InterSystems-

IRIS Data Platform

First Look: Optimizing SQL
Performancewith InterSystems
IRIS

Version 2018.1
2018-06-22

First Look: Optimizing SQL Performance with InterSystems IRIS
InterSystems IRIS Data Platform Version 2018.1 2018-06-22
Copyright © 2018 InterSystems Corporation

All rights reserved.

ulnterSystems‘ InterSystems: ulnterSystemS' ulnterSystemS" ulnterSystemS‘

Health | Business | Government Caché Ensemble HealthShare TrakCare

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

[l InterSystems

IRIS Data Platform

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

First Look: Optimizing SQL Performance with Inter Systems IRIS........ccooeiininiiininenereeeeeen 1
1 Query Optimization with INterSystems SQLccveveeeeiererere e 1
2 Demo: Showing and Interpreting a Query Plan Before Optimizationccccvvveveveeveecenceeiennens 1

A R ST oS0 U I == 1 S 1
2.2 Using the EXPLAIN Keyword to Show aQuery Plan ... 2
2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan 3
2.4 Spotting Potential Performance Issuesin Query Plan ResUItScccoevvenenenneneneneee 5
2.5 Testing QUENY EXECULIONeeueeiereeieestesiesteses e seeseeee e e ese s ste s sae st see s ena e e e e eneenesnnens 5
3 Demo: Testing Query OPtiMIZatiONScccererereeieeierieeeseseseseseseeste e seeseeeessesessessessessessesseseens 6
3.1 Adding aBitslice Index to the Price FIeldcccoveevi e 6
3.2 Testing the Effects of the BitsliCe INEXcooeiieierieeeereee e 6
3.3 Adding a Bitmap Index To the TransactionType Fieldccccoenrennennenseeeeeeeee 8
3.4 Retesting QUENY PerfOrMENCEccouiireiriririeerie ettt st 9
4 Viewing Query Performance OVEr TIMEcccvveeirieieiiseseseesseseeseeseesesesessessessessessesseseessenseneens 10
5 Learn More About INtErSYyStEMS SOL ...cviviierereeieieeeeeeese s sre e see st te s see e se e e e e s e snesresseses 11
5.1 INtroduCtory IMELENTAIcccvieiieiieeiete ettt re e sre e e ens 11
5.2 SQL DEVEIOPMENcuviieieieiete ettt st see st et se e e e e e st saesbesaesaesbesbeseesbenbenes 11
5.3 QUENY OPLIMIZALIONuevieertiietieetesee ettt b e 11
5.4 Sharding and SCal@bilityocereireirierere e 12
5.5 SQL SEAICN .ottt sttt et e be b e 12
BB IDBC ...ttt bbbttt bbbt tenn 12

First Look: Optimizing SQL Performance with InterSystems IRIS

First Look: Optimizing SQL Performance
with InterSystems IRIS

This First Look guide introduces you to InterSystems SQL query optimization, including the use of query analysistools,
several indexing methods, and the ability to review runtime statistics over time.

1 Query Optimization with InterSystems SQL

InterSystems IRIS offers afull suite of tools for SQL query performance tuning:
e Graphical displaysfor query plan analysis

e Indexing strategies such as bitmap and bitsliceindexing that are compact and can be processed efficiently by vectorized
CPU instructions. Each type of index offers benefits for certain query types, such aslogical conditions, counting, and
aggregate functions. With indexing, you can achieve query performance results of up to billions of rows per second
on one core.

* Metrics on SQL query performance over time

Important: The query performance numbers shown in the demos below are representative of multiple trials of the
demos on a single Windows 10 laptop. You may see different query performance numbers depending on
your environment.

2 Demo: Showing and Interpreting a Query Plan Before
Optimization

2.1 Before you Begin

Important: Before you read this guide, you should read and work through the demosin “First Look: SQL and Inter-
Systems IRIS”.

To run the demo, you’ll need arunning, licensed instance of InterSystems RIS, installed with “normal” security.

You will aso need to know how to find the management toolsfor InterSystems RIS, such asthe I nterSystems Management
Portal (referred to as the “Management Portal” below) and InterSystems Terminal (referred to asthe “Terminal” below).
If you need to reacquaint yourself with these tools, see “ Quick Start: InterSystems IRIS Installation™.

You will usethe InterSystems RIS SQL Shell again, asintroduced in “First Look: SQL and InterSystems|RIS”. The data
you will use comes from amillion-record table of stock transaction data— the same one you created when you worked
through the demos in that First Look.

Youwill also runthe TuneTab I e utility, which examinesthe datain the table and creates statistics used by the I nter Systems
QL query optimizer (the engine that decides how best to run any query). These statisticsinclude the size of thetable (extent

First Look: Optimizing SQL Performance with InterSystems IRIS 1

Demo: Showing and Interpreting a Query Plan Before Optimization

size) and the number of unique values per column (selectivity). The optimizer usestable size in scenarios like determining
join order, where it’s best to start with the smaller table. Selectivity helps the optimizer choose the best index in the case
where atable has multiple indices. In a production instance, you normally run TuneTable only once: after datais loaded
into atable and before you go live.

If your InterSystems I RIS instance no longer includesthe St ock Tabl eDenpTwo table, you will need to recreate and load
it:

1. If you need to, clone the I nterSystems GitHub repository “FirstL ook-SQLBasics’, or download thefiles. In particular,
you will need:

* stock_table_demo_two.csv, which contains a million rows of stock table data.
» Loader.xml, aclassfile that contains a utility method to load the data from stock_table_demo_two.csv
into an InterSystems IRIStable.
2. Start aSQL Shell in Terminal. Make sure you are in the USER namespace.
3. Createthetable:

CREATE TABLE FirstLook.StockTableDemoTwo (ClientID INTEGER, BrokerlID INTEGER,
Symbol VARCHAR(10), TransactionType VARCHAR(4),
TransactionDate TIMESTAMP, Quantity INTEGER,
Price DECIMAL(15,2), CommissionRate DECIMAL(15,2))

4. Import the Loader class (the Loader .xml file) and compileit.

OBJ DO $system.OBJ.Load(<'"pat hToLoader XM.Fi | ">, ''ck'™)

You should see output like the following:

Load started on 04/19/2018 15:17:53

Loading file C:\Users\user\repos\FirstLook-SQLBasics\Loader.xml as xml
Imported class: FirstLook.Loader

Compiling class FirstLook.Loader

Compiling routine FirstLook.Loader.1

Load finished successfully.

5. Toload the datain stock _table_demo_two.csv into thetable, run the following command:

0BJ WRITE ##class(FirstLook.Loader) .LoadStockTableCSV(*'<pathToCSVDataFile>")

The output will simply reflect that 1,000,000 rows were |oaded.
6. RuntheTuneTable utility:

OBJ DO $SYSTEM.SQL.TuneTable("FirstLook.StockTableDemoTwo')

This command generates no visible output in the SQL Shell.

2.2 Using the EXPLAIN Keyword to Show a Query Plan

This demo assumes that you want to obtain the average price for all “SELL” transactions. Given that the table contains a
million rows, the needed query could potentially be very slow.

While you may aready want to proceed with creating indices on the Price and TransactionType fields, it will be
instructive to see the query plan before you begin optimization work. In the SQL Shell, you can show aplan for a query
by prepending the EXPLAIN keyword to it. The query plan shows how the SQL query optimizer will useindices, if any,
or whether it will read the table data directly to execute the statements.

To use the EXPLAIN keyword to show a query plan, execute the following statement in the SQL Shell:

EXPLAIN SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
WHERE TransactionType = “SELL*®

2 First Look: Optimizing SQL Performance with InterSystems IRIS

https://github.com/intersystems/FirstLook-SQLBasics

Demo: Showing and Interpreting a Query Plan Before Optimization

Thiswill return the query plan, formatted as XML. You’ll see that the code generated to execute a SQL query is divided
into modules, each of which performs a distinct part of the execution plan, such as evaluating a subquery:

Plan
“"<plans>
<plan>
<sql>
SELECT AVG (Price) As AveragePrice FROM FirstLook . StockTableDemoTwo
WHERE TransactionType = ?
</sql>
<cost value=""13225000"""/>
<module name="""FIRST"" top=""'0""">
Call module B.
<module name=""'D"**" top="""0"""">
Output the row.
</module>
</module>
<module name=""'B"""" top="""1""">
Read master map FirstLook.StockTableDemoTwo.IDKEY, looping on ID.
For each row:
<module name=""'C""" top=""'0"""">
</module>
Accumulate the count(Price).
Accumulate the sum(Price).
</module>
</plan>
</plans>"

In “ Spotting Potential Performance Issuesin Query Plan Results”, you’ll learn to recognize the problems with this query.

2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan

InterSystems IRIS offers a web-based interface in the Management Portal for SQL query execution and plan analysis.
To show aquery plan using the SQL query interface in the Management Portal:

1. Inaweb browser, navigateto
http://hos:port/csp/sys/exp/%25CSP . Ul . Portal . SQL . Home . zen?$NAMESPACE=USER&SNAMESPACE=USER
where host is the hostname of your InterSystems IRIS instance and port is the web server port. Thiswill open the SQL

page.
2. Make sureyou arein the USER namespace. If you are not aready there:

* Inthetop panel of the screen, click SWITCH to the right of the name of the current namespace.

* Inthe popup, choose USER and click OK.

First Look: Optimizing SQL Performance with InterSystems IRIS 3

Demo: Showing and Interpreting a Query Plan Before Optimization

Sernver IRISEYUEOU N MNamespace: % SYS Switch
User: _SYSTEM Licensed to: 1SC Development |

© applies to| Al Y, & Wizards» Actions» Open Tabl

Namespace Chooser

. Namespace Chooser
Select a namespace

Available Namespaces
TeSYS

If a namespace exists but is not listed, then you may not hold permission to view
it, or its database may not be mounted.

P

3. Omitting the EXPLAIN keyword, paste the query from “Using the EXPLAIN Keyword to Show a Query Plan” into
the text field in the Execute Query tab.

4. Click show Plan to display aquery plan. The results will look much like this:

4 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Showing and Interpreting a Query Plan Before Optimization

Statement Text

SELECT &G (Price) AS AveragePrice FROM FirstLook . StockTableDemoTwo WHERE TransactionType

Relative Cost = 13225000

» Call module B.
* Qutput the row.

* Read master map FirstLook StockTableDemoTwo. IDKEY, looping on |D.
* For each row:

- Accumulate the count{Price).

- Accumulate the sumiPrice).

H

Interpreting these results is the subject of the next section.

2.4 Spotting Potential Performance Issues in Query Plan Results

Both of the query analysis methods described above indicate that there are some serious potential performance issues with
this query.

Relative cost can be agood predictor of performance. As the name of this field indicates, thisis not an absolute number:
it has ameaning relative only to aparticular query or aset of queriesthat differ from each other only in small ways, such
as the addition or removal of logical conditions. But if you look at two plans for the same query, and one’s relative cost is
much lower than the other, it’slikely that the plan with the lower cost will be much faster.

Next, the first task in the query plan is “read master map”. What this means is that the InterSystems SQL query optimizer
will not use any indices to run the query; instead, the datain the table will be read directly. Especially in the case of alarge
table, this result indicates a query that will not perform well.

As we optimize the query, you’ll seeits relative cost decrease, and the query plan will change significantly aswell.

2.5 Testing Query Execution

To get some actual data as to how the unoptimized query will perform, run it in the SQL Shell:

SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
WHERE TransactionType = "SELL"
GO

The output will look something like this:

AveragePrice
266.1595139195757844

1 Rows(s) Affected
statement prepare time(s)/globals/lines/disk: 0.0709s/44496/224048/0ms
execute time(s)/globals/lines/disk: 0.6040s/1000013/10001138/0ms
cached query class: %sqlcq.USER.cls80

Statement preparation and execution metrics are listed separately. Take special notice of two items:

» Execution time was 0.604 seconds. While this does not seem like avery long time, it can be vastly improved with the
use of indices.

First Look: Optimizing SQL Performance with InterSystems IRIS 5

Demo: Testing Query Optimizations

* Thenumber of globals read in the execution step was 1,000,013. (Globals are multidimensional sparse arrays used by
InterSystems IRIS to store data; for more information, see the *“Introduction to Globals” chapter of Introduction to
Inter Systems IRIS Programming.) To improve query performance, this number should be decreased. You’ll see that
happen in the next section.

Important: Preparation isdone only once: thefirst timeaquery is planned anew. Querieswill automatically be replanned
if arelevant table is modified or if an index is added or removed. Most applications will prepare a query
only once, but will executeit many times. So our focusin thisdemo will be on tuning execution performance.

3 Demo: Testing Query Optimizations

3.1 Adding a Bitslice Index to the Price Field

If your query will include aggregate functions on one or more fields, adding a bitslice index to one or more of those fields
may improve performance.

A hitsliceindex represents each numeric datavaluein afield asabinary bit string, with abitmap for each digit in the binary
value to record which rows have a 1 for that binary digit.

Since we want to get the average price for all “SELL” transactions, it makes sense to add a bitsice index to the Price
field. To create the bitslice index Priice 1dx on the Price field, execute the following statement in the SQL Shell:
CREATE BITSLICE INDEX Priceldx ON TABLE FirstLook.StockTableDemoTwo (Price)

2. CREATE BITSLICE INDEX Priceldx ON TABLE FirstLook.StockTableDemoTwo (Price)

0 Rows Affected

statement prepare time(s)/globals/lines/disk: 0.0411s/1773/13460/28ms

execute time(s)/globals/lines/disk: 2.0492s/2089760/56804368/152ms
cached query class: %sqlcq.USER.clsl

Just because you’ve created the index does not necessarily mean that the InterSystems SQL query optimizer will useit,
however, as you’ll see below.

3.2 Testing the Effects of the Bitslice Index

To seeif the new hitdice index makes any difference in how the query will be executed, or how fast it runs, use either
method described above (the SQL Shell or the Management Portal) to show the query plan.

Asyou’ll see, the InterSystems SQL query optimizer will not use the new index:

6 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Testing Query Optimizations

Statement Text

SELECT &VG (Price) AS AveragePrice FROM FirstLook . StockTableDemoTwo WHERE TrensactionType = 2

Relative Cost = 13225000

» Call module B.
* Qutput the row.

* Read master map FirstLook StockTableDemoTwo. IDKEY, looping on |D.
* For each row:

- Accumulate the count{Price).

- Accumulate the sumiPrice).

Running the query yields nearly the same performance statistics asit did before you created the bitslice index (0.6 seconds
of execution time compared with 0.604). InterSystems IRIS intelligently caches query plans and data, so subsequent runs
of the same query may result in improved performance, as may have been the case here given the slight difference in query
performance times. Other applications running on the machine can affect performance as well.

SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo

WHERE TransactionType = “SELL*®
GO

3. SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
WHERE TransactionType = “SELL*®

AveragePrice
266.1595139195757844

1 Rows(s) Affected
statement prepare time(s)/globals/lines/disk: 0.0929s/44517/217330/31ms

execute time(s)/globals/lines/disk: 0.5986s/1000023/10001138/0ms
cached query class: %sqlcq.USER.cls80

If you remove the WHERE clause from the query, you’ll see quite a different result when you show the query plan:

First Look: Optimizing SQL Performance with InterSystems IRIS 7

Demo: Testing Query Optimizations

Statement Text

SELECT AvGa { Price) AS AveragePrice FROM FirstLook . 5tockTableDemoTwo

Query Plan

Relative Cost= 131058

+ Call module D.
+ Call module G.
« Dutput the row.

* Read bitslice index FirsiLook StockTahleDemoTwo. Priceldx, looping on bitslice power.
* For each bitslice power:

Call module E.

- Accumulate the sumiPrice).

* Read exient bitmap FirstLook StockTableDemoTwo $5tockTableDemoTwo, looping on bitmap chunks.

* For each bitmap chunk:
- Read a chunk from bitslice index FirstLook. StockTableDemoTwo. Priceldx and perform a bitwise AND NOT operation.
- Accumulate the countibits).

* Read bitslice index FirsiLook. StockTahleDemoTwo.Priceldx, using the given bitslice power, and looping on bitslice chunks.
* For each bitslice chunk:
- Accumulate the aggregate for the power.

Asyou can see, the bitsice index is read as the first step of the query plan. The “master map” is not read in this plan.

The SQL query optimizer also usesasecond index, FirstLook.StockTableDemoTwo . $StockTableDemoTwo. This
isabitmap extent index, which is automatically created whenever the CREATE TABLE SQL statement is executed. It isa
bitmap index of al the rowsinthetable, not just one field, and the value of each bit reflects whether or not the row actually
exists.

Therelative cost of this query, 131058, is much smaller than that of the query that contains the WHERE clause. Thisis
because the InterSystems SQL query optimizer employs the bitsice index as the first step of the process (Module D in the
plan shown above).

However, the query that we truly want to run contains a WHERE clause. So we’ll have to find away to get the SQL query
optimizer to use the index when the WHERE clause is present.

3.3 Adding a Bitmap Index To the TransactionType Field

If you read the InterSystems SQL Optimization Guide, you’ll find that the InterSystems SQL query optimizer will often
use a bitslice index when it is combined with a bitmap index on the field in aWHERE clause.

This s because aggregate queries without the WHERE clause can simply aggregate all the datain the index. However, to
aggregate only the rows that satisfy aWHERE condition, a query must mask those bits out of the bitsliceindex for rows that
do not satisfy the condition. A bitmap index on the field in the WHERE clause allows this mask to be constructed efficiently.

Fortunately, the other field in the query, TransactionType, isagood candidate for a bitmap index because its count of
possible valuesistwo (“SELL” and “BUY ™).

8 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Testing Query Optimizations

To add a bitmap index to the TransactionType field, execute the following statement in the SQL Shell:

CREATE BITMAP INDEX TransactionTypeldx ON TABLE FirstLook.StockTableDemoTwo
(TransactionType)

4. CREATE BITMAP INDEX TransactionTypeldx ON TABLE FirstLook.StockTableDemoTwo
(TransactionType)

0 Rows Affected
statement prepare time(s)/globals/lines/disk: 0.0055s/1723/16154/0ms
execute time(s)/globals/lines/disk: 1.2694s/2074505/20576628/0ms
cached query class: %sqlcq.USER.clsl

3.4 Retesting Query Performance

Now that you have added bitslice and bitmap indices: if you show the query plan for

SELECT AVG(Price) as AveragePrice FROM FirstLook.StockTableDemoTwo
WHERE TransactionType = “SELL*®

in SQL Shell or in the Management Portal, you’ll see that the query optimizer uses the two indices you created to obtain
the best performance.

Note as well that the relative cost is nearly 90 percent less than that of the unoptimized query, whose cost was 13225000.

Statement Text

SELECT AvWG (Price) AS AveragePrice FROM FirstlLook . StockTableDemoTwo WHERE TransactionType = 2

Relative Cost = 160712

» Call module C, which populates bitmap temp-file A.
» Call module E. which populates bitmap temp-file A.
+ Call module H.
» Qutput the row.

» Generate a stream of bitmap chunks using the multi-index combination:
((bitmap index FirstLook StockTableDemoTwo. TransactionTypeld:) INTERSECT (extent bitmap FirstLook. StockTableDemoTwo $StockTableDemoTwo))
» For each bitmap chunk:
- OR the hitmap chunk into bitmap temp-file A

» Read bitslice index FirsiLook StockTableDemoTwo. Priceldx, looping on bitslice power.
* For each bitslice power:

Call module F.

- Accumulate the sum(Price).

* Read bitmap temp-file A, looping on bitmap chunks.

* For each bitmap chunk:
- Read a chunk from bitslice index FirsiLook. StockTableDemoTwo.Priceldx and perform a bitwise AND NOT operation.
- Accumulate the count(bits).

» Read bitslice index FirstLook StockTahleDemaTwo. Priceldx, using the given bitslice power, and looping on bitslice chunks.
+ For each bitslice chunk:

- Read a chunk from bitmap temp-file A and perform a bitwize AND operation.

- Accumulate the aggregate for the power.

Finally, if you run the query in SQL Shell, you’ll see a much more efficient use of globals (610 as opposed to 1000013).

First Look: Optimizing SQL Performance with InterSystems IRIS

©

Viewing Query Performance Over Time

Most critically: in thistest, the indexed query ran nearly 150 times faster than the unindexed query: 0.0042 seconds of

execution time as opposed to 0.604.

1>>SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo

2>>WHERE TransactionType = "SELL*
3>>G0
5. SELECT AVG(Price) As AveragePrice FROM
WHERE TransactionType = "SELL"
AveragePrice

266.1595139195757844
1 Rows(s) Affected
statement prepare time(s)/globals/lines/disk:

execute time(s)/globals/lines/disk:
cached query class:

FirstLook.StockTableDemoTwo

0.0879s/45817/243223/9ms
0.0042s/610/2933/0ms
%sqlcq.USER.cls7

To track the performance of the query over time, InterSystems IRIS provides query statistics, which you’ll learn how to

view in the next section.

4Viewing Query Performance Over Time

To track down slow-running queries or see how anew query isdoing in production, you can use the SQL Statistics View
in the Management Portal. To navigate to this view, open the SQL query interface in the Management Portal and click sQL

Statistics.

If, for example, the query you tuned above ran nine times under its original (unoptimized) plan, you might see something

like this when you sort on the Average time column:

[Catalog D elaiIsI Execute Query l BrowseI SQL Statements

All SQL Statements in this namespace

Filter: Page size: [100 Max rows: | 10000 Results: 3 | Page 1] af 1 Refresh
P meniwProCedure P New Mol Count S1era0® [0l MEI0E i pev Location
1 FirstLook StockTableDemoTwo Unirozen 0 1 1 7.3225 7.3225 0 %sglcg . USER cls6.1
» 2 FirstLook StockTableDemoTwo Unfrozen i} 9 9 5.4891 060990 0.012748 %sqglcg.USER cl=4.1
3 FirstLook StockTableDemoTwo Unfrozen 0 5 5 0.0018890 0.0003778 0.0000667 %sglcg.USER cls11.1
4 FirstLook StockTableDemoTwo Unfrozen 0 5 5 0.0013480 0.0002696 0.0000218 %sglcg.USER cls10.1
5 FirstLook StockTableDemoTwo Unfrozen 0 Yhsglcg USER cls7.1
6 FirstLook StockTableDemoTwo Unfrozen 0 Yhsgleg USER cls5.1
7 FirstLook StockTableDemoTwo Unfrozen 0 FirstLook Loader.1
8 FirstLook StockTableDemoTwo Unfrozen 0 FirstLook StockTableDemoTwo.1
9 FirstLook StockTableDemoTwo Unfrozen 0 Yhsglcg USER cls8.1

SQL Statement Text

DECLARE QRS CURSOR FOI

DECLARE QRS CURSOR FOI

DECLARE QRS CURSOR FOI

DECLARE QRS CURSOR FOI

DECLARE ORS CURSOR FOI

DECLARE ORS CURSOR FOI

INSERT %MNOLOCK INTO FIR:

DECLARE OEXTENT CURSO

DECLARE ORS CURSOR FOI

Clicking on the statement’s link in the SQL Statement Text column alows you to view the query in SQL form:

Statement Text and Query Plan

Statement Text

SELECT AVGE { PRICE) AS AVERAGEPRICE FROM FIRSTLOOK

. STOCKTABLEDEMOTHO WHERE TRAMSACTIONTYPE = 2

You can also tie SQL statement execution to the SQL Statistics view using the name of the cached query class, which is
thelast line of output in the SQL Shell and islisted in the Location(s) column of SQL Statistics.

After you optimize the query and run it afew times, you can expect to see improvementsin the Total time and Average time

columns.

10

First Look: Optimizing SQL Performance with InterSystems IRIS

Learn More About InterSystems SQL

Catalog Detailsl Execute Query] Elru-wsel SOL Statements

All SQL Statements in this namespace

Filter: Page size: 100

Plan
State
Unfrozen
Unfrozen
Unfrozen
Unfrozen
Unfrozen
Unirozen
Unfrozen
Unfrozen

Table/View/Procedure
© Name(s)

1 FirstLook StockTableDemoTwo
2 FirstLook StockTableDemoTwo
3 FirstLook StockTableDemoTwo
4 FirstLook StockTableDemoTwo
5 FirstLook StockTableDemoTwo
g FirstLook.StockTableDemoTwo
T FirstLook StockTableDemoTwo
& FirstLook StockTableDemoTwo

Max rows: | 10000

New Matural
plan Query

[T = T - s T T = = = |

Resulis: 8 | 1]

Page

Average Total
Count time time «

0.5000 43694 43694 0

4 0.029306 0.0036633 0.0004949

1.500 0.0011730 0.0003910 0.0001043

2 0.0013510 0.0003378 0.0000461

0.5000 0.0002290 0.0002290 0

Average

Count Std Dev

1
g
3
4
1

Note that the value of Count has dropped. This is because the addition of the bitmap and bitslice indices caused the query
plan to change, which in turn triggered aremoval of cached queries for the associated class. The query has run under the
new query plan atotal of eight times, four times on average per day.

5 Learn More About InterSystems SQL

To learn more about SQL and InterSystems IRIS, see:

5.1 Introductory Material

e First Look: SQL and InterSystems IRIS
e Using InterSystems SQL

e InterSystems SQL Reference

e InterSystems RIS SQL Overview

* SQL Resource Guide - 2017

5.2 SQL Development

* SQL —ThingsYou Should Know
» Learn InterSystems SQL: Design and Execution

e Developing with InterSystems Objects and SQL

5.3 Query Optimization

e InterSystems SQL Optimization Guide
* Academy - Optimizing SQL Performance
* Optimizing SQL Queries

First Look: Optimizing SQL Performance with InterSystems IRIS

11

https://learning.intersystems.com/course/view.php?id=135
https://learning.intersystems.com/course/view.php?id=753
https://learning.intersystems.com/course/view.php?id=717
https://learning.intersystems.com/course/view.php?id=256
https://learning.intersystems.com/course/view.php?id=589
https://learning.intersystems.com/course/view.php?id=589
https://learning.intersystems.com/course/view.php?id=80
https://learning.intersystems.com/course/view.php?id=707

Learn More About InterSystems SQL

e Learn InterSystems SQL: Performance

* Find and Fix the Slow Query

5.4 Sharding and Scalability

» First Look: Scaling InterSystems IRIS for Data Volume with Sharding

e Scalahility Guide
WeWant More! — Solving Scalahility

5.5 SQL Search

» First Look: SQL Search with InterSystems IRIS

e Using InterSystems SQL Search

e CreatingiFind Indices for Searching Text Fields

5.6 JDBC

e First Look: JDBC and InterSystems IRIS

e Using Java JDBC with InterSystems IRIS (documentation)

e JavaOverview

* Using JDBC with InterSystems IRIS (online learning)

12

First Look: Optimizing SQL Performance with InterSystems IRIS

https://learning.intersystems.com/course/view.php?id=255
https://learning.intersystems.com/course/view.php?id=55
https://learning.intersystems.com/course/view.php?id=722
https://learning.intersystems.com/course/view.php?id=115
https://learning.intersystems.com/course/view.php?id=731
https://learning.intersystems.com/course/view.php?id=881

	Table of Contents
	1 Query Optimization with InterSystems SQL
	2 Demo: Showing and Interpreting a Query Plan Before Optimization
	2.1 Before you Begin
	2.2 Using the EXPLAIN Keyword to Show a Query Plan
	2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan
	2.4 Spotting Potential Performance Issues in Query Plan Results
	2.5 Testing Query Execution

	3 Demo: Testing Query Optimizations
	3.1 Adding a Bitslice Index to the Price Field
	3.2 Testing the Effects of the Bitslice Index
	3.3 Adding a Bitmap Index To the TransactionType Field
	3.4 Retesting Query Performance

	4 Viewing Query Performance Over Time
	5 Learn More About InterSystems SQL
	5.1 Introductory Material
	5.2 SQL Development
	5.3 Query Optimization
	5.4 Sharding and Scalability
	5.5 SQL Search
	5.6 JDBC

