
Connecting Your Application
to InterSystems IRIS

2024-05-06

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Connecting Your Application to InterSystems IRIS
InterSystems IRIS Data Platform 2024-05-06
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Connecting Your Application to InterSystems IRIS.. 1

1 Connect from Python using DB-API .. 1
2 Securing the DB-API Connection with TLS ... 3
3 Connect from Java using JDBC .. 3
4 Securing the JDBC Connection with TLS .. 5
5 Connect from .NET using ADO.NET ... 5
6 Securing the ADO.NET Connection with TLS ... 7
7 Connect from C++ using ODBC ... 8
8 Securing the ODBC Connection with TLS ... 10

Connecting Your Application to InterSystems IRIS iii

Connecting Your Application to
InterSystems IRIS

This document explains how to make programmatic connections to an InterSystems IRIS® Data Platform cloud service,
instance, or cluster from applications written in Python, Java, .NET, and C++. Such connections encompass multiple options
and can be coded in different ways; this document provides illustrative examples that can be quickly examined and understood.
In addition to instructions for basic connection code, this document shows you how to protect connections with TLS
encryption, using a self-signed certificate provided by the target. Each of the sections listed below contains a link to more
comprehensive documentation.

Secure a DB-API connection with TLS encryptionConnect from Python using DB-API

Secure a JDBC connection with TLS encryptionConnect from Java using JDBC

Secure an ADO.NET connection with TLS encryptionConnect from .NET using ADO.NET

Secure an ODBC connection with TLS encryptionConnect from C++ using ODBC

Connecting your Python, Java, .NET, or C/C++ application to InterSystems IRIS involves just three simple steps!

1. Download the InterSystems driver package for DB-API (Python), JDBC (Java), ADO.NET (.NET), or ODBC (C++).

2. Gather the connection information for the InterSystems IRIS target you want to connect to, which includes the host
identifier (hostname or IP address) and superserver port of the target instance, credentials to authenticate to InterSystems
IRIS with sufficient privileges to execute the desired actions, and the namespace to connect to. You can find the con-
nection information for an InterSystems IRIS cloud service, such as InterSystems IRIS Cloud SQL, on your deployment’s
Deployment Details page in the InterSystems Cloud Services Portal. For InterSystems IRIS clusters and instances on
various platforms, see InterSystems IRIS Connection Information.

3. Add the needed code to your application, as explained in the following sections. You can copy the completed connection
code from the listing at the end of each section.

For detailed online learning content about the use of some of these languages with InterSystems products, see Connecting
to InterSystems Products with External Languages. For information about all of the connections tools available from
InterSystems, see Connection Tools.

Important: One of the required parameters in the connection code shown in this document is namespace (with the
value USER throughout). InterSystems IRIS makes the distinction between the physical databases that
store data and the logical namespaces used to interact with them, and the relationships between namespaces
and databases may differ from one InterSystems IRIS instance to the next. To interact with any given data,
therefore, you must determine and specify the appropriate namespace.

Third-party tools and technologies you might use to connect to InterSystems products or services likewise
interact with namespaces only, but most use the standard term database to refer to them.

1 Connect from Python using DB-API
Before using these instructions, you should make sure that:

Connecting Your Application to InterSystems IRIS 1

https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info
https://docs.intersystems.com/services/csp/docbook/DocBook.UI.Page.cls
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info
https://learning.intersystems.com/course/view.php?id=1944
https://learning.intersystems.com/course/view.php?id=1944

• Your development system has the Python IDE of your choice installed and has network access to your InterSystems
IRIS target.

• You have downloaded the InterSystems DB-API driver, intersystems_irispython-version-py3-none-any.whl,
to your development system.

If InterSystems IRIS is installed locally or in a container on your development system, you can also find the file in
install-dir\dev\python, where install-dir is the InterSystems IRIS installation directory (install-dir in a container is
/usr/irissys).

• You have gathered the connection information for the InterSystems IRIS target you want to connect to.

You can copy the completed connection code from the listing that follows the instructions. Be sure to review the instructions
in the following section for adding TLS encryption to the connection.

To code a DB-API connection to InterSystems IRIS, follow these steps:

1. Install the DB-API driver:

C:\> pip install intersystems_irispython-version-py3-none-any.whl

2. Import the iris module and create a main method:

Note: When using embedded Python, the iris module is typically imported using iris.cls, iris.gref, or
iris.sql. This differs from the import iris statement for the DB-API driver, as shown in this code.

3. Use the connection information for the InterSystems IRIS target to define the connection string, in the form
host-identifier:superserver-port/namespace, and the credentials:

You can also define the host identifier, port, and namespace separately, as shown for the credentials here, and pass all
five to iris.connect when creating the connection, as shown for the connection string and credentials in the next
step.

4. Finally, create the connection by calling iris.connect:

2 Connecting Your Application to InterSystems IRIS

Connect from Python using DB-API

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_python
https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info

You can copy the code used here from the listing below. For more information about using Python and DB-API with
InterSystems IRIS, see Python DB-API Support.

import iris

def main():
 connection_string = "host-identifier:superserver-port/namespace"
 username = "username"
 password = "password"

 connection = iris.connect(connection_string, username, password)

 # when finished, use the line below to close the connection
 # connection.close()

if __name__ == "__main__":
 main()

2 Securing the DB-API Connection with TLS
To extend the instructions above to code a DB-API connection with TLS encryption using a self-signed X.509 certificate
provided by the InterSystems IRIS target, do the following:

1. Obtain or download the self-signed certificate as instructed and place it in a secure location. (If necessary, download
the InterSystems DB-API driver, intersystems_irispython-version-py3-none-any.whl.)

2. Modify the code provided above in these ways:

a. Import the ssl module in addition to the iris module.

b. Before creating the connection, specify the TLS context and verify the existence of the required certificate.

You can copy the DB-API connection code including TLS encryption from the listing below. Before using this minimal
TLS configuration in production, please consult TLS/SSL wrapper for socket objects in the Python documentation.

import iris
import ssl

def main():
 connection_string = "host-identifier:superserver-port/namespace"
 username = "username"
 password = "password"

context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
context.verify_mode=ssl.CERT_REQUIRED

 context.check_hostname = False
context.load_verify_locations(“path-to-cert/cert-file.pem”)

 connection = iris.connect(connection_string, username, password, sslcontext=context)

 # when finished, use the line below to close the connection
 # connection.close()

if __name__ == "__main__":
 main()

3 Connect from Java using JDBC
Before using these instructions, you should make sure that:

• Your development system has version 1.8 of the JDK and the Java IDE of your choice installed and has network access
to your InterSystems IRIS target.

Connecting Your Application to InterSystems IRIS 3

Securing the DB-API Connection with TLS

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=BTPI_pyapi
https://intersystems-community.github.io/iris-driver-distribution/
https://docs.python.org/3/library/ssl.html
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_java

• You have downloaded the InterSystems JDBC driver, intersystems-jdbc-version.jar, to your development system.

If InterSystems IRIS is installed locally or in a container on your development system, you can also find the file in
install-dir\dev\java\lib\JDK18 or install-dir/dev/java/lib/1.8, where install-dir is the InterSystems IRIS installation
directory (install-dir in a container is /usr/irissys).

• You have gathered the connection information for the InterSystems IRIS target you want to connect to.

You can copy the completed connection code from the listing that follows the instructions. Be sure to review the instructions
in the following section for adding TLS encryption to the connection.

To code a JDBC connection to InterSystems IRIS, follow these steps:

1. Add the InterSystems JDBC driver, intersystems-jdbc-version.jar, to your local CLASSPATH.

2. Create a main method and import the com.intersystems.jdbc.* libraries.

3. Use the connection information for the InterSystems IRIS target to define the connection string, in the form
host-identifier:superserver-port/namespace, and the credentials:

4. Set a new data source using IRISDataSource (or the standard driver manager you may have used to connect to
other databases). Set the URL, User, and Password using the connection string and credentials for your target.

5. Finally, create the connection.

You can copy the code used here from the listing below. For more information about using Java and JDBC with InterSystems
IRIS, see Using Java with InterSystems Software.

import com.intersystems.jdbc*;
import java.sql.Connection;
public class JDBCConnection{
 public static void main (String[] args) throws Exception {
 String dbUrl =
 "jdbc:IRIS://host-identifier:superserver-port/namespace";
 String user = "username";
 String pass = "password";

 IRISDataSource ds = new IRISDataSource();
 ds.setURL(dbUrl);
 ds.setUser(user);
 ds.setPassword(pass);
 Connection dbconnection = ds.getConnection();
 System.out.println("Connected to InterSystems IRIS via JDBC.");
 }
}

4 Connecting Your Application to InterSystems IRIS

Connect from Java using JDBC

https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BJAVA

4 Securing the JDBC Connection with TLS
To extend the instructions above to code a JDBC connection with TLS encryption using a self-signed X.509 certificate
provided by the InterSystems IRIS target, do the following:

1. Obtain or download the self-signed certificate as instructed and place it in a secure location. (If necessary, download
the InterSystems JDBC driver, intersystems-jdbc-version.jar.)

2. On the operating system command line, issue the following command, supplying a keystore password and confirming
Trust this certificate? [no]: yes as requested:

keytool -importcert -file path-to-cert/cert-file.pem
 -keystore keystore.jks

3. In the directory containing the Java file in which you are coding the connection, create a configuration file named
SSLConfig.properties and including these properties:

trustStore=path-to-keystore/keystore.jks
trustStorePassword=keystore-password

4. In the code provided above, modify the IRISDataSource definition by adding
ds.setConnectionSecurityLevel(10);, which specifies the use of TLS, to the other connection settings.

You can copy the JDBC connection code including TLS encryption from the listing below. For detailed information about
connecting with TLS from Java applications, see Configuring Java Clients to Use TLS with InterSystems IRIS.

import com.intersystems.jdbc*;
import java.sql.Connection;
public class JDBCConnection{
 public static void main (String[] args) throws Exception {
 String dbUrl =
 "jdbc:IRIS://host-identifier:superserver-port/namespace";
 String user = "username";
 String pass = "password";

 IRISDataSource ds = new IRISDataSource();
 ds.setURL(dbUrl);
 ds.setUser(user);
 ds.setPassword(pass);

 ds.setConnectionSecurityLevel(10);
 Connection dbconnection = ds.getConnection();
 System.out.println("Connected to InterSystems IRIS via JDBC.");
 }
}

5 Connect from .NET using ADO.NET
Before using these instructions, you should make sure that:

• Your development system has the .NET framework and Visual Studio (or another .NET IDE of your choice) installed,
and has network access to your InterSystems IRIS target.

• You have downloaded the InterSystems ADO.NET client assembly, InterSystems.Data.IRISClient.dll, to
your development system.

If InterSystems IRIS is installed locally or in a container on your development system, you can also find the file in
install-dir\dev\dotnet\bin\net5.0 (or install-dir/dev/dotnet/bin/net5.0 on UNIX®/Linux), where install-dir is the InterSys-
tems IRIS installation directory (install-dir in a container is /usr/irissys).

• You have gathered the connection information for the InterSystems IRIS target you want to connect to.

Connecting Your Application to InterSystems IRIS 5

Securing the JDBC Connection with TLS

https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_tls_javacli
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_dotnet
https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info

You can copy the completed connection code from the listing that follows the instructions. Be sure to review the instructions
in the following section for adding TLS encryption to the connection.

To code an ADO.NET connection to InterSystems IRIS, follow these steps:

1. Add the InterSystems ADO.Net client assembly, InterSystems.Data.IRISClient.dll, as a dependency and
declare it in the application, then create a namespace with an internal class that has a main method.

2. Use the connection information for the InterSystems IRIS target to define the connection string:

3. Finally, pass the connection string as an argument to the IRISADOConnection method and create the connection:

You can copy the code used here from the listing below. For more information about using .NET and ADO.NET with
InterSystems IRIS, see Using .NET with InterSystems Software.

6 Connecting Your Application to InterSystems IRIS

Connect from .NET using ADO.NET

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BNET

Note: Other references to this code in the InterSystems documentation may use the IRISConnection method instead
of the IRISADOConnection; the former is simply an alias to the latter, identical in practice.

using System;
using InterSystems.Data.IRISClient;

namespace ADODemo
{
 internal class Program
 {
 static void Main(string[] args)
 {
 string connectionString = "Server = host-identifier; " +
 "Port = superserver-port; Namespace = namespace;" +
 "User ID = username; Password = password";
 IRISADOConnection connection = new IRISADOConnection(connectionString);
 connection.Open();
 // when finished, use the line below to close the connection
 // connection.Close();
 }
 }
}

6 Securing the ADO.NET Connection with TLS
To extend the instructions above to code an ADO.NET connection with TLS encryption using a self-signed X.509 certificate
provided by the InterSystems IRIS target, do the following. You can copy the completed connection code including TLS
encryption from the listing that follows the instructions.

1. Obtain or download the certificate as instructed and place it in a secure location. (If necessary, download the InterSystems
ADO.NET client assembly, InterSystems.Data.IRISClient.dll.)

2. Install the certificate using the instructions for your platform, below. (Both Windows and UNIX/Linux systems provide
several ways to install certificates.)

• On Windows, open a Command Prompt window and enter the following command to add the certificate to the
Trusted Root Certification Authorities\ store under Current User:

certutil -user -addstore Root path-to-certificate\certificate-file.pem

• On the UNIX or Linux command line, follow these steps:

a. Enter the following command to install the Dotnet Certificate Tool, dotnet-certificate-tool (see
https://github.com/gsoft-inc/dotnet-certificate-tool):

dotnet tool install --global dotnet-certificate-tool

b. Use the tool to add the certificate to the Root store under CurrentUser (besure to include --store-name Root
as shown):

certificate-tool add --cert path-to-certificate\certificate-file.pem
 --store-name Root

Note: If the certificate is not in PEM format, use the appropriate flag in place of --cert; if the certificate
is password-protected, include the --password flag. For more information, see the README file
on GitHub.

3. In the code provided above, modify the connection string definition by adding SSL = true to specify the use of TLS.

Connecting Your Application to InterSystems IRIS 7

Securing the ADO.NET Connection with TLS

https://intersystems-community.github.io/iris-driver-distribution/
https://github.com/gsoft-inc/dotnet-certificate-tool

You can copy the ADO.NET connection code including TLS encryption from the listing below. For more detailed information
about connecting with TLS from .NET applications, see Configuring .NET Clients to Use TLS with InterSystems IRIS.

using System;
using InterSystems.Data.IRISClient;

namespace ADODemo
{
 internal class Program
 {
 static void Main(string[] args)
 {
 string connectionString = "Server = host-identifier; " +
 "Port = superserver-port; Namespace = namespace;" +
 "User ID = username; Password = password; SSL = true";
 IRISADOConnection connection = new IRISADOConnection(connectionString);
 connection.Open();
 // when finished, use the line below to close the connection
 // connection.Close();
 }
 }
}

7 Connect from C++ using ODBC
Before using these instructions, you should make sure that:

• Your development system has Visual Studio (or another C++ development environment of your choice) installed, and
has network access to your InterSystems IRIS target.

• You have downloaded the platform-specific InterSystems ODBC driver to your development system. (If InterSystems
IRIS is installed locally on your development system, the driver is already installed and you do not need to download
it.)

• You have gathered the connection information for the InterSystems IRIS target you want to connect to.

You can copy the completed connection code from the listing that follows the instructions. Be sure to review the instructions
in the following section for adding TLS encryption to the connection.

Note: The ODBC driver is also used to connect C applications to InterSystems IRIS.

To code an ODBC connection to InterSystems IRIS, follow these steps:

1. If InterSystems IRIS is not installed locally, install the InterSystems ODBC driver as follows:

• On Windows, execute the downloaded installer, ODBC-version-win_x64.exe.

• On Linux or MacOS:

a. Create the directory in which you want to install the driver, for example /usr/irisodbc.

b. Unpack the downloaded .tar file, ODBC-version-platform.tar.gz, in that directory.

c. Execute the ODBCinstall script.

2. Import the required libraries and create a main method:

3. Initialize variables, and allocate the environment and connection handles:

8 Connecting Your Application to InterSystems IRIS

Connect from C++ using ODBC

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_tls_dotnetcli
https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AB_idesetup#AB_idesetup_info

4. Define the connection string, which is a series of key value pairs specifying the connection information for the Inter-
Systems IRIS target (note that the Database key is used to specify the InterSystems IRIS namespace) and call the
method that creates the connection, SQLDriverConnect, passing in arguments such as the handle variables and
connection string.

You can copy the code used here from the listing below. For more information about using C++ and ODBC with InterSystems
IRIS, see Using the InterSystems ODBC Driver.

#ifdef _WIN32
#include <windows.h>
#endif
#include <sql.h>
#include <sqlext.h>
#include <stdio.h>
#include <tchar.h>

int main()
{
 RETCODE rc; /* Return code for ODBC functions */
 HENV henv = NULL; /* Environment handle */
 HDBC hdbc = NULL; /* Connection handle */
 SQLTCHAR szoutConn[600];
 SQLSMALLINT *cbOutConn = 0;

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER*)SQL_OV_ODBC3, 0);
 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 SQLTCHAR connect_cmd[255] = _T("Driver=InterSystems IRIS
ODBC35;Host=host-identifier;Port=superserver-port;Database=namespace;UID=username;PWD=password;\0");
 rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*) connect_cmd, SQL_NTS, szOutConn, 600, cbOutConn,
SQL_DRIVER_COMPLETE);

 if (rc == SQL_SUCCESS)
 {
 printf("Successfully connected!!\n");
 }
 else
 {
 printf("Failed to connect to IRIS\n");
 exit(1);
 }

 SQLDisconnect(hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc); /* Free connection handle */
 SQLFreeHandle(SQL_HANDLE_ENV, henv); /* Free environment handle */

 return 0;
}

Connecting Your Application to InterSystems IRIS 9

Connect from C++ using ODBC

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BNETODBC

8 Securing the ODBC Connection with TLS
To extend the instructions above to code an ODBC connection with TLS encryption using a self-signed X.509 certificate
provided by the InterSystems IRIS target, do the following. You can copy the completed connection code inlcuding TLS
encryption from the listing that follows the instructions.

1. Obtain or download the certificate as instructed and place it in a secure location. (If necessary, download the platform-
specific InterSystems ODBC driver to your development system.)

2. Choose a location and name for a connection and configuration definitions file and set the environment variable
ISC_SSLconfigurations to the full path (including filename) of this file. The default name and location is
C:\Program Files (x86)\Common Files\InterSystems\IRIS\SSLDefs.ini on Windows, however you can place the file where
you like as long as you set the environment variable. On UNIX/Linux, you must set the environment variable so the
driver can locate the file.

3. Create the definitions file with the following contents:

[ConnectionName]
Address=host-identifier
Port=superserver-port
SSLConfig=TLSConfigName

[TLSConfigName]
VerifyPeer=1
VerifyHost=0
CAfile=path-to-certificate\certificate-file.pem
TLSMinVersion=minimum-supported-tls-version
TLSMaxVersion=maximum-supported-tls-version

The connection definition includes the host identifier and superserver port for the InterSystems IRIS target that appear
in the connection string variable connect_cmd in the code above, as well as the name of the TLS configuration def-
inition. In the TLS configuration definition, VerifyPeer=1 and VerifyHost=0 indicate that in order to establish
an encrypted connection, the client will verify the server’s certificate — that is, the self-signed certificate provided by
the InterSystems IRIS target, specified in CAfile — but will not verify that the Common Name or
subjectAlternativeName fields of the certificate match the host name or IP address as specified in the connection
definition. For information about the correct values for TLSMinVersion and TLSMaxVersion, see Which TLS
Versions Does My Instance of InterSystems IRIS Support? For more detailed information about the definitions file
and its contents, see Connecting from a Windows Client Using a Settings File.

Important: Generally speaking, the best practice when using TLS encryption is to require peer verification, so
that both server and client must verify the certificate of the other party before establishing an encrypted
connection. However, in the limited case presented here, only the client’s certificate is verified.

4. Create a DSN entry defining the InterSystems IRIS target as an ODBC data source. This entry contains the connection
information for the target, corresponding to the fields of the connection string in the code — host identifier (Host),
superserver port (Port), namespace (Database), username (UID), and password (PWD) . The steps to follow depend
on your platform:

• On Windows:

a. Open the ODBC Data Source Administrator from the Control Panel by selecting Administrative Tools and
then ODBC Data Sources (32 bit or 64 bit, depending on your system).

b. On the User DSN or System DSN tab, select Add, then on the Create New Data Source panel select InterSystems

IRIS ODBC35.

c. Create a name and description for the source, enter the connection information in the appropriate locations,
set Authentication Method to Password, and enter the name of the TLS configuration in the definitions file
you created in the previous step as SSL/TLS Server Name.

10 Connecting Your Application to InterSystems IRIS

Securing the ODBC Connection with TLS

https://intersystems-community.github.io/iris-driver-distribution/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ATLS#ATLS_about_osbased
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ATLS#ATLS_about_osbased
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_tls_windotinifile_setup

Important: The Password with SSL/TLS setting for Authentication Method is not required when using a
definitions file, such as ssldefs.ini, as described in this procedure; it is included for legacy
purposes only. If the definitions file is properly configured, the connection should use SSL/TLS
automatically with Password as the authentication mechanism. If there are problems with
the definitions file, the connection attempt may proceed without using SSL/TLS; if the server
allows unencrypted connections, the connection may succeed.

d. Optionally test the connection information using the Test Connection button, then click OK.

• On Linux:

a. Using the file extract-directory/dev/odbc/redist/ssl/irisodbc.ini.template as a template and the connection
information, create an ODBC initialization file (typically called odbc.ini) in a location available to the connection
code with values as described for the Windows DSN above, as shown here:

[ODBC Data Sources]
IRIS-TLS = IRIS-TLS

[IRIS-TLS]
Driver = /home/guest/iris/bin/libirisodbc35.so
Description = demo TLS connection
Host = host-identifier
Port = superserver-port
Namespace = namespace
UID = username
Password = password
Protocol = TCP
Query Timeout = 1
Static Cursors = 0
Trace = off
TraceFile = logfile.log
Service Principal Name = iris/target-domain-name
Authentication Method = 2
Security Level = 10
SSL Server Name = tls-config-in-definitions-file

Note: You can find the template file in the same location under the installation directory of an installed
instance, which is /usr/irissys in a container.

Connecting Your Application to InterSystems IRIS 11

Securing the ODBC Connection with TLS

b. Set the environment variable ODBCINI to the full path (including filename) of the ODBC initialization file.

• On UNIX, follow the instructions in Defining an ODBC Data Source on UNIX.

5. In the code provided above, modify the connection string definition to replace the connection information fields with
the DSN you defined.

 SQLTCHAR connect_cmd[255] = _T("DSN=IRIS-TLS;\0");
 rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*) connect_cmd, SQL_NTS,
 szOutConn, 600, cbOutConn, SQL_DRIVER_COMPLETE);

You can copy the ODBC connection code including TLS encryption from the listing below. For more detailed information
about connecting with TLS using ODBC, see Connecting from a Windows Client Using a Settings File.

#ifdef _WIN32
#include <windows.h>
#endif
#include <sql.h>
#include <sqlext.h>
#include <stdio.h>
#include <tchar.h>

int main()
{
 RETCODE rc; /* Return code for ODBC functions */
 HENV henv = NULL; /* Environment handle */
 HDBC hdbc = NULL; /* Connection handle */
 SQLTCHAR szoutConn[600]
 SQLSMALLINT *cbOutConn = 0;

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER*)SQL_OV_ODBC3, 0);
 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

SQLTCHAR connect_cmd[255] = _T("DSN=IRIS-TLS;\0");
 rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*) connect_cmd, SQL_NTS,
 szOutConn, 600, cbOutConn, SQL_DRIVER_COMPLETE);

 if (rc == SQL_SUCCESS)
 {
 printf("Successfully connected!!\n");
 }
 else
 {
 printf("Failed to connect to IRIS\n");
 exit(1);
 }

 SQLDisconnect(hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc); /* Free connection handle */
 SQLFreeHandle(SQL_HANDLE_ENV, henv); /* Free environment handle */

 return 0;
}

12 Connecting Your Application to InterSystems IRIS

Securing the ODBC Connection with TLS

https://docs.intersystems.com/iris20212/csp/docbook/Doc.View.cls?KEY=BNETODBC_unixodbc
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_tls_windotinifile

	Table of Contents
	1 Connect from Python using DB-API
	2 Securing the DB-API Connection with TLS
	3 Connect from Java using JDBC
	4 Securing the JDBC Connection with TLS
	5 Connect from .NET using ADO.NET
	6 Securing the ADO.NET Connection with TLS
	7 Connect from C++ using ODBC
	8 Securing the ODBC Connection with TLS

