
Using the InterSystems
Kubernetes Operator (Version

3.3)

2024-05-06

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the InterSystems Kubernetes Operator (Version 3.3)
InterSystems IRIS Data Platform 2024-05-06
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Using the InterSystems Kubernetes Operator (Version 3.3).. 1

1 Why would I use Kubernetes? ... 1
2 Why do I need the InterSystems Kubernetes Operator? ... 1
3 Start with your use case ... 2
4 Plan your deployment .. 2
5 Learn to speak Kubernetes .. 3
6 Choose a platform and understand the interface ... 3
7 Deploy a Kubernetes container cluster to host the IrisCluster .. 3
8 Upgrade Helm if necessary ... 4
9 Download the IKO archive and upload the extracted contents to Kubernetes 4
10 Locate the IKO image ... 4
11 Create a secret for IKO image pull information .. 5
12 Update the values.yaml file ... 5
13 Install the IKO ... 6
14 Define the IrisCluster topology ... 6
15 Plan persistent volumes ... 7
16 Create the IrisCluster definition file .. 7

16.1 Review the IrisCluster custom resource definition (CRD) ... 9
16.2 Review the sample IrisCluster definition file .. 12
16.3 apiVersion: Define the IrisCluster ... 14
16.4 licenseKeySecret: Provide a secret containing the InterSystems IRIS license key 14
16.5 configSource: Create configuration files and provide a config map for them 16
16.6 imagePullSecrets: Provide a secret containing image pull information 20
16.7 storageClassName: Create a default class for persistent storage 21
16.8 updateStrategy: Select a Kubernetes update strategy .. 21
16.9 volumeClaimTemplates: Define persistent storage volumes .. 22
16.10 volumes: Request ephemeral storage volumes .. 22
16.11 serviceTemplate: Create external IP addresses for the cluster 22
16.12 topology: Define the cluster nodes .. 23
16.13 data: Define sharded cluster data notes or standalone data server 24
16.14 compute: Define sharded cluster compute nodes or application servers 29
16.15 arbiter: Define arbiter for mirrored data nodes ... 30
16.16 webgateway: Define web server nodes ... 30
16.17 sam: Deploy System Alerting and Monitoring .. 32
16.18 iam: Deploy InterSystems API Manager ... 33

17 Deploy the IrisCluster ... 33
18 Connect to the IrisCluster .. 34
19 Troubleshoot IrisCluster deployment errors .. 35
20 Modify the IrisCluster ... 36
21 Upgrade the IrisCluster ... 37
22 Remove the IrisCluster .. 37

Using the InterSystems Kubernetes Operator (Version 3.3) iii

Using the InterSystems Kubernetes
Operator (Version 3.3)

This page explains how to use the InterSystems Kubernetes Operator (IKO) to deploy sharded clusters and other InterSystems
IRIS configurations on Kubernetes platforms.

1 Why would I use Kubernetes?
Kubernetes is an open-source orchestration engine for automating deployment, scaling, and management of containerized
workloads and services, and excels at orchestrating complex SaaS (software as a service) applications. You provision a
Kubernetes-enabled cluster and tell Kubernetes the containerized services you want to deploy on it and the policies you
want them to be governed by; Kubernetes transparently provides the needed resources in the most efficient way possible,
repairs or restores the configuration when problems with those resources cause it to deviate from what you specified, and
can scale automatically or on demand. In the simplest terms, Kubernetes deploys a multicontainer application in the config-
uration and at the scale you specify on any Kubernetes-enabled platform, and keeps the application operating exactly as
you described it.

2 Why do I need the InterSystems Kubernetes Operator?
In Kubernetes, a resource is an endpoint that stores a collection of API objects of a certain kind, from which an instance
of the resource can be created or deployed as an object on the cluster. For example, built-in resources include, among many
others, pod (a set of running containers), service (a network service representing an application running on a set of pods),
and persistent volume (a directory containing persistent data, accessible to the containers in a pod).

The InterSystems Kubernetes Operator (IKO) extends the resources built into the Kubernetes API with a custom resource
called IrisCluster, representing an InterSystems IRIS cluster. An instance of this resource — that is, a sharded cluster, or
a standalone InterSystems IRIS instance, optionally configured with application servers in a distributed cache cluster —
can be deployed on any Kubernetes platform on which the IKO is installed and benefit from all the features of Kubernetes
such as its services, role-based access control (RBAC), and so on.

The IrisCluster resource isn’t required to deploy InterSystems IRIS under Kubernetes. But because Kubernetes is application-
independent, you would need to create custom definitions and scripts to handle all the needed configuration of the InterSys-
tems IRIS instances or other components in the deployed containers, along with networking, persistent storage requirements,
and so on. Installing the IKO automates these tasks. By putting together a few settings that define the cluster, for example
the number of data and compute nodes, whether they should be mirrored, and where the Docker credentials needed to pull
the container images are stored, you can easily deploy your InterSystems IRIS cluster exactly as you want it. The operator
also adds InterSystems IRIS-specific cluster management capabilities to Kubernetes, enabling tasks like adding data or
compute nodes, which you would otherwise have to do manually by interacting directly with the instances.

Using the InterSystems Kubernetes Operator (Version 3.3) 1

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

3 Start with your use case
Before beginning your work with the IKO, examine your use case and answer these questions:

• Is containerized deployment of InterSystems IRIS and your application the best approach?

• Have you identified one or more suitable Kubernetes platforms on which to deploy your containerized InterSystems-
IRIS based application? For example, major public cloud platforms include Google Kubernetes Engine (GKE), Azure
Kubernetes Service (AKS), Amazon Elastic Container Service for Kubernetes (EKS), and Tencent Kubernetes Engine
(TKE), while platforms such as Red Hat OpenShift, Rancher Kubernetes Engine (RKE), and Docker Enterprise can
be used on any infrastructure.

• Which IrisCluster topology best suits your use case?

– A sharded cluster

The InterSystems IRIS sharding architecture can help you scale for data volume and optimize performance for
demanding workloads. A sharded cluster can consist of data nodes only, or also include compute nodes for
workload separation and increased query throughput. The data nodes can be mirrored for high availability or
nonmirrored.

– A distributed cache cluster

InterSystems IRIS distributed caching can help you scale for user volume by distributing application connections
across multiple application servers. The cluster’s data server can be mirrored or nonmirrored.

– A standalone instance

Many applications run on a single instance of InterSystems IRIS, which is often mirrored for high availability.

For detailed information about defining your IrisCluster’s topology, see Define the IrisCluster topology.

4 Plan your deployment
For the most beneficial results, it is important to fully plan the configuration of your sharded cluster, distributed cache
cluster, or standalone instance and its data, including:

• The number of data nodes in the sharded cluster and their configuration, such as their database cache size, the storage
used for their default databases, and so on); alternatively, the configuration of the single distributed cache data server
or single nonsharded instance.

• Whether the data nodes, data server, or nonsharded instance are to be mirrored for high availability

• Whether to include compute nodes in the sharded cluster for workload separation and increased query throughput, or
add application servers for a distributed cache cluster.

• The schema for the sharded and nonsharded data to be loaded onto the sharded cluster.

For detailed information about InterSystems IRIS sharded clusters, see Horizontally Scaling for Data Volume with Sharding
in the Scalability Guide. If you are instead deploying a distributed cache cluster, there is important information to review
in Horizontally Scaling for User Volume with Distributed Caching in the same guide.

2 Using the InterSystems Kubernetes Operator (Version 3.3)

Start with your use case

https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://aws.amazon.com/eks/
https://intl.cloud.tencent.com/product/tke
https://www.openshift.com/
https://rancher.com/products/rke/
https://docs.mirantis.com/docker-enterprise/v3.0/dockeree-products/dee-intro.html

5 Learn to speak Kubernetes
While it is possible to use the IKO if you have not already worked with Kubernetes, InterSystems recommends having or
gaining a working familiarity with Kubernetes before deploying with the IKO.

6 Choose a platform and understand the interface
When you have selected the Kubernetes platform you will deploy on, create an account and familiarize yourself with the
provided interface(s) to Kubernetes. For example, to use GKE on Google Cloud Platform, you can open a Google Cloud
Shell terminal and file editor to use GCP’s gcloud command line interface and the Kubernetes kubectl command line
interface. Bear in mind that the configuration of your Kubernetes environment should include access to the availability
zones in which you want to deploy the sharded cluster.

The instructions in this document provide examples of gcloud commands.

Note: The IKO is compatible with v1.16 of Kubernetes through v1.2, but InterSystems recommends that you use it on
v1.21 whenever possible.

7 Deploy a Kubernetes container cluster to host the
IrisCluster
The Kubernetes cluster is the structure on which your containerized services are deployed and through which they are
scaled and managed. The procedure for deploying a cluster varies to some degree among platforms. In planning and
deploying your Kubernetes cluster, bear in mind the following considerations:

• The IKO deploys one InterSystems IRIS or arbiter container (if a mirrored cluster) per Kubernetes pod, and attempts
to deploy one pod per Kubernetes cluster node when possible. Ensure that

– You are deploying the desired number of nodes to host the pods of your sharded cluster, including the needed
distribution across zones if more than one zone is specified (see below).

– The required compute and storage resources will be available to those nodes.

• If your sharded or distributed cache cluster is to be mirrored and you plan to enforce zone antiaffinity using the
preferredZones fields in the IrisCluster definition to deploy the members of each failover pair in separate zones
and the arbiter in an additional zone, the container cluster must be deployed in three zones. For example, if you plan
to use zone antiaffinity and are deploying the cluster using the gcloud command-line interface, you might select zones
us-east1-b,c,d and create the container cluster with a command like this:

$ gcloud container clusters create my-IrisCluster --node-locations us-east1-b,us-east1-c,us-east1-d

Using the InterSystems Kubernetes Operator (Version 3.3) 3

Learn to speak Kubernetes

https://kubernetes.io/docs/setup/
https://cloud.google.com/shell
https://cloud.google.com/shell
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/

8 Upgrade Helm if necessary
Helm packages Kubernetes applications as charts, making it easy to install them on any Kubernetes platform. Because the
IKO Helm chart requires Helm version 3, you must confirm that this is the version on your platform, which you can do by
issuing the command helm version. If you need to upgrade Helm to version 3, you can use the curl script at
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3. For example:

$ curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 6827 100 6827 0 0 74998 0 --:--:-- --:--:-- --:--:-- 75855
Helm v3.2.3 is available. Changing from version .
Downloading https://get.helm.sh/helm-v3.2.3-linux-amd64.tar.gz
gcloudPreparing to install helm into /usr/local/bin
helm installed into /usr/local/bin/helm

9 Download the IKO archive and upload the extracted
contents to Kubernetes
Obtain the IKO archive file, for example iris_operator-3.1.0.91.0-unix.tar.gz, from the InterSystems Worldwide Response
Center (WRC) download area download area and extract its contents. Next, upload the extracted directory, with the same
base name as the archive file (for example iris_operator-3.1.0.91.0) to the Kubernetes platform. This directory contains the
following:

• The image/ directory contains an archive file containing the IKO image.

• The chart/iris-operator directory contains the Helm chart for the operator.

• The samples/ directory contains template .yaml and .cpf files, as described later in this procedure.

• A README file, which recaps the steps needed to obtain and install the IKO.

10 Locate the IKO image
To install the IKO, Kubernetes must be able to download (docker pull) the IKO image. To enable this, you must provide
Kubernetes with the registry, repository, and tag of the IKO image and the credentials it will use to authenticate to the
registry. Generally, there are two approaches to downloading the image:

• The IKO image is available from the InterSystems Container Registry (ICR). Using the InterSystems Container Registry
lists the images currently available from the ICR, for example
containers.intersystems.com/iris-operator:3.1.0.91.0, and explains how to obtain login credentials
for the ICR.

4 Using the InterSystems Kubernetes Operator (Version 3.3)

Upgrade Helm if necessary

https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
https://wrc.intersystems.com/wrc/coDistGen.csp
https://wrc.intersystems.com/wrc/coDistGen.csp

• You can use Docker commands to load the image from the image archive you extracted from the IKO archive in the
previous step, then add it to the appropriate repository in your organization’s container registry, for example:

$ docker load -i iris_operator-3.1.0.91.0/image/iris_operator-3.1.0.91.0-docker.tgz
fd6fa224ea91: Loading layer [==>] 3.031MB/3.031MB

32bd42e80893: Loading layer [==>] 75.55MB/75.55MB

Loaded image: intersystems/iris-operator:3.1.0.91.0
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
intersystems/iris-operator 3.1.0.91.0 9a3756aed423 3 months ago 77.3MB
$ docker tag intersystems/iris-operator:3.1.0.91.0 kubernetes/intersystems-operator
$ docker login docker.acme.com
Username: pmartinez@acme.com
Pasword: **********
Login Succeeded
$ docker push kubernetes/intersystems-operator
The push refers to repository [docker.acme.com/kubernetes/intersystems-operator]
4393194860cb: Pushed
0011f6346dc8: Pushed
340dc52ed535: Pushed
latest: sha256:f483e14a1c6b7a13bb7ec0ab1c69f4588da2c253e8765232 size 77320

11 Create a secret for IKO image pull information
Kubernetes secrets let you securely and flexibly store and manage sensitive information such as credentials that you want
to pass to Kubernetes. When you want Kubernetes to download an image, you can create a Kubernetes secret of type
docker-registry containing the URL of the registry and the credentials needed to log into that registry to pull the
images from it. Create such a secret for the IKO image you located in the previous step. For example, if you pushed the
image to your own registry, you would use a kubectl command like the following to create the needed secret. The username
and password in this case would be your credentials for authenticating to the registry (docker-email is optional).

$ kubectl create secret docker-registry acme-pull-secret
 --docker-server=https://docker.acme.com --docker-username=*****
 --docker-password='*****' --docker-email=**********

12 Update the values.yaml file
In the chart/iris-operator directory, ensure that the fields in operator section near the top of the values.yaml file correctly
describe the IKO image you want to pull to install the IKO, for example:

operator:
 registry: docker.acme.com/kubernetes
 repository: intersystems-operator
 tag: latest

Further down in the file, in the imagePullSecrets section, provide the name of the secret you created to hold the cre-
dentials for this registry, for example:

imagePullSecrets:
 name: acme-pull-secret

Using the InterSystems Kubernetes Operator (Version 3.3) 5

Create a secret for IKO image pull information

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/reference/kubectl/overview/

13 Install the IKO
Use Helm to install the operator on the Kubernetes cluster. For example, on GKE you would use the following command:

$ helm install intersystems iris_operator-3.1.0.91.0/chart/iris-operator
NAME: intersystems
LAST DEPLOYED: Mon Jun 15 16:43:21 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
To verify that InterSystems Kubernetes Operator has started, run:
 kubectl --namespace=default get deployments -l "release=intersystems, app=iris-operator"

Add the --watch option to the command so you can wait until the status of the operator changes to ready:

$ kubectl get deployments -l "release=intersystems, app=iris-operator" --watch
NAME READY UP-TO-DATE AVAILABLE AGE
intersystems-iris-operator 0/1 1 0 30s
NAME READY UP-TO-DATE AVAILABLE AGE
intersystems-iris-operator 1/1 1 1 60s

Note: Because the IKO is designed to support as wide a variety of Kubernetes environments as possible, you may see
warnings regarding deprecated elements, such as the following, during the installation process:

W0616 10:23:55.628201 622222 warnings.go:67] apiregistration.k8s.io/v1beta1
 APIService is deprecated in v1.19+, unavailable in v1.22+;
 use apiregistration.k8s.io/v1 APIService

These warnings can be safely ignored.

14 Define the IrisCluster topology
An IrisCluster can be deployed as a sharded cluster, a distributed cache cluster, or a standalone InterSystems IRIS instance.
All three topologies can be mirrored. Compute nodes can optionally be added to a sharded cluster, and application servers
are added to a standalone instance to create a distributed cache cluster. As described in detail in the following section, the
topology deployed, including additional node types that can be added, is determined by the node definitions in the topology
section of the definition file, as follows:

• If the data node definition (topology/data) contains the shards field, a sharded cluster is deployed, with the
number of data nodes specified by shards. Otherise, a standalone instance is deployed.

• If the mirrored field is included in data with the value True, the data nodes or standalone instance are mirrored;
otherwise, they are nonmirrored. When deploying mirrored nodes, you can add an arbiter node using the
topology/arbiter definition.

• Compute nodes can be added to a sharded cluster using topology/compute. If a standalone instance is deployed,
use compute to add application servers, making it the data server of a distributed cache cluster.

• Web server nodes, each of which hosts a web server and the InterSystems Web Gateway, can be added to your
IrisCluster using the webgateway definition.

6 Using the InterSystems Kubernetes Operator (Version 3.3)

Install the IKO

Important: Best practices for both sharded and distributed cache clusters include distributing application query
connections across multiple InterSystems IRIS nodes. While an IrisCluster does not include a Kuber-
netes-based mechanism for this on deployment, deployed web server nodes do provide such a mecha-
nism, since the InterSystems Web Gateway can distribute connections across multiple InterSystems
IRIS instances in its remote server pool (for more information, see Prepare the Web Gateway config-
uration file). For this reason, including one or more web server nodes is the simplest way to distribute
application connections in the recommended manner. You can, however, deploy a custom load balancer
on the Kubernetes cluster hosting the IrisCluster (which is easier on some Kubernetes platforms than
others) or use a third party-tool to distribute connections.

• You can also add the following types of nodes, using the appropriate definition within the topology section:

– InterSystems System Alerting and Monitoring (SAM), using the sam definition.

– InterSystems API Manager (IAM), using the iam definition.

15 Plan persistent volumes
Once you know which nodes will be included in your deployment, you can plan the required storage volumes.

Kubernetes provides the durable storage needed by containerized programs in the form of persistent volumes, which exist
independently of the individual pods that use them so that the data they store, for example application or custom configu-
ration data, remains accessible regardless of the status of any containers or pods. A persistent volume claim is a specification
for a persistent volume, including such characteristics as access mode, size, and storage class, that can be selected when
requesting one or more volumes.

The IKO provides predefined persistent volumes for data, compute, webgateway, sam, and iam nodes. Typically these
are sufficient for an IrisCluster deployment, but you may well want to increase the size of some of them from the default
of 2 GB based on your cluster planning process. You can override the size and/or other default characteristics of one or
more of the predefined volumes by modifying the appropriate specification in the node type definition — for example, the
storageDB specification for data, compute, and webgateway nodes.

You can also create custom persistent volume claims using the volumeClaimTemplates field, and specify them when
adding custom persistent volumes to data and compute nodes using the volumeMounts field.

16 Create the IrisCluster definition file
You are now ready to create your IrisCluster definition YAML file. The following sections provide:

• A listing of all fields defined in the IrisCluster custom resource definition (CRD) that can be used in a definition file.
Each field is linked to the information you need to use it. Required fields are indicated as such.

• The contents of the iris-sample.yaml file in the /Samples directory, which is a customizable sample IrisCluster definition
file containing commonly used fields. To assist you in selecting the ones you want to include, most of the contents are
commented out, with a brief explanation and with each field linked to the information about it, as in the CRD,

• An explanation of each field, suggestions for customizing it, and instructions for any actions you need to take before
using it, including creating needed Kubernetes objects. For example, the section about the licenseKeySecret field
explains that you must create a Kubernetes secret containing the InterSystems IRIS license key and then specify that
secret by name in the field.

Using the InterSystems Kubernetes Operator (Version 3.3) 7

Plan persistent volumes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Note: For each section of the definition, there are numerous other Kubernetes fields that can be included; this document
discusses only those specific to or required for an IrisCluster definition.

8 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

16.1 Review the IrisCluster custom resource definition (CRD)

Using the InterSystems Kubernetes Operator (Version 3.3) 9

Create the IrisCluster definition file

apiVersion: intersystems.com/v1alpha1
kind: IrisCluster
metadata:
 name: name
spec:
licenseKeySecret:

 name: name
configSource:

 name: name
imagePullSecrets:

 - name: name
 - ...
storageClassName: name
updateStrategy:

 type: {RollingUpdate|OnDelete}
volumeClaimTemplates:

 - metadata:
 name: nameN
 spec:
 accessModes:
 - {ReadWriteOnce|ReadOnlyMany|ReadWriteMany}
 resources:
 requests:
 storage: size

storageClassName: nameN
 - ...
volumes:

 - name: nameN
type:

typeName: name
 - ...
serviceTemplate:

 spec:
 type: LoadBalancer
 externalTrafficPolicy: Local
topology:
data:

image: registry/repository/image:tag
 [common InterSystems IRIS node fields, optional for all node types]

updateStrategy:
 type: {RollingUpdate|OnDelete}

preferredZones:
 - zoneN
 - ...

podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fields]
shards: N
mirrored: {true|false}
storage{DB|WIJ|Journal1|Journal2}:

 resources:
 requests:
 storage: size

storageClassName:
 mountPath: path

volumeMounts:
 - name: volumeClaimTemplateName
 mountPath: pathN
 - ...

compute:
image: containers.intersystems.com/intersystems/iris:2021.1.0.205

 see common InterSystems IRIS node fields in data definition
replicas: N
storage{DB|WIJ|Journal1|Journal2}:

 resources:
 requests:
 storage: size

storageClassName:
volumeMounts:

 - name: volumeClaimTemplateName
 mountPath: pathN
 - ...

arbiter:
image: containers.intersystems.com/intersystems/arbiter:2021.1.0.205.0

 see common InterSystems IRIS node fields in data definition
webgateway:

image: containers.intersystems.com/intersystems/webgateway:2021.1.0.205.0
 see common InterSystems IRIS node fields in data definition

type: {apache|nginx}
replicas: N
applicationPaths:

 - pathN
 - ...

alternativeServers: {FailOver|LoadBalancing}
storageDB:

10 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

 resources:
 requests:
 storage: spec

storageClassName:
sam:

image: containers.intersystems.com/intersystems/sam:1.0.0.115
 see common InterSystems IRIS node fields in data definition

storage{SAM|Grafana}:
 resources:
 requests:
 storage: spec

iam:
image: containers.intersystems.com/intersystems/iam:2.3.3.2–1

 see common InterSystems IRIS node fields in data definition
storagePostgres:

 resources:
 requests:
 storage: spec

Using the InterSystems Kubernetes Operator (Version 3.3) 11

Create the IrisCluster definition file

16.2 Review the sample IrisCluster definition file

12 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

uncommented fields deploy one InterSystems IRIS data server

WARNING: default password is not reset, to do so include
configSource below

include commented fields for purposes described; see documentation at
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=AIKO33_clusterdef_sample

update image tags (from ":tag") before using; see list of available images at
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_containerregistry

apiVersion: intersystems.com/v1alpha1
 kind: IrisCluster
 metadata:
 name: sample
 spec:

provide InterSystems IRIS license key if required
licenseKeySecret:
name: iris-key-secret

specify files used to customize the configurations of
InterSystems IRIS nodes, including passwordHash parameter
to set the default password, securing InterSystems IRIS
configSource:
name: iris-cpf

provide repository credentials if required to pull images
imagePullSecrets:
- name: iris-pull-secret

specify platform-specific storage class used to allocate storage
volumes (default: use platform-defined class)
storageClassName: iris-ssd-storageclass

select update strategy (default: RollingUpdate)
updateStrategy:
type: RollingUpdate

create external IP address(es)for the cluster; "type: LoadBalancer"
and "externalTrafficPolicy: Local" are recommended, but other values
may be required, depending on the cluster's environment
serviceTemplate:
spec:
type: LoadBalancer
externalTrafficPolicy: Local

define persistent volumes (to be mounted by "VolumeMounts:" in node definitions)
volumeClaimTemplates:
- metadata:
name: extra-disk
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi

define ephemeral volumes (to be mounted by "VolumeMounts:" in node definitions)
volumes:
- name: my-secret
secret:
secretName: my-secret
- name: my-config
configMap:
name: my-config

topology: defines node types to be deployed; only data: is required

topology:
data:
image: containers.intersystems.com/intersystems/iris:tag

deploy a sharded cluster of data nodes and (optionally) compute
nodes; if not included, "data:" definition in "topology:" deploys
a single data server, "compute:" adds application servers
shards: 2

deploy mirrored data nodes or data server (default: nonmirrored)
mirrored: true

override default size and other attributes of predefined storage
volumes for data nodes (additional volume names: storageWIJ,
storageJournal1, storageJournal2); can also be included in
"compute:" definition

Using the InterSystems Kubernetes Operator (Version 3.3) 13

Create the IrisCluster definition file

storageDB:
resources:
requests:
storage: 10Gi
storageClassName: my-storage-class

constrain nodes to platform-specific availability zones (can be
included in other node definitions)
preferredZones:
- us-east1-a
- us-east1-b

mount volumes defined in "volumeClaimTemplates:" (persistent), "volumes:" (ephemeral)
volumeMounts:
- mountPath: "/extra-disk"
name: extra-disk
- mountPath: "/my-secret"
name: my-secret
- mountPath: "/my-config"
name: my-config

deploy compute nodes, or application servers if "shards:"
not included; use "replicas:" to specify how many
compute:
image: containers.intersystems.com/intersystems/iris:tag
replicas: 2

deploy arbiter for mirrored data nodes (or data server)
arbiter:
image: containers.intersystems.com/intersystems/arbiter:tag

deploy webgateway (web server) nodes
webgateway:
image: containers.intersystems.com/intersystems/webgateway:tag
type: apache
replicas: 2
applicationPaths:
- /external
- /internal
alternativeServers: LoadBalancing

deploy System Alerting and Monitoring (SAM) with InterSystems IRIS
sam:
image: containers.intersystems.com/intersystems/sam:tag

deploy InterSystems API Manager (IAM) with InterSystems IRIS
iam:
image: containers.intersystems.com/intersystems/iam:tag

16.3 apiVersion: Define the IrisCluster

apiVersion: intersystems.com/v1alpha1
kind: IrisCluster
metadata:
 name: cluster-name
spec:

Required

The first four fields, which define the object you are defining, are required by Kubernetes.

Change the value of the name field in metadata to the name you want to give the IrisCluster.

The spec section contains the nested fields, required and optional, that make up the specification for an IrisCluster
deployment.

16.4 licenseKeySecret: Provide a secret containing the InterSystems IRIS
license key

 licenseKeySecret:
 name: name

14 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields

Optional

The licenseKeySecret field specifies a Kubernetes secret containing the InterSystems IRIS license key to be activated
in all of the InterSystems IRIS containers in the cluster.

Upload the sharding-enabled license key for the InterSystems IRIS images in your sharded cluster, and create a Kubernetes
secret of type generic to contain the key, allowing it to be mounted on a temporary file system within the container, for
example:

$ kubectl create secret generic iris-key-secret --from-file=iris.key

Note: If you are not deploying a sharded cluster but rather a configuration with a single data node (see Define the
IrisCluster topology), the license you use does not have to be sharding-enabled.

Finally, update the name field in licenseKeySecret with the name of the secret you created.

The licenseKeySecret field is optional. For example if you are deploying from an InterSystems IRIS Community
Edition image, you don’t need a license and can omit licenseKeySecret.

If you are including a sam node in your deployment, you can add an InterSystems System Alerting and Monitoring (SAM)
license to the secret you identify in the licenseKeySecret field. To do this, simply add another --from-file flag speci-
fying the SAM license (which must be called sam.key) to the kubectl create secret command, for example:

$ kubectl create secret generic iris-sam-key-secret --from-file=iris.key --from-file=sam.key

If you do not include an InterSystems IRIS license key — that is, you include only a SAM key — in the secret you specify
in the licenseKeySecret field, the data and compute nodes in the deployment will not start.

Using the InterSystems Kubernetes Operator (Version 3.3) 15

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Note: If you want to provide different licenses for the data and compute nodes, for example because you are
deploying an irishealth image on the data nodes and an iris image on the compute nodes, rather than using
the licenseKeySecret field, you can follow these steps:

1. Create two secrets of type generic, each containing one of the license keys, for example:

$ kubectl create secret generic data-secret --from-file=/data/iris.key
$ kubectl create secret generic compute-secret --from-file=/compute/iris.key

2. Create two ephemeral volumes using the volumes field, each holding one of the secrets, for example::

volumes:
 - name: data-secret
 secret:
 secretName: data-secret
 - name: compute-secret
 secret:
 secretName: compute-secret

3. In the topology definitions for both data and compute nodes, use the args field in the podTemplate
spec to specify the location of the key, and mount the appropriate ephemeral volume at that location using
the volumeMounts field, for example:

 topology:
 data:
 ...
 podTemplate:
 spec:
 args:
 - --key
 - /datasecret/key/iris.key
 ...
 volumeMounts:
 - mountPath: "/datasecret/key/"
 name: data-secret
 ...
 compute:
 ...
 podTemplate:
 spec:
 args:
 - --key
 - /computesecret/key/iris.key
 ...
 volumeMounts:
 - mountPath: "/computesecret/key/"
 name: compute-secret

This approach can be used more generally to supply varying read-only input data, such as secrets and config maps,
to the different node types.

16.5 configSource: Create configuration files and provide a config map for
them

 configSource:
 name: name

Optional

The configSource field specifies a Kubernetes config map containing one or more of the following:

• A configuration merge file called common.cpf used to customize the configurations of InterSystems IRIS cluster nodes
(data and compute) when deployed.

Important: For effective security, the common.cpf file (or both the data.cpf and compute.cpf files, below) should
include the passwordHash parameter to set the default InterSystems IRIS password.

16 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

• A configuration merge file called data.cpf used to further customize data nodes only; settings in this file override the
same settings in common.cpf.

• A configuration merge file called compute.cpf used to further customize compute nodes only; settings in this file
override the same settings in common.cpf.

• An InterSystems Web Gateway configuration file CSP.ini to be installed on webgateway (web server) nodes when
deployed. A CSP.conf web server-specific configuration file can also be included.

Important: All configuration merge (.cpf) files are optional, and they can be included in any combination. At least
one, however, should be included so that the default InterSystems IRIS password can be reset.

Some of the configuration performed by the IKO, for example mirror configuration, uses settings than can
be specified in merge files; any settings specified by the IKO override the same parameters set in user-
provided .cpf files.

Kubernetes config maps keep your containerized applications portable by separating configuration artifacts, such as these
files, from container image content. To use configuration merge files to customize the configurations of the IrisCluster’s
InterSystems IRIS nodes (data and compute), provide your own Web Gateway configuration file for the webgateway
nodes, or both, you should:

• Prepare the configuration merge files

• Set the default InterSystems IRIS password

• Prepare the Web Gateway configuration file

• Create the Kubernetes config map, and update the name field in configSource with the name of the config map
you created

16.5.1 Prepare the configuration merge files

The configuration parameter file, also called the CPF, defines the configuration of an InterSystems IRIS instance. On
startup, InterSystems IRIS reads the CPF to obtain the values for most of its settings. The configuration merge feature
allows you to specify a merge file that overwrites the values of one or more settings that in the default CPF that comes with
an instance when it is deployed. For details, see Automating Configuration of InterSystems IRIS with Configuration Merge.

To use configuration merge when deploying your IrisCluster, customize the template common.cpf, data.cpf, and compute.cpf

files provided in the samples/ directory by adding the CPF settings you want to apply to all InterSystems IRIS nodes, the
data nodes, and the compute nodes (if included) respectively. The provided common.cpf template file contains only a sample
passwordHash setting, described in the next section; the data.cpfand compute.cpf template files contain only a sample
SystemMode setting, which displays text on the InterSystems IRIS Management Portal.

For numerous helpful examples of parameters you might customize for several purposes, see Useful Parameters for Automated
Deployment in Automating Configuration of InterSystems IRIS with Configuration Merge. For example, the data nodes in
a sharded cluster must be configured to allocate a database cache of the appropriate size; Deploy Sharded Clusters in
“Useful Parameters” illustrates how you would add the [config] section globals parameter to the data.cpf file to configure
the database caches of the data nodes at the size you calculated. This is shown in the following, with a value of 20 GB (the
globals setting is in MB):

[StartUp]
SystemMode=my-IrisCluster
[config]
globals= 0,0,20480,0,0,0

16.5.2 Set the default InterSystems IRIS password

InterSystems IRIS is installed with several predefined user accounts, the initial password for which is SYS. For effective
security, it is important that this default password be changed immediately upon deployment of all InterSystems IRIS

Using the InterSystems Kubernetes Operator (Version 3.3) 17

Create the IrisCluster definition file

containers. For this reason, even if you have no other reason to provide configuration merge files (which are optional), you
should include at least a common.cpf containing the passwordHash parameter, as illustrated in the provided template
common.cpf, to reset the default password on all InterSystems IRIS nodes, for example:

[Startup]
PasswordHash=dd0874dc346d23679ed1b49dd9f48baae82b9062,10000,SHA512

InterSystems publishes through the ICR the intersystems/passwordhash image, from which you can create a container
that generates the hash for you; for more information about this, the passwordHash parameter, and the default password,
see Authentication and Passwords in Running InterSystems Products in Containers.

Important: The passwordHash parameter does not change the default password for the CSPSystem account, which is
used by InterSystems IRIS and the local Web Gateway instance installed with it to communicate with each
other, and by default provides management access to the Web gateway. For more information, see the
following section.

16.5.3 Prepare the Web Gateway configuration file

As described in Configure the Web Gateway in the Web Gateway Configuration Guide, the Web Gateway’s configuration
is managed using the Web Gateway management pages, but contained in the CSP.ini file (much as an InterSystems IRIS
instance’s configuration is contained in the iris.cpf file). The CSP.ini file you include in your config map, or the one generated
by the IKO if you do not include one, is automatically installed on every webgateway node deployed. If you have experience
with the Web Gateway, you can use a CSP.ini from an existing installation as a template and prepare one to be installed on
your webgateway nodes by the IKO. You can also supply your own CSP.conf file, which contains the Web Gateway’s
Apache or Nginx-specific configuration. Bear the following points in mind when deciding whether to provide your own
file.

• Populating the remote server pool a CSP.ini file

Because an IrisCluster does not include a Kubernetes-based mechanism for distributing application connections,
deployed web server (webgateway) nodes provide the only means of controlling this distribution within the
IrisCluster specification. (You can also deploy a custom load balancer on the Kubernetes cluster hosting the IrisCluster
or use a third party-tool to distribute connections.) For this reason, ensure that the remote server pool in the configuration
file, which specifies the InterSystems IRIS instances to which the Web Gateway directs incoming connections from
the web server, is populated according to the relevant best practice for distributing application connections, as follows:

– If the deployment is a sharded cluster and includes compute nodes, add all data and compute nodes to the pool; if
there are no compute nodes, add all data nodes.

– If the deployment is a distributed cache cluster, add all compute (application server) nodes to the pool.

– If the deployment is a standalone instance, it should be the only remote server in the pool.

Important: Web Gateway connections to mirrored data nodes are automatically mirror aware, that is, connections
are always to twhichever failover member is the current primary.

It is possible to populate the remote server pool before deployment because the names assigned to IrisCluster nodes
always follow the same pattern, which is clustername-nodetype-0. For example, in an IrisCluster called myCluster,
data node 1 of a sharded cluster, the data server of a distributed cache cluster, and a standalone instance would all be
called myCluster-data-0 unless mirrored, in which case the primary (as deployed) would be
myCluster-data-0-0 and the backup myCluster-data-0-1. Other nodes are named in the same format (except
that they cannot be mirrored), for example myCluster-compute-0. Therefore, if an IrisCluster of this name was a
sharded cluster with four mirrored data nodes, four compute nodes, an arbiter, and two webgateway nodes, they would
be named as shown in the following table. The data nodes that would go in the remote server pool in the Web Gateway
configuration file — that is, the deployed mirror primaries – are indicated by *; all of the compute nodes would be
added to the pool.

18 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ADOCK_iris_images_password_auth

myCluster-webgateway-0

myCluster-webgateway-0

myCluster-arbiter-0myCluster-compute-0

myCluster-compute-1

myCluster-compute-2

myCluster-compute-3

myCluster-data-0-0*

myCluster-data-0-1

myCluster-data-1-0*

myCluster-data-1-1

myCluster-data-2-0*

myCluster-data-2-1

myCluster-data-3-0*

myCluster-data-3-1

If you do not include a CSP.ini file in your config map, the IKO will generate one appropriate for the cluster and install
it on every webgateway node, populating the remote server pool as described in the foregoing. The IKO can also gen-
erate a CSP.conf file if you do not provide one.

Important: The CSP.ini file generated by the IKO does not include a SSL/TLS connection; this can be configured
on the Web Gateway management pages on the individual nodes.

• Updating the configuration of multiple Web Gateways

As described in Connect to the IrisCluster, the serviceTemplate field creates one or more Kubernetes services that
expose the first stateful set in the pod for each deployed node type to the network through external IP addresses. This
includes webgateway nodes, which means that if you have deployed just one, you can always access it management
pages to change its configuration by loading the URL http://external-ip:80/csp/bin/Systems/Module.cxw
in your browser. If you want to make configuration changes across multiple webgateway nodes, however, you have
three options:

– If you provided your own CSP.ini file, use the procedure described in Create a config map for the configuration
files for modifying the CSP.ini or .cpf files on deployed nodes.

– Create a similar service for each of the webgateway nodes that exposes it through an external IP address, then use
the URL above to make the changes on each node separately (but see the following item regarding the needed
management access credentials).

– Directly modify the CSP.ini file on each pod by using the kubectl exec command to open a shell or edit the file
within the container.

• Securing management access to the Web Gateway

The predefined CSPSystem account on an InterSystems IRIS instance is used for communication between an Inter-
Systems IRIS instance and the local InterSystems Web Gateway instance installed with it, and by default is used for
access to the local Web Gateway’s configuration through its management pages. For effective security, you must
change the default password for this account (along with the other predefined accounts) on both an InterSystems IRIS
instance and its local Web Gateway instance either as part of deployment or immediately after; Authentication and
Passwords in Running InterSystems Products in Containers provides details on this topic and instructions for making
these changes in an InterSystems IRIS container. In the case of a webgateway node deployed by the IKO, you must
independently secure management access, as follows:

– If you provide your own CSP.ini file, ensure that if CSPSystem (or any other predefined account) is specified as
the management access account, the password is not SYS; if it is, change it. You can also change the access cre-
dentials to any username and password you choose. Additionally, while the Web Gateway encrypts the management
access password in the CSP.ini file on first starting up, including it in plain text could expose it on disk or the
network, so the best practice is to make sure it is encrypted in the file you provide; you can do this after you change

Using the InterSystems Kubernetes Operator (Version 3.3) 19

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/services-networking/service/

it, if necessary, by starting up a local test Web Gateway instance with your configuration file in place, which
encrypts the password.

– The CSP.ini generated by the IKO if you do not provide one specifies CSPSystem/SYS as the management access
credentials; to change this, you must use either the second method described above for updating multiple Web
Gateway configurations (creating services) or the third (using kubectl exec).

• Securing Web Gateway connections to remote InterSystems IRIS servers

Each entry in a Web Gateway’s remote server pool includes credentials used to authenticate to the specified InterSystems
IRIS instance; these are the username and password of an account on the instance. If you provide your own CSP.ini,
ensure that the specified account is a secure one that does not use the default password (see Authentication and Pass-
words). You can then specify this account for each remote server in your CSP.ini; clearly it is simplest to use the same
account for all. The CSP.ini generated by the IKO if you do not provide one specifies _System/(blank) as the
management access credentials for each remote server; to change this (which you must for effective security), use
either the second method described above for updating multiple Web Gateway configurations (creating services) or
the third (using kubectl exec).

Considering the points above, for deployments that include multiple webgateway nodes, the flexibility and convenience
of providing the CSP.ini file and being able to modify and redistribute it as needed make this the recommended approach
in general.

16.5.4 Create a config map for the configuration files

Create a Kubernetes config map specifying the files, using a command like this:

$ kubectl create cm iris-cpf --from-file common.cpf --from-file data.cpf
 --from-file compute.cpf --from-file CSP.ini --from-file CSP.conf

You can then specify iris-cpf as the value for configSource. (If you did not create a config map, do not specify a
value for this field.)

Note: To modify the .cpf or CPS.ini files on deployed nodes, you can use this approach:

1. Edit the config map to make one or more changes to one or more of the files it contains, for example:

kubectl edit configmap iris-cpf

2. Delete the affected pod or pods, for example:

kubectl delete pod my-IrisCluster-data-0

3. Reapply the cluster definition, for example:

kubectl apply -f my-IrisCluster-definition.yaml

16.6 imagePullSecrets: Provide a secret containing image pull information

 imagePullSecrets:
 - name: name
 - ...

Optional

The imagePullSecrets field specifies one or more Kubernetes secrets containing the URL of the registry from which
images to be pulled and the credentials required for access.

20 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

Kubernetes secrets let you securely and flexibly store and manage sensitive information such as credentials that you want
to pass to Kubernetes. To enable Kubernetes to download an image from a secure registry, you can create a Kubernetes
secret of type docker-registry containing the URL of the registry and the credentials needed to log into that registry.

Create another Kubernetes secret, like the one you created for the IKO image pull information, for the InterSystems IRIS
image and others you intend to deploy, such as arbiter, InterSystems Web Gateway, and so on. For example, if Kubernetes
will be pulling these images from the InterSystems Container Registry (ICR) as described in Obtain the IKO image, you
would use a command like the one shown below. The username and password in this case would be your ICR docker cre-
dentials, which you can obtain as described in Authenticating to the ICR in Using the InterSystems Container Registry
(docker-email is optional).

$ kubectl create secret docker-registry intersystems-pull-secret
 --docker-server=https://containers.intersystems.com --docker-username=*****
 --docker-password='*****' --docker-email=**********

Finally, update the name field in imagePullSecrets with the name of the secret you created; if you did not create one,
do not specify a value for this field. If you create multiple image pull secrets, you can specify multiple secret names in the
imagePullSecrets field.

If you include multiple secrets in imagePullSecrets because the images specified in multiple image fields in the def-
inition are in different registries, Kubernetes uses the registry URL in each image field to choose the corresponding image
pull secret. If you specify just one secret, it is the default image pull secret for all image pulls in the definition.

16.7 storageClassName: Create a default class for persistent storage

 storageClassName: name

Optional

Specifies the Kubernetes storage class to use by default for the predefined persistent volumes provided by the IKO and for
any custom persistent volumes you request, as described in Plan persistent volumes.

Storage class is one characteristic of a persistent volume that can be specified in the persistent volume claim that describes
it. Storage classes provide a way for administrators to describe the types of storage offered in a given Kubernetes environment.
For example, different classes (sometimes called “profiles” on other provisioning and deployment platforms) might map
to quality-of-service levels, backup policies, specialized hardware, or arbitrary policies germane to the deployments involved.
You can specify an existing storage class, or a new storage class you define in Kubernetes prior to deploying the cluster,
as the default for all persistent volumes in your IrisCluster by putting its name in the StorageClassName field. If you
do not specify a default, the default storage characteristics are specific to the Kubernetes platform you are using; consult
the platform documentation for details.

You can also override the default storage class (whether set by you in the storageClassName field or platform-specific)
for one or more of the predefined persistent volumes deployed with data, compute, webgateway, sam, and iam nodes by
adding the storageClassName field to the appropriate volume definition within the node type definition. To do this for
custom volumes you add to your deployment, you can include the storageClassName field either persistent volume
claims you define using the volumeClaimTemplates field or in persistent volumes you add to the data or compute
node definitions using the volumeMounts field.

Important: Any storage class you define must include Kubernetes setting volumeBindingMode:
WaitForFirstConsumer for correct operation of the IKO.

16.8 updateStrategy: Select a Kubernetes update strategy

 updateStrategy:
 type: RollingUpdate

Using the InterSystems Kubernetes Operator (Version 3.3) 21

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Optional

Specifies the update strategy that Kubernetes uses to update the stateful sets in the deployment. The value can be either
RollingUpdate (the default) or OnDelete. This setting can be overridden by using the updateStrategy field within
a node type definition in the topology section to specify the update strategy for that type of node only.

16.9 volumeClaimTemplates: Define persistent storage volumes

 volumeClaimTemplates:
 - metadata:
 name: nameN
 spec:
 accessModes:
 - {ReadWriteOnce|ReadOnlyMany|ReadWriteMany}
 resources:
 requests:
 storage: size

storageClassName: nameN
 - ...

Optional

Defines one or more persistent volume claims to be used to create persistent storage volumes (see Plan persistent volumes),
which can be mounted on data or compute nodes using the volumeMounts field. Any field from the Kubernetes persistent
volume claim spec can be included; for example, as shown, you can use resources to override the default volume size,
and storageClassName to override the deployment’s default storage class. However, the only required settings is the
name of the template in the metadata section, as all of the others that must be defined have defaults.

When you do specify volume size in the storage field, it can be in any unit between kilobytes and exabytes

16.10 volumes: Request ephemeral storage volumes

 volumes:
 - name: nameN

type:
typeName: name

 - ...

Optional

Specifies one or more ephemeral storage volumes, which are mounted on data or compute nodes using the volumeMounts
field. An ephemeral volume stores data that is used by an application but (unlike a persistent volume) does not need to
persist across restarts, for example read-only input such as configuration data and licenses. (For an example of using
ephemeral volumes to provide such data, see licenseKeySercret.) Because ephemeral volumes are created and deleted
along with pods, pods using them can be stopped and restarted without having to maintain access to a particular persistent
volume. There are several types of ephemeral volume, including configMap, secret, emptyDir, and others.

Important: Volume names provided must be unique across the volumeClaimTeplates and volumes fields; if
there are volumes of either type with duplicate names, an error will occur when Kubernetes attempts to
mount one of them as specified in the volumeMounts field.

16.11 serviceTemplate: Create external IP addresses for the cluster

 serviceTemplate:
 spec:
 type: LoadBalancer
 externalTrafficPolicy: Local

Optional

22 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#updating-statefulsets
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#setting-requests-and-limits-for-local-ephemeral-storage
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

Provides access to the IrisCluster deployment by defining one or more Kubernetes services, which expose an application
running on a set of pods by assigning an external IP address. At a minimum, the serviceTemplate field creates an
external IP address assigned to one of the pods in the first stateful set managing data node pods, which is used to connect
requests with the InterSystems IRIS superserver and web server ports (1972 and 52773, respectively) for all connections
to the cluster for data ingestion, queries, and other purposes. For example, the external IP can be used to access the Man-
agement Portal on the exposed data node, as described in Connect to the IrisCluster.

Important: For information about distributing application (query) connections to the recommended nodes within the
deployment (and about IrisCluster node names), see Prepare the Web Gateway configuration file.

The data node exposed by this service is selected as follows.

• If the deployment is a sharded cluster, the service exposes data node 1, that is, the node named clustername-data-0
if the data nodes are not mirrored. If the data nodes are mirrored, the service exposes the deployed primary of data
node 1, clustername-data-0-0, but because all connections to sharded cluster data nodes are mirror aware, the IP
address always represents the current primary.

• If the deployment is a distributed cache cluster or standalone instance, the service exposes clustername-data-0 if
the single data node is not mirrored. If the data node is mirrored:

– If an arbiter node is included in the deployment, the service is mirror aware and exposes the current primary,
for example either clustername-data-0-0 or clustername-data-0-1.

– If an arbiter node is not included in the deployment, the service is not mirror aware and therefore exposes the
deployed primary, clustername-data-0-0, which means that the IP address will not follow failover. For this
reason, InterSystems strongly recommends that you always deploy an arbiter with a mirrored distributed cache
cluster or standalone instance.

Note: Ccompute node (application server) connections to the mirrored data nodes in a sharded cache cluster
are always mirror aware.

Other services and external IP addresses created, if applicable, represent the first pod in the first stateful set managing
webgateway pods, sam pods, and iam pods, if these nodes are included in the IrisCluster; see Connect to the IrisCluster
for connection information.

Note: The values LoadBalancer for type: and Local for externalTrafficPolicy (as shown) are recommended,
but other values may be required, depending on the cluster’s environment.

16.12 topology: Define the cluster nodes

 topology:

Required

Specifies the details of the each type of cluster node to be deployed. As described in Define the IrisCluster topology, the
IrisCluster must have one or more data nodes, so the data section, defining the data nodes, is required; all other node types
are optional.

Using the InterSystems Kubernetes Operator (Version 3.3) 23

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

16.13 data: Define sharded cluster data notes or standalone data server

 data:
image: registry/repository/image:tag
updateStrategy:

 type: {RollingUpdate|OnDelete}
preferredZones:

 - zoneN
 - ...

podTemplate:
core.PodTemplateSpec

shards: N
mirrored: {true|false}
storage{DB|WIJ|Journal1|Journal2}:

 resources:
 requests:
 storage: spec
 mountPath

volumeMounts:
 - name: volumeClaimTemplateN
 mountPath: pathN
 - ...
 - name: volumeN
 mountPath: pathN
 - ...

Required

The data section defines the IrisCluster’s data nodes, of which there must be at least one. Only the image field is required
within the data section.

16.13.1 image:

 image: containers.intersystems.com/intersystems/iris:2021.1.0.205.0

Required

The image: field specifies the URL (registry, repository, image name, and tag) of the InterSystems IRIS image from
which to deploy data node containers. The example above specifies an InterSystems IRIS image from the InterSystems
Container Registry (ICR). The registry credentials in the secret specified by the imagePullSecrets field are used for access
to the registry.

Important: Two default settings in InterSystems IRIS containers deployed from the secure iris-lockeddown image
(see Locked Down InterSystems IRIS Container in Running InterSystems Products in Containers) prevent
InterSystems System Alerting and Monitoring (SAM) , if it is part of the deployment, from gaining access
to the instance, as follows:

• The instance’s private web server is disabled.

• The allowed authentication method for the /api/monitor web application is set to password authentication
rather than unauthenticated.

When a sam node is included in the deployment, the IKO ensures that it has access to the InterSystems
IRIS instances in all containers deployed from the secure iris-lockeddown image by enabling the
private web server and changing the authentication method for the /api/monitor web application to unau-
thenticated.

Another consequence of the private web server being disabled is that the Management Portal becomes
inaccessible. To enable the Management Portal for data nodes deployed from this image, so you can use
it to connect to data node 1 (or the single data server) as described in Connect to the IrisCluster, add the
setting webserver=1 to the data.cpf configuration merge file described in configSource: Create configu-
ration files and a config map for them.

24 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

16.13.2 updateStrategy:

 updateStrategy:
 type: {RollingUpdate|OnDelete}

Optional

Overrides the top level updateStrategy setting to specify the Kubernetes update strategy used for the stateful sets representing
this node type only. The value can be either RollingUpdate (the default) or OnDelete.

16.13.3 preferredZones:

 preferredZones:
 - zoneN
 - ...

Optional

Specifies the zone or zones in which data nodes should be deployed, and is typically used as follows:

• If mirrored is set to true and at least two zones are specified, Kubernetes is discouraged (but not prevented) from
deploying both members of a failover pair in the same zone, which maximizes the chances that at least one is available,
and is therefore the best practice for high availability. Bear the following mind, however:

– Deploying the members of a failover pair in separate zones is likely to slightly increase latency in the synchronous
communication between them.

– Specifying multiple zones for the data nodes means that all of the primaries might not be deployed in the same
zone, resulting in slightly increase latency in communication between the data nodes.

– Specifying multiple zones for data nodes generally makes it impossible to guarantee that nodes of other types
(compute, Web Gateway, SAM, IAM) are in the same zone as all of the data node primaries at any given time
regardless of your use of preferredZones in their definitions, increasing latency in those connections as well.

Under most circumstances these interzone latency effects will be negligible, but with some demanding workloads
involving high message or query volume, performance may be affected. If after researching the issue of interzone
connections on your Kubernetes platform and testing your application thoroughly you are concerned about this perfor-
mance impact, consider specifying a single zone for your mirrored data nodes.

Regardless of the zones you specify here, you should use the preferredZones field in the arbiter definition to
deploy the arbiter in a separate zone of its own, which also helps optimize mirror availability.

• The data nodes of an unmirrored cluster are typically deployed in the same zone to minimize latency. If mirrored:
false and your Kubernetes cluster includes multiple zones, you can use preferredZones to follow this practice
by specifying a single zone in which to deploy the data nodes.

• The value of the preferredZones: field in the compute definition, if included, should ensure that the compute
nodes are deployed in the same zone or zones as the data nodes to minimize latency (see Plan Compute Nodes in the
Scalability Guide).

Kubernetes attempts to deploy in the specified zones, but if this is not possible, deployment proceeds rather than failing.

16.13.4 podTemplate:

 podTemplate:
 spec:
 args:

Optional

Using the InterSystems Kubernetes Operator (Version 3.3) 25

Create the IrisCluster definition file

https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#updating-statefulsets
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Specifies overrides and additions to the default pod template applied to the data node pods (and to the pods of other node
types in their respective definitions). Because containers are run only within a pod on Kubernetes, a pod template can
specify the fields that define numerous Kubernetes entities, including the fields defining a container, which makes it useful
for many purposes. Several examples of using containers: fields are provided in the following:

• Prevent InterSystems IRIS from starting up with the container.

You can use the args field in the pod template to specify options to the InterSystems IRIS entrypoint application,
iris-main. For example, if there is something wrong with the InterSystems IRIS configuration which prevents startup
from succeeding, iris-main exits, causing the pod to go into a restart loop, which makes it difficult or impossible to
diagnose the problem. You can prevent the instance from starting by adding the iris-main option --up false as follows:

podTemplate:
 spec:
 args:
 - --up
 - "false"

When you do this, the readiness probe will not be satisfied, and the deployment will be paused indefinitely:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-IrisCluster-data-0 0/1 Running 0 32s

After addressing the problem, you can do one of the following:

– Manually start the instance with a command like the following:

$ kubectl exec -it my-IrisCluster-data-0 -- iris start IRIS

– Remove the podTemplate override and redeploy the pod.

• Override the default liveness probe and readiness probe.

If you wanted to replace the default liveness probe and readiness probe for data nodes (or another node type), you
could specify something like the following in the applicable pod template:

podTemplate:
 spec:
 livenessProbe:
 exec:
 command:
 - /bin/true
 readinessProbe:
 httpGet:
 path: /csp/user/cache_status.cxw
 port: 52773

• Limit the number of CPU cores a data or compute node container can use in order to remain within the limits of the
InterSystems IRIS license in use; limit the memory containers can use for efficient resource distribution.

You can use the resources field in the pod template to both request and limit resources to be used by the containers
in the pod. In the following example, the pod starts with 256 MB of memory and 2 CPU cores, and is limited to 2 GB
of memory and 2 CPU cores:

podTemplate:
 spec:
 resources:
 requests:
 memory: "256Mi"
 cpu: "2"
 limits:
 memory: "2Gi"
 cpu: "2"

• Allocate huge pages on cluster nodes.

26 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/workloads/pods/#pod-templates
https://v1-21.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#container-v1-core
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

You can also use resources to allocate huge pages on InterSystems IRIS or other nodes:

podTemplate:
 spec:
 resources:
 requests:
 memory: "2Gi"
 limits:
 memory: "2Gi"
 hugepages-2Mi: "2Gi"

• Set a variable to use non-FQDN hostnames instead of FQDN hostnames.

By default, the IKO uses FQDN hostnames, for example
my-IrisCluster-data-0-0.iris-svc.us-west1.svc.cluster.local, because including the governing
service allows the hosts to find each other. Non-FQDN hostnames, however, are easier to read and may be required
in certain contexts (for example, when using custom DNS). The IKO provides a variable, ISC_USE_FQDN, which
when set to true (as it is by default) causes FQDN hostnames to be used. To use non-FQDN hostnames, you can set it
to false using the env field in the podTemplate of each node type you deploy, as follows:

podTemplate:
 spec:
 env:
 - name: ISC_USE_FQDN
 value: "false"

When you do this, the IKO creates a DNSConfig which adds the cluster domain to the DNS search space, allowing
pods to communicate with one another using non-FQDN hostnames, and configures non-FQDN hostnames for all
InterSystems IRIS node types (data, compute, arbiter, webgateway) for which you have set the variable to
false.

Important: The default pod template for data node and compute node pods includes a security context with the correct
settings for InterSystems IRIS containers. Bear in mind that adding security context fields to these or any
pod template could cause errors. For example, as described in Security for InterSystems IRIS Containers
in Running InterSystems Products in Containers, the InterSystems IRIS, arbiter, and Web Gateway instances
are installed by and must run as user irisowner/51773 in their respective containers, so adding the
security context field runAsUser with any other value would cause deployment of these containers to
fail. If you want to specify a security context for any of the pods in your IrisCluster deployment, be sure
to consult the documentation for the product involved and review all security mechanisms before doing
so.

16.13.5 shards:

 shards: N

Optional

Specifies the number of data nodes to be deployed as a sharded cluster. If the shards field is omitted, a single standalone
instance of InterSystems IRIS is deployed, optionally as the data server in a distributed cache cluster; for more information,
see Define the IrisCluster topology.

Data nodes can be added to the deployed cluster by increasing this setting and reapplying the definition (as described in
Modifying the IrisCluster), but the setting cannot be decreased .

16.13.6 mirrored:

 mirrored: {true|false}

Optional

Using the InterSystems Kubernetes Operator (Version 3.3) 27

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-dns-config
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Determines whether the data nodes in the deployment are mirrored.

If the value of mirrored: is true, two mirrored instances are deployed for each data node specified by the shards
field. For example, if shards: 4 and mirrored: true, eight data node instances are deployed as four failover pairs,
creating a mirrored sharded cluster with four data nodes. If mirrored: is true when shards is omitted, two mirrored
instances are deployed as a standalone InterSystems IRIS instance, which can optionally be the mirrored data server of a
distributed cache cluster; for details, see Define the IrisCluster topology.

The default for mirrored is false.

Important: Connections to mirrored data nodes within a sharded cluster are mirror aware — that is, they are made to
whichever member is currently primary, making failover transparent. This is also true of application server
connections to a mirrored data server in a distributed cache cluster, and of connections to a standalone
mirror through a webgateway node. If you deploy a standalone mirror that receives external connections
directly, however, these connections are not mirror-aware unless you include an arbiter node in the
deployment. Without an arbiter, connections are always to clustername-data-0-0, even if the mirror
has failed over to clustername-data-0-1.

A deployed cluster cannot be changed from unmirrored to mirrored, or mirrored to unmirrored, by changing
this setting and reapplying the definition (as described in Modifying the IrisCluster).

16.13.7 storage*:

 storage{DB|WIJ|Journal1|Journal2}:
 resources:
 requests:
 storage: size
 storageClassName: storage-class-name

Optional

Specify custom characteristics, such as size or storage class, for one or more of the four predefined persistent volumes
deployed with each data node, as follows:

• storageDB — The volume on which data is stored, including durable %SYS data.

• storageWIJ — The volume containing the WIJ directory.

• storageJournal1 — The volume containing the primary journal directory.

• storageJournal2 — The volume containing the alternate journal directory.

These predefined volumes are mounted in /irissys inside the container, and are 2 GB by default. In addition to specifying
a size override, you can include any other field from the Kubernetes persistent volume claim spec to override default
characteristics. For example, you can add storageClassName to override the deployment’s default storage class, as
shown.

When including a size override, the value of the storage field can be specified in any unit between kilobytes and exabytes.
The amount of data storage to be mounted on sharded cluster data nodes is determined during the cluster planning process
and should include a comfortable margin for the future growth of your workload. In addition to overriding the sizes of the
predefined volumes, you can use additional persistent volumes defined in the volumeClaimTemplates field and specified
in the volumeMounts field to ensure that sufficient storage is available to each data node.

The same four storage* fields can be used to modify the same predefined volumes in the compute node definition in
the same ways. These volumes are also 2 GB by default. The data storage for sharded cluster compute nodes or distributed
cache cluster application servers should be kept to a bare minimum to conserve resources, as these nodes do not store
application data, so size overrides of these volumes on compute nodes may be desirable.

28 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#configurations-for-local-ephemeral-storage

In the webgateway node definition you can override the characteristics of the single predefined volume, storageDB.
The default size of this volume is 32 MB. Predefined volumes are also deployed with sam and iam nodes, and you can
specify overrides for these in their respective definitions.

16.13.8 volumeMounts:

 volumeMounts:
 - name: volumeClaimTemplateN
 mountPath: pathN
 - ...

Optional

Specifies one or more persistent storage volumes, as defined in the volumeClaimTemplates field, and/or ephemeral
storage volumes, as specified in the volumes field, to be deployed with each data node, in addition to the predefined per-
sistent volumes. Each volume is defined by the name of one of the volume claim templates or volumes and a mountPath,
which is a direct reference to a location in the container’s filesystem, visible to the InterSystems IRIS instance, on which
to mount the volume.

The volumeMounts field can also be used to specify additional (typically ephemeral) volumes in the compute node
definition.

16.14 compute: Define sharded cluster compute nodes or application servers

 compute:
 image: containers.intersystems.com/intersystems/iris:2021.1.0.205
 [common InterSystems IRIS node fields, optional for all node types]

updateStrategy:
 type: {RollingUpdate|OnDelete}

preferredZones:
 - zoneN
 - ...

podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fields]
replicas: N
storage{DB|WIJ|Journal1|Journal2}:

 resources:
 requests:
 storage: spec

volumeMounts:
 - name: volumeN
 mountPath: pathN
 - ...
 - name: volumeClaimTemplateN
 mountPath: pathN
 - ...

Optional

The compute section defines the IrisCluster’s compute nodes. As described in Define the IrisCluster topology, if the
IrisCluster will be deployed as a sharded cluster (because the shards field is included in the data section), you can use
compute to add compute nodes to the cluster, but if a single data node will be deployed as a standalone instance because
shards is omitted, defining compute nodes adds application servers, creating a distributed cache cluster.

If the compute section is included, only the image and replicas fields are required. For information about the
remaining compute fields, see the data section.

16.14.1 image

image: containers.intersystems.com/intersystems/iris:2021.1.0.205

Required in optional compute: section

Compute nodes are deployed from the same InterSystems IRIS image as data nodes; an example is shown.

Using the InterSystems Kubernetes Operator (Version 3.3) 29

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/

16.14.2 replicas:

 replicas: N

Required in optional compute: section

Specifies the number of identical compute nodes to deploy. In a sharded cluster, this should be a multiple of the number
of data nodes specified by shards (for more information, see Plan Compute Nodes in the Scalability Guide).

Compute nodes can be added to or removed from the deployed IrisCluster by changing this setting and reapplying the
definition (as described in Modifying the IrisCluster).

The replicas field also appears in the webgateway section, where it specifies the number of InterSystems Web Gateway
(web server) nodes to deploy.

16.15 arbiter: Define arbiter for mirrored data nodes

 arbiter
image: containers.intersystems.com/intersystems/arbiter:2021.1.0.205.0

 [common InterSystems IRIS node fields, optional for all node types]
updateStrategy:

 type: {RollingUpdate|OnDelete}
preferredZones:

 - zoneN
podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fields]

Optional

The arbiter section defines an arbiter node to be deployed with a mirrored sharded cluster or data server. For general
information about the arbiter fields, see the data section, noting the following arbiter-specific information:

• The arbiter is deployed from an InterSystems arbiter image, an example of which is shown in the image field.

• Use the preferredZones field in the arbiter definition to deploy the arbiter in a separate zone from the data
node mirror members to optimize mirror availability.

Important: InterSystems strongly recommends including an arbiter node in a mirrored distributed cache cluster or
standalone instance deployment; for more information, see serviceTemplate: Create external IP addresses
for the cluster.

16.16 webgateway: Define web server nodes

 webgateway:
 image: containers.intersystems.com/intersystems/webgateway:2021.1.0.205.0
 [common InterSystems IRIS node fields, optional for all node types]

updateStrategy:
 type: {RollingUpdate|OnDelete}

preferredZones:
 - zoneN

podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fields]
storageDB:

 resources:
 requests:
 storage: spec
 type: {apache||nginx}
 replicas: N
 applicationPaths:
 - pathN
 - ...

Optional

30 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

The webgateway section defines the web server (webgateway) nodes to be deployed. Each webgateway node includes
the InterSystems Web Gateway, which provides the communications layer between the hosting web server and InterSystems
IRIS for web applications, and an Apache or Nginx web server. Multiple webgateway nodes can de deployed as a web
server tier for a sharded cluster, a distributed cache cluster, or a standalone instance, mirrored or unmirrored.

If the webgateway section is included, only the image and replicas fields are required unless image specifies a
webgateway-nginx or webgateway-lockeddown image, in which case you must also include type: nginx or
type: appache-lockeddown, respectively. For information about the remaining webgateway fields not discussed
here, see the data section, noting the following webgateway-specific information:

• Of the storage* fields listed for specifying storage overrides for the predefined volumes for data and compute
nodes, only storageDB can be used in the webgateway definition; the default size of the Web Gateway predefined
data volume (used for storing configuration and log files) is 32 MB.

• Depending on your circumstances, you may want to use preferredZones to locate your web server tier relative to
the data and compute nodes they connect to.

As previously described, the serviceTemplate field creates one or more Kubernetes services to expose the IrisCluster
to the network through external IP addresses. If you include webgateway nodes, an external IP address representing the
first pod in the first stateful set managing Web Gateway pods is created. This IP address can be used with the URL listed
in Connect to the IrisCluster to connect to the Web Gateway management pages on that node and review the Web Gateway
configuration, with any changes you make propagated to the other webgateway node, as described in Prepare the Web
Gateway configuration file.

Important: Although webgateway nodes are optional, deploying one or more is the simplest way to follow best practices
in distributing application connections to a sharded or distributed cache cluster and is therefore recom-
mended. For more information, see Prepare the Web Gateway configuration file

At this time, the IKO does not automatically expose all of the webgateway nodes to the network. To enable
load balancing of application connections across the web server tier, you can manually define a service
exposing the nodes, which on some platforms can include a load balancer.

16.16.1 image

image: containers.intersystems.com/intersystems/iris:2021.1.0.205

Required in optional webgateway: section

Use one of the following InterSystems images to deploy webgateway nodes:

• webgateway (as shown in the example) — Deploys an InterSystems Web Gateway instance and an Apache web
server.

• webgateway-nginx — Deploys a Web Gateway instance and an Nginx web server.

For information about these images and the differences between them, see Using the InterSystems Web Gateway Container
in Running InterSystems Products in Containers.

16.16.2 type:

 type: {apache|nginx}

Optional

Specifies deployment of an Apache web server or an Nginx web server (as described for the previous field); the default is
apache.

Using the InterSystems Kubernetes Operator (Version 3.3) 31

Create the IrisCluster definition file

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#defining-a-service
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/

Important: The image specified in the image field must match the value of the type field, or the webgateway nodes
will either fail to deploy or be inaccessible.

16.16.3 replicas:

 replicas: N

Required in optional webgateway: section

Specifies the number of identical webgateway nodes to deploy.

You can add webgateway nodes to, or remove them from, the deployed IrisCluster by changing this setting and reapplying
the definition (as described in Modifying the IrisCluster).

The replicas field also appears in the compute section, where it specifies the number of compute nodes to deploy.

16.16.4 applicationPaths:

 applicationPaths:
 - pathN
 - ...

Optional

Provides a list of application paths to configure in the Web Gateway. Application paths should not have a trailing slash,
and the path /csp is reserved.

16.16.5 alternativeServers:

 alternativeServers: {FailOver|LoadBalancing}

Optional

Selects the method by which the Web Gateway on each node determines which InterSystems IRIS server (that is, which
data node) in its remote server pool to connect to (see Load Balancing and Failover Between Multiple InterSystems IRIS
Server Instances in the Web Gateway Guide). Possible values are FailOver and LoadBalancing, with a default of
LoadBalancing.

16.17 sam: Deploy System Alerting and Monitoring

 sam:
image: containers.intersystems.com/intersystems/sam:1.0.0.115

 [common InterSystems IRIS node fields, optional for all node types]
updateStrategy:

 type: {RollingUpdate|OnDelete}
preferredZones:

 - zoneN
 - ...

podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fields]
storage{SAM|storageGrafana}:

 resources:
 requests:
 storage: spec

Optional

The sam section deploys System Alerting and Monitoring (SAM), a cluster monitoring solution for InterSystems IRIS data
platform, along with the selected InterSystems IRIS topology. For general information about the sam fields, see the data
section, noting the following SAM-specific information:

• SAM is deployed from an InterSystems sam image, an example of which is shown in the image field.

32 Using the InterSystems Kubernetes Operator (Version 3.3)

Create the IrisCluster definition file

https://docs.intersystems.com/sam/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM

• The storageSam and storageGrafana storage override fields in the sam section differ in name from those in the
data section, but function in the same way, providing the ability to override the sizes of the predefined volumes for
the SAM Manager container (storageSam) and the Grafana container (storageGrafana). (For information about
the SAM volumes, see SAM Component Breakdown in the System Alerting and Monitoring Guide.)

Important: In a sam node of version 1.0 deployed by the IKO (as shown above), whenever the underlying InterSystems
IRIS instance restarts, its default password is reset to SYS. A restart is triggered by any operation that
deletes and recreates the SAM pod, for example upgrading the IKO to a new version. When this happens,
users are not prompted to change the password when they log into the SAM dashboard, and are required
to change the password manually, for example using the InterSystems IRIS instance's Management Portal
to change the password for all of the predefined user accounts by editing them from the Users page (System

Administration > Security > Users).

This problem will be eliminated in the next release of SAM.

16.18 iam: Deploy InterSystems API Manager

 iam:
image: containers.intersystems.com/intersystems/iam:2.3.3.2–1

 [common InterSystems IRIS node fields, optional for all node types]
updateStrategy:

 type: {RollingUpdate|OnDelete}
preferredZones:

 - zoneN
 - ...

podTemplate:
core.PodTemplateSpec

 [end common InterSystems IRIS node fieldss]
storagePostgres:

 resources:
 requests:
 storage: spec

Optional

The iam section deploys the InterSystems API Manager (IAM), which enables you to monitor and control traffic to and
from web-based APIs, along with the selected InterSystems IRIS topology. For general information about the iam fields,
see the data section, noting the following IAM-specific information:

• The IAM is deployed from an InterSystems iam image, an example of which is shown in the image field.

• The storagepostgres storage override field in the iam section differs in name from those in the data section,
but functions in the same way, providing the ability to override the size of the predefined volume for the IAM container.

17 Deploy the IrisCluster
Once the definition file (for example my-IrisCluster-definition.yaml) is complete, deploy the IrisCluster with the following
command:

$ kubectl apply -f my-IrisCluster-definition.yaml
IrisCluster.intersystems.com/my-IrisCluster created

Using the InterSystems Kubernetes Operator (Version 3.3) 33

Deploy the IrisCluster

https://docs.intersystems.com/sam/csp/docbook/Doc.View.cls?KEY=ASAM#ASAM_deploy_components
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Because the IKO extends Kubernetes to add IrisCluster as a custom resource, you can apply commands directly to your
cluster. For example, if you want to see its status, you can execute the kubectl get command on the IrisCluster, as in the
following:

$ kubectl get IrisClusters
NAME DATA COMPUTE MIRRORED STATUS AGE
my-IrisCluster 2 2 true Creating 28s

Follow the progress of cluster creation by displaying the status of the pods that comprise the deployment, as follows:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
intersystems-iris-operator-6499fbbf4-s74lk 1/1 Running 1 1h23m
my-IrisCluster-arbiter-0 1/1 Running 0 36s
my-IrisCluster-data-0-0 0/1 Running 0 28s

...

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
intersystems-iris-operator-6499fbbf4-s74lk 1/1 Running 1 1h23m
my-IrisCluster-arbiter-0 1/1 Running 0 49s
my-IrisCluster-data-0-0 0/1 Running 0 41s
my-IrisCluster-data-0-1 0/1 ContainerCreating 0 6s

...

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
intersystems-iris-operator-6499fbbf4-s74lk 1/1 Running 1 1h35m
my-IrisCluster-arbiter-0 1/1 Running 0 10m
my-IrisCluster-compute-0 1/1 Running 0 10m
my-IrisCluster-compute-1 1/1 Running 0 9m
my-IrisCluster-data-0-0 1/1 Running 0 12m
my-IrisCluster-data-0-1 1/1 Running 0 12m
my-IrisCluster-data-1-0 1/1 Running 0 11m
my-IrisCluster-data-1-1 1/1 Running 0 10m

In the event of an error status for a particular pod, you can examine its log, for example:

$ kubectl logs my-IrisCluster-data-0-1

Note: In Kubernetes, a pod’s readiness probe is used to tell you when the services in deployed containers are fully started
and ready for operation. This is indicated by the status Running, as shown in the preceding. Whether your cluster
uses the default readiness probe or you specified another in the cluster definition, as described for the podTemplate
field, it is normal for the probe to fail the first two or three times it runs after a container starts up. As long as the
readiness probe succeeds soon thereafter, and all of the pods have the status Running, these initial failures do
not represent a problem and can safely be ignored.

18 Connect to the IrisCluster
As previously described, the serviceTemplate field creates one or more Kubernetes services to expose the IrisCluster
to the network through external IP addresses. For example, the service for data node 1, which is always created, is used to
connect to the superserver and web server ports (1972 and 52773, respectively) of the InterSystems IRIS instance running
on that node for data ingestion and other purposes.

Important: The IKO does not create a service that distributes application (query) connections to the recommended
nodes within the deployment; for information about doing so, see Prepare the Web Gateway configuration
file.

34 Using the InterSystems Kubernetes Operator (Version 3.3)

Connect to the IrisCluster

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#get
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/services-networking/service/

For example, to load the cluster’s Management Portal in your browser, get the data node 1 IP address by listing the services
representing the IrisCluster, as follows:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
my-IrisCluster LoadBalancer 10.35.245.6 35.196.145.234 1972:30011/TCP,52773:31887/TCP
 46m
my-IrisCluster-Webgateway LoadBalancer 10.35.245.9 35.196.145.177 52773:31887/TCP
 46m

Next, load the following URL in your browser, substituting the listed external IP address for the one shown here:

http://35.196.145.234:52773/csp/sys/UtilHome.csp

Other services and external IP addresses created, if applicable, represent the first pod in the first stateful set managing Web
Gateway pods, SAM pods, and IAM pods, if these nodes are included in the IrisCluster. The URLs (including ports) for
these connections are as follows:

URL including portService

http://external-ip:80/csp/bin/Systems/Module.cxwWeb Gateway, type={nginx|apache}

http://external-ip:8080/api/sam/app/index.cspSAM

http://external-ip:8002/overviewIAM

19 Troubleshoot IrisCluster deployment errors
The following kubectl commands may be particularly helpful in determining the reason for a failure during deployment.
Each command is linked to reference documentation at kubernetes.io, which provides numerous examples of these and
other commands that may also be helpful.

The podTemplate field can be useful in exploring deployment and startup errors; examples are provided in that section.

• kubectl explain resource

Lists the fields for the specified resource — for example node, pod, service, persistentvolumeclaim, storageclass, secret,
and so on— providing for each a brief explanation and a link to further documentation. This list is useful in understanding
the field values displayed by the commands that follow.

• kubectl describe resource [instance-name]

Lists the fields and values for all instances of the specified resource, or for the specified instance of that resource. For
example, kubectl describe pods shows you the node each pod is hosted by, the containers in the pod and the names
of their data volumes (persistent volume claims), and many other details such as the license key and pull secrets.

• kubectl get resource [instance-name] [options]

Without options, lists basic information for all instances of the specified resource, or for a specified instance of that
resource. However, kubectl get -o provides many options for formatting and selecting subsets of the possible output
of the command. For example, the command kubectl get IrisCluster -o yaml IrisCluster-name output option displays
the details fields by the .yaml definition file for the specified IrisCluster in the same format with their current values.
This allows you, for instance, to create a definition file matching an IrisCluster that has been modified since it was
created, as these modifications are reflected in the output.

• kubectl logs (pod-name | resource/instance-name) [-c container-name]

Using the InterSystems Kubernetes Operator (Version 3.3) 35

Troubleshoot IrisCluster deployment errors

https://kubernetes.io
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#explain
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#describe
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#get
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Displays the logs for the specified container in a pod or other specified resource instance (for example, kubectl logs
deployment/intersystems-operator-name). If a pod includes only a single container, the -c flag is optional. (For more
log information, you can use kubectl exec to examine the messages log of the InterSystems IRIS instance on a data
or compute node, as described in the next entry.)

• kubectl exec (pod-name | resource/instance-name) [-c container-name] -- command

Executes a command in the specified container in a pod or other specified resource instance. If container-name is not
specified, the command is executed in the first container, which in an IrisCluster pod is always the InterSystems IRIS
container of a data or compute node. For example, you could use kubectl exec in these ways:

– kubectl exec pod-name -- iris list

Displays information about the InterSystems IRIS instance running in the container.

– kubectl exec pod-name -- more /irissys/data/IRIS/mgr/messages.log

Displays the instance’s messages log.

– kubectl exec pod-name -it -- iris terminal IRIS

Opens the InterSystems Terminal for the instance.

– kubectl exec pod-name -it -- "/bin/bash"

Opens a command line inside the container.

Note: In Kubernetes, a pod’s readiness probe is used to tell you when the services in deployed containers are fully started
and ready for operation.Whether your cluster uses the default readiness probe or you specified another in the
cluster definition, as described for the podTemplate field, it is normal for the probe to fail the first two or three
times it runs after a container starts up. As long as the readiness probe succeeds soon thereafter, these initial failures
do not represent a problem and can safely be ignored.

20 Modify the IrisCluster
Generally speaking, you can make changes to your IrisCluster by modifying the definition file (using a change management
system to keep track of your modifications) and repeating the kubectl apply command shown in Deploy the IrisCluster.
For example, you can add data nodes, change the number of compute nodes (in a sharded cluster or distributed cache
cluster), add an arbiter to a mirrored cluster or standalone instance without one or remove the one you originally, add or
remove a SAM or IAM deployment, or change the number of webgateway nodes (but be sure to see important information
about this in the webgateway definition section). However, you cannot reduce the number of data nodes or change the
mirror status (mirrored or nonmirrored) of a deployment; other changes may produce unanticipated issues.

36 Using the InterSystems Kubernetes Operator (Version 3.3)

Modify the IrisCluster

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#exec
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Important: When you add data nodes or change the number of compute nodes, the remote server pools of the webgate-
way nodes (see Prepare the Web Gateway configuration file) are not automatically updated. However, you
can change the number of data and/or compute nodes and update the remote server pools to reflect this by
doing the following:

• Set webgateway/replicas to zero, delete the Web Gateway persistent volume claims (see Remove
the IrisCluster), and reapply the definition, thereby removing the webgateway nodes from the
IrisCluster.

• Delete the config map you previously created (as described in configSource: Create configuration
files and a config map for them) and create a new one; if you provide a CSP.ini file, it should have an
updated remote server pool to reflect your intended data and/or compute node changes. (You may be
doing this in any case to provide modified .cpf files.)

• Update data/shards and/or compute/replicas as well webgateway/replicas to the desired
values and reapplying the definition a second time to deploy the modified IrisCluster. If you did not
provide a CSP.ini file, the IKO generates a new one with the correct remote server pool.

• Update the Web Gateway configuration with the CSPSystem password of each of the instances in
the remote server pool, as described in Prepare the Web Gateway configuration file.

21 Upgrade the IrisCluster
To upgrade the InterSystems IRIS instances in an IrisCluster from version 2021.1 to version 2021.2 or later, follow these
steps:

1. Upgrade the IKO from version 3.1 to version 3.3 using the steps from Download the IKO archive and upload the
extracted contents to Kubernetes through Install the IKO, but in the last step substituting the helm upgrade command
for helm install, for example:

helm upgrade intersystems iris_operator-3.3.0.118.0/chart/iris-operator

2. Update the cluster definition file by replacing the InterSystems IRIS 2021.1 images with 2021.2 images in the image

fields in the data and (if applicable) compute sections.

3. Apply the change, for example:

kubectl apply -f my-IrisCluster-definition.yaml

Important: If more than a few seconds elapse between step 1 and step 3, the data and compute node pods may enter
an error or CrashLoopBackOff state because they rebooted before the image change took effect. This
would result in a permissions issue visible in the pod's logs. If this happens, delete the affected pods using
kubectl delete pod pod-name.

22 Remove the IrisCluster
To fully remove the cluster, you must issue a kubectl command to delete not only the cluster, but also the persistent vol-
umes/volume claims associated with it, for example:

kubectl delete -f my-IrisCluster-definition.yaml

Using the InterSystems Kubernetes Operator (Version 3.3) 37

Upgrade the IrisCluster

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#delete

To uninstall the IKO, issue the following command:

helm uninstall intersystems

You can also fully remove the IrisCluster and the IKO by unprovisioning the Kubernetes cluster on which they are deployed.

38 Using the InterSystems Kubernetes Operator (Version 3.3)

Remove the IrisCluster

	Table of Contents
	1 Why would I use Kubernetes?
	2 Why do I need the InterSystems Kubernetes Operator?
	3 Start with your use case
	4 Plan your deployment
	5 Learn to speak Kubernetes
	6 Choose a platform and understand the interface
	7 Deploy a Kubernetes container cluster to host the IrisCluster
	8 Upgrade Helm if necessary
	9 Download the IKO archive and upload the extracted contents to Kubernetes
	10 Locate the IKO image
	11 Create a secret for IKO image pull information
	12 Update the values.yaml file
	13 Install the IKO
	14 Define the IrisCluster topology
	15 Plan persistent volumes
	16 Create the IrisCluster definition file
	16.1 Review the IrisCluster custom resource definition (CRD)
	16.2 Review the sample IrisCluster definition file
	16.3 apiVersion: Define the IrisCluster
	16.4 licenseKeySecret: Provide a secret containing the InterSystems IRIS license key
	16.5 configSource: Create configuration files and provide a config map for them
	16.6 imagePullSecrets: Provide a secret containing image pull information
	16.7 storageClassName: Create a default class for persistent storage
	16.8 updateStrategy: Select a Kubernetes update strategy
	16.9 volumeClaimTemplates: Define persistent storage volumes
	16.10 volumes: Request ephemeral storage volumes
	16.11 serviceTemplate: Create external IP addresses for the cluster
	16.12 topology: Define the cluster nodes
	16.13 data: Define sharded cluster data notes or standalone data server
	16.14 compute: Define sharded cluster compute nodes or application servers
	16.15 arbiter: Define arbiter for mirrored data nodes
	16.16 webgateway: Define web server nodes
	16.17 sam: Deploy System Alerting and Monitoring
	16.18 iam: Deploy InterSystems API Manager

	17 Deploy the IrisCluster
	18 Connect to the IrisCluster
	19 Troubleshoot IrisCluster deployment errors
	20 Modify the IrisCluster
	21 Upgrade the IrisCluster
	22 Remove the IrisCluster
	Index

