
SDA: InterSystems Clinical
Data Format

Version 2024.1
2024-05-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

SDA: InterSystems Clinical Data Format
InterSystems Version 2024.1 2024-05-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 About SDA ... 1

2 SDA Documents .. 3
2.1 The Basic XML Structure of an SDA Document ... 3

2.1.1 The Patient in SDA ... 4
2.1.2 Encounters in SDA ... 5
2.1.3 For More Information on SDA Classes .. 7

2.2 Creating an SDA Stream from SDA Objects ... 7
2.3 Streamlet Matching .. 8

3 Customizing the SDA ... 11
3.1 Using the Extension Classes to Customize the SDA .. 11

3.1.1 Adding Properties to the Extension Class .. 12
3.1.2 Recompiling The Classes ... 13
3.1.3 Populating The Extension Properties ... 13
3.1.4 Customizing Streamlet Classes .. 15
3.1.5 Using Custom SDA Properties ... 18

3.2 Customizing the SDA by Creating a Custom SDA Container ... 18
3.2.1 Creating a Custom SDA Data Class ... 19
3.2.2 Creating a Custom SDA Streamlet Class ... 22
3.2.3 Creating a Custom SDA Container Class .. 23
3.2.4 Registering your Custom SDA Container in the Configuration Registry 24

3.3 Extending the SDA with Name/Value Pairs ... 24
3.3.1 Creating a Custom SDA Name/Value Pair ... 24
3.3.2 Creating a Custom SDA Object ... 24

SDA: InterSystems Clinical Data Format iii

List of Tables

Table 2–1: Properties in HS.SDA3.Patient .. 5
Table 2–2: Properties in HS.SDA3.Encounter .. 6
Table 3–1: Code Tables that are Excluded from Translation ... 13
Table 3–2: Classes Inheriting from or Using HS.Types.PatientInfo ... 15
Table 3–3: Code Tables that are Excluded from Translation ... 19
Table 3–4: Code Tables that are Excluded from Translation ... 21

iv SDA: InterSystems Clinical Data Format

1
About SDA

SDA (Summary Document Architecture) is an InterSystems format used to represent patient data. SDA is the intermediary
format when transforming healthcare data from one format to another. For example, if you need to convert patient data

from CDA to FHIR®, InterSystems products use XSLTs to convert the data from CDA to SDA, then use DTLs to convert
the data from SDA to FHIR. For more information about how InterSystems IRIS for Health and HealthShare Health Connect
use SDA to transform data, see Data Transformations in InterSystems Healthcare Products.

The SDA format can be customized and extended as needed.

SDA: InterSystems Clinical Data Format 1

2
SDA Documents

Information in SDA format is represented by an object that consists of instances of HS.SDA3.Patient, HS.SDA3.Encounter,
and other classes. These classes are XML-enabled.

This topic describes:

• SDA document structure

• The Patient SDA object

• The Encounter SDA object

• Where to find further information on the SDA classes

• How to create an SDA stream from a collection of SDA objects

A separate chapter, “Customizing the SDA”, describes the options available to customize and extend the SDA.

Note: SDA, when used in this document, refers to the HS.SDA3 classes. HS.SDA classes are also present in your instance,
but these are for backward compatibility only.

2.1 The Basic XML Structure of an SDA Document
The major sections in an SDA document are as follows:

XML

<Container>
 <Patient/>
 <Encounters/>
 <AdvanceDirectives/>
 <Alerts/>
 <Allergies/>
 <Appointments/>
 <Problems/>
 <Diagnoses/>
 <Documents/>
 <LabOrders/>
 <RadOrders/>
 <OtherOrders/>
 <Medications/>
 <Vaccinations/>
 <Observations/>
 <PhysicalExams/>
 <Procedures/>
 <FamilyHistories/>
 <IllnessHistories/>
 <SocialHistories/>

SDA: InterSystems Clinical Data Format 3

 <CustomObjects/>
 <Referrals/>
 <ClinicalRelationships/>
 <ProgramMemberships/>
 <MemberEnrollments/>
 <MedicalClaims/>
 <GenomicsOrders/>
 <CarePlans/>
 <HealthConcerns/>
 <Goals/>
 <SocialDeterminants/>
</Container>

The following rules apply to an SDA document:

1. There is a single <Patient>.

2. <Patient> is required and must be the first section that appears (after properties of the <Container> such as <Action>,
<EventDescription>, or <SendingFacility>, see the class reference for specific details).

3. All sections other than <Patient> are optional.

4. All sections other than <Patient> may contain multiple entries, for example:

XML

<Procedures>

 <Procedure>
 ...
 </Procedure>

 <Procedure>
 ...
 </Procedure>

</Procedures>

5. The <Encounters> section, if included, must appear directly after the <Patient> section.

6. All other sections may appear in any order.

7. Any entry may optionally reference an encounter number. In this case, <Encounters> must be included and must contain
an <Encounter> with that <EncounterNumber>.

8. Some sections may also include an <ActionCode> or <ActionScope> to indicate that some action relative to persistence
should be performed. In HealthShare Unified Care Record, these elements direct the system to perform some action
when it stores the SDA, while in InterSystems IRIS for Health, you can direct that some action be taken against persisted
SDA. For example, an <ActionCode> of D deletes a matching entry from the Unified Care Record. See the class reference
for specific details relevant to each SDA section.

2.1.1 The Patient in SDA

The HS.SDA3.Patient class represents the patient. This class contains properties that store information such as the following:

• Demographic information and other basics, for example: name, a list of addresses, gender, marital status, race, religion,
and so on

• Patient numbers

The following table shows the properties of HS.SDA3.Patient. Some of these properties are simple (for example, strings),
some are complex objects which contain properties of their own, and some are lists of complex objects:

4 SDA: InterSystems Clinical Data Format

SDA Documents

Table 2–1: Properties in HS.SDA3.Patient

List of Complex ObjectsComplex ObjectSimple Property

AddressesBirthGenderActionCode*

AliasesBirthPlaceBirthOrder

OrganizationsCitizenshipBirthTime

OtherLanguagesContactInfoBlankNameReason

PatientNumbersCreatedByComments

PriorPatientNumbersDeathDeclaredByCommunicationPreference

ProvidersEnteredAtCreatedOn

RacesEnteredByDeathLocation

SupportContactsEthnicGroupDeathTime

(CustomPairs)ExtensionEnteredOn

FamilyDoctorImmunizationRegistryStatus

GenderImmunizationRegistryStatusEffectiveDate

MaritalStatusInactiveMRNs

MothersFullNameIsDead

NameIsProtected

OccupationMothersMaidenName

PrimaryLanguageMPIID

PublicityCodeProtectedEffectiveDate

RacePublicityEffectiveDate

ReligionUpdatedOn

*A <Patient> SDA section may include an <ActionCode>. An <ActionCode> of D instructs HealthShare Unified Care
Record to delete a patient with the matching MRN. An <ActionCode> of R instructs Unified Care Record to replace an
existing patient with this patient, based on MRN. See the class reference for specific details.

2.1.2 Encounters in SDA

An encounter encompasses all of the medical information related to a specific medical incident. The HS.SDA3.Encounter
class represents a medical encounter of a patient. Other sections in the SDA, representing orders, procedures, exams and
the like can refer to the encounter number, and thus be tied together.

The following table shows the properties of HS.SDA3.Encounter, some of which are simple (for example, strings), some
of which are complex objects (containing properties of their own), and some of which are lists of complex objects:

SDA: InterSystems Clinical Data Format 5

The Basic XML Structure of an SDA Document

Table 2–2: Properties in HS.SDA3.Encounter

List of Complex ObjectsComplex ObjectSimple Property

AttendingCliniciansAdmissionSourceActionCode*

ConsultingCliniciansAdmissionTypeAccountNumber

GuarantorsAdmitReasonAssignedBed

HealthFundsAdmittingClinicianAssignedRoom

RecommendationsProvidedDiagnosisRelatedGroupAssignedWard

SpecialtiesDischargeLocationEmergencyAdmitDateTime

(CustomPairs)EncounterCodedTypeEncounterMRN

ExtensionEncounterMRNAA

HealthCareFacilityEncounterNumber

EnteredAtEncounterType

EnteredByEndTime

PriorityEnteredOn

PublicityCodeExpectedAdmitTime

ReferringClinicianExpectedDischargeTime

SeparationModeExpectedLOAReturnTime

ExternalId

FromTime

PreAdmissionNumber

PriorBed

PriorRoom

PriorWard

PriorVisitNumber

ToTime

TransferredFromED

UpdatedOn

VisitDescription

*An encounter may also include an <ActionCode> directing HealthShare Unified Care Record to take an action. Possible
values include:

• D = Delete

• E = Delete if Empty

• C = Clear All

• R = Replace

See the class reference for specific details of the <ActionCodes> for an encounter.

6 SDA: InterSystems Clinical Data Format

SDA Documents

2.1.3 For More Information on SDA Classes

For complete details on the SDA format, see the class reference for HS.SDA3.Container and the other classes in the
HS.SDA3 package.

To access the class reference for the SDA classes:

1. Either click on the “Class Reference” link in the InterSystems launcher (Windows only), or navigate to the following
URL in your browser, using the <baseURL> for your instance:
https://<baseURL>/csp/documatic/%25CSP.Documatic.cls.

2. Log in, if required.

3. Using the drop-down list at the top of the left-hand pane, change to the HSLIB namespace.

4. Clear the Percent Classes check box to reduce visual clutter.

5. Drill down the hierarchy of package names to HS, then SDA3 and then to the class of interest.

You may also view the XML document structure for any SDA class:

1. In the Management Portal, select an Edge Gateway namespace and navigate to Home > Interoperability > Interoperate

> XML > XML Schema Structures.

2. In the HS.SDA3 schema, select the name of the class whose structure you want to view.

Tip: To navigate through the HS.SDA3 XML schema, you may find it easiest to select Container, and then drill down
from there.

The “CDA and SDA Annotations” feature provides an alternate view into the SDA class structure.

2.2 Creating an SDA Stream from SDA Objects
Note: This section describes a methodology that will accommodate an SDA of any size. Rather than instantiate an entire

patient record as an SDA object (which in the context of HealthShare Unified Care Record may contain thousands
of encounters), the approach described here instantiates only the individual sections, and then constructs the SDA
stream manually. If you are certain that your SDA is small, then you can instantiate the entire SDA as an object
and write the stream directly.

If you have a set of SDA objects and you wish to combine them to produce an SDA stream, use the following methodology:

1. Instantiate a new stream.

2. Write the <Container> opening tag to the stream.

3. For the Patient object, which must come first, use the ToQuickXML() method of the SDA object to write the object
to the stream as XML.

4. For subsequent objects, which should be grouped by type (Encounter, LabOrder etc.), use the StartXMLList() method
of the SDA object to write the opening tag for the collection, for example, <Encounters>. Remember that
<Encounters>, if included, must come directly after <Patient>.

5. Use the ToQuickXML() method to write each object of that type to the stream.

6. When finished with a collection of a particular type, use the EndXMLList() method to write the closing tag for the
collection.

SDA: InterSystems Clinical Data Format 7

Creating an SDA Stream from SDA Objects

7. Repeat for other collections.

8. When finished, write the </Container> closing tag.

2.3 Streamlet Matching
Each streamlet class has distinct matching criteria defined in that class's MATCHINGS parameter, which is inherited from
HS.SDA3.Streamlet.Abstract. Streamlet matching logic allows HealthShare to determine whether or not a streamlet is new,
or an update to existing data. Whether or not two streamlets will be compared for matching and deduplication depends on
their EncounterNumber properties:

• In the event that two streamlets have differing EncounterNumbers, or one has a value for EncounterNumber and
the other does not, the streamlets are not eligible for comparison.

• In the event that both streamlets have the same EncounterNumber, they are eligible for comparison.

• In the event that neither streamlet has a value for EncounterNumber, they are eligible for comparison.

Given eligible streamlets, the matching process happens in three phases:

1. First, when a streamlet is ingested by an Edge Gateway, its data is compared to streamlets of the same type with the
same MRN. In a system with multiple Edge Gateways, comparisons are handled by the Access Gateway's aggregation
cache. For more information on this process, consult the class reference for the
HS.SDA3.Streamlet.Abstract.Aggregate() method.

2. If it contains an external identifier, this is used to match it to other streamlets of the same type with that external iden-
tifier.

3. If neither of the above checks yield a match, HealthShare checks each streamlet-specific MATCHINGS key-value pair
against other records of the same streamlet type.

In the event that none of these checks yield a match, the streamlet is recognized as new. If any of the checks yield a match,
the streamlet is recognized as an update of an existing streamlet and aggregated together with it. This is called deduplication.
The MATCHINGS parameter may be modified, as described in “Customizing the SDA” later in this book.

The MATCHINGS parameter takes the form MatchList1 || MatchList2 where each MatchList item takes the form
MatchType/MatchProp1,MatchProp2,.../NullProp1,NullProp2,....

These elements are defined as follows:

• MatchType is an arbitrary name for the matching type.

• MatchProp is the name of a property in the SDA streamlet class used for matching. In some complex cases, this can
be a transient or computed property. Where there are two or more MatchProp elements, matching must be performed
on all of them.

• NullProp is the name of a property used for matching which is optional. An empty NullProp counts as matching
anything. Where there are two or more NullProp elements, matching is performed on any combination of them.

• An asterisk after either a MatchProp or NullProp indicates that the element is a CodeTableDetail to be matched
on Code and SDACodingStandard.

Consider the following code from a hypothetical custom Allergy streamlet:

Parameter MATCHINGS = "ALG/Allergy*/FromTime,AllergyCategory* ||
ZATC/ATCCode*/FromTime";

8 SDA: InterSystems Clinical Data Format

SDA Documents

In this case, Unified Care Record will attempt to match according to the following criteria in order:

1. Match on Allergy, which is a CodeTableDetail. Optionally, match on FromTime or AllergyCategory–also
a CodeTableDetail if either exists.

2. Match on ATCCode, which is a CodeTableDetail. Optionally, match on FromTime if it exists.

SDA: InterSystems Clinical Data Format 9

Streamlet Matching

3
Customizing the SDA

In most cases, the SDA structure is sufficient to handle all of the data coming through the system. However, if you do need
to capture additional data, extending the SDA is very straightforward.

There are two recommended ways to extend the SDA, depending on your needs:

• Extend an existing SDA object by using the provided extension class. This option is available in all products. Each
SDA class has a corresponding extension class, which by default has no properties. You can extend the capabilities of
the SDA by declaring properties on the extension classes.

• Create a custom SDA container and a corresponding custom streamlet. This option is available only in HealthShare
Unified Care Record. You can define a custom SDA container that adds extra sections to the SDA. This definition
includes custom SDA streamlets. Choose this option if you are running Unified Care Record and you want to create
new streamlet types to handle new data types.

An additional option, available in all products, is to add a custom name/value pair to an existing SDA section or a new
custom SDA section. You might prefer this approach if the data you want to capture is structured as simple pairs (for
example, a questionnaire with a set of questions and answers). However, this approach has numerous limitations:

• It is complicated when storing complex objects or collections of data with 0:* cardinality.

• It cannot store custom data on serial properties of streamlets.

• This data cannot easily be propagated to Health Insight's database.

• There is no way to easily implement datatype validation on custom data.

Using name/value pairs is not recommended because of the above limitations. If you believe that this approach may be
appropriate for your situation, review the “Extending the SDA with Name/Value Pairs” section of this guide and consult
InterSystems support if needed.

3.1 Using the Extension Classes to Customize the SDA
Each SDA data class (with some exceptions, described below) has a corresponding extension class and a property that
refers to it. For example, class HS.SDA3.Allergy has property Extension of type HS.Local.SDA3.AllergyExtension. By
default, these extension classes have no properties. You can customize your SDA by adding properties to these classes.

All of the extension classes can be found in the HSCUSTOM database, which was automatically created on installation or
upgrade.

To use the extension classes:

SDA: InterSystems Clinical Data Format 11

1. Add properties to the extension classes as needed.

2. Recompile your classes.

3. Populate your extension properties.

If you are running HealthShare Unified Care Record, you can also customize the streamlet class associated with an SDA
extension class.

After you have added properties to an extension class, you can use them in code and, in Unified Care Record, display them
in the Clinical Viewer.

Important: If you are also using Health Insight for analytics, you must propagate your SDA extensions to Health
Insight and also modify the HSAA.Local.<SDAType>Extension classes in Health Insight. See “SDA
Extensions and Health Insight” in the Health Insight Installation and Configuration Guide.

If you are viewing this documentation in InterSystems IRIS for Health™, click here to link to the HealthShare
Health Insight documentation on extending the SDA.

General Notes on Extension Classes
All code table extension classes extend HS.SDA3.CodeTableExtension; all other extension classes extend
HS.SDA3.DataType.

The following classes do not have associated extension classes:

• HS.SDA3.SuperClass and HS.SDA3.CodeTableDetail, because they are only used as superclasses.

• HS.SDA3.Container, because there is a separate mechanism for extending this class, as described later in this chapter.

• HS.SDA3.CustomObject

• HS.SDA3.ClinicalRelationship and HS.SDA3.ProgramMembership, because they contain registry data and are not
part of the streamlet architecture

The Patient class is of special significance, as the main parent class for all patient data. The Patient SDA object has a cor-
responding registry class HS.Registry.Patient, and associated message classes. Each of these contains a property called
Extension, which is a reference to the HS.Local.SDA3.PatientExtension class. Therefore, any extension properties that
you create are available to those associated classes as well as to the Patient class itself.

3.1.1 Adding Properties to the Extension Class

To customize the SDA, add properties to the extension classes in the HS.Local package in the HSCUSTOM namespace.

In your IDE, switch to the appropriate namespace and open the desired extension classes. Add new properties as needed.

You can add properties of the following types:

• %String

• Any HS.SDA3.<DataType> such as Boolean or Numeric

• Any existing HS.SDA3 serial class

• Any custom serial class that you have created, which must extend HS.SDA3.DataType. Any custom serial classes should
not be defined in HealthShare packages that are available out of the box, like HS.Local or HS.SDA3. This ensures that
your class names will not conflict with any future standard SDA3 class names. For example, you should name your
custom serial class something like ZUser.HS.MySDASection, rather than HS.SDA3.MySDASection. You can add custom
package mappings to HSCUSTOM.

12 SDA: InterSystems Clinical Data Format

Customizing the SDA

https://docs.intersystems.com/hs20232/csp/docbook/DocBook.UI.Page.cls?KEY=HSAAIC_sdaext

• Any new code tables that you have created, which must extend HS.SDA3.CodeTableTranslated; the following code
tables are not translatable:

Table 3–1: Code Tables that are Excluded from Translation

CountryCareProviderTypeHealthCareFacility

CountyCityOrganization

TrustStateUser

ZipCareProvider

In the following example, the Sneeziness and FlowerType properties have been added to the
HS.Local.SDA3.AllergyExtension class. Sneeziness is a string, and FlowerType is a custom type.

Class Definition

 Class HS.Local.SDA3.AllergyExtension Extends HS.SDA3.DataType
 {
 Parameter STREAMLETCLASS = "HS.SDA3.Streamlet.Allergy";
 Property Sneeziness As %String;
 Property FlowerType As My.Local.Type.FT;
 }

3.1.2 Recompiling The Classes

After you have made your changes, you must recompile the relevant classes. For greatest efficiency, InterSystems recommends
that you compile the entire HS.SDA3 package.

If you have any additional instances, make sure that your new code (including associated mappings) is deployed to each
instance.

Note: If you are deploying in a mirror:

1. Apply code changes in HSCUSTOM to the backup member first.

2. Fail over.

3. Apply the changes to the new backup member.

3.1.3 Populating The Extension Properties

Now that your extension properties are in place, you will need to ensure that they will be populated by incoming data from
source systems.

Depending on your needs and your system setup, you can accomplish this in several ways:

• With HealthShare Unified Care Record, you can create a pipeline. See the chapter “Creating Pipelines and Inbound
Processes” in Configuring Unified Care Record for Data Feeds for details.

• With InterSystems IRIS for Health or Health Connect, you can create a DTL transformation. See Developing DTL
Transformations for details. To ensure that the desired extension properties will be available to you when creating your
DTL, you will need to export the XML schema from HSCUSTOM and import it to the desired namespace, as follows:

1. In Terminal in the HSCUSTOM namespace, run the following:

do ##class(HS.SDA3.Container).ExportXMLSchema()

SDA: InterSystems Clinical Data Format 13

Using the Extension Classes to Customize the SDA

You will be prompted to enter the desired filename for the export file. Specify the full path and filename as desired,
with an .xsd extension.

2. In the Management Portal, in the namespace where you intend to create a DTL, select Interoperability > Interoperate

> XML > XML Schema Structures.

3. Select the Import button and navigate to your export file. The exported schema is imported to the desired namespace.

4. You can now open a new DTL transformation and use the extension properties. If your extension class has a single
property, that custom property does not appear under the Extension property of the DTL diagram. For example,
if your extension class has two properties, BloodType and Sneeziness, you can expand the Extension property in
the DTL diagram to display the two custom properties. However, if the extension class has only one property,
BloodType, the DTL diagram does not display BloodType under the Extension property; the BloodType property
gets “rolled up” into the parent Extension property.

• With any product: If you are using the HS.Gateway.HL7.HL7ToSDA3 class to convert HL7 messages to SDA:

1. Create a new class extending HS.Gateway.HL7.HL7ToSDA3.

2. In the new class, implement callback methods to handle the SDA extensions you have added. The callback methods
are named in the form On<StreamletName>(), for example OnAllergy().

3. Edit the HS.Gateway.HL7.InboundProcess operation and change its HL7ToSDA3Class property to refer to your
new class.

The following lists specific cases and considerations for populating SDA extensions:

Transforming between HL7™ FHIR® DSTU2 and Customized SDA
For each SDA class for which you have created extensions, you will need to create a custom copy of the corresponding
DTLs in order to use your new extensions with FHIR DSTU2. Please refer to FHIR Support in InterSystems Products for
information on how to customize the FHIR/SDA DSTU2 DTLs.

Unrecognized SDA Extensions
In order to accommodate raw SDA shared between environments with disparate sets of extensions, all SDA3 classes use
the XML processing directive, XMLIGNOREINVALIDTAG = 1. If a system attempts to load an SDA stream with unrecog-
nized Extension properties into an object, the unrecognized properties will be ignored. If TraceOperations is enabled, a
warning trace will be logged when this occurs.

Patient Extension
To ensure that data stored in HS.Local.SDA3.PatientExtension is available and used consistently across a HealthShare
deployment, the HS.Types.PatientInfo class supports a property named Extension which is of the type
HS.Local.SDA3.PatientExtension. As a result, all sub-classes of HS.Types.PatientInfo also inherit the extensions; those classes
are listed in the table below. Additionally, HS.Registry.Patient has an Extension property of type
HS.Local.SDA3.PatientExtension and the code in the AddUpdateHub() method in HS.Hub.MPI.Manager handles the patient
extension classes and stores them in the HS_Registry.Patient table.

Important: Any persistent class such as HS.Registry.Patient must be recompiled after modifications are made to
HS.Local.SDA3.PatientExtension.

14 SDA: InterSystems Clinical Data Format

Customizing the SDA

Table 3–2: Classes Inheriting from or Using HS.Types.PatientInfo

HS.Message.PatientSearchRequestHS.Audit.Criteria

HS.Message.QueueForFetchRequestHS.Gateway.Access.QueryProcess

HS.Message.RemovePatientRequestHS.Hub.HSWS.WebServices.Containers.Patient

HS.MPI.Initiate.OperationsHS.Hub.MPI.FetchStreamlet

HS.MPI.Native.PatientRecordHS.Hub.MPI.Manager

HS.MPI.SecondaryMPIHS.Message.AddPatientRequest

HS.MPI.SureScripts.OperationsHS.Message.AddUpdateHubRequest

HS.Types.PatientInfoHS.Message.FindAutoLinkMatchRequest

HS.Types.PatientSerialHS.Message.GetCompositeRecordResponse

HS.UI.ClinicianPortalHS.Message.MedicationHistoryRequest

HS.UI.PatientSearchHS.Message.PatientBatchFetchRequestAsync

HS.UI.PatientSearchUtilHS.Message.PatientMPIMatch

HS.Message.PatientSearchMatch

3.1.4 Customizing Streamlet Classes

Important: This section applies to HealthShare Unified Care Record only.

Customizing streamlet classes is an advanced task. Carefully review the limitations described in this section,
and contact InterSystems customer support if needed.

In addition to adding properties to SDA objects as described in the preceding sections, you can also customize some of the
behavior of the associated streamlet classes. This section describes that process and the key limitations that you should
keep in mind.

You might choose to customize streamlet classes if you want to:

• Change the matching logic for the associated SDA class

• Change the validation logic for the associated SDA class

• Change which fields are and are not treated as translated code

• Override the behavior of callback methods

3.1.4.1 Procedure

The general approach is as follows:

1. In the HSCUSTOM namespace, extend the streamlet class that corresponds to the desired SDA object. You should
use a class package name or subpackage name of your own creation. If you choose to save your custom class in

SDA: InterSystems Clinical Data Format 15

Using the Extension Classes to Customize the SDA

HS.Local, make sure that you are using a subpackage name that begins with Z, such as HS.Local.ZMyPackage. You
can add custom package mappings to HSCUSTOM.

2. Adjust the STREAMLETCLASS parameter on the SDA extension class accordingly. For example,
HS.Local.SDA3.AllergyExtension will already have the following:

Parameter STREAMLETCLASS = "HS.SDA3.Streamlet.Allergy";

If you extend this streamlet class and create new class MyPackage.SDA3.Streamlet.ZAllergy, you would want to modify
this parameter to:

Parameter STREAMLETCLASS = "MyPackage.SDA3.Streamlet.ZAllergy";

3. Customize callback methods, or add new methods, or add new transient properties, as desired. Please review the limi-
tations described below before you begin.

The following example defines a new Allergy streamlet with custom matchings and validation for a new Sneeziness

property.

Class Definition

 Class ZHS.SDA3.Streamlet.ZAllergy Extends HS.SDA3.Streamlet.Allergy
 {
 /// Adding a fallback match
 /// Previously, it matched based on the Allergy code table,
 /// with nullable matches on FromTime and AllergyCategory code table
 /// If that doesn't match, we want it to also try using the ATCCode code table
 /// (with nullable match on FromTime)
 Parameter MATCHINGS = "ALG/Allergy*/FromTime,AllergyCategory*|| ZATC/ATCCode*/FromTime";
 /// Adding some validation for our extension property
 Method OnValidate() As %Status
 {
 // We use IsDefined to avoid instantiating (swizzling) a null serial property, such as Extension
 // If we know that we'll always have data under Extension, this isn't needed
 If ..SDA.IsDefined("Extension") {
 Set tSneez=..SDA.Extension.Sneeziness
 If tSneez'?1.N1" Tissue".E, tSneez'?1.N1" Hankie".E {
 Quit $$$ERROR($$$GeneralError, "Sneeziness must be in terms of Tissues or Hankies.")
 }
 }
 Quit ##super()
 }
 }

3.1.4.2 Restrictions

When you are customizing a streamlet class, keep in mind the following limitations:

• Do not create a customized streamlet class in any package name starting with “HS”, unless it is a subpackage of
HS.Local that begins with Z, such as HS.Local.ZMyPackage.

• Streamlet customizations apply in-memory only and will not affect the storage of the streamlet. When a streamlet is
stored, its type will always be HS.SDA3.Streamlet.<type> when stored.

• The only methods that you may extend in a custom streamlet class are the event callback methods listed below; all
other event handlers are marked as FINAL in the superclass and may not be modified.

– OnInactivate()

– OnMatchActionScope()

– OnBeforeMatch()

– OnValidate()

– OnBeforeSave()

– OnAfterSave()

16 SDA: InterSystems Clinical Data Format

Customizing the SDA

• You cannot customize the OnDeleteSQL or OnDeleteHandler callback methods, or any non-callback methods.

• When customizing other callback methods (OnXXX), you should always invoke ##super.

• InterSystems recommends that any new methods or properties you create begin with the letter Z to avoid future conflicts.

• You can customize only the following parameters: DATEPROPERTY, MATCHINGS, TRANSLATIONS, and
ACTIONSCOPES. You cannot customize any other parameters.

• If you modify the MATCHINGS parameter, any new match type that you create should begin with the letter Z. Do not
modify any existing match types. You can delete existing match types.

• The DATEPROPERTY and MATCHINGS parameters can access properties on the extension class by specifying
Extension.<property>

• If you modify the MATCHINGS parameter, you must perform the additional steps described in Recalculating Matches
below.

• You cannot add or change streamlet metadata:

– persistent properties

– relationships

– indexes

• The Patient streamlet includes a callback method called OnAggregateExtensionImpl() which controls how patient
data in extension classes is aggregated. By default, this method takes the extension data from the patient record that is
determined to be the best record among those being aggregated. If desired, you can override this method to provide
customized aggregation behavior.

• There is a transient multidimensional property available on streamlet classes named Stash that can be used to pass data
from the OnBeforeSave() method to the OnAfterSave() method.

After customizing a streamlet class, you should recompile the HS.SDA3 package as described previously.

3.1.4.3 Recalculating Matches

If you have modified the MATCHINGS parameter for your custom streamlet, you must reevaluate your data to check for
new matches and reconcile them if needed. Three utilities are provided for this purpose, as described below.

Each of these utilities takes a streamlet type as its argument. For standard streamlets or extensions of standard streamlets,
this is the standard type, such as Allergy; for a custom streamlet, you should use the full classname, such as
HSCustom.SDA3.Streamlet.ZAllergy.

1. First, use RecalculateMatches to recalculate existing matches. For example:

ObjectScript

 Do ##class(HS.SDA3.Streamlet.Utility.RecalculateMatches).Start("HSCustom.SDA3.Streamlet.ZAllergy")

2. Next, use FindMatches to identify any duplicates. For example:

ObjectScript

 Do ##class(HS.SDA3.Streamlet.Utility.FindMatches).Start("HSCustom.SDA3.Streamlet.ZAllergy")

You can view the contents of the ^HS.SDA3.Streamlet.MatchGroups global to see whether this utility found
anything.

3. If FindMatches identifies any duplicates, you may wish to run ReconcileMatches, which reconciles all such matches:

SDA: InterSystems Clinical Data Format 17

Using the Extension Classes to Customize the SDA

ObjectScript

 Do
##class(HS.SDA3.Streamlet.Utility.ReconcileMatches).ReconcileMatches("HSCustom.SDA3.Streamlet.ZAllergy")

The ReconcileMatches() method achieves this by accepting the most recent streamlet, and marking all others that
matched it as deleted. If you want to apply different criteria for determining which streamlet to accept from a group
of matches, you can extend the ReconcileMatches() method or create your own custom method for this purpose.

FindMatches and RecalculateMatches can optionally take a second parameter, which is a boolean that specifies whether
the processing should resume from the method's last run or start over from the beginning. For example:

ObjectScript

 Do ##class(HS.SDA3.Streamlet.Utility.FindMatches).Start("HSCustom.SDA3.Streamlet.ZAllergy", 1)

If this parameter is set to 0 or omitted, the method will process all streamlet IDs for the specified type. If it is set to 1, the
method will resume from the last successfully processed streamlet ID, which is stored in the global
^ISC.HS.Streamlet.Loader("Last").

3.1.5 Using Custom SDA Properties

You can now use your custom properties in ObjectScript code. The custom extension classes and their properties behave
the same as any other class.

For example, if you have added a new Sneeziness property to the Allergy extension class, you can use it as follows:

ObjectScript

 Set tAllergy=##class(HS.SDA3.Allergy).%New()
 Set tAllergy.Extension.Sneeziness="3 Tissues"

You can also display your new property in the Clinical Viewer. For detailed instructions, see Adding SDA Fields to the
Clinical Viewer in the Customizing the Clinical User Interfaces guide.

Custom SDA extensions can also be accessed and used by HealthShare Patient Index and Health Insight. Consult the
product documentation for details and additional configuration.

3.2 Customizing the SDA by Creating a Custom SDA
Container
Important: This functionality is available only in HealthShare Unified Care Record.

A custom SDA container allows you to create custom SDA sections that contain complex properties and match keys. In
order to create a custom SDA container you must perform the following steps in the correct order:

1. For each custom SDA section, define a custom SDA data class

2. For each custom SDA data class, define an SDA streamlet class to store the data

3. Define a custom SDA container class that includes each of your custom sections as a property

4. Register your custom SDA container in the configuration registry

18 SDA: InterSystems Clinical Data Format

Customizing the SDA

Once you complete these steps, SDA processing will accept, store, and aggregate your custom SDA container. Your custom
SDA data will be available in the aggregation cache for custom display in the Clinical Viewer and for inclusion in custom
reports.

3.2.1 Creating a Custom SDA Data Class

The first step in creating a custom SDA container is to define a custom SDA data class for each of your custom SDA sections:

1. Create a new class that extends HS.SDA3.SuperClass.

If you define a custom SDA data class for one of your custom SDA sections and want Health Insight to be able to
interpret and store the data, review the following section before proceeding.

2. Name your class something like: User.ZMySection. It is good practice to prefix your short class names with a “Z” to
ensure that they do not conflict with any future standard SDA3 class names.

Your class will inherit the standard set of SDA properties:

ToTimeEnteredOnEncounterNumberActionCode

UpdatedOnExternalIdEnteredAtActionScope

FromTimeEnteredByCustomPairs

3. You may add your own SDA properties. If you use data types other than strings, then use the existing SDA3 datatype
classes such as Blob, Boolean, Numeric, or TimeStamp. This ensures support for the delete mechanism, where a pair
of double quotes triggers a delete.

Double quote deletion does not apply to elements in collections. In order to delete such elements, you must assign
ActionCode = 'R' to the streamlet in question, triggering a replacement of the streamlet which clears all existing
collections.

You can add properties of the following types:

• %String

• Any HS.SDA3.<DataType> such as Boolean or Numeric

• Any existing HS.SDA3 serial class

• Any custom serial class that you have created, which must extend HS.SDA3.DataType. Any custom serial classes
should not be defined in HealthShare packages that are available out of the box, like HS.Local or HS.SDA3. This
ensures that your class names will not conflict with any future standard SDA3 class names. For example, you
should name your custom serial class something like ZUser.HS.MySDASection, rather than HS.SDA3.MySDASection.

• Any new code tables that you have created, which must extend HS.SDA3.CodeTableTranslated; the following code
tables are not translatable:

Table 3–3: Code Tables that are Excluded from Translation

CountryCareProviderTypeHealthCareFacility

CountyCityOrganization

TrustStateUser

ZipCareProvider

SDA: InterSystems Clinical Data Format 19

Customizing the SDA by Creating a Custom SDA Container

4. The standard naming convention for SDA classes is singular, like “Medication”, where the container has a list with
the standard plural, like “Medications”, as illustrated below in XML:

XML

<Medications>
 <Medication>
 </Medication>
 <Medication>
 </Medication>
</Medications>

If adding an “s” to the end of your custom section does not work (for example, Diagnosis/Diagnoses), then implement
the methods StartXMLList() and EndXMLList() in your SDA data class, to output the open and close collection
tags on the container:

Class Member

 ClassMethod StartXMLList()
 {
 Quit "<Diagnoses>"
 }

Class Member

 ClassMethod EndXMLList()
 {
 Quit "</Diagnoses>"
 }

5. Compile your class.

Note: If you receive a <PROTECT> error, temporarily make the HSLIB database writable, recompile your class,
then make HSLIB read-only again.

The example below illustrates a custom data class for transplant information:

Class Definition

 Class User.ZTransplant Extends HS.SDA3.SuperClass
 {

 Property OrganType As %String;

 Property TransplantPhysician As HS.SDA3.CodeTableDetail.CareProvider;

 Storage Default
 {
 <Data name="SuperClassState">
 <Subscript>"SuperClass"</Subscript>
 <Value name="1"><Value>ActionCode</Value></Value>
 <Value name="2"><Value>ActionScope</Value></Value>
 <Value name="3"><Value>EnteredBy</Value></Value>
 <Value name="4"><Value>EnteredAt</Value></Value>
 <Value name="5"><Value>EnteredOn</Value></Value>
 <Value name="6"><Value>ExternalId</Value></Value>
 <Value name="7"><Value>EncounterNumber</Value></Value>
 <Value name="8"><Value>FromTime</Value></Value>
 <Value name="9"><Value>ToTime</Value></Value>
 <Value name="10"><Value>Deleted</Value></Value>
 <Value name="11"><Value>UpdatedOn</Value></Value>
 <Value name="12"><Value>CustomPairs</Value></Value>
 <Value name="13"><Value>OrganType</Value></Value>
 <Value name="14"><Value>TransplantPhysician</Value></Value>
 </Data>
 <SequenceNumber>5</SequenceNumber>
 <Type>%Library.SerialState</Type>
 }
 }

20 SDA: InterSystems Clinical Data Format

Customizing the SDA

3.2.1.1 Making an Analogous Custom Data Class in Health Insight

If you define a custom SDA data class for one of your custom SDA sections and want Health Insight to be able to interpret
and store the data, you should make an analogous custom data class in Health Insight.

In this case, both your custom SDA streamlet class and your custom SDA data class should exist in the HSCUSTOM
namespace and be package mapped to your Analytics namespace. These classes should be compiled in the Analytics
namespace as well.

In order to create your custom SDA data class in Health Insight, do the following:

1. Create a new class that extends HSAA.IndexCommonData. Ensure that the class name avoids the HSAA package.

2. Name your class something like: User.ZMyHISection. It is good practice to prefix your short class names with a “Z”
to ensure that they do not conflict with any future standard SDA3 class names. Ensure that your Health Insight custom
data class does not have the exact same name as your custom SDA data class.

Your class will inherit the standard set of SDA properties:

ToTimeEnteredOnEncounterNumberActionCode

UpdatedOnExternalIdEnteredAtActionScope

FromTimeEnteredByCustomPairs

3. You may add your own SDA properties. If you use data types other than strings, then use the existing
HSAA.Internal.Boolean, HSAA.Internal.Numeric, or HSAA.TimeStamp datatype classes.

You can add properties of the following types:

• %String

• Any HSAA.Internal<DataType> such as Boolean or Numeric

• Any existing HSAA serial class

• Any custom serial class that you have created, which must extend HSAA.Internal.DataType. Any custom serial
classes should not be defined in Health Insight packages that are available out of the box, like HSAA. This ensures
that your class names will not conflict with any future standard Health Insight class names. For example, you
should name your custom serial class something like ZUser.HSAA.MySDASection, rather than HSAA.MySDASection.

• Any new code tables that you have created, which must extend HSAA.Internal.Interface.CodeTableTranslated;
the following code tables are not translatable:

Table 3–4: Code Tables that are Excluded from Translation

CountryCareProviderTypeHealthCareFacility

CountyCityOrganization

TrustStateUser

ZipCareProvider

4. If the SDA custom data class uses an HS.SDA3.CodeTableDetail class, use the analogous HSAA.Interface.CodeTableDetail

class, or, if none exists, the analogous HSAA.Internal.Interface.CodeTableDetail class.

5. If you want to use a Tag or other fields in Health Insight, add them to the class rather than extending any other HSAA
class.

SDA: InterSystems Clinical Data Format 21

Customizing the SDA by Creating a Custom SDA Container

6. Compile your class.

Once you have compiled the custom Health Insight data class, register it. For instructions on how to register your custom
Health Insight data class, see “Registering Custom Container Classes” in the Health Insight Installation and Configuration
Guide. Follow the procedure described in that section, but enter your custom SDA data class name for the SDA Source

Class field and your analogous Health Insight custom data class for the Health Insight Class Name field.

Note: If you are viewing this documentation in InterSystems IRIS for Health™, click here to link to the HealthShare
Health Insight documentation on extending the SDA.

3.2.2 Creating a Custom SDA Streamlet Class

The second step in creating a custom SDA container is to define a custom SDA streamlet class to store the data for each
of your custom data classes:

1. Create a new class that extends both HS.SDA3.Streamlet.Abstract and %Persistent.

2. Name your class something like: User.Streamlet.ZMySection. It is good practice to prefix your short class names with
“Z” to ensure that they will not conflict with any future standard SDA3 class names.

The class name above illustrates the standard naming convention for streamlet classes:
<PackageName>.streamlet.<SDADataClassname>. If you do not follow this naming convention, then you must
implement the GetStreamletClass() method of HS.SDA3.SuperClass on your SDA data class to output the name of
your streamlet class. The default code is:

 // for a standard SDA class, we get the streamlet class from the extension class,
 // to let the extension override it. Classes that don't allow extension
 // can override this method
 If pType'["." Quit $Parameter("HS.Local.SDA3."_pType_"Extension","STREAMLETCLASS")
 // For custom ones, if we have a parameter, use it
 If $Parameter(,"STREAMLETCLASS")'="" Quit $Parameter(,"STREAMLETCLASS")
 //The code below is for backwards compatibility - it predates the parameter
 //and can be overridden if need be, but really one should just use the parameter
 Quit $P(pType,".",1,$L(pType,".")-1)_".Streamlet."_$P(pType,".",$L(pType,"."))

3. Enter values for the following parameters.

Required?DescriptionParameter

RequiredEither a predefined information type, or a custom information type.INFOTYPE

RequiredThe name of your SDA data class.SDACLASS

OptionalThe name of the property to use for filtering by date. If this is missing,
defaults to ToTime.

DATEPROPERTY

RequiredDescribes how to perform matching for this section in HealthShare
Unified Care Record. Does not apply to Health Connect.

For a description of the matchings, see the class reference for
HS.SDA3.Streamlet.Abstract.

For examples, see the class reference for any of the SDA3 streamlet
classes.

MATCHINGS

OptionalIf this Streamlet class has a limited set of valid ACTIONSCOPES
values, this parameter should be a comma-delimited list (with leading
and trailing commas) of those values. For HealthShare Unified Care
Record only; does not apply to Health Connect.

ACTIONSCOPES

22 SDA: InterSystems Clinical Data Format

Customizing the SDA

https://docs.intersystems.com/hs20232/csp/docbook/DocBook.UI.Page.cls?KEY=HSAAIC_extendcube#HSAAIC_custom_customcontainer

4. Optionally enter code for the callbacks you want to implement in HealthShare Unified Care Record (not applicable to
Health Connect or InterSystems IRIS for Health):

• OnInactivate()

• OnMatchActionScope()

• OnBeforeMatch()

• OnValidate()

• OnBeforeSave() — You can use the transient multidimensional property Stash to pass data from OnBeforeSave()

to OnAfterSave()

• OnAfterSave()

5. Compile your class.

The example below illustrates a custom streamlet class for transplant information:

Class Definition

 Class User.Streamlet.ZTransplant Extends (HS.SDA3.Streamlet.Abstract, %Persistent)
 {

 Parameter INFOTYPE = "PRC";

 Parameter SDACLASS = "User.ZTransplant";

 Parameter DATEPROPERTY = "EnteredOn";

 Parameter MATCHINGS = "PRC/EnteredOn";

 Storage Default
 {
 <ExtentSize>100000</ExtentSize>
 <SequenceNumber>5</SequenceNumber>
 <Type>%Library.Storage</Type>
 }
 }

3.2.3 Creating a Custom SDA Container Class

The third step in creating a custom SDA container is to define a custom SDA container class that includes your custom
SDA sections:

1. Create a new class that extends HS.SDA3.Container.

2. Name your container class something like: User.ZMyContainer. It is good practice to prefix your short class names with
a “Z” to ensure that they do not conflict with any future standard SDA3 class names.

3. Add a property for each new SDA data section. Name the property ZMySections (plural) or, if you implemented the
StartXMLList() and EndXMLList() methods in your data class, use that value as the property name. The property
should be a list of User.ZMySection (singular).

4. Compile your class.

Note: If you receive a <PROTECT> error, temporarily make the HSLIB database writable, recompile your class,
then make HSLIB read-only again.

The example below illustrates a custom container class that includes the transplant section:

SDA: InterSystems Clinical Data Format 23

Customizing the SDA by Creating a Custom SDA Container

Class Definition

Class User.ZMyContainer Extends HS.SDA3.Container
{

Parameter XMLNAME = "Container";

Property ZTransplants As list Of User.ZTransplant;

}

3.2.4 Registering your Custom SDA Container in the Configuration Registry

The final step in creating a custom SDA container is to register your custom container in the configuration registry:

1. In the configuration registry, create an entry where:

• the key is \CustomSDA3Container

• the value is the name of your container class, without the “ .cls” suffix

3.3 Extending the SDA with Name/Value Pairs
You can use either of the following methods to extend the SDA:

3.3.1 Creating a Custom SDA Name/Value Pair

Each section of the SDA includes a <CustomPairs> element. To add a name value/pair that captures an additional data item
in an existing SDA section, simply submit an SDA document that includes a <CustomPairs> element in the appropriate
section. Each name/value pair appears in a <NVPair> element. Enter the description of the data in the <Custom-
Pairs><NVPair><Name> property, and include the data in the <CustomPairs><NVPair><Value> property.

The example below illustrates how to add a set of treatments to an allergy in SDA:

XML

<Container>
 ...
 <Allergies>
 <Allergy>
 ...
 <CustomPairs>
 <NVPair>
 <Name>Treatment</Name>
 <Value>Oral Corticosteroids</Value>
 </NVPair>
 <NVPair>
 <Name>Treatment</Name>
 <Value>Injected Steroids</Value>
 </NVPair>
 </CustomPairs>
 </Allergy>
 </Allergies>
 ...
</Container>

3.3.2 Creating a Custom SDA Object

The SDA contains a <CustomObjects> section that you can use to store data that is not relevant to any other SDA section.
This section comprises one or more <CustomObject> elements.

24 SDA: InterSystems Clinical Data Format

Customizing the SDA

Each <CustomObject> element must include one or more:

• <CustomType> — Identifies the type of entry.

• <CustomPairs> — A list of name/value pairs that contain the data, as described in the previous section.

Each <CustomObject> may also include:

• <ActionCode><ActionScope> — Directions to the HealthShare Unified Care Record product on an action to take.
See the class reference for specific details.

• <CustomMatchKey> — Directions to the HealthShare Unified Care Record product on how to match entries of this
type with objects already in the database. This is typically a concatenation of custom pair entries, for example
<NVPair3>|<NVPair1>. Each value becomes required for a match, and is evaluated in the order specified.

• <ExternalID> — An identifier that may have meaning to an outside system. It is used as the primary match key, if
present.

• <EnteredOn>, <EnteredAt>, <EnteredBy> — Details about the source.

• <FromTime>, <ToTime> — Details regarding when the data is valid.

The class reference for HS.SDA3.CustomObject provides additional details.

The example below contains data for two physiotherapy home care visits.

XML

<Container>
 ...
 <Patient>
 ...
 </Patient>
 ...
 <CustomObjects>
 <CustomObject>
 <CustomType>HomeCareEvent</CustomType>
 <EnteredOn>2012-02-05T13:00:00Z</EnteredOn>
 <CustomPairs>
 <NVPair>
 <Name>EventType</Name>
 <Value>Physiotherapy</Value>
 </NVPair>
 <NVPair>
 <Name>Comment</Name>
 <Value>Minimal progress. Assistance required for many tasks.</Value>
 </NVPair>
 </CustomPairs>
 </CustomObject>
 <CustomObject>
 <CustomType>HomeCareEvent</CustomType>
 <EnteredOn>2012-02-01T12:55:00Z</EnteredOn>
 <CustomPairs>
 <NVPair>
 <Name>EventType</Name>
 <Value>Physiotherapy</Value>
 </NVPair>
 <NVPair>
 <Name>Comment</Name>
 <Value>Home evaluation. Bathroom rails and detachable shower head required.</Value>
 </NVPair>
 </CustomPairs>
 </CustomObject>
 </CustomObjects>
 ...
</Container>

SDA: InterSystems Clinical Data Format 25

Extending the SDA with Name/Value Pairs

	Table of Contents
	1 About SDA
	2 SDA Documents
	2.1 The Basic XML Structure of an SDA Document
	2.1.1 The Patient in SDA
	2.1.2 Encounters in SDA
	2.1.3 For More Information on SDA Classes

	2.2 Creating an SDA Stream from SDA Objects
	2.3 Streamlet Matching

	3 Customizing the SDA
	3.1 Using the Extension Classes to Customize the SDA
	3.1.1 Adding Properties to the Extension Class
	3.1.2 Recompiling The Classes
	3.1.3 Populating The Extension Properties
	3.1.4 Customizing Streamlet Classes
	3.1.5 Using Custom SDA Properties

	3.2 Customizing the SDA by Creating a Custom SDA Container
	3.2.1 Creating a Custom SDA Data Class
	3.2.2 Creating a Custom SDA Streamlet Class
	3.2.3 Creating a Custom SDA Container Class
	3.2.4 Registering your Custom SDA Container in the Configuration Registry

	3.3 Extending the SDA with Name/Value Pairs
	3.3.1 Creating a Custom SDA Name/Value Pair
	3.3.2 Creating a Custom SDA Object

