
Use Visual Studio Code as a
Development Environment for

InterSystems Applications

2024-05-06

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Use Visual Studio Code as a Development Environment for InterSystems Applications
InterSystems IRIS Data Platform      2024-05-06   
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

1 Introduction ........................................................................................................................................ 1

2 Installation ........................................................................................................................................... 3
2.1 Install VS Code ........................................................................................................................... 3
2.2 Install the InterSystems ObjectScript Extensions ...................................................................... 3

3 Migrate from Studio ........................................................................................................................... 5
3.1 Server-Side Editing .................................................................................................................... 5
3.2 Server-Side Source Control ........................................................................................................ 5
3.3 Server-Side Projects ................................................................................................................... 5
3.4 Accurate Syntax Coloring .......................................................................................................... 6
3.5 Import Server Definitions Command ......................................................................................... 6
3.6 Load Studio Snippets Command ................................................................................................ 6
3.7 Load Studio Syntax Colors Command ....................................................................................... 6
3.8 New File Commands .................................................................................................................. 7
3.9 Keyboard Shortcuts .................................................................................................................... 7

4 Get Acquainted with the User Interface for the InterSystems VS Code Extensions .................. 15
4.1 Explorer View Context Menu Enhancements ........................................................................... 15
4.2 InterSystems View Container ................................................................................................... 15

4.2.1 InterSystems Servers ...................................................................................................... 16
4.2.2 ObjectScript Explorer .................................................................................................... 20

4.3 Server Connection Status Bar ................................................................................................... 21

5 Configure the InterSystems VS Code Extensions .......................................................................... 23
5.1 Settings ..................................................................................................................................... 23
5.2 Configure Your Workspace for an InterSystems Project .......................................................... 23

5.2.1 settings.json .................................................................................................................... 24
5.2.2 launch.json ..................................................................................................................... 24
5.2.3 Multi-Root Workspaces and Server-Side Editing .......................................................... 24

5.3 Configuring a Server ................................................................................................................ 25
5.3.1 Editing a Server Configuration ...................................................................................... 26
5.3.2 Establish an HTTPS Connection Using a Self-Signed Certificate ................................ 27

5.4 Configuring a Server Connection ............................................................................................. 27
5.4.1 Editing a Server Connection .......................................................................................... 27

5.5 Add Custom Entries to the Server Actions Menu ..................................................................... 28

6 Develop ObjectScript Unit Tests ..................................................................................................... 31
6.1 Prerequisites ............................................................................................................................. 31
6.2 Setup ......................................................................................................................................... 31

6.2.1 How the Extension Locates Your Unit Tests .................................................................. 32
6.2.2 Autoload Client-Side Resources .................................................................................... 32

6.3 Run and Debug Your Unit Tests ............................................................................................... 32
6.3.1 View Test Results ........................................................................................................... 34

7 Running and Debugging .................................................................................................................. 37
7.1 Debug Configurations .............................................................................................................. 37
7.2 Starting a Debugging Session ................................................................................................... 39
7.3 Debugging a REST Service ...................................................................................................... 39
7.4 Troubleshooting Debugger Issues ............................................................................................ 40

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                       iii



7.5 Using the WebSocket Terminal ................................................................................................ 40
7.5.1 Troubleshooting WebSocket Terminal Issues ................................................................ 41

8 Server-Side Editing ........................................................................................................................... 43
8.1 Configuring for Server-Side Editing ........................................................................................ 43
8.2 Configuring Storage for Folder-Specific Settings .................................................................... 47
8.3 Web Application (CSP) Files .................................................................................................... 49
8.4 Filters and Display Options ...................................................................................................... 50
8.5 Advanced Workspace Configurations ...................................................................................... 50

9 Work with Projects ........................................................................................................................... 53
9.1 Why Projects ............................................................................................................................ 53
9.2 InterSystems Projects Explorer ................................................................................................ 53
9.3 Creating Projects ...................................................................................................................... 55
9.4 Modifying Projects ................................................................................................................... 55

9.4.1 Add to Project UI ........................................................................................................... 55
9.5 Deleting Projects ...................................................................................................................... 56
9.6 Editing Project Contents Server-Side ....................................................................................... 56
9.7 Editing Project Contents Client-Side ....................................................................................... 57
9.8 Notes ......................................................................................................................................... 57

10 Import and Export InterSystems Documents as XML Files ...................................................... 59
10.1 Export Documents as an XML File ........................................................................................ 59
10.2 Import Documents from an XML File ................................................................................... 60

11 Low-Code Editors ........................................................................................................................... 63
11.1 Supported Editors ................................................................................................................... 63
11.2 Opening a Low-Code Editor .................................................................................................. 63
11.3 How They Work ..................................................................................................................... 65

12 Report an Issue ............................................................................................................................... 67

Appendix A: Settings Reference ......................................................................................................... 69
A.1 InterSystems Language Server ................................................................................................ 69
A.2 InterSystems ObjectScript ....................................................................................................... 72
A.3 InterSystems Server Manager .................................................................................................. 79

iv                                                       Use Visual Studio Code as a Development Environment for InterSystems Applications



List of Tables

Table 3–1: General ................................................................................................................................... 8
Table 3–2: Display ................................................................................................................................... 9
Table 3–3: Navigation ............................................................................................................................ 10
Table 3–4: Editing ................................................................................................................................. 10
Table 3–5: Find and Replace ................................................................................................................. 12
Table 3–6: Bookmarks ........................................................................................................................... 12
Table 3–7: Build and Compile ............................................................................................................... 12
Table 3–8: Debugging ............................................................................................................................ 13

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        v





1
Introduction

Visual Studio Code (VS Code) is a free source code editor made by Microsoft for Windows, Linux and macOS. It provides
built-in support for JavaScript, TypeScript and Node.js. You can add extensions to provide support for numerous other
languages such as C++, C#, Java, Python, PHP, and Go, and runtimes such as .NET and Unity.

The InterSystems® extensions enable you to use VS Code to connect to an InterSystems IRIS® server and develop code
in ObjectScript. This document covers issues specific to those extensions and working with ObjectScript and an InterSystems
IRIS server. The Visual Studio Code Documentation is an excellent resource on VS Code, so it is a good idea to be familiar
with it in addition to this document.

Development in ObjectScript involves both your local client machine, and an InterSystems IRIS server. Because both
resources are required, the available workflows are different from that typical for many languages:

• With client-side editing, source code files are edited on the client, and saved to the local disk where they can be managed
with a version control system. In addition, source files are imported into an InterSystems IRIS server, where they can
be compiled, run, and debugged.

• With server-side editing, source code files can be edited directly on the InterSystems IRIS server. VS Code’s multi-
root workspace feature allows you to edit source files stored within different namespaces and even different servers
simultaneously. Source files can then be compiled, run, and debugged on their respective servers.

Source code files are edited on the client, and saved to the local disk where they can be managed with a Version Control
System. In addition, source files are exported to an InterSystems IRIS server, where they can be compiled, run, and debugged.

For existing customers, the InterSystems ObjectScript extension supports Studio extensions, as provided by
%Studio.Extension.Base. If you rely on Studio extensions such as source control hooks, you can continue to use them in
VS Code. VS Code is supported by InterSystems Caché® and Ensemble 2016.2 and higher, and all versions of InterSystems
IRIS.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        1

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://code.visualstudio.com/docs/editor/multi-root-workspaces




2
Installation

2.1 Install VS Code
Installation media for Visual Studio Code (VS Code) is available on the Visual Studio Code download page. Simply
download the appropriate build for your platform and follow the installation procedure.

2.2 Install the InterSystems ObjectScript Extensions
To develop ObjectScript code using VS Code, you must install the following extensions:

• InterSystems Language Server

• InterSystems ObjectScript

• InterSystems Server Manager

These extension are grouped together in the InterSystems ObjectScript Extension Pack. To install these extensions:

1. Run VS Code

2. From within the application, click the extensions button in the Activity Bar on the left edge of the VS Code window:

3. Type intersystems in the search field to find the relevant extensions in the Marketplace, as illustrated in the following
image:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        3

https://code.visualstudio.com/


4. Select the Install button for the InterSystems ObjectScript Extension Pack. Alternatively, you can install each extension
independently by selecting the Install button for each of the required extensions.

Note: If you are using an Nginx web server to connect to InterSystems IRIS, you must configure Nginx to use VS Code
with the InterSystems ObjectScript Extension Pack.

Note: If you are using a Microsoft IIS web server to connect to InterSystems IRIS, you must ensure the WebDAV
module is disabled to use the InterSystems ObjectScript Extension Pack. To debug your code with VS Code, you
must enable the WebSockets feature. See Configure IIS to Use VS Code.

4                                                        Use Visual Studio Code as a Development Environment for InterSystems Applications

Installation

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_nginx_ide
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_pws_manual_winvsc


3
Migrate from Studio

The extensions that make up the InterSystems ObjectScript Extension Pack contain many useful features that make
migrating from InterSystems Studio easy. This page describes some of these features.

3.1 Server-Side Editing
You can configure VS Code to edit code directly on a server, which is analogous to Studio’s architecture. However, VS
Code enhances this workflow with support for having multiple server-namespaces open at the same time (using VS Code’s
multi-root workspace feature) and for filtering the files shown for each server-namespace. See the Server-side Editing for
more information on how to configure this feature.

3.2 Server-Side Source Control
VS Code supports server-side source control without requiring any additional configuration. Server-side source control is
supported for both server-side and client-side editing. If a source control class is active, its hooks fire automatically for
document lifecycle events like creation, first edit, save and deletion. You can access the server source contol menu in these
locations:

• The source control icon (when a document is open)

• An open document’s context menu

• A node in the context menu for the ObjectScript Explorer

• A node in the context menu for the VS Code Explorer.

3.3 Server-Side Projects
VS Code supports using existing Studio projects, as well as the creation, modification and deletion of them. See Work with
Projects for more information about this feature and how to use it.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        5

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GSTD_Intro
https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ASC_Hooks_creating_and_activating_sc_class
https://code.visualstudio.com/docs/getstarted/userinterface#_explorer


3.4 Accurate Syntax Coloring
The InterSystems Language Server extension leverages VS Code’s semantic tokens API to provide the same accurate
syntax coloring for InterSystems ObjectScript and other embedded languages that Studio users are familiar with. For more
information on how to customize the syntax colors for InterSystems tokens, see the Language Server’s README. Inter-
Systems provides a command for Windows users to migrate their existing color customizations from Studio.

3.5 Import Server Definitions Command
The InterSystems Server Manager extension provides the Import Servers from Windows Registry command, which will
import any Studio server defintions from your Windows registry into VS Code so you can continue using them without
having to do the migration youself.

To invoke the command, open the command palette, find the InterSystems Server Manager: Import Servers from Windows

Registry menu option, and run it.

3.6 Load Studio Snippets Command
The InterSystems ObjectScript extension provides the Load Studio Snippets command, which will load any user defined
snippets from Studio into VS Code. It works by reading the locations of Studio user defined snippets files from the Windows
registry, converting the snippets contained in those files to VS Code’s JSON format and lastly writing the snippets to a new
global snippets file called isc-studio.code-snippets. This command will only convert snippets for ObjectScript, Class Defi-
nition Language (UDL) or HTML; all other snippets are ignored.

To invoke the command, open the command palette, find the ObjectScript: Load Studio Snippets menu option, and run it.

After you load your snippets, InterSystems recommends opening the generated file and enhancing the snippets so that they
can fully leverage features available in VS Code which Studio does not support, like tabstops and variable substitution.

You can open the snippets file in two ways:

• Upon loading your snippets, select the Open File button in the success notification box.

•

Select the Settings button.  Select the Configure User Snippets from the settings menu, and then select the
isc-studio.code-snippets file from the drop-down menu.

3.7 Load Studio Syntax Colors Command
The InterSystems ObjectScript extension provides the Load Studio Syntax Colors command, which will load the editor
background and syntax foreground colors from Studio into VS Code. It works by reading the color configurations from the
Windows registry and storing them in VS Code’s User Settings as customizations of one of the InterSystems default themes
provided by the Language Server extension. The command uses the background color loaded from Studio to determine
which default theme it should modify, and will activate the modified theme automatically. This command will not load

6                                                        Use Visual Studio Code as a Development Environment for InterSystems Applications

Migrate from Studio

https://marketplace.visualstudio.com/items?itemName=intersystems.language-server
https://code.visualstudio.com/api/language-extensions/semantic-highlight-guide
https://github.com/intersystems/language-server#syntax-color-customization
https://marketplace.visualstudio.com/items?itemName=intersystems-community.servermanager
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://marketplace.visualstudio.com/items?itemName=intersystems-community.vscode-objectscript
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://marketplace.visualstudio.com/items?itemName=intersystems-community.vscode-objectscript
https://code.visualstudio.com/docs/getstarted/settings


foreground colors for any syntax tokens that have a custom background color because per-token background colors are not
supported in VS Code. This command requires that the InterSystems Language Server extension is installed and active.

To invoke the command, open the command palette, find the ObjectScript: Load Studio Syntax Colors option, and run it.

3.8 New File Commands
The InterSystems ObjectScript extension provides commands for creating new Interoperability classes. Commands are
provided for Business Operation, Business Process, Business Rule, Business Service and Data Transformation classes.
These commands are modeled after the wizards in Studio’s File > New... > Production menu.

In VS Code, these commands are available by navigating to File > New File..., or by selecting the link on the Get Started

welcome page.

3.9 Keyboard Shortcuts
In general, VS Code keyboard shortcuts are entirely customizable, as described in the VS Code documentation. However,
VS Code is pre-configured with a number of shortcuts that match Studio. Download a cheat sheet here.

This section provides mapping tables for Studio users to compare Studio shortcuts with the shortcuts which VS Code provides
by default.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        7

New File Commands

https://marketplace.visualstudio.com/items?itemName=intersystems.language-server
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://marketplace.visualstudio.com/items?itemName=intersystems-community.vscode-objectscript
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GSTD_Commands#GSTD_Commands_File
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-reference


Table 3–1: General

VS Code NotesActionVS CodeStudio

Toggles full screen
display of IDE window

F11F8

New documentCtrl+NCtrl+N

To search for files which
begin with the percent
character (%) using Quick
Open (Ctrl+P), you must
precede the file name
with a space. To search
for files by name using
VS Code’s Quick Open
menu when you are
editing code on the
server-side, you must
enable the Proposed
APIs.

Open documentCtrl+O, Ctrl+PCtrl+O

Opens a folder on-disk. If
you are not using
client-side source control,
opens a project from the
ObjectScript pane.

Open projectCtrl+K, Ctrl+OCtrl+Shift+O

PrintCtrl+PCtrl+P

SaveCtrl+SCtrl+S

For client-side editing,
use the Export Code from

Server command from the
command palette or
export from the
ObjectScript Explorer

ExportCtrl+Shift+I

For client-side editing,
files are imported when
saved by default.You
can also use the Import

and Compile command in
the Explorer context
menu. For server-side
editing, right-click on an
isfs workspace folder
and select the Import Local

Files... command

Import localCtrl+I

8                                                        Use Visual Studio Code as a Development Environment for InterSystems Applications

Migrate from Studio

https://github.com/intersystems-community/vscode-objectscript#enable-proposed-apis
https://github.com/intersystems-community/vscode-objectscript#enable-proposed-apis


Table 3–2: Display

VS Code NotesActionVS CodeStudio

Expand, collapse allCtrl+K then Ctrl+J, Ctrl+K

then Ctrl+0

Ctrl++

Expand, collapse all
block sections

Ctrl+K then Ctrl+], Ctrl+K

then Ctrl+[

Ctrl+Left Arrow select plus
icon

View other documents
related to the current
document (such as MAC
or INT routines)

Ctrl+Shift+VCtrl+Shift+V

Toggle output window
display

Ctrl+Shift+UAlt+2

VS Code includes no UI
for code snippets

Toggle display of Code

Snippets window
Alt+5

Toggle display of Find in

Files window
Ctrl+Shift+FAlt+6

Increase, decrease fontCtrl+ +, Ctrl+ -Ctrl+Alt+, +Ctrl+Alt+ -

Toggle display of
whitespace symbols,
spaces, new lines, and
tabs

Ctrl+Shift+P and begin
typing render

Ctrl+Alt+Space

Toggle bracket matchingAlways onCtrl+B

Next windowCtrl+Shift+]Ctrl+Tab

Previous windowCtrl+Shift+[Ctrl+Shift+Tab

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                        9

Keyboard Shortcuts



Table 3–3: Navigation

VS Code NotesActionVS CodeStudio

Go to beginning, end of
line

Home, EndHome, End

Go to beginning, end of
document

Ctrl+Home, Ctrl+EndCtrl+Home, Ctrl+End

Go back, forwardAlt+Left Arrow, Alt+Right

Arrow

Ctrl+ -, Ctrl+Shift+ -

Page Up, DownPgUp, PgDnPgUp, PgDn

Go to top, bottom of pageAlt+PgUp, Alt+PgDnCtrl+PgUp, Ctrl+PgDn

Scroll down, upCtrl+Down Arrow, Ctrl+Up

Arrow

Ctrl+Down Arrow, Ctrl+Up

Arrow

You can use Ctrl+T to find
a symbol across files.
More information can be
found in the VS Code
documentation

Go toCtrl+Shift+OCtrl+G

Go to next, previous errorF8, Shift+F8Ctrl+F3, Ctrl+Shift+F3

Go to next, previous
warning

F8, Shift+F8Alt+F3, Alt+Shift+F3

Go to bracketCtrl+Shift+\Ctrl+]

Table 3–4: Editing

VS Code NotesActionVS CodeStudio

To reproduce this
capability, try an
extension such as Emacs
Friendly Keymap

Delete next word or
delete to end of current
word

Ctrl+Delete

To reproduce this
capability, try an
extension such as Emacs
Friendly Keymap

Delete previous word or
delete to start of current
word

Ctrl+Backspace or
Ctrl+Shift+Delete

Delete lineCtrl+Shift+KCtrl+Shift+L

CopyCtrl+CCtrl+C or Ctrl+Insert

CutCtrl+XCtrl+X or Shift+Delete

Cut lineCtrl+XCtrl+L

PasteCtrl+VCtrl+V or Shift+Insert

Select allCtrl+ACtrl+A

Undo, redoCtrl+Z, Ctrl+Shift+ZCtrl+Z, Ctrl+Y or
Ctrl+Shift+Z

10                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Migrate from Studio

https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://marketplace.visualstudio.com/items?itemName=lfs.vscode-emacs-friendly
https://marketplace.visualstudio.com/items?itemName=lfs.vscode-emacs-friendly
https://marketplace.visualstudio.com/items?itemName=lfs.vscode-emacs-friendly
https://marketplace.visualstudio.com/items?itemName=lfs.vscode-emacs-friendly


VS Code NotesActionVS CodeStudio

In VS Code, code
completion suggestions
appear automatically as
you type

Show Studio Assist
popup or trigger code
completion

Ctrl+SpaceCtrl+Space

Select Spaces in status
bar

Toggle tab expansionCtrl+~

To reproduce this
capability, try an
extension such as
change-case

Uppercase, lowercase
selection

Ctrl+U, Ctrl+Shift+U

To reproduce this
capability, try an
extension such as
change-case

Titlecase (initial caps)
selection

Ctrl+Alt+U

To reproduce this
capability, try an
extension such as
change-case

Insert open and close
parentheses. (Does not
work on German and
Swiss keyboard layouts)

(Ctrl+(

Insert open and close
braces

{Ctrl+{

Indentation cleanup —
cleans up indentation on
a selected block of text

Ctrl+Shift+P and begin
typing format

Ctrl+=

Comment, uncomment
line or block of text

Ctrl+/Ctrl+/, Ctrl+Shift+/

Add, remove comment
markers from block of
text

Ctrl+/Ctrl+Alt+/, Ctrl+Shift+Alt+/

With the InterSystems
Language Server
installed, you can
configure its formatter to
expand command names
and then format some or
all of your document

In an ObjectScript
document, commands in
a selection are replaced
with their full names

Ctrl+E

With the InterSystems
Language Server
installed, you can
configure its formatter to
contract command
names and then format
some or all of your
document

Compress commandsCtrl+Shift+E

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      11

Keyboard Shortcuts

https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://code.visualstudio.com/docs/editor/codebasics#_formatting
https://code.visualstudio.com/docs/editor/codebasics#_formatting
https://code.visualstudio.com/docs/editor/codebasics#_formatting
https://code.visualstudio.com/docs/editor/codebasics#_formatting
https://code.visualstudio.com/docs/editor/codebasics#_formatting


Table 3–5: Find and Replace

VS Code NotesActionVS CodeStudio

Find, replaceCtrl+F, Ctrl+HCtrl+F, Ctrl+H

Find next, previousF3, Shift+F3F3, Shift+F3

Find, replace in filesCtrl+Shift+F, Ctrl+Shift+HCtrl+Shift+F

Search for classCtrl+PCtrl+, (comma)

Go to, go backAlt+Right Arrow, Alt+Left

Arrow

Ctrl+Shift+G, Ctrl+Alt+G

Table 3–6: Bookmarks

VS Code NotesActionVS CodeStudio

To reproduce this
capability, try a third-party
extension

Toggle bookmark on
current line

Ctrl+F2

To reproduce this
capability, try a third-party
extension

Go to next, previous
bookmark

F2, Shift+F2

To reproduce this
capability, try a third-party
extension

Clear all bookmarksCtrl+Shift+F2

Table 3–7: Build and Compile

VS Code NotesActionVS CodeStudio

Rebuilds all documents
in project

Ctrl+Shift+F7F7

Compile active documentCtrl+F7Ctrl+F7

Execute the Import and

Compile Current File with

Specified Flags... from the
command palette

Compile with optionsCtrl+Shift+F7

12                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Migrate from Studio

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GSTD_Commands_Edit_Search
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=bookmark&target=VSCode&category=All%20categories&sortBy=Relevance


Table 3–8: Debugging

VS Code NotesActionVS CodeStudio

See Running and
Debugging for how to
debug a running process

Debug: attachCtrl+Shift+A

Debug: toggle breakpoint
on current line

F9F9

Debug: start, stopF5, Shift+F5Ctrl+F5, Shift+F5

Debug: restartCtrl+Shift+F5Ctrl+Shift+F5

Debug: step into, outF11, Shift+F11F11, Shift+F11

Debug: step overF10F10

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      13

Keyboard Shortcuts





4
Get Acquainted with the User Interface for
the InterSystems VS Code Extensions

When you install the InterSystems ObjectScript Extension Pack for Visual Studio Code (VS Code), it adds additional
capability to the VS Code user interface to support development in ObjectScript. This page summarizes those added capa-
bilities.

For more information about the features of VS Code’s standard UI, refer to the section User Interface in the VS Code
documentation.

4.1 Explorer View Context Menu Enhancements
The Explorer view is a standard VS Code view which allows you to view and organize directories and files within your

workspaces. Access the Explorer view by selecting the Explorer button  from the Activity Bar.

The InterSystems extension pack adds the following items to context menus in this view:

• Add Server Namespace to Workspace... in the context menu of folders

• Import and Compile in the context menu of folders and files when you are connected to an InterSystems server

• Import Without Compilation in context menu of folders and files when you are connected to an InterSystems server

4.2 InterSystems View Container
The InterSystems extension pack provides most of the capabilities necessary to support development in ObjectScript within
three views:

• the InterSystems Servers view, which you can use to manage connections to your InterSystems servers and add server-
side directories to your workspace

• the ObjectScript Explorer view, which you can use to explore files on a connected InterSystems server.

• the InterSystems Projects Explorer view, which you can use to create, manage, and explore projects. For more infor-
mation on using this view, see Work with Projects.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      15

https://code.visualstudio.com/docs/getstarted/userinterface


All three of these views are available within the InterSystems view container. To access the InterSystems view container,

select the InterSystems button  in the Activity bar.

When there is no workspace or folder open in the Explorer, only the InterSystems Servers view is available. Connect to an
InterSystems server or open a resource within the Explorer to display the ObjectScript Explorer and InterSystems Projects
Explorer.

Note: Views within the InterSystems view container can be dragged to a different view container. This means, for
example, that you could move the InterSystems Servers view into VS Code’s main Explorer view container.

When a VS Code container has only a single view in it, the view header merges with the container header, with
the two names separated by a colon.

4.2.1 InterSystems Servers

This view shows server resources in a tree format, as illustrated in the following screenshot:

This view groups servers into a variety of folders: servers currently in use, user-defined favorites, and servers which have
been recently used. Within the view, you can perform operations on the servers. When you move the cursor over a server
listing, command buttons appear which let you mark the server as a favorite, open the server’s Management Portal in a VS
Code tab in the built-in Simple Browser, or open its Management Portal in an external browser, as illustrated below

16                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Get Acquainted with the User Interface for the InterSystems VS Code Extensions



4.2.1.1 Viewing and Editing Source Code on the Server

To view and edit source code on a server, expand the target server in the tree view, then expand its Namespaces folder.
Hover over the target namespace to reveal its command buttons, as illustrated in the following image:

• Select the edit (pencil) button to add an isfs://server:namespace/ folder to your VS Code workspace which
corresponds with that namespace.

• Select the view (eye) button to add an isfs-readonly://server:namespace/ folder to your VS Code workspace
which corresponds with that namespace.

• Hold the Alt or Option key while selecting the edit or view button to add a folder that also gives you access to server-
side web application files (such as .csp files).

If you want to add a folder that shows only a single project’s contents, expand the target namespace and the Projects folder
to reveal the projects in the target namespace. Hover over the target project to reveal its command buttons, as illustrated
in the following image:

• Select the edit (pencil) button to add an isfs://server:namespace/?project=projectName folder to your
VS Code workspace.

• Select the view (eye) button to add an isfs-readonly://server:namespace/?project=projectName
folder to your VS Code workspace.

Once you have added a server-side namespace to the workspace, VS Code opens the Explorer view showing the added
namespace. In the following image, the workspace includes the Sample and User packages in the src folder on the client,
and the Sample and User packages in the USER namespace on the server, with read-only access:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      17

InterSystems View Container



To learn more about using isfs and isfs-readonly folders, see Server-Side Editing.

Important: If you are already doing client-side editing of your code (for example, to manage it with Git) be sure you
understand the consequences of also doing server-side editing using isfs. If in doubt, limit yourself to isfs-
readonly by only using the eye icon.

4.2.1.2 Adding a Server

You can use the plus sign (+) in the title bar of the server resource explorer pane to add a server as described in the section
Configure a Server.

4.2.1.3 Server Context Menu

Servers listed in the InterSystems Server view provide a context menu which includes options to refresh the server, edit
the settings.json specification for the server, and set the color of the icon for the server in the tree view, as illustrated in the
following image:

18                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Get Acquainted with the User Interface for the InterSystems VS Code Extensions



4.2.1.4 Import Server Connections

On Windows, the Server Manager can create connection entries for all connections you previously defined with the original
Windows app called InterSystems Server Manager. This action is available by selecting Import Servers from Windows

Registry from the ... (ellipsis) menu in the title bar of the server resource explorer pane, as illustrated in the following image:

4.2.1.5 Notes About the VS Code Simple Browser

Only one Simple Browser tab can be open at a time, so launching a second server’s Management Portal replaces the previous
one.

If the server version is InterSystems IRIS 2020.1.1 or later you need to change a setting on the suite of web applications
that implement Management Portal. The Simple Browser is not permitted to store the Portal’s session management cookies,
so the Management Portal must be willing to fall back to using the CSPCHD query parameter mechanism.

To do so:

1. In Management Portal, select System Administration > Security > Applications > Web Applications.

2. Enter /csp/sys in the filter field to find the web applications which have paths beginning with /csp/sys.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      19

InterSystems View Container



3. For each application:

a. Select the link in the Name column to edit the application definition.

b. In the section labeled Session Settings, change the value of Use Cooke for Session from Always to Autodetect.

c. Select Save to save the change.

This change should not affect the use of session cookies on ordinary browsers.

4.2.2 ObjectScript Explorer

When a VS Code workspace is not connected to an InterSystems IRIS server, the ObjectScript Explorer provides a button
that lets you select a server and namespace. Once the workspace is connected to an InterSystems server, the ObjectScript
Explorer shows files on the server, grouped by type of file.

If the workspace is configured for server-side editing, the ObjectScript Explorer is not available. In this configuration, the
Explorer view lists files on the server, not on the local machine, making the ObjectScript Explorer view irrelevant.

The ObjectScript Explorer provides the following items:

• Compile — Compiles files on the server

• Delete — Deletes files from the server

• Export — Exports files to the workspace on the client

• Server Command Menu... — Allows you to select a command from menus which are configured on the server.

• Server Source Control... — Allows you to select a command from menus which are configured on the server.

The InterSystems IRIS documentation section Extending Studio describes how to configure menus for source code control
and other purposes. Entries from menus named %SourceMenu and %SourceContext appear in the Server Source Control

menu provided the source control class does not disable the entry. For example, the source control class may disable
checkout if the file is already checked out.

20                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Get Acquainted with the User Interface for the InterSystems VS Code Extensions

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=ASC#ASC_Hooks_extending_studio


4.3 Server Connection Status Bar
The connection status of the current server can be seen in the VS Code status bar. If the server connection is active, the
connected server and namespace will be shown in the status bar. If the server connection info is defined in the
intersystems.servers settings object, the name of the server and namespace appears:

Otherwise, the host, port, and namespace appear:

Hover over the status bar item to see more detailed connection information, like a full connection URL and the username
of the connection. Click on the status bar item to open the Server Actions menu. You can add custom entries to this menu.

If the server connection is inactive, the status bar displays the connection info or the word ObjectScript will be shown,
along with an error or warning icon:

Hover over the status bar item to see more detailed error information. Click on the status bar item to open a menu that will
help you activate your connection.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      21

Server Connection Status Bar

https://code.visualstudio.com/api/ux-guidelines/status-bar




5
Configure the InterSystems VS Code
Extensions

Visual Studio Code (VS Code) settings enable you to customize various aspects of its behavior. The InterSystems extensions
provide settings used to configure VS Code for ObjectScript development.

5.1 Settings
Many available settings are general to VS Code, and you can learn about them in the Visual Studio Code Documentation.
The InterSystems Server Manager, InterSystems ObjectScript, and InterSystems Language Server extensions supply additional
settings which you can use to define InterSystems IRIS servers and connections to those servers.

VS Code stores these settings at several levels:

• User — User settings are stored in a file location specific to you and apply globally to any instance of VS Code or any
VS Code workspace that you open.

• Workspace — a workspace is a set of directories you want to use when you’re working on a particular project. Workspace
settings are stored in a file inside the workspace directory structure and apply to anyone who opens the workspace.
See Configure Your Workspace for an InterSystems Project.

• Folder — If more than one folder is present in a workspace, you can select the folder where the settings file is stored
by selecting from the Folder drop down list.

See the User and Workspace Settings section of the VS Code documentation for details.

For a list of all the settings which the InterSystems extensions contribute, see the Settings Reference.

5.2 Configure Your Workspace for an InterSystems Project
VS Code has a concept of a workspace, which is a set of directories you want to use when you’re working on a particular
project. In the simplest setup when you are working within a single directory, a VS Code workspace is just the root folder
of your project. In this case you keep workspace-specific settings in two files inside a .vscode directory located at the root
of your project. Those two files are settings.json, which contains most configuration settings, and launch.json, which contains
debugging configurations.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      23

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/workspaces


5.2.1 settings.json

Here is the simplest settings.json file content for an ObjectScript project (connection details are managed by the InterSystems
Server Manager, as described in Configuring a Server):

{
    "objectscript.conn": {
        "server": "iris",
        "ns": "USER",
        "active": true
    }
}

If you need ObjectScript compilation flags other than the default ones, add an objectscript.compileFlags property
to settings.json (more compileFlags information is available on the settings reference page):

{
    "objectscript.conn": {
        "server": "iris",
        "ns": "USER",
        "active": true, 
    },
    "objectscript.compileFlags": "cuk/compileembedded=1"
}

5.2.2 launch.json

Here is the simplest launch.json file content, with which you can debug the method Test in the class Example.Service,
passing 2 parameters as input (see Running and Debugging for more information):

{
    "version": "0.2.0",
    "configurations": [
        {
            "type": "objectscript",
            "request": "launch",
            "name": "Example.Service.Test", 
            "program": "##class(Example.Service).Test(\"answer\",42)"
        }
    ]
}

If you want to debug a running process, launch.json should have a section like this, which will present a dropdown menu
of running processes:

{
    "version": "0.2.0",
    "configurations": [
        {
            "type": "objectscript",
            "request": "attach",
            "name": "Example-attach-to-process", 
            "processId": "${command:PickProcess}"
        }
    ]
}

Note that configurations is an array, so you can define multiple configurations and choose the one to use from a
dropdown menu in the Debug pane.

5.2.3 Multi-Root Workspaces and Server-Side Editing

If your project requires more than a single root folder, you need to use a feature called multi-root workspaces. See Multi-
Root Workspaces in the VS Code documentation.

24                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Configure the InterSystems VS Code Extensions

https://marketplace.visualstudio.com/items?itemName=intersystems-community.servermanager
https://marketplace.visualstudio.com/items?itemName=intersystems-community.servermanager
https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://code.visualstudio.com/docs/editor/multi-root-workspaces


In this case settings are stored in a file with a .code-workspace file extension. This workspace file can be located anywhere.
It defines what root folders the workspace consists of, and may also store other settings that would otherwise be stored in
settings.json or launch.json. Settings in a root folder’s .vscode/settings.json or .vscode/launch.json will override those in the
workspace file, so be careful to use one or the other unless you truly need to leverage this flexibility.

You can have a workspace file even if you are only working with a single root folder.

Important: If you are editing server-side code you must use a workspace file.

To edit InterSystems ObjectScript extension settings in a .code-workspace file in VS Code, perform the following steps:

1. Open the workspace using File > Open Workspace from File.

2. Select File > Preferences > Settings (Code > Preferences > Settings on Mac).

3. Select the Workspace tab.

4. Search for objectscript: conn and click on Edit in settings.json. This opens the .code-workspace file for that workspace.

The InterSystems Objectscript extension uses the multi-root workspaces feature to support Objectscript development directly
in namespaces on InterSystems servers.

5.3 Configuring a Server
To add an InterSystems IRIS server, select the plus sign (+) in the title bar of the InterSystems Server view. For more
information on this view, see InterSystems Server View.

When prompted, provide the following values:

• Name of new server definition — an arbitrary name to identify this server.

• Description (optional) — a brief description of the server.

• Hostname or IP address of web server — the host name or IP address of the web server that publishes the web services
for your target InterSystems server through the InterSystems Web Gateway.

• Port of web server — the port number at which your web server hosts your target InterSystems server.

• Path prefix of instance (optional) — if you are connecting to your target InterSystems server using a web server that
hosts multiple InterSystems servers, the URL component which precedes the application path to identify the target
server.

• Username — the username VS Code should use when it authenticates to this server.

• Confirm connection type — the protocol used for connections. Possible values are http and https.

Note: Additional configuration may be necessary if you want to establish an HTTPS connection using a self-signed
certificate.

You can create a configuration for a server that is not currently running.

Once you have entered these values, the extension stores the server definition in your user-level settings.json file, and the
server appears at the top of the Recent folder in the InterSystems Server view. See Editing a Server Configuration.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      25

Configuring a Server

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GCGI
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_intro_howitworks_url
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_intro_howitworks_url


5.3.1 Editing a Server Configuration

If you need to modify a server configuration, perform the following steps:

1. Select File > Preferences > Settings (Code > Preferences > Settings on Mac) from the menu.

2. Select the User settings level.

3. Select Extensions from the outline section of the editor pane.

4. Select InterSystems Server Manager from the list to find the InterSystems Server Manager area of the edit pane, as
illustrated in the following screen shot:

5. Select Edit in settings.json.

You can also access the settings.json file within the InterSystems view container: select the ... (ellipsis) button in the title
bar of the Servers view, and then select Edit Settings.

A server configuration in the settings.json file has the following structure, populated with the values you entered when you
configured the server:

{
    "intersystems.servers": {
        "iris-1": {
            "webServer": {
                "scheme": "http",
                "host": "localhost",
                "port": 443
            },
            "username": "_SYSTEM"
        }
    }
}

The components of this server definition are as follows:

• "iris-1" — the arbitrary name to identify the InterSystems IRIS server.

• "webServer" — the collection of properties which define the web server you use to connect to the InterSystems
IRIS server through the InterSystems Web Gateway.

– "scheme" — the protocol used for connections ("http" or "https").

Note: Additional configuration may be necessary if you want to establish an HTTPS connection using a self-
signed certificate.

26                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Configure the InterSystems VS Code Extensions

https://docs.intersystems.com/iris20231/csp/docbook/Doc.View.cls?KEY=GCGI_intro


– "host" — the host name or IP address for the web server.

– "port" — the port number for the web server.

– "pathPrefix" — where applicable, the directory path under which the web server publishes the target InterSys-
tems IRIS server’s web services.

• "username" — the username VS Code uses to authenticate to the server.

• "password" — password for the specified username. For security reasons, InterSystems strongly recommends
authenticating through VS Code instead of specifying passwords as plaintext within the settings.json server definition.

5.3.2 Establish an HTTPS Connection Using a Self-Signed Certificate

Your organization may issue self-signed certificates to facilitate HTTPS connections to development or testing servers.

In order for VS Code to allow an HTTPS connection to an InterSystems server using a self-signed certificate, perform
either of the following configuration changes:

• Within the VS Code User Settings, set variables as follows:

– "http.proxyStrictSSL": false

– "http.proxySupport": "fallback" or "http.proxySupport": "off"

Then, save the configuration and reload VS Code.

CAUTION: This configuration disables certificate checking, and is therefore inappropriate for use outside of a
secure private network.

• Add the self-signed certificate to your operating system’s root certificates. (Refer to the documentation for your oper-
ating system for specific instructions about how to do this.) Then, reload VS Code.

5.4 Configuring a Server Connection
To establish a connection between a server and a client-side workspace location, perform the following steps:

1. Open the folder where you want to store your client-side files.

2.

Select the InterSystems view container button  in the Activity Bar. This action opens a dialog that allows you
to select an existing server to connect to or provide the information to configure a new server definition.

3. Follow the prompts to select a server and a namespace.

Once you have selected a server and namespace, connection configuration is complete. VS Code adds the server and
namespace to the status bar.

You cannot create a connection to an InterSystems IRIS server if the InterSystems IRIS server is not running.

5.4.1 Editing a Server Connection

If you need to modify an existing server connection, perform the following steps:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      27

Configuring a Server Connection

https://code.visualstudio.com/docs/getstarted/settings


1. Select File > Preferences > Settings (Code > Preferences > Settings on Mac) from the menu bar.

2. Select the Workspace settings level.

3. Search for objectscript: conn.

4. Select Edit in settings.json.

A connection configuration in the settings.json file has the following structure, populated with the values you specified
when you configured the connection:

"objectscript.conn": {
  "ns": "USER",
  "server": "iris-1",
  "active": true,
},

The components of this configuration are as follows:

• "ns" — namespace to use on the server

• "server" — server name, as specified in the server configuration

• "active" — boolean value specifying whether the connection is active.

5.5 Add Custom Entries to the Server Actions Menu
Clicking on the server and namespace in the status bar opens a list of the actions you can take for this server, as illustrated
in the following image:

You can add custom entries to this list using the objectscript.conn.links configuration object. This object consists
of key-value pairs where the key is the label displayed in the menu and the value is the URI the action opens. The following
variables are available for substitution in the URI:

• ${host} — the hostname of the connected server. For example: localhost

• ${port} — the port of the connected server.

• ${serverURL} — the full connection string for the server, including the protocol, <baseURL> for your instance,
and path prefix. For example: http://localhost:443/pathPrefix

• ${ns} — the namespace that you are connected to. The value is URL encoded. For example: %25SYS or USER

28                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Configure the InterSystems VS Code Extensions



• ${namespace} — The raw namespace parameter for the connection. For example, user

• ${classname} — the name of the class which is currently open, or an empty string if the currently opened document
is not a class.

• ${classnameEncoded} — a URL encoded version of ${classname}.

• ${project} — the name of the server-side project which is currently open, or an empty string if no project is open.

• ${username} — the username for the user account you are currently using to connect to the server.

Here is an example of a server action configuration:

"objectscript.conn": {
    "links": {
        "Portal Explorer": "${serverUrl}/csp/sys/exp/%25CSP.UI.Portal.ClassList.zen?$NAMESPACE=${ns}"
    },
}

The preceding server action configuration adds an entry to the Server Actions menu, as illustrated in the following image:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      29

Add Custom Entries to the Server Actions Menu





6
Develop ObjectScript Unit Tests

The InterSystems® ObjectScript extension for Visual Studio Code (VS Code) leverages VS Code’s testing API and the
InterSystems %UnitTest framework to enable you to run and debug methods from classes which extend %UnitTest.TestCase,
right within the VS Code interface.

Regardless of whether you are editing on the client-side or the server-side, you can accelerate development for your
ObjectScript project by integrating unit test development into your VS Code workflow.

6.1 Prerequisites
Running or debugging ObjectScript tests within a VS Code workspace requires the following:

• Visual Studio Code version 1.83.0 or later.

• InterSystems ObjectScript extension for VS Code version 2.12.1 or later.

• An active server connection to an instance of InterSystems IRIS version 2023.3 or later.

– The value of the ^UnitTestRoot global for the instance must be set to an existing directory within the local
filesystem. (This is required so that the extension can execute unit tests using %UnitTest.Manager methods. The
extension does not use the value of ^UnitTestRoot.)

6.2 Setup
To run or debug ObjectScript tests within VS Code:

1. Open the workspace that you are developing tests in. Tests can be run from a single- or multi-root workspace, client-
or server-side. (See Configure Your Workspace.)

Note: You cannot run unit tests within the %SYS namespace of an InterSystems server.

2. For client-side workspace folders: edit the ObjectScript extension setting
objectscript.unitTest.relativeTestRoots so that it specifies the relative paths within your workspace
folder where your test classes are located. See the User and Workspace Settings section of the VS Code documentation
for further guidance with editing settings.

3. If test cases within a test directory require additional resources:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      31

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GUNITTEST_about
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GUNITTEST_create
https://code.visualstudio.com/docs/getstarted/settings


• For client-side workspace folders: configure and populate an autoload subdirectory, as described in Autoload
Client-Side Resources.

• For server-side workspace folders: ensure that all required resources are already loaded on the server.

6.2.1 How the Extension Locates Your Unit Tests

Once you have configured your workspace as described in the preceding steps, the ObjectScript extension locates classes
which extend %UnitTest.TestCase and makes them available for running and debugging within the VS Code interface.

• For a client-side workspace, the extension locates applicable test classes within the directories specified by
objectscript.unitTest.relativeTestRoots.

• For a server-side workspace, the extension locates applicable test classes within all workspace folders which are con-
figured to include them. For example:

– a server-side workspace folder which includes the contents of a project will display tests if the project includes
applicable test classes.

– a server-side workspace folder which includes the contents of the filter filter=*.mac will not display tests
even if there are test classes in the namespace.

Within the test directory, the extension ignores test cases which are located in any directory with a name beginning with
an underscore character (_) except in such cases where the name of the autoload directory begins with an underscore. This
is consistent with the behavior of the %UnitTest.Manager class’s RunTest() method.

Note: If you are editing on the client-side and you export a test class from the server using the ObjectScript Explorer,
the extension places that class within a /src/ folder on the client-side workspace, regardless of where the test is
stored on the workspace. This may result in duplicate copies of a class in two client-side locations.

When using a client-side editing workflow, InterSystems recommends editing on the client exclusively, and
importing changes from the client onto the server.

6.2.2 Autoload Client-Side Resources

When you initiate the running or debugging of a test method in a client-side workspace, the ObjectScript extension can
automatically load resources which your test methods require from a subdirectory within the test directory. These resources
are loaded into a temporary location onto the server before the test case classes; upon conclusion of the running or debugging
session, the extension deletes both the test case classes and the autoload resources from the server.

By default, the extension is configured to autoload UDL and XML files from /_autoload/ if a directory with that name exists.
You can modify the name of the autoload directory and control which types of files the extension loads within the InterSys-
tems ObjectScript extension settings.

6.3 Run and Debug Your Unit Tests

For a test case class which is open in an editor, you can run a test case by selecting the green play button  which appears
in as a margin decoration at the start of the method definition (beside the line number). To run all the test methods for the

class, select the “play all” button  at the beginning of the class definition. These margin decorations are visible in the
following image:

32                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Develop ObjectScript Unit Tests

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GUNITTEST_create
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GUNITTEST_create


As shown in the following image, additional options are available by right-clicking one of these play buttons—including
the option to debug:

See Running and Debugging for further guidance on debugging ObjectScript methods within VS Code.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      33

Run and Debug Your Unit Tests



You can also run and debug tests within the Testing Explorer, which is available by selecting the beaker icon  from
the Activity Bar. The Testing Explorer presents all the test methods in your workspace in a tree view, as shown in the fol-
lowing image:

In addition to the graphic interfaces, the ObjectScript extension makes a variety of testing-related commands available in
the Command Palette. To review a list of these commands, activate the Command Palette and search for “Test:”

6.3.1 View Test Results

After running or debugging a test case, the decoration in the margin of the editor updates to reflect the state of the test
result. The editor also allows you to view the output of an individual test inline. Both of these features are visible in the
following image:

34                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Develop ObjectScript Unit Tests



To view test output within the editor in this way, select the Peek Output or Peek Error option from the context menu for the
test’s margin decoration, or navigate to the desired test result from the inline output view for another test using the arrow
buttons.

After running or debugging a test case, the Testing Explorer also updates to reflect the state of the test result, as depicted
in the following image:

You can also view results for all the tests you’ve run in the Test Results panel, depicted in the image which follows. A side
bar provides a collapsible outline of results for any test runs you have not cleared; selecting a result from the sidebar displays
a detailed view of results in the primary section of the panel.

You can clear test results by selecting that option from the Test Result panel’s menu bar, the editor’s inline test result view,
and the Test Explorer sidebar’s menu bar.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      35

Run and Debug Your Unit Tests





7
Running and Debugging

The InterSystems ObjectScript Extension for Visual Studio Code (VS Code) provides support for ObjectScript debugging.
It takes advantage of the debugging capabilities built into VS Code, so you may find these VS Code documentation resources
useful:

• Debugging Intro Video

• Debugging User Guide

InterSystems also produced a short video which walks through the steps in this documentation page.

7.1 Debug Configurations
In order to run or debug an ObjectScript class or routine or attach to a running process, you must create a debug configuration.
Some other languages default to running the currently active file, but to run ObjectScript, you must specify the routine or
ClassMethod to use or the running process to attach to.

Select the Run and Debug button  in the Activity Bar:

If no debug configurations are available, you are prompted to create one, as illustrated in the following image:

Clicking the link opens a dialog containing a list of debug environments, as illustrated in the following image. Select
ObjectScript Debug from the list.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      37

https://code.visualstudio.com/docs/introvideos/debugging
https://code.visualstudio.com/docs/editor/debugging
https://learning.intersystems.com/course/view.php?id=1795&ssoPass=1


Once you have chosen a debug environment, VS Code creates and opens a launch.json file which contains the following
default content:

{
    "version": "0.2.0",
    "configurations": [
        {
            "type": "objectscript",
            "request": "launch",
            "name": "XDebug"
        }
    ]
}

These attributes are mandatory for any debug configuration:

• "type" — identifies the type of debugger to use. In this case the value, "objectscript", is supplied by the Inter-
Systems ObjectScript extension.

• "request" — identifies the type of action for this launch configuration. Possible values are "launch" and "attach".

• "name" — an arbitrary name to identify the configuration. This name appears in the Start Debugging drop-down list.

In addition, for an ObjectScript "launch" configuration, you need to supply the attribute “program”, which specifies
the routine or ClassMethod to run when launching the debugger, as shown in the following example:

"launch": {
  "version": "0.2.0",
  "configurations": [

    {
      "type": "objectscript",
      "request": "launch",
      "name": "ObjectScript Debug HelloWorld",
      "program": "##class(Test.MyClass).HelloWorld()",
    },
    {
      "type": "objectscript",
      "request": "launch",
      "name": "ObjectScript Debug GoodbyeWorld",
      "program": "##class(Test.MyOtherClass).GoodbyeWorld()",
    },
  ]
}

For an ObjectScript "attach" configuration, you may supply the following optional attributes:

• “processId” — specifies the ID of process to attach to as a string or number. Defaults to
"${command:PickProcess}", which provides a drop-down list of process ID’s to attach to at runtime.

• “system” — specifies whether to allow attaching to system process. Defaults to false.

38                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Running and Debugging



The following example shows multiple valid ObjectScript “attach” configurations:

"launch": {
  "version": "0.2.0",
  "configurations": [
    {
      "type": "objectscript",
      "request": "attach",
      "name": "Attach 1",
      "processId": 5678
    },
    {
      "type": "objectscript",
      "request": "attach",
      "name": "Attach 2",
      "system": true
    },
  ]
}

7.2 Starting a Debugging Session
You can select a debug configuration from the list VS Code provides in the Run and Debug field, available in the title bar
of the debug view:

Selecting the green arrow runs the selected debug configuration.

When you start an ObjectScript "launch" debug session, make sure that the file containing the program that you are
debugging is open in your editor and is the active tab. VS Code will start a debug session with the server of the file in the
active editor (the tab that the user is focused on). This also applies to ObjectScript “attach” debug sessions.

This extension uses WebSockets to communicate with the InterSystems server during debugging. If you are experiencing
issues when trying to start a debugging session, check that the InterSystems server’s web server allows WebSocket connec-
tions.

Debugging commands and items on the Run menu function much as they do for other languages supported by VS Code.
For information on VS Code debugging, see the documentation resources listed at the start of this section.

7.3 Debugging a REST Service
The InterSystems ObjectScript Extension provides a Webview-based graphical user interface that allows you to send a
REST request and automatically start debugging the process on the server that handles it. With the InterSystems file that
you want to debug open in the active text editor, you can show the GUI using the Debug REST Service... command. The
command can be accessed in the Command Palette, the editor context menu, or the editor tab context menu. Follow the
directions in the GUI to build your REST request and click the Start Debugging button to send the request and connect the
debugger. Be sure you have a breakpoint set somewhere in the code that handles the request.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      39

Starting a Debugging Session

https://code.visualstudio.com/api/extension-guides/webview


7.4 Troubleshooting Debugger Issues
If you are experiencing issues using the debugger, please follow these steps before opening an issue on GitHub. Note that
the trace global may contain confidential information, so you should review the contents and mask/remove anything that
you want to keep private.

1. Open the Terminal for the InterSystems IRIS instance you are connecting to, ensuring you are in the namespace which
contains the class or routine you are debugging.

2. Run the command Kill ^IRIS.Temp.Atelier("debug"), then Set ^IRIS.Temp.Atelier("debug")
= 1. These commands turn on the Atelier API debug logging feature. If you are on Caché or Ensemble, the global to
modify in these commands ^CacheTemp.ISC.Atelier("debug").

3. In VS Code, start a debugging session using the configuration that produces the error.

4. When the error appears, copy the contents of the ^IRIS.Temp.Atelier("debug") global. Include this global in
your GitHub issue.

5. After you capture the log, run the command Kill ^IRIS.Temp.Atelier("debug"), then Set
^IRIS.Temp.Atelier("debug") = 0. This turns logging off again.

7.5 Using the WebSocket Terminal
The InterSystems ObjectScript Extension provides support for a WebSocket-based command-line interface for executing
ObjectScript commands on a connected server. The server can be on the same system as VS Code, or a remote system.
This feature is only supported when connecting to InterSystems IRIS version 2023.2 or later.

The WebSocket terminal supports the following features:

• VS Code’s shell integration feature so your command history and output will be captured by VS Code and can be
accessed by its UI.

• Multi-line editing. An additional editable line will be added when the user presses Enter and there are unclosed { or
( in the command input.

• Syntax coloring for command input. (You can toggle this using the
objectscript.webSocketTerminal.syntaxColoring setting)

• Syntax checking for entered command input, with detailed error messages reported along with the standard <SYNTAX>
error.

• Many features of the standard terminal, including:

– The Read command

– Interrupts (Ctrl-C)

– Namespace switches

– Custom terminal prompts (except code 7)

– Shells such as SQL (Do $SYSTEM.SQL.Shell()) and Python (Do $SYSTEM.Python.Shell())

The WebSocket terminal does not support command-line debugging since the InterSystems ObjectScript Extension contains
an interactive debugger. Users are also discouraged from using routine editing commands since VS Code with the InterSys-
tems ObjectScript Extension Pack provides an excellent ObjectScript editing experience.

40                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Running and Debugging

https://code.visualstudio.com/docs/terminal/shell-integration
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GTER_intro
https://irisdocs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Process#TerminalPrompt
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_debug
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_ZCOMMANDS


Note that the terminal process starts using the JOB command, so if you have a ^%ZSTART routine enabled the JOB sub-
routine will be called at the start of the process, not LOGIN like the standard terminal. Also, the ZWELCOME routine will
not run before the first command prompt is shown.

The WebSocket terminal can be opened from the command palette using the ObjectScript: Launch WebSocket Terminal

command. The WebSocket terminal connection is established using the current server connection. A WebSocket terminal
connection can also be opened from the Terminal Profiles menu.

7.5.1 Troubleshooting WebSocket Terminal Issues

If you are experiencing issues using the WebSocket Terminal, please follow these steps before opening an issue on GitHub.
Note that the trace global may contain confidential information, so you should review the contents and mask/remove anything
that you want to keep private.

1. If you are using a Microsoft Internet Information Services (IIS) web server to connect, confirm that the IIS WebSocket

Protocol feature is enabled.

2. Open the Terminal for the InterSystems IRIS instance you are connecting to, ensuring you are in the namespace which
contains the class or routine you are debugging.

3. Run the command Kill ^IRIS.Temp.Atelier("terminal"), then Set
^IRIS.Temp.Atelier("terminal") = 1. These commands turn on the Atelier API debug logging feature.

4. In VS Code, launch the WebSocket terminal and run the commands that produce the error.

5. When the error appears, copy the contents of the ̂ IRIS.Temp.Atelier("terminal") global. Include this global
in your GitHub issue.

6. After you capture the log, run the command Kill ^IRIS.Temp.Atelier("terminal"), then Set
^IRIS.Temp.Atelier("terminal") = 0. This turns logging off again.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      41

Using the WebSocket Terminal

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GSTU_customize_startstop
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GTER_intro#GTER_zwelcome
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://code.visualstudio.com/docs/terminal/basics#_terminal-shells
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_private_web#GCGI_pws_manual_winvsc_websock
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_private_web#GCGI_pws_manual_winvsc_websock




8
Server-Side Editing

You can configure the InterSystems ObjectScript extension to edit code directly on the server, using the multi-root workspaces
feature in Visual Studio Code (VS Code). This type of configuration is useful in cases where source code is stored in a
Source Code Management (SCM) product interfaced to the server. For example you might already be using the Source
Control menu in InterSystems Studio or the Management Portal, implemented by a source control class that extends
%Studio.SourceControl.Base.

8.1 Configuring for Server-Side Editing
First configure the intersystems.servers entry for your server, as described in Configuring a Server.

Next, create a workspace for editing code directly on the server by performing the following steps:

1. Open VS Code. You must perform the following steps starting with no folder or workspace open, so if a folder or
workspace is already open, close it.

2. Open the Explorer view, if it is not already visible.

3. Click the button labeled Choose Server and Namespace in the Explorer view, as shown in the image below:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      43

https://code.visualstudio.com/docs/editor/multi-root-workspaces


4. Pick the name of an existing server configuration from the list, or click the + (plus) button to create a new server con-
figuration.

5. Enter login credentials, if prompted.

6. Choose a namespace from the list retrieved from the target server.

7. Choose an access mode (editable or read-only) from the list.

44                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Server-Side Editing



8. Choose the category of files to display (code files, web application files, or contents of a server-side project).

• If you chose to show web application files, choose an optional web application to show files from:

• If you choose to show a project’s contents, choose the project:

• If you create your own filter of files to display, pick the filter options:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      45

Configuring for Server-Side Editing



9. If you want to reopen this workspace in the future, select File > Save Workspace As... to save the details of this workspace
as a .code-workspace file.

Note that the ObjectScript Explorer view is not visible in the InterSystems view container. Because the files listed in the
Explorer view are all on the server, the ObjectScript Explorer is not needed for this configuration.

The .code-workspace file is a JSON file which you can edit directly, as described in Workspaces. What follows is a simple
example:

{
  "folders": [
    {
      "name": "iris184:USER",
      "uri": "isfs://iris184:user"
    }
  ],
  "settings": {}
}

• The "name" property provides a name for this server-side folder.

• The "uri" property indicates the location of resources on the server. The supplied value has three components:

– The first component can be either isfs or isfs-readonly. These values specify that the folder is on an Inter-
Systems IRIS server. isfs-readonly specified read-only access.

– The value following the / (forward slash) specifies the name of the server.

– The value following the : (colon) specifies the namespace in lowercase characters.

The string isfs which appears in the "uri" for folders configured for server-side editing is an abbreviation created by
InterSystems which stands for InterSystems File Service. It implements the VS Code FileSystemProvider API, which lets
you make any remote location look like a local one. It works well for making artefacts in an InterSystems IRIS namespace
look like local files.

46                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Server-Side Editing

https://code.visualstudio.com/api/references/vscode-api#FileSystemProvider


To add more root folders to your workspace, giving you access to code in a different namespace, or on a different server,
use the context menu on your existing root folder to invoke the Add Server Namespace to Workspace... command. This
command is also available in the Command Palette.

The example which follows describes a two-folder workspace in which the second folder gives read-only access to the
%SYS namespace:

{
  "folders": [
    {
      "name": "iris184:USER",
      "uri": "isfs://iris184:user"
    },
    {
      "name": "iris184:%SYS (read-only)",
      "uri": "isfs-readonly://iris184:%sys"
    }
  ],
  "settings": {}
}

Workspaces can also consist of a mixture of server-side folders and local folders. Use the context menu’s Add Folder to

Workspace... option to add a local folder.

Root folders can be re-sequenced using drag/drop in the Explorer view, or by editing the order their definition objects
appear within the "folders" array in the JSON.

8.2 Configuring Storage for Folder-Specific Settings
When you use VS Code to edit source code on the client, the settings model allows you to specify folder-specific settings
in a .vscode\settings.json file located in a workspace root folder. These settings take precedence when you work under that
workspace root folder.

If you use an isfs-type workspace to operate directly in a namespace on a server, you need to configure that server to support
storing and serving up the .vscode\settings.json file. The .vscode subfolder of a workspace root folder also stores folder-
specific code snippets and debug configurations. These are available when using this configuration.

Use the Management Portal for your InterSystems IRIS instance to create a web application named _vscode on the server.
Select System Administration > Security > Applications > Web Applications, then Create New Web Application:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      47

Configuring Storage for Folder-Specific Settings

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GAUTHZ_apps#GAUTHZ_apps_createedit


Enter the following values:

• Name: —enter /_vscode

• Description — a brief description

• Namespace — select %SYS

• Enable Application — select

• Enable — select CSP/ZEN

• Allowed Authentication Methods — select Password

• CSP File Settings: Physical Path — enter a physical path appropriate for your platform and your installation folder

48                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Server-Side Editing



• CSP File Settings: Web Settings — clear the Auto Compile option

Be sure to save the configuration. If you have an isfs-type workspace root folder that connects to a namespace on this server
as a user with the %DB_IRISSYS:READ privilege, you can now write and read folder-specific settings:

You can also create a folder-specific snippets file by selecting the Preferences: Configure User Snippets command:

To edit the server-side namespace-specific files for all namespaces directly through VS Code, add an isfs-type root folder
with the following URI:

isfs://servername:%sys/_vscode?csp

For a single namespace (for example, USER) the URI would be as follows:

isfs://servername:%sys/_vscode/USER?csp

8.3 Web Application (CSP) Files
To edit web application files (also known as CSP files) on a server, configure the URI as follows:

isfs://myserver:xxx{csp_application}?csp

For example, the following URI gives you access to the server-side files of the /csp/user application. The csp query
parameter is mandatory and the suffix on the server name must specify the correct namespace for the web application. For
example:

"uri": "isfs://myserver:user/csp/user?csp"

Changes you make to files opened from this root folder of your VS Code workspace will be saved onto the server.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      49

Web Application (CSP) Files



8.4 Filters and Display Options
The query string of the "uri" property accepts several parameters that control filtering and display of the server-side
entities. The examples below access the USER namespace on the server whose definition is named ‘myserver’.

• isfs://myserver:user/?generated=1 shows generated files as well as not generated files

• isfs://myserver:user/?project=prjname shows only files in project prjname. Cannot be combined with
any other parameter.

• isfs://myserver:user/?mapped=0 hides files that are mapped from a non-default database

• isfs://myserver:user/?filter=%Z*.mac,%z*.mac — a comma-delimited list of search options, ignoring
type. The default is *.cls, *.inc, *.mac, *.int. To see all files, use *.

• isfs://myserver:user/Utils?filter=*.cls shows only .cls files within the Utils package (or packages with
names which begin with the string Utils).

Note: As suggested by the preceding example, the wildcard character (*) cannot be used in a medial position within
a filter string (for example, to filter by both an initial package name string and a file type). In other words,
isfs://myserver:user/?filter=Utils*.cls would filter for files with the literal name
Utils*.cls.

The options generated and mapped can be combined with each other, and with filter.

To modify the query parameters or name of an existing workspace folder, run the Modify Server-Side Workspace Folder...

command from the Command Palette or the Explorer context menu.

8.5 Advanced Workspace Configurations
This section gives examples of some more complex workspace definitions for server-side editing.

Use File > New File to create a new file. Add content similar to the following example. Note that “my-project” in the
isfs:// URI, should be the same as the “name” property (that is, the root display name) of any local folder where spe-
cialized settings for the connection are being stored in a .vscode/settings.json file.

{
  "folders": [
    {
      "name": "my-project",
      "path": ".",
    },
    {
      "uri": "isfs://my-project",
      "name": "server"
    }
  ],
  "settings": {
  }
}

Save the file, giving it an arbitrary name with the extension .code-workspace. VS Code shows you a button with an offer
to open this workspace. Select the button.

The next time VS Code starts, two folders appear in the root directory with the names described in the .code-workspace

file. Expand the server folder to see code on the configured server and namespace, routines and classes in one place. You
can now edit this code. If you have SourceControl class, it should be configured the way, to export files in the same location
which used in VS Code workspace.

50                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Server-Side Editing



The following is an example which implements a connection to multiple namespaces on the same InterSystems IRIS server:

{
  "folders": [
    {
      "name": "myapp",
      "path": ".",
    },
    {
      "uri": "isfs://myapp",
      "name": "server",
    },
    {
      "uri": "isfs://myapp:user",
      "name": "user",
    },
    {
      "uri": "isfs://myapp:%sys",
      "name": "system",
    },
    {
      "uri": "isfs://user@hostname:port?ns=%SYS",
      "name": "system (alternative syntax)",
    }
  ],
  "settings": {
    "files.exclude": {},
    "objectscript.conn": {
      "active": true,
      "username": "_system",
      "password": "SYS",
      "ns": "MYAPP",
      "port": 52773,
    }
  }
}

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      51

Advanced Workspace Configurations





9
Work with Projects

A project is a named set of class definitions, routines, include files, web application files or custom documents. All files
in a project must be in the same namespace on the same InterSystems server. Each document can be associated with any
number of projects. Each namespace can contain any number of projects.

9.1 Why Projects
You are not required to use projects in VS Code, but you should consider using them if:

• You work server-side and the type and filter query parameters are not granular enough.

• You work server-side and want to edit CSP and non-CSP files in the same workspace folder.

• You work client-side and want to group together many files to export with a single click.

• You are migrating from InterSystems Studio and want to keep using an existing project.

9.2 InterSystems Projects Explorer
The easiest way to manage projects is using the Projects Explorer, which is in the InterSystems view container:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      53



Initally, the Projects explorer contains a root node for each server and namespace connection that exists for the current
workspace. It can be expanded to show all projects in that namespace on the server, and expanding the project node will
show its contents:

You can also add root nodes for namespaces on any server configured using the InterSystems Server Manager extension.
To do so, select the + (plus) button in the title bar of the view.

The following sections will describe how to use the Projects Explorer and other tools to work with projects.

54                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Work with Projects



9.3 Creating Projects
There are two ways to create projects in VS Code:

• Right-click on a server-namespace node in the Projects Explorer and select the Create Project menu option.

• Open the Command Palette and select the ObjectScript: Create Project command.

Project names are required to be unique per server-namespace and may optionally have a description. The description is
shown when hovering over the project’s node in the Projects Explorer or below its name when selecting one in a drop-down
menu.

9.4 Modifying Projects
There are three ways to add or remove items from a project:

• Using the Projects Explorer:

– To add items, right-click on the project node or one of the document type nodes (i.e. Classes or Routines) and
select the Add Items to Project... menu option. If you selected on a document type node, you will only be shown
documents of that type to add.

– To remove an item, right-click on its node and select the Remove from Project menu option. If you remove a
package or directory node, all of its children will also be removed from the project. You may also right-click on
the project node and select the Remove Items from Project... menu option to be presented with a multi-select
dropdown that allows you to remove multiple items at once.

• Within a workspace folder configured to view or edit documents in a project directly on the server:

– To add items, right-click a root isfs[-readonly] folder that has the project query parameter in its URI and
select the Add Items to Project... menu option.

– To remove an item, right-click on its node and select the Remove from Project menu option. If you remove a
package or directory node, all of its children will also be removed from the project. You may also right-click on
a root isfs[-readonly] folder that has the project query parameter in its URI and select the Remove Items

from Project... menu option to be presented with a multi-select dropdown that allows you to remove multiple items
at once.

• Using commands:

Open the Command Palette and select the ObjectScript: Add Items to Project... or ObjectScript: Remove Items from

Project... command.

9.4.1 Add to Project UI

The Add to Project command implements a custom multi-select dropdown that is shown regardless of how it is invoked.
Items that are in the namespace and not already in the project are shown. The rest of this section describes the elements of
this UI:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      55

Creating Projects



• Title bar row:

– Select the icons to show or hide system and generated items, respectively.

• Input box row:

– Select the check box to select all items that are currently shown.

– Type in the input box to filter the items that are shown.

– Select the OK button to add the selected items to the project.

• Item rows:

– Select the check box to select the item. If the item is a package or CSP directory, all of its contents will be selected
as well, even though the check boxes for those items don’t appear selected.

– The icon preceding the name represents its type. It corresponds to the icons in the Projects Explorer and ObjectScript
Explorer.

– The more prominent text is the short name of the item, as it would appear in a file system.

– The less prominent text is the full name of the item, including its package or CSP directory.

– Select the arrow icon for each item to show or hide its contents.

9.5 Deleting Projects
There are two ways to delete projects in VS Code:

• Right-click on a project node in the Projects Explorer and select the Delete Project menu option.

• Open the Command Palette and run the ObjectScript: Delete Project command.

9.6 Editing Project Contents Server-Side
There are a few methods to create a workspace folder to view or edit documents in a project directly on the server:

• Follow the steps here and select the project.

• Right-click in the Explorer view and select the Add Server Namespace to Workspace menu option.

• Right-click on a project node in the Projects Explorer and select the Add Workspace Folder For Project menu option.

56                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Work with Projects



• Add a folder to your .code-workspace file directly:

{
  "uri": "isfs://myserver:user/?project=prjname",
  "name": "prjname"
}

9.7 Editing Project Contents Client-Side
The entire contents of the project can be easily exported to your local file system for client-side editing. To do so, simply
right-click on the project you’d like to export and select the Export Project Contents menu option.

9.8 Notes
If you are getting ERROR #5540: SQLCODE: -99 Message: User abc is not privileged for the
operation when you try to expand the Projects Explorer or view a project’s contents in a virtual folder, then grant user
abc (or a SQL role they hold) the following SQL permissions:

GRANT SELECT, INSERT, UPDATE, DELETE ON %Studio.Project, %Studio.ProjectItem TO abc
GRANT EXECUTE ON %Studio.Project_ProjectItemsList TO abc

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      57

Editing Project Contents Client-Side





10
Import and Export InterSystems
Documents as XML Files

Using the InterSystems ObjectScript Extensions for VS Code, you can export source code documents from an InterSystems
server into an XML file. You can also import source code documents from such an XML file onto an InterSystems server.
This feature provides a convenient way to back up a large set of files spanning multiple packages, or to transfer such a set
of files between InterSystems servers.

You can use this feature from any saved workspace with an active server connection.

Note: Currently, this feature is exclusively compatible with InterSystems IRIS and InterSystems IRIS for Health versions
2023.2 and up.

10.1 Export Documents as an XML File
To export multiple source code documents from an InterSystems server namespace into a single XML file on your local
file system, perform the following steps:

1. From a saved workspace with an active server connection, open the Command Palette and run the ObjectScript: Export

Documents to XML File... command.

2. If your workspace consists of multiple folders, use the menu to select the workspace folder connected to the server
location from which you want to export documents.

3. From the menu, select the checkboxes that correspond to the documents you want to export. You can select entire
packages, or expand the menu item for a package to select among the documents it contains:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      59



4. Within the Save As window, navigate to the file system location where you want to save the XML file and specify a
File name.

5. Select Export.

Functionally, this produces the same result as executing the %SYSTEM.OBJ.Export() method on the target server with the
appropriate arguments.

10.2 Import Documents from an XML File
To import the contents of one or more XML export files from a local file system location into an InterSystems server
namespace, perform the following steps:

Important: If the target namespace contains a source code document with the same name as a document recorded
within the XML export file you are importing, the import operation replaces the existing file with the version
of the document which the XML file’s version of the document.

1. From a saved workspace with an active server connection, open the Command Palette and run the ObjectScript: Import

XML Files... command.

2. If your workspace consists of multiple folders, select the workspace folder connected to the server location to which
you want to import documents.

3. Within the Open window, locate and select the XML file (or files) from which you want to import documents.

4. Using the menu, confirm the documents you want to import:

60                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Import and Export InterSystems Documents as XML Files



Clear the checkboxes that correspond to documents which you do not want to import, as necessary.

5. Select OK.

6. Once the documents have been imported, a VS Code notification provides you the option to compile them:

Select Yes to compile the documents. Select No to decline.

Functionally, this produces the same result as executing the %SYSTEM.OBJ.Load() method on the target server with the
appropriate arguments.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      61

Import Documents from an XML File





11
Low-Code Editors

VS Code contains support for low-code editors via its Custom Editors API. As InterSystems redevelops its suite of low-
code editors for Interoperability components, support for integration with this extension will be included. This page lists
the currently supported low-code editors and describes how to use them in VS Code.

11.1 Supported Editors
The following list contains all InterSystems low-code editors that support integration with VS Code, along with the earliest
version of InterSystems IRIS that contains the support:

• Rule Editor (2023.1)

11.2 Opening a Low-Code Editor
To open a low-code editor, first open the class that contains the Interoperability component that you want to edit, right-
click on the editor tab and select the Reopen Editor With... option:

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      63

https://code.visualstudio.com/api/extension-guides/custom-editors


You will then be prompted with a list of editors to choose from:

64                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Low-Code Editors



Once you select the editor, it will replace the text editor for the selected class. If the editor cannot be loaded, a modal dialog
will be shown that contains the reason and the class will be automatically reopened in the default text editor. A low-code
editor tab will behave the same as a text editor tab.

11.3 How They Work
This section describes how the low-code editors are integrated in VS Code to create a hassle-free editing experience. Note
that while low-code editors are supported for both client-side and server-side workflows, an active server connection is
required even when working client-side.

• VS Code sends your credentials to the editor so you don’t have to log in again.

• A save, undo, redo or revert action triggered by VS Code (via keyboard shortcuts, for example) will trigger the corre-
sponding action in the editor.

• When the state of the class changes from clean to dirty (or vice versa) in the editor, the underlying text document will
also be made dirty/clean.

• When the class is saved or compiled by the editor, VS Code will pull the changes from the server and update the text
document.

• If the objectscript.compileOnSave setting is enabled and the class was saved by the editor, the class will also
be compiled by the editor.

Note that the changes you make in the low-code editor are only synced to the underlying text document when you save
them in the editor. Therefore, it is strongly recommended that you only open and edit the document in one editor (text or
low-code) at once to avoid overwriting changes. The low-code editors provide support for server-side source control natively.
The underlying text document is kept in sync after saves so changes can be stored in client-side source control.

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      65

How They Work

https://code.visualstudio.com/docs/getstarted/userinterface#_tabs




12
Report an Issue

InterSystems ObjectScript for VS Code consists of three collaborating VS Code extensions. This modular architecture also
means there are three different GitHub repositories where issues can be created. Fortunately, VS Code provides a convenient
interface to help with the task. (Note: you must have a GitHub account to report an issue through GitHub.)

To create a GitHub issue from within the VS Code interface, perform the following steps:

1. From the Help menu in VS Code select Report Issue. Alternatively, open the Command Palette and run the Help: Report

Issue... command.

2. When the dialog appears, use the first drop-down menu to select the category which most closely describes the issue
you want to report. The menu provides the following options:

• Bug Report

• Feature Request

• Performance Issue

3. In the second drop-down menu, select An extension.

4. The third drop-down menu allows you to specify one of the extensions you have installed. You can type a few characters
to find the right entry. For example, isls quickly identifies InterSystems Language Server.

Which extension should you choose? Here is a guide:

• Select InterSystems Language Server for issues related to:

– code coloring

– Intellisense

• Select InterSystems ObjectScript for issues related to:

– export, import and compile

– ObjectScript Explorer (browsing namespace contents)

– direct server-side editing using isfs:// folders in a workspace

– integration with server-side source control etc

• Select InterSystems Server Manager for issues related to:

– InterSystems Server view

– password management in local keychain

– definition and selection of entries in intersystems.servers

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      67



If unsure, select InterSystems ObjectScript.

5. Enter a descriptive one-line summary of your issue. Based on the content of your summary, the dialog suggests a list
of existing issues which may be duplicates of your issue. If you don’t find an existing issue that covers yours, proceed.

6. Enter details regarding your issue. If VS Code is authenticated to GitHub, the dialog’s button is labelled Create on

GitHub; selecting this button will open the issue on Github and then load it in your browser so that you can edit it. If
VS Code is not authenticated to GitHub, the dialog’s button reads Preview on GitHub; selecting it launches a browser
page where you must complete and submit your report.

Here are some tips for using the GitHub page:

• Paste images from your clipboard directly into the report field. For hard-to-describe issues, an animated GIF or a
short MP4 provides invaluable help. The Developer:Toggle Screencast Mode feature within VS Code can help
you create a recording.

• Link to related issues by prefixing the target number with the # character.

• Remember that whatever you post here is visible to anyone on the Internet. Mask or remove any confidential
information. Be polite.

68                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Report an Issue



A
Settings Reference

The extensions in the InterSystems ObjectScript Extension Pack provide many settings that allow you to configure their
behavior. Below you will find a table containing all settings for each extension in the pack, as well as a short description,
the type of value they accept, the default value and any other notes that may be useful to you. Please see this VS Code
documentation page for more information about settings and how to change them.

A.1 InterSystems Language Server

NotesDefaultTypeDescriptionSetting

truebooleanControls whether
error diagnostics
are provided when
a class that is being
referred to doesn’t
exist in the
database.

"intersystems.language-server.diagnostics.classes"

truebooleanControls whether
strikethrough
warning diagnostics
are provided when
a class or class
member that is
being referred to is
deprecated.

"intersystems.language-server.diagnostics.deprecation"

truebooleanControls whether
warning diagnostics
are provided when
a class Parameter
has an invalid type
or the assigned
value of the
Parameter doesn’t
match the declared
type.

"intersystems.language-server.diagnostics.parameters"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      69

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings


NotesDefaultTypeDescriptionSetting

falsebooleanControls whether
error diagnostics
are provided when
a routine or include
file that is being
referred to doesn’t
exist in the
database.

"intersystems.language-server.diagnostics.routines"

Each array element
must be one of the
following values:
"COS", "SQL",
"CLS", "HTML",
"PYTHON", "XML",
"JAVA",
"JAVASCRIPT", or
"CSS".

[]arrayControls the
languages that
syntax error
diagnosics will be
suppressed for.

"intersystems.language-server.diagnostics.suppressSyntaxErrors"

truebooleanControls whether
diagnostics are
provided when a
deprecated or
superseded $ZUTIL
function is being
called.

"intersystems.language-server.diagnostics.zutil"

"word""upper", "lower",
or "word"

Controls the case
that ObjectScript
commands will be
changed to during
a document
formatting request.

"intersystems.language-server.formatting.commands.case"

"long""short" or "long"Controls the length
that ObjectScript
commands will be
changed to during
a document
formatting request.

"intersystems.language-server.formatting.commands.length"

falsebooleanControls whether
short class names
will be expanded to
include a package
during a document
formatting request.

"intersystems.language-server.formatting.expandClassNames"

70                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Settings Reference



NotesDefaultTypeDescriptionSetting

"upper""upper", "lower",
or "word"

Controls the case
that ObjectScript
system functions
and variables will
be changed to
during a document
formatting request.

"intersystems.language-server.formatting.system.case"

"long""short" or "long"Controls the length
that ObjectScript
system functions
and variables will
be changed to
during a document
formatting request.

"intersystems.language-server.formatting.system.length"

truebooleanControls whether
hover information is
provided for
ObjectScript
commands.

"intersystems.language-server.hover.commands"

truebooleanControls whether
hover information is
provided for
ObjectScript
preprocessor
directives.

"intersystems.language-server.hover.preprocessor"

truebooleanControls whether
hover information is
provided for
ObjectScript system
functions and
variables.

"intersystems.language-server.hover.system"

"ex"stringThe name of the
exception variable
inserted in a ‘Wrap
in Try/Catch’
refactor.

"intersystems.language-server.refactor.exceptionVariable"

This setting does
not affect
documentation for
macro
SignatureHelp
views, which is
always shown.

truebooleanControls whether
documentation for
a method is shown
when a
SignatureHelp is
active.

"intersystems.language-server.signaturehelp.documentation"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      71

InterSystems Language Server



NotesDefaultTypeDescriptionSetting

truebooleanControls whether
the extension will
suggest that one of
the InterSystems
default themes be
used if neither one
is active upon
extension
activation.

"intersystems.language-server.suggestTheme"

Any trace
information will be
logged to the
InterSystems
Language Server
Output channel.

"off""off",
"messages", or
"verbose"

Traces the
communication
between VS Code
and the language
server.

"intersystems.language-server.trace.server"

A.2 InterSystems ObjectScript

NotesDefaultTypeDescriptionSetting

falsebooleanAutomatically
preview XML export
files in UDL format.

"objectscript.autoPreviewXML"

falsebooleanAutomatically show
terminal when
connected to
docker-compose.

"objectscript.autoShowTerminal"

Common
compilation flags
are b (compile
dependent
classes), k (keep
generated source
code) and u (skip
related up-to-date
documents). For
descriptions of all
available flags and
qualifiers, click
here.

"cuk"stringCompilation flags."objectscript.compileFlags"

truebooleanAutomatically
compile an
InterSystems file
when saved in the
editor.

"objectscript.compileOnSave"

72                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Settings Reference

https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=RCOS_vsystem_flags_qualifiers


NotesDefaultTypeDescriptionSetting

See Configuring a
Server Connection
for more details on
configuring server
connections.

undefinedobjectConfigures the
active server
connection.

"objectscript.conn"

undefinedstringInterSystems
server’s
namespace to use.

"objectscript.conn.ns"

falsebooleanShould the
connection be
active on startup.

"objectscript.conn.active"

undefinedstringInterSystems
server’s user name.

"objectscript.conn.username"

For security
reasons,
InterSystems
recommends that
you do not specify
your password in a
config file.

undefinedstringInterSystems
server’s password.

"objectscript.conn.password"

Specify only "ns"
and "active"
when using this
setting. See the
Server Manager
README for more
details.

undefinedstringInterSystems
server’s name in
Server Manager
settings from which
to get connection
info.

"objectscript.conn.server"

undefinedobjectConfigures the
active server port
using information
from a file which
must be named
docker-compose.yml

in the project’s root
directory.

"objectscript.conn.docker-compose"

undefinedstringInterSystems
service’s name in
docker-compose.yml.

"objectscript.conn.docker-compose.service"

undefinedobjectInterSystems
service’s internal
port in
docker-compose.yml.

"objectscript.conn.docker-compose.internalPort"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      73

InterSystems ObjectScript

https://github.com/intersystems-community/intersystems-servermanager
https://github.com/intersystems-community/intersystems-servermanager


NotesDefaultTypeDescriptionSetting

truebooleanShow inline Copy

Invocation

CodeLens action
for ClassMethods
and Routine Labels.

"objectscript.debug.copyToClipboard"

truebooleanShow inline Debug

CodeLens action
for ClassMethods
and Routine Labels.

"objectscript.debug.debugThisMethod"

falsebooleanAlways show the
server copy of a
document opened
from the
InterSystems
Explorer.

"objectscript.explorer.alwaysShowServerCopy"

undefinedobjectConfigures the files
that the Export Code

from Server

command will
export from the
server to the local
workspace folder.

"objectscript.export"

falseboolean or objectAdd a category
folder to the
beginning of the
export path.

"objectscript.export.addCategory"

This setting only
affects classes,
routines, include
files and DFI files.

truebooleanExport source code
as Atelier did it, with
packages as
subfolders.

"objectscript.export.atelier"

"*"string or objectCategory of source
code to export: CLS
= classes; RTN =
routines; CSP = csp
files; OTH = other.
Default is * = all.

"objectscript.export.category"

falsebooleanDo not rewrite the
local file if the
content is identical
to what came from
the server.

"objectscript.export.dontExportIfNoChanges"

74                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Settings Reference



NotesDefaultTypeDescriptionSetting

The filter is applied
to document names
using the LIKE
predicate (i.e. Name
LIKE

'exactFilter').
If provided,
objectscript.export.filter

is ignored.

""stringSQL filter to limit
what to export.

"objectscript.export.exactFilter"

The filter is applied
to document names
using the LIKE
predicate (i.e. Name
LIKE

'%filter%').

""stringSQL filter to limit
what to export.

"objectscript.export.filter"

This setting is
relative to the
workspace folder
root.

"src"stringFolder for exported
source code within
workspace.

"objectscript.export.folder"

falsebooleanExport generated
source code files,
such as INTs
generated from
classes.

"objectscript.export.generated"

For example, {
\"%(.*)\":

\"_$1\" } to
make % classes or
routines use
underscore prefix
instead.

{}objectMap file names
before export, with
regexp pattern as a
key and
replacement as a
value.

"objectscript.export.map"

truebooleanExport source code
files mapped from a
non-default
database.

"objectscript.export.mapped"

0 = unlimited0numberMaximum number
of concurrent export
connections.

"objectscript.export.maxConcurrentConnections"

Can be useful when
working across
multiple systems.

falsebooleanStrip the storage
definition on export.

"objectscript.export.noStorage"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      75

InterSystems ObjectScript

https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RSQL_like
https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RSQL_like
https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RSQL_like
https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RSQL_like


NotesDefaultTypeDescriptionSetting

Has no effect if the
InterSystems
Language Server
extension is
installed and
enabled.

"word""upper", "lower",
or "word"

Case for
commands.

"objectscript.format.commandCase"

Has no effect if the
InterSystems
Language Server
extension is
installed and
enabled.

"word""upper", "lower",
or "word"

Case for system
functions and
system variables.

"objectscript.format.functionCase"

truebooleanAutomatically save
a client-side
InterSystems file on
the server when
saved in the editor.

"objectscript.importOnSave"

Only supported on
IRIS 2019.1.2,
2020.1.1+,
2021.1.0+ and
subsequent
versions! On all
other versions, this
setting will have no
effect.

falsebooleanList method
arguments on
multiple lines, if the
server supports it.

"objectscript.multilineMethodArgs"

falsebooleanAutomatically
collapse all class
member folding
ranges when a
class is opened for
the first time.

"objectscript.openClassContracted"

falsebooleanOverwrite a
changed server
version without
confirmation when
importing the local
file.

"objectscript.overwriteServerChanges"

76                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Settings Reference



NotesDefaultTypeDescriptionSetting

Default extensions:
["csp","csr","ts","js","css","scss","sass","less","html","json","md","markdown","png","svg","jpeg","jpg","ico","xml","txt"]

[]string arrayWhen browsing a
virtual workspace
folder that has a
project query
parameter, all files
with these
extensions will be
automatically
treated as web
application files.
Extensions added
here will be
appended to the
default list and
should NOT include
a dot.

"objectscript.projects.webAppFileExtensions"

falsebooleanPrevent server-side
source control
‘other action’
triggers from firing.

"objectscript.serverSourceControl

.disableOtherActionTriggers"

truebooleanShow the
InterSystems
Explorer view.

"objectscript.showExplorer"

truebooleanControls whether a
badge is shown in
the file explorer and
open editors view
for generated files.

"objectscript.showGeneratedFileDecorations"

truebooleanControls whether a
prompt to enable
VS Code proposed
APIs is shown
when a server-side
workspace folder is
opened.

"objectscript.showProposedApiPrompt"

Actions will be
logged to the
ObjectScript Output
channel.

falsebooleanLog the action that
VS Code should
perform as
requested by the
server, in JSON
format.

"objectscript.studioActionDebugOutput"

falsebooleanSuppress popup
messages about
errors during
compile, but still
focus on Output
view.

"objectscript.suppressCompileErrorMessages"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      77

InterSystems ObjectScript



NotesDefaultTypeDescriptionSetting

truebooleanSuppress popup
messages about
successful compile.

"objectscript.suppressCompileMessages"

"_autoload"stringCustomize the
name of the
subdirectory used
to autoload
resources which
are required by
client-side unit
tests.

"objectscript.unitTest.autoload.folder"

truebooleanControl whether the
autoload feature for
client-side unit tests
loads UDL files (.cls,
.mac, .int, .inc).

"objectscript.unitTest.autoload.udl"

truebooleanControl whether the
autoload feature for
client-side unit tests
loads XML files.

"objectscript.unitTest.autoload.xml"

[]string arraySpecify paths to
where client-side
test classes are
stored, relative to
the workspace’s
root directory.

"objectscript.unitTest.relativeTestRoots"

truebooleanControl whether
console output is
shown for unit tests.

"objectscript.unitTest.showOutput"

truebooleanEnable syntax
coloring for
command input in
the InterSystems
WebSocket
Terminal.

"objectscript.webSocketTerminal.syntaxColoring"

78                                                      Use Visual Studio Code as a Development Environment for InterSystems Applications

Settings Reference



A.3 InterSystems Server Manager

NotesDefaultTypeDescriptionSetting

See Configuring a
Server for more
details on
configuring servers.

undefinedobjectInterSystems
servers that other
extensions connect
to. Each property of
this object names a
server and holds
nested properties
specifying how to
connect to it.

"intersystems.servers"

Use Visual Studio Code as a Development Environment for InterSystems Applications                                                      79

InterSystems Server Manager




	Table of Contents
	1 Introduction
	2 Installation
	2.1 Install VS Code
	2.2 Install the InterSystems ObjectScript Extensions

	3 Migrate from Studio
	3.1 Server-Side Editing
	3.2 Server-Side Source Control
	3.3 Server-Side Projects
	3.4 Accurate Syntax Coloring
	3.5 Import Server Definitions Command
	3.6 Load Studio Snippets Command
	3.7 Load Studio Syntax Colors Command
	3.8 New File Commands
	3.9 Keyboard Shortcuts

	4 Get Acquainted with the User Interface for the InterSystems VS Code Extensions
	4.1 Explorer View Context Menu Enhancements
	4.2 InterSystems View Container
	4.2.1 InterSystems Servers
	4.2.2 ObjectScript Explorer

	4.3 Server Connection Status Bar

	5 Configure the InterSystems VS Code Extensions
	5.1 Settings
	5.2 Configure Your Workspace for an InterSystems Project
	5.2.1 settings.json
	5.2.2 launch.json
	5.2.3 Multi-Root Workspaces and Server-Side Editing

	5.3 Configuring a Server
	5.3.1 Editing a Server Configuration
	5.3.2 Establish an HTTPS Connection Using a Self-Signed Certificate

	5.4 Configuring a Server Connection
	5.4.1 Editing a Server Connection

	5.5 Add Custom Entries to the Server Actions Menu

	6 Develop ObjectScript Unit Tests
	6.1 Prerequisites
	6.2 Setup
	6.2.1 How the Extension Locates Your Unit Tests
	6.2.2 Autoload Client-Side Resources

	6.3 Run and Debug Your Unit Tests
	6.3.1 View Test Results


	7 Running and Debugging
	7.1 Debug Configurations
	7.2 Starting a Debugging Session
	7.3 Debugging a REST Service
	7.4 Troubleshooting Debugger Issues
	7.5 Using the WebSocket Terminal
	7.5.1 Troubleshooting WebSocket Terminal Issues


	8 Server-Side Editing
	8.1 Configuring for Server-Side Editing
	8.2 Configuring Storage for Folder-Specific Settings
	8.3 Web Application (CSP) Files
	8.4 Filters and Display Options
	8.5 Advanced Workspace Configurations

	9 Work with Projects
	9.1 Why Projects
	9.2 InterSystems Projects Explorer
	9.3 Creating Projects
	9.4 Modifying Projects
	9.4.1 Add to Project UI

	9.5 Deleting Projects
	9.6 Editing Project Contents Server-Side
	9.7 Editing Project Contents Client-Side
	9.8 Notes

	10 Import and Export InterSystems Documents as XML Files
	10.1 Export Documents as an XML File
	10.2 Import Documents from an XML File

	11 Low-Code Editors
	11.1 Supported Editors
	11.2 Opening a Low-Code Editor
	11.3 How They Work

	12 Report an Issue
	Appendix A: Settings Reference
	A.1 InterSystems Language Server
	A.2 InterSystems ObjectScript
	A.3 InterSystems Server Manager

	Index

