility. The two DLLs differ primarily in the following ways:

• CacheActiveX64.dll is a version of the DLL that can be used on 64-bit Windows in a 64-bit process.

• Internally, CacheActiveX.dll uses the Caché C++ binding to get object-level access to a Caché server, providing better
performance in some cases due to more sophisticated object caching.

• CacheActiveX.dll supports Caché security (including features such as the ability to use Kerberos authentication), and
does not support the less secure encrypted password feature used by CacheObject.dll.

• The default SQL runtime display mode for CacheActiveX.dll is ODBC, rather than Logical as inCacheObject.dll.

• When using CacheActiveX.dll proxy objects (see The Objinstance Class), the sys_Close() method actually closes the
server object. The method does nothing when called by CacheObject.dll proxy objects.

To preserve complete compatibility with existing applications, Caché installs both CacheActiveX.dll and CacheObject.dll.
By default, existing applications will continue to use the original CacheObject.dll. If you wish to use the newer binding,
you must modify your existing application to reference this new DLL, and test that your application performs as expected.
To upgrade your code from CacheObject.dll to CacheActiveX.dll, perform the following steps:

• Replace all references to CacheObject.Factory with CacheActiveX.Factory.

• Make any changes required by the switch from Logical to ODBC SQL runtime display mode (see the ResultSet.SetRun-
TimeMode() method).

• Optionally, modify connection logic to use the new Caché security features, as described in Connecting to a Server.

2.4 Configuring a Visual Basic Project for Early Binding
Although you can use Caché objects from a Visual Basic project without any configuration, you must configure your Visual
Basic project if you want to use early binding. Early binding is a feature of Visual Basic that allows you to declare objects
so they carry information about their type. For example, with early binding, you can specify:

Basic example:

Dim MyList as CacheActiveX.SysList

Early binding also provides pop-up menus which show you possible elements to use to finish a statement. For example,
you can choose from a list of possible object types to associate with a new instance:

Figure 2–2: Automatic Continuation in Visual Basic Code

Early binding also provides pop-up syntax windows for Caché elements:

Using ActiveX with Caché 5

Configuring a Visual Basic Project for Early Binding

Figure 2–3: Pop-Up Help Window in Visual Basic

To use early binding, select the project references as outlined below. The Visual Basic project configuration process consists
of selecting the project references. Whenever you create a new Visual Basic project, you must add CacheActiveX.dll to your
project references. To do this:

1. Within Visual Basic, open the references window using the References menu item in the Project menu.

2. Select the check box to the left of this DLL.

If this DLL does not exist in a list of available references:

1. Click on the Browse button.

2. Locate the appropriate DLL file and double-click it.

Typically, you select the CacheActiveX.dll in the Program Files\Common Files\Intersystems\Cache directory. However,
if you are working with legacy code, you may be required to use the CacheObject.dll file instead. You can locate this
file in the <installation-root>\bin directory.

Note: Migrating to InterSystems IRIS
If you upgrade to InterSystems IRIS, you must use a recent version of the CacheActiveX.dll file, which you can
find in the Program Files\Common Files\Intersystems\IRIS directory. InterSystems IRIS supports ActiveX only for
use in legacy applications. InterSystems recommends migrating ActiveX applications to the InterSystems IRIS
Native SDK (see Using the Native SDK for .NET).

6 Using ActiveX with Caché

The Elements of the ActiveX Interface

3
Working with Caché ActiveX Objects

This section describes how to work with Caché ActiveX objects. The examples in this section are written in Visual Basic,
but Caché ActiveX components can be used in a similar manner by any language that supports ActiveX. The following
topics are covered:

• Connecting to a Server

• Creating a New Object Instance

• Saving an Object

• Opening an Existing Object

• Manipulating Caché Objects

• Using Callback Functionality

• Running a Query

• Using Streams

• Using Lists

• Error Trapping

Note: ActiveX is not recommended for new development
The examples in this book were written for Visual Basic 6 or earlier (including VBA and VBS scripting languages),
and may not work in .NET Basic without modification. InterSystems strongly recommends migrating to newer
and more secure technologies (see the Introduction for more information).

3.1 Connecting to a Server
Typically, a client application first creates a CacheActiveX.Factory object and establishes a connection to a Caché server.
Within Visual Basic the following code provides one way to do this:

Basic example:

'Visual Basic Code
option Explicit
Dim factory As CacheActiveX.Factory

Private Sub Form_Load()

' Create instance of factory object

Using ActiveX with Caché 7

' You must use "Set" to assign an object value
Set factory = CreateObject("CacheActiveX.Factory")

' Establish connection to server if one doesn't exist
If Not factory.IsConnected() Then
 Dim connectstring As String
 ' You can explicitly specify the connection string:
 connectstring = "cn_iptcp:127.0.0.1[1972]:USER"

 ' Alternately, you can pop up a connection dialog
 ' This method returns the connection string.
 connectstring = factory.ConnectDlg()

 Dim success As Boolean
 success = factory.Connect(connectstring)
End If
End Sub

First, create an instance of a CacheActiveX.Factory object by calling Visual Basic's CreateObject function:

Basic example:

Set factory = CreateObject("CacheActiveX.Factory")

CreateObject fails if it is unable to find or otherwise load the DLL (which contains the implementation of the
CacheActiveX.Factory object). See the chapter “Configuring a Visual Basic Project.”

As in the code above, you can optionally test a CacheActiveX.Factory object to see if it has an established connection using
the factory.IsConnected method. This method returns True if a connection exists.

Next, using the CacheActiveX.Factory object, you then establish a connection to a server by using the Connect method of
the CacheActiveX.Factory object:

Basic example:

success = factory.Connect(connectstring)

Connect is passed a connection string consisting of a connection protocol, an IP address or Fully Qualified Domain Name
(FQDN) and port number, and a namespace separated by colons. The connection protocol is always “cn_iptcp”, signifying
the TCP/IP protocol. The IP address and port together uniquely specify a specific Caché server. The port number is specified
in square brackets (“[” and “]”) immediately following the IP address or FQDN. The namespace specifies which namespace
contains your Caché objects. If you omit the namespace, your application connects to the default namespace.

You can directly pass the Connect method a connection string or you can let your end users specify the connection infor-
mation in a connection dialog box. This dialog pops up whenever the ConnectDlg method of the CacheActiveX.Factory

object is executed. Once the end user specifies the connection information and clicks the Okay button, the ConnectDlg
method returns the resulting connection string which can be passed to Connect to create the connection.

Connect returns True if it has successfully connected to a server and False if it fails.

3.1.1 Defining a Connection String

A connectstring has the following basic form:

cn_iptcp:ipaddress[port]:namespace

connectstring consists of the following parts:

• cn_iptcp: — A literal specifying the connection type. ActiveX only supports TCP/IP as the connection mechanism.

• ipaddress — The IP address or Fully Qualified Domain Name (FQDN).

• port — The port number for this connection, enclosed in square brackets and appearing immediately after the IP
Address. Together, the IP address or FQDN and the port specify a unique Caché server.

8 Using ActiveX with Caché

Working with Caché ActiveX Objects

• namespace — The namespace containing the Caché objects to be used. This namespace must have the Caché system
classes compiled, and must contain the objects you want to manipulate from ActiveX.

For example, the Connect method can be used as follows:

' Establish connection to server
Dim connectstring As String
connectstring = "cn_iptcp:127.0.0.1[1972]:USER"

Dim success As Boolean
success = factory.Connect(connectstring)

3.1.1.1 Defining a Secure Connection

A secure connectstring uses connection type scn_iptcp: (rather than cn_iptcp:), and has the following basic form:

scn_iptcp:ipaddress[port]:namespace:srv_principal_name:security_level:username:password

If security is not enabled on the Caché server, all content after namespace is ignored. If security is enabled, connectstring
must include the srv_principal_name and security_level. The username and password are optional arguments used with
SSL.

The security arguments are defined as follows:

• scn_iptcp: — A literal specifying the connection type.

• ipaddress — The IP address or Fully Qualified Domain Name (FQDN).

• port — The port number for this connection, enclosed in square brackets and appearing immediately after the IP
Address. Together, the IP address or FQDN and the port specify a unique Caché server.

• namespace — The namespace containing the Caché objects to be used. This namespace must have the Caché system
classes compiled, and must contain the objects you want to manipulate from ActiveX.

• srv_principal_name — The Service Principal Name, which is the name of the principal that represents the Caché
server. This is typically a standard Kerberos principal name, of the form cache/machine.domain, where cache is
a fixed string indicating that the service is for Caché, machine is the machine name, and domain is the domain name,
such as intersystems.com.

• security_level — An integer indicating Connection Security Level. Valid levels are:

– 0 — Caché login (Password)

– 1 — Kerberos (authentication only)

– 2 — Kerberos with Packet Integrity

– 3 — Kerberos with Encryption

– 10 – SSL/TLS

• username — (Optional) The username under which the connection is being made.

• Password — (Optional) The password associated with the specified username.

For more information, see the “Authentication” chapter of the Caché Security Administration Guide.

Using ActiveX with Caché 9

Connecting to a Server

GCAS_authe

3.1.1.2 Connection String for Use with the Older DLL

If you are using the older CacheObject.dll (see “Upgrading from CacheObject.dll”), the Connect method can accept a
connection string that includes an encrypted password. (The newer CacheActiveX.dll does not need this, because this
information is encoded by the ODBC driver.) That is, the connection string can have the following form:

cn_iptcp:ipaddress[port]:namespace:username:password

If Caché Direct security is turned on for the Caché server, there must be a password and it must be encrypted using the
EncryptPswd function. In a project module, make the library available that includes the password encryption function:

Declare Function
 EncryptPswd Lib "CMVISM32" (ByVal pswd$, ByVal encrypt$) as Integer

Note: In Visual Basic, the declaration must appear on a single line.

Then make the calls that make the connection to the server:

' preallocate the buffer, 8 nulls
ret$ = String$(8,Chr(0))

' encrypt the password for the connection string
pwlen = EncryptPswd(PlainTextPassword,ret$)

' reset the length of the password string
' to match that of the encrypted password
ret$ = Left$(ret$,pwlen)

' Establish connection to server
Dim connectstring As String
connectstring = "cn_iptcp:127.0.0.1[1972]:USER:" & username & ":" & ret$

Dim success As Boolean
success = factory.Connect(connectstring)

If success <> True Then
 Dim MyMsg As String
 MyMsg = "Connection failed."
 MsgBox MyMsg
 End
End If

Note: If the Cache instance is installed with Normal security and %SERVICE_CACHEDIRECT is Unauthenticated (as
required for usage of CacheObject.dll), UnknownUser must also be provided with additional role access
(%DEVELOPER or %MANAGER). Otherwise, the connection attempt will fail with a PROTECT error. For more
information, see “%Service_CacheDirect” in the “Services” chapter of the Caché Security Administration Guide.

3.2 Creating a New Object Instance
You can create a new instance of a Caché object by using the CacheActiveX.Factory object's New method:

Basic example:

Dim Patient As Object
Set Patient = factory.New("Patient")

The argument of New is the name of the Caché class to instantiate. New does the following:

• It creates a new instance of the specified object on the server. In this case, this is equivalent to calling

ObjectScript

 Set object = ##class(Patient).%New()

10 Using ActiveX with Caché

Working with Caché ActiveX Objects

GCAS_svcs_notes_cd
GCAS_svcs

on the server. It returns the OREF value for this server-side object to the Caché Object Server for ActiveX.

• It creates a new instance of an ActiveX object on the client that is connected to the server-side object. It returns a
handle (LPDISPATCH) to the ActiveX object.

• If New is unable to create the specified object, it raises an error condition (see “Error Trapping in Visual Basic”).

3.3 Saving an Object
You can save an instance of a persistent object using its %Save method (called sys_Save in Visual Basic). Note that
sys_Save is a method of a Caché object, not of the CacheActiveX.Factory object:

Dim status As String
patient.sys_Save
patient.sys_Close
Set patient = Nothing

Note that you must call sys_Close on an object when you are through using it. This closes the object on the server. In
addition you should set patient to Nothing to close the object in Visual Basic.

Note also that there are no parentheses following the calls to sys_Save and sys_Close. This is because when a call is followed
by empty parentheses, Visual Basic requires that its result be used. To ignore a call's return value (or if it has no return
value), omit the parentheses, as in the calls above.

3.4 Opening an Existing Object
You can load an existing Caché object from the database by using the CacheActiveX.Factory object's OpenId method:

Basic example:

Dim Patient As Object
Set Patient = factory.OpenId("MyApp.Patient", id)

OpenId takes two arguments: the name of the Caché class to open and the ID value with which the object was stored in
the database. The ID value is treated as a string. OpenId does the following:

• It loads the specified object into memory on the server. In this case, this is equivalent to calling:

ObjectScript

 Set object = ##class(MyApp.Patient).%OpenId(id)

on the server. It returns the OREF value for the in-memory server-side object to the ActiveX client.

• It creates a new instance of an ActiveX object on the client that is connected to the server-side object. It returns a
handle to this ActiveX object.

If the OpenId method is unable to open the specified object, it raises an error condition (see “Error Trapping in Visual
Basic”).

Note: There is also a client-side Open method that opens an object using its complete OID value (similar to the %Open
method of the %Persistent class.

Using ActiveX with Caché 11

Saving an Object

3.5 Manipulating Caché Objects
Once you have created an instance of a Caché object by calling the CacheActiveX.Factory object's New or OpenId methods
you can use the object as you would any other Visual Basic object. For example, you can get and set property values:

Basic example:

Dim name As String

name = patient.Name
patient.Name = name

You can invoke methods on an object (note that methods are executed on the server):

Basic example:

patient.Admit()

There are some differences between using objects in Visual Basic and ObjectScript: Methods that start with “%” in Caché
start with “sys_” in Visual Basic. Hence the ObjectScript %Save method is the sys_Save method in Visual Basic.

Also, you should not rely on the default property of Visual Basic objects. For example, use:

Basic example:

patient.Name = txtName.Text

instead of using:

Basic example:

patient.Name = txtName ' Don't use default property syntax

3.6 Using Callback Functionality
The Caché Object Server for ActiveX supports callback functionality via the SetOutput method of the Factory class. This
method allows you to direct system output to your client application. For example:

Basic example:

Set factory = CreateObject("CacheActiveX.Factory")
factory.SetOutput(Text1)
' System output now goes to textbox Text1

To disable output functionality you can call SetOutput with an empty string:

Basic example:

factory.SetOutput("")

12 Using ActiveX with Caché

Working with Caché ActiveX Objects

3.7 Running a Query
Caché provides a robust interface for performing queries. This interface can be accessed from ActiveX using the ResultSet

object. ResultSet objects only exist in ActiveX; they have no corresponding objects in Caché. Each ResultSet object is tied
to a specific query defined in a specific Caché class.

For example, run a query, ByName, in the Person class:

Basic example:

Dim rset As CacheActiveX.ResultSet
Dim columns As Integer
Dim counter As Integer
Set rset = factory.ResultSet("Person","ByName")

'Find out how many columns will be in the data
columns = rset.GetColumnCount()

'Now run the ByName query.
'This query will return all people
'whose names begin with the letter specified
rset.Execute("A")

'Cycle through the returned rows and access the data
While rset.Next()
 For counter = 1 To columns
 Print rset.GetData(counter)
 Next counter
Wend

'Close the result set
rset.Close()

Using this example, you can run the query ByName defined in the class Person. This query returns all people objects whose
names begin with the letter specified (“A”). After executing the query, you can move from one row to the next by calling
the Next method of the rset ResultSet object. You can use the ResultSet GetColumnCount method to find out how many
columns are in each row of data, then use the For loop above to print the value stored in each column of the current row.
The While loop moves you from one row to the next. Together, they allow you to print all of the data returned by the query.
Once all of the data has been processed, you can use Close to close the ResultSet object.

3.8 Using Streams
Stream properties are projected using the CacheActiveX.CharStream and CacheActiveX.BinaryStream classes. For example,
suppose you have a Person object containing a character stream property, Memo. In addition to the standard stream methods
Read and Write, you can use the client-side method Data, which fetches the entire stream in one operation:

 ' Visual Basic code
 Dim person As Object
 Dim memo As String1

 ' Open a Person object and copy its memo into a local variable
 Set person=Factory.OpenId("Sample.Person",id)
 memo=person.Memo.Data

Using ActiveX with Caché 13

Running a Query

The GetPicture method is a similar mechanism that efficiently copies binary data containing a bitmap image into a picture
control. For example, if the Person object has a binary stream property, Picture, containing a bitmap image (such as a .jpg

or .png file), you can display this image in Visual Basic as follows:

 ' Visual Basic code
 Dim person As Object
 Dim memo As String

 ' Open a Person object and show its picture in an Image control
 Set person=Factory.OpenId("Sample.Person",id)
 Image1.Picture = person.Picture.GetPicture

The SetPicture method can be used to copy an image in the other direction, from an Image control to a binary stream
property:

 ' Visual Basic code
 person.Picture.SetPicture Image1.Picture

3.9 Using Lists
You can use CacheActiveX.SysList to pass a list (Caché $List format) back and forth between VB and Caché, as demonstrated
in the following example:.

Dim colorList As New CacheActiveX.syslist
Dim ReturnData As Object
Dim myRef as Object

'populate the list with red,green,blue values
colorList.Add "red"
colorList.Add "green"
colorList.Add "Blue"

'create a new instance on the server
Set myref = o_factory.New("Pack.ClassA")
colorList2.Clear 'sets list to null

'pass a listbuild string and return the com object to ReturnData, which
'can then be used to get the items of the list. GetData()is an
'instance method that takes a %List as argument and returns %List.

set ReturnData = myref.GetData(colorList.Get)
Text1.Text = ReturnData.Item(1) 'display return string 'red'

colorList.sys_Close 'close object
Set colorList = Nothing 'close vb object

3.10 Error Trapping
The CacheActiveX.Factory object raises a Visual Basic error if it encounters an error condition. You can obtain information
about the error by using Visual Basic's err object. For example:

14 Using ActiveX with Caché

Working with Caché ActiveX Objects

Basic example:

Private Sub OpenObject(id As String)

' Set up error handler
On Error GoTo errortrap:

' try to open non-existent object
Dim Patient As Object
Set Patient = factory.OpenId("Patient", id)

'......
Exit Sub

errortrap:
' handle error (show error string in dialog box)
MsgBox (Err.Description)

End Sub

Alternately, you can use the GetErrorText method of the CacheActiveX.Factory class. This method has the following
syntax:

String GetErrorText(int ErrorNumber [, Param1, ..., Param10])

where ErrorNumber is a Caché error which was returned by the server and each of the ParamN arguments supplies a value
to be substituted into the text of the error message. The return value appears in the language of the client's locale. For
example:

' Caché was unable to save the class.
' The returned error is encapsulated by the error object,
' #5659: "Property '%1' required"
msg = factory.GetErrorText(5659,"Name")
' msg now contains the string "Property 'Name' required"

The Caché ActiveX binding may return one of the following error codes:

Table 3–1: ActiveX Error Codes

MeaningError Code

An error occurred while attempting to create an object. Check that the class exists
in the specified namespace and server.

9990

An error occurred on the Caché system.9991

An error occurred in a method with the return type %Status causing the status code
to return False. See the Caché Error Reference for the list of built-in messages.

9992

Using ActiveX with Caché 15

Error Trapping

4
Caché ActiveX API Reference

Caché provides a set of ActiveX classes to manage the connection to a Caché server and interact with Caché objects. These
classes are packaged within CacheActiveX.dll and include:

• CacheActiveX.ObjInstance — Each instance of this class is a client-side proxy object that mirrors a server-side Caché
object. There is at least one client-side instance of CacheActiveX.ObjInstance for each server-side Caché object that a
client application accesses.

• CacheActiveX.Factory — An instance of this class is used to establish a connection to a Caché server and create and
manage Caché objects. An application only needs to create one instance of the CacheActiveX.Factory class.

• CacheActiveX.SysList — Instances of this class are used to create and manipulate data in Caché's $List format.

• CacheActiveX.ResultSet — Instances of this class are used to execute queries (either built-in class queries that are
instances of %Library.Query or ad hoc SQL queries) and to process the results of these queries.

• CacheActiveX.BinaryStream — Instances of this class are used to create and manipulate Caché binary stream data.

• CacheActiveX.CharStream—Instances of this class are used to create and manipulate Caché character stream data.

Note: ActiveX is not recommended for new development
The examples in this book were written for Visual Basic 6 or earlier (including VBA and VBS scripting languages),
and may not work in .NET Basic without modification. InterSystems strongly recommends migrating to newer
and more secure technologies (see the Introduction for more information).

Important: The Caché ActiveX Objects do not properly support the thousands separator in ActiveX numeric types for
all locals. For example, the following statement (using Italian/Portuguese conventions for separators) would
incorrectly treat both "." and "," as decimal symbols:

 obj.MyCurrency = "123.457,99" 'Do not use!

4.1 The Objinstance Class
Each CacheActiveX.ObjInstance object is a client-side representation of a server-based Caché object. There is at least one
instance of ObjInstance for each server-based Caché object that a client application uses.

The New(), Open(), and OpenId() methods of the CacheActiveX.Factory class are used to create ObjInstance objects.
When an ObjInstance object is created on the client, the corresponding Caché object is opened or created on the Caché
server. ObjInstance objects contain the properties and methods of the Caché objects that they mirror.

Using ActiveX with Caché 17

4.2 The Factory Class
Instances of the Caché CacheActiveX.Factory class are used to create and manage connections to a Caché server. A Factory

object also manages the creation of new ActiveX ObjInstance objects, either by opening an existing Caché object or by
creating a new one.

The Factory class supports the following methods:

• Connect connects to Caché.

• ConnectDlg opens a connection dialog box and constructs a connection string from user input.

• Disconnect disconnects from Caché.

• DynamicSQL prepares a dynamic SQL statement and creates an object for execution.

• GetClassName extracts the class name from an OID.

• GetConnectionList returns the list of available connection strings from the client machine's registry.

• GetErrorText parses error messages

• GetId extracts the ID from an OID.

• GetLastErrorCount returns the number of errors in last status code.

• GetLastErrorNumber, returns the number of the last ObjectScript error.

• GetLastErrorParam, returns the value of a parameter for the last error.

• GetLastErrorParamCount, returns the number of parameters for the last error.

• IsConnected, reports if a connection has been established.

• IsMultibyte, indicates whether Unicode characters require special representation on the server.

• New, creates a new object on the server and a corresponding ActiveX proxy object on the client.

• Open, uses an OID to open an existing object on the server and a corresponding ActiveX proxy object on the client.

• OpenId, opens an existing object on the server and a corresponding ActiveX proxy object on the client.

• ResultSet, creates a Caché ActiveX ResultSet object that contains a previously defined query.

• SetOutput, provides callback functionality

• Static, executes the class method of an object on the Caché server through its corresponding client object.

• TransactionCommit, marks the end of a transaction.

• TransactionLevel, determines the current transaction level.

• TransactionRollback, terminates the current transaction and restores changes made by it.

• TransactionStart, marks the beginning of a transaction.

4.2.1 Connect()

Creates a connection to a specified namespace on a specified Caché server.

Boolean Connect(String connectstring)

See Defining a Connection String for full details on the connectstring format.

18 Using ActiveX with Caché

Caché ActiveX API Reference

Parameter:

• connectstring — the connection string.

Returns:

a Boolean true if the connection attempt was successful, or false otherwise.

Example:

See Defining a Connection String.

4.2.2 ConnectDlg()

Provides access to the connection management dialog.

String ConnectDlg(String title)

This dialog allows users to add, edit, delete, or select a connection. When the user selects a connection, the dialog returns
a complete and properly formatted connection string; if there is not enough information to create a complete connection
string, the selection fails and the dialog remains open.

If the user completes the dialog, the method returns a connection string to pass to the Connect() method. If the user cancels
the dialog, the method returns an empty string ("").

Parameter:

• title — Optional. Lets you supply a title for the connection dialog window. If title is not supplied, the
default window name appears in the connection dialog window. Also, if “+%up” is appended to the title
string, the method returns the username and password that the user has specified in the dialog

Returns:

a String

Example:

Set factory = CreateObject("CacheActiveX.Factory")

' set a custom title for dialog and specify that the dialog
' will return the username and password in the connection string
Dim MyTitle As String
MyTitle = "Application Connection Dialog+%up"

' get the connection string from user input to the connection dialog
sdir = factory.ConnectDlg(MyTitle)

' check if it's not NULL;
' if not NULL, use it to connect to the server
If sdir <> "" Then
 ok = factory.Connect(sdir)
 ' if the connection succeeds, put up a message box saying so
 MsgBox ok
Else
 ' if it's NULL, exit the program
 End
End If

4.2.3 Disconnect()

Closes a connection previously made by that object's Connect() method.

Boolean Disconnect()

Using ActiveX with Caché 19

The Factory Class

This method always succeeds and returns true. This means that the application must perform any housekeeping to ensure
that there are no open objects when the connection is broken.

Returns:

a Boolean true (never returns false).

Example:

' Given an open object Person and an open ResultSet object res,
' these must be closed before the connection is closed:
Person.SYS_Close
Set Person = Nothing

res.Close
Set res = Nothing

' Close the Factory object's connection:
factory.disconnect

Before you can close the connection, make sure that each object's reference count is zero — this prevents dangling
references. To set an object's reference count to zero, you must break the association between the Caché client
object and its corresponding server object. Once this is done for all objects, you may then shut down and deallocate
memory for their client proxies.

4.2.4 DynamicSQL()

Creates a Caché ActiveX ResultSet object that contains a dynamically-defined query.

CacheActiveX.ResultSet DynamicSQL(String SQLStmt)

(There is no difference between the kind of ResultSet object created by this method and the kind created by the ResultSet()
method of the Factory class.)

The query is applied to the database via the Execute() method of the returned ResultSet object. Afterward, you can retrieve
data using the ResultSet object's various available methods. (If there are problems such as with the SQL statement,
DynamicSQL() raises a Visual Basic error.)

Parameter:

• SQLStmt — An SQL statement that has been generated on the client at runtime.

Returns:

a ResultSet object.

Example:

' declare and create Factory object, declare the ResultSet object
Dim factory As CacheActiveX.factory
Set factory = CreateObject("CacheActiveX.Factory")

' Code here connects to the server; once the connection is
' established, work with the query can proceed.

Dim res As CacheActiveX.ResultSet

' declare variable to hold query string and put the query in it
Dim MyQuery As String
MyQuery = "SELECT %ID,Name,Colors,MyDate " _
 & "FROM Person " _
 & "WHERE (Name %STARTSWITH ?) " _
 & "ORDER BY Name"

20 Using ActiveX with Caché

Caché ActiveX API Reference

' create the ResultSet using DynamicSQL()
Set res = factory.DynamicSQL(MyQuery)

' you can now set parameters, execute, and so on
Call res.SetParam(1, "F")
res.Execute

4.2.5 GetClassName()

Extracts the class name from a supplied OID.

String GetClassName(String OID)

Parameter:

• OID — OID of the desired class.

Returns:

a String

Example:

Dim MyClassName As String
MyClassName = factory.GetClassName(OID)

4.2.6 GetConnectionList()

Returns a list of connection strings.

String GetConnectionList()

The list is obtained from the client machine's registry in the HKEY_LOCAL_MACHINE_ISC_SERVERS key.

Note: The connection string for this method does not include the namespace (unlike those for other methods).

Returns:

a String containing a semi-colon-delimited list of connection names and strings in the following form:

ConnectionName1,Connection1;ConnectionName2,Connection2;...

Each connection is of the form:

cn_iptcp:ip_address[port]

Example:

Private m_factory As CacheActiveX.Factory

Set m_factory = CreateObject("CacheActiveX.Factory")
Debug.Print m_factory.GetConnectionList

The resulting string will look something like this:

LOCALTCP,cn_iptcp:127.0.0.1[1972]:;otherServer,cn_iptcp:123.123.123.123[1972]:

Using ActiveX with Caché 21

The Factory Class

4.2.7 GetErrorText()

Takes the Caché object's error number and returns locale-dependent text for the generated error.

String GetErrorText(int ErrorNumber [, Param1, ..., Param10])

You can optionally pass it one or more parameters for inclusion in the error message. The return value appears in the language
of the client's locale.

Parameters:

• ErrorNumber — a Caché error which was returned by the server.

• ParamN — each of the ParamN arguments supplies a value to be substituted into the text of the error message

Returns:

a String

Example:

' Caché was unable to save the class.
' The returned error is encapsulated by the error object,
' #5659: "Property '%1' required"
msg = factory.GetErrorText(5659,"Name")
' msg now contains the string "Property 'Name' required"

4.2.8 GetId()

Returns the ID of an object given its OID.

String GetId(String OID)

Parameter:

• OID — a string that includes the class name and persistent ID of an object.

Returns:

a String

Example:

Dim ID As String
ID = factory.GetId(OID)

4.2.9 GetLastErrorCount()

Retrieves the number of errors in the last (most recently encountered) status code.

Integer GetLastErrorCount()

Note: The last error is per process, not per object.

Returns:

an Integer

22 Using ActiveX with Caché

Caché ActiveX API Reference

Example:

Dim ErrCnt As Integer
ErrCnt = factory.GetLastErrorCount()

4.2.10 GetLastErrorNumber()

Retrieves the number of the last (most recently encountered) ObjectScript error.

Long GetLastErrorNumber(String ErrNumber)

Note: The last error is per process, not per object.

Parameter:

• ErrNumber — the optionally passed position of the error in the status code (1 by default).

Returns:

a Long integer between 1 and GetLastErrorCount() (inclusive).

Example:

Dim ErrNum As Long
ErrNum = factory.GetLastErrorNumber()

4.2.11 GetLastErrorParam()

Returns the value of the last (most recently encountered) error's parameter number.

String GetLastErrorParam([String ErrNumber[, String ParamNumber]])

Note: The last error is per process, not per object.

Parameters:

• ErrNumber — the optionally passed position of error in the status code (1 by default).

• ParamNumber — the optionally passed parameter number in this error (1 by default).

Returns:

a String

Example:

Dim ErrParam As String
ErrParam = factory.GetLastErrorParam()

or

Dim ErrParam As String
ErrParam = factory.GetLastErrorParam(errno)

or

Dim ErrParam As String
ErrParam = factory.GetLastErrorParam(errno, paramno)

Using ActiveX with Caché 23

The Factory Class

Hence, the following calls are all equivalent:

Dim ErrParam As String
ErrParam = factory.GetLastErrorParam()
ErrParam = factory.GetLastErrorParam(1)
ErrParam = factory.GetLastErrorParam(1,1)

4.2.12 GetLastErrorParamCount()

Returns the number of parameters for the last (most recently encountered) error.

Integer GetLastErrorParamCount([String ErrNumber])

Note: The last error is per process, not per object.

Parameter:

• ErrNumber — the optionally passed position of the error in the status code (1 by default).

Returns:

an Integer

Example:

Dim ParamCount As Integer
ParamCount = factory.GetLastErrorParamCount()

or

Dim ParamCount As Integer
ParamCount = factory.GetLastErrorParamCount(errno)

4.2.13 IsConnected()

Returns true if a connection has been established.

Boolean IsConnected()

The return value of this method indicates whether or not the most recent connection operation succeeded or not.

Important: If a connection was established and was then broken by some other environmental effect, the function may
still return true. This is because the last operation succeeded, even if the connection no longer exists.
While the method performs some basic attempts to determine if the connection still exists, these may not
succeed.

Returns:

a Boolean true if a connection has been established, or false otherwise.

Example:

If Not factory.IsConnected()
' Establish connection
End If

24 Using ActiveX with Caché

Caché ActiveX API Reference

4.2.14 IsMultibyte()

Indicates whether Unicode characters require special representation on the server.

Boolean IsMultibyte()

A value of true means that a Unicode character is stored as an “escaped” sequence of ASCII characters. A false return
value means that Unicode is the native representation for characters. Hence, the method returns false if the Caché server
is a Unicode installation and true if not.

The purpose of this method is to ensure proper management of Unicode values in a SysList object.

Returns:

a Boolean true if Unicode characters require special representation on the server, or false otherwise.

Example:

Dim im as Boolean
im = factory.IsMultibyte()

4.2.15 New()

Creates a new object on the server and a corresponding ActiveX proxy object on the client.

Object New(String ClassName[, Variant init])

When successfully invoked, the New() method returns a new ObjInstance proxy object of the specified class, and creates
a corresponding new Caché object on the Server. To be able to use the object, the Caché client application must cast the
object to the type of the Caché object that was being opened. This makes the Caché functionality of the object available to
the application.

Parameters:

• ClassName — the name of a valid class defined on the Caché Server

• init — an optional value used to initialize the new object.

Returns:

an ObjInstance object.

Example:

Dim obj as Object
Set obj = factory.New(ClassName)

4.2.16 Open()

Uses an object identifier (OID) to create a new ObjInstance proxy object populated with data from the object opened on
the Caché server.

Object Open(String ClassName, String OID, [[Int concurrency], Int noreuse])

Note: This method is primarily for InterSystems internal use.

Using ActiveX with Caché 25

The Factory Class

Parameters:

• ClassName — a class defined on the Caché server

• OID — an OID value.

• concurrency — Optional. Sets the level of concurrent usage allowed for this object.

• noreuse — Optional. Controls whether an object in memory can be referred to multiple times. This corre-
sponds to the server-side ObjectScript syntax ##class(ClassName).%Open(oid).

Returns:

a new ObjInstance proxy object populated with data from the object opened on the Caché server.

Example:

Dim obj as Object
Set obj = factory.Open(ClassName,oid)

4.2.17 OpenId()

Creates a new ObjInstance proxy object populated with data from an object opened on the Caché server.

Object OpenId(String ClassName, String id, [[Int concurrency], Int noreuse])

Parameters:

• ClassName — a valid class defined on the Caché server

• id — an ID associated with a valid OID.

• concurrency — Optional. Sets the level of concurrent usage allowed for this object.

• noreuse — Optional. Controls whether an object in memory can be referred to multiple times.

Returns:

a new ObjInstance proxy object populated with data from an object opened on the Caché server.

Example:

Dim obj as Object
Set obj = factory.OpenId(ClassName,id)

4.2.18 ResultSet()

Creates a Caché ActiveX ResultSet object that contains a previously-defined query.

Object ResultSet(String ClassName, String QueryName)

There is no difference between the kind of ResultSet object created by this method and the kind created by the Factory

class' DynamicSQL method.

The query is applied to the database via the Execute() method of the returned ResultSet object. Afterward, you can retrieve
data using the ResultSet object's various available methods.

26 Using ActiveX with Caché

Caché ActiveX API Reference

Parameters:

• ClassName — name of the class containing the query.

• QueryName — name of the class query to be used.

Returns:

a ResultSet object.

Example:

Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")

Dim ok As Boolean
ok = res.Execute("L") ' pass in any arguments expected by the query
while res.Next()
 Debug.Print res.Get("Name")
wend

4.2.19 SetOutput()

Allows you to direct server output (produced by a Write command in ObjectScript code) to a control that is part of a client
application.

Sub SetOutput(Variant DisplayControl)

The control receiving the output from the server must have a text property where the output can appear.

This content must come from a single Write command. Each subsequent invocation of the Write will overwrite the content
displayed by the last one. Similarly, if there are multiple pieces of input, they must be concatenated into a single unit of
input and passed to the Write in that combined form. (You can also pass the output to a text object other than the one ulti-
mately displaying it, concatenate it there, and then pass it along for display.)

Parameter:

• DisplayControl — the control that is to receive the output, or an empty string.

Example:

Set factory = CreateObject("CacheActiveX.Factory")
factory.SetOutput Text1
' System output now goes to textbox Text1

To disable output functionality you can call SetOutput() with an empty string:

factory.SetOutput ""

4.2.20 Static()

Returns a static ActiveX object which allows you to invoke class methods on the Caché server.

Object Static(ClassName As String)

There is no corresponding object opened on the server, so you cannot invoke instance or property methods from this ActiveX
object.

Using ActiveX with Caché 27

The Factory Class

Parameter:

• ClassName — class name of the object to be returned.

Returns:

a static ActiveX object.

Example:

' invoke a class method;
' put the content in a textbox called txtInfoBox
Dim MyObj As Object
Set MyObj = factory.Static("Cinema.Utils")

' the Cinema.Utils.SendEmail ClassMethod returns a string,
' which then appears in the textbox
txtInfoBox.Text = MyObj.SendEmail(Addr,Msg)

4.2.21 TransactionCommit()

Marks the successful end of a transaction initiated by the corresponding TransactionStart() method.

Sub TransactionCommit()

TransactionCommit() is exactly analogous to the ObjectScript TCommit command. For more information on transactions
generally, see the TStart reference page.

TransactionCommit() decrements the value of the $TLEVEL special variable and terminates the transaction only if
$TLEVEL goes to 0. That is to say, a transaction is committed when TransactionCommit() has been called as many times
as TransactionStart(). Calling TransactionCommit() when $TLEVEL is 0 results in an ObjectScript <COMMAND>
error.

Example:

factory.TransactionCommit()

4.2.22 TransactionLevel()

Returns the current nesting level for transaction processing.

Integer TransactionLevel()

The number of TransactionStart() calls issued before Caché encounters a TransactionCommit() or TransactionRollBack()
determines the nesting level. Each TransactionStart() command increments the special variable $TLEVEL by 1. Each
TransactionCommit() command decrements $TLEVEL by 1. A TransactionRollBack() command resets $TLEVEL to
0.

Returns:

an Integer

Example:

Dim lvl as Integer
set lvl=factory.TransactionLevel()

28 Using ActiveX with Caché

Caché ActiveX API Reference

4.2.23 TransactionRollBack()

Terminates the current transaction and restores all journaled database values to the values they held at the start of the
transaction.

Sub TransactionRollBack()

Example:

factory.TransactionRollBack()

4.2.24 TransactionStart()

Marks the beginning of a transaction.

Sub TransactionStart()

Following TransactionStart(), database operations are journaled to enable a subsequent TransactionCommit() or
TransactionRollBack() command.

TransactionStart() is exactly analogous to the ObjectScript TStart command. For more information on transactions gen-
erally, see the TStart reference page.

The rollback occurs no matter what the value of the $TLEVEL special variable is. Following TransactionRollBack(),
$TLEVEL is set to 0. Calling TransactionRollBack() when $TLEVEL is 0 has no effect.

TransactionRollBack() is exactly analogous to the ObjectScript TRollBack command. For more information on transactions
generally, see the TStart reference page.

Example:

factory.TransactionStart()

4.3 The ResultSet Class
Caché provides interfaces for performing both pre-defined or dynamically-defined queries. For access to this interface from
an ActiveX client, use an ActiveX ResultSet object. A ResultSet object allows to you to set up a query, execute it, and parse
its results.

As part of an ActiveX client, the ResultSet object exists independently; on the Caché server, a ResultSet is a class member
— just as an object or a property is a class member. Each ActiveX ResultSet object is tied to a particular query — one
defined either dynamically or in a specific Caché class.

The Caché ResultSet object supports the following members:

• Close, closes a ResultSet object after it has been executed.

• ContainsID, determines whether a query contains an ID.

• Execute, executes the query referenced by the ResultSet object.

• Get, uses the name of the column to return the data value for the specified column.

• GetColumnCount, returns the number of columns in the ResultSet object.

• GetColumnHeader, returns the description of the column in the specified position.

Using ActiveX with Caché 29

The ResultSet Class

• GetColumnName, returns the name of a specified column.

• GetData, returns the data value for the specified column.

• GetDataAsString, returns the value of a specified column in string format.

• GetDataByName, uses the name of the column to return the data value for the specified column.

• GetParamCount, returns the number of possible parameters for the query.

• GetParamName, returns the name of a specified parameter.

• IsDataNull, determines if the specified column has been defined.

• Next, advances to the next row of data.

• Prepare, specifies a dynamic SQL query to use instead of a class query.

• SetParam, sets the value of input parameters required by the query.

• SetRunTimeMode, sets the runtime mode of the query.

Important: The default SQL runtime mode for CacheActiveX.dll is ODBC. If your application uses the older
CacheObject.dll, the runtime mode would be Logical (see Upgrading from CacheObject.dll and the
SetRunTimeMode() method).

4.3.1 Close()

Closes a result set after you have executed the query that created it.

Boolean Close()

This method does not free the result set's memory. If you wish to execute a statement multiple times, you must close the
ResultSet object between pair of calls to the Execute() method, making the sequence of calls something like:

Prepare 'prior to the first Execute call
Execute
Close
Execute
Close

Returns:

a Boolean true if the result set was successfully closed, or false otherwise.

Example:

res.Close
' res no longer contains the data returned by the query.
' If the ResultSet object is no longer to be used,
' its memory can be freed with:
Set res = Nothing

4.3.2 ContainsID()

Determines whether the current query returns an ID and, if so, which column contains it.

Integer ContainsID()

The method returns the number of the ID column or 0 if the ResultSet does not contain an ID column; since column numbers
start at 1, a returned non-zero value is that of the column number exactly. For information on how a pre-defined query
holds information on its ID column, see the section About CONTAINID in Using Caché Objects.

30 Using ActiveX with Caché

Caché ActiveX API Reference

Note: It is possible to manually specify a non-existent or incorrect column as the value of the column containing the ID
and this method will retrieve that value.

Returns:

an Integer

Example:

' This puts a message up saying whether or not
' the query contains an ID field.
MsgBox "ContainsID = " & res.ContainsID

4.3.3 Execute()

Executes the query defined by the ResultSet object. It passes any arguments specified to the query.

Boolean Execute([param0, param1, ... , paramN])

Parameters:

• param1,...,paramN — up to 16 optional parameters passed to the query on the server in the order specified.
These parameters are identified as param0 (zero) through param15, inclusive

Returns:

a Boolean true if the query executed successfully, or false otherwise.

Example:

' First, declare and prepare the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")

' Now run the ByName query. This query returns all
' people whose names begin with the letter specified.
res.Execute("A")

4.3.4 Get()

Returns the value of the data stored in a column of the current row of the ResultSet, where that column is specified by its
name.

Variant Get(String ColumnName)

While certain situations require the use of the Get() method, the GetData() method — which uses the column number
rather than column name — is faster.

Note: This is the equivalent of the GetDataByName() method and supersedes it.

Parameter:

• ColumnName — the name of the column from the ResultSet.

Returns:

a Variant containing the value of the data.

Using ActiveX with Caché 31

The ResultSet Class

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

While res.Next()
 ' places all the matching names in a listbox
 lstMyList.AddItem res.Get("Name")
Wend

4.3.5 GetColumnCount()

Returns the number of columns in the result set.

Integer GetColumnCount()

Returns:

an Integer indicating the number of columns in the result set.

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Get the number of columns in the result set.
For i = 1 To res.GetColumnCount
 ' For each column, display its name in a listbox.
 lstColumns.AddItem res.GetColumnName(i)
Next

4.3.6 GetColumnHeader()

Returns a description of the data contained in the specified column of a pre-defined query.

String GetColumnHeader(Integer ColumnNumber)

Note: Not implemented in CacheActiveX
This method is only implemented in the older CacheObject.dll (see “Upgrading from CacheObject.dll”), not in
CacheActiveX.dll. CacheActiveX will always return the column (property) name, ignoring what has been defined
in the ROWSPEC optionalDescription for the column. For example, if a class query has a ROWSPEC that defines
a new column header like:

"prop1:%String:MyHeader,prop2,prop3",

then CacheActiveX will return "prop1" instead of "MyHeader".

If no description exists (and for dynamically defined queries, they never exist), GetColumnHeader() returns the name of
the specified column. For information on setting up a pre-defined query's column headers, see the About ROWSPEC section
of the queries chapter of Using Caché Objects.

Parameter:

• ColumnNumber — the numeric position of the data in the ResultSet. Column numbers start with 1.

32 Using ActiveX with Caché

Caché ActiveX API Reference

Returns:

a String containing a description of the data.

Example:

Warning: this example only works when using the older CacheObject.dll (see note above).

' Declare, prepare, and run the query.
Dim res As CacheObject.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Get the number of columns in the result set.
For i = 1 To res.GetColumnCount
 ' For each column, display its name and header
 ' in a listbox as "Name - Header".
 lstColumns.AddItem res.GetColumnName(i) & " - " & res.GetColumnHeader(i)
Next

4.3.7 GetColumnName()

Returns an identifier associated with a specified column.

String GetColumnName(Integer ColumnNumber)

The behavior of this method depends on whether the ResultSet object was generated from a pre-defined query (using
Factory.ResultSet()) or a dynamically generated query (using Factory.DynamicSQL()). For pre-defined queries, it returns
the name of the property stored in the column; for dynamically defined queries, it returns either the name of the property
stored in the column or, if defined, the alias of the property, as specified in an AS clause of the query's SELECT statement.

Parameter:

• ColumnNumber — the numeric position of the data in the ResultSet. Column numbers start with 1.

Returns:

a String

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Get the number of columns in the result set.
For i = 1 To res.GetColumnCount
 ' For each column, display its name in a listbox.
 lstColumns.AddItem res.GetColumnName(i)
Next

4.3.8 GetData()

Returns the value of the data stored in a column (specified by its number) from the current row of the ResultSet.

Variant GetData(Integer ColumnNumber)

Parameter:

• ColumnNumber — the numeric position of the data in the ResultSet. Column numbers start with 1.

Using ActiveX with Caché 33

The ResultSet Class

Returns:

a Variant containing the value of the data.

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Retrieve the data from the specified column
While res.Next
 lstMyList.AddItem res.GetData(4)
Wend

4.3.9 GetDataAsString()

Returns the value of the data stored in a column (specified by name) from the current row of the ResultSet, converted to a
string.

String GetDataAsString(Integer ColumnNumber)

It is similar to the GetData() method, except that it performs a type conversion.

Parameter:

• ColumnNumber — the numeric position of the data in the ResultSet. Column numbers start with 1.

Returns:

a String

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Retrieve the data from the specified column
While res.Next
 lstMyList.AddItem res.GetDataAsString(4)
Wend

4.3.10 GetDataByName()

Note: The GetDataByName() method has been superseded by the Get() method.

Returns the value of the data stored in a column of the current row of the ResultSet, where that column is specified by its
name.

Variant GetDataByName(String ColumnName)

While certain situations require the use of the GetDataByName() (or Get()) methods, the GetData() method — which
uses the column number rather than column name — is faster.

Parameter:

• ColumnName — name of the column.

34 Using ActiveX with Caché

Caché ActiveX API Reference

Returns:

a Variant containing the value of the data.

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Retrieve the data from the specified column
While res.Next
 lstMyList.AddItem res.GetDataByName("Name")
Wend

4.3.11 GetParamCount()

Returns the maximum number of arguments a specified query expects to be passed.

Integer GetParamCount()

Returns:

an Integer

Example:

' Declare and prepare the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")

' Find out how many parameters the query uses and display it in a textbox.
txtParamCount.Text = res.GetParamCount

4.3.12 GetParamName()

Returns the name of the argument specified.

String GetParamName(Integer ParamNumber)

For example, if you want to know the name of the first argument, pass 1 as an argument to GetParamName().

Parameter:

• ParamNumber — number of the parameter to be returned.

Returns:

a String

Example:

' Declare and prepare the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")

' Display each query parameter in a listbox.
For i = 1 To res.GetParamCount
 lstParams.AddItem res.GetParamName(i)
Next

Using ActiveX with Caché 35

The ResultSet Class

4.3.13 IsDataNull()

Checks if a particular column in the current row of the ResultSet contains a SQL NULL value.

Boolean IsDataNull(Integer ColumnNumber)

Parameter:

• ColumnNumber — the numeric position of the data in the ResultSet, where column numbers start at 1.

Returns:

a Boolean true if:

• There is no data in the column. That is, the column is non-existent or the data in the column is the empty
string (specified by ObjectScript code on the server such as Set person.DOB="").

• The data in the column is $c(0) and its datatype is not String.

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Check if each row of the ResultSet has NULL value in column 4.
While res.Next
 lstMyList.AddItem res.IsDataNull(4)
Wend

4.3.14 Next()

Advances the ResultSet cursor to the next row of data.

Boolean Next()

Next() must be called to move to the first row of data before calling Get() or GetData().

Returns:

a Boolean true if the move succeeds and the now-current row of data exists, or false if no more data exists.

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Iterate through the ResultSet.
While res.Next
 ' All data processing occurs here;
 ' see Get, all GetData..., and IsDataNull methods for examples.
Wend

4.3.15 Prepare()

Specifies a dynamic SQL statement (or statements) to use as the query, instead of specifying a class query.

This method returns a status, which should be checked before proceeding.

36 Using ActiveX with Caché

Caché ActiveX API Reference

The queries can contain parameters represented by ? characters within the query. The values of any parameters are supplied
via the Execute() method.

4.3.16 SetParam()

Sets the value of input parameters for the query.

Sub SetParam(Integer Index, Variant Value)

Parameters:

• Index — represents the position of the parameter in the list of parameters. Parameter index numbers start
with 1.

• Value — the value to pass through to the query for that parameter

Example:

' Declare and prepare the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")

Call res.SetParam(1, "F")

' Run the query, since it already has the necessary parameter(s).
res.Execute

4.3.17 SetRunTimeMode()

Sets the SQL runtime mode for the query to be executed.

Sub SetRunTimeMode(Integer mode)

This method is typically used with GetDataAsString(), also of the ResultSet class, because this influences how the string
conversion happens.

For more information on the various modes, see the section Data Formats and Translation Methods in Using Caché Objects.

Parameter:

• mode — an Integer that represents one of the available modes:

– 0 for LOGICAL mode

– 1 for ODBC mode (similar to the system datatypes' LogicalToODBC() method)

– 2 for DISPLAY mode (similar to the system datatypes' LogicalToDisplay() method)

Example:

' Declare, prepare, and run the query.
Dim res As CacheActiveX.ResultSet
Set res = factory.ResultSet("Person","ByName")
res.Execute("A")

' Iterate through the ResultSet.
While res.Next
 res.SetRunTimeMode 0

 ' processing based on having data in logical mode
Wend

Using ActiveX with Caché 37

The ResultSet Class

4.4 The SysList Class
You can use Caché SysList objects to parse and manipulate Caché lists ($List format) from within Visual Basic. You can
also use them to create and manipulate lists in this format independent of the Caché server. See “Using Lists in Visual
Basic” for an example that uses SysList.

Lists are ordered collections of information. Each list element is identified by its position (slot) in the list. You can set the
value of a slot's data or insert data at a slot. If you set a new value for a slot, that value is stored in the list. If you set the
value for an already-existing slot, the new data overwrites the previous data and the slot assignments are not modified. If
you insert data at an already-existing slot, the new list item increments the slot number of all subsequent slots. (Inserting
a new item in the second slot slides the data currently in the second slot to the third slot, the object currently in the third
slot to the fourth slot, and so on.)

SysList objects are instances of the %List data type and allow you to manipulate individual items within the list; the list can
hold individual items or items that are lists. In ObjectScript, the functions for manipulating $List objects are $LIST,
$LISTBUILD, $LISTDATA, $LISTFIND, $LISTGET, and $LISTLENGTH.

Certain aspects of the SysList object depend on whether it is associated with an 8–bit or Unicode Caché server. For more
information, see the sections below on the IsMultibyte property and the section of the Add property on Adding a Unicode
Value.

The Caché SysList object supports the following properties:

• Count property, contains the number of slots in the list (whether the items are individual elements or themselves lists).

• IsMultibyte property, contains information specifying if the server is 8-bit or Unicode.

• Item property, contains an individual (non-list) item in the list.

• ItemList property, contains a list item in the list as a pointer to an object.

The Caché SysList object supports the following methods:

• Add, adds an item to the end of the list.

• Clear, empties the list.

• Get, returns a string containing the Caché $List object converted from SysList format.

• Remove, removes an element from the list and consolidates the remaining list items.

• Set, transforms a Caché $List object (serialized in a string) into a SysList object.

4.4.1 Count Property

Returns the length of the list (that is, the number of elements in it).

Count As Long

This includes:

• Elements containing single items.

• Empty elements. A list can contain an empty slot by being defined with ObjectScript server code such as

ObjectScript

 Set MyList = $ListBuild("Value1",,"Value2")

38 Using ActiveX with Caché

Caché ActiveX API Reference

This creates a NULL value in the second element.

• Elements containing items that are themselves lists.

Reads:

the number of elements in the list.

Note: Because this property is read-only, trying to set its value generates an error.

Example:

Dim Cars as CacheActiveX.SysList
Set Cars = salesman.CarsInLot()

Dim count as Integer
count = Cars.Count
' count contains the number of cars in Cars.

4.4.2 IsMultibyte Property

Indicates whether Unicode characters require special representation on the server.

IsMultibyte As Boolean

Reads:

A value of true means that a Unicode character is stored as an “escaped” sequence of ASCII characters. A
false return value means that Unicode is the native representation for characters.

The default value for this property is false. Typically, the application sets the value of this property using the
value returned by the Factory object's IsMultibyte method, as in the example below.

Example:

myList.IsMultibyte = factory.IsMultibyte()

You may or may not know if an object is compatible with an 8-bit system, depending on how it is created. For
example, in this first case, you do know what MyObj is, so you can properly work with it in your current environ-
ment:

Dim MyObj as CacheActiveX.SysList
Set MyObj = Obj.A

In this second case, you do not know what MyObj is and need to use the IsMultibyte() method to determine how
to properly work with it in your current environment:

Dim MyObj as CacheActiveX.SysList
Set MyObj = Create obj("CacheActiveX.SysList")

4.4.3 Item Property

Allows you to view or set the value of each item in the list.

Property Item(Index As Integer)

Reads/Writes:

an Integer

Using ActiveX with Caché 39

The SysList Class

The property can be used to unpack a list as follows:

' MyList is a SysList object with 2 items
Dim Item1 as String
Dim Item2 as String

Item1 = MyList.Item(1)
Item2 = MyList.Item(2)

It can also be used to create a new SysList object or to modify an existing one:

' Create a new list, Colors
Dim Colors as CacheActiveX.SysList

Set Colors = CreateObject("CacheActiveX.SysList")
Colors.Item(1) = "Red"
Colors.Item(2) = "Blue"
Colors.Item(3) = "Green"

' The first argument of the AddColors method is defined
' to have a %List data type
person.AddColors(Colors)

Note: Delphi users should use brackets rather than parentheses (x.Item[1] rather than x.Item(1)) to specify the
item index.

4.4.4 ItemList Property

Allows you to view or set the value of any item in the list which is itself a SysList object.

Property ItemList(Index As Integer) As CacheActiveX.SysList

Note: There is no way to determine if a list item is itself a list simply by looking its value. You must have the information
by some other mechanism.

Reads/Writes:

an Integer

Example:

You can use the ItemList property to create entries in a list:

' Create a new list, Books, containing the
' SysList objects Book1 and Book2
Dim Books as CacheActiveX.SysList

Set Books = CreateObject("CacheActiveX.SysList")
Set Books.ItemList(1)=Book1
Set Books.ItemList(2)=Book2

You can also use it to unpack SysList objects embedded inside another SysList object as follows:

'Using the Cars example above, the list contains 3 cars
Dim Car1 as CacheActiveX.SysList
Dim Car2 as CacheActiveX.SysList
Dim Car3 as CacheActiveX.SysList

Car1 = Cars.ItemList(1)
Car2 = Cars.ItemList(2)
Car3 = Cars.ItemList(3)
' Car1, Car2, and Car3 are all SysList objects which can
' themselves be unpacked using Item and ItemList.

40 Using ActiveX with Caché

Caché ActiveX API Reference

4.4.5 Add()

Adds an item to the end of a list.

Sub Add(Item)

Parameter:

• Item — item to be added.

Example:

' Using the list Colors
Colors.Add("Yellow")

' Add Yellow to the end of the list Colors, making it the
' fourth element in the list.
Dim Color4 as String
Color4 = Colors.Item(4)
' Color4 is Yellow

Adding a Unicode Value
You can place Unicode values in a SysList object by calling

Syslist.Add(ChrW(9824))

If the resulting SysList is later sent to an 8-bit cache server, then accessing the resulting $List object will cause a
<WIDE CHAR> error. To ensure that the server gets the object in correct format (regardless of whether Caché is
using 8-bit or Unicode characters), use code along the lines of:

Set Factory = CreateObject(CacheActiveX.Factory)
Set List = CreateObject(CacheActiveX.Syslist)
Factory.Connect(my_connection)
List.IsMultibyte = Factory.IsMultibyte

4.4.6 Clear()

Purges all data from a SysList object and eliminates its structure, as well.

Sub Clear()

Example:

' The data in the Cars SysList object is no longer useful

Cars.Clear()
' Cars is now an empty SysList object.

4.4.7 Get()

Takes a Caché ActiveX SysList object, converts it into a Caché $List object, and returns that object as a String.

Function Get() As String

Returns:

a String

Using ActiveX with Caché 41

The SysList Class

Example:

' Using the list Colors
Dim MyColors as String

MyColors = Colors.Get()

4.4.8 Remove()

Removes an item from the list. It then contracts the list so that the elements are sequentially numbered from 1.

Sub Remove(Index As Integer)

Parameter:

• Index — index number of the item to be removed.

Example:

' Using the list Colors with Red, Blue, Green, and Yellow

Colors.Remove(2)
' This call removes Blue from the list, makes Green the
' second item in the list and makes Yellow the third item
' in the list.

Dim Color1 as String
Dim Color2 as String
Dim Color3 as String

Color1 = Colors.Item(1)
Color2 = Colors.Item(2)
Color3 = Colors.Item(3)
' Color1 is Red, Color2 is Green, Color3 is Yellow

4.4.9 Set()

Takes a Caché $List object (considered as a string of characters, that is a String). It converts this into a Caché ActiveX
SysList object.

Sub Set(CacheList)

Parameter:

• CacheList — a Caché $List.

Example:

Dim NewList as CacheActiveX.SysList

Set NewList = CreateObject("CacheActiveX.SysList")
NewList.Set(x)

4.5 BinaryStream Class
Caché BinaryStream objects are used to create and manipulate binary stream data such as pictures.

The Caché BinaryStream class supports the following property:

• Data property, holds the actual data.

42 Using ActiveX with Caché

Caché ActiveX API Reference

The Caché BinaryStream class supports the following methods:

• Clear, removes the contents of the stream from permanent storage.

• DeleteAttribute, deletes a specific attribute of the stream.

• FileRead, reads data from a file on the client and imports it into the stream.

• FileWrite, gets the stream's data from the server and saves it to a file on the client.

• GetAttribute, returns the value of a named attribute associated with the character stream.

• GetPicture, returns IPictureDisp.

• IsDefinedAttribute, returns true if the named attribute exists for the stream, false otherwise.

• NextAttribute, retrieves the next attribute name in the sequence of attribute name-value pairs.

• Read, reads data from a stream object.

• Rewind, moves to the beginning of the stream.

• SetAttribute, assigns an attribute to the stream.

• SetPicture, converts a Picture object into a binary stream.

• Write, writes data to the stream.

4.5.1 Data Property

Contains all of the data associated with the stream object.

Variant Data

Note: Caché has no way of ensuring that the Data property is large enough to hold all the stream's data. The application
itself must do this.

Example:

' Person has a binary stream attribute, Image.
string = Person.Image.Data
' string contains the binary data of the picture

4.5.2 Clear()

Removes the contents of the stream from permanent storage.

Sub Clear()

This removes the permanent stream storage and any temporary stream, and restores the stream to its initial state. It also
removes all the attributes associated with this stream.

Example:

' The Person class has a binary stream attribute Image
Person.Image.Clear()

Using ActiveX with Caché 43

BinaryStream Class

4.5.3 DeleteAttribute()

Deletes a specific attribute of the stream.

Boolean DeleteAttribute(String Name)

An attribute is an array of strings containing name-value pairs that is associated with the stream.

Parameter:

• Name — the name of the attribute to delete.

Returns:

a Boolean true if the attribute previously existed, or false otherwise.

Example:

Person.Image.DeleteAttribute("MyAttrib")

4.5.4 FileRead()

Reads data from a file on the client and imports it into the stream.

Boolean FileRead(String filename)

Once read, the data is held in memory until the stream is closed.

Parameter:

• filename — the full path to the data to import.

Returns:

a Boolean true if the read is successful, or false otherwise.

Example:

' The Person class has a binary stream attribute Image
Person.Image.FileRead("c:\MyPicture.jpg")

4.5.5 FileWrite()

Gets the stream's data from the server and saves it to a file on the client.

Boolean FileWrite(String filename)

Parameter:

• filename — the full path of the file for saving the data.

Returns:

a Boolean true if the write is successful, or false otherwise.

44 Using ActiveX with Caché

Caché ActiveX API Reference

Example:

' The Person class has a binary stream attribute Image
Person.Image.FileWrite("c:\MyPicture.jpg")

4.5.6 GetAttribute()

Returns the value of a named attribute associated with the character stream.

String GetAttribute(String Name, String Default)

An attribute is an array of strings containing name-value pairs that is associated with the stream.

Parameters:

• Name — the name of the attribute.

• Default — the default value to be returned if the attribute has not been defined.

Returns:

a String

Example:

' The Person class has a binary stream attribute Image
Attr1Value=Person.Image.GetAttribute("Attr1")

or

' The Person class has a binary stream attribute Image
Attr1Value=Person.Image.GetAttribute("Attr1",1)

4.5.7 GetPicture()

Returns an IPictureDisp.

StdPicture GetPicture()

Note: Visual Basic 2005 stopped using the interface that Visual Basic 6 was using: Visual Basic 2005 uses Image for
its picture control.

If you are using Visual Basic 6, the picture control in Visual Basic corresponds to what GetPicture() returns, so
no additional work is needed. If you are using Visual Basic 2005, you will need to write a wrapper that will get
the binary data and create an Image object from it. In order to do this, do not call GetPicture() at all. Instead,
implement a .NET binary stream interface using the BinaryStream class.

Returns:

a StdPicture object (IPictureDisp).

4.5.8 IsDefinedAttribute()

Returns true if the named attribute exists for the stream.

Boolean IsDefinedAttribute(String Name)

Using ActiveX with Caché 45

BinaryStream Class

Parameter:

• Name — the name of the attribute you want to test the existence of. An attribute is an array of strings containing
name-value pairs that is associated with the stream.

Returns:

a Boolean true if the named attribute exists for the stream, or false otherwise.

Example:

'The Person class has a binary stream attribute Image
Dim exists as Boolean
exists=Person.Image.IsDefinedAttribute("MyAttrib")

4.5.9 NextAttribute()

Retrieves the next attribute name in the sequence of attribute name-value pairs.

String NextAttribute(String AttrMatch)

It operates on a string whose content is the name you want to start with. The method skips any names that begin with “%”.
(An attribute is an array of strings containing name-value pairs that is associated with the stream.)

Parameter:

• AttrMatch — a string that occurs before the first name you want returned. Pass through an empty string
("") to start at the first attribute; otherwise pass through a string that occurs before the first name you want to
find.

Returns:

a String

Example:

'The Person class has a binary stream attribute Image
Person.Image.NextAttribute("")

or

'The Person class has a binary stream attribute Image
Person.Image.NextAttribute("MyAttrib")

4.5.10 Read()

Returns a specified number of bytes from the Stream.

String Read(Int bytes)

Because Visual Basic uses Unicode characters, each character of a string is represented by even number of bytes. This
means that calling Read() with an argument that specifies an odd number of bytes to be read results in half of a character
being read from the last byte.

Read() reconciles this situation by returning a string consisting of only the whole characters it has read. It discards the last
partial character. It does, however, properly position the file pointer so it points to the next unread byte.

46 Using ActiveX with Caché

Caché ActiveX API Reference

For example, suppose the file consists of the Unicode characters for the string “Help”. In this case, Read(5) returns
“He” and leaves the file position partway through the “l” . Read(1) returns an empty string and leaves the file location
between the “l” and the “p”. “Read(2)” returns “p” and leaves the file positioned at the end.

If the actual BSTR returned by BinaryStream.Read() contains an odd number of bytes, the last byte cannot be accessed
using regular Visual Basic string manipulation functions. To work with such a stream, either copy the string to a byte array
or access it with functions such as LenB, MidB, and AscB.

Parameter:

• chars — the set of bytes to be read from the stream.

Returns:

a String containing a specified number of bytes (chars) from the Stream.

Example:

'The Person class has a binary stream attribute image
'Grab the first 100 bytes
Image1.Picture=Person.Image.Read(100)

4.5.11 Rewind()

Moves to the beginning of the stream.

Boolean Rewind()

Returns:

a Boolean true if the move is successful, or false otherwise.

Example:

' The Person class has a binary stream attribute Image
' Rewind it before using it
Person.Image.Rewind

4.5.12 SetAttribute()

Assigns an attribute to the stream.

Sub SetAttribute(String Name, Value)

An attribute is a name-value pair stored in an array associated with a stream.

Parameters:

• Name — the name of the attribute to set.

• Value — the value to be assigned to the attribute. Value can be of any primitive type (that is, it cannot be
an array or an object reference) and must be quoted if it is a string.

Example:

'The Person class has a binary stream attribute Image
Person.Image.SetAttribute("ShoeSize",10)

Using ActiveX with Caché 47

BinaryStream Class

4.5.13 SetPicture()

Converts a Visual Basic Picture object to a binary stream for the server.

Sub SetPicture(StdPicture picture)

Parameter:

• picture — the Visual Basic Picture to be converted.

Example:

' The Person class has a binary stream attribute Image
Set pic = photo.Image
Person.Image.SetPicture pic

4.5.14 Write()

Writes data to the stream.

Boolean Write(String data)

Parameter:

• data — the set of bytes to be written to the stream.

Important: The argument must be a variable rather than string literal. If a literal is passed (such as
Person.Image.Write "test"), a type mismatch error occurs.

Returns:

a Boolean true if the write is successful, or false otherwise.

Example:

' The Person class has a binary stream attribute Image
Person.Image.Write(data)

4.6 CharStream Class
Caché CharStream objects are used to create and manipulate character stream data such as journal entries and book chapters.

The Caché CharStream class supports the following property:

• Data property, contains all the data associated with a stream object.

The Caché CharStream class supports the following methods:

• Clear, removes the contents of the stream from permanent storage.

• DeleteAttribute, deletes a specific attribute of the stream.

• FileRead, reads data from a file on the client and imports it into the stream.

• FileWrite, gets the stream's data from the server and saves it to a file on the client.

48 Using ActiveX with Caché

Caché ActiveX API Reference

• GetAttribute, returns the value of a named of an attribute associated with the stream.

• IsDefinedAttribute, returns true if the named attribute exists for the stream, false otherwise.

• NextAttribute, retrieves the next attribute name in the sequence of attribute name-value pairs.

• Read, returns a specified number of characters from the stream.

• Rewind, moves to the beginning of the stream's data.

• SetAttribute, assigns an attribute to the stream.

• Write, writes data to the stream.

4.6.1 Data Property

Contains all the data associated with the stream object.

Variant Data

Note: Caché has no way of ensuring that the Data property is large enough to hold all the stream's data. The application
itself must do this.

Reads:

all the data associated with the stream object.

Example:

' Person has a character stream Memo
Text1.Text = Person.Memo.Data
' The textbox now displays the data in Memo

4.6.2 Clear()

Removes the contents of the stream from permanent and temporary storage.

Sub Clear()

This removes the permanent stream storage and any temporary stream, and restores the stream to its initial state. It also
removes all the attributes associated with this stream.

Example:

' The Person class has a character stream Diary
Person.Diary.Clear()

4.6.3 DeleteAttribute()

Deletes a specific attribute of the stream.

Boolean DeleteAttribute(String AttrName)

An attribute is an array of strings containing name-value pairs that is associated with the stream.

Parameter:

• AttrName — the name of the attribute to delete.

Using ActiveX with Caché 49

CharStream Class

Returns:

a Boolean true if the attribute previously existed, or false if it did not.

Example:

Person.Image.DeleteAttribute("MyAttrib")

4.6.4 FileRead()

Reads data from a file on the client and imports it into the stream.

Boolean FileRead(String filename)

Once read, the data is held in memory until the stream is closed.

Parameter:

• filename — the full path to the data to import.

Returns:

a Boolean true if the file data is successfully read and imported, or false otherwise.

Example:

' The Person class has a character stream Memo
Person.Memo.FileRead("c:\Memo.txt")

4.6.5 FileWrite()

Gets the stream's data from the server and saves it to a file on the client.

Boolean FileWrite(String filename)

Parameter:

• filename — the full path of the file for saving the data.

Returns:

a Boolean true if the write succeeds, or false otherwise.

Example:

' The Person class has a character stream Memo
Person.Memo.FileWrite("c:\Memo.txt")

4.6.6 GetAttribute()

Returns the value of a named of an attribute associated with the character stream.

String GetAttribute(String AttrName, String DefaultValue)

An attribute is an array of strings containing name-value pairs that is associated with the stream.

50 Using ActiveX with Caché

Caché ActiveX API Reference

Parameters:

• AttrName — the name of the attribute.

• DefaultValue — the default value to be returned if the attribute has not been defined.

Returns:

a String

Example:

' The Person class has a character stream Image
Attr1Value=Person.Image.GetAttribute("Attr1")

or

' The Person class has a character stream Image
Attr1Value=Person.Image.GetAttribute("Attr1",1)

4.6.7 IsDefinedAttribute()

Returns true if the named attribute exists for the stream.

Boolean IsDefinedAttribute(String Name)

An attribute is an array of strings containing name-value pairs that is associated with the stream.

Parameter:

• Name — the name of the attribute you want to test the existence of.

Returns:

a Boolean true if the named attribute exists for the stream, or false otherwise.

Example:

'The Person class has a character stream Image

Dim exists as Boolean
exists=Person.Image.IsDefinedAttribute("MyAttrib")

4.6.8 NextAttribute()

Retrieves the next attribute name in the sequence of attribute name-value pairs.

String NextAttribute(String AttrMatch)

An attribute is an array of strings containing name-value pairs that is associated with the stream. The method operates on
a string whose content is the name you want to start with. It skips any names that begin with “%”.

Parameter:

• AttrMatch — a string that occurs before the first attribute name you want returned. Pass through an empty
string ("") to start at the first attribute's name; otherwise, pass through a string that occurs before the name
value you want to find.

Using ActiveX with Caché 51

CharStream Class

Returns:

a String containing the next attribute name in the sequence of attribute name-value pairs.

Example:

'The Person class has a character stream Image
Person.Image.NextAttribute("")

or

'The Person class has a character stream Image
Person.Image.NextAttribute("MyAttrib")

4.6.9 Read()

Returns a specified number of characters from the stream.

String Read(Int chars)

Parameter:

• chars — the number of characters to be read from the stream.

Returns:

a String

Example:

' The Person class has a character stream Memo
' Grab the first 10 characters
Text1.text=Person.Memo.Read(10)

4.6.10 Rewind()

Moves to the beginning of the stream.

Boolean Rewind()

Returns:

a Boolean true if the move is successful, or false otherwise.

Example:

' The Person class has a character stream Memo
' Rewind it before using it
Person.Memo.Rewind

4.6.11 SetAttribute()

Assigns an attribute to the stream.

Sub SetAttribute(String Name, Value)

An attribute is a name-value pair stored in an array associated with a stream.

52 Using ActiveX with Caché

Caché ActiveX API Reference

Parameters:

• Name — the name of the attribute to set.

• Value — the value to be assigned to the attribute. Value can be of any primitive type (that is, it cannot be
an array or an object reference) and must be quoted if it is a string.

Example:

'The Person class has a character stream Diary

Person.Image.SetAttribute("BGColor","ffffff")

4.6.12 Write()

Writes data to the stream.

Boolean Write(String data)

Parameter:

• data — a String containing the data to be written.

Returns:

a Boolean true if the write was successful, or false otherwise.

Example:

' The Person class has a character stream Memo
Person.Memo.Write(data)

Using ActiveX with Caché 53

CharStream Class

	Table of Contents
	1 Introduction
	2 The Elements of the ActiveX Interface
	2.1 ActiveX Components
	2.2 The Caché Object Server for ActiveX
	2.3 Upgrading from CacheObject.dll
	2.4 Configuring a Visual Basic Project for Early Binding

	3 Working with Caché ActiveX Objects
	3.1 Connecting to a Server
	3.1.1 Defining a Connection String

	3.2 Creating a New Object Instance
	3.3 Saving an Object
	3.4 Opening an Existing Object
	3.5 Manipulating Caché Objects
	3.6 Using Callback Functionality
	3.7 Running a Query
	3.8 Using Streams
	3.9 Using Lists
	3.10 Error Trapping

	4 Caché ActiveX API Reference
	4.1 The Objinstance Class
	4.2 The Factory Class
	4.2.1 Connect()
	4.2.2 ConnectDlg()
	4.2.3 Disconnect()
	4.2.4 DynamicSQL()
	4.2.5 GetClassName()
	4.2.6 GetConnectionList()
	4.2.7 GetErrorText()
	4.2.8 GetId()
	4.2.9 GetLastErrorCount()
	4.2.10 GetLastErrorNumber()
	4.2.11 GetLastErrorParam()
	4.2.12 GetLastErrorParamCount()
	4.2.13 IsConnected()
	4.2.14 IsMultibyte()
	4.2.15 New()
	4.2.16 Open()
	4.2.17 OpenId()
	4.2.18 ResultSet()
	4.2.19 SetOutput()
	4.2.20 Static()
	4.2.21 TransactionCommit()
	4.2.22 TransactionLevel()
	4.2.23 TransactionRollBack()
	4.2.24 TransactionStart()

	4.3 The ResultSet Class
	4.3.1 Close()
	4.3.2 ContainsID()
	4.3.3 Execute()
	4.3.4 Get()
	4.3.5 GetColumnCount()
	4.3.6 GetColumnHeader()
	4.3.7 GetColumnName()
	4.3.8 GetData()
	4.3.9 GetDataAsString()
	4.3.10 GetDataByName()
	4.3.11 GetParamCount()
	4.3.12 GetParamName()
	4.3.13 IsDataNull()
	4.3.14 Next()
	4.3.15 Prepare()
	4.3.16 SetParam()
	4.3.17 SetRunTimeMode()

	4.4 The SysList Class
	4.4.1 Count Property
	4.4.2 IsMultibyte Property
	4.4.3 Item Property
	4.4.4 ItemList Property
	4.4.5 Add()
	4.4.6 Clear()
	4.4.7 Get()
	4.4.8 Remove()
	4.4.9 Set()

	4.5 BinaryStream Class
	4.5.1 Data Property
	4.5.2 Clear()
	4.5.3 DeleteAttribute()
	4.5.4 FileRead()
	4.5.5 FileWrite()
	4.5.6 GetAttribute()
	4.5.7 GetPicture()
	4.5.8 IsDefinedAttribute()
	4.5.9 NextAttribute()
	4.5.10 Read()
	4.5.11 Rewind()
	4.5.12 SetAttribute()
	4.5.13 SetPicture()
	4.5.14 Write()

	4.6 CharStream Class
	4.6.1 Data Property
	4.6.2 Clear()
	4.6.3 DeleteAttribute()
	4.6.4 FileRead()
	4.6.5 FileWrite()
	4.6.6 GetAttribute()
	4.6.7 IsDefinedAttribute()
	4.6.8 NextAttribute()
	4.6.9 Read()
	4.6.10 Rewind()
	4.6.11 SetAttribute()
	4.6.12 Write()

