
CDA Interoperability with
SDA

Version 2024.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

CDA Interoperability with SDA
InterSystems Version 2024.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 CDA Documents and XSL Transforms ... 1
1.1 CDA Document Structure .. 1
1.2 XSLT Directory Structure for CDA Documents .. 4

1.2.1 The System Directory .. 5
1.2.2 The Site Directory .. 5
1.2.3 The Import and Export Directories .. 17

2 Customizing CDA XSL Transformations ... 19
2.1 Preparing to Customize Transformations: Docker Containers ... 19
2.2 Creating Custom Transformations ... 20
2.3 Extending Transformations .. 21
2.4 Debugging Custom Transformations .. 21

2.4.1 Debugging Code ... 22
2.4.2 Interoperability Tools ... 23

3 Preprocessing C-CDA 2.1 Documents .. 25

4 CDA and SDA Annotations .. 27
4.1 Searching for Annotations .. 27
4.2 Levels in Annotations ... 28

CDA Interoperability with SDA iii

List of Tables

Table 1–1: Import Profile Settings ... 6
Table 1–2: CCDA v2.1 Note Section Import Profile Settings ... 9
Table 1–3: CCDA v2.1 Narrative Import Profile Settings ... 10
Table 1–4: Export Profile Settings ... 11
Table 1–5: CCDA v2.1 Note Section Export Profile Settings ... 13
Table 1–6: CCDA v2.1 Narrative Export Profile Settings ... 15

iv CDA Interoperability with SDA

1
CDA Documents and XSL Transforms

This page provides an introduction to the way InterSystems products handle CDA documents, beginning with an overview
of the structure of a CDA document, then describing the library of XSLTs (XSL transformations) that turns CDA documents
into SDA, and vice versa.

1.1 CDA Document Structure
The root node of all CDA documents is <ClinicalDocument>. Beneath it are three logical divisions: a header, one or
more Sections, and one or more Entries within each Section.

• The header contains metadata, patient demographics, and provider information.

• A Section establishes a broad concept, such as Allergies or Medication. A Section may contain unstructured, “nar-
rative” data in addition to structured data in the form of Entries.

• An Entry is embedded within a Section and represents an individual instance within the larger concept. For example,
one Entry in the Allergies section might represent a peanut allergy, and another a pollen allergy.

When a CDA document is transformed, Sections and Entries receive transformation instructions from support files,
which are discussed in XSLT Directory Structure for CDA Documents.

All portions of a CDA document conform to templates, which are defined by IHE or some other organization. These templates
are identified by OIDs (object identifiers). Templates provide structured, reusable formats for clinical data in a CDA docu-
ment, and they also indicate the specifications with which a CDA document must comply. Templates can inherit from one
another, imposing further constraints. OIDs are made up of strings of integers separated by periods, such as
2.16.840.1.113883.3.88.11.83.102. For more information about a specific template, enter its OID into an Internet
search engine; there are many online resources that provide detailed OID specifications.

Each Section contains structured and unstructured data. Unstructured data contains items such as text, numbers, and even
entire paragraphs; these are located in the narrative portion of a Section. Unstructured data accomplishes two tasks. First,
it provides the human-readable section of the CDA required by CDA specifications. Second, unstructured data provides a
reference point to which subsequent structured data may refer.

Structured data appears within Sections as Entries. As the name suggests, structured data has more specifications to
which it must adhere. Each Entry has one or more templates associated with it, indicating the standards to which that
Entry conforms. Entries contain a variety of data, including dates, intervals, strings, and OIDs. Additionally, they
contain coded data, and particular fields may expect certain input patterns. A codeSystem attribute, for example, must be
a valid OID and cannot be blank.

CDA Interoperability with SDA 1

The following table describes the CCDA v2.1 Sections supported by InterSystems. The left column displays XSLs,
while the right column displays their corresponding section names.

2 CDA Interoperability with SDA

CDA Documents and XSL Transforms

NotesCCDA SectionXSL

Advance DirectivesAdvanceDirectives.xsl

Allergies and IntolerancesAllergiesAndOtherAdverseReactions.xsl

Assessment and PlanAssessmentAndPlan.xsl

AssessmentAssessments.xsl

Supported for export only.Chief ComplaintChiefComplaint.xsl

Supported for export only.Chief Complaint and
Reason for Visit

ChiefComplaintAndReasonForVisit.xsl

This XSL defines SDA elements for:

• Care Plan Type

• Care Plan Provider

• Care Plan Support Contacts

• Care Plan SetId

• Care Plan Version

• Care Plan Authors

• Care Plan Organizations

• Care Plan Health Concern IDs

• Care Plan Goal IDs

CarePlan.xsl

ResultsDiagnosticResults.xsl

Discharge DiagnosisDischargeDiagnosis.xsl

Used to supplement the default
Encounter section specification.

EncounterDiagnoses.xsl

Family HistoryFamilyHistory.xsl

Functional StatusFunctionalStatus.xsl

GoalsGoals.xsl

Health ConcernsHealthConcerns.xsl

History of Past IllnessHistoryOfPastIllness.xsl

History of Present IllnessHistoryOfPresentIllness.xsl

Admission DiagnosisHospitalAdmissionDiagnosis.xsl

Supported for export only.Hospital CourseHospitalCourse.xsl

Hospital Discharge
Instructions

HospitalDischargeInstructions.xsl

Discharge MedicationsHospitalDischargeMedications.xsl

ImmunizationsImmunizations.xsl

InstructionsInstructions.xsl

CDA Interoperability with SDA 3

CDA Document Structure

NotesCCDA SectionXSL

InterventionsInterventions.xsl

MedicationsMedications.xsl

Medications AdministeredMedicationsAdministered.xsl

This XSL defines an SDA element
for Care Considerations, including
the following sub-fields:

• Entered By

• Entered At

• Entered On

• External ID

• Document Time

• Document Number

• Document Name

• Document Type

• File Type

• Document Stream

• Document Status

• Clinician

• Custom SDA Data

Non-RatifiedSections.xsl

Health Status Evaluations
and Outcomes

Outcomes.xsl

PayersPayers.xsl

Supported for export only.Physical ExamPhysicalExams.xsl

Plan of TreatmentPlanOfTreatment.xsl

ProblemProblemList.xsl

ProceduresProceduresAndInterventions.xsl

Supported for export only.Reason for ReferralReasonForReferral.xsl

Reason for VisitReasonForVisit.xsl

Social HistorySocialHistory.xsl

Vital SignsVitalSigns.xsl

1.2 XSLT Directory Structure for CDA Documents
InterSystems healthcare products ship with a library of XSLTs to transform CDA documents into SDA, and vice versa.

4 CDA Interoperability with SDA

CDA Documents and XSL Transforms

To view the available root-level XSLTs, navigate to your installation directory and follow the path install-dir\CSP\xslt\SDA3.
This directory contains the XSLTs, many of which are named for the actions they perform.

For example, CCDA-to-SDA transforms Consolidated CDA 1.1 CCD into SDA, CCDAv21-to-SDA transforms Consolidated
CDA 2.1 CCD into SDA, SDA-to-C32v25 transforms SDA into C32, and so on. These files in turn make calls to other files
located in the CDA-Support-Files directory, located at install-dir\CSP\xslt\SDA3\CDA-Support-Files.

Each root-level XSLT (for example, CDA-to-SDA.xsl) begins with xsl:include declarations to pull in the appropriate
files located in the CDA-Support-Files directory.

This section describes the various directories within CDA-Support-Files and the functions they serve. As the image indicates,
CDA-Support-Files contains the directories:

• System — Source-controlled, non-configurable files defining widely used items such as OIDs and templates.

• Site — Configurable files that are used by various XSLTs.

• Import and Export — Files that are called when transforming CDA into SDA, and vice versa.

• Reports — Mostly transformations that turn CDA documents into HTML so that they can be displayed in a web browser.
This directory is not described below.

Important: XSLTs are cached, so you must restart the production in the applicable namespace after editing a transfor-
mation for the changes to take effect.

1.2.1 The System Directory

The System directory contains static files that define a wide range of items. Items in this folder are not configurable.

The directories within System are:

• Common — Utility templates that are not widely used.

• OIDs — Variables associated with the OIDs

• Site-Defaults — A source-controlled version of the Site directory. This directory is not called at runtime. For more
information, see The Site Directory.

• Templates — Variables associated with the template identifiers

1.2.2 The Site Directory

The Site directory contains files that can be uniquely configured.

Important: The files in this directory are not touched upon upgrade in order to preserve customizations. After
upgrading, you must manually reconcile these files with the new versions of the files in install-
dir\CSP\xslt\SDA3\CDA-Support-Files\System\Site-Defaults, regardless of whether they have been customized.
Any files that you did not customize in the Site directory must also be refreshed with the new version in
Site-Defaults by manually copying the files into the directory.

The files within Site are:

• ImportProfile and ExportProfile — Configuration settings that are used during the process of importing and exporting a
CDA document into and from your instance. See Import Profile and Export Profile.

• OutputEncoding — An XSLT used on export to control the encoding of the resulting CDA document. The default is
UTF-8.

CDA Interoperability with SDA 5

XSLT Directory Structure for CDA Documents

• Variables — Configurable variables used during import or export. These variables represent organizations and set up
“home” information.

1.2.2.1 Import Profile

The import profile controls configuration settings when importing a CDA document. Almost every variable in the import
profile has a <sectionTemplateId>, an <entryTemplateId>, or both; the exception is resultsImportConfiguration, which
instead has separate template IDs for <sectionC32TemplateId> and <sectionC37TemplateId>. The presence of a <section-
TemplateId> or an <entryTemplateId> depends on whether the variable in question is found in a section module or an entry
module.

Additionally, some variables may contain other settings. The following tables list those settings as well as the variables to
which they belong and their values.

Table 1–1: Import Profile Settings

ValueSettingVariable Name

Blocks the import of a CDA string,
narrative text, or originalText into
an SDA CodeTableDetail Code
property when the CDA @code
attribute is not available.

If this setting is activated and the
coded element is nullFlavor, no
text is loaded into the SDA Code
Property unless the target SDA
element is OrderItem and the
orderItemDefaultCode or
orderItemDefaultDescription

configuration parameter is turned
on.

If
blockImportCTDCodeFromText

is not enabled, the import behav-
ior remains unchanged from the
previous version.

disabledgeneralImportConfiguration/

blockImportCTDCodeFromText

Indicates whether or not SDA
action codes are enabled. SDA
action codes control the update
and deletion of data.

enabledgeneralImportConfiguration/

sdaActionCodes

Indicates whether CDA <id> ele-
ments should be used to import
SDA ExternalId property values
where applicable.

overrideExternalIdgeneralImportConfiguration/

sdaActionCodes

6 CDA Interoperability with SDA

CDA Documents and XSL Transforms

ValueSettingVariable Name

When enabled, and a CDA Result

cannot be classified as an SDA
LabOrder or RadOrder, then the
Result is imported as an SDA
OtherOrder. Otherwise the Result

is not imported.

enableOtherOrdersgeneralImportConfiguration

When the value equals 1, if
hl7:representedOrganization/hl7:id
@root is an OID and @extension
is numeric, then both are concate-
nated into one facility OID.

concatRootAndNumericEx-
tension

generalImportConfiguration/

representedOrganizationId

A value of 1 imports the narrative
section as text, importing both

 and narrative line feeds as
line feeds. A value of 2 imports as
text, using only
 as a line
feed. This applies only to the
import of Result Text, Hospital

Discharge Instructions, and Reason

for Visit.

narrativeImportModegeneralImportConfiguration

Indicates the status of a medica-
tion. Its value depends on the
variable in which it is located,
which in turn indicates the CDA
section from which the medication
is being imported.

pharmacyStatusdischargeMedicationsImportConfiguration

medicationsImportConfiguration

medicationsAdministeredImportConfigura-
tion

When set to 0: effectiveTime/cen-
ter values will be imported to
FromTime.

When set to 1 :effectiveTime/cen-
ter values will be imported to
FromTime and ToTime.

Note: If effectiveTime/center is
populated for a particular care
plan, effectiveTime/high and
effectiveTime/low should not be
populated for that care plan.

effectiveTimeCenterplanImportConfiguration

Helps to select the correct
hl7:organizer within a given
results entry when there is more
than one. One alternate value it
might be given is $ihe-PCC-Lab-
BatteryOrganizer.

resultOrganizerTemplateIdresultsImportConfiguration

CDA Interoperability with SDA 7

XSLT Directory Structure for CDA Documents

ValueSettingVariable Name

Code to use for SDA OrderItem

Code when a CDA Result does not
include information from which to
derive an OrderItem Code or
Description.

orderItemDefaultCoderesultsImportConfiguration

Description to use for SDA
OrderItem Code when a CDA Result

does not include information from
which to derive SDA OrderItem

Code or Description.

orderItemDefaultDescrip-
tion

resultsImportConfiguration

A value of 1 means that this set-
ting is enabled.This is the default.
The system adds a Health Fund
streamlet for each Encounter to
the resulting SDA. A value of 0
means that this setting is disabled.
The system will not create a
Health Fund streamlet for every
Encounter.

healthFundImportModeencountersImportConfiguration

A value of 1 means that this set-
ting is enabled. For each Payor
received in the CCD/CCDA, the
system will create a Member
Enrollment streamlet in the
resulting SDA. A value of 0 means
that this setting is disabled. This
is the default. The system will not
create a Member Enrollment
streamlet in the resulting SDA.

memberEnrollmentImport-
Mode

payersImportConfiguration

A value of 0 means that Gender
Identity Social History entries will
not be imported into the GenderI-
dentity property of the Patient
streamlet. This is the default. A
value of 1 means that Gender
Identity entries will be imported
into the GenderIdentity property
of the Patient streamlet. This set-
ting only applies to CCDA v1.1
and CCDA v2.1.

patientGenderIdentityIm-
portMode

socialHistoryImportConfiguration

8 CDA Interoperability with SDA

CDA Documents and XSL Transforms

ValueSettingVariable Name

A value of 1 means that the sys-
tem imports Gender Identity as a
SocialHistory streamlet during the
translation of Social History CCDA
entries into SDA3. This is the
default. A value of 0 means that
the system does not import Gen-
der Identity as a SocialHistory
streamlet. This setting only
applies to CCDA v1.1 and CCDA
v2.1.

socialHistoryGenderIdenti-
tyImportMode

socialHistoryImportConfiguration

The settings in the following table control how CCDA v2.1 Note sections are imported into SDA Document streamlets.
These settings apply only to CCDA v2.1.

Table 1–2: CCDA v2.1 Note Section Import Profile Settings

ValueSettingVariable Name

Limit note import to sections matching the
given LOINC codes.The default version of
the file lists many default note sections to
import. Anything that is not included is not
imported.

includesectionsnotesImportConfiguration

Exclude note import from sections match-
ing the given LOINC codes.

excludesectionsnotesImportConfiguration

Always import note entries matching the
given LOINC codes even if the correspond-
ing section isn’t imported.

The system currently does not import some
Note sections, like Review of Systems, as
there are no corresponding .xsl files in
install-
dir\CSP\xslt\SDA3\CDA-Support-Files\Import\Section-Modules\CCDAv21

to import them with. If you include the
LOINC code for such sections in include-
Notes, any <text> blocks will be imported
as a document in the SDA identified by that
LOINC code. Entry data is not imported in
this case. This setting is empty by default.

includeNotesnotesImportConfiguration

Never import note entries matching the
given LOINC codes even if corresponding
section is imported. This setting is empty
by default.

excludeNotesnotesImportConfiguration

The settings in the following table control how narratives, which appear inside of CCDAv2.1 sections in <text> tags, are
imported from CCDA v2.1 to SDA. These settings apply only to CCDAv2.1.

CDA Interoperability with SDA 9

XSLT Directory Structure for CDA Documents

The narrativeImportConfiguration/section variable contains a list of CCDA v2.1 sections, like Admission Medication, that
narratives will be imported from.

Table 1–3: CCDA v2.1 Narrative Import Profile Settings

ValueSettingVariable Name

Controls how lines are wrapped in the
resulting SDA <NoteText> when narratives
are imported. By default, long lines are
wrapped at 80 characters. Words that end
lines are broken on whitespace only.

A known issue with wrapWidth prevents it
from properly wrapping narrative text that
has been imported into SDA.

wrapWidthnarrativeImportConfiguration

Optional. Any narrative that contains a
phrase included in the exclude setting is
skipped for import. Any narratives that
exactly match any phrases inside of the
<exclude mode="full"> option will be
skipped for import. Any narrative with the
nullFlavor attribute is always skipped. The
importProfile.xsl file contains several
default phrases in <exclude>.

You can either exclude phrases via this
exclude setting, which filters all the sections
that you are importing narratives from, or
you can use the section-specific exclude
setting described below to exclude from a
specific section.

excludenarrativeImportConfiguration

Recommended. This setting affects how
the SDA is displayed in the Clinical
Viewerand will translate into the SDA as
DocumentName in the SDA Document
streamlet, which is used for Clinical Viewer
grouping. More specifically, this value
overrides the hl7:section/hl7:title value that
is mapped to DocumentName.

titlenarrativeImportConfiguration/sec-
tion

Optional. Affects how the SDA is displayed
in the Clinical Viewer.This setting becomes
the Code in the DocumentType.

The displayName option of code becomes
the Description of the documentType
property of the SDA Document streamlet.

codenarrativeImportConfiguration/sec-
tion

10 CDA Interoperability with SDA

CDA Documents and XSL Transforms

ValueSettingVariable Name

Required. Every category for clinical data
has a defined unique templateID, or OID.
If present, the narrative for the section
specified by this templateId is imported.

templateIdnarrativeImportConfiguration/sec-
tion

1.2.2.2 Export Profile

Most elements in the export profile have an <emptySection> element, a <narrativeLinkPrefixes> element, or both. <emp-
tySection> elements control whether or not to export a section that contains no information. <narrativeLinkPrefixes> allows
you to determine the prefix of the IDs that will identify narrative sections (which are located inside of <text> tags), and
entry sections in the resulting CCDA. These IDs can be used to provide links between the narrative and entry sections in
the resulting CCDA. Both of the following have <narrativeLinkPrefixes>, as both result in sections that require links
between narrative and entry sections:

• Top-level ExportProfile.xml sections like <allergies> and <assessmentPlan>

• The <notes> section used for Note section export in ExportProfile.xml

Additionally, some sections may contain other settings. These settings can be edited and augmented depending on the data
that is to be exported. The following tables list those unique settings as well as the sections in which they are found and
their values.

Table 1–4: Export Profile Settings

ValueSettingSection

Codes that can be used as additional diagnosis types
for admission.

codesadmissionDiagnoses/

diagnosisType

Codes that correspond to various advance directive
types, such as resuscitation or intubation.

codesadvanceDirectives/

advanceDirec-
tiveType

Codes that can be used as additional diagnosis types
for assessment.

codesassessment/

diagnosisType

Codes that can be used as additional diagnosis types
for discharge.

codesdischargeDiagnoses/

diagnosisType

If enabled (value = 1), allows the export of encounter
diagnoses to CDA C32.

disabledencounterDiagnoses/

exportToC32

Controls whether or not to include historical medications
in the current medications list.

includeHistoricalMedica-
tions

medications/

currentMedication

Limits how old in days a medication can be and still be
included in the current medications list.

windowInDaysmedications/

currentMedication

CDA Interoperability with SDA 11

XSLT Directory Structure for CDA Documents

ValueSettingSection

Hides the narrative column.hideNarrativeColumnmedications/

currentMedication

When set to 0: FromTime will be exported to effective-
Time/low and ToTime will be exported to effective-
Time/high.

When set to 1: IF FromTime and ToTime have the same
non-null value, that value is exported to effectiveTime/cen-
ter. ELSE: if FromTime has a value, it is exported to
effectiveTime/low. If ToTime has a value it is exported
to effectiveTime/high.

EXCEPTION: if ProcedureTime has a value, it is exported
to effectiveTime/Center in place of FromTime.

effectiveTimeCenterplanOfCare

Codes that correspond to various problem types, such
as ACTIVE or CHRONIC.

codesproblems/

currentCondition

Limits how old in days a medication can be and still be
included in the current problems list.

windowInDaysproblems/

currentCondition

Indicates whether or not to export smokingStatus when it
contains no data.

exportDatasocialHistory/

emptySmokingStatus

Included for backwards compatibility, so that users can
successfully process SDA Vaccinations and create
CDA/C-CDA data with Immunizations if they have both:

• Erroneous SDA with Immunization administration
dates translated incorrectly in SDA, resulting in SDA
without Administrations (if the SDA was generated
prior to receiving the CDA/C-CDA Immunization
Processing Correction)

• Newer SDA without the issue, where Immunization
administration dates were correctly translated to
Vaccination.Administrations.Administration.FromTime

When set to 0: This is the default. Immunizations entries
are only created when Vaccination SDA correctly includes
Administrations.

When set to 1: Immunization entries are created in
CDA/C-CDA for SDA Vaccinations created both before
and after receiving the CDA/C-CDA Immunization Pro-
cessing Correction.

Note that this setting may be unavailable in your version.
If you need this functionality, contact the WRC and
request an ad hoc.

checkAdministrationsexportConfiguration/

Immunizations

12 CDA Interoperability with SDA

CDA Documents and XSL Transforms

The settings in the following table control how SDA Document streamlets, which represent CCDA Note sections like
Progress Note and Procedure Note, are exported to CCDA v2.1 Note sections. These settings apply only to CCDA v2.1.

The notes/category section contains settings that describe an SDA Document category for export to CCDA v2.1 Note sections.
Including a category section for a specific SDA Document type exports that specific SDA Document from SDA to CCDA
v2.1.

Table 1–5: CCDA v2.1 Note Section Export Profile Settings

ValueSettingSection

A value of 0 means that each category
specified is exported into its own separate
section in the resulting CCDA v2.1 docu-
ment. This is the default. Setting this value
to 1 will instead export all notes into a sin-
gle default section as one single note. The
default section is specified by the default
setting described later in this table.

singleSectionnotes

A value of 0 means that SDA documents
that don’t match a category specified in the
notes/category section are not exported to
CCDA v2.1. Setting this value to 1 will
instead export these documents to the
default section, specified later in this table
by the default setting.

uncategorizednotes

Must be defined. Specifies the category
that will be used as the default notes sec-
tion when singlesection and uncategorized
are set to 1.

defaultnotes

The LOINC code for the document type.
Used at the time of export to match with
the correct note category.

codenotes

The LOINC display name for the document
type.

namenotes/category

The section title to use.titlenotes/category

CDA Interoperability with SDA 13

XSLT Directory Structure for CDA Documents

ValueSettingSection

A pipe-delimited list of LOINC codes that
fall under this SDA Document category.
Each typecode is a LOINC code represent-
ing a subcategory of the current Document
category. These LOINC codes are subcat-
egories of the CCDA Note section that is
represented by the Document category.
The system will put the types of notes that
are represented by these LOINC codes
inside of the overarching Note section in
the resulting CCDAv2.1.

For example, you might enter several
typecodes, like
|11526-1|34122-2|34819-3|, that are
part of a Pathology Study. All of the notes
represented by these typecodes would end
up inside of the Pathology Study Note in
the resulting CCDA v2.1.

Any LOINC code that is not included is not
exported.

typecodesnotes/category

The settings in the following table control how narratives that appear inside of CCDAv2.1 sections in <text> tags are
exported from SDA to CCDA v2.1. These settings apply only to CCDAv2.1. The <narrative> variable contains a list of
sections that will have narratives exported. Each <section> contains the same settings as a narrativeImportConfiguration/sec-
tion that is used for narrative import above.

Note that the default ExportProfile.xml file divides <narrative> into three types of sections:

• Standard sections — Sections for which the system has a .xsl file for exporting from SDA to CCDAv2.1 in install-
dir\CSP\xslt\SDA3\CDA-Support-Files\Export\Section-Modules\CCDAv21. The system exports both narratives and entries
for these sections.

• Special sections — Sections for which the system previously exported both entries and narratives. In this case, the
system defaults back to the legacy export logic.

• Standalone sections — Sections for which InterSystems IRIS for Health does not have a .xsl file for exporting the
section in install-dir\CSP\xslt\SDA3\CDA-Support-Files\Export\Section-Modules\CCDAv21, meaning that neither entries
nor narratives are exported. If a section is included in the <narratives> variable as a standalone section, the system will
export the narratives in the section without exporting the entries. Many sections that are supported for narrative import
are not supported for narrative export.

The import and export profiles control which sections are eligible for narrative processing. Any section is eligible for import.
However, only a subset of standard sections are enabled for export - for example the Allergy section is not included for
export, but the FunctionalStatus section is. In most cases, the sections that are included by default tend to include relevant
data in narratives that is not referenced by entries.

14 CDA Interoperability with SDA

CDA Documents and XSL Transforms

Table 1–6: CCDA v2.1 Narrative Export Profile Settings

ValueSettingSection

Used as a separator heading after entry-
based narrative if present in a standard or
standalone section. Not used in the result-
ing CCDA in a special section.

titlenarrative/section

Informative only and is not used in the
resulting CCDA for all three types of sec-
tions.

codenarrative/section

Required. Every category of clincial data
has a unique templateId, or OID. The nar-
rative for the specified section is exported.

templateIdnarrative/section

1.2.2.3 Adding Additional Standalone Sections for Narrative Export

To export additional standalone sections that are not already included in the list of standalone sections to be exported in
the narrative/section section of ExportProfile.xml, do the following:

1. Add the appropriate <section> inside of the <narrative> section in ExportProfile.xml, for example:

<section>
<title>Admission Medication</title>
<code code="42346-7" displayName="Medications on Admission"/>
<templateId root="2.16.840.1.113883.10.20.22.2.44" extension="2015-08-01/>
</section>

2. If you have not already done so, create a custom version of the appropriate root-level .xsl file used for SDA to CCDA
v2.1 export in install-dir\CSP\xslt\SDA3\CDA-Support-Files\Export\Entry-Modules\CCDAv21 and create a custom version.

In most cases, you will be editing the SDA-to-CCDAv21-CCD.xsl file, as narrative export is only supported for CCDA
v2.1. Occasionally, depending on what transform you use to export CCDA, you may need to edit another file, like
SDA-to-CCDAv21-ClinicalSummary.xsl or SDA-to-CCDAv21-CON.xsl.

3. In your custom version of the root-level .xsl file, add a line like the following in the <xsl:apply-templates
mode="narrative-export-sections" select="."> section:

<item root="{$ccda-PhysicalExamSection}"/>

The <xsl:apply-templates mode="narrative-export-sections" select="."> section of the .xsl
file specifies which standalone narratives to include during the export. You can determine the name of the variable
(for example $ccda-PhysicalExamSection) that you need to add by examining the TemplateIdentifers-CCDA.xsl file in
the install-dir\CSP\xslt\SDA3\CDA-Support-Files\System\Templates directory and finding the variable name that corre-
sponds to the section that you wish to export.

Adding this line will call the narrative-export-sections template on each item in the templates parameter, which is
necessary for narrative export.

1.2.2.4 Adding Additional Standard Sections for Narrative Export

Certain standard sections support narrative export by default. In order to enable narrative export for other standard sections,
you must customize the .xml files for that section in the Section-Modules and Entry-Modules subdirectories. The following
provides an example of how you would enable narrative export for the FunctionalStatus standard section, though Function-
alStatus is enabled for narrative export by default:

CDA Interoperability with SDA 15

XSLT Directory Structure for CDA Documents

1. Add the appropriate <section> inside of <narrative> in ExportProfile.xml.

2. Navigate to the install-dir\CSP\xslt\SDA3\CDA-Support-Files\Export\Section-Modules directory and open the
FunctionalStatus.xml file for editing.

3. Define a variable to hold the node-set of SDA Documents for the section:

<xsl:variable name="docs" select="Documents/Document[(Category/Code/text() = 'SectionNarrative')
and (DocumentType/Code/text() = $exportConfiguration/narrative/section[templateId/@root =
$ccda-FunctionalStatusSection]/code/@code)]"/>

This uses the export configuration to check if the section is enabled for structured narrative export.

4. Define another variable to indicate if there are eligible docs:

<xsl:variable name="hasDocs" select="count($docs)"/>

5. Update any conditionals that check if the section has data to use your new hasDocs variable, for example:

<xsl:if test="($hasDocs > 0) or ($hasData > 0) or ($exportSectionWhenNoData='1') or
($sectionRequired='1')">

<xsl:if test="($hasDocs = 0) and ($hasData = 0)"><xsl:attribute
name="nullFlavor">NI</xsl:attribute></xsl:if>

6. Update the call to the Entry-Module template to pass the docs variable:

<xsl:apply-templates select="." mode="eFS-functionalStatus-Narrative">
 <xsl:with-param name="docs" select="$docs"/>
</xsl:apply-templates>

7. Add a xsl:when clause to export the section when there are no entries but there are SDA Documents available:

<xsl:when test="$hasDocs > 0">
 <text>
 <xsl:apply-templates mode="narrative-export-documents" select=".">
 <xsl:with-param name="docs" select="$docs"/>
 </xsl:apply-templates>
</text></xsl:when>

8. Navigate to the install-dir\CSP\xslt\SDA3\CDA-Support-Files\Export\Entry-Modules\CCDAv21 directory and open the
FunctionalStatus.xml file for editing.

9. Add the docs parameter to the narrative template:

<xsl:template match="*" mode="eFS-functionalStatus-Narrative">
 <xsl:param name="docs"/>

10. Call the section exporter after the standard entry table:

<text>
 <table border="1" width="100%">
 ...
 </table>

 <!-- structured narrative documents -->
 <xsl:apply-templates mode="narrative-export-documents" select=".">
 <xsl:with-param name="docs" select="$docs"/>
 <xsl:with-param name="header"
select="$exportConfiguration/narrative/section[templateId/@root=$ccda-FunctionalStatusSection]/title/text()"/>

 </xsl:apply-templates>
</text>

16 CDA Interoperability with SDA

CDA Documents and XSL Transforms

1.2.3 The Import and Export Directories

The Import and Export directories contain files that are called when XSLTs transform data.

• The Import directory contains those files that are called when transforming CDA into SDA.

• The Export directory contains those files that are called when transforming SDA into CDA.

Both the Import and the Export directories contain subdirectories labeled Common, Entry-Modules, and Section-Modules.

• The Common directory contains XSLTs that set up commonly used global variables for the various transformations
and provide templates that contain commonly used logic, such as address-Home.

• The Section-Modules directory contains XSLTs that transform data to or from a given CDA section; the name of each
XSLT corresponds closely to the name of the CDA section it transforms.

• The Entry-Modules directory contains XSLTs that map the transformation into the correct Entry of a document and
then parse the coded data. As a result, XSLTs within this directory tend to be significantly longer than their counterparts
in the Section-Modules directory.

Each root-level XSLT (for example, CDA-to-SDA.xsl) begins with xsl:include declarations to pull in the appropriate
Section-Modules, Entry-Modules, and Common files, as well as other necessary files.

CDA Interoperability with SDA 17

XSLT Directory Structure for CDA Documents

2
Customizing CDA XSL Transformations

You may occasionally need to augment the standard library of CDA XSL transformations. For example, you may need to
change part of the logic when transforming a particular CDA section, or you may wish to add support for custom SDA
extensions, custom pairs, or custom objects. For more information on custom SDA extensions, pairs, and objects, see the
Customizing the SDA section of SDA: InterSystems Clinical Data Format.

Instead of editing the standard library of XSLs directly, you can create custom XSLs. This is preferable to direct editing
for two reasons. First, overriding a standard root XSL in this manner negates the need to change existing application calls
to that transformation. Second, it provides insulation against the effects of upgrades, which replace the standard XSL library
and thereby erase your customizations. XSLs in a custom directory are not replaced upon upgrade.

2.1 Preparing to Customize Transformations: Docker
Containers
Important: If you plan to customize transformations and InterSystems IRIS for Health is running in a Docker container,

the container must point to a durable directory. For more information on durable directories, see Running
InterSystems Products in Containers.

If your instance is running within a container, you must take the following preparation steps before you start to customize
the transformations:

1. In the Management Portal, create a /csp/xslt web application:

a. Log in to the Management Portal as a user with the %HS_Administrator role.

b. Navigate to System Administration > Security > Applications > Web Applications.

c. Click Create New Web Application.

d. In the form, complete the fields as follows:

• Name — /csp/xslt

• Namespace — HSLIB

• Enabled — Enable Application and CSP/ZEN should be selected

• For CSP File Settings:

– Serve Files — accept the default

– Server files timeout — accept the default

CDA Interoperability with SDA 19

– Physical Path — a directory within your durable directory, such as /container/durable/csp/xslt/.
Make sure to include the final trailing slash.

– Web Settings — accept the defaults

e. Click Save.

2. Open a Terminal session and log in as a user with the %HS_Administrator role.

3. To copy the XSLT files for customization to the physical path specified in the step above: within the HSLIB namespace,
run

ObjectScript

 do ##class(HS.HC.Util.Installer.Upgrade.XSLTDirectoryCopy).Update()

To see verbose output, you can supply 1 as the single parameter for the Update() method.

2.2 Creating Custom Transformations
To create a custom CDA transformation:

1. Create a Custom subdirectory in the directory where the transformation is located. For example, if you are customizing
install-dir/CSP/xslt/SDA3/CDA-to-SDA.xsl, the custom subdirectory should be install-dir/CSP/xslt/SDA3/Custom. Files
in a custom folder are not overwritten upon upgrade.

2. In the IDE of your choice, open the transformation you intend to customize so you can copy portions of it.

3. Create an empty custom XSL with the same name as the XSL you intend to customize. For example, if you want to
customize CDA-to-SDA.xsl, create an XSL in install-dir/CSP/xslt/SDA3/Custom called CDA-to-SDA.xsl.

4. Add the following initial statements to your custom XSL. The first two (the XML declaration and the XSL stylesheet)
can be copied from the original CDA XSL file.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:isc="http://extension-functions.intersystems.com" xmlns:hl7="urn:hl7-org:v3"
 xmlns:sdtc="urn:hl7-org:sdtc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:exsl="http://exslt.org/common" exclude-result-prefixes="isc hl7 sdtc xsi exsl">

5. Add a closing tag for the stylesheet. Your customizations will all be placed between the opening and closing
xsl:stylesheet tags.

</xsl:stylesheet>

6. Add an import statement for the transformation you intend to customize:

<xsl:import href="../<filename>"/>

where <filename> is the name of the transformation you intend to customize, for example, CDA-to-SDA.xsl. This
imports the file you intend to customize so that you can override one or more of its templates.

7. Copy the template you wish to override from the original transformation and paste it into the new file.

8. Customize the template logic as necessary. This overrides the template in the original XSL.

9. As a best practice, add a comment to indicate where the template comes from. For example, if the template originated
in install-dir/CSP/xslt/SDA3/CDA-Support-Files/Import/Entry-Modules/Medications.xsl, make a note of it.

20 CDA Interoperability with SDA

Customizing CDA XSL Transformations

10. Save your work.

11. If your installation is deployed in a mirror, repeat the process on all mirror members.

12. Restart your productions to activate your custom XSLs.

2.3 Extending Transformations
SDA can be extended in several ways, as described in Customizing the SDA. These extensions can be incorporated into
custom CDA transformations:

• Custom containers or objects can capture CDA sections that are unsupported

• Extension classes can add data that belongs in a supported section but is not captured by the SDA

Blank templates are included in CDA import and export XSLs to facilitate:

• Importing a CDA section that is unsupported into a custom container or <CustomObject>

• Importing CDA data into SDA extension classes or <CustomPairs> in existing SDA sections

• Exporting a custom container or <CustomObject> into a CDA section that is unsupported

Blank templates always contain the word Custom for easy identification.

The following gives details on how each of the above customizations are implemented:

• To import a CDA section that is unsupported into a custom container or <CustomObject>, find the custom template
in the XSL you wish to edit. For example, in CDA-to-SDA.xsl, the template is called <xsl:template match="*"
mode="ImportCustom-Container">. Copy that template into your custom CDA-to-SDA.xsl file (or the custom
version of whichever file you are customizing) and edit the blank custom template to include whatever logic you
require.

• To import CDA data into SDA extension classes or <CustomPairs> in existing SDA sections, find the custom template
in the import XSL of the desired section. For example, to import the BodySite element into Procedure, find the
custom template within Entry-Modules/Procedure.xsl. In this example, the template is called <xsl:template
match="*" mode="ImportCustom-Procedure">. Copy the template into your custom CDA-to-SDA.xsl file (or
the custom version of whichever file you are customizing) and edit the blank custom template to include whatever
logic you require.

• To export a custom container or <CustomObject> into a CDA section that is unsupported, find the custom template
in the XSL you wish to edit. For example, in SDA-to-C32v25.xsl, the template is called xsl:template match="*"
mode="ExportCustom-ClinicalDocument">. Copy that template into your custom SDA-to-C32v25.xsl file (or
the custom version of whichever file you are customizing) and edit the blank custom template to include whatever
logic you require.

2.4 Debugging Custom Transformations
Debugging custom transformations consists of a set of tools and techniques that can be applied to a variety of situations.

For debugging, you can:

• Use code contained within <DEBUGGING> tags to capture a value during execution of the transformation

CDA Interoperability with SDA 21

Extending Transformations

• Use interoperability tools to view the trace of a document within a production (HealthShare Unified Care Record only)

2.4.1 Debugging Code

<DEBUGGING> tags are a way to perform a step-by-step walkthrough of the transformation. Place the tags in the trans-
formation at the location where you would like to capture a value. The code within the tags can capture the value of a
variable, attribute, or XPath.

The following are examples of debugging code for different situations.

Capturing the value of a variable

This example captures the value of a variable, $variable, within an XSL called FileName.xsl:

<DEBUGGING-VARIABLE-file-FileName.xsl-TemplateName>
$variable = <xsl:value-of select="$variable"/>
</DEBUGGING-VARIABLE-file-FileName.xsl-TemplateName>

Capturing the value of an attribute

This example captures an XSL path value of the root attribute located in /ClinicalDocument/id:

<DEBUGGING-PATHVALUE>
CDA source OID = <xsl:value-of select="/hl7:ClinicalDocument/hl7:id/@root"/>
</DEBUGGING-PATHVALUE>

Capturing an XPath with Node Positions

Capturing an XPath takes advantage of templates. Calling the template currentXPathWithPos returns the current XPath
with node positions, with ClinicalDocument/component[1] indicating, for example, the first component element
inside ClinicalDocument. The following shows how to capture the XPath of the current position with node positions.

<DEBUGGING-PATHXMLWithPos>
<xsl:apply-templates select="." mode="currentXPathWithPos"/>
</DEBUGGING-PATHXMLWithPos>

The result of this call may be:

XML

<DEBUGGING-PATHXMLWithPos>/ClinicalDocument[1]/component[1]/structuredBody[1]/component[8]
/section[1]/entry[1]/procedure[1]</DEBUGGING-PATHXMLWithPos>

Capturing an XPath without Node Positions

Calling the currentXPath template returns the XPath without the node positions. The following example shows how to
capture the XPath of the current position without node positions.

<DEBUGGING-PATHXMLWithoutPos>
<xsl:apply-templates select="." mode="currentXPath"/>
</DEBUGGING-PATHXMLWithoutPos>

The result of this call may be:

XML

<DEBUGGING-PATHXMLWithoutPos>/ClinicalDocument/component/structuredBody/component
/section/entry/procedure</DEBUGGING-PATHXMLWithoutPos>

The templates currentXPathWithPos and currentXPath are found in install-
dir/csp/xslt/SDA3/CDA-Support-Files/System/Common/Functions.xsl.

22 CDA Interoperability with SDA

Customizing CDA XSL Transformations

Capturing an XPath tree

Calling the copy template returns the current XPath tree. The following example captures the current XPath tree by
inserting the current XPath tree in a DEBUGGING tag:

<DEBUGGING-PATHXMLTree>
<xsl:apply-templates select="." mode="copy"/>
</DEBUGGING-PATHXMLTree>

The template copy is found in install-dir/csp/xslt/SDA3/CDA-Support-Files/System/Common/Functions.xsl

These <DEBUGGING> tags and the values they capture are displayed in the transformations, but they are not displayed
in places such as the Clinical Viewer and the View Summary page.

<DEBUGGING> tags may short-circuit CDA processing. Accordingly, they should be used during the debugging process
only.

2.4.2 Interoperability Tools

InterSystems products provide interoperability tools that allow you to inspect the transformation process. You can inspect
the process at the following points using message traces:

• HealthShare Unified Care Record:

– During document retrieval, in the consumer Edge Gateway production (when a CDA in the repository is transformed
into SDA)

– When an incoming SDA is received by the Clinical Viewer

• InterSystems IRIS for Health and Health Connect: examine the message trace for the relevant business operation. For
example, for inbound SDA, look at the message trace for the business operation that handles the transformation for
inbound SDA processing.

Additionally, you can view the transformation of an outgoing CDA using the View Summary page.

2.4.2.1 Message Traces

To view a message trace:

1. Log in to the Management Portal as a user with the %EnsRole.Administrator role.

2. Choose the appropriate namespace:

• In HealthShare Unified Care Record:

– To view the trace for document retrieval, choose the namespace for the consumer Edge Gateway.

– To view the trace for an incoming SDA, choose the namespace for the Access Gateway.

• In InterSystems IRIS for Health or Health Connect: choose the Foundation namespace whose business hosts
handle the transformation.

3. Navigate to Interoperability > Configure > Production.

4. Open your production.

5. Choose the appropriate component. For example, HS.IHE.XDSb.Consumer.Operations might be used for document
retrieval.

6. Click the Messages tab in the panel to the right.

7. Click the Go To Message Viewer link.

CDA Interoperability with SDA 23

Debugging Custom Transformations

8. Choose the message representing the transformation. Following the example above, this message would have
HS.IHE.XDSb.Consumer.Operations as its source.

9. Click the Trace tab in the panel to the right.

10. Click the View Full trace link.

11. Click the Contents tab in the panel to the right.

The Contents tab contains the message trace.

2.4.2.2 View Summary

If you are running HealthShare Unified Care Record, you can also compare CDA documents with their SDA counterparts
within the Clinical Viewer.

To use the Clinical Viewer:

1. Log in to the Management Portal as a user with the %HS.Administrator role.

2. Navigate to HealthShare > <Access_Gateway_Namespace> Patient Search.

3. Enter search information for the patient whose CDA document you wish to view.

4. Select the patient.

From the Clinical Viewer, click the View Summary link at the top of the page to arrive at the View Summary page. Here
you may view the patient summary as an SDA or as a CDA document, such as a Continuity of Care Document (CCD,
HITSP C32), among other options. For more information on using the View Summary page, see Viewing and Modifying
Patient Reports.

24 CDA Interoperability with SDA

Customizing CDA XSL Transformations

3
Preprocessing C-CDA 2.1 Documents

InterSystems healthcare products support import transformations from C-CDA 2.1 to SDA via XSLT 1.0. C-CDA 2.1 to
SDA transformations via XSLT 2.0 are not supported.

Among the enhancements to import functionality added in connection with C-CDA 2.1 support is the ability to preprocess
your C-CDA input files prior to the transformation done for import. Preprocessing support can greatly simplify and reduce
total processing time for transformations.

Some possible use cases are:

• Missing or malformed elements

• Datestamp translation

A detailed explanation of preprocessing C-CDA to remove punctuation and to add required child nodes to certain elements,
as well as sample code for a preprocessor transform, a modified top-level transform, and an input file, can be found in the
article Preprocessing Support for C-CDA 2.1 Import Transformations on the InterSystems Developer Community.

In general, the steps are as follows:

1. Working with the administrator of your organization's domain names, obtain a subdomain name to be used for code
extensions.

2. Choose a prefix and a name for a custom mode for preprocessing.

3. Create your XSL preprocessor.

• The stylesheet element should be of the form

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:hl7="urn:hl7-org:v3" xmlns:custom_mode_prefix="<subdomain>" exclude-result-prefixes="hl7
 <custom_mode_prefix>"></xsl:stylesheet>

Note the inclusion of the custom mode prefix.

• Include templates that replicate the top-level element and copy all attributes, elements, and text nodes. Both templates
must use your custom mode.

• Create a template for each distinct modification you want to make to the C-CDA. These templates must also use
your custom mode.

4. Copy the XSL preprocessor to ../CDA-Support-Files/Import/.

5. Create a custom top-level transform by cloning and modifying CCDAv21-to-SDA.xsl or CCDAv21-nonXML-to-SDA.xsl

as follows:

• The stylesheet element should include your custom namespace.

CDA Interoperability with SDA 25

https://community.intersystems.com/post/preprocessing-support-c-cda-21-import-transformations

• Add an include statement that gives the pathname for the XSL preprocessor.

• Replace the line

<xsl:variable name="input" select="/hl7:ClinicalDocument"/>

with the block

<xsl:variable name="inputRTF">
 <xsl:apply-templates select="/hl7:ClinicalDocument" mode="<custom_mode_prefix>:<mode>"/>
</xsl:variable>
<xsl:variable name="input" select="exsl:node-set($inputRTF)/hl7:ClinicalDocument"></xsl:variable>

6. In your production, find the business service that takes file input for C-CDA > SDA transformations.

7. Set the value of the service’s InputXSL additional setting to the filename of your custom top-level transform.

8. Import your C-CDA file as you normally do.

26 CDA Interoperability with SDA

Preprocessing C-CDA 2.1 Documents

4
CDA and SDA Annotations

When a CDA document is converted to SDA, or vice versa, the relationship between fields of the source document and
those of the target document can often be difficult to determine. To help untangle such relationships, the documentation
mapping utility allows you to identify the source field or fields for a given target field.

4.1 Searching for Annotations
In the Management Portal, navigate to:

• HealthShare > <namespace> > Schema Documentation > SDA/CDA Annotations, where <namespace> is an Edge
Gateway namespace for HealthShare Unified Care Record

• Health > <namespace> > Schema Documentation > SDA/CDA Annotations, where <namespace> is your Foundation
namespace for InterSystems IRIS for Health or HealthConnect

To identify source fields, you must first generate a list of target fields from which to choose:

1. Choose one or more target document types. For example, if you wish to identify the source of a field in an SDA docu-
ment, select the SDA check box. You may select multiple document types, or select All Types. The types you can
choose from are:

• SDA — The class and property path of a particular SDA element, for example,
HS.SDA3.Medication.Comments.

• XPathSDA — The XPath of a particular SDA element. This type can be more useful than SDA when looking at
the XML for a container, or when writing XSLT for the XML. For example, the XPath
/Container/Medications/Medication/Comments corresponds to the class and property path
HS.SDA3.Medication.Comments.

• CCDA1 — Consolidated CDA Release 1.1.

• CCDA2 — Consolidated CDA Release 2.1.

• C32 — HITSP/C32.

• XDLAB — XD-LAB, the CDA document for the IHE Laboratory Technical Framework.

2. Type a complete or partial field name or path in the text box; you may enter as much or as little information as you
have. You may also paste an XML fragment; the fragment does not need to begin and end with the same tag, but the
field name for which you are searching must be enclosed by angle brackets, such as <target-field>. This allows
you to find a complex field name with simple search criteria.

CDA Interoperability with SDA 27

3. When you have finished entering text, generate a list of possible target fields by clicking Show Options, or by pressing
the Enter key while your cursor is in the text box.

4. Choose a target field from the drop-down menu. The menu is limited to 250 results; enter more text or choose fewer
document types in order to narrow the results.

The document transformation mapping information appears below the search area; you can refocus the page by clicking
the Move Results to Top link. The target field you selected is displayed under the Target heading, along with:

• The Document Type to which the target corresponds.

• The Target Field Name, if it exists.

• The Path of the target.

The Source heading also contains the document type, field name (if it exists), and path of the source field, as well as notes
about the mapping and the type of mapping that is performed to transform the source into the target; for example, HL7 to
SDA3 Mapping to turn an HL7 source into an SDA target.

4.2 Levels in Annotations
If a source field is itself the target of other fields, the mapping utility displays those fields in a new Level. For example, in
the image below, HS.SDA3.AbstractOrder.EnteredAt.Address.State.Code is the source of the indicated C32
field in level 1; in turn, it is also the target of a field from a C-CDA1 document in level 2.

28 CDA Interoperability with SDA

CDA and SDA Annotations

To navigate between levels, click the link This source is a target in Level [n] or the link This target is a source in Level

[n], where n is a positive integer. You can also click on a path value to highlight in color identical path values throughout
all levels; click again to remove the highlighting.

Each Target and Source heading also contains a Trace to Top option. Click the arrow to expand it. This option displays the
mapping hierarchy, where:

• The top-level target field (that is, the one you searched for) is at the top,

• The field where you are located is at the bottom,

• And any intermediate fields (if they exist) occur in between.

These hierarchical levels are connected by mappings, the direction of which are indicated by carets, ^.

Each field in the hierarchy contains a link that focuses the page on the location of that field as a target. For example, in the
image above, clicking on (SDA) HS.SDA3.AbstractOrder.EnteredAt.Address.State.Code would refocus
the page on the Target section immediately above it, where that field acts as a target.

CDA Interoperability with SDA 29

Levels in Annotations

	Table of Contents
	1 CDA Documents and XSL Transforms
	1.1 CDA Document Structure
	1.2 XSLT Directory Structure for CDA Documents
	1.2.1 The System Directory
	1.2.2 The Site Directory
	1.2.3 The Import and Export Directories

	2 Customizing CDA XSL Transformations
	2.1 Preparing to Customize Transformations: Docker Containers
	2.2 Creating Custom Transformations
	2.3 Extending Transformations
	2.4 Debugging Custom Transformations
	2.4.1 Debugging Code
	2.4.2 Interoperability Tools

	3 Preprocessing C-CDA 2.1 Documents
	4 CDA and SDA Annotations
	4.1 Searching for Annotations
	4.2 Levels in Annotations

