
First Look: Optimizing SQL
Performance with InterSystems

IRIS

Version 2018.1
2018-06-22

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: Optimizing SQL Performance with InterSystems IRIS
InterSystems IRIS Data Platform Version 2018.1 2018-06-22
Copyright © 2018 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: Optimizing SQL Performance with InterSystems IRIS... 1

1 Query Optimization with InterSystems SQL .. 1
2 Demo: Showing and Interpreting a Query Plan Before Optimization .. 1

2.1 Before you Begin .. 1
2.2 Using the EXPLAIN Keyword to Show a Query Plan .. 2
2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan 3
2.4 Spotting Potential Performance Issues in Query Plan Results .. 5
2.5 Testing Query Execution ... 5

3 Demo: Testing Query Optimizations ... 6
3.1 Adding a Bitslice Index to the Price Field .. 6
3.2 Testing the Effects of the Bitslice Index .. 6
3.3 Adding a Bitmap Index To the TransactionType Field .. 8
3.4 Retesting Query Performance ... 9

4 Viewing Query Performance Over Time ... 10
5 Learn More About InterSystems SQL ... 11

5.1 Introductory Material .. 11
5.2 SQL Development ... 11
5.3 Query Optimization ... 11
5.4 Sharding and Scalability ... 12
5.5 SQL Search ... 12
5.6 JDBC ... 12

First Look: Optimizing SQL Performance with InterSystems IRIS iii

First Look: Optimizing SQL Performance
with InterSystems IRIS

This First Look guide introduces you to InterSystems SQL query optimization, including the use of query analysis tools,
several indexing methods, and the ability to review runtime statistics over time.

1 Query Optimization with InterSystems SQL
InterSystems IRIS offers a full suite of tools for SQL query performance tuning:

• Graphical displays for query plan analysis

• Indexing strategies such as bitmap and bitslice indexing that are compact and can be processed efficiently by vectorized
CPU instructions. Each type of index offers benefits for certain query types, such as logical conditions, counting, and
aggregate functions. With indexing, you can achieve query performance results of up to billions of rows per second
on one core.

• Metrics on SQL query performance over time

Important: The query performance numbers shown in the demos below are representative of multiple trials of the
demos on a single Windows 10 laptop. You may see different query performance numbers depending on
your environment.

2 Demo: Showing and Interpreting a Query Plan Before
Optimization

2.1 Before you Begin

Important: Before you read this guide, you should read and work through the demos in “First Look: SQL and Inter-
Systems IRIS”.

To run the demo, you’ll need a running, licensed instance of InterSystems IRIS, installed with “normal” security.

You will also need to know how to find the management tools for InterSystems IRIS, such as the InterSystems Management
Portal (referred to as the “Management Portal” below) and InterSystems Terminal (referred to as the “Terminal” below).
If you need to reacquaint yourself with these tools, see “Quick Start: InterSystems IRIS Installation”.

You will use the InterSystems IRIS SQL Shell again, as introduced in “First Look: SQL and InterSystems IRIS”. The data
you will use comes from a million-record table of stock transaction data — the same one you created when you worked
through the demos in that First Look.

You will also run the TuneTable utility, which examines the data in the table and creates statistics used by the InterSystems
SQL query optimizer (the engine that decides how best to run any query). These statistics include the size of the table (extent

First Look: Optimizing SQL Performance with InterSystems IRIS 1

size) and the number of unique values per column (selectivity). The optimizer uses table size in scenarios like determining
join order, where it’s best to start with the smaller table. Selectivity helps the optimizer choose the best index in the case
where a table has multiple indices. In a production instance, you normally run TuneTable only once: after data is loaded
into a table and before you go live.

If your InterSystems IRIS instance no longer includes the StockTableDemoTwo table, you will need to recreate and load
it:

1. If you need to, clone the InterSystems GitHub repository “FirstLook-SQLBasics”, or download the files. In particular,
you will need:

• stock_table_demo_two.csv, which contains a million rows of stock table data.

• Loader.xml, a class file that contains a utility method to load the data from stock_table_demo_two.csv
into an InterSystems IRIS table.

2. Start a SQL Shell in Terminal. Make sure you are in the USER namespace.

3. Create the table:

CREATE TABLE FirstLook.StockTableDemoTwo (ClientID INTEGER, BrokerID INTEGER,
 Symbol VARCHAR(10), TransactionType VARCHAR(4),
 TransactionDate TIMESTAMP, Quantity INTEGER,
 Price DECIMAL(15,2), CommissionRate DECIMAL(15,2))

4. Import the Loader class (the Loader.xml file) and compile it.

OBJ DO $system.OBJ.Load(<"pathToLoaderXMLFile">, "ck")

You should see output like the following:

Load started on 04/19/2018 15:17:53
Loading file C:\Users\user\repos\FirstLook-SQLBasics\Loader.xml as xml
Imported class: FirstLook.Loader
Compiling class FirstLook.Loader
Compiling routine FirstLook.Loader.1
Load finished successfully.

5. To load the data in stock_table_demo_two.csv into the table, run the following command:

OBJ WRITE ##class(FirstLook.Loader).LoadStockTableCSV("<pathToCSVDataFile>")

The output will simply reflect that 1,000,000 rows were loaded.

6. Run the TuneTable utility:

OBJ DO $SYSTEM.SQL.TuneTable("FirstLook.StockTableDemoTwo")

This command generates no visible output in the SQL Shell.

2.2 Using the EXPLAIN Keyword to Show a Query Plan

This demo assumes that you want to obtain the average price for all “SELL” transactions. Given that the table contains a
million rows, the needed query could potentially be very slow.

While you may already want to proceed with creating indices on the Price and TransactionType fields, it will be
instructive to see the query plan before you begin optimization work. In the SQL Shell, you can show a plan for a query
by prepending the EXPLAIN keyword to it. The query plan shows how the SQL query optimizer will use indices, if any,
or whether it will read the table data directly to execute the statements.

To use the EXPLAIN keyword to show a query plan, execute the following statement in the SQL Shell:

EXPLAIN SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'

2 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Showing and Interpreting a Query Plan Before Optimization

https://github.com/intersystems/FirstLook-SQLBasics

This will return the query plan, formatted as XML. You’ll see that the code generated to execute a SQL query is divided
into modules, each of which performs a distinct part of the execution plan, such as evaluating a subquery:

Plan
"<plans>
 <plan>
 <sql>
 SELECT AVG (Price) As AveragePrice FROM FirstLook . StockTableDemoTwo
 WHERE TransactionType = ?
 </sql>
 <cost value=""13225000""/>
 <module name=""FIRST"" top=""0"">
 Call module B.
 <module name=""D"" top=""0"">
 Output the row.
 </module>
 </module>
 <module name=""B"" top=""1"">
 Read master map FirstLook.StockTableDemoTwo.IDKEY, looping on ID.
 For each row:
 <module name=""C"" top=""0"">
 </module>
 Accumulate the count(Price).
 Accumulate the sum(Price).
 </module>
 </plan>
</plans>"

In “Spotting Potential Performance Issues in Query Plan Results” , you’ll learn to recognize the problems with this query.

2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan

InterSystems IRIS offers a web-based interface in the Management Portal for SQL query execution and plan analysis.

To show a query plan using the SQL query interface in the Management Portal:

1. In a web browser, navigate to
http://host:port/csp/sys/exp/%25CSP.UI.Portal.SQL.Home.zen?$NAMESPACE=USER&$NAMESPACE=USER
where host is the hostname of your InterSystems IRIS instance and port is the web server port. This will open the SQL

page.

2. Make sure you are in the USER namespace. If you are not already there:

• In the top panel of the screen, click SWITCH to the right of the name of the current namespace.

• In the popup, choose USER and click OK.

First Look: Optimizing SQL Performance with InterSystems IRIS 3

Demo: Showing and Interpreting a Query Plan Before Optimization

3. Omitting the EXPLAIN keyword, paste the query from “Using the EXPLAIN Keyword to Show a Query Plan” into
the text field in the Execute Query tab.

4. Click Show Plan to display a query plan. The results will look much like this:

4 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Showing and Interpreting a Query Plan Before Optimization

Interpreting these results is the subject of the next section.

2.4 Spotting Potential Performance Issues in Query Plan Results

Both of the query analysis methods described above indicate that there are some serious potential performance issues with
this query.

Relative cost can be a good predictor of performance. As the name of this field indicates, this is not an absolute number:
it has a meaning relative only to a particular query or a set of queries that differ from each other only in small ways, such
as the addition or removal of logical conditions. But if you look at two plans for the same query, and one’s relative cost is
much lower than the other, it’s likely that the plan with the lower cost will be much faster.

Next, the first task in the query plan is “read master map”. What this means is that the InterSystems SQL query optimizer
will not use any indices to run the query; instead, the data in the table will be read directly. Especially in the case of a large
table, this result indicates a query that will not perform well.

As we optimize the query, you’ll see its relative cost decrease, and the query plan will change significantly as well.

2.5 Testing Query Execution

To get some actual data as to how the unoptimized query will perform, run it in the SQL Shell:

SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'
 GO

The output will look something like this:

AveragePrice
266.1595139195757844

1 Rows(s) Affected
statement prepare time(s)/globals/lines/disk: 0.0709s/44496/224048/0ms
 execute time(s)/globals/lines/disk: 0.6040s/1000013/10001138/0ms
 cached query class: %sqlcq.USER.cls80

Statement preparation and execution metrics are listed separately. Take special notice of two items:

• Execution time was 0.604 seconds. While this does not seem like a very long time, it can be vastly improved with the
use of indices.

First Look: Optimizing SQL Performance with InterSystems IRIS 5

Demo: Showing and Interpreting a Query Plan Before Optimization

• The number of globals read in the execution step was 1,000,013. (Globals are multidimensional sparse arrays used by
InterSystems IRIS to store data; for more information, see the “Introduction to Globals” chapter of Introduction to
InterSystems IRIS Programming.) To improve query performance, this number should be decreased. You’ll see that
happen in the next section.

Important: Preparation is done only once: the first time a query is planned anew. Queries will automatically be replanned
if a relevant table is modified or if an index is added or removed. Most applications will prepare a query
only once, but will execute it many times. So our focus in this demo will be on tuning execution performance.

3 Demo:Testing Query Optimizations

3.1 Adding a Bitslice Index to the Price Field

If your query will include aggregate functions on one or more fields, adding a bitslice index to one or more of those fields
may improve performance.

A bitslice index represents each numeric data value in a field as a binary bit string, with a bitmap for each digit in the binary
value to record which rows have a 1 for that binary digit.

Since we want to get the average price for all “SELL” transactions, it makes sense to add a bitslice index to the Price
field. To create the bitslice index PriceIdx on the Price field, execute the following statement in the SQL Shell:

CREATE BITSLICE INDEX PriceIdx ON TABLE FirstLook.StockTableDemoTwo (Price)

2. CREATE BITSLICE INDEX PriceIdx ON TABLE FirstLook.StockTableDemoTwo (Price)

0 Rows Affected
statement prepare time(s)/globals/lines/disk: 0.0411s/1773/13460/28ms
 execute time(s)/globals/lines/disk: 2.0492s/2089760/56804368/152ms
 cached query class: %sqlcq.USER.cls1

Just because you’ve created the index does not necessarily mean that the InterSystems SQL query optimizer will use it,
however, as you’ll see below.

3.2 Testing the Effects of the Bitslice Index

To see if the new bitslice index makes any difference in how the query will be executed, or how fast it runs, use either
method described above (the SQL Shell or the Management Portal) to show the query plan.

As you’ll see, the InterSystems SQL query optimizer will not use the new index:

6 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Testing Query Optimizations

Running the query yields nearly the same performance statistics as it did before you created the bitslice index (0.6 seconds
of execution time compared with 0.604). InterSystems IRIS intelligently caches query plans and data, so subsequent runs
of the same query may result in improved performance, as may have been the case here given the slight difference in query
performance times. Other applications running on the machine can affect performance as well.

 SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'
 GO

3. SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'

AveragePrice
266.1595139195757844

1 Rows(s) Affected

statement prepare time(s)/globals/lines/disk: 0.0929s/44517/217330/31ms
 execute time(s)/globals/lines/disk: 0.5986s/1000023/10001138/0ms
 cached query class: %sqlcq.USER.cls80

If you remove the WHERE clause from the query, you’ll see quite a different result when you show the query plan:

First Look: Optimizing SQL Performance with InterSystems IRIS 7

Demo: Testing Query Optimizations

As you can see, the bitslice index is read as the first step of the query plan. The “master map” is not read in this plan.

The SQL query optimizer also uses a second index, FirstLook.StockTableDemoTwo.$StockTableDemoTwo. This
is a bitmap extent index, which is automatically created whenever the CREATE TABLE SQL statement is executed. It is a
bitmap index of all the rows in the table, not just one field, and the value of each bit reflects whether or not the row actually
exists.

The relative cost of this query, 131058, is much smaller than that of the query that contains the WHERE clause. This is
because the InterSystems SQL query optimizer employs the bitslice index as the first step of the process (Module D in the
plan shown above).

However, the query that we truly want to run contains a WHERE clause. So we’ll have to find a way to get the SQL query
optimizer to use the index when the WHERE clause is present.

3.3 Adding a Bitmap Index To the TransactionType Field

If you read the InterSystems SQL Optimization Guide, you’ll find that the InterSystems SQL query optimizer will often
use a bitslice index when it is combined with a bitmap index on the field in a WHERE clause.

This is because aggregate queries without the WHERE clause can simply aggregate all the data in the index. However, to
aggregate only the rows that satisfy a WHERE condition, a query must mask those bits out of the bitslice index for rows that
do not satisfy the condition. A bitmap index on the field in the WHERE clause allows this mask to be constructed efficiently.

Fortunately, the other field in the query, TransactionType, is a good candidate for a bitmap index because its count of
possible values is two (“SELL” and “BUY”).

8 First Look: Optimizing SQL Performance with InterSystems IRIS

Demo: Testing Query Optimizations

To add a bitmap index to the TransactionType field, execute the following statement in the SQL Shell:

CREATE BITMAP INDEX TransactionTypeIdx ON TABLE FirstLook.StockTableDemoTwo
 (TransactionType)

4. CREATE BITMAP INDEX TransactionTypeIdx ON TABLE FirstLook.StockTableDemoTwo
 (TransactionType)

0 Rows Affected
statement prepare time(s)/globals/lines/disk: 0.0055s/1723/16154/0ms
 execute time(s)/globals/lines/disk: 1.2694s/2074505/20576628/0ms
 cached query class: %sqlcq.USER.cls1

3.4 Retesting Query Performance

Now that you have added bitslice and bitmap indices: if you show the query plan for

SELECT AVG(Price) as AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'

in SQL Shell or in the Management Portal, you’ll see that the query optimizer uses the two indices you created to obtain
the best performance.

Note as well that the relative cost is nearly 90 percent less than that of the unoptimized query, whose cost was 13225000.

Finally, if you run the query in SQL Shell, you’ll see a much more efficient use of globals (610 as opposed to 1000013).

First Look: Optimizing SQL Performance with InterSystems IRIS 9

Demo: Testing Query Optimizations

Most critically: in this test, the indexed query ran nearly 150 times faster than the unindexed query: 0.0042 seconds of
execution time as opposed to 0.604.

 1>>SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 2>>WHERE TransactionType = 'SELL'
 3>>GO

5. SELECT AVG(Price) As AveragePrice FROM FirstLook.StockTableDemoTwo
 WHERE TransactionType = 'SELL'

AveragePrice
266.1595139195757844

1 Rows(s) Affected

statement prepare time(s)/globals/lines/disk: 0.0879s/45817/243223/9ms
 execute time(s)/globals/lines/disk: 0.0042s/610/2933/0ms
 cached query class: %sqlcq.USER.cls7

To track the performance of the query over time, InterSystems IRIS provides query statistics, which you’ll learn how to
view in the next section.

4 Viewing Query Performance Over Time
To track down slow-running queries or see how a new query is doing in production, you can use the SQL Statistics view
in the Management Portal. To navigate to this view, open the SQL query interface in the Management Portal and click SQL

Statistics.

If, for example, the query you tuned above ran nine times under its original (unoptimized) plan, you might see something
like this when you sort on the Average time column:

Clicking on the statement’s link in the SQL Statement Text column allows you to view the query in SQL form:

You can also tie SQL statement execution to the SQL Statistics view using the name of the cached query class, which is
the last line of output in the SQL Shell and is listed in the Location(s) column of SQL Statistics.

After you optimize the query and run it a few times, you can expect to see improvements in the Total time and Average time

columns.

10 First Look: Optimizing SQL Performance with InterSystems IRIS

Viewing Query Performance Over Time

Note that the value of Count has dropped. This is because the addition of the bitmap and bitslice indices caused the query
plan to change, which in turn triggered a removal of cached queries for the associated class. The query has run under the
new query plan a total of eight times, four times on average per day.

5 Learn More About InterSystems SQL
To learn more about SQL and InterSystems IRIS, see:

5.1 Introductory Material

• First Look: SQL and InterSystems IRIS

• Using InterSystems SQL

• InterSystems SQL Reference

• InterSystems IRIS SQL Overview

• SQL Resource Guide – 2017

5.2 SQL Development

• SQL – Things You Should Know

• Learn InterSystems SQL: Design and Execution

• Developing with InterSystems Objects and SQL

5.3 Query Optimization

• InterSystems SQL Optimization Guide

• Academy – Optimizing SQL Performance

• Optimizing SQL Queries

First Look: Optimizing SQL Performance with InterSystems IRIS 11

Learn More About InterSystems SQL

https://learning.intersystems.com/course/view.php?id=135
https://learning.intersystems.com/course/view.php?id=753
https://learning.intersystems.com/course/view.php?id=717
https://learning.intersystems.com/course/view.php?id=256
https://learning.intersystems.com/course/view.php?id=589
https://learning.intersystems.com/course/view.php?id=589
https://learning.intersystems.com/course/view.php?id=80
https://learning.intersystems.com/course/view.php?id=707

• Learn InterSystems SQL: Performance

• Find and Fix the Slow Query

5.4 Sharding and Scalability

• First Look: Scaling InterSystems IRIS for Data Volume with Sharding

• Scalability Guide

• We Want More! – Solving Scalability

5.5 SQL Search

• First Look: SQL Search with InterSystems IRIS

• Using InterSystems SQL Search

• Creating iFind Indices for Searching Text Fields

5.6 JDBC

• First Look: JDBC and InterSystems IRIS

• Using Java JDBC with InterSystems IRIS (documentation)

• Java Overview

• Using JDBC with InterSystems IRIS (online learning)

12 First Look: Optimizing SQL Performance with InterSystems IRIS

Learn More About InterSystems SQL

https://learning.intersystems.com/course/view.php?id=255
https://learning.intersystems.com/course/view.php?id=55
https://learning.intersystems.com/course/view.php?id=722
https://learning.intersystems.com/course/view.php?id=115
https://learning.intersystems.com/course/view.php?id=731
https://learning.intersystems.com/course/view.php?id=881

	Table of Contents
	1 Query Optimization with InterSystems SQL
	2 Demo: Showing and Interpreting a Query Plan Before Optimization
	2.1 Before you Begin
	2.2 Using the EXPLAIN Keyword to Show a Query Plan
	2.3 Using the SQL Query Interface in Management Portal to Show a Query Plan
	2.4 Spotting Potential Performance Issues in Query Plan Results
	2.5 Testing Query Execution

	3 Demo: Testing Query Optimizations
	3.1 Adding a Bitslice Index to the Price Field
	3.2 Testing the Effects of the Bitslice Index
	3.3 Adding a Bitmap Index To the TransactionType Field
	3.4 Retesting Query Performance

	4 Viewing Query Performance Over Time
	5 Learn More About InterSystems SQL
	5.1 Introductory Material
	5.2 SQL Development
	5.3 Query Optimization
	5.4 Sharding and Scalability
	5.5 SQL Search
	5.6 JDBC

