
Reference for Operational and
Actionable Resources for

Security

Version 2024.1
2024-05-16

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Reference for Operational and Actionable Resources for Security
InterSystems IRIS Data Platform Version 2024.1 2024-05-16
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Securing Your Instance ... 1
Introduction to Securing Your Instance .. 2
Prepare for InterSystems Security .. 3
System Management and Security ... 13
Tighten Security for an Instance .. 25
Security Advisor ... 36
Secure InterSystems Processes and Operating-System Resources .. 39
Security Checklist .. 45

Identity and Access Management ... 51
Identity and Access Management Introduction .. 52
Kerberos Authentication ... 53
Operating System–Based Authentication ... 64
Instance Authentication .. 65
Delegated Authentication ... 68
Two-Factor Authentication ... 78
JSON Web Token (JWT) Authentication ... 87
LDAP .. 90
OAuth 2.0 and OpenID Connect .. 113
Delegated Authorization ... 166
Advanced Topics in Authentication .. 173

Encryption .. 177
Introduction to InterSystems Encryption ... 178
Key Management Tasks .. 179
Using Encrypted Databases .. 200
Data-Element Encryption ... 210
Protecting Against Data Loss ... 213
Handling Emergency Situations ... 214
Additional Encryption Information .. 224
FIPS-2 Compliance .. 226
Cryptographic Standards and RFCs ... 228
Public Key Infrastructure ... 229
Demo: Database Encryption ... 239

TLS .. 247
TLS with the Superserver ... 248
TLS with Telnet .. 249
TLS with Python Clients .. 250
TLS with Java Clients .. 252
TLS with .NET Clients ... 257
TLS with Studio ... 258
TLS and Windows with .ini File ... 259
Configuring InterSystems IRIS to Use TLS with Mirroring .. 265
TLS with TCP Devices ... 268
TLS with the Web Gateway .. 272
Mutual TLS (mTLS) .. 273
Certificate Chain .. 276

Reference for Operational and Actionable Resources for Security iii

List of Figures

Figure B–1: Architecture of a Kerberos-Protected Web Connection .. 56
Figure B–2: A TOTP Issuer, Account, Key, and QR Code .. 80

iv Reference for Operational and Actionable Resources for Security

List of Tables

Table A–1: Enabled Services ... 8
Table A–2: Required Public Resources and Their Permissions ... 32
Table B–1: Connection Tools, Their Access Modes, and Their Services .. 55
Table D–1: Valid Certificate Distribution Schemes ... 276

Reference for Operational and Actionable Resources for Security v

Securing Your Instance

Reference for Operational and Actionable Resources for Security 1

Introduction to Securing Your Instance

Introduction to Securing Your Instance
Because security requires actions within an instance and in an instance’s larger environment, InterSystems IRIS provides
both guidance and tools to help secure an instance. These include:

• A checklist of topics to review as you prepare to deploy InterSystems IRIS.

• A guide and tools for securing an instance using its built-in features.

• A checklist for hardening security for an instance at the operating-system level and by managing its processes.

2 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Prepare for InterSystems Security

Prepare for InterSystems Security
The material in this section describes some of the security-related issues you need to consider before installing InterSystems
IRIS. For an overview of the InterSystems security features, see “About InterSystems Security”; you may also want to
review details about authentication or authorization.

This section covers the following topics:

• Initial InterSystems Security Settings — Describes the characteristics of the different default security settings. It is
particularly useful if you choose to use Normal or Locked Down InterSystems security.

• Configure User Accounts — Discusses the necessary permissions for a user account that runs InterSystems IRIS.

• Prepare the Security Environment for Kerberos — Details the additional tasks you need to perform if you are planning
on using Kerberos as an authentication mechanism with InterSystems IRIS. If you are not using Kerberos in your
environment, you can bypass this topic.

Important: If your security environment is more complex than those this document describes, contact the InterSystems
Worldwide Response Center (WRC) for guidance in setting up such an environment.

After reading About InterSystems Security and following the procedures in this section, you are prepared to provide the
pertinent security information to the installation procedure, as described in the Installation Guide.

Initial InterSystems Security Settings
During installation, there are three initial security configurations to choose from: Minimal, Normal, or Locked Down. A good
rule of thumb is to choose Locked Down for instances to be used in production environments and Normal for instances to
be used in development environments. The following sections describe the differences between these configurations, as
well as the initial service properties for each configuration:

• Initial User Security Settings

• Initial User Account Passwords

• Initial Service Properties

For production environments, you should adjust the individual security settings after installation, regardless of which option
you choose. For more information see the following sections:

• Tighten Security for an Instance

• Security Advisor

• Secure InterSystems Processes and Operating-System Resources

• Checklist for Hardening Your Deployment

Important: If you are concerned about the visibility of data in memory images (often known as core dumps), see
Protect Sensitive Data in Memory Images.

Initial User Security Settings

For general information about InterSystems IRIS user accounts, see User Accounts.

All user accounts share certain password requirements and settings. The initial values for these settings are based on which
security level you choose, as described in the following table:

Reference for Operational and Actionable Resources for Security 3

Prepare for InterSystems Security

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

DescriptionLocked
DownNormalMinimalSecurity Setting

By default, passwords allow
alphanumeric characters and
punctuation. The initial length
requirement is 3 to 32 charac-
ters for Minimal and Normal
installations, or 8 to 32 for
Locked Down installations.

For more information about
password patterns, see Pass-
word Strength and Password
Policies.

8.32ANP3.32ANP3.32ANPPassword Pattern*

The Inactive Limit is the num-
ber of days an account can be
inactive before it is disabled.
For Minimal installations, the
limit is set to 0 indicating that
accounts are never disabled,
no matter how long they are
inactive. Normal and Locked
Down installations have the
default limit of 90 days.

90 days90 days0Inactive Limit*

NoYesYesEnable _SYSTEM User

When an unauthenticated user
connects, InterSystems IRIS
assigns a special name,
UnknownUser, to $USER-
NAME and assigns the roles
defined for that user to
$ROLES. In a Minimal security
installation, the UnknownUser
is assigned the %All role;
UnknownUser has no roles
when choosing a security level
other than Minimal.

For more details on the use of
$USERNAME and $ROLES,
see Users and Roles.

NoneNone%AllRoles assigned to
UnknownUser

* You can maintain these settings from the System > Security Management > System Security Settings > System-wide

Security Parameters page of the Management Portal. See System-wide Security Parameters for more information.

Initial User Account Passwords

InterSystems IRIS creates multiple user accounts during installation. The predefined InterSystems IRIS user accounts have
different default passwords and behavior depending on whether an installation uses Minimal security, Normal security, or
Locked Down security. These differences are as follows:

4 Reference for Operational and Actionable Resources for Security

Securing Your Instance

• Minimal security – All the created accounts except _PUBLIC have an initial default password of “SYS”. With the
exception of UnknownUser, you should change the account passwords after installation in order to prevent unauthorized
access to your InterSystems IRIS instance.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled.

• Normal security – All the created accounts except _PUBLIC receive the same password as is chosen for the privileged
user account. It is recommended that you change these passwords after installation, so that each account has its own
password.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled.

• Locked Down security – All the created accounts except _PUBLIC receive the same password as is chosen for the
privileged user account. It is recommended that you change these passwords after installation, so that each account
has its own password.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled.
In Locked-Down installations, the _SYSTEM account is also disabled.

CAUTION: The default password is a security vulnerability, particularly in a Minimal Security installation. To address
this issue, disable the accounts or change their passwords. InterSystems recommends disabling the account.

This is a critical concern with containerized instances in particular; see Authentication and passwords for
more information, including ways in which you can address the issue.

Initial Service Properties

Services are the primary means by which users and computers connect to InterSystems IRIS. For detailed information about
the InterSystems services see Services.

Reference for Operational and Actionable Resources for Security 5

Prepare for InterSystems Security

DescriptionLocked
DownNormalMinimalService Property

6 Reference for Operational and Actionable Resources for Security

Securing Your Instance

DescriptionLocked
DownNormalMinimalService Property

If the Use
permission

NoYesYesUse Permission is Public

on a service
resource is
Public, any
user can
employ the
service; oth-
erwise, only
privileged
users can
employ the
service.

For installa-
tions with

YesYesNoRequires Authentication

initial set-
tings of Nor-
mal or
Locked
Down, all
services
require
authentica-
tion of some
kind
(Instance
Authentica-
tion, operat-
ing-sys-
tem–based,
or Ker-
beros). Oth-
erwise,
unauthenti-
cated con-
nections are
permitted.

Reference for Operational and Actionable Resources for Security 7

Prepare for InterSystems Security

DescriptionLocked
DownNormalMinimalService Property

The initial
security set-
tings of an
installation
determine
which of
certain ser-
vices are
enabled or
disabled
when Inter-
Systems
IRIS first
starts. The
Enabled
Services
table below
shows
these initial
settings.

FewestSomeMostEnabled Services

Table A–1: Enabled Services

Locked DownNormalMinimalService

DisabledEnabledEnabled%Service_Bindings

DisabledDisabledEnabled%Service_CacheDirect

DisabledDisabledEnabled%Service_CallIn

DisabledDisabledDisabled%Service_ComPort

EnabledEnabledEnabled%Service_Console*

DisabledDisabledDisabled%Service_ECP

DisabledDisabledDisabled%Service_Monitor

DisabledDisabledDisabled%Service_Telnet*

EnabledEnabledEnabled%Service_Terminal†

EnabledEnabledEnabled%Service_WebGateway

* Service exists on Windows servers only

† Service exists on non-Windows servers only

Configure User Accounts
During the installation process, you must choose an account to run the InterSystems IRIS process as the instance owner.
The installation creates an InterSystems IRIS account with the %All role for the instance owner, providing that account
with full administrator access to InterSystems IRIS.

8 Reference for Operational and Actionable Resources for Security

Securing Your Instance

To ensure that the instance owner has the necessary privileges, you may need to create a new user account. The following
sections contain OS-specific details about what accounts and privileges are necessary:

• Windows — Windows User Accounts in the “Installing InterSystems IRIS on Microsoft Windows” chapter of the
Installation Guide.

• Unix® and Linux — Determine Owners and Groups in the “Installing InterSystems IRIS on UNIX®, Linux, and
macOS” chapter of the Installation Guide.

Prepare the Security Environment for Kerberos
All InterSystems IRIS supported platforms have versions of Kerberos supplied and supported by the vendors. To use Kerberos,
you must have either a Kerberos key distribution center (KDC) or a Windows domain controller available on your network.
The installation preparations for each are as follows:

• Windows domain controller

This configuration uses a Windows domain controller for KDC functionality with InterSystems IRIS servers and clients
on Windows and non-Windows machines. A domain administrator creates domain accounts for running the InterSystems
services on InterSystems IRIS servers. See the following sections for the requirements for using both Windows and
non-Windows InterSystems IRIS servers:

– Create Windows Service Accounts for Windows Servers

– Depending on the applications in use on your system, you may also need to perform actions described in Configure
Windows Kerberos Clients.

– Create Windows Service Accounts for Non-Windows Servers

• Non-Windows KDC

This configuration uses a UNIX® or Kerberos KDC with InterSystems IRIS servers and all clients on non-Windows
machines. See the following two sections for the requirements for using a UNIX® or macOS KDC and InterSystems
IRIS servers:

– Create Service Principals on a KDC for Non-Windows Servers

– Test Kerberos KDC Functions

A Note on Terminology
This document refers to related, but distinct entities:

• Service account — An entity within an operating system, such as Windows, that represents a software application or
service.

• Service principal — A Kerberos entity that represents a software application or service.

Create Windows Service Accounts for Windows Servers

Microsoft Windows implements the Kerberos authentication protocol by integrating the KDC with other security services
running on the domain controller. Before you install InterSystems IRIS in a Windows domain, you must use the Windows
domain controller to create a service account for each InterSystems IRIS server instance on a Windows machine.

Account Characteristics

When you create this account on the Windows domain controller, configure it as follows:

• Set the account's Password never expires property.

• Make the account a member of the Administrators group on the InterSystems IRIS server machine.

Reference for Operational and Actionable Resources for Security 9

Prepare for InterSystems Security

• Add the account to the Log on as a service policy.

Important: If a domain-wide policy is in effect, you must add this service account to the policy for InterSystems IRIS
to function properly.

Names and Naming Conventions

In an environment where clients and servers are exclusively on Windows, there are two choices for naming service principals.
You can follow the standard Kerberos naming conventions, which ensures compatibility with any non-Windows systems
in the future, or you can use any unique string. Each of these choices involves a slightly different process of configuring a
connection to a server.

• For a name that follows Kerberos conventions, the procedure is:

1. Run the Windows setspn command, specifying the name of service principal in the form
service_principal/fully_qualified_domain_name, where service_principal is typically iris and
fully_qualified_domain_name is the machine name along with its domain. For example, a service principal name
might be iris/irisserver.example.com. For detailed information on the setspn tool, see the Setspn page
in the Microsoft documentation.

2. In the InterSystems IRIS Server Manager dialog for adding a new preferred server, choose Kerberos. What you
specify for the Service Principal Name field should match the principal name specified in setspn.

• For a name that uses any unique string, the procedure is:

1. Choose a name for the service principal. A suggested naming convention for each account representing an Inter-
Systems IRIS server instance is “irisHOST”, which is the literal iris followed by the host computer name in
uppercase. For example, if you are running an InterSystems IRIS server on a Windows machine called WINSRVR,
name the domain account irisWINSRVR.

2. In the InterSystems IRIS Server Manager dialog for adding a new preferred server, choose Kerberos. Specify the
selected name for the service principal in the Service Principal Name field.

For more information on configuring remote server connections, see Connecting to Remote Servers for the detailed procedure.

Configure Windows Kerberos Clients

If you are using Windows clients with Kerberos, you may also need to configure these so that they do not prompt the user
to enter credentials. This is required if you are using a program that cannot prompt for credentials — otherwise, the program
is unable to connect.

To configure Windows not to prompt for credentials, the procedure is:

1. On the Windows client machine, start the registry editor, regedit.exe.

2. Go to the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos\Parameters key.

3. In that key, set the value of AllowTgtSessionKey to 1.

Create Windows Service Accounts for Non-Windows Servers

Before you install InterSystems IRIS in a Windows domain, you must use the Windows domain controller to create a service
account for each InterSystems IRIS server instance on a non-Windows machine. Create one service account for each
machine, regardless of the number of InterSystems IRIS server instances on that machine.

A suggested naming convention for these accounts is “irisHOST,” which is the literal, iris, followed by the host
computer name in uppercase. For example, if you run an InterSystems IRIS server on a non-Windows machine called
UNIXSRVR, name the domain account irisUNIXSRVR. For InterSystems IRIS servers on non-Windows platforms, this
is the account that maps to the Kerberos service principal.

10 Reference for Operational and Actionable Resources for Security

Securing Your Instance

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc731241(v=ws.11)

Important: When you create this account on the Windows domain controller, InterSystems IRIS requires that you set
the Password never expires property for the account.

To set up a non-Windows InterSystems IRIS server in the Windows domain, it must have a keytab file from the Windows
domain. A keytab file is a file containing the service name for the InterSystems IRIS server and its key.

To accomplish this, map the Windows service account (irisUNIXSRVR, in this example) to a service principal on the
InterSystems IRIS server and extract the key from the account using the ktpass command-line tool on the domain controller;
this is available as part of the Windows support tools from Microsoft.

The command maps the account just set up to an account on the UNIX®/Linux machine; it also generates a key for the
account. The command must specify the following parameters:

DescriptionParameter

The principal name (in the form iris/<fully qualified hostname>@<kerberos realm>)./princ

The name of the account created (in the form iris<HOST>)./mapuser

The password specified during account creation./pass

The encryption type to use (use the default unless specified otherwise)./crypto

The keytab file you generate to transfer to the InterSystems IRIS server machine and
replace or merge with your existing keytab file.

/out

Important: The principal name on UNIX®/Linux platforms must take the form shown in the table with the literal
iris as the first part.

Once you have generated a key file, move it to a file on the InterSystems IRIS server with the key file characteristics
described in the section below.

Create Service Principals on a KDC for Non-Windows Servers

In a non-Windows environment, you must create a service principal for each UNIX®/Linux or macOS InterSystems IRIS
server that uses a UNIX®/Linux or macOS KDC. The service principal name is of the form iris/<fully qualified
hostname>@<kerberos realm>.

Key File Characteristics

Once you have created this principal, extract its key to a key file on the InterSystems IRIS server with the following char-
acteristics:

• On most versions of UNIX®, the pathname is install-dir/mgr/iris.keytab. On macOS and SUSE Linux, the pathname
is /etc/krb5.keytab.

• It is owned by the user that owns the InterSystems IRIS installation and the group irisusr.

• Its permissions are 640.

Test Kerberos KDC Functions

When using Kerberos in a system of only non-Windows servers and clients, it is simplest to use a native UNIX®/Linux
KDC rather than a Windows domain controller. Consult the vendor documentation on how to install and configure the
KDC; these are usually tasks for your system administrator or system manager.

When installing Kerberos, there are two sets of software to install:

• The KDC, which goes on the Kerberos server machine.

Reference for Operational and Actionable Resources for Security 11

Prepare for InterSystems Security

• There also may be client software, which goes on all machines hosting Kerberos clients. This set of software can vary
widely by operating system. Consult your operating system vendor documentation for what client software exists and
how to install it.

After installing the required Kerberos software, you can perform a simple test using the kadmin, kinit, and klist commands
to add a user principal to the Kerberos database, obtain a TGT (ticket-granting ticket) for this user, and list the TGT.

Once you successfully complete a test to validate that Kerberos is able to provide tickets for registered principals, you are
ready to install InterSystems IRIS.

12 Reference for Operational and Actionable Resources for Security

Securing Your Instance

System Management and Security

System Management and Security
This page covers access to the InterSystems IRIS® data platform Management Portal, and other security-related features
of the Portal.

Manage InterSystems IRIS Security Domains
InterSystems security domains provide a grouping of users that corresponds to Kerberos realms and Windows domains. If
your instance is using Kerberos, its InterSystems IRIS domain corresponds to a Kerberos realm. If you are using a Windows
domain, this also corresponds to a Kerberos realm.

While a security domain name often takes the form of an Internet domain name, there is no requirement that it do so. A
security domain name can contain any character except the at sign (@).

Single and Multiple Domains

InterSystems IRIS supports the use of either a single-domain or multiple-domains.

To specify support for a single domain or multiple domains, use the Allow multiple security domains field of the System-

wide Security Parameters page of the Management Portal (System Administration > Security > System Security > System-

wide Security Parameters), described in the System-wide Security Parameters section.

For an instance with a single domain:

• The $USERNAME variable does not include the domain name.

• System utilities do not show the domain name when displaying usernames.

• It is prohibited to specify a username from any domain other than the default domain (described in the following section).

For an instance with multiple domains:

• The $USERNAME variable includes the domain name.

• System utilities show the domain name when displaying usernames. This includes the Users page (Security Adminis-

tration > Security > Users).

• Users log in with their fully qualified name on their domain, such as documentation@intersystems.com. If there are
two accounts that share the initial portion of the fully qualified name and where the domain names differ, then these
are stored as two separate user accounts (where each has its own attributes and these attributes can have differing values).

• You cannot edit usernames.

The Default Security Domain

Each instance has a default security domain. This is the domain assumed for any username where no domain is specified.
For example, if the default domain is “ intersystems.com”, the user identifiers “ info” and “info@intersystems.com” are
equivalent. When InterSystems IRIS is installed, it uses the local domain name to provide an initial value for the parameter.

For instances with multiple security domains, you can select a new default security domain using the Default Security

Domain field of the System-wide Security Parameters page (System Administration > Security > System Security > System-

wide Security Parameters), described in the System-wide Security Parameters section.

List, Create, Edit, and Delete Security Domains

The LDAP Configurations page lists an instance’s existing security domains and configurations, allows you to create domains
and configurations, and allows you to modify or delete existing ones.

Reference for Operational and Actionable Resources for Security 13

System Management and Security

List Security Domains

To see the list of an instance’s domains, go to the Security LDAP Configurations page (System Administration > Security >
System Security > LDAP Configurations). For each domain, the page displays:

• Login Domain Name — The domain’s name. Click this to edit the domain’s properties.

• LDAP Enabled — Whether or not LDAP connections are enabled for this domain.

• Description — The domain’s description.

• A Delete link — After confirmation, removes a domain from the instance.

Note: If Kerberos is enabled for an instance, the menu choice that gets to this page is LDAP/Kerberos Configurations.
The name of the page is Security LDAP/Kerberos Configs.

Create a Security Domain

To create a domain for the instance to use, create an LDAP configuration that specifies that domain; creating the LDAP
configuration creates the domain:

1. Go to the Security LDAP Configurations page (System Administration > Security > System Security > LDAP Configura-

tions).

2. Click the Create New LDAP configuration button. Selecting this displays the Edit LDAP configuration page.

3. On the Edit LDAP configuration page, enter the Login Domain Name and an optional description.

4. Then enter values for other configuration fields and click Save to create the configuration and the domain.

Note: If Kerberos is enabled for an instance, the menu choice that gets to this page is LDAP/Kerberos Configurations.
The name of the page is Security LDAP/Kerberos Configs.

Edit a Security Domain

To edit a domain:

1. Go to the Security LDAP Configurations page (System Administration > Security > System Security > LDAP Configura-

tions).

2. Click Login Domain Name to edit a domain’s and its configuration fields.

3. Click Save to save the modified configuration and domain.

Note: 1. You cannot modify a domain’s name. You can alternately create a new domain with the preferred name and
then delete an existing domain.

2. If Kerberos is enabled for an instance, the menu choice that gets to this page is LDAP/Kerberos Configurations.
The name of the page is Security LDAP/Kerberos Configs.

Delete a Security Domain

To delete a domain:

1. Go to the Security LDAP Configurations page (System Administration > Security > System Security > LDAP Configura-

tions). This displays a list of domains.

2. Click Delete in the domain’s row.

3. Confirm the deletion.

14 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Note: If Kerberos is enabled for an instance, the menu choice that gets to this page is LDAP/Kerberos Configurations.
The name of the page is Security LDAP/Kerberos Configs.

Password Strength and Password Policies
InterSystems IRIS allows you to specify requirements for user passwords by supplying a string of the form:

X.Y[ANP]

where

• X is the minimum number of characters in the password.

• Y is the maximum number of characters in the password.

• A, N, and P specify whether Alphabetic characters, Numeric characters, and Punctuation characters are permitted in
the password.

These rules are based on the ObjectScript pattern matching functionality. This functionality is described in Pattern Matching.

Note: The value for this parameter does not affect existing passwords.

Suggested Administrator Password Strength

Ideally, administrator passwords should be a random mixture of uppercase and lowercase alphabetic characters, numerals,
and punctuation. InterSystems strongly recommends a minimum password length of 12 such random characters.

Emergency Access
InterSystems IRIS provides a special emergency access mode that can be used under certain dire circumstances, such as if
there is severe damage to security configuration information or if no users with the %Admin_Manage:Use or
%Admin_Security:Use privileges are available (that is, if all users are locked out). Although InterSystems IRIS attempts
to prevent this situation by ensuring that there is always at least one user with the %All role, that user may not be available
or may have forgotten the password.

To obtain emergency access to an instance of InterSystems IRIS, you must either have root or administrator privileges
where the instance is running (if it was installed by root) or be the user who installed the instance (if it was not installed
by root). This requirement limits emergency access to users who already have sufficient privileges to perform administrative
operations on the instance, such as installing a new instance over the existing one.

Emergency access topics:

• How Emergency Access Works

• Invoke Emergency Access Mode on Windows

• Invoke Emergency Access Mode on UNIX®, Linux, and macOS

How Emergency Access Mode Works

When InterSystems IRIS is running in emergency access mode, only a single user (called the emergency user) is permitted.
This username does not have to be previously defined within InterSystems IRIS. If the instance already has a user account
with the same username as the emergency user, then the emergency user has the privileges associated with emergency
access mode instead of the privileges for the existing standard user account.

The emergency user account and password are only valid for the single invocation of emergency mode. If the username
specified for the emergency user is a previously defined username within your InterSystems IRIS instance, restarting the
system into its normal mode restores the original password and security privileges for that user account. If the username

Reference for Operational and Actionable Resources for Security 15

System Management and Security

specified for the emergency user is new, InterSystems IRIS saves the login credentials and security privileges for this new
user when it restarts into its normal mode, though the user account is disabled.

Tip: To prevent the accumulation of dormant accounts with the %ALL role registered in your InterSystems IRIS instance,
we recommend using previously defined usernames for the emergency user instead of new usernames. This also
allows systems with multiple administrators to track the authorship of changes made while in emergency access
mode via the logs, if each administrator initializes emergency access mode using their own username.

In emergency access mode, InterSystems IRIS has the following constraints and behaviors:

• The emergency user is the only permitted user. Any attempt by another user to log in will fail. The emergency user
has the %ALL role.

• There is only access using Instance Authentication — no other authentication mechanism is supported. Two-factor
authentication is disabled. This avoids any situation where two-factor authentication might prevent the emergency user
from being able to authenticate.

• For the web applications that control the Portal (/csp/sys and /csp/sys/*), the standard login page (%CSP.Login.cls) is
used during emergency access even if there is a custom login page available; this ensures that the emergency user has
access to the Portal, since a custom login page may prevent authentication from occurring. For other web applications,
if there is a custom login page, then that page is used during emergency login.

• After emergency access login, InterSystems IRIS attempts to audit all events for the active process; InterSystems IRIS
start-up proceeds even if this is not possible. Login failures in emergency access mode are not audited.

• Console, Terminal, and Web Gateway (%Service_Console, %Service_Terminal, and %Service_WebGateway)
are the only services that are enabled. All other services are disabled. This does not affect the enabled or disabled status
of services when InterSystems IRIS starts in non-emergency mode; only the current (emergency), in-memory information
about services is affected.

• For the enabled services, only authenticated access is permitted. InterSystems IRIS uses its own password authentication
for the services, where the emergency access username and password must be used.

• The emergency user can make changes to the InterSystems IRIS configuration, but these changes are not activated
until the next time that InterSystems IRIS is started in normal (not emergency) mode. This is in contrast to the normal
operation of InterSystems IRIS, in which configuration changes are primarily activated without restarting InterSystems
IRIS.

Invoke Emergency Access Mode on Windows

To start InterSystems IRIS in emergency access mode, the user must be a member of the Administrators group. Then, do
the following:

1. Start a command prompt, running it as an administrator. This can either be:

• The Windows Command Prompt program. Right-click the Command Prompt choice in the menu and then choose
Run as Administrator.

• The Windows PowerShell. While you can run this as either an administrator or a user without extra privileges,
this procedure assumes that you are running as an administrator; to run as a user without extra privileges, use the
-verb runas argument when you invoke the command, which is described in PowerShell documentation.

2. Go to the bin directory for your InterSystems IRIS installation.

3. In that directory, invoke InterSystems IRIS at the command line using the appropriate switch and passing in the username
and password for the emergency user. This depends on the command prompt that you are using:

• For the Windows Command prompt, the command is:

iris start <instance> /EmergencyId=<username>,<password>

16 Reference for Operational and Actionable Resources for Security

Securing Your Instance

This starts an emergency-mode InterSystems IRIS session with only one allowed user where:

– <instance> specifies the instance being started in emergency mode

– <username> is the sole user of the system

– <password> is that user’s password

• For the Windows PowerShell, the command is:

start-process .\iris.exe -ArgumentList "start <instance> /EmergencyId=<username>,<password>"

This starts an emergency-mode InterSystems IRIS session with only one allowed user where:

– <instance> specifies the instance being started in emergency mode

– <username> is the sole user of the system

– <password> is that user’s password

Note: On Windows, unlike other operating systems, the EmergencyId switch is preceded by a slash (“/”).

For example, at the instance MyIRIS, to start InterSystems IRIS in emergency mode with user jmd with the password
purple22, the command would be:

iris start MyIRIS /EmergencyId=jmd,purple22

The only user who can then log in is the emergency user, using the appropriate password, such as:

Username: jmd
Password: ********
Warning, bypassing system security, running with elevated privileges

Once InterSystems IRIS has started, you can start the Terminal from the InterSystems IRIS launcher or run any web
application. This provides access to the Management Portal and all character-based utilities. Using this access, you can
change any settings as necessary and then restart InterSystems IRIS in its normal mode.

Invoke Emergency Access Mode on UNIX®, Linux, and macOS

To start InterSystems IRIS in emergency access mode, you must either have root access or be the owner of the instance.
Invoke InterSystems IRIS at the command line using the appropriate switch and passing in the username and password for
the emergency user:

./iris start <instance-name> EmergencyId=<username>,<password>

This starts an emergency-mode InterSystems IRIS session with only one allowed user where:

• <instance-name> specifies the instance being started in emergency mode

• <username> is the sole user of the system

• <password> is <username>’s password

Note: If going from one of these operating systems to Windows, remember that on Windows only, the EmergencyId
switch is preceded by a slash (“/”).

For example, at the instance MyIRIS, to start InterSystems IRIS in emergency mode with user jmd with the password
purple22, the command would be:

./iris start MyIRIS EmergencyId=jmd,purple22

Reference for Operational and Actionable Resources for Security 17

System Management and Security

The only user who can then log in is the emergency user, using the appropriate password, such as:

Username: jmd
Password: ********
Warning, bypassing system security, running with elevated privileges

Once InterSystems IRIS has started, you can run the Terminal or any web application. This provides access to the Management
Portal and all character-based utilities. Using this access, you can change any settings as necessary and then restart Inter-
Systems IRIS in its normal mode.

System Security Settings Page
The System Security Settings page (System Administration > Security > System Security) provides links to pages that con-
figure the entire InterSystems IRIS® instance for security. These pages are:

• System-Wide Security Parameters

• Authentication/Web Session Options

• LDAP Options

System-Wide Security Parameters

This topic describes security issues that affect an entire InterSystems IRIS instance. This includes the system-wide security
parameters and handling sensitive data in memory images.

InterSystems IRIS includes a number of system-wide security parameters. You can configure these on the System Security

Settings page (System Administration > Security > System Security > System-wide Security Parameters). These are:

• Enable audit — Turns auditing on or off. This check box performs the same action as the Enable Auditing and Disable

Auditing links on the Auditing page (System Administration > Security > Auditing). For more information on auditing,
see Auditing Guide. [Default is off]

• Freeze system on audit database error — (Only available when auditing is enabled.) Stops (freezes) the instance if
there is an error writing to the audit database. For more information, see Freezing the System If It Is Impossible to
Write to the Audit Database.

• Enable configuration security — Specifies whether configuration security is on or off, as described in Configuration
Security. [Default is off]

• Default security domain — Allows you to choose the instance’s default security domain. For more information on
security domains, see the section Manage InterSystems IRIS Security Domains. [Default is the domain established
during installation]

• Inactive limit (0–365) — Specifies the maximum number of days that a user account can be inactive, which is defined
as the amount of time between successful logins. When this limit is reached, the account is disabled. A value of 0 (zero)
means that there is no limit to the number of days between logins. [Default is described in Initial User Security Settings.]

Note: Mirror Members automatically set the InactiveLimit parameter to 0 on startup. This prevents user accounts
from becoming inactive on other mirror members.

• Invalid login limit (0-64) — Specifies the maximum number of successive unsuccessful login attempts. After this limit
is reached, either the account is disabled or an escalating time delay is imposed on each attempt; the action depends
on the value of the Disable account if login limit reached field. A value of 0 (zero) means that there is no limit to the
number of invalid logins. [Default is 5]

• Disable account if login limit reached — If checked, specifies that reaching the number of invalid logins (specified in
the previous field) causes the user account to be disabled.

• Password Expiration Days (0–99999) — Specifies how frequently passwords expire and, therefore, how frequently users
must change their passwords (in days). When initially set, specifies the number of days until passwords expire. A value

18 Reference for Operational and Actionable Resources for Security

Securing Your Instance

of 0 (zero) means that the password never expires; however, setting this field to 0 does not affect users for whom the
Change Password on Next Login field has been set. [Default is 0]

CAUTION: This setting affects all accounts for the InterSystems IRIS instance, including those used by InterSystems
IRIS itself. Until passwords are updated for these accounts, it may be impossible for various operations
to proceed and this may lead to unexpected results.

• Password pattern — Specifies the acceptable format of newly created passwords. See Password Strength and Password
Policies for more information. [Default is described in Initial User Security Settings.]

• Password validation routine — Specifies a user-provided routine (or entry point) for validating a password. See the
PasswordValidationRoutine method in the Security.System class for more information.

• Role required to connect to this system — If set to an existing role, specifies that a user must be a member of this role
(as a login role) in order to log in to the system.

If you are using LDAP authentication or OS-based LDAP authorization, InterSystems strongly recommends that you
create a role that is required to connect and that you specify its name in this field. For more information, see Setting
Up a Role Required for Login.

• Enable writing to percent globals — Specifies whether write access to percent globals is implicitly granted to all users;
if not checked, write access is controlled by normal security mechanisms. For more information on the percent globals
and IRISSYS (the database that holds them), see IRISSYS, the Manager’s Database. [Default is controlled by normal
security mechanisms.]

• Allow multiple security domains — Specifies whether there is support for multiple InterSystems security domains. For
more information on security domains, see the section Manage InterSystems IRIS Security Domains. [Default is a
single domain]

• Telnet server SSL/TLS Support — Specifies if the telnet server supports or requires the use of TLS for client connections.

Important: Before you can configure the telnet server to use TLS, there must be an existing configuration called
%TELNET/SSL. For more information about using TLS with the InterSystems IRIS telnet server, see
“Configure the InterSystems IRIS Telnet Server to use TLS.”

Options are:

– Disabled — The telnet server refuses client connections that use TLS. (That is, it only accepts client connections
that do not use TLS.)

– Enabled — The telnet server accepts client connections that use TLS but does not require them.

– Required — The telnet server requires client connections to use TLS.

• Default signature hash — Specifies the algorithm used by default to create an XML signature hash. For more information
on the supported algorithms for creating hashes, see https://www.w3.org/.

Authentication Options

The Authentication/Web Sessions Options page (System Administration > Security > System Security > Authentication/Web

Options) allows you to enable or disable authentication mechanisms for the entire InterSystems IRIS instance:

• If an authentication mechanism is disabled for the entire InterSystems IRIS instance, then it is not available for any
service.

• If an authentication mechanism is enabled for the entire InterSystems IRIS instance, then it is available for all the services
that support it. To enable the authentication mechanism for a particular service, use the Edit Service page for that
property; this page is available by selecting the service from the Services page (System Administration > Security >
Services).

Reference for Operational and Actionable Resources for Security 19

System Management and Security

https://www.w3.org/

Note: Not all services support all mechanisms.

The authentication options are:

• Allow Unauthenticated access — Users may connect without authenticating. (If login dialog appears, the user can leave
the Username and Password fields blank and click OK to log in.)

• Allow O/S authentication — InterSystems IRIS uses the operating system’s user identity to identify the user; it then
uses InterSystems authorization.

• Allow O/S authentication with Delegated authorization — InterSystems IRIS uses the operating system’s user identity
to identify the user; it then uses delegated authorization.

• Allow O/S authentication with LDAP authorization — InterSystems IRIS uses the operating system’s user identity to
identify the user; it then uses LDAP authorization.

• Allow Password authentication — InterSystems IRIS uses its own native tools, called instance authentication, to
authenticate the user; it then uses InterSystems authorization.

• Allow Delegated authentication — InterSystems IRIS uses external (delegated) authentication system by calling out to
it. You can use delegated authentication with either InterSystems authorization or delegated authorization.

• Always try Delegated authentication — InterSystems IRIS invokes delegated authentication code for users authenticating
with instance authentication (also known as password authentication). If you use both delegated authentication and
instance authentication and also require that ZAUTHENTICATE be called for instance authentication users, then select
this option.

• Allow Kerberos authentication — InterSystems IRIS performs authentication using Kerberos. You can use Kerberos
authentication with either InterSystems authorization or delegated authorization.

• Allow LDAP authentication — InterSystems IRIS uses LDAP (including Active Directory) to authenticate users. You
can use LDAP for both authentication and authorization, or you can use LDAP authentication with InterSystems
authorization.

• Allow LDAP cache credentials authentication — InterSystems IRIS uses a copy of cached LDAP credentials to
authenticate LDAP users if the LDAP database becomes unavailable.

• Allow creation of Login Cookies — InterSystems IRIS uses cookies that are shared among enabled web applications to
authenticate users, so that they do not need to enter a username and password when first using a new application. This
is only relevant for web applications that use CSP.

• Login Cookie expire time (secs) — The duration of a login cookie, in seconds. This field is only relevant if login
cookies are enabled for the instance.

• Allow Two-factor Time-based One-time Password authentication — InterSystems IRIS provides a verification code via
an authentication device or an app that runs on the user’s phone; the user then enters the code to complete the authen-
tication process. If selected, the Authentication/Web Session Options page displays the fields for configuring two-factor
authentication.

• Allow Two-factor SMS text authentication — InterSystems IRIS provides a security code via a mobile phone text message;
the user then enters the code to complete the authentication process. If selected, the Authentication/Web Session Options

page displays the fields for configuring two-factor authentication.

If there are multiple supported authentication options, InterSystems IRIS uses cascading authentication.

Effect of Changes
When you make changes to various security settings, the amount of time for these to take effect are as follows:

20 Reference for Operational and Actionable Resources for Security

Securing Your Instance

• Changes to user properties, such as the roles assigned to the user, are effective with the next login for that user. They
have no effect on processes that are already running.

• Changes to services, such as whether a service is enabled or authentication is required, are effective for future connection
attempts. Existing connections are not affected.

• Changes to role definitions are effective immediately for any subsequent privilege checks. These affect database
resources immediately, because they are checked for each database access. For services and applications, they are
effective with subsequent connection attempts or application initiations.

Note: The times listed here are the latest times that changes take effect; in some cases, changes may be effective earlier
than indicated.

Enabling Automatic Refreshes of Management Portal Pages

By default, users can refresh Management Portal pages only by clicking the (Refresh the diagram) icon where it is
available. However, InterSystems IRIS enables you to provide users with a mechanism for automatically refreshing Man-
agement Portal pages every several seconds. You can modify the ̂ %SYS global to expose the mechanism from the Terminal
as follows:

set ^%SYS("Portal","EnableAutoRefresh") = 1

If you do so, a set of radio buttons appears on Management Portal pages that can be refreshed, enabling users to turn automatic
refreshes on and off. On some pages, users can specify the refresh interval. Importantly, when you set the
EnableAutoRefresh node to 1, automatic refreshes are off by default. The following image shows the Classes page
when automatic refreshes have been enabled and the refresh interval has been set to 15 seconds:

Reference for Operational and Actionable Resources for Security 21

System Management and Security

Important: An automatic refresh constitutes a call to the InterSystems IRIS server and can prevent automatic logouts
if they are enabled. For more information, see Automatic Logout Behavior in the Management Portal.

Automatic Logout Behavior in the Management Portal
Each InterSystems IRIS Management Portal web application has a Session Timeout property that determines the length of
time that users can remain inactive before their sessions expire. By default, fifteen seconds after a user’s session expires,
the Management Portal refreshes the current page and logs the user out. The Management Portal does not cache pending
changes or prompt the user to save pending changes. Unsaved changes are discarded.

22 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Important: Inactivity is the time between calls to the InterSystems IRIS server. Not all user actions constitute a call
to the server. For example, a user clicking Save constitutes a call to the server, but a user typing in a text
field does not. Consequently, if a user is editing a data transformation, but does not click Save for longer
than Session Timeout threshold, then the user’s session expires and any unsaved changes are discarded.

After an automatic logout, the following scenarios may occur:

• The login page appears.

• The Management Portal logs the user out and then immediately logs the user in again because the web application has
a Group By Id value that results in automatic authentication. In this case, the current Management Portal page appears
refreshed and any pending changes are removed.

You can take the following steps to prevent users from losing work:

• Remind users to save their work on a regular basis.

• Extend the Session Timeout value for web applications where users are performing time-intensive configuration tasks
such as modifying data transformations. The default Session Timeout value is 15 minutes.

Additionally, while InterSystems recommends that you retain the default automatic logout behavior, you can allow users
to remain logged in until they actively log out or close their browsers when they are on Interoperability pages in the Man-
agement Portal. To do so, use ^EnsPortal as follows:

^EnsPortal("DisableInactivityTimeout","Portal") = 1

Note: This is a per-namespace setting. To modify logout behavior, you must set this value for each namespace individ-
ually.

You can reinstate automatic logouts by using ^EnsPortal again:

^EnsPortal("DisableInactivityTimeout","Portal") = 0

InterSystems recommends that you consider the possible security implications before you make any changes.

For more information about web applications and their settings, see Defining Applications.

Other Security Features
This section describes several additional security features and considerations. These are:

• Enable Use of the Secure Debug Shell

• Protect Sensitive Data in Memory Images

The following cover additional security topics:

• Protecting InterSystems IRIS Configuration Information

Enable Use of the Secure Debug Shell

InterSystems IRIS includes the ability to suspend a routine and enter a shell that supports full debugging capabilities (as
described in Command-line Routine Debugging). InterSystems IRIS also includes a secure debug shell, which has the
advantage of ensuring that users are prevented from exceeding or circumventing their assigned privileges.

By default, users at the debug prompt maintain their current level of privileges. To enable the secure shell for the debug
prompt and thereby restrict the commands that the user may issue, the user must hold the %Secure_Break:Use privilege
(the Use permission for the %Secure_Break resource). To give a user this privilege, make the user a member of a role
which includes the %Secure_Break:Use privilege, such as the predefined %SecureBreak role.

Reference for Operational and Actionable Resources for Security 23

System Management and Security

Protect Sensitive Data in Memory Images

Certain error conditions can cause the contents of a process’s memory to be written to a disk file, known as a “core dump.”
This file contains copies of all data that was in use by the process at the time of the dump, including potentially sensitive
application and system data. This can be prevented by disallowing core dumps on a system-wide basis. The method for
disallowing core dumps varies according to the operating system in use; for details, consult the documentation of your
operating system.

24 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Tighten Security for an Instance

Tighten Security for an Instance
To provide increased security for an InterSystems IRIS® database, you can and should configure it to more tightly constrain
user access. This can prevent unauthorized users from using system tools or from gaining access to sensitive resources.
This section describes various actions that reduce the attack surface of a database instance or otherwise increase its security.
The section assumes you have already installed an InterSystems IRIS instance with an initial security of Minimal. If you
have chosen an initial security of Normal or Locked Down, some of these actions have already been performed for you.

There actions for tightening an instance’s security are presented here roughly in the sequence in which they should be
performed:

• Enable auditing

• Change the authentication mechanism for an application

• Restrict access to services. This involves:

– Limit the number of enabled services

– Limit the number of public services

– Restrict access to services by IP address or machine name

• Limit remote privileged access

• Limit the number of privileged users

• Disable the _SYSTEM user

• Restrict access for UnknownUser

• Configure third-party software

The InterSystems Security Advisor also provides an automated analysis of the instance and recommendations for actions
to increase the security of an instance.

Important: An InterSystems IRIS database instance has many interdependent elements. Because of this, it is recom-
mended that you only do what is specified for a change, and not more or less. For example, simply
removing UnknownUser from the %All role — without doing anything else — will cause problems for a
minimal-security installation.

Enable Auditing
The primary elements of security are often described as the “Three A’s”: authentication, authorization, and auditing.
Auditing provides two functions:

• It provides data about what has occurred if there is a security event.

• The knowledge of its existence can be a deterrent for an attacker, given that the attack will be tracked and there will
be evidence of any malicious actions.

To enable auditing for key events, the procedure is:

1. From the Management Portal home page, select System Administration > Security > Auditing > Enable Auditing. If the
choice is not available, auditing is already enabled.

2. From the Management Portal home page, go to Configure System Events page (System Administration > Security >
Auditing > Configure System Events).

Reference for Operational and Actionable Resources for Security 25

Tighten Security for an Instance

3. On the Configure System Events page, enable the following events if they are not already enabled by clicking Change

Status in the event’s row:

• %System/%DirectMode/DirectMode — Provides information on console/terminal use. For sites that extensively
use command-line utilities, can create large amounts of data. Recommended if increased data is not an issue.

• %System/%Login/Login — Provides information on logins. For large sites, can create large amounts of data.
Recommended if increased data is not an issue.

• %System/%Login/LoginFailure — Provides feedback on possible attempted unauthorized logins. Recommended.

• %System/%Security/Protect — Provides data on attempts to read, write, or use protected data. Recommended.

Change the Authentication Mechanism for an Application
A key element of restricting access to the database is configuring the instance to use a stricter authentication mechanism
for its applications. This section describes how to perform this procedure, using the Management Portal as an example
application and with the change from unauthenticated access (as in a minimal-security installation) to requiring a password
as an example of moving to a stricter authentication mechanism.

Important: Performing the following procedure may affect aspects of the instance being modified beyond access to
the Portal. The specifics depend on (1) the instance’s configuration and (2) whether you are performing
just this procedure or all the procedures in this section. Specifically:

• Making %Service_WebGateway:Use not public means that all users of web applications will need to
be granted %Service_WebGateway:Use by some other means.

• Removing UnknownUser from the %All role can have many effects.

To provide properly functioning authentication for an application, there must be consistent authentication mechanisms for
both the application and any service that it uses. For a web application, the Web Gateway must also be configured to match
the Web Gateway service. Hence, to provide authentication for the Management Portal, there are three layers that all need
to work together:

• The %Service_WebGateway service

• The Web Gateway

• The Management Portal application

If these layers do not have matching authentication mechanisms, this usually results in a denial of access — for example,
there may be a “This page cannot be displayed” error instead of a login page or access to the Management Portal.

Important: If (1) a web application uses a more powerful authentication mechanism than the Web Gateway and
%Service_WebGateway and (2) authentication succeeds, then the system’s security is only that of the
less powerful mechanism.

For an instance with a minimal-security installation, the Web Gateway, %Service_WebGateway, and the Management
Portal application are all set up for unauthenticated access. To provide password-level authentication for the Portal, various
InterSystems IRIS elements must be configured as follows:

• The Web Gateway service must require password authentication.

• The Web Gateway must provide a username and password for that authentication.

• The user representing the Gateway must have sufficient privilege to use the Web Gateway service.

• The Management Portal must require password authentication.

• All the Portal’s users must have sufficient privilege to use the Portal.

26 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Important: Complete the following set of procedures during a single session in the Portal. Otherwise, you may lock
yourself out of the Portal and have to perform the remaining procedures through the ^SECURITY routine.

An overview of the procedure to make these changes is:

1. Optionally, turn on auditing to track the changes to the instance. This is described in Enable Auditing .

2. Give the %Service_WebGateway:Use privilege to the CSPSystem user.

3. Change the password of the CSPSystem user.

4. Configure the Web Gateway to provide a username and password for authentication.

5. Configure %Service_WebGateway to require password authentication.

6. Remove the public status of the %Service_WebGateway:Use privilege.

7. Configure the Management Portal application to require password authentication only.

8. Specifying the appropriate privilege level for the instance’s users.

9. Optionally, make the class reference available.

10. Begin enforcement of the new policies.

Once this process is complete, then a user’s next attempt to connect to the Portal will result in a login prompt.

CAUTION: An InterSystems IRIS database instance has many interdependent elements. Because of this, it is recom-
mended that you only do what is specified for a change, and not more or less. Otherwise, you may lock
yourself out of the instance or could even render the instance temporarily inoperative.

Give the %Service_WebGateway:Use Privilege to the CSPSystem User

The InterSystems IRIS installation process creates a CSPSystem user, which represents the Web Gateway in its interactions
with the %Service_WebGateway service. Since the service is going to have restricted access, this user needs to hold the
%Service_WebGateway:Use privilege for the authentication process.

Note: There is a service called %Service_WebGateway and a resource called %Service_WebGateway. The resource
regulates access to the service. Therefore, to gain access to the service, a user must have Use permission for the
resource — that is, the %Service_WebGateway:Use privilege.

To associate the %Service_WebGateway:Use privilege with the CSPSystem user, the procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Create New Role. This displays the Edit Role page, where the Name field is editable.

3. Enter a name for the role to include the %Service_WebGateway:Use privilege (such as “GatewayRole”).

4. Click Save. InterSystems IRIS has now created the role.

5. In the Privileges section on the General tab of the Edit Role page, click Add, which displays a list of available resources
for the role.

6. From this list, click %Service_WebGateway and then click Save. The newly created role now includes the
%Service_WebGateway:Use privilege.

7. Select the Members tab of the Edit Role page.

8. On this tab, you can assign the CSPSystem user to the newly created role. Click CSPSystem from the users in the
Available list and move it to the Selected by clicking the right arrow.

9. Click Assign to assign CSPSystem to the role. (In other words, CSPSystem is now a member of the role.) This means
that CSPSystem holds the %Service_WebGateway:Use privilege.

Reference for Operational and Actionable Resources for Security 27

Tighten Security for an Instance

Note: The system creates the CSPSystem user to represent the Web Gateway. If you prefer, a different user can perform
this function. This procedure refers only to the CSPSystem user; if you use a different user, replace CSPSystem
with that username where relevant.

Change the Password of the CSPSystem User

Because a minimal-security installation gives the CSPSystem user a password of “SYS”, it is important to change this to
a new password — one that an attacker would not know or be able to guess. The procedure is:

1. In the Management Portal, go to the Users page (System Administration > Security > Users).

2. On the Users page, click CSPSystem. This displays the Edit User page.

3. Enter the new password for CSPSystem in the Password field. Since no user has to remember this password, you can
make it as long and complex as you wish. You will need to remember it long enough to complete the next item, Con-
figure the Web Gateway to Provide a Username and Password.

4. Reenter the new password in the Password (Confirm) field and click Save. If the Portal does not display an error message
or dialog, then the password change has succeeded.

If you wish, you can also confirm that CSPSystem is assigned to the role created for authentication in the previous procedure.
To do this, click on the Roles tab. The table with the column heading CSPSystem is Assigned to the Following Roles should
list the newly-created role.

Configure the Web Gateway to Provide a Username and Password

Because you are going to configure %Service_WebGateway to require password authentication, the Web Gateway needs
to provide a username-password pair. Having set up a user with the appropriate level of privilege, you have established a
username-password pair that the Gateway can provide. The next step is to configure the Gateway to provide this username-
password pair when the InterSystems IRIS server challenges it for them. The procedure is:

1. In the Management Portal, go to the Web Gateway Management page (System Administration > Configuration > Web

Gateway Management).

2. On the Web Gateway Management page, select Server Access from the list on the left side. This displays the Server

Access frame.

3. In the Server Access frame, the LOCAL server should be highlighted. Click Submit to edit it, which displays a page
with Server Access and Error Pages parameters.

4. On this page, there is a Connection Security section.

5. Ensure that the Connection Security Level drop-down has “Password” displayed.

6. In the User Name field, enter CSPSystem.

7. In the Password and Password (Confirm) field, enter the password that you selected in the previous section.

8. Click Save Configuration near the bottom of the page.

9. To return to the Management Portal, click Back to Management Portal from the bottom of the list in the left pane.

Configure %Service_WebGateway to Require Password Authentication

Now that the Gateway is configured to provide a username and password and you have given the CSPSystem user the
necessary level of privilege, the next step is to configure the service that manages web applications
(%Service_WebGateway) so that it requires password authentication. The procedure is:

1. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

2. On the Services page, click %Service_WebGateway. This displays the Edit Service page for %Service_WebGateway.

28 Reference for Operational and Actionable Resources for Security

Securing Your Instance

3. On the Edit Service page, under Allowed Authentication Methods, make sure that Unauthenticated access is disabled
and that Password access is enabled (also known as “Instance Authentication”). Click Save.

Remove the Public Status of the %Service_WebGateway:Use Privilege

With %Service_WebGateway requiring password authentication and the Gateway able to authenticate with an appropriately
authorized user, the next step is to exclude %Service_WebGateway:Use from public availability. The procedure is:

1. From the Management Portal home page, go to the Resources page (System Administration > Security > Resources).

2. On the Resources page, in the row for %Service_WebGateway, click Edit. This displays the Edit Resource page for
%Service_WebGateway.

3. In the Public Permission section, clear the Use box. Click Save.

Important: Once %Service_WebGateway:Use is not a public privilege, only those users who have been explicitly
granted it will be able to use web applications. You may need to assemble a list of these users and grant
them this privilege through other means.

Configure the Management Portal to Accept Password Authentication Only

Once the connection between the Gateway and the InterSystems IRIS server has a new authentication mechanism, the next
task is to configure the Management Portal application to use a matching mechanism. In this example, this mechanism is
Instance Authentication. The procedure for changing the Portal’s authentication mechanism is:

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. On the Web Applications page, the /csp/sys application represents the Management Portal home page. Click the name
/csp/sys in this row to edit the application. This displays the Edit Web Application page for the /csp/sys application.

3. In the Security Settings section, under Allowed Authentication Methods, disable Unauthenticated access and enable
Password access. Click Save.

4. Also disable Unauthenticated access and enable Password access for all the applications that compose the other pages
and choices of the Portal. These applications are:

• /csp/sys/exp

• /csp/sys/mgr

• /csp/sys/op

• /csp/sys/sec

Note: After editing the application /csp/sys/op, you will need to authenticate to make further changes.

This configures the Portal to require password authentication (also known as “Instance Authentication”) and not to allow
unauthenticated access, and so that all its parts behave consistently. The next step is to ensure that all relevant users have
appropriate access to the Portal.

Specify the Appropriate Privilege Level for the Instance’s Users

When the Portal is configured to accept unauthenticated connections, any user can connect as the UnknownUser. Because
a minimal-security installation makes UnknownUser a member of the %All role, there is no danger of being locked out of
the Portal. Now that the Portal requires password authentication, its legitimate users need to be members of the %Operator

role, the %Manager role, or the %All role.

Reference for Operational and Actionable Resources for Security 29

Tighten Security for an Instance

In a minimal-security installation, SuperUser, Admin, _SYSTEM, and UnknownUser all have this level of privilege; further,
these all have passwords of “SYS”.

Note: In a normal or locked-down installation, the UnknownUser is enabled, but is not assigned any roles.

In a normal or locked-down installation, passwords are set in the installation process, but you can choose to change
them again here.

To properly secure users, the procedure is:

1. Either disable UnknownUser or remove UnknownUser from the %All role.

• To disable UnknownUser, the procedure is:

a. On the Users page (System Administration > Security > Users), click UnknownUser under the Name column.
This displays the Edit User page for UnknownUser.

b. Clear the User Enabled field and click Save.

• To remove UnknownUser from the %All role:

a. On the Users page (System Administration > Security > Users), click UnknownUser under the Name column.
This displays the Edit User page for UnknownUser.

b. Go to the Roles tab on the Edit User page.

c. In the User UnknownUser is Assigned to the Following Roles table, on the %All row, and click Remove.

Important: Limiting access through UnknownUser can have widespread effects, particularly if an instance’s users
are not sufficiently privileged.

2. Ensure that any other potentially unauthorized users are not members of %All, %Developer, %Manager, %Operator,
%SQL, or any user-defined role that grants privileges. This involves a process analogous to removing UnknownUser
from the %All role.

(A user-defined role that grants privileges might have Use permission on any of the %Admin... resources,
%Development, or any of the %Service or %System resources, or Write permission on %DB_IRISLIB or
%DB_IRISSYS.)

3. Ensure that any user who should have access to the Portal is assigned to %All, %Developer, %Manager, %Operator,
%SQL, or any user-defined role that grants Portal access. The procedure, for each of these users, is:

a. On the Users page (System Administration > Security > Users), click the name of the user under the Name column.
This displays the Edit User page for that user.

b. Go to the Roles tab on the Edit User page.

c. Move the desired role(s) from the Available to the Selected list by selecting the role, clicking the right arrow button,
and then clicking Assign to assign the user to the role(s).

4. Change the passwords for SuperUser and Admin users from the default and disable the accounts. To do this:

a. On the Users page (System Administration > Security > Users), click the name of the user under the Name column.
This displays the Edit User page for that user.

b. Click Enter new password.

c. Enter the new password in the Password field.

d. Confirm it in the Password (confirm) field.

e. Clear the selection for User enabled and click Save.

30 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Note: InterSystems IRIS requires at least one enabled account with the %All role. InterSystems recommends cre-
ating a unique user with the %All role and disabling the SuperUser, Admin, and _SYSTEM users.

Important: Make sure that you know the password for at least one user who administers the Portal. Otherwise, you
may lock yourself out of the Portal and have to log in using emergency access so that you can reset one or
more passwords using the ^SECURITY routine.

Make the Class Documentation Available

Once you finish configuring the service, the Web Gateway, and the Portal application, you may wish to ensure that the
class documentation program is available. The procedure is:

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. To make the documentation available:

a. On the Web Applications page, the /csp/documatic application represents the class reference application. Click
/csp/documatic in this row to edit the application. This displays the Edit Web Application page for the /csp/documatic
application.

b. In the Security Settings section, under Allowed Authentication Methods, disable Unauthenticated access and enable
Password access. Click Save.

Note: In a normal installation, password access is already enabled.

If you do not perform this procedure, the service requires a password prompt but the application attempts to use unauthen-
ticated access. This prevents all users — including those assigned to %All — from reaching the documentation.

Begin Enforcement of New Policies

At this point, the InterSystems IRIS instance is fully configured to operate properly. However, all existing connections are
still using unauthenticated access. To begin enforcement of the new policies, the following events must occur:

• The Web Gateway must establish an authenticated connection.

• All users must also establish authenticated connections.

Establish an Authenticated Web Gateway Connection

To force the Web Gateway to establish an authenticated connection, the procedure is:

1. From the Management Portal home page, select System Administration > Configuration > Web Gateway Management.
This displays the Web Gateway Management page.

2. On the Web Gateway Management page, select Close Connections from the list on the left side. This displays the Close

Connections frame.

3. Click Close Connection(s). This displays a message indicating that all connections between the Gateway and InterSystems
IRIS server have been closed.

The next time that a user requests a page, the Gateway will reestablish a connection to the InterSystems IRIS server. This
connection will use the selected authentication mechanism.

Establish Authenticated User Connections

At this point, all connections to the Management Portal are still using unauthenticated access. If there is no pressing need
to require authenticated access, then there is nothing else to do. Users will gradually end their connections to the Portal and

Reference for Operational and Actionable Resources for Security 31

Tighten Security for an Instance

will have to authenticate when they reconnect. (Connections may be ended due to machine reboots, stopping and restarting
browsers, clearing browser caches, Portal logouts, etc.)

If there is a need to force connections to use authenticated access, you can stop and restart InterSystems IRIS. For example,
on Windows, if you have InterSystems IRIS available through the default Start menu page:

1. From the Windows Start menu, select Programs > InterSystems IRIS, then the InterSystems IRIS instance to restart.

2. On the submenu for the instance of InterSystems IRIS, choose Stop InterSystems.

3. On the dialog that appears, select Restart and click OK.

Note: If you are using a production instance of InterSystems IRIS, you may want to choose a low-traffic time for the
restart, since users will temporarily not have access to either InterSystems IRIS as a whole or the Portal.

Limit the Number of Public Resources
Any resource can be specified as a public resource. This means that any user has the ability to read, write, or use the resource,
depending on its public settings. The following should always be public:

Table A–2: Required Public Resources and Their Permissions

PermissionResource

R%DB_IRISLOCALDATA

R%DB_IRISLIB

RW%DB_IRISTEMP

To tighten the security of an instance, limit the number of public resources. To do this, the procedure is:

1. Ensure that all users who genuinely require access to these resources have been given privileges for them.

Important: If you do not provide privileges for %Service_WebGateway:Use to the appropriate users, then
this procedure can result in a widespread lockout from the Management Portal and other web applica-
tions.

2. From the Management Portal home page, go to the Resources page (System Administration > Security > Resources).

3. On the Resources page, each resource for which there is one or more public permissions has those permissions listed
in the Public Permissions column of the table of resources. Select the resource by clicking Edit. This displays the
resource’s Edit Resource page.

4. On the Edit Resource page, clear any checked Public Permission fields and click Save. The resource is no longer public.

Perform this procedure for all public resources.

Restrict Access to Services
There are various pathways by which users can interact with InterSystems IRIS. Services regulate access to these pathways.
To limit access to InterSystems services, the available choices are:

• Limit the number of enabled services to only those required for the applications in use

• Limit the number of public services to only those required for the applications in use

• Restrict access to services by IP address or machine name

32 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Limit the Number of Enabled Services

To limit the number of enabled services, the procedure is:

1. Determine the required services for the InterSystems IRIS instance. Typically, these are:

• Whatever service is required for each form of user access

• Whatever services are required for any automated access

• Either %Service_Console (on Windows) or %Service_Terminal (on UNIX®), for local programmer-mode
access

2. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

3. On the Services page, for each service that is not required, select the service by clicking on its name. This displays the
service’s Edit Service page.

4. On the Edit Service page, clear the Service Enabled field and click Save. The service is now disabled.

Once you have disabled all unnecessary services, the only pathways to InterSystems IRIS are the required services.

Limit the Number of Public Services

Each service is associated with a resource. In most cases, the resource has the same name as the service, such as
%Service_WebGateway; the exception to this is the %Service_Bindings service, which is associated with the
%Service_Object and %Service_SQL resources. Services are public because of the settings for the resources associated
with them. Because of this, the procedure for making a service non-public is the same as for making any other resource
non-public. This is described in Limiting the Number of Public Resources.

Restrict Access to Services by IP Address or Machine Name

For certain services, you have the option of restricting access to the service according to IP address or machine name. This
is known as the ability to limit “allowed incoming connections.” The services that support this feature are:

• %Service_Bindings

• %Service_CacheDirect

• %Service_ECP

• %Service_Monitor

• %Service_Shadow

• %Service_WebGateway

By default, a service accepts connections from all machines. If a service has no associated addresses or machine names,
then it accepts connections from any machine. If one or more addresses or machine names are specified from which a service
accepts connections, then the service only accepts connections from these machines.

This feature is not available for %Service_CallIn, %Service_ComPort, %Service_Console,
%Service_DataCheck, %Service_Login, %Service_Mirror, %Service_Telnet, and %Service_Terminal.

To restrict access to a service by IP address, the procedure is:

1. Determine the IP addresses of those machines with legitimate access to the service.

2. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

3. On the Services page, for each service for which you are restricting access by IP address, select the service by clicking
on its name. This displays the service’s Edit Service page.

4. On the Edit Service page, in the Allowed Incoming Connections section, click Add New.

Reference for Operational and Actionable Resources for Security 33

Tighten Security for an Instance

5. In the displayed dialog, enter an IP address for an allowed incoming connection. Click OK.

6. Click Add New and enter other addresses as needed.

Perform this procedure for each service that is restricting the IP addresses from which it accepts connections.

Limit Remote Privileged Access
InterSystems IRIS supports ECP remote job requests. However, a remote job runs as root on the server, which could allow
a user to operate on the server with more privileges than intended. To disable handling of remote jobs and limit remote
privileged access on the server, follow the procedure in Changing This Parameter to set netjob to false. This setting is
true by default.

Limit the Number of Privileged Users
Every instance of InterSystems IRIS must have at least one user who is assigned to the %All role. In fact, if there is only
one user assigned to this role, then InterSystems IRIS prevents the user from being removed from the role. However, over
time, an instance can end up having more users assigned to %All than are necessary. This can arise from assigned users
leaving an organization but their accounts not being disabled, from temporary assignments not being revoked, and so on.

Along with the %All role, the system-defined roles of %Manager, %Developer, %Operator, and %SQL can give users
undue privilege. There also may be user-defined roles that do this. Users assigned to such roles are sometimes known as
“privileged users.”

To limit the number of privileged users, determine which users are assigned to each privileged role and remove those who
are not needed. The procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click the name of the role. This displays the Edit Role page for that role.

3. On the Edit Role page, click the Members tab, which displays a list of the users and roles assigned to the role.

4. To remove any user from the specified role, click Remove on the row for the user or role to be removed.

Perform this procedure for each privileged role, including %All and the others listed previously. It is also important to
disable the _SYSTEM user; the procedure for this is described in Disabling the _SYSTEM User.

Important: Certain seemingly non-privileged roles may have what could be called “privileges by proxy.” This occurs
when a seemingly non-privileged role is assigned to a privileged role. In this case, any user who is assigned
to role with privileges by proxy holds all the privileges associated with the privileged role.

Avoid creating privileges by proxy whenever possible. When not possible, have as few users as possible
assigned to the roles with privileges by proxy.

Disable the _SYSTEM User
The InterSystems IRIS installation program creates the _SYSTEM user. This user is created in accordance with the SQL
standard as the SQL root user. In a minimal-security installation, the default password for this user is “SYS”; in normal
and locked-down installations, the default password is whatever was selected during the installation process. Because this
user and the password of “SYS” are both publicly specified by the SQL standard, and because of this user’s SQL privileges,
disabling _SYSTEM is important for tightening access to an InterSystems IRIS instance.

To do this, the procedure is:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users)).

2. On the Users page, click the name _SYSTEM to open the Edit User page for _SYSTEM.

3. On the Edit User page for _SYSTEM, clear the User Enabled field. Click Save.

34 Reference for Operational and Actionable Resources for Security

Securing Your Instance

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=RACS_netjob#RACS_netjob_change

Note: If you need to check root-level SQL privileges after disabling _SYSTEM, you will have to temporarily enable
the user to perform the required action.

Restrict Access for UnknownUser
In instances that support unauthenticated access, connections that do not use authentication are established with the
UnknownUser account. In minimal-security installations, the default behavior is that:

• All connections use UnknownUser.

• UnknownUser is assigned to the %All role.

• UnknownUser holds all SQL privileges.

To restrict access for UnknownUser, disable unauthenticated access for all enabled services. (Other actions may not be
effective or may result in a lockout from the Management Portal.)

Note: If you have performed all of the previous actions listed in this section, you may have already disabled UnknownUser
and limited the number of public resources.

Potential Lockout Issue with the UnknownUser Account

If an instance has been installed with Minimal security, UnknownUser has the %All role; the instance also has unauthenticated
access available for all services and applications. If you simply change the user’s role (from %All to something else) and
still allow unauthenticated access, you may be unable to use basic features.

This is because, under these conditions, InterSystems IRIS establishes a connection to the selected tool without performing
authentication. When there is no authentication, the system automatically sets the user account to UnknownUser. The next
step is to check user privileges. If UnknownUser has insufficient privileges, access to the tool is limited or not available.
For example, under these circumstances, the Terminal displays an “Access Denied” message and then shuts down; the
Portal displays its main page, but no options can be selected.

To correct this condition:

1. Start InterSystems IRIS in emergency access mode.

2. Restore sufficient privileges to the UnknownUser account.

If you wish to prevent use of UnknownUser, you must upgrade the authentication mechanism for the Management Portal.

Configure Third-Party Software
InterSystems products often run alongside and interact with non-InterSystems tools, including virus scanners. For important
information about the effects these interactions can have, see Configuring Third-Party Software to Work in Conjunction
with InterSystems Products.

Reference for Operational and Actionable Resources for Security 35

Tighten Security for an Instance

Security Advisor

Security Advisor
To assist system managers in securing an InterSystems IRIS system, the InterSystems IRIS Management Portal includes
a tool called the Security Advisor. This is a web page that shows current information related to security in the system con-
figuration. It recommends changes or areas for review, and provides links to other pages in the Management Portal so that
you can make the recommended changes.

Important: The Security Advisor provides general recommendations, but does not have any knowledge of an instance’s
needs or requirements. It is important to remember that each InterSystems IRIS instance has its own
requirements and constraints, so that issues listed in the Security Advisor may not be relevant for your
instance; at the same time, the Security Advisor may not list issues that are of high importance for you.
For example, the Security Advisor exclusively recommends that services use Kerberos authentication, but,
depending on your circumstances, authentication through the operating system, Instance Authentication,
or even unauthenticated access may be appropriate.

There are some general features in the Security Advisor:

• Details button — Each section has a Details button. Selecting this button displays the page for managing that aspect of
InterSystems IRIS regulated by the section.

• Name button — Each named item in each section is a link. Selecting one of these items displays the page for managing
that item.

• Ignore check box — Each named item in each section has an associated Ignore check box. If you have determined that
the item does not apply to your specific requirements, selecting this box grays out the line for the specified item. The
line does not appear if InterSystems IRIS is set up according to the Security Advisor’s recommendations, whether or
not the Ignore check box is selected.

Auditing
This section displays recommendations on auditing itself and on particular audit events:

• Auditing should be enabled — Auditing creates a record that can provide forensic information after any notable or
unusual system events.

• Auditing for this event type should be enabled — Auditing particular events can provide more specific information
about various topics. Specifically, since the events noted when not enabled are:

– The DirectMode event — Auditing this event can provide information about connections to InterSystems IRIS
that give users significant privileges.

– The Login event — Auditing this event can provide information questionable logins.

– The LoginFailure event — Auditing this event can provide information about attempts to gain inappropriate access
to the system.

Services
This section displays recommendations on InterSystems services. For each service, depending on its settings, the Security
Advisor may address any of the following issues:

• Ability to set % globals should be turned off — Since % globals often hold system information, allowing users to
manipulate these globals can result in serious, pervasive, and unpredictable effects.

36 Reference for Operational and Actionable Resources for Security

Securing Your Instance

• Unauthenticated should be off — Unauthenticated connections give all users, including the unidentified UnknownUser
account, unregulated access to InterSystems IRIS through the service.

• Service should be disabled unless required — Access through any service monitored by the Security Advisor can
provide an undue level of system access.

• Service should use Kerberos authentication — Access through any other authentication mechanism does not provide
the maximum level of security protection.

• Service should have client IP addresses assigned — By limiting the number of IP addresses from which connections
are accepted, InterSystems IRIS may be able to more tightly oversee the connections to it.

• Service is Public — Public services give all users, including the unidentified UnknownUser account, unregulated
access to InterSystems IRIS through the service.

Roles
This section displays recommendations for all roles that hold possibly undue privileges; other roles are not listed. For each
role, the Security Advisor may address any of the following issues:

• This role holds privileges on the Audit database — Read access to the Audit database may expose audited data inap-
propriately; Write access to the Audit database may allow the inappropriate insertion of data into that database.

• This role holds the %Admin_Secure privilege — This privilege can allow for the establishing, modifying, and
denying access of users to assets; it also allows the modification of other security-related features.

• This role holds Write privilege on the %IRISSYS database — Write access to the %IRISSYS database may allow the
compromise of system code and data.

Users
This section displays recommendations related to users generally and for individual user accounts. In this area, the Security
Advisor may address any of the following issues:

• At least 2 and at most 5 users should have the %All role — Too few users holding %All can lead to access problems
in an emergency; too many users holding it can open the system to compromise

• This user holds the %All role — Explicitly announcing which users hold %All can help eliminate any who hold it
unnecessarily.

• UnknownUser account should not have the %All role — A system cannot be properly secured if anonymous users
have all privileges. While this is part of any instance with a Minimal security level, such an instance is not properly
secured by design.

• Account has never been used — Unused accounts provide an attractive point of entry for those attempting to gain
unauthorized access.

• Account appears dormant and should be disabled — Dormant accounts (those that have not been used for over 30
days) provide an attractive point of entry for those attempting to gain unauthorized access.

• Password should be changed from default password — This is a commonly attempted point of entry for those
attempting to gain unauthorized access.

Web, Privileged Routine, and Client Applications
Each application type has its own section, which makes it simpler to review details for each application type. These sections
display recommendations related to access to and privileges granted by applications. In this area, the Security Advisor notes
the following issues:

Reference for Operational and Actionable Resources for Security 37

Security Advisor

• Application is Public — Public applications give all users, including the unidentified UnknownUser account, unreg-
ulated access to the data associated with the application and actions that the application supports. This is even more
notable if the application also grants the %All role, either conditionally or absolutely.

• Application conditionally grants the %All role — A system cannot be properly secured if users have the possibility
of holding all privileges. This is even more notable if the application is also public.

• Application grants the %All role — A system cannot be properly secured if users have all privileges. This is even
more notable if the application is also public.

38 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Secure InterSystems Processes and Operating-System
Resources

Introduction
This document describes how to reduce the potential attack surface available to an intruder by hardening the operating
system on which an instance of an InterSystems IRIS® data platform runs. Topics include:

• The operating system services that an InterSystems IRIS instance requires

• The various types of InterSystems IRIS processes, along with the purpose of each

• Methods for identifying the function of InterSystems IRIS processes in a running instance

• How to remove or disable optional InterSystems IRIS processes that your site may not need

• Processes required by an instance that is running, in addition to either the iris process on UNIX® or the irisdb.exe

process on Windows

• The TCP and UDP ports for InterSystems IRIS processes, along with the purpose of each

InterSystems IRIS Processes
Most processes comprising an InterSystems IRIS instance use the iris executable on UNIX® and the irisdb.exe executable
on Windows, and each of these files resides in the bin directory under the installation directory. A running instance uses a
number of system processes to coordinate and support the processes running user code. InterSystems IRIS processes can
be examined in the Management Portal under System Operation > Processes.

Core Processes

Core system processes are started early in the initialization of an instance and have no value in the User column. You can
identify these processes by the value in the Routine column which, in the case of system processes, does not always contain
the name of an InterSystems IRIS routine. The Routine column lists the following core system processes by name:

• CONTROL — Creates and initializes shared memory and provides various control functions.

• WRTDMN — Performs all writes to databases and WIJ (the write daemon).

• GARCOL — Garbage collects large kills.

• JRNDMN — Performs journal writes.

• EXPDMN — Performs database expansions.

• AUXWD — Performs write daemon tasks (write daemon auxiliary workers).

• MONITOR — Writes alerts to the alert file and transmits email alerts.

• CLNDMN — Detects dead processes and cleans up stranded resources.

• RECEIVE — Manages ECP worker processes.

• ECPWork — Performs ECP tasks (ECP worker process).

• %SYS.SERVER — Accepts TCP requests and dispatches workers to serve them (the superserver process).

• %CSP.Daemon — Manages expiration of web sessions.

• LMFMON — Monitors the InterSystems IRIS license and sends usage data to the license server over UDP.

• %SYS.Monitor.xxx — Performs system monitor tasks (various system monitor workers).

• SYS.Monitor.xxx — Writes alerts to alert file and transmits email alerts.

Reference for Operational and Actionable Resources for Security 39

Secure InterSystems Processes and Operating-System Resources

Do not stop the core system processes. Doing so disrupts the normal operation of an InterSystems IRIS instance.

A number of other InterSystems IRIS system processes are started after the core system processes. Many are started
dynamically. These processes have a value displayed in the User column. Many of them are optional and are not started
unless needed or configured. These processes can usually be identified by the values of the Routine, User, and Client EXE

columns of the process display.

The task manager process (TASKMGR) is created during instance startup. It starts various scheduled system and user
defined tasks and runs with the settings:

• Username = TASKMGR

• Routine = %SYS.TaskSuper.1

• Operating System Username = TASKMGR

If you are not using ECP, you can prevent the ECPWork process from being started:

1. From the Management Portal, select System Administration > Configuration > Connectivity > ECP settings and set the
maximum number of application and data servers to zero.

2. Disable the ECP service.

ECP Server Processes

ECP server processes that are dynamically started have a routine name beginning with “ECP”. The user name or Operating
System Username is usually Daemon or %System, but it may be the name of the Instance Service user on Windows.
Examples of process names follow:

• ECPCliR – ECP client reader

• ECPCliW – ECP client writer

• ECPSrvR – ECP server reader

• ECPSrvW – ECP server writer

Web Server Processes

Web server processes are dynamically started. They will display CSPSystem in the User column when they are idle and
waiting for a task. When they are active, they will display the InterSystems IRIS user for the web session and the current
routine name. The OS Username column will display Web Gateway.

• %SYS.cspServer and %SYS.cspServer2 – Webserver routines that processes use to handle web application requests.

• %SYS.cspServer3 – Webserver routine that processes use to handle asynchronous communication and Web Gateway
management.

These processes are associated with legacy applications from other InterSystems products. For more details on these routines
in those applications, see the question about them in the FAQ for this feature.

Note: These routines do not consume licenses. Licenses are associated with web application sessions.

For each of these servers, on Windows the executable is CSPAP.dll; on UNIX®, it is CSPap.so. The operating system
username is Web Gateway. The program name may change as the process changes tasks.

Mirroring System Processes

Mirror system processes are started if mirroring is configured. They perform various functions related to mirroring.

40 Reference for Operational and Actionable Resources for Security

Securing Your Instance

https://docs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCSP_cspfaq

• MIRRORMGR – Mirror Master. The User is the description of the mirror function performed: Mirror Master,
Mirror Primary, Mirror Dejournal, Mirror Prefetch, or Mirror JrnRead. The operating system
username is Daemon. No TCP port is open. The device is the operating system null device.

• MIRRORCOMM – Mirror communication process. The username is Mirror Arbiter, Mirror Backup, or
Mirror Svr:RdDmn. The operating system username is Daemon. The device is |TCP|XXX. The TCP port can be
determined from the Device name or the Mirror configuration.

IP Protocols

TCP

An InterSystems IRIS instance accepts connections on TCP/IP ports specified by configuration options. Any Operating
System restrictions on usage of ports, for example with a fire wall, require port settings to allow inbound access that are
consistent with the ports configured for InterSystems IRIS. If the firewall defines rules for executables, as it does on Windows,
you may need to grant permission to programs as well, for example, the irisdb.exe, licmanager.exe, ISCAgent.exe, and the
httpd.exe executables will require such permissions.

TCP/IP ports used by InterSystems IRIS are defined by the instance configuration. The configured ports can be examined
in the iris.cpf file in the installation directory. The [Startup] section configures DefaultPort,
DefaultPortBindAddress and WebServerPort. DefaultPort specifies the port on which the superserver accepts
connections; the default value is 1972. DefaultPortBindAddress optionally specifies an interface address the superserver
binds to. WebServerPort specifies the port on which the private web server accepts connections; the default value is
52773.

The private web server is mostly used in development environments and is not recommended for production environments.

The [SQL] section contains JDBCGatewayPort which defines the Java Database Connectivity (JDBC) gateway port
number. Its default value is 62972.

The [Telnet] section contains a Port value to specify the port on which the InterSystems Telnet service (ctelnetd.exe)
accepts Telnet connections to InterSystems IRIS on Windows.

UDP

InterSystems IRIS and the license server (licmanager or licmanager.exe) communicate primarily using the UDP protocol.
InterSystems IRIS sends messages as UDP packets to the license server port. This port is 4002 by default, and is configured
in the Management Portal > System Administration > Licensing > License Servers. The license server replies to InterSystems
IRIS at the port that InterSystems IRIS used to send the original message (it looks up the port in the packet header). TCP
is only used between InterSystems IRIS and the license server during a query request. InterSystems IRIS opens a TCP port
for accept/listen and sends this port number in the query request. The license server connects back to that port and sends
the results over the TCP connection. The port number is the license server port; if this fails, it uses port 0 which signals the
operating system to select a free port at random. The port is open only during transmission of the query results.

SNMP

The %System_Monitor Service enables InterSystems IRIS to act as a subagent to an SNMP Agent on the managed system.
This supports both SNMP requests (GET or GETNEXT) for InterSystems IRIS management and monitoring data (as
defined in the supplied MIBs), and SNMP Traps (asynchronous notifications sent by InterSystems IRIS). Disabling the
%System_Monitor service will disable all communication between InterSystems IRIS and the SNMP Agent on the local
system, and consequently with any remote SNMP manager applications.

HTTP

Refer to the description of the components of the Web Gateway used by InterSystems IRIS to serve HTTP requests by
navigating through the online documentation as follows: Documentation > InterSystems IRIS Web Development > Web
Gateway Guide > Introduction to the Web Gateway. The private Web Server is httpd.exe (httpd on UNIX®) located in the

Reference for Operational and Actionable Resources for Security 41

Secure InterSystems Processes and Operating-System Resources

httpd\bin subdirectory under the installation directory. Startup of the private web server is controlled by the Management
Portal > System Administration > Configuration > Additional Settings > Startup > WebServer set to true or false.

Gateways

InterSystems IRIS provides a number of Gateways to external data. These include SQL Gateway, JDBC Gateway, Object
Gateways, and XSLT 2.0 Gateway servers. The TCP/IP ports used are defined using the gateway setup pages accessed via
the Management Portal > System Administration > Configuration > Connectivity. See the documentation of these gateways
for an explanation of Operating System services or processes on which they depend.

Remove Unneeded InterSystems IRIS Processes
InterSystems service processes are not created unless the services they support are enabled and configured. There is no
need to take any additional action to prevent InterSystems service processes from running.

External Processes
An InterSystems IRIS instance will start processes running executables other than iris[.exe] to perform a number of functions
in support of the instance. Instance specific versions of these executables, which are generally specific to the instance version,
live in the bin subdirectory of the installation directory. Executables that may be shared by multiple InterSystems IRIS
instances live in a common directory.

Persistent processes may be running the following executables, which live in the bin directory on Windows.

• irisdb.exe — The InterSystems IRIS executable.

• licmanager.exe — The InterSystems IRIS license server.

• CStudio.exe — Studio.

• iristray.exe — The InterSystems IRIS launcher in the system tray.

• Iristerm.exe — The Terminal.

• iristrmd.exe — The local Terminal connection daemon. Accepts local Terminal connections (not Telnet) and creates
InterSystems IRIS server processes to serve the connection.

• irisirdimj.exe — Executable that processes the WIJ file during InterSystems IRIS startup and shutdown.

Persistent processes may be running the following executables, which live in the bin directory on UNIX®.

• iris — The InterSystems IRIS executable.

• licmanager — The InterSystems IRIS license server

• irisirdimj — Processes the WIJ file during InterSystems IRIS startup and shutdown.

Other programs in the bin directory are used from time to time, but the processes are short running and unlikely to be displayed
by a process listing for long.

Executable binaries shared by InterSystems IRIS instances reside in subdirectories of C:\Program Files (x86)\Common

Files\InterSystems on Windows. The processes may be seen running these executable binaries from the common directory
on Windows.

• ISCAgent.exe – Controls mirror failover.

• Iristerm.exe – The Terminal.

Shared binaries are usually installed in /usr/local/etc/irissys on UNIX®.

• ISCAgent* - Controls mirror failover.

42 Reference for Operational and Actionable Resources for Security

Securing Your Instance

In addition to executable binaries, a number of shared library binaries are stored in the common directory.

Interoperability

Adapters

InterSystems IRIS provides communication with external interfaces using adapters.

Email

Email adapters are InterSystems IRIS processes. They use TCP/IP to send/receive email from an email server. Outbound
adapters send mail to a SMTP server. Inbound adapters poll for relevant (filtered) messages from a POP3 serve. Email
servers are likely to be on a remote server, so while there would be no local process, the remote system would need to be
reachable through a firewall

File

File Input Adapters are InterSystems IRIS processes. They periodically inspect a directory they have been configured to
monitor, read files that appear there, pass the files to the Business Service they have been configured to support, and move
the files to the configured archive directory. The EnsLib.File.InboundAdapter class provides the implementation. The FilePath,
WorkPath, and ArchivePath properties define the input, temporary work, and archive directories, respectively.

File Output Adapters are employed by production Business Operations to write data to files. The file path and file name
are specified by the Business Operation and operations on the file are invoked by calling methods of the
EnsLib.File.OutboundAdapter class. Messages are usually queued to a worker job that performs the actual output operation.
This implies the existence of Ens.Queue processes.

FTP

InterSystems IRIS acts as a client for FTP communication with remote FTP servers using the %Net.FtpSession class. The
%Net.FtpSession class can be configured to use PASV for the data channel to avoid an inbound connection. InterSystems
IRIS provides FTP inbound and outbound adapters. Both act as FTP clients to get (input) or put (output) under the control
of a Business Service created by the customer. The FTP server and port are configurable. The FTP adapters are InterSystems
IRIS processes.

HTTP

The HTTP adapters (EnsLib.HTTP.InboundAdapter and EnsLib.HTTP.OutboundAdapter) enable productions to send and
receive HTTP requests and responses. HTTP adapters are implemented by InterSystems IRIS processes. The port and
interface IP addresses of the inbound HTTP adapter are configurable. The server and port to which the outbound HTTP
adapter is provided by class settings.

Java Gateway

Production adapters use the Java Gateway to communicate through a Java intermediary process. A Java process is started
which depends on the existence of a Java Virtual Machine. The InterSystems IRIS server process communicates with the
Java process via a TCP connection. The TCP ports used are configurable.

LDAP

The EnsLib.LDAP.OutboundAdapter class can be used like other adapters by Business Services to send requests to an LDAP
server and receive responses.

MQSeries

The classes EnsLib.MQSeries.InboundAdapter and EnsLib.MQSeries.OutboundAdapter enable productions to retrieve messages
from and send messages to message queues of IBM WebSphere MQ. Dynamically loaded shared library binaries are used
for the communication.

Reference for Operational and Actionable Resources for Security 43

Secure InterSystems Processes and Operating-System Resources

Pipe

The classes EnsLib.Pipe.InboundAdapter and EnsLib.Pipe.OutboundAdapter enable productions to invoke operating system
commands or shell scripts. They create a process external to InterSystems IRIS and communicate with it via a pipe, so an
external process will exist while the Pipe adapter is communicating with it. The command that the process runs is determined
by the value assigned to the CommandLine property of the adapter class.

SAP

The Java Gateway is used to communicate with the SAP Java Connector using classes imported with the EnlLib.SAP.BootStrap

class ImportSAP method.

SQL

The SQL inbound and outbound adapters enable productions to communicate with JDBC or ODBC-compliant databases.
In general, the inbound SQL adapter (EnsLib.SQL.InboundAdapter) periodically executes a query and then iterates through
the rows of the result set, passing one row at a time to the associated business service. The SQL adapters use the underlying
capabilities of InterSystems SQL and JDBC Gateways.

TCP

InterSystems IRIS provides input and output TCP adapters. Each TCP inbound adapter checks for data on a specified port,
reads the input, and sends the input as a stream to the associated business service. Within a production, an outbound TCP
adapter is associated with a business operation that you create and configure. The business operation receives a message
from within the production, looks up the message type, and executes the appropriate method in the outbound TCP adapter
to transmit the data over TCP.

Telnet

InterSystems IRIS provides the EnsLib.Telnet.OutboundAdapter which permits outbound telnet connections to the telnet
facility on another system. This adapter provides methods to programmatically emulate the effect of manually logging in
to the remote system using telnet client software. The InterSystems IRIS TCP device is the underlying technology.

44 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Security Checklist

Checklist for Hardening Your Deployment
This checklist is intended to provide your organization with guidelines for assessing how secure your environment is and
to provide tips for hardening your environment that will help your organization avoid and prevent security breaches. This
checklist is not intended to be a “how to list” and is not all-inclusive. The points below are items to consider rather than
a definitive list of rules to apply.

You alone are responsible for the security of your infrastructure. If you are uncertain about your approach to hardening and
protection, consult a security professional.

Network and Firewalls
DescriptionTopicID

Obtain copies of and review security polices, firewall logs,
firewall configuration and patch levels, public facing IP
addresses, diagrams of network, and firewall topologies.

Network, hardware, software and
policies

1.

Ensure firewalls and management servers are in a physically
secure location that can only be accessed by authorized
personnel. Ensure that they are patched up to date.

Auditing the physical environment2.

Review procedures and approval process for changes.
Automation tools are available for this.

Reviewing change management
process, rule base modifications

3.

Run automated tools to analyze and identify unsecured ser-
vices, protocols, and ports.

Vulnerability testing4.

Stop people from guessing passwords, and prevent them
from connecting to the server, by blocking their current IP
address in your server firewall.

Using brute force detection sys-
tems

5.

Ensure a process is in place for continuous auditing of fire-
walls. Ensure real-time monitoring is in place to alert on
changes to the firewall. Review their logs regularly.

Ongoing audits and real-time
monitoring and alerting

6.

Reference for Operational and Actionable Resources for Security 45

Security Checklist

Operating System
DescriptionTopicID

Understand the server role, and document the install proce-
dure. Download appropriate operating system securing and
hardening guides for more detailed information.

Installation planning1.

Ensure operating system patches are up to date, especially
security patches. Turn off automatic updates.

Patch levels2.

Install and appropriately configure this software. (Formerly
listed as antivirus software.)

Endpoint protection software3.

Disable unnecessary network services such as IPv6, telnet,
and FTP.

Disable unnecessary daemons that are not used such as
DHCP, scheduling and queuing services, and laptop services.

Configure in-use services to be as secure as possible; for
example, secure SSH by limiting SSH protocol to Version 2
(Version 1 is not secure).

Disabling unnecessary software,
services, and ports

4.

Maintain server logs and mirror those logs to a separate log
server.

Logs5.

Configure monitoring and alerting settings to notify of events
such as changes to the system, and unauthorized access.

Monitoring and alerting6.

Configure the BIOS to disable booting from CDs/DVDs, flop-
pies, and external devices; set a password to protect these
settings.

Physical security7.

46 Reference for Operational and Actionable Resources for Security

Securing Your Instance

Web Server
DescriptionTopicID

Understand the role of the web server: what content will it
serve; will the pages be static; what web services are pro-
vided? Document the installation procedure. Download and
review the appropriate hardening security guide.

Installation planning1.

Ensure web server is up to date, especially with regard to
security patches.

Patch levels2.

Configure the servers so that HTTP headers do not provide
information relating to the web server software being run, or
system types and versions.

Web server header info3.

When enabled, HTTP TRACE request is used to echo back
all received information.

Disabling HTTP TRACE4.

Implement proper error handling by utilizing generic error
pages and error handling logic to force the application to avoid
default error pages. These often leak sensitive system and
application information.

Error handling5.

Disable all unused modules to reduce surface area of the web
server; these modules often provide too much information –

Apache: autoindex, cgi, imap, info, status, userdir, actions,
negotiation…

IIS: ASP, ASP.NET, WebDAV, CGI, directory browsing…

Disabling modules6.

Apache: Run Apache as a separate user and group so Apache
processes cannot be used by other system processes.

IIS: Remove unused accounts; disable Guest account

Users and groups7.

Reference for Operational and Actionable Resources for Security 47

Security Checklist

Users, Passwords, Groups, Ownerships, and Permissions
DescriptionTopicID

Disable root login. All administrators should be named users.
Regularly check for unused user accounts, and for default
user accounts and passwords.

User management1.

Require and use very strong passwords with mixed case,
numbers, and special characters.

Change passwords on a regular basis.

Lock accounts after too many login failures.

Password policy2.

Create groups and users before installation.

Install InterSystems IRIS as root. Ensure groups, ownerships,
and permissions for InterSystems IRIS databases are main-
tained as specified.

UNIX®3.

Install InterSystems IRIS using the Windows Administrator,
and then disable the default Windows Administrator account.
Also disable Guest and Help Assistant accounts.

Windows4.

Encryption (Data At Rest and Data In Motion)
DescriptionTopicID

Ensure all production data at rest on disk is encrypted.Data at rest1.

Review the key management policies and procedures.Key management2.

Ensure all HTTP data communications is encrypted, such as
with TLS.

Ensure that all TLS configurations are using the latest version.

Data In motion3.

48 Reference for Operational and Actionable Resources for Security

Securing Your Instance

InterSystems Security
DescriptionTopicID

Always install with the Locked Down initial security setting
type.

Installation1.

Regularly review users and passwords.Authentication2.

Review application requirements; define roles, resources, and
services.

Authorization3.

Ensure that auditing is enabled. Review the logs regularly.Auditing4.

If services such as ECP and mirroring are not used, do not
enable them.

Disabling services5.

Remove unused databases such as USER.Removing unused databases and
applications.

6.

Reference for Operational and Actionable Resources for Security 49

Security Checklist

Identity and Access Management

Reference for Operational and Actionable Resources for Security 51

Identity and Access Management Introduction

Introduction to InterSystems Identity and Access Management
Identity and access management (IAM) is a framework focused on managing user identities and access permissions on a
computer network. This includes authentication and authorization. Authentication is the process of verifying the identity
of a user attempting to connect to InterSystems IRIS. InterSystems IRIS supports several different authentication mechanisms.
Once authenticated, a user can communicate with InterSystems IRIS and use its tools and resources. Authorization is the
process of determining which database assets a user can use, view, or change.

52 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Kerberos Authentication

About Kerberos Authentication

Kerberos Background

For maximally secure connections, InterSystems IRIS supports the Kerberos authentication system, which provides a highly
secure and effective means of verifying user identities. Kerberos was developed at the Massachusetts Institute of Technology
(MIT) to provide authentication over an unsecured network, and protects communications using it against sophisticated
attacks. The most evident aspect of this protection is that a user’s password is never transmitted over the network — even
encrypted.

Kerberos is what is called a trusted-third-party system: the Kerberos server holds all sensitive authentication information
(such as passwords) and is itself kept in a physically secure location.

Kerberos is also:

• Time-tested — Kerberos was originally developed in the late nineteen-eighties. Its principal architecture and design
have been used for many years at many sites; subsequent revisions have addressed issues that have been discovered
over the years.

• Available on all supported InterSystems IRIS platforms — Originally developed for UNIX®, Kerberos is available
on all InterSystems IRIS-supported variants of UNIX®; Microsoft has integrated Kerberos into Windows 2000 and
subsequent versions of Windows. (Note that because the Microsoft .NET framework does not include direct Kerberos
support, InterSystems IRIS does not support Kerberos for the InterSystems IRIS Managed Provider for .NET.)

• Flexibly configurable — It accommodates heterogeneous networks.

• Scalable — The Kerberos protocol minimizes the number of interactions with its Key Distribution Center (KDC); this
prevents such interactions from becoming a bottleneck on larger systems.

• Fast — As an open-source product, the Kerberos code has been scrutinized and optimized extensively over the years.

Underlying Kerberos authentication is the AES encryption algorithm. AES — the Advanced Encryption Standard — is a
royalty-free, publicly defined symmetric block cipher that supports key sizes of 128, 192, and 256 bits. It is part of the US
Federal Information Processing Standard (FIPS), as chosen by United States National Institute of Standards and Technology
(NIST).

For background on Kerberos, see the MIT Kerberos website and its list of available documentation.

How Kerberos Works

In the Kerberos model, there are several different actors. All the different programs and people being authenticated by
Kerberos are known as principals. The Kerberos system is administered by a Kerberos Key Distribution Center (KDC);
on Windows, the Windows Domain Controller performs the tasks of a KDC. The KDC issues tickets to users so that they
can interact with programs, which are themselves represented by service principals. Once a user has authenticated and has
a service ticket, it can then use a program.

Specifically, Kerberos authentication involves three separate transactions:

1. The client receives what is called a “ ticket-granting ticket” (“TGT”) and an encrypted session key.

2. The client uses the TGT and session key to obtain both a service ticket for InterSystems IRIS as well as another
encrypted session key.

3. The client uses the service ticket and second session key to authenticate to InterSystems IRIS and optionally establish
a protected connection.

Aside from a possible initial password prompt, this is designed to be invisible to the user.

Reference for Operational and Actionable Resources for Security 53

Kerberos Authentication

https://web.mit.edu/kerberos/www/
https://web.mit.edu/kerberos/www/papers.html

How InterSystems IRIS Uses Kerberos

To ensure that Kerberos properly secures an environment, all InterSystems services that support it must have Kerberos
enabled and those that don’t support it must be disabled. The exception to this is that services intended to operate within
the InterSystems security perimeter, such as ECP, do not support Kerberos; you can simply enable or disable these services,
since they are designed for use in an externally secured environment.

Overview of Configuring Kerberos
To configure an InterSystems IRIS instance for Kerberos authentication:

1. Ensure that InterSystems IRIS is set up to run as a Kerberos service.

The procedure varies, depending on the operating system of the InterSystems IRIS server and the type of environment;
see Preparing the Security Environment for Kerberos for more information.

2. Enable the relevant Kerberos mechanisms on the Authentication/Web Session Options page (System Administration >
Security > System Security > Authentication/Web Session Options).

3. Determine which services will be used to connect to InterSystems IRIS and disable all other services. For a list of
which services are used by what connection tools, see the table Connection Tools, Their Access Modes, and Their
Services.

4. For client-server connections, specify what Kerberos connection security level the server requires. This is how you
determine which Kerberos features are to be part of connections that use the service. See Specify Connection Security
Levels for more information.

5. For client-server connections, perform client-side setup. This ensures that the application has access to the information
it needs at runtime. This information includes:

• The name of the service principal representing InterSystems IRIS.

• The allowed connection security levels.

Setting up this information may involve configuring a Windows preferred server or some other configuration mechanism.
See Set Up a Client for more information.

6. Specify how the authentication process obtains user credentials. This is either by checking the user’s Kerberos credentials
cache or by providing a Kerberos password prompt for the user. See Obtain User Credentials for more information.

7. To maximally secure web connections, set up secure channels for the each connection.

Important: On Windows, when logged in using a domain account, OS-based and Kerberos authentication are the same.
When logged on locally, Kerberos is subject to a KDC spoofing attack and is therefore neither secure nor
recommended.

About Kerberos and the Access Modes
Each connection tool uses a service to establish communications with InterSystems IRIS. It also uses a particular access
mode. To ensure maximum protection, determine which services you need, based on which connection tools you are using.
If you are not using a service, disable it.

The following is a list of connection tools, their access modes, and their services:

54 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Table B–1: Connection Tools,Their Access Modes, and Their Services

ServiceAccess ModeConnection Tool

%Service_TelnetClient-ServerInterSystems IRIS Telnet

%Service_CallInLocalCallIn

%Service_ConsoleLocalConsole

%Service_BindingsClient-ServerJava

%Service_BindingsClient-ServerJDBC

%Service_BindingsClient-ServerODBC

%Service_TerminalLocalTerminal

%Service_WebGatewayWebWeb technologies

Local

Kerberos authentication for a local service establishes that the user and InterSystems IRIS are both valid Kerberos principals.
There is only one machine in use and only one process on that machine; hence, the configuration pages for these services
in the Portal allow you to specify whether to use Kerberos prompting (labeled simply as Kerberos in the Management
Portal) or Kerberos credentials cache.

In this scenario, there is no connection between the user and InterSystems IRIS, since both are using the same process on
the same machine. Because the two are sharing a process, there is no information being passed through an unsecured
medium and therefore no need to offer special protections for this data. (This situation is known as in-process authentication.)

Client-Server

Client-server applications include connections from Java, JDBC, ODBC, and through Telnet. For a client-server application
using Kerberos authentication, the user needs credentials to interact with InterSystems IRIS via the application.

The server and client each require configuration. Server configuration specifies which type of connections are accepted;
client configuration specifies what type of connection is attempted and may also specify how to obtain the user’s credentials.

With client-server connections, Kerberos supports various connection security levels, which are configured on the InterSys-
tems IRIS server machine:

• Kerberos — Kerberos manages the initial authentication between the user and InterSystems IRIS. Subsequent commu-
nications are not protected.

• Kerberos with Packet Integrity — Kerberos manages the initial authentication between the user and InterSystems IRIS;
each subsequent message has a hash that provides source and content validation. This provides verification that each
message in each direction is actually from its purported sender; it also provides verification that the message has not
been altered in transit from sender to receiver.

• Kerberos with Encryption — Kerberos manages initial authentication, ensures the integrity of all communications,
and also encrypts all communications. This involves end-to-end encryption for all messages in each direction between
the user and InterSystems IRIS.

Web

When running a web application, the user does not interact directly with the InterSystems IRIS server. To protect all
information from monitoring, you need to encrypt the connections between the user and InterSystems IRIS as follows:

• Configure the web server so that it uses TLS to secure browser connections to it.

Reference for Operational and Actionable Resources for Security 55

Kerberos Authentication

• Co-locate the web server and the web gateway, so there is no need to secure the connection between them. If this is
not possible, then ensure the data on the connection is secure through another way.

• Configure the web gateway to use Kerberos authentication and encryption. Use the gateway’s Kerberos principal to
establish such a connection.

The architecture is:

Figure B–1: Architecture of a Kerberos-Protected Web Connection

Any communications between the end-user and InterSystems IRIS occurs through TLS-encrypted or Kerberos-encrypted
pipes. For Kerberos-secured connections, this includes the end-user’s Kerberos authentication.

Because the InterSystems IRIS server cannot prompt the end-user for a password, it invokes an API that sends HTML
content to the browser to prompt. The user completes this form that has been sent; it travels back to the web server, which
hands it to the web gateway, which then hands it to the InterSystems IRIS server. The web server acts as a proxy on behalf
of the user at the browser; this is why this kind of a connection is known as a proxy connection. At the same time, all
information related to the user resides on the server machine (as with the local access mode); hence a web connection is
also a form of in-process authentication.

Specify Connection Security Levels
Client-server connections to InterSystems IRIS use one of the following services:

• %Service_Bindings — Java, JDBC, ODBC

• %Service_Telnet — Telnet

For any Kerberos connection using one of these services, you must specify the connection security levels which the server
accepts. To configure the service’s supported connection security levels, the procedure is:

1. On the Authentication/Web Session Options page (System Administration > Security > System Security > Authentica-

tion/Web Session Options), specify which connection security levels to enable for the entire InterSystems IRIS instance,
where these can be:

• Kerberos — Initial authentication only

• Kerberos with Packet Integrity — Initial authentication and packet integrity

• Kerberos with Encryption — Initial authentication, packet integrity, and encrypting all messages

For more information on the Authentication Options page, see Authentication Options.

2. On the Services page (System Administration > Security > Services), click the service name (in the Name column); this
displays the Edit Service page for the service.

56 Reference for Operational and Actionable Resources for Security

Identity and Access Management

3. On the Edit Service page, specify which connection security levels to require as part of a Kerberos connection. After
making this selection, click Save.

If a client attempts to connect to the server using a lower level of security than that which is specified for the server, then
the connection is not accepted. If a client attempts to connect to the server using a higher level of security than that which
is specified for the server, then the server connection attempts to perform authentication using the level of security that it
specified.

Set Up a Client
When using the client-server access mode, you need to configure the client. The particulars of this process depend on the
connection technology being used.

Telnet: Set Up the Preferred Server for Use with Kerberos

With a Windows client, when establishing a connection using InterSystems IRIS telnet for Windows, the client uses con-
figuration information that has been stored as part of a remote server.

Important: InterSystems IRIS has its own telnet server for Windows. When connecting to a non-Windows machine,
there is no InterSystems IRIS telnet server available — you simply use the telnet server that comes with
the operating system. Once you have established the connection to the server machine, you can then start
InterSystems IRIS using the %Service_Terminal service.

To configure a client connection coming in through telnet go to the client machine. On that machine, the procedure is:

1. Click on the InterSystems IRIS launcher and select Preferred Server from the menu (the Preferred Server choice also
displays the name of the current preferred server).

2. From the submenu that appears, choose Add/Edit.

3. To create a new remote server, click the Add button; to configure an already-existing server, choose the InterSystems
IRIS server to which you are connecting and click the Edit button.

4. This displays the Add Connection dialog. In the Authentication Method area on that dialog, click Kerberos. This expands
the dialog to display a number of additional fields.

5. If you are editing the values for an already-existing server, there should be no need to change or add values for the
more general fields in this dialog, as they are determined by the server that you chose to edit.

If you are adding a new server, the fields to complete are described in Define a Remote Server Connection.

6. In the dialog’s Kerberos-related fields, specify values for the following fields:

• The connection security level, where the choices are Kerberos authentication only; Kerberos authentication with
packet integrity; or Kerberos authentication, packet integrity, and encryption

• The service principal name. For information on setting up service principal names, see Names and Naming Con-
ventions.

• If you are configuring a telnet connection to a Windows machine, check the box specifying that the connection
use the Windows InterSystems IRIS Telnet server.

7. Click OK to save the specified values and dismiss the dialog.

Set Up an ODBC DSN with Kerberos

InterSystems IRIS supports Kerberized ODBC connections from clients on Windows, UNIX®, and Mac to DSNs (Data
Source Nodes) on all platforms. The ways of configuring client behavior vary by platform:

Reference for Operational and Actionable Resources for Security 57

Kerberos Authentication

• On all platforms, the SQLDriverConnect function is available, which accepts a set of name-value pairs.
SQLDriverConnect is a C call that is part of the ODBC API and is documented at the Microsoft website. Its name-
value pairs are the same as those for the initialization file available on non-Windows platforms.

• On non-Windows platforms, use the InterSystems ODBC initialization file to specify name-value pairs that provide
connection information. This file is described generally in Using the InterSystems ODBC Driver. The file has the fol-
lowing Kerberos-related variables:

– Authentication Method — Specifies how the ODBC client authenticates to the DSN. 0 specifies instance authenti-
cation; 1 specifies Kerberos.

– Security Level — For Kerberos connections, specifies which functionality is used to protect the connection. 1
specifies that Kerberos is used for authentication only; 2 specifies that Kerberos is used for authentication and to
ensure the integrity of all packets passed between client and server; and 3 specifies that Kerberos is used for
authentication, packet integrity, and to encrypt all messages.

– Service Principal Name — Specifies the name of InterSystems service that is serving as the DSN. For example,
the service principal might have “iris/localhost.domain.com” as its name.

The names of these variables must have spaces between the words. They are not case-sensitive.

• On a Windows client, you can specify connection information through a GUI: the ODBC DSN configuration dialog.
InterSystems IRIS provides options on the System DSN tab. This screen has associated help that describes its fields.
The path on the Windows Start menu to display this screen varies by version of Windows; it may be listed under
Administrative Tools.

Important: On 64-bit Windows, there are two versions of odbcad32.exe: one is located in the C:\Windows\System32\

directory and the other is located in the C:\Windows\SysWOW64\ directory. If you are running 64-bit
Windows, configure DSNs through the one in C:\Windows\SysWOW64\.

Set Up a Java or JDBC Client with Kerberos

InterSystems IRIS provides a Java class that serves as a utility to assist with Java client configuration. Run it when you are
ready to configure the client. The procedure is:

1. To configure the client for use with Kerberos, issue the Java Configure command such as:

java –classpath '$IRIS_INSTALL_DIRECTORY/dev/java/lib/JDK18/*' com.intersystems.jgss.Configure

This allows Configure to run from any location on the machine, not just from within the JDK directory. Note that the
specifics of this command may vary, depending on your site, such as to accommodate Windows path styles or using
JDK11.

This program uses Java Generic Security Services (JGSS) to perform the following actions:

• If necessary, modifies the java.security file.

• Creates or modifies the isclogin.conf file.

2. The program then prompts you to create and configure the krb5.conf file. If the file exists, the command prompts if
you wish to use the existing krb5.conf or replace it; if you choose to replace it, it prompts for the following information:

a. Kerberos realm — It offers the local domain in lowercase as a default value for the domain.

b. Primary KDC — You only need include the local machine name, as the program appends the Kerberos realm
name to the machine name for you.

c. Secondary KDC(s) — You can specify the names of zero or more KDCs to replicate the content of the primary
KDC.

58 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqldriverconnect-function?view=sql-server-ver15

3. After receiving this information, run the command a second time. (It instructs you to do this.)

4. When prompted to replace krb5.conf, choose to leave the existing file. The command then tests the connection by
prompting for the username and password of a principal in the specified Kerberos realm.

If this succeeds, then client configuration is complete.

Obtain User Credentials
For all access modes, you need to specify whether the application obtains the user’s credentials from an existing credentials
cache or by prompting for a username and password.

Obtain Credentials for Local Access Mode

For the local access mode, the user’s credentials reside on the same machine as InterSystems IRIS. In this situation, the
application is using a service to connect to InterSystems IRIS. This includes the following services:

• %Service_CallIn

• %Service_Console

• %Service_Terminal

To specify how to get credentials, the procedure is:

1. On the Services page (System Administration > Security > Services) and select the service from the Name column. This
displays the Edit Service page for the service.

2. On the Edit Service page, specify how to get credentials. Either select prompting (the Kerberos check box) or by using
a credentials cache (the Kerberos Credentials Cache check box). Do not mark both.

Click Save to use the settings.

Note: If you enable both Kerberos (prompting) and Kerberos credentials cache authentication for the service, then the
credentials cache authentication takes precedence. This is behavior specified by Kerberos, not InterSystems IRIS.

On Windows with a Domain Controller (the likely configuration for Windows), logging in establishes a Kerberos credentials
cache. On UNIX®, Linux, and macOS, the typical default condition is to have no Kerberos credentials, so that InterSystems
IRIS is then configured to use Kerberos prompting; on these systems, the user can obtain credentials in either of the following
ways:

• Running kinit before invoking the Terminal

• Logging in to a system where the login process performs Kerberos authentication for the user

In these situations, InterSystems IRIS can be configured to use the credentials cache.

Obtain Credentials for Client-Server Access Mode

For client-server access mode, the user’s credentials reside on the machine that hosts the client application. In this case,
the manner in which you specify how to obtain credentials varies according to how the client is connecting:

• ODBC and Telnet

• Java and JDBC

ODBC and Telnet

The underlying InterSystems IRIS code used by these connection tools assumes that end-users already have their credentials;
no prompting is necessary.

Reference for Operational and Actionable Resources for Security 59

Kerberos Authentication

On Windows, every user logged on in the domain has a credentials cache.

On other operating systems, a user has a credentials cache if the operating system has performed Kerberos authentication
for the user, or if the user has explicitly run kinit. Otherwise, the user has no credentials in the cache and the connection
tool fails authentication.

Note: Not all connection tools are available on all operating systems.

Java and JDBC

When using Java and JDBC, there are two different implementations of Java available — either Oracle or IBM. These have
several common behaviors and several differing behaviors.

Note: IBM implementations of Java are available through version 8 only; for later versions, IBM supports open source
versions.

Both implementations store information about a connection in properties of an instance of the java.util.Properties class.
These properties are:

• user — The name of the user who is connecting to the InterSystems IRIS server. This value is only set for certain
connection behaviors.

• password — That user’s password. This value is only set for certain connection behaviors.

• service principal name — The Kerberos principal name for the InterSystems IRIS server. This value is set for all
connection behaviors.

• connection security level — The type of protection that Kerberos provides for this connection. 1 specifies that Kerberos
is used for authentication only; 2 specifies that Kerberos is used for authentication and to ensure the integrity of all
packets passed between client and server; and 3 specifies that Kerberos is used for authentication, packet integrity, and
to encrypt all messages. This value is set for all connection behaviors.

In the following discussions, the instance of the java.util.Properties class is referred to as the connection_properties object,
where the value of each of its properties is set with a call to the connection_properties.put method, such as

 String principalName = "MyServer";
 connection_properties.put("service principal name",principalName);

For both implementations, credentials-related behavior is determined by the value of a parameter in the isclogin.conf file
(see Set Up a Java or JDBC Client for Use with Kerberos for more information on this file).

There are two differences between the behavior of the two Java implementations:

• To specify credentials-related behavior, the parameter name to set in the isclogin.conf file differs for each implementation:

– For IBM, it is useDefaultCcache.

– For Oracle, it is useTicketCache.

• There are different behaviors available on each implementation. These are described in the following sections.

Specifying Behavior on a Client Using the IBM Implementation

The options are:

• To use a credentials cache, set the value of the useDefaultCcache parameter to TRUE and do not set the values of the
user or password properties. Note that if no credentials cache is available, then an exception is thrown.

• To use a username and password that are passed in programmatically, set the value of the useDefaultCcache parameter
to FALSE and set the values of the user and password properties.

60 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://www.ibm.com/support/pages/ibm-announcement-statement-distribution-and-support-open-source-java-version-11-or-higher-ibm-aix-operating-system
https://www.ibm.com/support/pages/ibm-announcement-statement-distribution-and-support-open-source-java-version-11-or-higher-ibm-aix-operating-system

• To prompt for a username and password, set the value of the useDefaultCcache parameter to FALSE and do not set
the values of the user or password properties. Because these properties do not have values set, classes from libraries
supplied with InterSystems IRIS can be used to generate prompts for them.

Specifying Behavior on a Client Using the Oracle Implementation

The options are:

• To exclusively use a username and password that are passed in programmatically, set the value of the useTicketCache
parameter to FALSE and set the values of the user and password properties.

• To exclusively prompt for a username and password, set the value of the useTicketCache parameter to FALSE and do
not set the values of the user or password properties. Because these properties do not have values set, classes from
libraries supplied with InterSystems IRIS can be used to generate prompts for them.

• To exclusively use a credentials cache, set the value of the useTicketCache parameter to TRUE. To prevent any further
action, set the values of the user and password properties to bogus values; this prevents prompting from occurring and
ensures the failure of any authentication attempt based on the properties’ values.

• To attempt to use a credentials cache and then fall through to using a username and password that are passed in pro-
grammatically, set the value of the useTicketCache parameter to TRUE and set the values of the user and password
properties. If there is no credentials cache, then the properties’ values are used.

• To attempt to use a credentials cache and then fall through to prompting for a username and password, set the value
of the useTicketCache parameter to TRUE and do not set the values of the user or password properties. If there is no
credentials cache, then classes from libraries supplied with InterSystems IRIS can be used to generate prompts for
them.

Obtain Credentials for Web Access Mode

With a web-based connection that uses Kerberos, there is always a username and password prompt. If these result in
authentication, the user’s credentials are placed in memory and then discarded when no longer needed.

Set Up a Secure Channel for a Web Connection
To maximally secure a web connection, it is recommended that the two legs of communication — both between the browser
and the web server and then between the web gateway and InterSystems IRIS — use secure channels. This ensures that
any information, such as Kerberos usernames and passwords, be protected in transmission from one point to another. To
secure each communications channel, the procedure is:

• Between the web browser and web server

• Between the Web Gateway and InterSystems IRIS

Secure the Connection Between a Web Browser and Web Server

The typical means of securing a connection between a web browser and a web server is to use TLS (Transport Layer
Security).

Set Up a Kerberized Connection from the Web Gateway to InterSystems IRIS

To set up a secure, encrypted channel between the web gateway and the InterSystems IRIS server, you need a Kerberos
principal that represents the gateway. This principal establishes an encrypted connection to InterSystems IRIS, and all
information is transmitted through the connection. This allows an end-user to authenticate to InterSystems IRIS and prevents
any snooping during that process.

Note: For information on setting up a connection between the web gateway and the InterSystems IRIS server that is
protected by TLS, see Configuring the Web Gateway to Connect to InterSystems IRIS Using TLS.

Reference for Operational and Actionable Resources for Security 61

Kerberos Authentication

The procedure is:

1. Determine or choose the name of the Kerberos principal that represents the gateway.

For Windows, this is the principal name representing the gateway host’s network service session (that is, the name of
the machine hosting the gateway with the “$” appended to it — machine_name$, , such as Athens$). For other platforms,
this is any valid principal name entered as the username in the gateway configuration screen; this identifies the
appropriate key in the key table file.

2. Create a user in InterSystems IRIS with the same name as the gateway’s Kerberos principal. To do this, follow the
instructions in Create a New User.

3. Give that user permissions to use, read, or write any required resources (these are also known as privileges). This is
done by associating those privileges with a role and then associating the user with the role.

4. Configure the %Service_WebGateway service. To do this, complete the fields described in Service Properties.

5. Configure the gateway so that it can contact the server. The procedure is:

a. From the Management Portal home page, go to the Web Gateway Management page (System Administration >
Configuration > Web Gateway Management).

b. On the web gateway management page, there are a set of choices on the left. Under Configuration, click Server

Access. This displays the Server Access page.

c. On the Server Access page, you can add a new configuration or edit an existing one. To add a new configuration,
click the Add Server button; to edit an existing one, select it from the list on the left, select the Edit Server radio
button, and click Submit. This displays the page for editing or configuring server access parameters. In addition
to the general parameters on this page (described on its help screen), this page allows you to specify security-
related parameters for the gateway. For Kerberos connections, these are:

• Connection Security Level — Choose the kind of protection that you would like Kerberos to attempt to provide
this connection. (Note that this must match or exceed the type of security specified for the web service in the
previous step.)

• User Name — The name of the Kerberos principal that represents the gateway. (This must be the same principal
as was used in the first step of this process.)

• Password — Do not specify a value for this. (This field is used when configuring the gateway for use with
instance authentication.)

• Product — InterSystems IRIS.

• Service Principal Name — The name of the principal that represents the InterSystems IRIS server. This is
typically a standard Kerberos principal name, of the form “iris/machine.domain”, where iris is a fixed
string indicating that the service is for InterSystems IRIS, machine is the machine name, and domain is the
domain name, such as “ intersystems.com”.

• Key Table — When connecting to an instance of InterSystems IRIS on Windows, leave this field blank; for
other operating systems, provide the name of the keytab file containing the permanent key belonging to the
web gateway, including the full path.

After entering all these values, click the Save Configuration button to save them.

The web service is now ready to configured. This means that it can now provide the necessary underlying infrastructure to
support a web application.

When creating a secured web application, the application developer needs to:

1. Choose an authentication method.

2. Configure the roles for the application.

62 Reference for Operational and Actionable Resources for Security

Identity and Access Management

3. Make sure the browser-to-web server connection uses TLS.

Reference for Operational and Actionable Resources for Security 63

Kerberos Authentication

Operating System–Based Authentication

About OS-Based Authentication
InterSystems IRIS supports what is called operating system–based (or OS-based) authentication. With operating system
authentication, InterSystems IRIS uses the operating system’s user identity to identify the user for InterSystems IRIS. When
operating system authentication is enabled, the user authenticates to the operating system using according to the operating
system’s protocols. For example, on UNIX®, this is traditionally a login prompt where the operating system compares a
hash of the password to the value stored in the /etc/passwd file. When the user first attempts to connect to InterSystems
IRIS, InterSystems IRIS acquires the process’ operating system level user identity. If this identity matches an InterSystems
IRIS username, then that user is authenticated.

This capability only applies to server-side processes, such as terminal-based applications (for example, connecting through
the Terminal) or batch processes started from the operating system. It is not available for an application that is connecting
to InterSystems IRIS from another machine, such as when a copy of Studio on one machine is connecting to an InterSystems
IRIS server on another.

This mechanism is typically used for UNIX® systems, in addition to the Windows console.

OS-based authentication is only available for local processes, namely:

• Callin (%Service_Callin)

• Console (%Service_Console)

• Terminal (%Service_Terminal)

Configuring OS-Based Authentication
To set up the use of this type of authentication, the procedure is:

1. On the Authentication/Web Session Options page (System Administration > Security > System Security > Authentica-

tion/Web Session Options), select Allow Operating System authentication.

2. On to the Services page (System Administration > Security > Services) and select the service from the Name column.
This displays the Edit Service page for the service.

3. On the Edit Service page, choose operating system–based (the Operating System check box).

Click Save to use the settings.

This type of authentication requires no other configuration actions.

Note: On Windows, when logged in using a domain account, OS-based and Kerberos authentication are the same.

A Note on %Service_Console
Since the console (%Service_Console) is a Windows-based service and Windows domain logins typically use Kerberos,
console’s OS-based authentication provides authentication for local logins.

A Note on %Service_Callin
With callin (%Service_Callin), OS-based authentication is only available from an OS-level prompt. When using callin
programmatically, OS-based authentication is not supported — only unauthenticated access is available.

64 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Instance Authentication

About Instance Authentication
InterSystems IRIS itself can provide a login mechanism, called instance authentication. (In the Management Portal, it is
referred to as Password Authorization.) Specifically, InterSystems IRIS maintains a password value for each user account
and compares that value to the one provided by the user at each login. As with traditional OS-based authentication, Inter-
Systems IRIS stores a hashed version of the password. When the user logs in, the password value entered is hashed and
the two hashed versions are compared. The system manager can configure certain password criteria, such as minimum
length, to ensure a desired degree of robustness in the passwords selected by users. The criteria are described in Password
Strength and Password Policies.

InterSystems IRIS stores only irreversible cryptographic hashes of passwords. The hashes are calculated using the PBKDF2
algorithm with the HMAC-SHA-512 pseudorandom function, as defined in Public Key Cryptography Standard #5 v2.1:
“Password-Based Cryptography Standard.” The current implementation uses 10,000 iterations, 64 bits of salt, and generates
64-byte hash values; to specify a different algorithm or increase the number of iterations, use the
Security.System.PasswordHashAlgorithm and Security.System.PasswordHashWorkFactor methods, respectively.
There are no known techniques for recovering original passwords from these hash values.

The services available for authentication with instance authentication are:

• %Service_Binding

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Telnet

• %Service_Terminal

• %Service_WebGateway

Overview of Configuring Instance Authentication
For a service to use instance authentication, you must configure it as follows:

1. On the Authentication/Web Sessions Options page (System Administration > Security > System Security > Authentica-

tion/Web Session Options), enable authentication with instance authentication by selecting Allow Password authentica-

tion).

2. For the particular service, go to the Services page (System Administration > Security > Services) and select that service,
such as %Service_Bindings, in the Name column; this displays the Edit Service page for the service.

3. On this page, choose instance authentication, listed simply as Password from the list of authentication types.

4. Click Save to save this setting.

5. In addition to this basic procedure, certain services require further configuration. This is described in the following
sections:

• Web

• ODBC

• Telnet

Reference for Operational and Actionable Resources for Security 65

Instance Authentication

Web
For web access, you can optionally require that the web gateway authenticate itself to the InterSystems IRIS server through
instance authentication. To perform this configuration, the procedure is:

1. From the Management Portal home page, go to the Web Gateway Management page (System Administration > Config-

uration > Web Gateway Management).

2. On the web gateway management page, there are a set of choices on the left. Under Configuration, click Server Access.
This displays the Server Access page.

3. On the Server Access page, you can add a new configuration or edit an existing one. To add a new configuration, click
the Add Server button; to edit an existing one, select it from the list on the left, select the Edit Server radio button, and
click Submit. This displays the page for editing or configuring server access parameters. In addition to the general
parameters on this page (described on its help screen), this page allows you to specify security-related parameters for
the gateway. For instance authentication connections, these are:

• Connection Security Level — Choose Password from the drop-down list to use instance authentication.

• User Name — The user name under which the gateway service runs (the installation process creates the CSPSystem
user for this purpose). This user (CSPSystem or any other) should have no expiration date; that is, its Expiration

Date property should have a value of 0.

• Password — The password associated with the user account just entered.

• Product — InterSystems IRIS.

• Service Principal Name — Do not specify a value for this. (This field is used when configuring the gateway for
use with Kerberos.)

• Key Table — Do not specify a value for this. (This field is used when configuring the gateway for use with Kerberos.)

After entering all these values, click the Save Configuration button to save them.

It is important to remember that the authentication requirements for the gateway are not directly related to those for an
application that uses the gateway. For example, you can require instance authentication as the authentication mechanism
for a web application, while configuring the gateway to use Kerberos authentication — or no authentication at all. In fact,
choosing a particular authentication mechanism for the gateway itself makes no technical requirement for the web application,
and vice versa. At the same time, some pairings are more likely to occur than others. If a web application uses Kerberos
authentication, then using any other form of authentication for the gateway means that Kerberos authentication information
will be flowing through an unencrypted channel, thereby potentially reducing its effectiveness.

With a web application that uses instance authentication, the username and password of the end-user are passed from the
browser to the web server, which then hands them to the web gateway. Since the gateway has its own connection to the
InterSystems IRIS server, it then passes the username and password to the InterSystems IRIS server. To establish its con-
nection to the InterSystems IRIS server, the gateway uses the CSPSystem account, which is one of the InterSystems IRIS
predefined accounts.

By default, all these transactions are unencrypted. You can use TLS to encrypt messages from the browser to the web
server. You can use Kerberos to encrypt messages from the gateway to the InterSystems IRIS server as described in Set
Up a Secure Channel for a Web Connection; if you are not using Kerberos, you may prefer to physically secure the connection
between the host machines, such as by co-locating the gateway and InterSystems IRIS server machines in a locked area
with a direct physical connection between them.

Regardless of your architecture, ensure that the data on each connection is secure.

ODBC
InterSystems IRIS supports instance authentication for ODBC connections among all its supported platforms. This requires
client-side configuration. The ways of configuring client behavior vary by platform:

66 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• On non-Windows platforms, use the InterSystems ODBC initialization file to specify name-value pairs that provide
connection information . This file is described generally in Using the InterSystems ODBC Driver. The file has the
following variables relevant to instance authentication:

– Authentication Method — Specifies how the ODBC client authenticates to the DSN. 0 specifies instance authenti-
cation; 1 specifies Kerberos.

– UID — Specifies the name for the default user account for connecting to the DSN. At runtime, depending on
application behavior, the end-user may be permitted to override this value with a different user account.

– Password — Specifies the password associated with the default user account. If the end-user has been permitted
to override the UID value, the application will accept a value for the newly specified user’s password.

• On a Windows client, you can specify connection information either through a GUI or programmatically:

– Through a GUI, there is an ODBC DSN configuration dialog. InterSystems IRIS provides options on the System

DSN tab. This screen has associated help that describes its fields. The path from the Windows Start menu to display
this screen varies by version of Windows; it may be listed in the Windows Control Panel, under Administrative

Tools, on the screen for Data Sources (ODBC).

– Programmatically, the SQLDriverConnect function is available, which accepts a set of name-value pairs.
SQLDriverConnect is a C call that is part of the ODBC API. Its name-value pairs are the same as those for the
initialization file available on non-Windows platforms, except that the password is identified with the PWD keyword.

Telnet
When establishing a connection using the InterSystems IRIS Telnet server for Windows, the client uses configuration
information that has been stored as part of an InterSystems IRIS remote server. To configure a remote server, go to the
client machine. On that machine, the procedure is:

1. Click on the InterSystems IRIS launcher and select Preferred Server from the menu (the Preferred Server choice also
displays the name of the current preferred server).

2. From the submenu that appears, choose Add/Edit.

3. To create a new remote server, click the Add button; to configure an already-existing server, choose the InterSystems
IRIS server to which you are connecting and click the Edit button.

4. This displays the Add Connection dialog. In the Authentication Method area on that dialog, click Password for instance
authentication.

5. If you are editing the values for an already-existing server, there should be no need to change or add values for the
more general fields in this dialog, as they are determined by the server that you chose to edit.

If you are adding a new server, the fields to complete are described in Define a Remote Server Connection.

6. Click OK to save the specified values and dismiss the dialog.

Important: When connecting to a non-Windows machine using telnet, there is no InterSystems IRIS telnet server
available — you simply use the telnet server that comes with the operating system. Once you have estab-
lished the connection to the server machine, you can then connect to InterSystems IRIS using the
%Service_Terminal service.

Reference for Operational and Actionable Resources for Security 67

Instance Authentication

Delegated Authentication

Delegated Authentication Background
InterSystems IRIS supports delegated authentication, which allows you to implement custom mechanisms to replace the
authentication and role-management activities that are part of InterSystems security, for example, an enterprise’s existing
authentication system. As the application developer, you fully control the content of delegated authentication code. Delegated
authentication occurs if an instance of InterSystems IRIS finds a ZAUTHENTICATE routine in its %SYS namespace. If
such a routine exists, InterSystems IRIS uses it to authenticate users, either with calls to new or existing code. InterSystems
IRIS includes a routine, ZAUTHENTICATE.mac, that serves as a template for creating the ZAUTHENTICATE routine.

Important: If using authentication with HealthShare®, you must use the ZAUTHENTICATE routine provided by
InterSystems and cannot write your own.

How Delegated Authentication Works
When a user attempts to log in and InterSystems IRIS invokes delegated authentication, the sequence of events is:

1. When a service or application uses delegated authentication, a login attempt automatically results in a call to the
ZAUTHENTICATE routine. The authentication code in this routine can be any user-defined ObjectScript, class
methods, or $ZF callout code.

2. The next step depends on whether or not authentication succeeds and whether or not this is the first login using
ZAUTHENTICATE:

• If ZAUTHENTICATE succeeds and this is the first time that the user has been authenticated through this
mechanism, the user is added to the list of InterSystems IRIS users with a type of “Delegated user” . If
ZAUTHENTICATE sets roles or other characteristics, these become part of the user’s properties.

• If ZAUTHENTICATE succeeds and this is not the first login, ZAUTHENTICATE updates the user’s properties.

• If ZAUTHENTICATE fails, then the user receives an access denied error and is unable to access the system. To
determine why this has occurred:

a. Check the Reason for Failing to Login field in the User Profile.

b. For more detailed information, check the audit log for the relevant %System/%Login/LoginFailure event. If
auditing or the LoginFailure event are not enabled, you may need to enable both of these and then re-create
the circumstances of the login failure.

3. If two-factor authentication is enabled for the instance and the relevant services, then there is a check that the user’s
PhoneNumber and PhoneProvider properties have been set. If these properties are set, then two-factor authentication
proceeds; if they are not set, two-factor authentication cannot proceed and the user is not authenticated.

4. A delegated user is listed as such in the Type column of the list of users on the Users page (System Administration >
Security > Users). The user’s properties are displayed read-only in the Management Portal and are not editable from
within InterSystems IRIS (since all the information comes from outside InterSystems IRIS).

Note: A delegated user cannot also be an InterSystems IRIS password user.

Overview of Configuring Delegated Authentication
To use delegated authentication, the steps are:

68 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange

1. Create the user-defined authentication code in the ZAUTHENTICATE routine. This can include the use of two-factor
authentication. This routine can also perform basic setup for a user account, such as specifying roles and other user
properties.

If you are using HealthShare Health Connect, create a custom ZAUTHENTICATE routine as described in this guide.

If you are using HealthShare Unified Care Record, you cannot create a custom version of ZAUTHENTICATE to
implement delegated authentication because Unified Care Record comes with its own version of the routine. Instead,
you must customize methods in the class HS.Local.ZAUTHENTICATE. For more information, see “Customizing
Authentication via Local ZAUTHENTICATE” in the book Authenticating Users in Unified Care Record.

2. Enable delegated authentication for the InterSystems IRIS instance on the Authentication Options page.

3. Enable delegated authentication for the relevant services, applications, or both, as required.

4. Optionally enable two-factor authentication for the InterSystems IRIS instance and, if required, for web applications
and client-server applications.

For example, to use delegated authentication for an instance’s Management Portal, the steps are:

1. Create the user-defined authentication code in ZAUTHENTICATE.

2. Enable delegated authentication for the InterSystems IRIS instance as a whole.

3. Enable delegated authentication for the set of /csp/sys* applications.

Create Delegated (User-Defined) Authentication Code
This section describes various aspects of creating your own ZAUTHENTICATE routine:

• Authentication Code Fundamentals

• Signature

• Authentication Code

• Set Values for Roles and Other User Characteristics

• Return Value and Error Messages

Authentication Code Fundamentals
InterSystems provides a sample routine, ZAUTHENTICATE.mac, that you can copy and modify. This routine is part of the
Samples-Security sample on GitHub (https://github.com/intersystems/Samples-Security). You can download the entire
sample as described in Downloading Samples for Use with InterSystems IRIS , but it may be more convenient to simply
open the routine on GitHub and copy its contents.

To create your own ZAUTHENTICATE.mac:

1. To use ZAUTHENTICATE.mac as a template, copy its contents and save them into a ZAUTHENTICATE.mac routine in
the %SYS namespace.

2. Review the comments in the ZAUTHENTICATE.mac sample. These provide important guidance about how to implement
a custom version of the routine.

3. Edit your routine by adding custom authentication code and any desired code to set user account characteristics.

CAUTION: Because InterSystems IRIS places no constraints on the authentication code in ZAUTHENTICATE, the
application programmer is responsible for ensuring that this code is sufficiently secure.

Reference for Operational and Actionable Resources for Security 69

Delegated Authentication

https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://github.com/intersystems/Samples-Security

Signature
The signature of ZAUTHENTICATE is:

ObjectScript

ZAUTHENTICATE(ServiceName, Namespace, Username, Password, Credentials,
 Properties) PUBLIC {

 // authentication code
 // optional code to specify user account properties and roles
}

where:

• ServiceName — A string representing the name of the service through which the user is connecting to InterSystems
IRIS, such as %Service_Console or %Service_WebGateway.

• Namespace — A string representing the namespace on the InterSystems IRIS server to which a connection is being
established. This is for use with the %Service_Bindings service, such as with Studio or ODBC.

• Username — A string representing the name of the account entered by the user that is to be validated by the routine’s
code.

• Password — A string representing the password entered by the user that is to be validated.

• Credentials — Passed by reference. Not implemented in this version of InterSystems IRIS.

• Properties — Passed by reference. An array of returned values that defines characteristics of the account named by
Username.

When InterSystems IRIS calls ZAUTHENTICATE, it has values for these arguments and supplies them to the routine.

Note: In older versions of InterSystems products, ZAUTHENTICATE took four arguments. For backwards compati-
bility, you can still use the four-argument version. If you are updating your code from the old to new version,
note that the new arguments are second and fifth ones: Namespace and Credentials.

Authentication Code
The content of authentication code is application specific. If authentication succeeds, the routine should return the $$$OK
macro; otherwise, it should return an error code. See Return Value and Error Messages for more information on return
values.

CAUTION: Because InterSystems IRIS does not and cannot place any constraints on the authentication code in
ZAUTHENTICATE, the application programmer is responsible for ensuring that this code is sufficiently
secure.

The GetCredentials Entry Point

ZAUTHENTICATE includes an GetCredentials entry point. This entry point is called whenever delegated authentication
is enabled for a service, and is called before the user is prompted for a username and password. Instead of getting a username
and password from the user, code in the function (created by the application developer) specifies the username and password.
The username and password returned are then authenticated in the normal manner as if the user entered them. A possible
use of this mechanism is to provide a username and password within the entry point and then, within authentication code,
to $roles for the process.

The username and password returned from this entry point can be obtained by any mechanism that the application developer
chooses. They can come from a global, come from an external DLL or LDAP call, or simply be set within the routine. The
application developer could even provide code to prompt for the username and password, such as in a terminal connection
or with a login page.

70 Reference for Operational and Actionable Resources for Security

Identity and Access Management

When there is a call to the GetCredentials entry point, the return value and other factors determine what happens next:

• If the code sets the values of Username and Password and also returns a success status ($$$OK), then:

– There is no additional username/password prompting.

– The authentication process proceeds.

Important: If the access point returns $$$OK, then its code must set the values of Username and Password. Oth-
erwise, the user is denied access to the system and an error is written to the audit log.

• If the entry point returns the error status $SYSTEM.Status.Error($$$GetCredentialsFailed), then normal
username/password prompting proceeds.

• If the entry point returns any other error status, then:

– The user is denied access to the system.

– The error is logged in the audit log.

In the following example of a GetCredentials entry point, the code performs different actions for different services:

• For %Service_Console, it does not prompt the user for any information and sets the process’s username and password
to _SYSTEM and SYS, respectively.

• For %Service_Bindings, it forces the user to provide a username and password.

• For web applications, it checks if the application in use is the /csp/ samples application; if it is that application, it
sets the username and password to AdminUser and Test. For all other web applications, it denies access.

• For any other service, it denies access.

Finally, the Error entry point performs clean-up as necessary.

The code is:

ObjectScript

GetCredentials(ServiceName,Namespace,Username,Password,Credentials) Public {

 // For console sessions, authenticate as _SYSTEM.
 If ServiceName="%Service_Console" {
 Set Username="_SYSTEM"
 Set Password="SYS"
 Quit $SYSTEM.Status.OK()
 }

 // For a web application, authenticate as AdminUser.
 If $isobject($get(%request)) {
 If %request.Application="/csp/samples/" {
 Set Username="AdminUser"
 Set Password="Test"
 Quit $System.Status.OK()
 }
 }

 // For bindings connections, use regular prompting.
 If ServiceName="%Service_Bindings" {
 Quit $SYSTEM.Status.Error($$$GetCredentialsFailed)
 }

 // For all other connections, deny access.
 Quit $SYSTEM.Status.Error($$$AccessDenied)
}

For more details, see the comments for this entry point in ZAUTHENTICATE.mac.

Reference for Operational and Actionable Resources for Security 71

Delegated Authentication

The SendTwoFactorToken Entry Point

ZAUTHENTICATE includes an SendTwoFactorToken entry point. This entry point is for use with two-factor authenti-
cation. If it is defined and the InterSystems IRIS instance has two-factor authentication enabled, then you can override the
default system setting for the format of the message and token that the instance sends to the user’s mobile phone. This
allows for messages that can vary by application even on the same InterSystems IRIS instance.

For more details and an example of how to use this entry point, see this entry point in the sample ZAUTHENTICATE.mac.

Set Values for Roles and Other User Characteristics
If initial authentication succeeds, ZAUTHENTICATE can establish the roles and other characteristics for the authenticated
user. For subsequent logins, ZAUTHENTICATE can update these elements of the user record.

For this to happen, code in ZAUTHENTICATE sets the values of the Properties array. (Properties is passed by reference
to ZAUTHENTICATE.) Typically, the source for the values being set is a repository of user information that is available
to ZAUTHENTICATE.

User Properties

The elements in the Properties array are:

• Properties("Comment") — Any text

• Properties("FullName") — The first and last name of the user

• Properties("NameSpace") — The default namespace for a Terminal login

• Properties("Roles") — The comma-separated list of roles that the user holds in InterSystems IRIS

• Properties("Routine") — The routine that is executed for a Terminal login

• Properties("Password") — The user’s password

• Properties("Username") — The user’s username

• Properties("PhoneNumber") — The user’s mobile phone number, for use with two-factor authentication

• Properties("PhoneProvider") — The user’s mobile phone’s service provider, for use with two-factor authentication

Each of these elements is described in more detail in one of the following sections.

Note: The value of each element in the properties array determines the value of its associated property for the user being
authenticated. It is not possible to use only a subset of the properties or to manipulate their values after authenti-
cation.

Comment

If ZAUTHENTICATE sets the value of Properties("Comment"), then that string becomes the value of the user account’s
Comment property in InterSystems IRIS. (This property is described in User Account Properties.) If no value is passed
back to the calling routine, then the value of Comment for the user account is a null string and the relevant field in the
Management Portal then holds no content.

FullName

If ZAUTHENTICATE sets the value of Properties("FullName"), then that string becomes the value of the user account’s
Full name property in InterSystems IRIS. (This property is described in User Account Properties.) If no value is passed
back to the calling routine, then the value of Full name for the user account is a null string and the relevant field in the
Management Portal then holds no content.

72 Reference for Operational and Actionable Resources for Security

Identity and Access Management

NameSpace

If ZAUTHENTICATE sets the value of Properties("Namespace"), then that string becomes the value of the user account’s
Startup Namespace property in InterSystems IRIS. (This property is described in User Account Properties.) If no value is
passed back to the calling routine, then the value of Startup Namespace for the user account is a null string and the relevant
field in the Management Portal then holds no content.

Once connected to InterSystems IRIS, the value of Startup Namespace (hence, that of Properties("Namespace")) determines
the initial namespace for any user authenticated for local access (such as for Console, Terminal, or Telnet). If Startup
Namespace has no value (since Properties("Namespace") has no value), then the initial namespace for any user authenticated
for local access is determined as follows:

1. If the USER namespace exists, that is the initial namespace.

2. If the USER namespace does not exist, the initial namespace is the %SYS namespace.

Note: If the user does not have the appropriate privileges for the initial namespace, access is denied.

Password

If ZAUTHENTICATE sets the value of Properties("Password"), then that string becomes the value of the user account’s
Password property in InterSystems IRIS. (This property is described in User Account Properties.) If no value is passed
back to the calling routine, then the value of Password for the user account is a null string and the relevant field in the
Management Portal then holds no content.

Roles

If ZAUTHENTICATE sets the value of Properties("Roles"), then that string specifies the Roles to which a user is assigned;
this value is a string containing a comma-delimited list of roles. If no value is passed back to the calling routine, then the
value of Roles for the user account is a null string and the relevant field in the Management Portal then holds no content.
Information about a user’s roles is available on the Roles tab of a user’s Edit User page.

If any roles returned in Properties("Roles") are not defined, then the user is not assigned to the role.

Hence, the logged-in user is assigned to roles as follows:

• If a role is listed in Properties("Roles") and is defined by the InterSystems IRIS instance, then the user is assigned to
the role.

• If a role is listed in Properties("Roles") and is not defined by the InterSystems IRIS instance, then the user is not
assigned to the role.

• A user is always assigned to those roles associated with the _PUBLIC user. A user also has access to all public resources.
For information on the _PUBLIC user, see The _PUBLIC Account; for information on public resources, see Services
and Their Resources.

Routine

If ZAUTHENTICATE sets the value of Properties("Routine"), then that string becomes the value of the user account’s
Startup Tag^Routine property in InterSystems IRIS. (This property is described in User Account Properties.) If no value
is passed back to the calling routine, then the value of Startup Tag^Routine for the user account is a null string and the rel-
evant field in the Management Portal then holds no content.

If Properties("Routine") has a value, then this value specifies the routine to execute automatically following login on a
terminal-type service (such as for Console, Terminal, or Telnet). If Properties("Routine") has no value, then login starts
the Terminal session in programmer mode.

Reference for Operational and Actionable Resources for Security 73

Delegated Authentication

Username

If ZAUTHENTICATE returns the Username property, then the value of Username is written to the security database after
any processing in the function; this provides chance to modify the value that the user entered at the prompt. If
ZAUTHENTICATE does not return the Username property, then the value of the property is written to the security
database as entered.

If ZAUTHENTICATE sets the value of Properties("Username"), then that string becomes the value of the user account’s
Name property in InterSystems IRIS. (This property is described in User Account Properties.) This provides the application
programmer with an opportunity to normalize content provided by the end-user at the login prompt.

If there is no explicit call that passes the value of Properties("Username") back to the calling routine, then there is no nor-
malization and the value entered by the end-user at the prompt serves as the value of the user account’s Name property
without any modification.

PhoneNumber and PhoneProvider

These are properties associated with two-factor authentication.

If ZAUTHENTICATE sets the value of Properties("PhoneNumber") and Properties("PhoneProvider"), then these then
these are written to the InterSystems IRIS database for the user as the user’s mobile phone number and mobile phone service
provider. If these are not passed back to the calling routine, then the phone number and service provider written to the
InterSystems IRIS database are a null string. Hence, to use two-factor authentication with delegated authentication, you
must supply both of these.

The User Information Repository

ZAUTHENTICATE can refer to any kind of repository of user information, such as a global or an external file. It is up
to the code in the routine to set any external properties in the Properties array so that the authenticated user can be created
or updated with this information. For example, while a repository can include information such as roles and namespaces,
ZAUTHENTICATE code must make that information available to InterSystems IRIS.

If information in the repository changes, this information is only propagated back into the InterSystems IRIS user information
if there is code in ZAUTHENTICATE to perform this action. Also, if there is such code, changes to users’ roles must
occur in the repository; if you change a user’s roles during a session, the change does not become effective until the next
login, at which point the user’s roles are re-set by ZAUTHENTICATE.

Return Value and Error Messages
The routine returns one of the following values:

• Success — $$$OK. This indicates that username/password combination was successfully authenticated

• Failure — $SYSTEM.Status.Error($$$ERRORMESSAGE). This indicates that authentication failed.

ZAUTHENTICATE can return system-defined or application-specific error messages. All these messages use the Error
method of the %SYSTEM.Status class. This method is invoked as $SYSTEM.Status.Error and takes one or two arguments,
depending on the error condition.

The available system-defined error messages are:

• $SYSTEM.Status.Error($$$AccessDenied) — Error message of “Access Denied”

• $SYSTEM.Status.Error($$$InvalidUsernameOrPassword) — Error message of “Invalid Username or Password”

• $SYSTEM.Status.Error($$$UserNotAuthorizedOnSystem,Username) — Error message of “User Username is
not authorized”

• $SYSTEM.Status.Error($$$UserAccountIsDisabled,Username) — Error message of “User Username account is
disabled”

74 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• $SYSTEM.Status.Error($$$UserInvalidUsernameOrPassword,Username) — Error message of “User Username
invalid name or password”

• $SYSTEM.Status.Error($$$UserLoginTimeout) — Error message of “Login timeout”

• $SYSTEM.Status.Error($$$UserCTRLC) — Error message of “Login aborted”

• $SYSTEM.Status.Error($$$UserDoesNotExist,Username) — Error message of “User Username does not exist”

• $SYSTEM.Status.Error($$$UserInvalid,Username) — Error message of “Username Username is invalid”

• $SYSTEM.Status.Error($$$PasswordChangeRequired) — Error message of “Password change required”

• $SYSTEM.Status.Error($$$UserAccountIsExpired,Username) — Error message of “User Username account has
expired”

• $SYSTEM.Status.Error($$$UserAccountIsInactive,Username) — Error message of “User Username account is
inactive”

• $SYSTEM.Status.Error($$$UserInvalidPassword) — Error message of “Invalid password”

• $SYSTEM.Status.Error($$$ServiceDisabled,ServiceName) — Error message of “Logins for Service Servicename
are disabled”

• $SYSTEM.Status.Error($$$ServiceLoginsDisabled) — Error message of “Logins are disabled”

• $SYSTEM.Status.Error($$$ServiceNotAuthorized,ServiceName) — Error message of “User not authorized for
service”

To generate a custom message, use the $SYSTEM.Status.Error() method, passing it the $$$GeneralError macro and
specifying any custom text as the second argument. For example:

$SYSTEM.Status.Error($$$GeneralError,"Any text here")

Note that when an error message is returned to the caller, it is logged in the audit database (if LoginFailure event auditing
is turned on). However, the only error message the user sees is $SYSTEM.Status.Error($$$AccessDenied). However, the
user also sees the message for the $$$PasswordChangeRequired error. Return this error if you want the user to change
from the current to a new password.

Set Up Delegated Authentication
Once you have created a ZAUTHENTICATE routine to perform authentication (and, optionally, authorization tasks), the
next step is to enable it for the instance’s relevant services or applications. This procedure is:

1. Enable delegated authentication for entire instance. On the Authentication/Web Session Options page (System Admin-

istration > Security > System Security > Authentication/Web Session Options), select Allow Delegated authentication

and click Save.

With delegated authentication enabled for the instance, a Delegated check box appears on the Edit Service page for
relevant services and the Edit Web Application page for those applications.

2. Enable delegated authenticated for services and applications, as appropriate.

The following services support delegated authentication:

• %Service_Bindings

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Login

Reference for Operational and Actionable Resources for Security 75

Delegated Authentication

• %Service_Terminal

• %Service_Telnet

• %Service_WebGateway

These fall into several categories of access modes:

• Local Access —

%Service_CallIn, %Service_ComPort, %Service_Console, %Service_Login, %Service_Terminal,
%Service_Telnet

To use delegated authentication with local connections, enable it for the service.

• Client-Server Access —

%Service_Bindings

To use delegated authentication with client-server connections, enable it for the service.

• Web Access —

%Service_WebGateway

To use delegated authentication with web-based connections, enable it for the web application. You may also enable
it for the web gateway by enabling the service %Service_WebGateway

After Delegated Authentication Succeeds
Once the user has authenticated, two important topics are:

• The State of the System

• Change Passwords

The State of the System
Any user who is initially authenticated using delegated authentication is listed in the table of users on the Users page
(System Administration > Security > Users) as having a type of “Delegated user” . If a system administrator has explicitly
created a user through the Management Portal (or using any other native InterSystems IRIS facility), that user has a type
of “InterSystems IRIS password user” . If a user attempts to log in using delegated authentication and is successfully
authenticated, InterSystems IRIS determines that this user already exists as an InterSystems IRIS user — not a Delegated
user — and so login fails.

Note: To perform sharded operations on a sharded cluster, a delegated user must have been previously authenticated on
each node of the sharded cluster by some means other than an internal sharding connection. For more information
on sharding, see Horizontally Scaling InterSystems IRIS with Sharding.

Change Passwords
The ZAUTHENTICATE routine also includes an entry point, ChangePassword, to include code to change a user’s
password. The signature of this entry point is:

ObjectScript

ChangePassword(Username,NewPassword,OldPassword,Status) Public {}

where

• Username is a string specifying the user whose password is being changed.

76 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• NewPassword is a string specifying the new value of the user’s password.

• OldPassword is a string specifying the old value of the user’s password.

• Status (passed by reference) receives an InterSystems IRIS status value indicating either that the password change has
been successful or specifying the error that caused the routine to fail.

Use LDAP with Delegated Authentication or Other Mechanisms
You can also use LDAP as part of a custom authentication system (that is, with the InterSystems IRIS delegated authenti-
cation feature). To do this, use calls to the %SYS.LDAP class as part of the custom authentication code in the
ZAUTHENTICATE routine.

InterSystems provides a sample routine, LDAP.mac, that demonstrates these calls. This routine is part of the Samples-
Security sample on GitHub (https://github.com/intersystems/Samples-Security).

Also, if you need to authenticate to LDAP or use instance authentication after collecting credentials through another
mechanism, call $SYSTEM.Security.Login with those credentials to authenticate the user.

Reference for Operational and Actionable Resources for Security 77

Delegated Authentication

https://github.com/intersystems/Samples-Security

Two-Factor Authentication

Two-Factor Authentication
In addition to the authentication mechanism in use, InterSystems IRIS supports the use of two-factor authentication. This
means that InterSystems authentication can require the end-user to possess two separate elements or “factors.” From the
end-user’s perspective, the first factor is something that you know — for example, a password; the second factor is something
that you have — for example, a smart phone. InterSystems IRIS performs two-factor authentication on its end-users using
either of two mechanisms:

• SMS text authentication — InterSystems IRIS sends a security code to the end-user’s phone via SMS. The end-user
enters that code when prompted.

• Time-based one-time password (TOTP) — The end-user initially receives a secret key from InterSystems IRIS. That
key is a shared secret between InterSystems IRIS and the end-user’s application (such as an app on a mobile phone)
or physical authentication device; both use the key and other information to generate a TOTP that serves as a verification
code and that the end-user enters at an InterSystems IRIS prompt. The TOTP expires after 60 seconds and the end-user
can only use it a single time, which is why it is called time-based and one-time.

This section covers the following topics:

• Overview of Setting Up Two-Factor Authentication

• Configure Two-Factor Authentication for the Server

• Enable or Disable Two-Factor Authentication for a Service

• Configure Web Applications for Two-Factor Authentication

• Configure an End-User for Two-Factor Authentication

• Configure Bindings Clients for Two-Factor Authentication

Overview of Setting Up Two-Factor Authentication
The major steps to setting up two-factor authentication are:

1. Enable and configure two-factor authentication for the instance as a whole. You can configure the instance to use SMS
text authentication, TOTP authentication, or both. For details about TOTP authentication, see Two-factor TOTP
overview.

2. For SMS text authentication, configure the mobile phone service provider(s), if necessary. This includes:

• Adding any mobile phone service providers if any are required and are not included in the list of default providers.

• Changing configuration information as necessary for any existing providers (default or added).

3. Configure the service, as appropriate:

• %Service_Bindings — Enable two-factor authentication for the service and continue to the next step.

• %Service_Console and %Service_Terminal — Simply enable two-factor authentication for the service.
This is all that is required.

• %Service_WebGateway — There is no central means of enabling two-factor authentication for
%Service_WebGateway. Continue to the next step.

You can enable either or both types of authentication for each service. For more information about services, see Services.

4. Configure client-server applications and web applications, as appropriate:

78 Reference for Operational and Actionable Resources for Security

Identity and Access Management

a. For client-server applications (those that use %Service_Bindings), add the appropriate calls into the client
application to support it; this is a programming task that varies according to the client-side component in use (for
example, Java, JDBC, or .NET, among others).

Important: Two-factor authentication is designed to receive a response from a human end-user in real time.
If what the end-user considers a single session actually consists of multiple, sequential sessions,
then the repeated prompting for the second factor may result in an unexpectedly difficult user
experience. With client-server applications, the underlying protocol often causes clients to
establish, disconnect, and reestablish connections repeatedly; such activity makes the use of two-
factor authentication less desirable for this type of application.

b. For web applications (those that use %Service_WebGateway), configure each application to support it.

Note: For the InterSystems IRIS Terminal, which uses the %Service_Console service on Windows and the
%Service_Terminal service on other operating systems, there is no configuration required other than
server-side setup; since InterSystems IRIS controls the prompting in these, it simply follows the standard
prompt (regardless of the authentication mechanism) with the two-factor authentication prompt and processes
end-user input accordingly.

5. If you are using delegated authentication, modify the ZAUTHENTICATE.mac routine as required. See Delegated
Authentication for more information.

6. Configure each end-user to enable SMS text authentication or TOTP authentication. An end-user can be configured
to use both mechanisms, but cannot have both mechanisms enabled simultaneously.

Two-Factor TOTP Overview

Two-factor authentication using a time-based one-time password (TOTP) authentication works as follows:

1. Select either an authentication device or an application that generates a TOTP, and then provide it or ensure that your
users have it.

2. When you configure an end-user for two-factor TOTP authentication, the system generates a secret key, which is dis-
played as a base-32 encoded randomized bit string. InterSystems IRIS and the end-user share this secret key (which
is why it is known as a shared secret). Both InterSystems IRIS and the end-user’s authentication device or application
use it to generate the TOTP itself, which serves as a verification code. The TOTP, which the end-user enters into a
Verification code field or prompt, is a string of six digits, and a new one is generated at a regular interval (thirty seconds,
by default).

3. At login time, after the end-user provides InterSystems IRIS with a password, InterSystems IRIS then additionally
prompts for the TOTP. The end-user provides the TOTP, and then completes the login process.

The end-user can get the secret key from InterSystems IRIS in several ways:

• When you configure the end-user’s account to support two-factor TOTP authentication, the Edit User page for the end-
user displays the end-user’s secret key, as well as the name of the issuer and the end-user’s account name. It also displays
a QR code that includes all this information (a QR code is a machine-readable code such as the one pictured below).
The end-user can then enter the information into an authentication device or an application by scanning the code or
entering the information manually.

• If you choose to show the end-user their secret key during the login to a web application or Terminal session (using
%Service_Console or %Service_Terminal), you can enable this behavior by selecting the Display Time-Based

One-time Password QR Code on next login field on the Edit User page. The Terminal session will then display the end-
user’s issuer, account, and secret key. A web application will display the end-user’s issuer, account, and secret key,
along with a QR code; here, the end-user can then scan the code or enter the information manually.

Reference for Operational and Actionable Resources for Security 79

Two-Factor Authentication

Important: InterSystems does not recommend this option. See the following caution for more details.

CAUTION: The following are critical security concerns when using two-factor TOTP authentication:

• Do not transmit the secret key or QR code in an unsecured environment. Out-of-band transmission is
preferable to transmission even on a secure network. (The secret key gives an end-user the means to
log in to InterSystems IRIS or an InterSystems IRIS application. If you and your end-users do not
ensure the secret key’s safety, then an attacker may gain access to it, which renders it useless for
security.)

• When configuring two-factor TOTP authentication for your organization, InterSystems strongly rec-
ommends that you provide the secret key to each end-user in person or by phone, or that you have the
end-user scan the QR code in the physical presence of an administrator. This provides the opportunity
to authenticate the individual who obtains the secret key.

Delivering the secret key over the network increases the possibility of exposing it. This includes dis-
playing the secret key to the end-user when they first log in to a web application, console, or the Ter-
minal; this also includes displaying the QR code to the end-user when they first log in to a web
application.

Figure B–2: A TOTP Issuer, Account, Key, and QR Code

Note: If you are using two-factor TOTP authentication and wish to generate QR codes, Java 1.7 or higher must be running
on the InterSystems IRIS server. Without Java, InterSystems IRIS can use two-factor TOTP authentication, but
the end-user enters the values for the issuer, account, and key manually on the authentication device or in the
application.

Configure Two-Factor Authentication for the Server
The steps in configuring two-factor authentication for the InterSystems IRIS server are:

1. Enable and configure two-factor authentication for the instance as a whole. You can configure the instance to use SMS
text authentication, TOTP authentication, or both.

2. For SMS text authentication, configure the mobile phone service provider(s), if necessary. This includes:

• Adding any mobile phone service providers if any are required and are not included in the list of default providers.

• Changing configuration information as necessary for any existing providers (default or added).

80 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Enable and Configure Two-Factor Authentication Settings for an Instance

When setting up two-factor authentication for an InterSystems IRIS instance (server), you can enable one or both of:

• Two-factor time-based one-time password authentication (TOTP authentication)

• Two-factor SMS text authentication

To enable either form of two-factor authentication, the procedure is:

1. From the Management Portal home page, go to the Authentication/Web Session Options page (System Administration

> Security > System Security > Authentication/Web Session Options).

2. To enable two-factor TOTP authentication, on the Authentication/Web Session Options page, select the Allow Two-

Factor Time-Based One-Time Password Authentication check box. This displays the Two-Factor Time-Based One-Time

Password Issuer field; here, enter a string to identify this instance of InterSystems IRIS.

3. To enable two-factor SMS text authentication, on the Authentication/Web Session Options page, select the Allow Two-

Factor SMS Text Authentication check box. This displays the following fields:

• Two-Factor Timeout (secs) — Optional timeout in seconds for entering the one-time security token.

• DNS name of SMTP server — The DNS (Domain Name Service) name of the SMTP (Simple Mail Transfer Protocol)
server that this instance of InterSystems IRIS is using to send SMS text messages, such as smtp.example.com

(required).

• From (address) — Address to appear in the “From” field of message (required).

• SMTP username — Optional username for SMTP authentication (if the SMTP server requires it).

• SMTP Password and SMTP Password (confirm) — Optional password (entered and confirmed) for SMTP authen-
tication (if the SMTP server requires it).

4. Click Save.

5. If the instance is supporting SMS text authentication, configure mobile phone service providers as required. These
procedures are described in the next section.

After completing this process for the instance itself, you may need to perform other configuration, such as for the instance’s
services, web applications, and client-server applications; you will need to configure the instance’s users. The Overview
of Setting Up Two-Factor Authentication provides general direction about this.

Configure Mobile Phone Service Providers

The topics related to configuring mobile phone service providers are:

• Create or Edit a Mobile Phone Service Provider

• Delete a Mobile Phone Service Provider

• Predefined Mobile Phone Service Providers

Create or Edit a Mobile Phone Service Provider

To create or edit a mobile phone service provider, the procedure is:

1. From the Management Portal home page, go to the Mobile Phone Service Providers page (System Administration >
Security > Mobile Phone):

• To create a new provider, click Create New Provider.

• To edit an existing provider, click Edit on the provider’s row in the table of providers.

Reference for Operational and Actionable Resources for Security 81

Two-Factor Authentication

This displays the Edit Phone Provider page for the selected mobile phone service provider.

2. On the Edit Phone Provider page, enter or change the value for each of the following fields:

• Service Provider — The name of the mobile phone service provider (typically, its company name).

• SMS Gateway — The address of the server that the mobile phone service provider uses to dispatch SMS (short
message service) messages.

Delete a Mobile Phone Service Provider

To delete a mobile phone service provider, the procedure is:

1. From the Management Portal home page, go to the Mobile Phone Service Providers page (System Administration >
Security > Mobile Phone).

2. On the Mobile Phone Service Providers page, in the row of the provider, click Delete.

3. When prompted to confirm the deletion, click OK.

Predefined Mobile Phone Service Providers

InterSystems IRIS ships with a predefined list of mobile phone service providers, each with its SMS (short message service)
gateway preset. These are:

• AT&T Wireless — txt.att.net

• Alltel — message.alltel.com

• Cellular One — mobile.celloneusa.com

• Nextel — messaging.nextel.com

• Sprint PCS — messaging.sprintpcs.com

• T-Mobile — tmomail.net

• Verizon — vtext.com

Enable or Disable Two-Factor Authentication for a Service

Important: For %Service_WebGateway, there is no central location for enabling or disabling two-factor authenti-
cation. Enable or disable it for each application as described in Configure Web Applications for Two-
Factor Authentication.

To enable or disable two-factor authentication for %Service_Bindings, %Service_Console, and %Service

_Terminal, procedure is:

1. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

2. On the Services page, click the name of the service for which you wish to enable either form of two-factor authentication.
This displays the Edit Service page for the service.

3. On the service’s Edit Service page, select or clear the Two-factor SMS check box, Two-factor Time-based One-time

Password check box, or both. Note that each of these check boxes only appear if two-factor authentication is enabled
for the instance.

4. Click Save.

82 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Configure Web Applications for Two-Factor Authentication
Once you have enabled two-factor authentication for an instance, you must enable it for all web applications that will use
it. The procedure to enable it for an application is:

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. On the Web Applications page, for the application you wish to enable two-factor authentication, click the name of the
application, which displays its Edit page.

3. On the Edit page, in the Security Settings section of the page, select or clear the Two-factor SMS check box, Two-factor

Time-based One-time Password check box, or both. Note that each of these check boxes only appear if two-factor
authentication is enabled for the instance.

Note: A web application cannot simultaneously support both two-factor authentication and web services.

Configure an End-User for Two-Factor Authentication
To configure an end-user to receive a one-time security token for two-factor authentication, the procedure is:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users):

2. For an existing user, click the name of the user to edit; for a new user, begin creating the user by clicking Create New

User (for details about creating a new user, see Create a New User). Either of these actions displays the Edit page for
the end-user.

3. On the Edit User page, select SMS text enabled or Time-based One-time Password enabled, as appropriate.

4. If you select SMS Text, you must complete the following fields:

• Mobile phone service provider — The company that provides mobile phone service for the user. Either select a
provider from those listed or, if the provider does not appear in the list, click Create new provider to add a new
provider for the InterSystems IRIS instance. (Clicking Create a new provider displays the Create a New Mobile

Phone Provider window, which has fields for the Service Provider and the SMS Gateway, the purpose of which are
identical to those described in Create or Edit a Mobile Phone Service Provider.)

• Mobile phone number — The user’s mobile phone number. This is the second factor, and is where the user receives
the text message containing the one-time security token.

5. If you select Time-based One-time Password enabled, the page displays the following fields and information:

• Display Time-Based One-time Password QR Code on next login — Whether or not to display a QR code when the
user next logs in. If selected, InterSystems IRIS displays the code at the next login and prompts the user to scan
it into the authentication device or application, and then to provide the displayed token to complete the authentication
process. By default, this option is not selected. InterSystems recommends that you do not use this option.

• Generate a new Time-based One-time Password Key — Creates and displays both a new shared secret for the end-
user and a new QR code.

Important: If you generate a new time-based one-time password key for a user, the current key in the user’s
authenticator application will no longer work. Before logging in, the user must enter the new key
into the authenticator, either by scanning the QR code or by manually entering it. (This does not
affect existing sessions.)

• Issuer — The identifier for the InterSystems IRIS instance, which you established when configuring two-factor
TOTP authentication for the instance.

• Account — The identifier for the InterSystems IRIS account, which is the account’s username.

Reference for Operational and Actionable Resources for Security 83

Two-Factor Authentication

• Base-32 Time-Based One-Time Password (OTP) Key — The secret key that the end-user enters into the authentication
device or application.

• QR Code — A scannable code that contains the values of the issuer, account, and secret key.

6. Click Save to save these values for the user.

If a service uses two-factor authentication and an end-user has two-factor authentication enabled, then authentication
requires:

• For SMS text authentication, a mobile phone that is able to receive text messages on that phone.

• For TOTP authentication, an application or authentication device that can generate verification codes.

Otherwise, the end-user cannot authenticate:

• For SMS text authentication, the end-user must have a mobile phone and be able to receive text messages on that
phone. This is the phone number at which the user receives a text message containing the one-time security token as
an SMS text.

• For TOTP authentication, the user must have an authentication device or application that can either scan a QR code
or that can accept the secret key and other information required to generate each TOTP (which serves as a verification
code).

Configure Bindings Clients for Two-Factor Authentication
Client-server connections use %Service_Bindings. For these connections, the code required to use two-factor authen-
tication varies by programming language. (Note that Console, the Terminal, and web applications do not require any client-
side configuration.) Supported languages include:

• Java and JDBC

• .NET

• ODBC

Client-side code performs three operations:

1. After establishing a connection to the InterSystems IRIS server, it checks if two-factor authentication is enabled on
the server. Typically, this uses a method of the client’s connection object.

2. It gets the one-time security token from the user. This generally involves user-interface code that is not specifically
related to InterSystems IRIS.

3. It provides the one-time security token to the InterSystems IRIS server. This also typically uses a connection object
method.

Note: When a user logs in through %Service_Bindings, InterSystems IRIS does not present a QR code to scan. The
user must have previously set up the authentication device or application.

Important: Studio, which connects to the InterSystems IRIS server using %Service_Bindings, does not support
two-factor authentication.

Java and JDBC

With Java, support for two-factor authentication uses two methods of the IRISConnection class:

84 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• public boolean isTwoFactorEnabled() throws Exception

This method checks if two-factor authentication is enabled on the server. It returns a boolean; true means that two-
factor authentication is enabled.

• public void sendTwoFactorToken(String token) throws Exception

This method provides the one-time security token to the server. It takes one argument, token, the one-time security
token that the user has received.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

// Given a connection called "conn"
if (conn.isTwoFactorEnabled()) {
 // Prompt the user for the two-factor authentication token.
 // Store the token in the "token" variable.
 try {
 conn.sendTwoFactorToken(token);
 }
 catch (Exception ex) {
 // Process the error from a invalid authentication token here.
 }
}

.NET

For .NET, InterSystems IRIS supports connections with two-factor authentication with the managed provider and with
ADO.NET. Support for two-factor authentication uses two methods of the tcp_conn class:

• bool IRISConnection.isTwoFactorEnabledOpen()

This method opens a connection to the InterSystems IRIS server and checks if two-factor authentication is enabled
there. It returns a boolean; true means that two-factor authentication is enabled.

• void IRISConnection.sendTwoFactorToken(token)

This method provides the one-time security token to the server. It has no return value. It takes one argument, token,
the one-time security token that the user has received. If there is a problem with either the token (such as if it is not
valid) or the connection, then the method throws an exception.

Important: A client application makes a call to isTwoFactorEnabledOpen instead of a call to IRISConnection.Open.
The isTwoFactorEnabledOpen method requires a subsequent call to sendTwoFactorToken.

Also, if two-factor authentication is enabled on the server and the client code does not implement two-
factor authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

Reference for Operational and Actionable Resources for Security 85

Two-Factor Authentication

2. It attempts to provide the token to the server and performs error processing if this fails.

// Given a connection called "conn"
try {
 if (conn.isTwoFactorEnabledOpen()) {
 // Prompt the user for the two-factor authentication token.
 // Store the token in the "token" variable.
 conn.sendTwoFactorToken(token);
 }
}
catch (Exception ex) {
 // Process exception
}

ODBC

With ODBC, support for two-factor authentication uses two standard ODBC function calls (which are documented in the
Microsoft ODBC API Reference):

• SQLRETURN rc = SQLGetConnectAttr(conn, 1002, &attr, sizeof(attr), &stringLengthPtr);

The SQLGetConnectAttr function, part of the Microsoft ODBC API, returns the current value of a specified connection
attribute. The InterSystems ODBC client uses this function to determine if the server supports two-factor authentication.
The value of the first argument is a handle to the connection from the client to the server; the value of the second
argument is 1002, the ODBC attribute that specifies whether or not two-factor authentication is supported; the values
of the subsequent arguments are for the string containing the value of attribute 1002, as well as relevant variable sizes.

• SQLRETURN rc = SQLSetConnectAttr(conn, 1002, securityToken, SQL_NTS);

The SQLSetConnectAttr function, also part of the Microsoft ODBC API, sets the value of a specified connection
attribute. The InterSystems ODBC client uses this function to send the value of the two-factor authentication token to
the server. The values of the four arguments are, respectively:

– The connection from the client to the server.

– 1002, the ODBC attribute that specifies whether or not two-factor authentication is supported.

– The value of the one-time security token.

– SQLNTS, which indicates that the one-time security token is stored in a string.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses SQLGetConnectAttr to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server with the SQLSetConnectAttr call and performs error processing if this
fails. If SQLSetConnectAttr fails, the server drops the connection, so you need to reestablish the connection before
you can attempt authentication again.

// Given a connection called "conn"
SQLINTEGER stringLengthPtr;
SQLINTEGER attr;
SQLRETURN rc = SQLGetConnectAttr(conn, 1002, &attr, sizeof(attr), &stringLengthPtr);
if attr {
 // Prompt the user for the two-factor authentication token.
 wstring token;
 SQLRETURN rc = SQLSetConnectAttr(conn, 1002, token, SQL_NTS);
 if !rc {
 // Process the error from a invalid authentication token.
 }
}

86 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetconnectattr-function?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlsetconnectattr-function?view=sql-server-ver15

JSON Web Token (JWT) Authentication

Overview of JWT Authentication
A JWT is a compact, URL-safe means of authentication, authorization, or information exchange. In the case of authentication,
a server provides a JWT to an already-authenticated client so that the client does not need to reprovide a password to access
protected resources on the server until the JWT expires. The authentication flow can look like the following diagram:

Configuring JWT Authentication
To use JWT authentication, InterSystems IRIS must have a configuration for issuing JWTs so that the client can validate
their integrity.

• The System Administration > Security > System Security > Authentication/Web Session Options page includes the fol-
lowing settings:

– JWT Issuer field — Defines the iss claim in the JWT payload which identifies the issuer of the JWT to the client.

– JWT Signature Algorithm — Determines the encryption algorithm that InterSystems IRIS uses for signing and
validating the JWT.

– Reset Key Store — Rotates the encryption keys. This invalidates all previously issued, unexpired JWTs.

Reference for Operational and Actionable Resources for Security 87

JSON Web Token (JWT) Authentication

Issuing JWTs is not the only configuration required. You must also configure the client receiving the JWT to accept and
use them. REST web applications are among the clients that can use JWTs for authentication. The Create and Edit Appli-
cations page describes these settings.

Support for JWT Usage
InterSystems IRIS supports JWT usage for authentication to a REST API and in the OAuth 2.0 framework.

With a REST API

Once configured for JWT authentication, a REST API gains four endpoints that should not be included in the UrlMap in
the dispatch class:

• /login — A call to this endpoint using basic HTTP authentication or with valid credentials in the body of the request
returns an access token and a refresh token that can be used in subsequent requests.

• /logout — A call to this endpoint, if not using Group-By-ID, invalidates the supplied access token and the associated
refresh token. If using Group-By-ID, then all sessions with the current By-ID group are invalidated.

• /refresh — A call to this endpoint issues a new access and refresh token pair when invoked with a valid refresh
token. This invalidates the previous access and refresh token pair.

• /revoke — If not using Group-By-ID, this is functionally the same as /logout. If using Group-By-ID, this revokes
only the current access and refresh token pair.

You can customize the endpoint names in the dispatch class using the following:

Parameter TokenLoginEndpoint = "mylogin";
Parameter TokenLogoutEndpoint = "mylogout";
Parameter TokenRevokeEndpoint = "myrevoke";
Parameter TokenRefreshEndpoint = "myrefresh";

Accessing REST Endpoints with a JWT

You supply the access token in HTTP requests to the REST API in a header using the format of Authorization:
Bearer ACCESS_TOKEN_HERE. Other than supplying this access token instead of your credentials in the request, you
access your web application endpoints as normal except for the /login and /refresh endpoints. To retrieve the access
token, you first access the /login endpoint.

The /login Endpoint

To access the /login endpoint and retrieve the access and refresh tokens, make an HTTP POST request without
an authentication header and with your credentials in the body in JSON format as below:

{"user": "YOUR USER",
"password": "YOUR PASSWORD"}

If the credentials are valid, you receive a response similar to the following:

{
"access_token":
"eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2ODI3MDc0MTcuNzQ5OTQyLCJleHAiOjE2ODI3MDc0NzcsImlzcyI6IkludGVyU3lzdGVtcyIsInN1YiI6Il9TWVNURU0iLCJzaWQiOiJkWTAxYlJUMGZhQlJybldnQnEyYUZpa1ciLCJhcHAiOiIvYXBpL3R0cmcvIn0.OSxtKf2F6p23wfHKBxnPXvj6cs3fXKWNqc1c0yJ_t0Zpy5cLvLBlRTlufMQIOoNPnQHOHzcN8VWPBzisMoOM-A",
"refresh_token":
"eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2ODI3MDc0MTcuNzQ5OTQyLCJleHAiOjE2ODI3MDgzMTcsImlzcyI6IkludGVyU3lzdGVtcyIsInNpZCI6ImRZMDFiUlQwZmFCUnJuV2dCcTJhRmlrVyIsImFwcCI6Ii9hcGkvdHRyZy8ifQ.-28BDQsQYtfTbMpCBxmYtbxiT4UNQSeKS7taKkzRk4tYZkE_5V_WMGffNMj-pU3NgtIku506CIcSuXIxGdEJ5Q",
"sub":
"YOUR USER",
"iat":
1682707417.749942,
"exp":
1682707477
}

Using the /login access token as an example, the Authorization header for requests to your other REST
API endpoints has the value of:

88 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GSA_manage_applications_createedit
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GSA_manage_applications_createedit

Bearer
eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2ODI3MDc0MTcuNzQ5OTQyLCJleHAiOjE2ODI3MDc0NzcsImlzcyI6IkludGVyU3lzdGVtcyIsInN1YiI6Il9TWVNURU0iLCJzaWQiOiJkWTAxYlJUMGZhQlJybldnQnEyYUZpa1ciLCJhcHAiOiIvYXBpL3R0cmcvIn0.OSxtKf2F6p23wfHKBxnPXvj6cs3fXKWNqc1c0yJ_t0Zpy5cLvLBlRTlufMQIOoNPnQHOHzcN8VWPBzisMoOM-A

The /refresh Endpoint

You access the /refresh endpoint with an HTTP POST request without an access token. Instead, you send the
following JSON-formatted data in the body of the request:

{
"refresh_token": "YOUR REFRESH TOKEN",
"grant_type":
"refresh_token"
}

This returns a new access token and refresh token pair, similar to accessing the /login endpoint but without
losing your session from a logout.

With OAuth2.0 and OpenID Connect

To learn more about how InterSystems IRIS supports JWTs with the OAuth 2.0 framework, see Using OAuth 2.0 and
OpenID Connect.

Reference for Operational and Actionable Resources for Security 89

JSON Web Token (JWT) Authentication

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_iam_oauth
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_iam_oauth

LDAP

LDAP and InterSystems IRIS®
InterSystems IRIS® provides support for authentication and authorization using LDAP, the Lightweight Directory Access
Protocol. LDAP systems have a central repository of user information, from which InterSystems IRIS retrieves information.
For example, on Windows, a domain controller using Active Directory is an LDAP server.

Support includes:

• LDAP authentication — InterSystems IRIS prompts users for a username and password. The instance is associated
with an LDAP server, which performs authentication and retrieves the user’s roles and other authorization information.
The instance can also be configured to use cached credentials to authenticate users, in cases where it cannot connect
to the LDAP server.

• LDAP authorization — InterSystems supports LDAP groups for specifying roles as part of authorization. LDAP
authorization with OS-based authentication is used for the local InterSystems IRIS terminal. (Access to the Terminal
is managed by %Service_Console on Windows and %Service_Terminal on all other operating systems.)

InterSystems IRIS can also provide authentication and authorization for multiple LDAP domains simultaneously.

You can also use LDAP with the InterSystems IRIS delegated authentication feature, which allows you to implement custom
mechanisms to replace the authentication and role-management activities that are part of InterSystems security.

InterSystems IRIS provides LDAP support for:

• Active Directory

• OpenLDAP

• LDAP version 3 protocols (earlier LDAP protocols are not supported)

LDAP Authentication

Overview of Setting Up LDAP Authentication

To configure an InterSystems IRIS service or application to use an LDAP server for authentication:

1. Configure InterSystems IRIS to use the LDAP server:

a. Enable LDAP and related features for the instance.

b. Create an LDAP configuration for the instance of InterSystems IRIS. This includes specifying the names of LDAP
user properties to be used for setting the values of properties of InterSystems IRIS users.

c. Optionally, test the LDAP configuration.

d. Optionally, configure the instance to support multiple LDAP domains.

e. Set up a role that is required for logging in to the instance.

f. Enable LDAP for the instance’s relevant services and applications. This involves enabling LDAP for the entire
instance of InterSystems IRIS and then enabling it for the relevant services or applications.

Note: To perform LDAP authentication programmatically, use InterSystems IRIS delegated authentication.

Enable LDAP for an Instance

The first step in configuring an instance of InterSystems IRIS to use LDAP is to enable the features you wish to use:

90 Reference for Operational and Actionable Resources for Security

Identity and Access Management

1. From the Management Portal home page, go to the Authentication/Web Session Options page (System Administration

> Security > System Security > Authentication/Web Session Options).

2. On the Authentication/Web Session Options page:

• To enable LDAP authentication, select Allow LDAP authentication.

• To enable authentication using LDAP cached credentials, select Allow LDAP cache credentials authentication. For
more information on this topic, see LDAP Cached Credentials.

3. Click Save to apply the changes.

LDAP Cached Credentials

If you configure an instance to use LDAP cached credentials, it stores (caches) a copy of the credentials that it most recently
used to authenticate each user. If an instance supports cached credentials and it cannot connect to the LDAP server, then
it uses the cached LDAP credentials to authenticate users. This can be caused by an issue with the LDAP server itself or
with the connection to the server.

To secure cached credentials, InterSystems IRIS stores all LDAP passwords in the security database as a one-way hash. If
the instance cannot use the LDAP server to validate the user, it then attempts to confirm that:

• The hash of the entered password matches the hash of the stored password

• The cached expiration date from the last LDAP login has not been reached

If both conditions are true, the instance authenticates the user and login proceeds; otherwise, login fails.

Create or Modify an LDAP Configuration

To perform LDAP authentication, InterSystems IRIS uses an LDAP configuration. An LDAP configuration specifies a
connection to an LDAP server for a particular security domain and has information required to:

• Connect to and query the LDAP server

• Retrieve the required information about the user being authenticated

Note: If Kerberos is enabled for an instance, all menu items and other labels for LDAP configurations refer to
LDAP/Kerberos configurations. The following procedure does not note this in each individual situation.

To create or modify an LDAP configuration:

1. Go to the Management Portal Security LDAP Configurations page (System Administration > Security > System Security

> LDAP Configurations).

During installation, if you are installing InterSystems IRIS onto a machine that is currently using an LDAP server,
InterSystems IRIS creates an LDAP configuration based on that LDAP server’s domain and other configuration
information.

2. Create or modify a configuration:

• To modify an existing configuration, click its name. For example, if you are using the configuration associated
with the local LDAP server, then you may simply wish to check this configuration’s attributes and modify any as
needed.

• To create a configuration, click the Create New LDAP Configuration button. This displays the Edit LDAP configuration

page.

Note: When creating a configuration, on the Edit LDAP configuration page, select the LDAP configuration check
box if it is available. This displays the fields that define the LDAP configuration.

Reference for Operational and Actionable Resources for Security 91

LDAP

3. Modify or complete the fields to define the configuration (listed below).

4. If you create multiple configurations, you must specify which one is the default on the System-wide Security Parameters

page (Security Administration > Security > System Security > System-wide Security Parameters), using the Default

security domain drop-down.

LDAP Configuration Fields

An LDAP configuration includes the following fields:

• Login Domain Name — Required. The name of the LDAP configuration. This is typically in the form of example.com

or example.org.

If you enter a value that does not include a period, the system appends .com to it, so that example becomes example.com.
If you enter a value in uppercase, the system puts in lowercase, so that EXAMPLE.COM becomes example.com. The
system performs both transformations, if appropriate.

The system uses the transformed value of the Name field to populate the LDAP Base DN to use for searches field.

• Description — Any text to describe the configuration.

• Copy from — Available only when creating a configuration. Whether or not InterSystems IRIS copies attributes from
an existing LDAP configuration to specify initial values for this one.

• LDAP Enabled — Whether or not InterSystems IRIS can use the configuration to connect to an LDAP server.

• LDAP server is a Windows Active Directory server — Windows only. Whether or not the LDAP server is a Windows
Active Directory server.

• LDAP hostnames — Required. The name(s) of the host(s) on which the LDAP server is running. The complexity of
each hostname can range from an unqualified hostname to fully-qualified hostname with a port number; the required
form of the hostname(s) depends on the particular configuration.

If the LDAP server is configured to use a particular port, you can specify it by appending “:portname” to the hostname;
typical usage is not to specify a port and to let the LDAP functions use the default port. You can specify the domain
example.com as your hostname if you have multiple replicated domain servers on your network like:

ldapserver.example.com
ldapserver1.example.com
ldapserver2.example.com
ldapserver3.example.com

LDAP performs a DNS query for the addresses of all the matching LDAP servers and then automatically selects one
to connect to.

Important: Including a port number in the value of LDAP hostnames affects the TLS behavior when establishing
a connection:

– If the value specified contains a port number other than 636, such as
ldapserver.example.com:389 and the Use TLS/SSL encryption for LDAP sessions check
box is selected, then the instance attempts to establish a plaintext connection to the LDAP server
and then issue a StartTLS command to encrypt the connection.

– If the value specified for LDAP hostnames contains the port number 636, such as
ldapserver.example.com:636, then the instance attempts to establish a TLS connection
with the LDAP server directly—whether or not the Use TLS/SSL encryption for LDAP sessions

check box is selected. Note, however, that connecting directly to port 636 from UNIX® client
instances is not supported.

For background, see the class reference for the %SYS.LDAP.Init() method.

• LDAP search information — varies by circumstances:

92 Reference for Operational and Actionable Resources for Security

Identity and Access Management

– LDAP username to use for searches — For Windows Active Directory servers only. Required if available. The
user name provided to the LDAP server to establish an initial connection and which is used to perform LDAP
searches and lookups. This user is also known as the search user.

The search user must have permission to read the entire LDAP database. It is important to ensure that the search
user has uninterrupted access to the LDAP database. For example, the user’s LDAP account should be set so that:

• The user cannot change the account’s password

• The password never expires

• The account never expires

For more information on searching the LDAP database, see How LDAP Looks Up the Target User in Its Database.

– LDAP search user DN — For all non-Windows platforms and Windows non-Active Directory servers. Required if
available. The Distinguished Name (DN) of the user provided to the LDAP server to establish an initial connection
and which is used to perform LDAP searches and lookups. This user is also known as the search user.

The search user must have permission to read the entire LDAP database. It is also important to ensure that the
search user has uninterrupted access to the LDAP database. For example, the user’s LDAP account should be set
so that:

• The user cannot change the account’s password

• The password never expires

• The account never expires

For example, if the search user is “ ldapsearchuser” , the LDAP DN (distinguished name) might be as follows:

uid=ldapsearchuser,ou=People,dc=example,dc=com

For more information on searching the LDAP database, see How LDAP Looks Up the Target User in Its Database.

• LDAP username password — Available only when creating or modifying a configuration. The password associated
with the account used for the initial connection.

• LDAP Base DN to use for searches — Required. The point in the directory tree from which searches begin. This typically
consists of domain components, such as DC=example,DC=com.

• LDAP Base DN for Groups to use for searches — Required. The point in the directory tree from which searches for
nested groups begin. This typically consists of organizational units and domain components, such as
OU=IRIS,OU=Groups,DC=test,DC=com. By default, this is set to the same value as LDAP Base DN to use for

searches.

• LDAP Unique search attribute — Required. A unique identifying element of each record, which therefore makes it
appropriate for searches. For more information on searching the LDAP database, see How LDAP Looks Up the Target
User in Its Database.

• Use TLS/SSL encryption for LDAP sessions — Whether or not the InterSystems IRIS instance and the LDAP server
encrypt their communications using TLS (disabled by default).

Important: InterSystems recommends that you enable TLS encryption for LDAP.

For connections to Active Directory servers, note the following:

– When enabled for an LDAP connection from an instance on Windows to an Active Directory server, the connection
uses port 636 (which is a TLS-encrypted port).

Reference for Operational and Actionable Resources for Security 93

LDAP

– When enabled for an LDAP connection from an instance on UNIX® to an Active Directory server, InterSystems
IRIS first establishes the connection on port 389 (the unencrypted LDAP port); encryption is then turned on by a
StartTLS call.

InterSystems also recommends setting the LDAP server signing requirements parameter to Require signature
on the Active Directory Server. This prevents any LDAP bind command on the server on port 389 to be executed
unless the channel is encrypted with StartTLS. For more information, see Domain Controller: LDAP Server Signing
Requirements article on the Microsoft web site.

• File with Certificate Authority certificate(s) to authenticate the LDAP server — UNIX® only. The location of the file
containing any TLS certificates (in PEM format) being used to authenticate the server.

On Windows, to specify the location of a file containing any TLS certificates (in PEM format) being used to authenticate
the server certificate to establish a secure LDAP connection, use Microsoft Certificate Services. Certificates must be
installed in the Certificates (Local Computer)\Trusted Root Certification Authorities certificate store.

• Allow ISC_LDAP_CONFIGURATION environment variable — If you are using OS-based LDAP and multiple domains,
specifies whether or not to use the ISC_LDAP_CONFIGURATION environment variable. If the environment variable
is defined, then OS-based LDAP uses it to determine which LDAP configuration to use for authentication.

• Use LDAP Groups for Roles/Routine/Namespace — Whether or not the user’s roles, routine, and namespace come from
the user’s group memberships (true by default); if not, then they come from the attribute fields of the user’s LDAP
record. If you select this field, the system enables and disables other fields (see each subsequent field for details).

Note: InterSystems recommends the use of LDAP groups for authorization, rather than LDAP attributes (including
InterSystems registered LDAP properties). If you have existing code or are otherwise required to use registered
properties, see Configure Authorization with LDAP Attributes for details.

• Search Nested Groups for Roles/Routine/Namespace — Only active if LDAP server is a Windows Active Directory server

and Use LDAP Groups for Roles/Routine/Namespace are selected. Whether or not search returns all of a user’s nested
groups. See Nested Groups for more information on nested groups.

• Organization ID prefix for group names — Only active if Use LDAP Groups for Roles/Routine/Namespace is selected.
See LDAP Group Name Configuration for more information.

• Allow Universal group Authorization — Only active if Use LDAP Groups for Roles/Routine/Namespace is selected.
Whether or not searches use the attributes on the LDAP server that are relevant for all InterSystems IRIS instances.
See Create Universal LDAP Authorization Groups for more information.

• Authorization Group ID — Only active if Use LDAP Groups for Roles/Routine/Namespace is selected. The multiple-
instance group to which this instance belongs. See Create LDAP Authorization Groups for Multiple Instances (Multiple-
Instance Groups) for more information.

• Authorization Instance ID — Only active if Use LDAP Groups for Roles/Routine/Namespace is selected. The single-
instance group to which this instance belongs. See Create LDAP Authorization Groups for a Single Instance (Single-
Instance Groups) for more information.

• User attribute to retrieve default namespace (not active if LDAP groups are selected) — The attribute whose value is
the source for the Startup namespace property for a user. This property of an InterSystems IRIS user is described in
User Account Properties; this LDAP property is described in Configure Authorization with LDAP Attributes.

• User attribute to retrieve default routine (not active if LDAP groups are selected) — The attribute whose value is the
source for the Tag^Routine property for a user. This property of an InterSystems IRIS user is described in User Account
Properties; this LDAP property is described in Configure Authorization with LDAP Attributes.

• User attribute to retrieve roles (not active if LDAP groups are selected) — The attribute whose value determines the
roles to which a user is assigned. When creating this attribute, it must be specified as an LDAP multivalued attribute.

94 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/domain-controller-ldap-server-signing-requirements
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/domain-controller-ldap-server-signing-requirements
https://docs.microsoft.com/en-us/windows/win32/seccrypto/certificate-services

For information about an InterSystems IRIS user’s roles, see the Roles tab of a user’s Edit User page; this LDAP
property is described in Configure Authorization with LDAP Attributes.

• User attribute to retrieve comment attribute — The attribute whose value is the source for the Comment property for a
user. This property is described in User Account Properties. Once a user has logged in, you can retrieve the value of
this property using the Security.Users.Get() method.

• User attribute to retrieve full name from — The attribute whose value is the source for the Full name property for a
user. This property is described in User Account Properties. Once a user has logged in, you can retrieve the value of
this property using the Security.Users.Get() method.

• User attribute to retrieve mail address — The attribute whose value is the source for the Email address property for a
user. This property is described in User Account Properties. Once a user has logged in, you can retrieve the value of
this property using the Security.Users.Get() method.

• User attribute to retrieve mobile phone — The attribute whose value is the source for the Mobile Phone Number property
for a user. This property is described in User Account Properties. Once a user has logged in, you can retrieve the value
of this property using the Security.Users.Get() method.

• User attribute to retrieve mobile provider from — The attribute whose value is the source for the Mobile Phone Service
Provider property for a user. This property is described in User Account Properties. Once a user has logged in, you
can retrieve the value of this property using the Security.Users.Get() method.

• LDAP attributes to retrieve for each user — Any attributes whose values are the source for any application-specific
variables. Application code can then use the Get method of the Security.Users class to return this information.

The values of the fields of an LDAP configuration are stored in an instance of the Security.LDAPConfigs class.

Note on LDAP/Kerberos Configuration Fields

If Kerberos authentication is enabled for an instance, then the page for creating an LDAP configuration is Edit LDAP/Kerberos

configurations page. It has the same fields as the Edit LDAP configurations page, as described in LDAP Configuration Fields.

Test an LDAP Configuration

Once you have created an LDAP configuration, you can test it. This allows you to confirm that it properly connects to the
LDAP server or troubleshoot any issues that arise. To test a configuration:

1. In the Management Portal, go to the Security LDAP Configurations page (System Administration > Security > System

Security > LDAP Configurations).

2. Click Test LDAP Authentication.

3. In the Username and Password fields, enter a valid username and password defined on the LDAP server. If the instance
is configured to use multiple domains, you must provide a fully qualified username, such as EndUser@example.com;
if the instance is using only a single domain, simply enter the unqualified username (without the @ symbol or the
domain name), such as EndUser.

4. Click Test.

The Test Results field displays output from the LDAP server.

Note: This feature only tests if an instance can connect to an LDAP server and perform authentication checks for the
entered user. It does not perform any authorization or permission checks to determine if the user can successfully
log in to the system.

If the test succeeds for the entered user, but the user cannot log in, then check the audit record for the login failure.
To ensure successful login, you may need to give additional permissions to the user.

Reference for Operational and Actionable Resources for Security 95

LDAP

Use Multiple LDAP Domains

InterSystems IRIS supports LDAP authentication with multiple domains. This allows the instance to have user accounts
that include the same username from more than one domain, such as EndUser@example.com and EndUser@otherexam-
ple.com. This feature can be useful in multiple scenarios. For example:

• It allows merging distinct sets of users from multiple domains into one larger group while preserving unique identifiers
for each user.

• It allows the same individual to have accounts on multiple domains with varying privileges for each.

To use multiple domains:

1. Create additional LDAP configurations according to the instructions in Create or Modify an LDAP Configuration.

2. Configure the instance to use multiple domains and then specify a default domain:

a. Enable the use of multiple domains for the instance. In the Management Portal, on the System-wide Security

Parameters page (System Administration > Security > System Security > System-wide Security Parameters), select
the Allow multiple security domains check box.

b. Specify a default domain. In the Management Portal, on the System-wide Security Parameters page (System

Administration > Security > System Security > System-wide Security Parameters), select a default domain using
the Default security domain drop-down.

c. Click Save.

For more information about this page, see System-Wide Security Parameters.

Note: Even if you are using multiple domains, the name for each user must be unique, even if they are of different types.
Hence, if you create a user such as EndUser@example.com that is a password user, you cannot then log in to
InterSystems IRIS through LDAP as the user EndUser@example.com, as InterSystems IRIS cannot create the
account for EndUser@example.com as an LDAP user.

Set Up a Required Login Role

If you have multiple instances of InterSystems IRIS and are using LDAP authentication or OS-based authentication with
LDAP authorization, then InterSystems strongly recommends that each instance have a role that is required for the users
who are connecting to it. This mechanism prevents users from accessing instances where they are insufficiently privileged;
otherwise, a user who holds various roles on one instance may then have those same roles on an instance where this is not
intended.

To set up a required login role:

1. For each instance, if the role to be required does not already exist, create it according to the instructions in Create
Roles.

2. For each instance, specify the required role in the Role required to connect to this system field on the System Security

Settings page (System Administration > Security > System Security > System-wide Security Parameters).

3. Add an LDAP group with a name that includes the name of the required role. The name of the group is of the form:

intersystems-Instance-instanceID-Role-rolename

where:

• instanceID is the unique identifier for the instance on the LDAP server

• rolename is the name of the role required to connect

96 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Note: In certain circumstances, such as with mirroring, you may prefer to have a single required login role among
multiple instances.

For example, suppose there are two systems, TEST and PRODUCTION. To secure each of these systems, create a role on
TEST called TESTACCESS and a role on PRODUCTION called PRODUCTIONACCESS. On TEST, set the value of the Role

required to connect to this system field to TESTACCESS; on PRODUCTION, set it to PRODUCTIONACCESS. Then, if a user
is only allowed to access the TEST system, assign that user the TESTACCESS role only and do not assign the
PRODUCTIONACCESS role to the user. For users who can access either system, assign them both PRODUCTIONACCESS

and TESTACCESS roles.

Enable LDAP for Services and Applications

After enabling LDAP authentication for the instance, enable it for the instance’s relevant services or applications:

1. Because LDAP authentication is enabled for the instance, an LDAP check box appears on the Edit Service page for the
services that support LDAP authentication and the Edit Web Application page for web applications.

2. Enable LDAP authentication for services and applications as appropriate.

The following services support LDAP authentication:

• %Service_Bindings

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Login

• %Service_Terminal

• %Service_Telnet

• %Service_WebGateway

These fall into several categories of access modes:

• Local Access —

%Service_CallIn, %Service_ComPort, %Service_Console, %Service_Login, %Service_Terminal,
%Service_Telnet

To use LDAP authentication with local connections, enable it for the service.

• Client-Server Access —

%Service_Bindings

To use LDAP authentication with client-server connections, enable it for the service.

• Web Access —

%Service_WebGateway

To allow named users to log in to web applications using LDAP authentication, you will have to enable the relevant
web applications to use LDAP. See Security Settings in “Defining Applications” for more information about adding
authentication mechanisms to a web application. Enabling LDAP authentication for the service also allows the Web
Gateway itself to authenticate using LDAP authentication.

Reference for Operational and Actionable Resources for Security 97

LDAP

The State of an Instance After LDAP Authentication

Any user who is initially authenticated using LDAP authentication is listed in the table of users on the Users page (System

Administration > Security > Users) as having a Type of “LDAP user” . If a system administrator has explicitly created a
user through the Management Portal (or using any other native InterSystems IRIS facility), that user has a type of “Inter-
Systems IRIS password user” . If a user attempts to log in using LDAP authentication and is successfully authenticated,
InterSystems IRIS determines that this user already exists as an InterSystems IRIS user — not an LDAP user — and so
login fails.

View an LDAP Configuration in the Portal As %Operator

If you are logged in to the Management Portal as a user who has the %Operator role or the %Admin_Operate:Use

privilege, you can view (but not edit) the instance’s LDAP configurations:

1. In the Portal, go to the LDAP Configurations page (System Operation > LDAP Configurations).

2. On that page, click on the name of the configuration you wish to view, which displays the Display LDAP Configuration

for that configuration.

To edit an LDAP configuration, go to the Security LDAP Configurations page (System Administration > Security > System

Security > LDAP Configurations); you must have the %Admin_Secure:Use privilege.

The Security LDAP Configurations Page

The Portal’s Security LDAP Configurations page (System Operation > LDAP Configurations) displays a list of the instance’s
LDAP configurations. Click the name of a configuration to view its properties. If Kerberos authentication is enabled for
the instance, this is called the Security LDAP/Kerberos configurations page (System Operation > LDAP/Kerberos configura-

tions).

LDAP Authorization
In addition to performing authentication with LDAP, InterSystems IRIS supports LDAP authorization. InterSystems rec-
ommends the use of LDAP groups rather than LDAP attributes for managing role, routine, and namespace definitions.

Overview of Configuring LDAP Authorization

To configure an InterSystems service or application to use LDAP for authorization:

1. Configure the instance for LDAP or OS-based authentication

2. For LDAP authorization:

a. Design the groups for LDAP authorization on InterSystems IRIS instances

b. Configure the LDAP server to use those groups

Configure Authorization with LDAP Groups

• LDAP Groups and InterSystems IRIS

• LDAP Authorization Group Models:

– Create LDAP Authorization Groups for a Single Instance (Single-Instance Groups)

– Create LDAP Authorization Groups for Multiple Instances (Multiple-Instance Groups), including Authorization
for Mirroring

– Create Universal LDAP Authorization Groups

• Other Topics for LDAP Authorization with LDAP Groups

98 Reference for Operational and Actionable Resources for Security

Identity and Access Management

LDAP Groups and InterSystems IRIS

LDAP groups allow you to assign privileges to users using an LDAP server:

• The schema on the LDAP server specifies the names of groups. Typically, the LDAP administrator defines these names;
InterSystems IRIS uses one of three predefined name structures described below.

• Each group has a distinguished name (DN) that uniquely identifies it.

• Each group specifies access to an InterSystems IRIS role, routine, or namespace

InterSystems IRIS supports LDAP groups that provide authorization for:

• A single instance

• Multiple instances

• All instances

To set up groups for InterSystems IRIS:

1. Determine if you are going to use groups for a single instance, for multiple instances, or for all instances.

2. Create one or more groups with names that follow the appropriate naming convention. Each group specifies a user’s
role, default namespace, or default routine; since a user can have multiple roles, it is valid to belong to multiple groups
that specify roles.

Note: Note that when defining these groups on your LDAP server, they should be created as security groups, and
not distribution groups.

3. Configure your LDAP users to specify which ones belong to which groups. This requires that, for each user’s LDAP
account, you assign the user to multiple groups to specify one or more roles, a default namespace, and a default routine.
This determines which roles each user has after logging in, the user’s default namespace, and the user’s default routine.

4. Configure the local InterSystems IRIS instance so that there are definitions for all the roles that are specified on the
LDAP server.

LDAP Authorization Group Models

InterSystems IRIS supports for three kinds of group authorization using LDAP.

• Create LDAP authorization groups for a single instance (single-instance groups)

• Create LDAP authorization groups for multiple instances (multiple-instance groups), including mirroring

• Create universal LDAP authorization groups

Create LDAP Authorization Groups for a Single Instance (Single-Instance Groups)

InterSystems IRIS allows you to create LDAP groups that provide authorization for only a single instance; hence,
each of these is known as a single-instance group. To create this kind of authorization group:

1. On the InterSystems IRIS instance, confirm or modify the value of the LDAP parameter Authorization Instance

ID. By default, its value is NodeName_InstanceName, where NodeName is the machine on which the Inter-
Systems IRIS instance is running and InstanceName is the name of that instance.

To set the parameter’s value manually:

a. In the Management Portal, go to the Security LDAP Configurations page (Management Portal > System

Administration > Security > System Security > LDAP Configurations).

b. On that page, select the configuration to edit by clicking on its name.

Reference for Operational and Actionable Resources for Security 99

LDAP

c. On the page for editing the configuration that appears, select Use LDAP Groups for Roles/Routine/Names-

pace.

d. Next, in the Authorization Instance ID field, enter the value for the parameter and click Save.

2. On the LDAP server, define role, namespace, and routine groups with names that conform to the required
InterSystems structure and that use the Instance keyword, followed by the value of the Authorization

Instance ID. Note that these strings are not case sensitive. These group names are of the form:

intersystems-Instance-AuthorizationInstanceIDValue-Role-RoleName

intersystems-Instance-AuthorizationInstanceIDValue-Routine-RoutineName

intersystems-Instance-AuthorizationInstanceIDValue-Namespace-NamespaceName

where:

• AuthorizationInstanceIDValue is the value specified for the Authorization Instance ID field

• RoleName, RoutineName, and NamespaceName are each the name of the role, default routine, or default
namespace.

Note: A user can have any number of roles; typically, access to the system requires at least one role.
A user can have only one default routine and one default namespace; however, these are not
required, so a user may have no default routine and no default namespace.

• RoleName can include multiple roles, delimited by a “^”. For example, “%All^Admin^Application4”
includes the “%All” , “Admin”, and “Application4” roles.

3. On the InterSystems IRIS instance, configure a role associated with each group.

For example, suppose you are running an application on an instance called Test that is on a machine called Node1.
You wish to set up three categories of users:

• Application users — Can only run the application

• Administrative users — Can run various administrative tools and the application

• Superusers — Have full access

To set up this authorization model, create the following groups on the LDAP server:

intersystems-Instance-Node1_Test-Role-Administrator
intersystems-Instance-Node1_Test-Role-LocalApplication
intersystems-Instance-Node1_Test-Role-%All
intersystems-Instance-Node1_Test-Routine-LocalApplication
intersystems-Instance-Node1_Test-Routine-%SS
intersystems-Instance-Node1_Test-Routine-%pmode
intersystems-Instance-Node1_Test-Namespace-%SYS
intersystems-Instance-Node1_Test-Namespace-USER

Next, create the roles that corresponds to each category of user:

• Administrator

• LocalApplication

Note: You do not need to create a %All role, because it already exists.

Finally, create the three categories of users:

• Application users — Can run only the application, LocalApplication; are assigned to the following LDAP
groups:

100 Reference for Operational and Actionable Resources for Security

Identity and Access Management

– intersystems-Instance-Node1_Test-Role-LocalApplication

– intersystems-Instance-Node1_Test-Routine-LocalApplication

– intersystems-Instance-Node1_Test-Namespace-USER

• Administrative users — Can run various administrative tools and the application; are assigned to the following
LDAP groups:

– intersystems-Instance-Node1_Test-Role-LocalApplication

– intersystems-Instance-Node1_Test1-Role-Administrator

– intersystems-Instance-Node1_Test-Routine-%SS

– intersystems-Instance-Node1_Test-Namepace-%SYS

• Superusers — Have %All access; are assigned to the following LDAP groups:

– intersystems-Instance-Node1_Test-Role-%All

– intersystems-Instance-Node1_Test-Namespace-%SYS

– intersystems-Instance-Node1_Test-Routine-%pmode

Create LDAP Authorization Groups for Multiple Instances (Multiple-Instance Groups)

InterSystems IRIS allows you to create LDAP groups that provide authorization for multiple instances; hence,
each of these is known as a multiple-instance group. To create this kind of authorization group:

1. Determine how the various instances are sharing information among groups. This determines the group for
each instance and the information to which users have access.

2. For each instance in the group, modify the value of the LDAP parameter Authorization Group ID to be the
same as the other instances in the group.

To set the parameter’s value manually:

a. In the Management Portal, go to the Security LDAP Configurations page (Management Portal > System

Administration > Security > System Security > LDAP Configurations).

b. On that page, select the configuration to edit by clicking on its name.

c. On the page for editing the configuration that appears, select Use LDAP Groups for Roles/Routine/Names-

pace.

d. Next, in the Authorization Group ID field, enter the value for the parameter and click Save.

3. On the LDAP server, set up role, namespace, and routine groups that conform to the required InterSystems
structure and that use the Group keyword, followed by the value of the Authorization Group ID. Note that
these strings are not case sensitive. These group names are of the form:

intersystems-Group-AuthorizationGroupIDValue-Role-RoleName

intersystems-Group-AuthorizationGroupIDValue-Routine-RoutineName

intersystems-Group-AuthorizationGroupIDValue-Namespace-NamespaceName

where:

• AuthorizationGroupIDValue is the value specified for the Authorization Group ID field

• RoleName, RoutineName, and NamespaceName are each the name of the role, default routine, or default
namespace.

Reference for Operational and Actionable Resources for Security 101

LDAP

Note: A user can have any number of roles; typically, access to the system requires at least one role.
A user can have only one default routine and one default namespace; however, these are not
required, so a user may have no default routine and no default namespace.

• RoleName can include multiple roles, delimited by a “^”. For example, “%All^Admin^Application4”
includes the “%All” , “Admin”, and “Application4” roles.

4. Configure the required roles on all the instances that are using them.

For example, suppose you have seven ECP application servers attached to five database servers. Two of the
database servers are a failover pair, and the other three are async reporting members. All these servers (both the
application servers and the database servers) run the SALES application. The application’s end users need a more
limited set of privileges and its administrative users need greater privileges. Hence, you set up three categories of
users:

• Application users — Can only run the application

• Application server administrators — Can run the application; have full access to the application servers and
no access to the database servers

• Database administrators — Have full access to the application servers and administrative access to the database
servers

To configure LDAP authorization to support these requirements:

• Set the Authorization Group ID on the applications servers to SALESAPP

• Set the Authorization Group ID on the database servers to SALESDB

On the LDAP server, define the groups as follows:

intersystems-Group-SALESAPP-Role-%All
intersystems-Group-SALESAPP-Role-LocalApplication
intersystems-Group-SALESAPP-Routine-LocalApplication
intersystems-Group-SALESAPP-Routine-%pmode
intersystems-Group-SALESAPP-Namespace-USER
intersystems-Group-SALESAPP-Namespace-%SYS
intersystems-Group-SALESDB-Role-Administrator
intersystems-Group-SALESDB-Routine-INTEGRIT
intersystems-Group-SALESDB-Namespace-%SYS

Next, create the roles that corresponds to each category of user:

• Administrator

• LocalApplication

Note: You do not need to create a %All role, because it already exists.

Finally, create the three categories of users:

• Application users – Can only run the application, LocalApplication; are assigned to the following LDAP
groups:

– intersystems-Group-SALESAPP-Role-LocalApplication

– intersystems-Group-SALESAPP-Routine-LocalApplication

– intersystems-Group-SALESAPP-Namespace-USER

• Application server administrators — Can run the application, have full access to the application servers, and
have no access to the database servers; are assigned to the following LDAP groups:

102 Reference for Operational and Actionable Resources for Security

Identity and Access Management

– intersystems-Group-SALESAPP-Role-LocalApplication

– intersystems-Group-SALESAPP-Namespace-USER

– intersystems-Group-SALESAPP-Role-%All

– intersystems-Group-SALESAPP-Routine-%pmode

• Database administrators — Have full access to the application servers and administrative access to the database
servers; are assigned to the following LDAP groups:

– intersystems-Group-SALESAPP-Role-%All

– intersystems-Group-SALESAPP-Routine-%pmode

– intersystems-Group-SALESAPP-Namespace-%SYS

– intersystems-Group-SALESDB-Role-Administrator

– intersystems-Group-SALESDB-Routine-INTEGRIT

– intersystems-Group-SALESDB-Namespace-%SYS

At this point, there is a fully functioning authorization model, but it does not include any superuser access to the
database servers (that is, with %All). To add such access, create and add users to the following new group:

intersystems-Group-SALESDB-Role-%All

Configure LDAP Authorization Groups with Mirroring

In you are using LDAP and mirroring, InterSystems recommends using multiple-instance LDAP groups to configure
authorization. Create the required multiple-instance groups and configure all the users on all members (including
any async members) to use these groups.

Consider the following example, which is based on the group structure defined in the example above. Suppose,
additionally:

• There is a mirror called SALESDBMIR which is a failover pair and three reporting async members

• You wish to have users with %All, but only on the failover pair

To configure authorization for this mirror:

1. To provide full access to the failover pair, create the group

intersystems-Group-SALESDBMIRFAILOVER-Role-%All

2. To provide full access to the asynchronous members, create the group

intersystems-Group-SALESDBMIRASYNC-Role-%All

3. Set the LDAP parameter Authorization Instance ID on each member in the failover pair to SALESDBMIR-
FAILOVER.

Important: Because a disaster recovery (DR) async member may be promoted to failover member, the
Authorization Instance ID for any DR async should also be set to SALESDBMIRFAILOVER

4. Set the LDAP parameter Authorization Group ID on the mirror’s asynchronous members to SALESDBMI-
RASYNC.

5. Next, create the mirror administrators, who have %All access to the application servers; administrative access
to the nonmirrored database servers; and %All access to the failover pair only. These users are assigned to
the following LDAP groups:

Reference for Operational and Actionable Resources for Security 103

LDAP

• intersystems-Group-SALESAPP-Role-%All

• intersystems-Group-SALESAPP-Routine-%pmode

• intersystems-Group-SALESAPP-Namespace-%SYS

• intersystems-Group-SALESDB-Role-Administrator

• intersystems-Group-SALESDB-Routine-INTEGRIT

• intersystems-Group-SALESDB-Namespace-%SYS

• intersystems-Group-SALESDBMIRFAILOVER-Role-%All

6. Finally, create the full administrators, who have %All access to all the members (the application servers, the
database servers, the failover pair, and the asynchronous members). These users are assigned to the following
LDAP groups:

• intersystems-Group-SALESAPP-Role-%All

• intersystems-Group-SALESDB-Role-%All

• intersystems-Group-SALESDBMIRFAILOVER-Role-%All

• intersystems-Group-SALESDBMIRASYNC-Role-%All

Create Universal LDAP Authorization Groups

InterSystems IRIS allows you to create LDAP groups that provide authorization for all its instances that use a
single LDAP server; these are known as universal authorization groups. To create this kind of authorization group:

1. Enable the use of universal authorization groups for the current instance:

a. In the Management Portal, go to the Security LDAP Configurations page (Management Portal > System

Administration > Security > System Security > LDAP Configurations).

b. On that page, select the configuration to edit by clicking on its name, which displays the page for editing
that configuration.

c. On the page for editing the configuration, select Use LDAP Groups for Roles/Routine/Namespace.

d. Select Allow Universal group Authorization.

e. Click Save.

2. On the LDAP server, set up role, namespace, and routine groups that conform to the required InterSystems
structure. Note that these strings are not case sensitive. These group names are of the form:

intersystems-Role-RoleName

intersystems-Routine-RoutineName

intersystems-Namespace-NamespaceName

where RoleName, RoutineName, and NamespaceName are each the name of the role, default routine, or default
namespace. RoleName can include multiple roles, delimited by a “^”. For example, “%All^Admin^Applica-
tion4” includes the “%All” , “Admin”, and “Application4” roles.

Note: A user can have any number of roles; typically, access to the system requires at least one role. A
user can have only one default routine and one default namespace; however, these are not required,
so a user may have no default routine and no default namespace.

3. Configure the required roles on all the instances that are using the LDAP server.

104 Reference for Operational and Actionable Resources for Security

Identity and Access Management

For example, suppose you have an application called LocalApplication and you wish to grant various levels of
access to it for users on all the InterSystems IRIS instances that use your LDAP server. Define the following LDAP
groups:

intersystems-Role-%All
intersystems-Role-Administrator
intersystems-Role-LocalApplication
intersystems-Routine-%SS
intersystems-Routine-LocalApplication
intersystems-Namespace-USER
intersystems-Namespace-%SYS

Next, create the roles that corresponds to each category of user:

• Admin

• LocalApplication

Note: You do not need to create a %All role, because it already exists.

Finally, create the three categories of users:

• Application users – Have access to the application on all servers; are assigned to the following LDAP groups:

– intersystems-Role-LocalApplication

– intersystems-Routine-LocalApplication

– intersystems-Namespace-USER

• Administrators — Have administrative access to all servers; are assigned to the following LDAP groups:

– intersystems-Role-Administrator

– intersystems-Routine-%SS

– intersystems-Namespace-%SYS

• Superusers — Have full access to all servers; are assigned to the following LDAP groups:

– intersystems-Role-%All

Other Topics for LDAP Authorization with LDAP Groups

Topics include:

• LDAP Group Definition Structure

• LDAP Group Name Configuration

• Mix Different Kinds of Groups

• Nested Groups

• How LDAP Groups Regulate Access to InterSystems IRIS

LDAP Group Definition Structure

Group definitions typically include:

• The group name

• A declaration of the group’s organizational unit: OU=Groups

• A declaration of the domain component (DC) such as DC=example,DC=com

Reference for Operational and Actionable Resources for Security 105

LDAP

• Any other required information

For example, some possible group definitions might be:

CN=intersystems-Role-Administrator,OU=Groups,DC=intersystems,DC=com
CN=intersystems-Group-MyGroup-Namespace-USER,OU=Groups,DC=intersystems,DC=com
CN=intersystems-Instance-MyNode:MyInstance-Routine-INTEGRIT,OU=Groups,DC=intersystems,DC=com

LDAP Group Name Configuration

InterSystems IRIS allows you to further configure LDAP group names. The following sections describe the default config-
uration, the configurable properties, and the procedure to change them.

Default Group Name Configuration

By default, LDAP group names use the following syntax:

intersystems-Role-RoleName

intersystems-Routine-RoutineName

intersystems-Namespace-NamespaceName

intersystems-Group-GroupName-Role-RoleName

intersystems-Group-GroupName-Routine-RoutineName

intersystems-Group-GroupName-Namespace-NamespaceName

intersystems-Instance-InstanceName-Role-RoleName

intersystems-Instance-InstanceName-Routine-RoutineName

intersystems-Instance-InstanceName-Namespace-NamespaceName

Group Name Properties

Group names consist of the following configurable properties:

• OrganizationID — Default intersystems. Replace the intersystems segment of the group name with
a user-defined or empty string. For example, if set to OrgABC, then the group name becomes:

OrgABC-Role-RoleName

OrgABC-Group-GroupName-Routine-RoutineName

OrgABC-InstanceInstanceName-Namespace-NamespaceName

If set to the empty string, then the group name becomes:

Role-RoleName

Group-GroupName-Routine-RoutineName

Instance-InstanceName-Namespace-NamespaceName

• DelimiterID — Default hyphen (-). This is the delimiter between segments in the group name. For example,
if set to underscore (_), then the group name becomes:

intersystems_Role_RoleName

intersystems_Group_GroupName_Routine_RoutineName

intersystems_Instance_InstanceName_Namespace_NamespaceName

• GroupID — Default Group. For example, if set to SystemGrouping, then the group name becomes:

intersystems-SystemGrouping-GroupName-Role-RoleName

106 Reference for Operational and Actionable Resources for Security

Identity and Access Management

intersystems-SystemGrouping-GroupName-Routine-RoutineName

intersystems-SystemGrouping-GroupName-Namespace-NamespaceName

• InstanceID — Default Instance. For example, if set to SystemInstance, then the group name becomes:

intersystems-SystemInstance-InstanceName-Role-RoleName

intersystems-SystemInstance-InstanceName-Routine-RoutineName

intersystems-SystemInstance-InstanceName-Namespace-NamespaceName

• RoleID — Default Role. For example, if set to SystemRole, then the group name becomes:

intersystems-SystemRole-RoleName

intersystems-Group-GroupName-SystemRole-RoleName

intersystems-Instance-InstanceName-SystemRole-RoleName

• NamespaceID — Default Namespace. For example, if set to SystemNamespace, then the group name
becomes:

intersystems-SystemNamespace-NamespaceName

intersystems-Group-GroupName-SystemNamespace-NamespaceName

intersystems-Instance-InstanceName-SystemNamespace-NamespaceName

• RoutineID — Default Routine. For example, if set to SystemRoutine, then the group name becomes:

intersystems-SystemRoutine-RoutineName

intersystems-Group-GroupName-SystemRoutine-RoutineName

intersystems-Instance-InstanceName-SystemRoutine-RoutineName

Procedure for Changing Properties

To change these properties:

1. In the Management Portal, go to the Security LDAP Configurations page (Management Portal > System

Administration > Security > System Security > LDAP Configuration).

2. To edit a configuration, click on its name.

3. On this page, you can edit the OrganizationID property. Click on Advanced Settings to view and edit the rest
of the properties.

4. Click Save at the top of the page to save your changes.

Mix Different Kinds of Groups

You can use universal groups in conjunction with single-instance or multiple-instance roles.

For example, suppose you:

• Have an application on multiple instances

• Are using universal groups

• Have a user named UserOne who can run the application on all instances, but cannot use it as an administrator on any
machine

You would like for UserOne to:

• Continue to be able to run the application on all instance

Reference for Operational and Actionable Resources for Security 107

LDAP

• Additionally, to be able to administer the application on a particular instance, called APPTEST, on a particular machine,
called Test

To do this:

1. Set the authorization instance ID on the APPTEST instance on the Test machine to Test:APPTEST

2. Create the following group on the LDAP server:

intersystems-Instance-Test_APPTEST-Role-Administrator

3. Assign this group to UserOne on the LDAP server

4. Create the Administrator role on the APPTEST instance on the Test machine and grant it administrative access

You can also mix authorization groups in other ways. For example, if UserTwo has %All permission on all the instances
authenticating to the LDAP server, you can give UserTwo exclusive administrative permission on an instance called
SECRET on a machine called Server10. To do this, disable Allow universal groups access and then go through the process
of assigning an intersystems-Instance-Server10_SECRET-Role-Administrator to that user.

Nested Groups

On an Active Directory LDAP server, LDAP groups include support for what are known as nested groups. A nested group
is a group that is a member of a parent group, which means that all the users who are members of the nested group are
implicitly members of the parent group. For example, suppose that there are two LDAP groups defined, known as ABC
and DEF. You can make ABC a nested group within DEF; this means that, if a user is a member of ABC, then they are also
a member of DEF without explicitly assigning the user to that group.

When searching for a user’s nested groups, InterSystem IRIS returns only groups that are defined as Security Groups on
the LDAP server. If you are using nested groups, ensure that any group used as a role for an InterSystems IRIS system is
created as a Security Group.

Note: Systems which do not use nested groups will return both Security and Distribution groups.

How LDAP Groups Regulate Access to InterSystems IRIS

Through their LDAP groups, users receive roles along with a default namespace and a default routine. If the user’s granted
roles lack sufficient privilege for any required point of access for an instance, the user then is denied access to that instance;
for example, if a user lacks sufficient privilege to use their default routine, that user is denied access.

The following rules also apply:

• If a user is assigned to a group for a role, but that role is not defined on the instance where the user is logging in, then
the user does not have that role on that instance.

• If a user is assigned to a group for a default routine, but that routine is not defined on the instance where the user are
logging in, then the user cannot connect to the instance.

• If a user is assigned to a group for a default namespace, but that namespace is not defined on the instance where the
user are logging in, then the user cannot connect to the instance.

Configure LDAP Authorization with Operating System–Based Authentication

Topics include:

• Operating System LDAP Authentication

• Enable OS/LDAP for an InterSystems IRIS Instance

• Enable OS/LDAP for the %Service_Console and %Service_Terminal Services

• OS/LDAP with a Single Domain and Multiple Domains

108 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• Configure OS/LDAP with Multiple Domains for Simplified Prompting

Operating System LDAP Authentication

InterSystems IRIS allows you to configure your system to support operating system–based authentication, and then to
perform authorization via LDAP. This is known as Operating System LDAP authorization or OS/LDAP. It allows a user
to authenticate to InterSystems IRIS using credentials from the operating system login and then to have their authorization
information retrieved from an LDAP server. Operating system LDAP authorization is available in the Console on Windows
and in the Terminal and on UNIX®, Linux, and macOS.

To configure OS/LDAP:

1. Enable OS-based authentication with LDAP authorization for an InterSystems IRIS instance.

2. As with standard LDAP authentication, set up a role that is required in order to be able to log in to the instance.

3. Enable OS/LDAP for the %Service_Console and %Service_Terminal services.

4. Configure authorization. This occurs in the same manner as that which accompanies LDAP authentication, as described
in Configure LDAP Authorization for InterSystems IRIS.

5. If you are using multiple domains, optionally configure OS/LDAP for simplified prompting.

Enable OS/LDAP for an InterSystems IRIS Instance

To use OS/LDAP, first enable it for the instance:

1. From the Management Portal home page, go to the Authentication/Web Session Options page (System Administration

> Security > System Security > Authentication/Web Session Options).

2. On the Authentication/Web Session Options page, select Allow Operating Systems LDAP authentication.

3. Click Save to apply the changes.

Enable OS/LDAP for the %Service_Console and %Service_Terminal Services

To enable OS/LDAP for the instance’s relevant services or applications:

1. With LDAP authentication enabled for the instance, an Operating System LDAP Authorization check box appears on
the Edit Service page for %Service_Console and %Service_Terminal, which are the services that support
OS/LDAP.

2. Enable LDAP authentication for those services, as appropriate.

OS/LDAP with a Single Domain and Multiple Domains

OS/LDAP supports the use of a single domain or multiple domains.

When InterSystems IRIS is configured to support only a single domain:

1. The system prompts the user for a username and password for the first login.

2. For subsequent logins, there is no prompt because the operating system has already authenticated the user.

When InterSystems IRIS is configured to support multiple domains:

1. The system prompts the user for a username and password for the first login.

2. For subsequent logins, the operating system prompts for a username and password by default. You can configure
InterSystems IRIS to prevent this prompting; see the next section.

Reference for Operational and Actionable Resources for Security 109

LDAP

Configure OS/LDAP with Multiple Domains for Simplified Prompting

If you are using OS/LDAP and multiple domains, you can configure the instance for simplified prompting. By default,
users are prompted for a username and password at every login. You can configure InterSystems IRIS so that there is only
a username/password prompt when a user first logs in, and that subsequent connections are authenticated without prompting.

To configure InterSystems IRIS for this behavior:

1. For each user, create the environment variable ISC_LDAP_CONFIGURATION with a value of the domain in which
the user is authenticating.

2. For each domain in which users are authenticating:

a. Ensure that there is an LDAP configuration or create one.

b. For that LDAP configuration, select the Allow ISC_LDAP_CONFIGURATION environment variable check box, which
enables use of the environment variable.

Configure Authorization with LDAP Attributes

For LDAP authorization, InterSystems recommends the use of LDAP groups. However, InterSystems also supports
authorization using LDAP attributes. There are three registered OIDs that are available for use with an LDAP schema to
store authorization information. Each has its own dedicated purpose:

• intersystems-Namespace — The name of the user’s default namespace (OID 1.2.840.113556.1.8000.2448.2.1).

• intersystems-Routine — The name of the user’s default routine (OID 1.2.840.113556.1.8000.2448.2.2).

• intersystems-Roles — The name of the user’s login roles (OID 1.2.840.113556.1.8000.2448.2.3).

To use these attributes, the procedure on the LDAP server is:

1. Enable the attributes for use. To do this, modify the value of objectClass field in the LDAP schema by appending the
intersystemsAccount value to its list of values. (intersystemsAccount has an LDAP OID of
1.2.840.113556.1.8000.2448.1.1.)

2. Add the fields (as few or as many as required) to the schema.

3. Populate their values for the entries in the LDAP database.

Note: It is not required to use the registered LDAP schema names. In fact, you may use existing attributes from your
LDAP schema.

For example, with a UNIX® LDAP server, to define the schema for using LDAP authentication with InterSystems IRIS,
use the content that appears in the following definitions:

Attribute Type Definitions

attributetype (1.2.840.113556.1.8000.2448.2.1 NAME 'intersystems-Namespace'
 DESC 'InterSystems Namespace'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 SINGLE-VALUE)

attributetype (1.2.840.113556.1.8000.2448.2.2 NAME 'intersystems-Routine'
 DESC 'InterSystems Routine'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.2.840.113556.1.8000.2448.2.3 NAME 'intersystems-Roles'
 DESC 'InterSystems Roles'
 EQUALITY caseIgnoreMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Object Class Definitions

objectclass (1.2.840.113556.1.8000.2448.1.1
 NAME 'intersystemsAccount'
 SUP top
 AUXILIARY

110 Reference for Operational and Actionable Resources for Security

Identity and Access Management

 DESC 'Abstraction of an account with InterSystems attributes'
 MAY (
 intersystems-Routine $
 intersystems-Namespace $
 intersystems-Roles
)
)

This content goes to two locations:

• Place it in the intersystems.schema file in the /etc/openldap/schema/ directory.

• Include it, along with any other content, in the /etc/openldap/slapd.conf file.

Other LDAP Topics

Create a Secure Outbound LDAP Connection

While this document primarily concerns using LDAP for authentication and authorization when connecting to InterSystems
IRIS, you may also connect from InterSystems IRIS to an LDAP server. To establish a secure outbound connection to an
LDAP server, InterSystems IRIS includes support for TLS. For more information on this topic, see the class documentation
for %SYS.LDAP, in the content for the Init method.

Use the LDAP APIs

The %SYS.LDAP class supports LDAP programmatically.

If you are using the InterSystems IRIS LDAP APIs with certificates on UNIX® and need detailed debugging information,
you may wish to use the ldapsearch program that is part of the OpenLDAP package. Once you have corrected any problems
with certificates, you can use the test configuration tool to verify that the connection is functioning. The ldapsearch program
may also be useful for debugging other LDAP connection problems.

How Various LDAP Actions Occur

This section describes what occurs during certain processes associated with LDAP authentication and authorization:

• How LDAP Performs Authentication and Authorization

• How LDAP Looks Up the Target User in Its Database

• How an Instance Checks and Removes Local Accounts Based on LDAP Account Conditions

How LDAP Performs Authentication and Authorization

When a user attempts to authenticate to an instance of InterSystems IRIS that uses LDAP authentication, the process is:

1. The user is prompted for a user name and password. This user, who is trying to authenticate, is known as the target
user.

2. InterSystems IRIS establishes a connection to the LDAP server using the values specified for the LDAP username to

use for searches and LDAP username password. This user, who has privileges to search the LDAP database so that
InterSystems IRIS can retrieve information, is known as the search user.

3. Once the connection is established, the next step is to look up the target user in the LDAP database using the LDAP

Unique search attribute.

4. If the target user is found in the LDAP database, it retrieves the attributes associated with the user, such as the user’s
roles, namespace, and routine.

5. InterSystems IRIS then attempts to authenticate the user to the LDAP database, using the user name and password
provided in step 1.

6. If authentication succeeds, authorization occurs on the LDAP server (either via group assignment or attributes). The
user can then interact with InterSystems IRIS based on the privileges associated with their roles and any publicly

Reference for Operational and Actionable Resources for Security 111

LDAP

https://www.openldap.org/

available resources. The user’s properties are displayed read-only in the Management Portal and are not editable from
within InterSystems IRIS.

How LDAP Looks Up the Target User in Its Database

Once InterSystems IRIS has established a connection to the LDAP server as the search user, it next retrieves information
about the target user. To do this, InterSystems IRIS checks the username provided at login against values in the LDAP
database for the LDAP Unique search attribute. The name of this attribute is often “sAMAccountName” for an Active
Directory LDAP server and “uid” for an OpenLDAP server.

Once InterSystems IRIS has located the user, it retrieves attribute information. It retrieves information about every named
attribute in the InterSystems IRIS LDAP configuration fields (described in Create or Modify an LDAP Configuration), and
it retrieves all values associated with each attribute. Note that InterSystems IRIS retrieves all values associated with all
attributes specified for the user in the InterSystems IRIS LDAP configuration fields; it is not possible to configure it to
retrieve only a subset of these.

How an Instance Checks and Removes Local Accounts Based on LDAP Account Conditions

InterSystems IRIS removes a user account on the local instance when the account meets any of the following conditions:

• The LDAP account no longer exists

• The LDAP account is disabled

• On Active Directory only, the LDAP account has the flag set to require a password change

• On Active Directory only, the LDAP account is expired

InterSystems IRIS checks for these conditions and removes accounts under the following circumstances:

• When a user attempts to log in to an InterSystems IRIS instance, the instance checks the user’s LDAP account. If any
of the specified conditions are true for the LDAP account, InterSystems IRIS removes the local user account.

• As a result of the SecurityScan task. InterSystems IRIS comes with this task; run it to determine if any of these conditions
are true for the LDAP account associated with any local user account. If so, InterSystems IRIS removes the local user
account.

112 Reference for Operational and Actionable Resources for Security

Identity and Access Management

OAuth 2.0 and OpenID Connect

Overview of OAuth 2.0 and OpenID Connect
This section provides a brief overview of OAuth 2.0 authorization framework and OpenID Connect. Another page introduces
InterSystems IRIS® support for OAuth 2.0 and OpenID Connect.

Basics

The OAuth 2.0 authorization framework enables a third-party application (generally known as a client) to obtain limited
access to an HTTP service (a resource). The access is limited; the client can obtain only specific information or can use
only specific services. An authorization server either orchestrates an approval interaction or directly gives access. OpenID
Connect extends this framework and adds authentication to it.

Roles

The OAuth 2.0 framework defines four roles:

• Resource owner — Usually a user.

• Resource server — A server that hosts protected data and/or services.

• Client — An application that requests limited access to a resource server. This can be a client-server application or
can be an application that has no server (such as a JavaScript application or mobile application).

• Authorization server — A server that is responsible for issuing access tokens, with which the client can access the
resource server. This server can be the same application as the authorization server but can also be a different application.

The client, resource server, and authorization server are known to each other, by prior arrangement. An authorization server
has a registry of clients, which specifies the client servers and resource servers that can communicate with it. When it reg-
isters a client, an authorization server generates a client ID and a client secret, the latter of which must be kept secret.
Depending on how the client will communicate with the authorization server, the client server might need the client secret;
in that case, it is necessary to convey the client secret securely to the client server. In some scenarios (such as a JavaScript
application), it is impossible for the client to protect the client secret; in these scenarios, the client must communicate with
the authorization server in a way that does not require the client secret.

Access Tokens

An access token contains information about the identity of the user or client, as well as metadata such as an expiration date,
expected issuer name, expected audience, scope, and so on.

The general purpose of an access token is to enable a client to access specific data or services available via HTTP at a
resource server. In the overall flow, the client application requests an access token from the authorization server. After
receiving this token, the client uses the access token within HTTP requests to the resource server. The resource server
returns the requested information only when it receives requests that contain a valid access token.

An access token can also be revoked, if the authorization server supports this.

Forms of Access Tokens

InterSystems IRIS supports two forms of access tokens:

• JSON Web Tokens (JWTs). A JWT is a JSON object. A JWT can be digitally signed, encrypted, or both.

Note that one kind of JWT is an ID token; this is specific to OpenID Connect.

A JWT can be signed, encrypted, or both.

Reference for Operational and Actionable Resources for Security 113

OAuth 2.0 and OpenID Connect

• Opaque access tokens (also known as reference tokens). This form of access token is just the identifier of a token that
is stored elsewhere, specifically on the authorization server. The identifier is a long, random string, intended to be very
difficult to guess.

Claims

An access token contains a set of claims that communicate the identity of the user or client, or that communicate metadata
such the token’s expiration date, expected issuer name, expected audience, scope, and so on. The OpenID Connect Core
specification defines a standard set of claims, and other claims may be used as well.

JWTs and JWKSs

As noted above, a JWT can be signed, encrypted, or both. In most cases, the participants in the OAuth 2.0 framework use
pairs of JWKSs (JSON web key sets) for this purpose. In any pair of JWKSs, one JWKS is private and contains all the
needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never shared. The
other JWKS contains the corresponding public keys and is publicly available.

Each participant has a private JWKS and provides other participants with the corresponding public JWKS. The owner of
a private JWKS uses that JWKS for signing outbound JWTs and decrypting inbound JWTs. The other parties use the cor-
responding public JWKS to encrypt outbound JWTs and verify signatures of inbound JWTs, as shown in the following
figure:

Grant Types and Flows

In the OAuth 2.0 framework, a grant type specifies how the authorization server should process the request for authorization.
The client specifies the grant type within the initial request to the authorization server. The OAuth 2.0 specification describes
four grant types, as well as an extensibility mechanism for defining additional types. In general, each grant type corresponds
to a different overall flow.

The four grant types are as follows:

• Authorization code — This grant type can be used only with a client application that has a corresponding server. In
this grant type, the authorization server displays a login page with which the user provides a username and password;
these are never shared with the client. If the username and password correspond to a valid user (and if other elements
of the request are in order), the authorization server first issues an authorization code, which it returns to the client.
The client then uses the authorization code to obtain an access token.

The request for the authorization code is visible in the browser, as is the response. The request for the access token,
however, is a server-to-server interaction, as is that response. Thus the access token is never visible in the browser.

Proof Key for Code Exchange (PKCE) is an extension to the authorization code flow that prevents a malicious actor
from obtaining an access token with an intercepted authorization code. With PKCE, the client’s request for an autho-

114 Reference for Operational and Actionable Resources for Security

Identity and Access Management

rization code includes an additional secret value. The authorization server saves this secret when it issues the authorization
code. The client’s subsequent request to exchange the authorization code for an access token must include the original
secret; someone who had intercepted the authorization code would not know this secret, thereby preventing them from
obtaining an access token.

• Implicit — As with the previously listed grant type, the authorization server displays a login page, and the client never
has access to the user’s credentials. However, in the implicit grant type, the client directly requests and receives an
access token. This grant type is useful for pure client applications such as JavaScript clients or mobile applications.

• Resource owner password credentials — In this grant type, the client prompts the user for a username and password
and then uses those credentials to obtain an access token from the authorization server. This grant type is suitable only
with trusted applications.

• Client credentials grant type — In this grant type, there is no user context, and the client application is unattended.
The client uses its client ID and client secret to obtain an access token from the authorization server.

RFC 7523 describes an additional grant type, JWT authorization. This grant type uses of a JSON Web Token (JWT) Bearer
Token to request an OAuth 2.0 access token and to authenticate the client; InterSystems IRIS supports this grant type in
addition to the four in the OAuth 2.0 specification.

Note that in the OAuth 2.0 framework, in general, all HTTP requests are protected by SSL/TLS.

In addition, when a client sends a request to the authorization server, that request must be authenticated. The OAuth 2.0
specification describes the ways in which a client can authenticate the request.

Scopes

The authorization server allows the client to specify the scope of the access request using the scope request parameter. In
turn, the authorization server uses the scope response parameter to inform the client of the scope of the access token issued.

OpenID Connect is an extension to the OAuth 2.0 authorization process. To request authentication, the client includes the
openid scope value in the request to the authorization server. The authorization server returns information about the
authentication in a JWT called an ID token. An ID token contains a specific set of claims, listed in the OpenID Connect
Core specification.

Endpoints in an Authorization Server

An authorization server provides some or all of the following URLs or endpoints, which can process requests of varying
kinds:

PurposeEndpoint

Returns an authorization code (applies only to authorization code grant
type)

Authorization endpoint

Returns an access tokenToken endpoint

Returns a JSON object that contains claims about the authenticated user
(applies only to OpenID Connect)

Userinfo endpoint

Returns a JSON object that contains claims determined by examining an
access token

Token introspection endpoint

Revokes a tokenToken revocation endpoint

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client
This page describes how to use an InterSystems IRIS® web application as a client application that uses the OAuth 2.0
framework. The focus is the scenario in which an InterSystems IRIS web application is the client of a web server/client
application and uses the authorization code grant type. Also see OAuth 2.0 Client Variations.

Reference for Operational and Actionable Resources for Security 115

OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc7523

Note: When your OAuth 2.0 client is communicating with an Active Directory Federation Service (ADFS) authorization
server, your client code must append a special key-value pair to the authorization endpoint. For more details, see
the description of GetAuthorizationCodeEndpoint() in Method Details.

Prerequisites for the InterSystems IRIS Client

Before starting the tasks described in this page, make sure the following items are available:

• An OAuth 2 authorization server. Later you will need to know specific details about this server. Some of the details
apply when you configure the client within InterSystems IRIS:

– Location of the authorization server (issuer endpoint)

– Location of the authorization endpoint

– Location of the token endpoint

– Location of the Userinfo endpoint (if supported; see OpenID Connect Core)

– Location of the token introspection endpoint (if supported; see RFC 7662)

– Location of the token revocation endpoint (if supported; see RFC 7009)

– Whether the authorization server supports dynamic registration

Other details apply when you write the client code:

– Grant types supported by this server

– Scopes supported by this server. For example, the server may or may not support openid and profile, which
are special scopes defined by OpenID Connect Core.

– Other requirements for requests made to this server

• If the authorization server does not support dynamic client registration, the InterSystems IRIS application must be
registered as a client of the OAuth 2.0 authorization server, and you must have the client ID and client secret for this
client. The details depend upon the implementation of the authorization server. (If the server does support dynamic
registration, you can register the client while configuring it as described in this page.)

Configuration Requirements

To use an InterSystems IRIS web application as an OAuth 2.0 client, perform the following configuration tasks:

• For the web server that is serving InterSystems IRIS, configure that web server to use SSL. It is beyond the scope of
this documentation to describe how to configure a web server to use SSL.

• Create an InterSystems IRIS SSL configuration for use by the client.

This should be a client SSL configuration; no certificate is needed. The configuration is used to connect to a web server.
Via this connection, the client communicates with the authorization server to obtain access tokens, call the Userinfo
endpoint, call the introspection endpoint, and so on.

For details on creating SSL configurations, see InterSystems TLS Guide.

Each SSL configuration has a unique name. For reference, the documentation refers to this one as sslconfig, but
you can use any unique name.

• Create the OAuth 2.0 configuration items for the client. To do so, first create the server description and then create the
client configuration, as described in the subsections.

For both items, to find the needed options in the Management Portal, select System Administration > Security > OAuth

2.0 > Client Configuration. This page provides the options needed when you create an OAuth 2.0 configuration on a
client machine (that is, on any machine other than one being used as an authorization server).

116 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

On a client machine, do not use the menu System Administration > Security > OAuth 2.0 > Server Configuration.

To perform this task, you must be logged in as a user with USE permission on %Admin_OAuth2_Client resource.

Creating a Server Description (Using Discovery)

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

This displays a page that lists any server descriptions that are available on this instance. In any given row, the Issuer

endpoint column indicates the issuer endpoint for the server description. The Client Count column indicates the number
of client configurations associated with the given server description. In the last column, the Client Configurations link
enables you to create, view, edit, and delete the associated client configurations.

2. Select Create Server Configuration.

The Management Portal then displays a new page where you can enter details for the server description.

3. Specify the following details:

• Issuer endpoint (required) — Enter the endpoint URL to be used to identify the authorization server.

• SSL/TLS configuration (required) — Select the SSL/TLS configuration to use when making the dynamic client
registration request.

• Registration access token — Optionally enter the initial registration access token to use as a bearer token to
authorize the dynamic client registration request.

4. Select Discover and Save.

InterSystems IRIS then communicates with the given authorization server, retrieves information needed in the server
description, and then saves that information.

The Management Portal then redisplays the list of server descriptions.

Manually Creating a Server Description (No Discovery)

To manually create a server description (rather than using discovery), first display the server description page (steps 1 and
2 above) and then select Manual. Then the page displays a larger set of options, as follows:

• Issuer endpoint (required) — Enter the endpoint URL to be used to identify the authorization server.

• Authorization endpoint (required) — Enter the endpoint URL to be used when requesting an authorization code from
the authorization server.

• Token endpoint (required) — Enter the endpoint URL to be used when requesting an access token from the authorization
server.

• Userinfo endpoint — Enter the endpoint URL to be used when making a Userinfo request using an access token from
the authorization server for authorization.

• Token introspection endpoint — Enter the endpoint URL to be used when making a token introspection request using
the client_id and client_secret for authorization. See RFC 7662.

• Token revocation endpoint— Enter the endpoint URL to be used when making a token revocation request using the
client_id and client_secret for authorization. See RFC 7009.

• JSON Web Token (JWT) Settings — Specifies the source of the public keys that the client should use for signature
verification and decryption of JWTs from the authorization server.

By default, the authorization server generates a pair of JWKSs (JSON web key sets). One JWKS is private and contains
all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never
shared. The other JWKS contains the corresponding public keys and is publicly available. The process of creating the

Reference for Operational and Actionable Resources for Security 117

OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009

server description also copies the public JWKS from the authorization server to the client for its use in signature veri-
fication and encryption of JWTs.

– JWKS from URL — Specify a URL that points to a public JWKS and then load the JWKS into InterSystems IRIS.

– JWKS from file — Select a file that contains a public JWKS and then load that file into InterSystems IRIS.

– X509 certificate — For details, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates and
JWTs (JSON Web Tokens).

To access any of these options, first select Source other than dynamic registration.

Specify these values and then select Save.

Configuring and Dynamically Registering a Client

This section describes how to create a client configuration and dynamically register the client.

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

The Management Portal displays the list of server descriptions.

2. Click the Client Configurations link in the row for the server description with which this client configuration should
be associated.

The Management Portal then displays the list of client configurations associated with the server description. This list
is initially empty.

3. Click Create Client Configuration.

The Management Portal then displays a new page where you can enter details.

4. On the General tab, specify the following details:

• Application name — Specify a short name for the application.

• Client name — Specify the client name to display to the end user.

• Description — Specify an optional description of the application.

• Enabled — Optionally clear this check box if you want to prevent this application from being used.

• Client Type — Select one of the following:

– Confidential — Specifies that the client is a confidential client, per RFC 6749.

This page primarily discusses the scenario in which the client uses the authorization code grant type. For this
scenario, specify Client Type as Confidential. For other grant types, see Variations.

– Public — Specifies that the client is a public client, per RFC 6749.

– Resource server — Specifies that the client is a resource server which is not also a client.

• SSL/TLS configuration — Select the SSL configuration you created for use by the client (for example, sslconfig).

• The client URL to be specified to the authorization server to receive responses — Specify the URL of the internal
destination required for an InterSystems IRIS OAuth 2.0 client. At this destination, the access token is saved and
then the browser is further redirected back to the client application.

To specify this URL, enter values for the following options:

– Host name — Specify the host name or IP address of the authorization server.

– Port — Specify this if needed to accommodate any changes in the Web Gateway configuration.

– Prefix — Specify this if needed to accommodate any changes in the Web Gateway configuration.

118 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749

The resulting URL has the following form:

https://hostname:port/prefix/csp/sys/oauth2/OAuth2.Response.cls

If you omit Port, the colon is omitted. Similarly, if you omit Prefix, there is only one slash between hostname:port
and csp. (Also if the Use TLS/SSL option is cleared, the URL starts with http rather than https.)

• Use TLS/SSL — Select this option, unless there is a good reason not to use TLS/SSL when opening the redirect
page.

• Front Channel Logout URL — Optionally specify the HTTP-based front channel logout URL. The server registers
this URL and uses it log users out on the client. To create a client that does not support front channel logout, leave
the URL empty. The box above this field displays the specified URL and appends 'IRISLogout=end' to it.

Note: For an InterSystems IRIS client to support front channel logout, the Session Cookie Scope of the client
application to None. For details on configuring application settings, see Create and Edit Applications.

• Required grant types — Specify the OAuth 2.0 grant types that the client will restrict itself to using.

• Authentication type — Select the type of authentication (as specified in RFC 6749 or OpenID Connect Core section
9) to be used for HTTP requests to the authorization server. Select one of the following: none, basic, form encoded

body, client secret JWT, or private key JWT.

• Require iss and sid query parameters when auth server calls logout URL — Select this option to require the iss
(issuer) and sid (session ID) query parameters when the authorization server calls the front channel logout URL.

• Authentication signing algorithm — Select the algorithm that must be used for signing the JWTs used to authenticate
this client at the token endpoint (if the authentication type is client secret JWT or private key JWT). If you do not
select an option, any algorithm supported by the OpenID provider and the relying party may be used.

5. On the Client Information tab, specify the following details:

• Logo URL — URL of the logo for the client application.

• Client home page URL — URL of the home page for the client application.

• Policy URL — URL of the policy document for the client application.

• Terms of service URL — URL of the terms of service document for the client application.

• Default scope — Specify the default scope, as a blank separated list, for access token requests. This default should
be consistent with the scopes permitted by the authorization server.

• Contact emails — Comma-separated list of email addresses suitable for use in contacting those responsible for
the client application.

• Default max age — Specify the default maximum authentication age, in seconds. If you specify this option, the
end user must be actively re-authenticated when the maximum authentication age is reached. The max_age request
parameter overrides this default value. If you omit this option, there is no default maximum authentication age.

6. On the JWT Settings tab, specify the following details:

• Create JWT Settings from X509 credentials — Select this option if, for signing and encryption, you want to use the
private key associated with a certificate; in this case, also see Using Certificates for an OAuth 2.0 Client, in Cer-
tificates and JWTs (JSON Web Tokens).

Note: InterSystems expects that the option Create JWT Settings from X509 credentials will rarely be used, and
that instead customers use the default behavior described next.

If you leave this option clear, the system generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;

Reference for Operational and Actionable Resources for Security 119

OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available. The
dynamic registration process also copies the public JWKS to the authorization server, so that the authorization
server can encrypt and verify signatures of JWTs from this client.

• Signing algorithm — Select the signing algorithm used to create signed JWTs. Or leave this blank if JWTs are not
to be signed.

• Encryption algorithm — Select the encryption algorithm used to create encrypted JWTs. Or leave this blank if
JWTs are not to be encrypted. If you select a value, you must also specify Key algorithm.

• Key algorithm — Select the key management algorithm used to create encrypted JWTs. Or leave this blank if
JWTs are not to be encrypted.

7. If the authorization server supports dynamic registration, double-check all the data you have entered and then press
Dynamic Registration and Save. InterSystems IRIS then contacts the authorization server, registers the client, and
obtains the client ID and client secret.

If the authorization server does not support dynamic registration, see the following subsection.

Configuring a Client (No Dynamic Registration)

If the authorization server does not support dynamic registration, then do the following instead of the last step above:

1. Select the Client Credentials tab and specify the following details:

• Client ID — Enter the client ID as provided by the authorization server.

• Client secret — Enter the client secret as provided by the authorization server. This value is required if the Client

Type is Confidential.

This page primarily discusses the scenario in which the client uses the authorization code grant type. For this
scenario, specify a value for Client secret. For other grant types, see Variations.

Do not enter values for Client ID Issued At, Client Secret Expires At, and Registration Client Uri.

2. Select Save.

Outline of Code Requirements

Note: This section describes the code needed when the client uses the authorization code grant type when requesting
tokens. For other grant types, see Variations.

In order for an InterSystems IRIS web application to act as OAuth 2.0 client, this web application must use logic like the
following:

1. Obtain an access token (and if needed, an ID token). See Obtaining Tokens.

2. Examine the access token and (optionally, an ID token) to determine whether the user has the necessary permissions
to use the requested resource. See Examining the Tokens.

3. If appropriate, call the resource server as described in Adding an Access Token to an HTTP Request.

The following sections provide information on these steps.

Obtaining Tokens

Note: This section provides information on the code needed when the client uses the authorization code grant type when
requesting tokens. By default, this authorization code grant type includes the Proof Key for Code Exchange
(PKCE) extension. For other grant types and authorization code without PKCE, see Variations.

120 Reference for Operational and Actionable Resources for Security

Identity and Access Management

To obtain tokens, use steps like the following to obtain tokens. The subsection provides details on the methods discussed
here.

1. Call the IsAuthorized() method of the %SYS.OAuth2.AccessToken class. For this, you will need to first determine the
desired scope or scopes for the access token.

For example:

ObjectScript

 set myscopes="openid profile scope1 scope2"
 set isAuth=##class(%SYS.OAuth2.AccessToken).IsAuthorized("myclient",,myscopes,
 .accessToken,.idtoken,.responseProperties,.error)

This method checks to see whether an access token has already been saved locally.

2. Check to see if the error argument has returned an error and then handle that error appropriately. Note that if this
argument contains an error, the function $ISOBJECT() will return 1; otherwise $ISOBJECT() will return 0.

ObjectScript

 if $isobject(error) {
 //error handling here
 }

3. If IsAuthorized() returns 1, skip to Examining the Tokens.

4. Otherwise, call the GetAuthorizationCodeEndpoint() method of the %SYS.OAuth2.Authorization class. For this, you
will need the following information:

• Complete URL that the authorization server should redirect to, after it returns an access token. This is the client’s
redirect page (which can be the same as the original page, or can be different).

• The scope or scopes of the request.

• Any parameters to be included with the request. For example, you may need to pass the claims parameter.

For example:

ObjectScript

 set scope="openid profile scope1 scope2"
 set redirect="https://localhost/csp/openid/SampleClientResult.csp"

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myclient",
 scope,redirect,.properties,.isAuthorized,.sc)
 if $$$ISERR(sc) {
 //error handling here
 }

This method returns the full URL, including query parameters, of the internal destination required for an InterSystems
IRIS OAuth 2.0 client.

To modify the default Proof Key for Code Exchange (PKCE) behavior for this method, see details about the
properties argument in Method Details.

5. Provide an option (such as a button) that opens the URL returned by GetAuthorizationCodeEndpoint(), thus enabling
the user to authorize the request.

At this internal URL, which is never visible to users, InterSystems IRIS obtains an authorization code, exchanges that
for an access token, and then redirects the browser to the client’s redirect page.

Method Details

This subsection provides the details on the methods described in the previous subsection.

Reference for Operational and Actionable Resources for Security 121

OAuth 2.0 and OpenID Connect

IsAuthorized()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod IsAuthorized(applicationName As %String,
 sessionId As %String,
 scope As %String = "",
 Output accessToken As %String,
 Output IDToken As %String,
 Output responseProperties,
 Output error As %OAuth2.Error) As %Boolean

This method returns 1 if there is a locally stored access token for this client and this session, and if that access
token authorizes all the scopes given by the scope argument. (Note that this method looks for the access token in
the IRISSYS database, and that tokens are removed automatically after they have expired.)

Otherwise the method returns 0.

The arguments are as follows:

• applicationName is the name of the client application.

• sessionId specifies the session ID. Specify this only if you want to override the default session
(%session.SessionId).

• scope is a space-delimited list of scopes, for example: "openid profile scope1 scope2"

Note that openid and profile are special scopes defined by OpenID Connect Core.

• accessToken, which is returned as output, is the access token, if any.

• IDToken, which is returned as output, is the ID token, if any. (This applies only if you are using OpenId
Connect, specifically if the request used the scope openid.) Note that an ID token is a JWT.

• responseProperties, which is returned as output, is a multidimensional array that contains any parameters of
the response. This array has the following structure:

Array valueArray node

Value of the given parameter.responseProperties(parametername) where parametername is
the name of a parameter (such as token_type or expires_in)

• error, which is returned as output, is either (when there is no error) an empty string or (in the case of error)
an instance of %OAuth2.Error containing error information.

%OAuth2.Error has three string properties: Error, ErrorDescription, and ErrorUri.

GetAuthorizationCodeEndpoint()

Location: This method is in the class %SYS.OAuth2.Authorization.

ClassMethod GetAuthorizationCodeEndpoint(applicationName As %String,
 scope As %String,
 redirectURL As %String,
 ByRef properties As %String,
 Output isAuthorized As %Boolean,
 Output sc As %Status,
 responseMode As %String
 sessionId As %String = "") As %String

This method returns the URL, with all needed query parameters, of the local, internal page that InterSystems IRIS
uses to request the authorization code. (Note that this page is never visible to users.)

The arguments are as follows:

• applicationName is the name of the client application.

122 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2
scope3"

The default is determined by the client configuration for the given applicationName.

• redirectURL is the full URL of the client’s redirect page, the page to which the authorization server should
redirect the browser after returning the access token to the client.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added
to the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

To use the request or request_uri parameter, see the
section Passing Request Objects as JWTs.

You can use the code_verifier parameter to modify the
secret PKCE value sent to the authorization server. By
default, the PKCE secret is generated from a random 43
character string using a SHA-256 hash. To generate the
secret from a custom string (for example, if you want to use
128 characters), set the custom value to the code_verifier
parameter.

properties(parametername) where
parametername is the name of a
parameter

• isAuthorized, which is returned as output, equals 1 if there is a locally stored access token for this client and
this session (scope is not checked). This parameter equals 0 otherwise. There is no need to check this output
argument, because we have just called the IsAuthorized() method.

• sc, which is returned as output, contains the status code set by this method.

• responseMode specifies the mode of the response from the authorization server. This can be "query" (the
default), "fragment" or "form_post". The default is almost always appropriate.

• sessionId specifies the session ID. Specify this only if you want to override the default session
(%session.SessionId).

Note: An Active Directory Federation Services (AFDS) server expects the authorization endpoint URL to
include the key-value pair resource=urn:microsoft:userinfo. You can use the properties
argument of GetAuthorizationCodeEndpoint to append this key-value pair to the end of the URL
that is defined in the server description. You should avoid using the Management Portal to modify the
authorization endpoint to include this information. Rather, use the following code to modify the
properties argument before calling the GetAuthorizationCodeEndpoint method:

set properties("resource") = "urn:microsoft:userinfo"
set url = ##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint(appName, scopes,
clientRedirectURI, .properties, .isAuthorized,.sc)

Also see Variation: Performing the Redirect within OnPreHTTP.

Reference for Operational and Actionable Resources for Security 123

OAuth 2.0 and OpenID Connect

Examining the Token(s)

After the client receives an access token (and, optionally, an ID token), the client should perform additional checks to
determine whether the user has the necessary permissions to use the requested resource. To perform this examination, the
client can use the methods described here to obtain additional information.

ValidateIDToken()

Location: This method is in the class %SYS.OAuth2.Validation.

ClassMethod ValidateIDToken(applicationName As %String,
 IDToken As %String,
 accessToken As %String,
 scope As %String,
 aud As %String,
 Output jsonObject As %RegisteredObject,
 Output securityParameters As %String,
 Output sc As %Status) As %Boolean

This method validates the signed OpenID Connect ID token (IDToken) and creates an object (jsonObject) to contain
the properties of the ID token. To validate the ID token, the method checks the audience (if aud is specified),
endpoint (must match that specified in server description), and scope (if scope is specified), and signature. The
method also makes sure the ID token has not expired.

This method also validates the access token (accessToken) based on the at_hash property of the ID token.

This method returns 1 if the ID token is valid or returns 0 otherwise. It also returns several arguments as output.

The arguments are as follows:

• applicationName is the name of the client application.

• IDToken is the ID token.

• accessToken is the access token.

• scope is a space-delimited list of scopes, for example: "scope1 scope2 scope3"

• aud specifies the audience that is using the token. If the token has an associated aud property (usually because
the audience was specified when requesting the token), then aud is matched to the token audience. If aud is
not specified, then no audience checking takes place.

• jsonObject, which is returned as output, is a dynamic object that contains the properties of the IDToken. Note
that an ID token is a JWT. For details on dynamic objects, see Using JSON.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both. See the
securityParameters argument for ValidateJWT().

• sc, which is returned as output, contains the status code set by this method.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

GetUserinfo()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod GetUserinfo(applicationName As %String,
 accessToken As %String,
 IDTokenObject As %RegisteredObject,
 Output jsonObject As %RegisteredObject,
 Output securityParameters As %String) As %Status

124 Reference for Operational and Actionable Resources for Security

Identity and Access Management

This method sends the access token to the Userinfo endpoint, receives a response that contains claims, and creates
an object (jsonObject) that contains the claims returned by that endpoint. If the response returns a JWT, then the
response is decrypted and the signature is checked before jsonObject is created. If the argument IDTokenObject
is specified, the method also verifies that the sub claim from the User info endpoint matches the sub claim in
IDTokenObject.

The request is authorized using the specified access token.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

• IDTokenObject (optional), is a dynamic object containing an ID token. For details on dynamic objects, see
Using JSON.

• jsonObject, which is returned as output, is a dynamic object that contains the claims returned by Userinfo
endpoint.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both. See the
securityParameters argument for ValidateJWT().

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

Adding an Access Token to an HTTP Request

After the client application has received and examined an access token, the application can make HTTP requests to the
resource server. Depending on the application, those HTTP requests may need the access token.

To add an access token to an HTTP request (as a bearer token HTTP authorization header), do the following:

1. Create an instance of %Net.HttpRequest and set properties as needed.

For details on this class, see Sending HTTP Requests in Using Internet Utilities.

2. Call the AddAccessToken() method of %SYS.OAuth2.AccessToken, which adds the access token to the HTTP request.
This method is as follows:

ClassMethod AddAccessToken(httpRequest As %Net.HttpRequest,
 type As %String = "header",
 sslConfiguration As %String,
 applicationName As %String,
 sessionId As %String) As %Status

This method adds the bearer access token associated with the given application and session to the resource server
request as defined by RFC 6750. The arguments are as follows:

• httpRequest is the instance of %Net.HttpRequest that you want to modify.

• type specifies how to include the access token in the HTTP request:

– "header" — Use the bearer token HTTP header.

– "body" — Use form-encoded body. In this case, the request must be a POST with a form-encoded body.

– "query" — Use a query parameter.

• sslConfiguration is the InterSystems IRIS SSL configuration to use for this HTTP request. If you omit this,
InterSystems IRIS uses the SSL configuration associated with the client configuration.

• applicationName is the name of the client application.

Reference for Operational and Actionable Resources for Security 125

OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc6750

• sessionId specifies the session ID. Specify this only if you want to override the default session (%session.SessionId).

This method returns a status code, which your code should check.

3. Send the HTTP request (as described in Sending HTTP Requests in Using Internet Utilities. To do so, you call a method
such as Get() or Put().

4. Check the status returned by the previous step.

5. Optionally examine the HTTP response, which is available as the HttpResponse property of the HTTP request.

See Sending HTTP Requests in Using Internet Utilities.

For example:

ObjectScript

 set httpRequest=##class(%Net.HttpRequest).%New()
 // AddAccessToken adds the current access token to the request.
 set sc=##class(%SYS.OAuth2.AccessToken).AddAccessToken(httpRequest,,"sslunittest",applicationName)
 if $$$ISOK(sc) {
 set sc=httpRequest.Get("https://myresourceserver/csp/openid/openid.SampleResource.cls")
 }

Optionally Defining Delegated Authentication for the Web Client

You can optionally define delegated authentication for an InterSystems IRIS web client that is used as an OAuth 2.0 client.
InterSystems IRIS provides two ways that you can do this:

• By creating and using a ZAUTHENTICATE routine, starting from a sample that is provided for use with OAuth 2.0.
Your client code must also call %session.Login().

• By creating and using a custom login page. It is also necessary to create and use a ZAUTHENTICATE routine
(starting from the same sample that is provided for use with OAuth 2.0), but your client code does not need to call
%session.Login().

The following subsections give the details. A final subsection discusses the ZAUTHENTICATE sample.

Also see REST Applications and OAuth 2.0 in Securing REST Services in Creating REST Services.

Important: If using authentication with HealthShare®, you must use the ZAUTHENTICATE routine provided by
InterSystems and cannot write your own.

Creating and Using a ZAUTHENTICATE Routine for an OAuth 2.0 Client

To create and use a ZAUTHENTICATE routine for an InterSystems IRIS web client that is used as an OAuth 2.0 client,
do all of the following:

• In your client code, after you call the IsAuthorized() method of the %SYS.OAuth2.AccessToken class and successfully
obtain an access token, call the Login() method of the %session variable. For the username, specify the OAuth 2.0
application name; for the password, specify the web session ID.

• Create the ZAUTHENTICATE routine. This routine must perform basic setup for a user account, such as specifying
roles and other user properties.

InterSystems provides a sample routine, OAUTH2.ZAUTHENTICATE.mac, that you can copy and modify. This routine
is part of the Samples-Security sample on GitHub (https://github.com/intersystems/Samples-Security). You can
download the entire sample as described in Downloading Samples for Use with InterSystems IRIS, but it may be more
convenient to simply open the routine on GitHub and copy its contents.

126 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://github.com/intersystems/Samples-Security

The ZAUTHENTICATE routine, if defined, must be in the %SYS namespace (and must be named ZAUTHENTICATE).
See Notes about the OAUTH2.ZAUTHENTICATE.mac Sample. For more general information on delegated authenti-
cation, see Creating Delegated (User-Defined) Authentication Code and Delegated Authentication.

• Enable delegated authentication for the InterSystems IRIS instance on the Authentication Options page.

For information on this step and the next step, see Delegated Authentication.

• Enable delegated authentication for the relevant web application.

Creating and Using a Custom Login Page for an OAuth 2.0 Client

To create and use a custom login page for an InterSystems IRIS web client that is used as an OAuth 2.0 client, do all of the
following:

• Create a subclass of %OAuth2.Login. In your subclass:

– Specify the application name, scope list, and (optionally) response mode. You can specify these items in either or
both of the following ways:

• By specifying parameters of your subclass of %OAuth2.Login.

• By overriding the DefineParameters() class method. In contrast to specifying parameters, this technique
enables you to set these values at runtime.

The parameters are as follows:

• APPLICATION — This must be the application name for the application being logged in to.

• SCOPE — This specifies the scope list to be used for the access token request. This must be a blank-separated
list of strings.

• RESPONSEMODE — This specifies the mode of the response. The allowed values are "query" (the default),
"fragment" or "form_post".

The DefineParameters() class method has the following signature:

ClassMethod DefineParameters(Output application As %String, Output scope As %String, Output
responseMode As %String)

This method returns the application name, scope list, and response mode as output arguments. The default imple-
mentation of this method returns the values of the APPLICATION, SCOPE, and RESPONSEMODE class param-
eters.

– In your subclass of %OAuth2.Login, also specify the properties list for the GetAccessTokenAuthorizationCode()
call. To do so, override the DefineProperties() class method. This method has the following signature:

ClassMethod DefineProperties(Output properties As %String)

This method returns (as output) the properties array, which is a local array specifying additional properties to be
included in a token request. The properties array has the following form:

ValueNode

Value of the given parameter.properties(name), where name is the name of a parameter.

To add a request parameter that is a JSON object, create a properties element which is an instance of
%DynamicObject. Or create a string that is the UTF-8 encoded serialized object.

Reference for Operational and Actionable Resources for Security 127

OAuth 2.0 and OpenID Connect

To add the request or request_uri request parameters, use the %SYS.OAuth2.Request class to create the
JWT. Then, as appropriate, set properties("request") equal to the JWT or set properties("request_uri")
equal to the URL of the JWT.

• Configure the relevant web application to use the custom login page.

• Create and use a ZAUTHENTICATE routine as described in the previous section, except for the first bullet item. (In
this scenario, there is no need for the client code to call %session.Login().)

Notes about the OAUTH2.ZAUTHENTICATE.mac Sample

The OAUTH2.ZAUTHENTICATE.mac sample (from https://github.com/intersystems/Samples-Security) supports both sce-
narios described in the previous subsections. In this sample, the GetCredentials() subroutine looks like this:

GetCredentials(ServiceName,Namespace,Username,Password,Credentials) Public {
 If ServiceName="%Service_WebGateway" {
 // Supply user name and password for authentication via a subclass of %OAuth2.Login
 Set Username="OAuth2"
 Set Password=$c(1,2,3)
 }
 Quit $$$OK
}

This subroutine is called if no username and password are provided (which is the case when the custom login page is being
used). For the service %Service_WebGateway, this sample sets the username and password to specific values that are
also used in the ZAUTHENTICATE() subroutine (which is called in later processing).

The ZAUTHENTICATE() subroutine includes the following:

If Username="OAuth2",Password=$c(1,2,3) {
 // Authentication is via a subclass of %OAuth2.Login that sets the query parameter CSPOAUTH2
 // with a hash value that allows GetCurrentApplication to determine the application --
 // username/password is supplied by GetCredentials.
 Set sc=##class(OAuth2.Response).GetCurrentApplication(.applicationName)
 Set sessionId=%session.SessionId
} Else {
 // If authentication is based on %session.Login, then application and session id are passed in.
 Set applicationName=Username
 Set sessionId=Password
}

A later step calls the isAuthorized() method like this:

Set
isAuthorized=##class(%SYS.OAuth2.AccessToken).IsAuthorized(applicationName,sessionId,,.accessToken,,,.error)

If isAuthorized() returns 1, then later code calls the introspection endpoint and uses the information obtained there to
define a user:

Set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection(applicationName,accessToken,.jsonObject)
...
Set Username="OAuth2"_jsonObject.sub
Set Properties("FullName")="OAuth account "_Username
Set Properties("Username")=Username
Set Properties("Password")="" // we don't really care about oauth2 account password
// Set the roles and other Properties as appropriate.
Set Properties("Roles")=roles

Your code could use different logic to obtain the information needed to define the user. You could instead obtain this
information in the following ways:

• From IDToken if you are using OpenID Connect. In this case, call the ValidateIDToken() of %SYS.OAuth2.Validate.

• From Userinfo endpoint if you are OpenID Connect. In this case, call the GetUserinfo() of %SYS.OAuth2.AccessToken.

In any case, it is necessary to define a user whose username does not match a normal InterSystems IRIS username.

128 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://github.com/intersystems/Samples-Security

Your routine would also need to set roles and other parts of the Properties array as needed for your application. See Create
Delegated (User-Defined) Authentication Codeand Delegated Authentication.

Revoking Access Tokens

If the authorization server supports token revocation, you can revoke access tokens via the Management Portal or program-
matically.

Revoking a User’s Access Tokens

To revoke all the access tokens for a given user, do the following:

1. Select System Administration > Security > OAuth 2.0 > Administration.

2. Type the user ID into the field Revoke tokens for user.

3. Select Revoke.

To perform this task, you must be logged in as a user who has USE permission on the %Admin_OAuth2_Registration

resource.

Revoking Access Tokens Programmatically

If it is necessary for the client to revoke an access token, use the RevokeToken() method of %SYS.OAuth2.AccessToken.
Note that when the session holding a given token is deleted, the system automatically calls this method (if a revocation
endpoint is specified).

ClassMethod RevokeToken(applicationName As %String, accessToken As %String) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

The request is authorized using the basic authorization HTTP header with the client_id and client_secret associated
with applicationName.

For example:

set sc=##class(%SYS.OAuth2.AccessToken).RevokeToken("myclient",accessToken)
if $$$ISERR(sc) {
 //error handling here
}

Note that you cannot use this method if the server does not specify a revocation endpoint or if Client secret is not specified.

%SYS.OAuth2.AccessToken also provides the method RemoveAccessToken(), which removes the access token from the
client but does not remove the token from the server.

Rotating Keys Used for JWTs

In most cases, you can cause the client to generate new public/private key pairs; this applies only to the RSA keys used for
the asymmetric RS256, RS384, and RS512 algorithms. (The exception is if you specify Source other than dynamic regis-

tration as X509 certificate. In this case, it is not possible to generate new keys.)

Generating new public/private key pairs is known as key rotation; this process adds new private RSA keys and associated
public RSA keys to the private and public JWKSs.

When you perform key rotation on the client, the client uses the new private RSA keys to sign JWTs to be sent to the
authorization server. Similarly, the client uses the new public RSA keys to encrypt JWTs to be sent to the authorization
server. To decrypt JWTs received from the authorization server, the client uses the new RSA keys, and if that fails, uses
the old RSA keys; thus the client can decrypt a JWT that was created using its old public RSA keys. Last, if the client

Reference for Operational and Actionable Resources for Security 129

OAuth 2.0 and OpenID Connect

cannot verify a signed JWT received from the authorization server, then if the client has the URL for the authorization
server public JWKS, the client obtains a new public JWKS and tries again to verify the signature. (Note that the client has
a URL for the authorization server public JWKS if the client was registered dynamically or if the configuration specified
the JWKS from URL option; otherwise, the client does not have this URL.)

To rotate keys for a given client configuration:

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

2. Select the server description with which the client configuration is associated.

The system then displays all client configurations associated with that server description.

3. Select the configuration of the client whose keys you want to rotate.

4. Select the Rotate Keys button.

Note: The symmetric HS256, HS384, and HS512 algorithms always use the client secret as the symmetric key.

API for Key Rotation on the Client

To rotate keys programmatically on the client, call the RotateKeys() method of OAuth2.Client.

To obtain a new authorization server public JWKS, call the UpdateJWKS() method of OAuth2.ServerDefinition.

For details on these methods, see the class reference.

Getting a New Public JWKS from the Authorization Server

In most cases, the authorization server generates a public/private pair of JWKSs. There are different ways in which the
client can receive the public JWKS. One way is for the authorization server to provide the public JWKS at a URL; see the
JWKS from URL option in Manually Creating a Server Description (No Discovery).

If the authorization server was defined with JWKS from URL and if the authorization server generates a new pair of JWKSs,
you can cause the client to obtain the new public JWKS from the same URL. To do so:

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

2. Select the server description with which the client configuration is associated.

The system then displays all client configurations associated with that server description.

3. Select the configuration of the client.

4. Select the Update JWKS button.

If the authorization server was not defined with JWKS from URL and if the authorization server generates a new pair of
JWKSs, it is necessary to obtain the public JWKS, send it to the client, and load it from a file.

OAuth 2.0 Client Variations
The instructions on using an InterSystems IRIS® web application as an OAuth 2.0 client focus on the authorization code
grant type.

In the basic scenario, the client receives an access token from the authorization server and then optionally calls additional
endpoints in the authorization server: the introspection endpoint, the Userinfo endpoint, or both. After that, the client calls
the resource server. Notice that it is also possible for the resource server to independently call these endpoints.

This topic discusses some variations.

130 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Disabling PKCE

By default, clients that use the authorization code grant type leverage the Proof Key for Code Exchange (PKCE) extension.
In almost all cases, your client should not modify this default behavior because PKCE is an important and widely accepted
security feature. However, in rare cases, you might want to disable PKCE.

To disable PKCE, modify the properties argument of GetAuthorizationCodeEndpoint() before calling the
method. Your code should include the line:

Set properties("code_verifier")=""

For more information about the properties argument of GetAuthorizationCodeEndpoint(), see Method Details.

Implicit Grant Type

In this variation, the client uses the implicit grant type when requesting tokens.

Configuration requirements: See the instructions in Configuring a Client, but specify Client Type as appropriate for your
use case.

Code requirements: The overall flow is similar to the one for the authorization code grant type, but do not call
GetAuthorizationCodeEndpoint(). Instead call the GetImplicitEndpoint() method of the %SYS.OAuth2.Authorization

class:

ClassMethod GetImplicitEndpoint(applicationName As %String,
 scope As %String,
 redirectURL As %String,
 idtokenOnly As %Boolean = 0,
 responseMode As %String,
 ByRef properties As %String,
 Output isAuthorized As %Boolean,
 Output sc As %Status
 sessionId as %String="") As %String

The arguments are as follows:

• applicationName is the name of the client application.

• scope is a space-delimited list of scopes for which access is requested, for example: "openid profile scope3
scope4"

The default is determined by the client configuration for the given applicationName.

• redirectURL is the URL of the page to which the authorization server should redirect the browser after returning the
access token to the client server.

• idtokenOnly enables you to obtain only an ID token. If this argument is 0, the method obtains both an access token
and (if the request includes the appropriate scope) an ID token. If this argument is 1, the method does not obtain an
access token.

• responseMode specifies the mode of the response from the authorization server. This can be "query" (the default),
"fragment" or "form_post".

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to the
request. This array must have the following structure:

Reference for Operational and Actionable Resources for Security 131

OAuth 2.0 and OpenID Connect

Array valueArray node

Value of the given parameter. The value can be a scalar value,
an instance of a dynamic object, or the UTF-8 encoded serialized
form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

To use the request or request_uri parameter, see the section
Passing Request Objects as JWTs.

properties(parametername) where
parametername is the name of a
parameter

• isAuthorized, which is returned as output, equals 1 if there is a locally stored access token for this client and this session,
and if that access token authorizes all the scopes given by the scope argument. This parameter equals 0 otherwise.

• sc, which is returned as output, contains the status code set by this method.

• sessionId specifies the session ID. Specify this only if you want to override the default session (%session.SessionId).

Also see Variation: Performing the Redirect within OnPreHTTP.

Password Credentials Grant Type

In this variation, the client uses the password credentials grant type when requesting tokens. You can use this grant type
when the client has the password belonging to the resource owner. The client application can simply perform an HTTP
POST operation to the token endpoint, without any page redirection; InterSystems IRIS provides a method to do this.

Configuration requirements: See the instructions in Configuring a Client, but note that you do not need to specify Client

Secret. (In general, you should use the client secret only when the client secret is needed and it is possible to protect the
client secret.)

Code requirements: Your application should do the following:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken and check the returned value (and possible error), as
described in Obtaining Tokens.

2. If IsAuthorized() returned 0, call the GetAccessTokenPassword() method of %SYS.OAuth2.Authorization.

ClassMethod GetAccessTokenPassword(applicationName As %String,
 username As %String,
 password As %String,
 scope As %String,
 ByRef properties As %String,
 Output error As %OAuth2.Error) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• username is a username.

• password is the corresponding password.

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2 scope3"

The default is determined by the client configuration for the given applicationName.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

132 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

properties(parametername) where
parametername is the name of a
parameter

• error, which is returned as output, is either null or is an instance of OAuth2.Error that contains error information.

This method performs an HTTP POST operation to the token endpoint, and then receives and saves the access token
(if any).

3. Check the error argument and proceed accordingly.

4. Continue as described in Examining the Token(s) and Adding an Access Token to an HTTP Request.

Client Credentials Grant Type

In this variation, the client uses the client credentials grant type when requesting tokens. This grant type enables the client
application to communicate with the resource server independently from any user. There is no user context. The client
application can simply perform an HTTP POST operation to the token endpoint, without any page redirection; InterSystems
IRIS provides a method to do this.

Configuration requirements: See the instructions in Configuring a Client. Make sure to specify the Client Type as Confidential

and specify Client Secret.

Code requirements: Your application should do the following:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken and check the returned value (and possible error), as
described in Obtaining Tokens.

2. If IsAuthorized() returned 0, call the GetAccessTokenClient() method of %SYS.OAuth2.Authorization.

ClassMethod GetAccessTokenClient(applicationName As %String,
 scope As %String,
 ByRef properties As %String,
 Output error As %OAuth2.Error) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2 scope3"

The default is determined by the client configuration for the given applicationName.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. See the properties argument for GetAccessTokenPassword(), in the previous subsection.

• error, which is returned as output, is either null or is an instance of OAuth2.Error that contains error information.

This method performs an HTTP POST operation to the token endpoint, and then receives and saves the access token
(if any).

3. Check the error argument and proceed accordingly.

4. Continue as described in Examining the Token(s) and Adding an Access Token to an HTTP Request.

Reference for Operational and Actionable Resources for Security 133

OAuth 2.0 and OpenID Connect

Performing the Redirect within OnPreHTTP

For the authorization code and implicit grant types, the basic instructions use the following steps:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken.

2. Call the GetAuthorizationCodeEndpoint() method (for the authorization code grant type) or call the
GetImplicitEndpoint() method (for the implicit grant type).

3. Provide an option (such as a button) that opens the URL returned by the previous step, thus enabling the user to
authorize the request

An alternative is to modify the OnPreHttp() method of the page class (in your application), so that it calls either the
GetAccessTokenAuthorizationCode() method (for the authorization code grant type) or call the GetAccessTokenImplicit()
method (for the implicit grant type). These methods cause the browser to navigate directly (if needed) to the authentication
form of the authorization server, without first displaying any content of your page.

Passing Request Objects as JWTs

InterSystems IRIS also supports passing the request object as a JWT, as specified in section 6 of the OpenID Connect Core
specification. You can pass the request object by value or by reference.

In both cases, you use methods of the %SYS.OAuth2.Request class. See the class reference for additional methods not
described in this section.

Passing a Request Object by Value

To use the request parameter to pass the request object as a JWT:

1. Call the MakeRequestJWT() method of the %SYS.OAuth2.Request class:

ClassMethod MakeRequestJWT(applicationName As %String,
 ByRef properties As %String,
 Output sc As %Status) As %String

Where:

• applicationName is the name of the client application.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.

properties(parametername) where
parametername is the name of a
parameter

• sc, which is returned as output, contains the status code set by this method.

This method returns a string, which is the JWT. For example:

ObjectScript

 // create jwt
 set jwt=##class(%SYS.OAuth2.Request).MakeRequestJWT("myapp",.properties,.sc)

2. Modify the properties array that you will use as the argument for GetAuthorizationCodeEndpoint() or
GetImplicitEndpoint(). Set the node properties("request") equal to the JWT that you created in the previous
step. For example:

134 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests

ObjectScript

 set properties("request")=jwt

3. When you call GetAuthorizationCodeEndpoint() or GetImplicitEndpoint(), include the properties array. For
example:

ObjectScript

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myapp",
 scope,redirect,.properties,.isAuthorized,.sc, responseMode)

Passing a Request Object by Reference

To use the request_uri parameter to pass the request object as a JWT:

1. Call the UpdateRequestObject() method of the %SYS.OAuth2.Request class:

ClassMethod UpdateRequestObject(applicationName As %String,
 requestName As %String,
 ByRef properties As %String,
 Output sc As %Status) As %SYS.OAuth2.Request

Where:

• applicationName is the name of the client application.

• requestName is the name of the request.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.

properties(parametername) where
parametername is the name of a
parameter

• sc, which is returned as output, contains the status code set by this method.

This method creates, saves, and returns an instance of %SYS.OAuth2.Request.

ObjectScript

 // create requestobject
 set
requestobject=##class(%SYS.OAuth2.Request).UpdateRequestObject("myapp","myrequest",.properties,.sc)

2. Get the URL of the saved request object. To do so, call the GetURL() method of the instance. Note that GetURL()
returns a status code as output in the first argument; your code should check that.

ObjectScript

 Set requesturl=requestobject.GetURL()

3. Modify the properties array that you will use as the argument for GetAuthorizationCodeEndpoint() or
GetImplicitEndpoint(). Set the node properties("request_uri") equal to the URL obtained in the previous step.
For example:

set properties("request_uri")=requesturl

Reference for Operational and Actionable Resources for Security 135

OAuth 2.0 and OpenID Connect

4. When you call GetAuthorizationCodeEndpoint() or GetImplicitEndpoint(), include the properties array. For
example:

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myapp",
 scope,redirect,.properties,.isAuthorized,.sc, responseMode)

Calling Other Endpoints of the Authorization Server

The methods in %SYS.OAuth2.Authorization enable you to call a specific set of endpoints in the authorization server. If the
authorization server has other endpoints, use the following general process to call them:

1. Create an instance of %Net.HttpRequest, set its properties as needed, and call methods as needed, in order to define
the request.

Set httpRequest=##class(%Net.HttpRequest).%New()
Set httpRequest.ContentType="application/x-www-form-urlencoded"
...

For details on this class, see Sending HTTP Requests in Using Internet Utilities.

2. To add authentication to the request, call the AddAuthentication() method of %SYS.OAuth2.AccessToken.

ClassMethod AddAuthentication(applicationName As %String, httpRequest As %Net.HttpRequest) As
%Status

Where:

• applicationName is the name of the OAuth 2.0 client.

• httpRequest is the instance of %Net.HttpRequest

InterSystems IRIS looks up the given client and uses its Authentication type, SSL configuration, and other information
to add the appropriate authentication to the request.

3. Optionally open the client configuration so that you can use properties contained in it. To do so, switch to the %SYS

namespace and call the Open() method of OAuth2.Client, passing the client name as the argument:

ObjectScript

 New $NAMESPACE
 set $NAMESPACE="%SYS"
 Set client=##class(OAuth2.Client).Open(applicationName,.sc)
 If client="" Quit

4. Call the Post(), Get(), or Put() method (as appropriate) of the HTTP request object, providing the authorization server’s
token endpoint as the argument. For example:

ObjectScript

 set sc=httpRequest.Post(client.ServerDefinition.TokenEndpoint)

5. Perform additional processing as needed.

Using an InterSystems IRIS Web Application as an OAuth 2.0 Resource Server
This page describes how to use an InterSystems IRIS® web application as a resource server that uses the OAuth 2.0
framework.

This page primarily discusses the scenario in which the resource server uses the introspection endpoint of the authorization
server. See the last section for details on variations.

136 Reference for Operational and Actionable Resources for Security

Identity and Access Management

The process of rotating keys used for signing, encryption, signature verification, and decryption of JWTs is discussed
elsewhere.

Prerequisites for the InterSystems IRIS Resource Server

Before starting the tasks described in this page, make sure the following items are available:

• An OAuth 2 authorization server.

• If the resource server uses any endpoint of the authorization server, the resource server may be registered as a client
of the OAuth 2.0 authorization server. The details depend upon the implementation of the authorization server.

In this case, you will also later need to know specific details about this server:

– Location of the authorization server (issuer endpoint)

– Location of the token endpoint

– Location of the Userinfo endpoint (if supported; see OpenID Connect Core)

– Location of the token introspection endpoint (if supported; see RFC 7662)

– Location of the token revocation endpoint (if supported; see RFC 7009)

– Whether the authorization server supports dynamic registration

• If the authorization server does not support dynamic registration, you will need the client ID and client secret for the
resource server. The authorization server generates these two pieces of information (on a one-time basis) and you need
to get them securely to the resource server machine.

Configuration Requirements

See Configuration Requirements, with the following changes when you create the client configuration:

• For Application name, specify the application name of the resource server.

• For Client Type, specify Resource Server.

Note that when you specify Resource Server as the type, the configuration page displays only the options that are
applicable to a resource server.

• For clientID, use the client ID of the resource server.

• For clientSecret, use the client secret of the resource server.

Code Requirements

An OAuth 2.0 resource server receives a request, examines the access token that it contains, and (depending on the access
token) returns the requested information.

To create an InterSystems IRIS resource server, create a subclass of %CSP.REST, in the namespace used by the resource
server’s web application. In this class, create a URL map and the corresponding methods. In the methods, do the following:

1. Call the method GetAccessTokenFromRequest() of %SYS.OAuth2.AccessToken. This method is as follows:

ClassMethod GetAccessTokenFromRequest(Output sc As %Status) As %String

The method returns the access token, if any, found in the HTTP request received by this page. It uses one of the three
RFC 6750 formats. The parameter sc, returned as output, is a status code that indicates whether an error was detected.
If the request did not use SSL/TLS, that is an error condition. Also, if the request did not include a valid bearer header,
that is an error condition.

2. Check to see whether the status code is an error.

Reference for Operational and Actionable Resources for Security 137

OAuth 2.0 and OpenID Connect

https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009
https://datatracker.ietf.org/doc/rfc6750

If the status is an error, the method should return a suitable error (and not return the requested information).

3. If the status code is not an error, validate the access token. To do so, use ValidateJWT() or your own custom method.
See Method Details.

4. Optionally call the GetIntrospection() method for additional information. This method calls the introspection endpoint
of the authorization server and obtains claims about the access token. This method is as follows:

ClassMethod GetIntrospection(applicationName As %String,
 accessToken As %String,
 Output jsonObject As %RegisteredObject) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token previously returned.

• jsonObject, which is returned as output, is a JSON object that contains the claims that the authorization server
makes about this access token.

5. If the preceding steps indicate that the user’s request for information should be granted, perform the requested processing
and return the requested information.

For example:

 // This is a dummy resource server which just gets the access token from the request
 // and uses the introspection endpoint to ensure that the access token is valid.
 // Normally the response would not be security related, but would ocntain some interesting
 // data based on the request parameters.
 set accessToken=##class(%SYS.OAuth2.AccessToken).GetAccessTokenFromRequest(.sc)
 if $$$ISOK(sc) {
 set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection("demo resource",accessToken,.jsonObject)

 if $$$ISOK(sc) {
 write "OAuth 2.0 access token used to authorize resource server (RFC 6749)
"
 write "Access token validated using introspection endpoint (RFC 7662)
"
 write " scope='"_jsonObject.scope_"'
"
 write " user='"_jsonObject.username_"'",!
 } else {
 write "Introspection Error="_..EscapeHTML($system.Status.GetErrorText(sc)),!
 }
 } else {
 write "Error Getting Access Token="_$system.Status.GetErrorText(sc),!
 }

 Quit $$$OK

Examining the Token(s)

After the resource server receives an access token, it should perform additional checks to determine whether the user has
the necessary permissions to use the requested resource. To perform this examination, the client can use the methods
described here to obtain additional information.

ValidateJWT()

Location: This method is in the class %SYS.OAuth2.Validation.

ClassMethod ValidateJWT(applicationName As %String,
 accessToken As %String,
 scope As %String,
 aud As %String,
 Output jsonObject As %RegisteredObject,
 Output securityParameters As %String,
 Output sc As %Status) As %Boolean

Use this method only if the access token is a JWT (rather than an opaque token).

138 Reference for Operational and Actionable Resources for Security

Identity and Access Management

This method decrypts the JWT if necessary, validates the JWT, and creates an object (jsonObject) to contain the
JWT properties. To validate the JWT, the method checks the audience (if aud is specified), issuer endpoint (must
match that specified in server description), and scope (if scope is specified). The method also makes sure the access
token has not expired. Both signed and unsigned JWTs are accepted. If the JWT is signed, the method checks the
signature.

This method returns 1 if the JWT is valid or returns 0 otherwise. It also returns several arguments as output.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the JWT to be validated.

• scope is a space-delimited list of scopes, for example: "scope1 scope2 scope3"

If scope is specified, the JWT must contain a scope claim that includes this scope.

• aud specifies the audience that is using the token. If the token has an associated aud property (usually because
the audience was specified when requesting the token), then aud is matched to the token audience. If aud is
not specified, then no audience checking takes place.

• jsonObject, which is returned as output, is a dynamic object that contains the claims in the JWT. This dynamic
object contains properties such as aud, exp, iss, and so on. For details on dynamic objects, see Using JSON.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both.

This array contains the following nodes:

ValueNode

The signature or MAC algorithm. Set only if
the JWT is signed

securityParameters("sigalg")

The key management algorithmsecurityParameters("keyalg")

The content encryption algorithmsecurityParameters("encalg")

The keyalg and encalg nodes are either both specified or both null.

• sc, which is returned as output, contains the status code set by this method.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

Because the Oauth specification allows an application to accept both signed and unsigned JWTs, the ValidateJWT
method does not reject an unsigned JWT. However, in many cases it is strongly recommended that your application
implement stricter security by rejecting an unsigned JWT. You can determine whether the token passed into
ValidateJWT was unsigned by inspecting the securityParameters array that is returned by the method. If
securityParameters("sigalg") was not set, the token was unsigned. For example, the following code determines
whether the token was unsigned and rejects it if it was:

Set tInitialValidationPassed = ##class(%SYS.OAuth2.Validation).ValidateJWT(tClientName,
tAccessToken, "", "", .tJsonObj,.tSecurityParams, .tValidateStatus)
// the “sigalg” subscript is set only if the JWT was signed
Set tIsTokenSigned = $Data(tSecurityParams("sigalg"))#2
If 'tIsTokenSigned {
 $$$ThrowStatus($System.Status.Error($$$AccessDenied))
}

Reference for Operational and Actionable Resources for Security 139

OAuth 2.0 and OpenID Connect

GetIntrospection()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod GetIntrospection(applicationName As %String,
 accessToken As %String,
 Output jsonObject As %RegisteredObject) As %Status

This method sends the access token to the introspection endpoint, receives a response that contains claims, and
creates an object (jsonObject) that contains the claims returned by that endpoint.

The request is authorized using the basic authorization HTTP header with the client_id and client_secret
associated with applicationName.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

• jsonObject, which is returned as output, is a dynamic object that contains the claims returned by introspection
endpoint. For details on dynamic objects, see Using JSON.

Note that you cannot use this method if the server does not specify an introspection endpoint or if Client secret is
not specified.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource.

Variations

This page primarily discusses the scenario in which the InterSystems IRIS resource server uses the introspection endpoint
of the authorization server. This section discusses some possible variations.

Variation: Resource Server Calls Userinfo Endpoint

The resource server can also call the Userinfo endpoint. To do so, the resource server code must use the GetUserinfo()
method as you do for an OAuth client.

Variation: Resource Server Does Not Call Endpoints

If the InterSystems IRIS resource server does not use any endpoints of the authorization server, it is not necessary to create
an OAuth 2.0 configuration on this machine.

Also, the resource server does not need to use GetAccessTokenFromRequest(). Instead, it can get the access token directly
from the HTTP authorization header and use it as needed.

Using InterSystems IRIS as an OAuth 2.0 Authorization Server
This page describes how to use an InterSystems IRIS® instance as an OAuth 2.0 authorization server.

It is likely that the person who creates client definitions will not be the same person who set up the server. Moreover, it
may be necessary to create client definitions on an ongoing basis. For this reason, the task of creating client definitions is
included as a stand-alone section, at the end of the article.

Configuration Requirements for the InterSystems IRIS Authorization Server

To use an InterSystems IRIS instance as an OAuth 2.0 authorization server, perform the following configuration tasks:

• For the web server that is serving InterSystems IRIS, configure that web server to use SSL. It is beyond the scope of
this documentation to describe how to configure a web server to use SSL.

• Create an InterSystems IRIS SSL configuration for use by the server.

140 Reference for Operational and Actionable Resources for Security

Identity and Access Management

This should be a client SSL configuration; no certificate is needed. The configuration is used to connect to a web server.
Via this connection, the authorization server accesses the request object specified by the request_uri parameter.
Via this connection, the authorization server also accesses the jwks_uri when updating a client JWKS. If the client
does not send requests using the request_uri parameter and if the authorization server does not update the client
JWKSs via the jwks_uri parameter, then the authorization server does not need an SSL configuration.

For details on creating SSL configurations, see InterSystems TLS Guide.

Each SSL configuration has a unique name. For reference, the documentation refers to this one as sslconfig, but
you can use any unique name.

• Create the server configuration as described in the following subsection.

• Later, create client definitions as needed; see the last section.

Configuring the Authorization Server

In order to perform this task, you must be logged in as a user who has USE permission on the %Admin_OAuth2_Server

resource.

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Server Configuration.

2. On the General tab, specify the following details:

• Description — Enter an optional description.

• Issuer endpoint — Specify the endpoint URL of the authorization server. To specify this URL, enter values for
the following options:

– Host name — Specify the host name or IP address of the authorization server.

– Port — Specify this if needed to accommodate any changes in the Web Gateway configuration.

– Prefix — Specify this if needed to accommodate any changes in the Web Gateway configuration.

The resulting issuer endpoint has the following form:

https://hostname:port/prefix/oauth2

If you omit Port, the colon is omitted. Similarly, if you omit Prefix, there is only one slash between hostname:port
and oauth2.

• Audience required — Specify whether the authorization server requires the aud parameter in authorization code
and implicit requests. If this check box is clear, aud is not required.

• Support user session — Specify whether the authorization server supports user sessions (note that these are not
web sessions). If selected, InterSystems IRIS uses a session maintenance class (the default session maintenance
class is OAuth2.Server.Session, but this can be custom. See Code Customization Options for more details). If this
check box is not selected, user sessions are not supported.

• Allow public client refresh — Specify whether to allow the server to process client refresh tokens. When you select
this check box, the server does not require a client secret to process refresh tokens.

• Enforce Proof Key for Code Exchange (PKCE) for public clients — If your authorization server supports the autho-
rization code grant type, selecting this check box will require public clients to provide a PKCE secret value when
requesting the authorization code and exchanging the code for an access token.

• Enforce Proof Key for Code Exchange (PKCE) for confidential clients — If your authorization server supports the
authorization code grant type, selecting this check box will require confidential clients to provide a PKCE secret
value when requesting the authorization code and exchanging the code for an access token.

Reference for Operational and Actionable Resources for Security 141

OAuth 2.0 and OpenID Connect

• Support HTTP-based front channel logout — Specify whether to enable or disable front channel logout. By default,
front channel logout is enabled. If you clear this check box, then when users log out on the server, the server does
also log users out of the clients that are registered with the server.

Note: For an InterSystems IRIS authorization server to support front channel logout, the User Cookie Scope

for the /oauth2 web application must be set to Lax. For details on configuring application settings,
see Create and Edit Applications.

• Support sending sid (session ID) claim with front channel logout URL — Specify whether to enable or disable
sending the session ID claim along with the front channel logout URL. By default, sending the session ID is
enabled. If you clear this check box, then when the server calls the front channel logout URL, it does not append
the query parameters iss (issuer) and sid (session ID) to the URL.

• Return refresh token — Specify the conditions under which a refresh token is returned along with the access token.
Select the option appropriate for your business case.

• Supported grant types — Specify the grant types that this authorization server allows to be used to create an access
token. Select at least one.

• OpenID provider documentation — Specify URLs provided by the OpenID provider as follows:

– Service Documentation URL — URL of a web page that provides human-readable information that developers
might want or need to know when using the OpenID provider.

– Policy URL — URL of a web page that describes the OpenID provider’s policy on how a relying party can
use the data provided by the provider.

– Terms of Service URL — URL of a web page that describes the OpenID provider’s terms of service.

• SSL/TLS configuration — Select the SSL/TLS configuration you created for use by the authorization server (for
example, sslconfig).

3. On the Scopes tab, specify the following details:

• Table with Scope and Description columns — Specify all scopes supported by this authorization server.

• Allow unsupported scope — Specify whether the authorization server ignores scope values that it does not support.
If this check box is clear, the authorization server returns an error when a request contains an unsupported scope
value; in this case the request is not processed. If this check box is selected, the authorization server ignores the
scope and processes the request.

• Default scope — Specify the default for access token scope if scope is not specified in the access token request or
in the client configuration.

4. On the Intervals tab, specify the following details:

• Access token interval — Specify the number of seconds after which an access token issued by this server will
expire. The default is 3600 seconds.

• Authorization code interval — Specify the number of seconds after which an authorization code issued by this
server will expire. The default is 60 seconds.

• Refresh token interval — Specify the number of seconds after which a refresh token issued by this server will
expire. The default is 24 hours (86400 seconds).

• Session termination interval — Specify the number of seconds after which a user session will be automatically
terminated. The value 0 means the session will not be automatically terminated. The default is 24 hours (86400
seconds).

142 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• Client secret expiration interval — Specify the number of seconds after which a client secret issued by this server
will expire. The default value (0) means that the client secrets do not expire.

5. For the JWT Settings tab, specify the following details:

• Create JWT Settings from X509 credentials — Select this option if, for signing and encryption, you want to use the
private key associated with a certificate; in this case, also see Using Certificates for an OAuth 2.0 Authorization
Server, in Certificates and JWTs (JSON Web Tokens).

Note: InterSystems expects that the option Create JWT Settings from X509 credentials will rarely be used, and
that instead customers use the default behavior described next.

If you leave this option clear, the system generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;
this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available.
InterSystems IRIS also copies the public JWKS to the client, so that the client can encrypt and verify signatures
of JWTs from the authorization server.

• Signing algorithm — Select the algorithm to use when signing JWTs. Or leave this blank if JWTs are not to be
signed.

• Key management algorithm — Select the algorithm to use for key management when encrypting JWTs.

Do this only if you select a content encryption algorithm.

• Content encryption algorithm — Select the algorithm to use when encrypting JWTs. Or leave this blank if JWTs
are not to be encrypted. If you select an algorithm, you must also select an algorithm for key management.

6. On the Customization tab, specify details as described in Code Customization Options.

7. Select Save.

When you save this configuration, the system creates a web application (/oauth2) for use by the authorization server. Do
not modify this web application.

Code Customization Options and Overall Flow

This section describes the items in the Customization Options section of the configuration options of the authorization
server. Subsections describe the overall flow and the default classes.

• Authenticate class — Use %OAuth2.Server.Authenticate (the default) or a custom subclass of that class.

If you define a custom subclass, implement some or all of the following methods, depending on your needs:

– BeforeAuthenticate() — Optionally implement this method to perform custom processing before authentication.

– DisplayLogin() — Optionally implement this method to display a login page to identify the user. (For a less
common alternative, see Implementing DirectLogin().)

– DisplayPermissions() — Optionally implement this method to display the requested permissions to the user.

– AfterAuthenticate() — Optionally implement this method to perform custom processing after authentication.

• Validate user class — Use %OAuth2.Server.Validate (the default) or a custom class that defines the following methods:

– ValidateUser() (used by all grant types other than client credentials)

– ValidateClient() (used by the client credentials grant type)

InterSystems highly recommends that you define and use a custom class. The %OAuth2.Server.Validate class is provided
for demonstration purposes and is very unlikely to be suitable for production use.

Reference for Operational and Actionable Resources for Security 143

OAuth 2.0 and OpenID Connect

• Session maintenance class — The default session maintenance class, OAuth2.Server.Session, maintains user sessions
via an HTTP-only cookie. This default class cannot be extended to implement custom logic. Rather, you can extend
%OAuth2.Server.CookieSession or %OAuth2.Server.AbstractSession, depending on your requirements.
The majority of the logic of the default class comes from %OAuth2.Server.CookieSession, so if you want to
implement a custom session maintenance class that takes advantage of existing code, including the use of an opaque
browser cookie, extend %OAuth2.Server.CookieSession for your custom class. Alternatively, you have the option of
implementing an entirely custom session maintenance class that does not rely on default logic from InterSystems. To
take this customization approach, extend %OAuth2.Server.AbstractSession and implement the abstract methods.

• Generate token class — Use %OAuth2.Server.Generate (the default), %OAuth2.Server.JWT, or a custom class that
defines the method GenerateAccessToken(). If you create a custom class, you might find it useful to subclass one of
the classes listed here, because they provide methods you may want to use.

• Customization namespace — Specify the namespace in which the customization code should run.

• Customization roles — Specify the role or roles to use when running the customization code.

If you use any custom subclasses, see Implementing the Custom Methods.

How an InterSystems IRIS Authorization Server Processes Requests

This section describes what an InterSystems IRIS authorization server does when it receives an authorization code request
or an implicit request for a token.

1. Calls the BeforeAuthenticate() method of the class specified via the Authenticate class option. The purpose of this
method is to make any modifications to the request before user identification starts.

In the default class, this method is a stub.

2. Next, if the grant type is authorization code or implicit grant, InterSystems IRIS does the following:

a. Calls the DisplayLogin() of the class specified via the Authenticate class option. (But also see Implementing
DirectLogin().)

In the default class, DisplayLogin() displays a simple HTML login page.

b. If the username is not null, calls the ValidateUser() method of the class specified via the Validate user class option.
The purpose of this method is to validate the user and (by modifying the properties array) to prepare any claims
to be returned by the token, Userinfo, and token introspection endpoints.

In the default class, this method is only a sample and is very unlikely to be suitable for production use.

c. If the user is validated, calls the DisplayPermissions() method of the class specified via the Authenticate class

option. The purpose of this method is to display a page to the user that lists the requested permissions.

In the default class, this method displays a simple HTML page with the permissions.

Or if the grant type is password credentials, InterSystems IRIS just calls the ValidateUser() method of the class
specified via the Validate user class option.

Or if the grant type is client credentials, InterSystems IRIS just calls the ValidateClient() method of the class specified
via the Validate user class option.

3. If the user accepts the permissions, calls the AfterAuthenticate() method of the class specified via the Authenticate

class option. The purpose of this method is to perform any custom processing before generating an access token.

In the default class, this method is a stub.

4. Calls the GenerateAccessToken() method of the class specified via the Generate token class option. The purpose of
this method is to generate an access token to return to the user.

144 Reference for Operational and Actionable Resources for Security

Identity and Access Management

In the default class (%OAuth2.Server.Generate), this method generates an access token that is an opaque string. Inter-
Systems IRIS also provides an alternative class (%OAuth2.Server.JWT), in which GenerateAccessToken() generates
an access token that is a JWT.

Default Classes

This section describes the default classes in an InterSystems IRIS authorization server, as well as the class
%OAuth2.Server.JWT, which is provided as another option for the Generate token class.

%OAuth2.Server.Authenticate (Default for Authenticate Class)

The class %OAuth2.Server.Authenticate defines the following methods, listed in the order in which they are called:

• BeforeAuthenticate() is a stub. It simply quits with an OK status.

• DisplayLogin() writes the HTML that creates a simple login page with Login and Cancel buttons.

• DisplayPermissions() writes the HTML that creates a simple page that displays the requested permissions.
This page includes the buttons Accept and Cancel.

• AfterAuthenticate() is a stub. It simply quits with an OK status.

%OAuth2.Server.Validate (Default for Validate User Class)

The %OAuth2.Server.Validate class is the default class for the Validate user class option.

Note: This class is provided for sample purposes and is very unlikely to be suitable for production use. That
is, InterSystems expects that customers will replace or subclass this class for their own needs.

This class defines the following sample methods:

• ValidateUser() does the following:

1. Looks for the given user in the IRISSYS database.

2. Verifies the password for the user.

3. Gets a multidimensional array that contains information about the user.

4. Uses this array to add additional claims to the properties object.

• SupportedClaims() returns a $LIST of claims that are supported by this authorization server. By default, this
method specifically returns the list of claims defined by OpenID Connect Core.

• ValidateClient() (used by the client credentials grant type) accepts all clients and adds no properties.

You can override all these methods in your subclass.

OAuth2.Server.Session (Default for Session Class)

The %OAuth2.Server.Session class is the default class for the Session maintenance class option. This class maintains
sessions via an HTTP-only cookie.

In this class, the GetUser() method tries to access the current session. If there is a session, the method obtains the
username from that session and returns that. If there is no session, the method returns the username as an empty
string and also returns an error status as output.

For additional information on this class, see the class reference.

Reference for Operational and Actionable Resources for Security 145

OAuth 2.0 and OpenID Connect

https://openid.net/specs/openid-connect-core-1_0.html

%OAuth2.Server.Generate (Default for Generate Token Class)

The %OAuth2.Server.Generate class is the default class for the Generate token class option. This class defines the
following methods:

• GenerateAccessToken() generates a random string as the opaque access token.

• IsJWT() returns 0.

%OAuth2.Server.JWT (Another Option for Generate Access Token Class)

The %OAuth2.Server.JWT class is another class you can use (or subclass) for the Generate token class option. This
class defines the following methods:

• GenerateAccessToken() returns a JWT. Before returning the JWT, InterSystems IRIS signs it, encrypts it,
or both, according to the JSON Web Token (JWT) Settings in the authorization server configuration.

• IsJWT() returns 1.

• CreateJWT() creates a JWT based on a JSON object containing the claims; signs and encrypts the JWT as
specified in the authorization server configuration. This method follows the specifications for OAuth 2.0 and
OpenID Connect usage and should not be overridden in a subclass.

• AddClaims() — Adds the requested claims to the JWT. This method is as follows:

ClassMethod AddClaims(claims As %ArrayOfObjects,
 properties As %OAuth2.Server.Properties,
 json As %DynamicObject)

Where:

– claims is an array of %OAuth2.Server.Claim instances.

– properties is an instance of %OAuth2.Server.Properties that contains properties and claims that are used
by the authorization server.

– json is a dynamic object that represents the JWT. The method modifies this object.

Implementing the Custom Methods for the InterSystems IRIS Authorization Server

To customize the behavior of the authorization server, define classes as described in Code Customization Options. Then
use this section for information on defining methods in those classes, depending on the processing steps that you want to
customize.

1. Optional custom processing before authentication

2. Identifying the user

3. Validating the user and specifying claims

4. Optionally displaying permissions to the user

5. Optional custom processing after authentication

6. Generating the access token

After these subsections, a final subsection describes how to validate the client, in the case when this server must support
the client credentials grant type. The client credentials grant type does not use steps 2 – 4 of the preceding list.

Optional Custom Processing Before Authentication

The information here applies to all grant types.

146 Reference for Operational and Actionable Resources for Security

Identity and Access Management

To perform custom processing before authenticating the user, implement the BeforeAuthenticate() method of the
Authenticate class. This method has the following signature:

ClassMethod BeforeAuthenticate(scope As %ArrayOfDataTypes,
 properties As %OAuth2.Server.Properties) As %Status

Where:

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request. The array
keys are the scope values and the array values are the corresponding display forms of those values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims that are used by the autho-
rization server. See Details for the %OAuth2.Server.Properties Object.

In your method, optionally modify either or both of these arguments, both of which are later passed to the methods used
to identify the user. The method must return a %Status.

Normally, there is no need to implement this method. However, one use case is to implement the launch and

launch/patient scopes used by FHIR®, where the scope needs to be adjusted to include a specific patient.

Identifying the User

The information here applies only to the authorization code and implicit grant types.

To identify the user, implement the DisplayLogin() method of the Authenticate class. The DisplayLogin() method has the
following signature:

ClassMethod DisplayLogin(authorizationCode As %String,
 scope As %ArrayOfDataTypes,
 properties As %OAuth2.Server.Properties,
 loginCount As %Integer = 1) As %Status

Where:

• authorizationCode

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• loginCount is the integer count of which login attempt is taking place.

This method is responsible for writing the HTML to display the user login form. The login form must contain a Username
field, a Password field, and an AuthorizationCode field (which should be hidden). The default DisplayLogin() method
uses of the InsertHiddenField() method of %CSP.Page to add the AuthorizationCode hidden field.

Typically, the form also has buttons with the values Login and Cancel. These buttons should submit the form. If the user
submits the form with the Login button, the method will accept the username and password. If the user submits the form
with the Cancel button, the authorization process will terminate with an error return of access_denied.

In your implementation, you might choose to display permissions on the same page. In that case, your method would display
the scopes and would use a button named Accept to submit the page.

The method must return a %Status.

Updating properties.CustomProperties

If the form contains elements with names that start p_, such elements receive special handling. After the DisplayLogin()
method returns, InterSystems IRIS adds values of those elements to the properties.CustomProperties array, first removing

Reference for Operational and Actionable Resources for Security 147

OAuth 2.0 and OpenID Connect

the p_ prefix from the names. For example, if the form contains an element named p_addme, then InterSystems IRIS adds
addme (and the value of the p_addme element) to the properties.CustomProperties array.

Your method can also directly set other properties of properties as needed.

Validating the User and Specifying Claims

The information here applies to all grant types other than the client credentials grant type. (For that grant type, see Validating
the Client.)

To validate the user and specify any claims to be returned by the token, Userinfo, and token introspection endpoints, define
the ValidateUser() method of the Validate user class. This method has the following signature:

ClassMethod ValidateUser(username As %String,
 password As %String,
 scope As %ArrayOfDataTypes,
 properties As %OAuth2.Server.Properties,
 Output sc As %Status) As %Boolean

Where:

• username is the username provided by the user.

• password is the password provided by the user. Note that if the user has already logged in, InterSystems IRIS calls
this method with password as an empty string. This means that your method should detect when password is an empty
string and not attempt to check the password in that case.

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• sc is the status code set by this method. Use this to communicate details of any errors.

Your method should do the following:

• Make sure that the password applies to the given username.

• Use the scope and properties arguments as needed for your business needs.

• Modify the properties object to specify any claim values, as needed, or to add new claims. For example:

// Setup claims for profile and email OpenID Connect scopes.
Do properties.SetClaimValue("sub",username)
Do properties.SetClaimValue("preferred_username",username)
Do properties.SetClaimValue("email",email)
Do properties.SetClaimValue("email_verified",0,"boolean")
Do properties.SetClaimValue("name",fullname)

• In the case of any errors, set the sc variable.

• Return 1 if the user is considered valid; return 0 in all other cases.

Note that after the return from ValidateUser(), the authorization server automatically sets the following values in the
properties object, if these values are missing:

• In properties.ClaimValues:

– iss — URL of authorization server

– sub — client_id

– exp — expiration time in seconds since December 31, 1840

148 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• In properties.CustomProperties:

– client_id — client_id of the requesting client

Displaying Permissions

The information here applies only to the authorization code and implicit grant types.

To display permissions after validating the user, implement the DisplayPermissions() method of the Authenticate class.
This method has the following signature:

ClassMethod DisplayPermissions(authorizationCode As %String,
 scopeArray As %ArrayOfDataTypes,
 currentScopeArray As %ArrayOfDataTypes,
 properties As %OAuth2.Server.Properties) As %Status

Where:

• authorizationCode is the authorization code.

• scopeArray represents the newly requested scopes, for which the user has not yet granted permission. This argument
is an instance of %ArrayOfDataTypes.

The array keys are the scope values and the array values are the corresponding display forms of the scope values.

• currentScopeArray represents the scopes for which the user has previously granted permission. This argument is an
instance of %ArrayOfDataTypes.

The array keys are the scope values and the array values are the corresponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

This form must have buttons with the values Accept and Cancel. These buttons should submit the form. If the user
submits the form with the Accept button, the method should continue with authorization. If the user submits the form
with the Cancel button, the authorization process should terminate.

Optional Custom Processing After Authentication

The information here applies to all grant types.

To perform custom processing after authentication, implement the AfterAuthenticate() method of the Authenticate class.
This method has the following signature:

ClassMethod AfterAuthenticate(scope As %ArrayOfDataTypes, properties As %OAuth2.Server.Properties) As
 %Status

Where:

• scope is an instance of %ArrayOfDataTypes that contains the scopes as set by the authorization request and all processing
before this method was called. The array keys are the scope values and the array values are the corresponding display
forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims as set by the authorization
request and all processing before this method was called. See Details for the %OAuth2.Server.Properties Object.

In your method, optionally modify either or both of these arguments. In particular, you may want to may add properties to
the authentication HTTP response; to do so add properties to properties.ResponseProperties.

Normally, there is no need to implement this method. However, one use case is to implement the launch and launch/patient

scopes used by FHIR®, where it is necessary to adjust the scope to include a specific patient.

Reference for Operational and Actionable Resources for Security 149

OAuth 2.0 and OpenID Connect

Generating the Access Token

The information here applies to all grant types.

To generate access tokens, implement the GenerateAccessToken() method of the Generate token class. This method has
the following signature:

ClassMethod GenerateAccessToken(properties As %OAuth2.Server.Properties, Output sc As %Status) As
%String

Where:

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• sc, which is returned as output, is the status code set by this method. Set this variable to communicate details of any
errors.

The method should return the access token. The access token may be based on the properties argument. In your method,
you might also want to add claims to the JSON response object. To do so, set the ResponseProperties array property of the
properties object.

Validating the Client

The information here applies only to the client credentials type.

To validate the client credentials and specify any claims to be returned by the token, Userinfo, and token introspection
endpoints, define the ValidateClient() method of the Validate user class. This method has the following signature:

ClassMethod ValidateClient(clientId As %String,
 clientSecret As %String,
 scope As %ArrayOfDataTypes,
 Output properties As %OAuth2.Server.Properties,
 Output sc As %Status) As %Boolean

Where:

• clientId is the client ID.

• clientSecret is the client secret.

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• sc is the status code set by this method. Use this to communicate details of any errors.

Your method should do the following:

• Make sure that the client secret applies to the given client ID.

• Use the scope and properties arguments as needed for your business needs.

• Modify the properties object to specify any claim values, as needed. For example:

// Setup claims for profile and email OpenID Connect scopes.
Do properties.SetClaimValue("sub",username)
Do properties.SetClaimValue("preferred_username",username)
Do properties.SetClaimValue("email",email)
Do properties.SetClaimValue("email_verified",0,"boolean")
Do properties.SetClaimValue("name",fullname)

• In the case of any errors, set the sc variable.

150 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• Return 1 if the user is considered valid; return 0 in all other cases.

Note that after the return from ValidateClient(), the authorization server automatically sets the following values in the
properties object, if these values are missing:

• In properties.ClaimValues:

– iss — URL of authorization server

– sub — client_id

– exp — expiration time in seconds since December 31, 1840

• In properties.CustomProperties:

– client_id — client_id of the requesting client

Details for the %OAuth2.Server.Properties Object

The methods described in the previous section use the argument properties, which is an instance of %OAuth2.Server.Properties.
The %OAuth2.Server.Properties class is intended to hold information that needs to be passed from method to method within
the authorization server code. This section describes the basic properties in this class, as well as the properties related to
claims. The class also has methods for working with claims; the last subsection describes them.

Basic Properties

The %OAuth2.Server.Properties class has the following basic properties, used to convey information for any internal pro-
cessing of your custom code:

RequestProperties

Property RequestProperties as array of %String (MAXLEN="");

Contains the query parameters from the authorization request.

Because this property is an array, use the usual array interface to work with it. (The same comment applies to the
other properties of this class.) For example, to get the value of a query parameter, use
RequestProperties.GetAt(parmname), where parmname is the name of the query parameter.

ResponseProperties

Property ResponseProperties as array of %String (MAXLEN="");

Contains any properties to be added to the JSON response object to a token request. Set this property as needed.

CustomProperties

Property CustomProperties as array of %String (MAXLEN="");

Contains any custom properties to be used to communicate between various pieces of customization code. See
Updating properties.CustomProperties.

ServerProperties

Property ServerProperties as array of %String (MAXLEN="");

Contains any properties that the authorization server chooses to share with the customization code. The logo_uri,
client_uri, policy_uri and tos_uri client properties are shared in this way for use by the Authentication
Class.

Reference for Operational and Actionable Resources for Security 151

OAuth 2.0 and OpenID Connect

Properties Related to Claims

The %OAuth2.Server.Properties class contains the IntrospectionClaims, IDTokenClaims, UserinfoClaims, and JWTClaims

properties, which carry information about required claims, specifically custom claims.

The class also contains the ClaimValues property, which carries the actual claim values. Your customization code should
set the values of the claims (typically in the ValidateUser class).

The following list describes these properties:

IntrospectionClaims

Property IntrospectionClaims as array of %OAuth2.Server.Claim;

Specifies the claims to be returned by the Introspection endpoint (beyond the base required claims). The authorization
server will return the scope, client_id, username, token_type, exp, iat, nbf, sub, aud, iss, and jti
claims even if they are not in this property.

In most cases, the value of this property can be an empty string; this property is included to support the claims
request parameter (see OpenID Connect Core section 5.5 for details).

Formally, this property is an array in which the array key is the claim name (which matches the name in the
ClaimValues property) and the array value is an instance of %OAuth2.Server.Claim. The %OAuth2.Server.Claim

class has the following properties:

• Essential

property Essential as %Boolean [InitialExpression = 0];

Specifies whether the claim is essential or voluntary. The value 1 means essential and the value 0 means
voluntary.

• Values

property Values as list of %String(MAXLEN=2048);

Specifies the list of permissible values for this claim.

The value of the claims will usually be set by the ValidateUser class.

IDTokenClaims

Property IDTokenClaims as array of %OAuth2.Server.Claim;

Specifies the claims that the authorization server requires in the IDToken (beyond the base set of required claims).
The authorization server requires the iss, sub, exp, aud, and azp claims even if these claims are not in this
property.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

In most cases, the value of this property can be an empty string; this property is included to support the claims
request parameter (see OpenID Connect Core section 5.5 for details).

UserinfoClaims

Property UserinfoClaims as array of %OAuth2.Server.Claim;

Specifies the claims to be returned by the Userinfo endpoint (beyond the base required claims). The authorization
server will return the sub claim even if that claim is not in this property.

152 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

In most cases, the value of this property can be an empty string; this property is provided to support section 5.5
of OpenID Connect Core.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

The claims are defined based on the scope and request claims parameter. The value to be returned for the claim
will have the same key in the ClaimValues property. The value of the claims will usually be set by the ValidateUser
class.

JWTClaims

Property JWTClaims as array of %OAuth2.Server.Claim;

Specifies the claims that are needed for the JWT access token that is returned by the default JWT-based access
token class (%OAuth2.Server.JWT) beyond the base set of required claims. The authorization server will return
the iss, sub, exp, aud, and jti claims even if they are not in this property.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

The claims are defined by the customization code. The value of the claims will usually be set by the ValidateUser
class.

ClaimValues

property ClaimValues as array of %String(MAXLEN=1024);

Specifies the actual claim values and their types. To work with this property, use the methods in the next section.

If you need to work with this property directly, note that this property is an array in which:

• The array key is the claim name.

• The array value has the form $LISTBUILD(type,value), where type holds the type of the value, and value
holds the actual value. The type can be "string", "boolean", "number", or "object". If type is
"object", then value is a JSON object serialized as a string.

Note that value can be a $LIST structure. In this case, when the claim value is serialized, it is serialized as a
JSON array, in which each array item has the given type.

Methods for Working with Claims

The %OAuth2.Server.Properties class also provides instance methods that you can use to work with that simplify working
with the ClaimValues property.

SetClaimValue()

Method SetClaimValue(name As %String, value As %String, type As %String = "string")

Updates the ClaimValues property by setting the value of the claim named by the name argument. The type argument
indicates the type of the claim: "string" (the default) , "boolean", "number", or "object". If type is
"object", then value must be a JSON object serialized as a string.

Note that value can be a $LIST structure. In this case, when the claim value is serialized, it is serialized as a JSON
array, in which each array item has the given type.

RemoveClaimValue()

Method RemoveClaimValue(name As %String)

Updates the ClaimValues property by removing the claim named by the name argument.

Reference for Operational and Actionable Resources for Security 153

OAuth 2.0 and OpenID Connect

GetClaimValue()

Method GetClaimValue(name As %String, output type) As %String

Examines the ClaimValues property and returns the value of the claim named by the name argument. The type
argument, which is returned as output, indicates the type of the claim; see SetClaimValue().

NextClaimValue()

Method NextClaimValue(name As %String) As %String

Returns the name of the next claim (in the ClaimValues property) after the given claim.

Locations of the Authorization Server Endpoints

When you use an InterSystems IRIS instance as an OAuth 2.0 authorization server, the URLs for the authorization endpoints
are as follows:

URLEndpoint

https://serveraddress/oauth2Issuer endpoint

https://serveraddress/oauth2/authorizeAuthorization endpoint

https://serveraddress/oauth2/tokenToken endpoint

https://serveraddress/oauth2/userinfoUserinfo endpoint

https://serveraddress/oauth2/introspectionToken introspection endpoint

https://serveraddress/oauth2/revocationToken revocation endpoint

In all cases, serveraddress is the IP address or host name of the server on which the InterSystems IRIS instance is running.

Creating Client Definitions on an InterSystems IRIS OAuth 2.0 Authorization Server

This section describes how to create a client definition on an InterSystems IRIS OAuth 2.0 authorization server, if you have
not registered the client dynamically. First, set up the InterSystems IRIS OAuth 2.0 authorization server as described earlier
in this page. Then use the Management Portal to do the following:

1. Select System Administration > Security > OAuth 2.0 > Server Configuration.

2. Click the Client Configurations button to view the client descriptions. This table is initially empty.

3. On the General tab, specify the following details:

• Name — Specify the unique name of this client.

• Description — Specify an optional description.

• Client type — Specify the type of this client. The choices are public (a public client, per RFC 6749), confidential

(a confidential client, per RFC 6749), and resource (a resource server which is not also a client).

• Redirect URLs — One or more expected redirect URLs for this client.

• Supported grant types — Specify the grant types that this client can use to create an access token. Select at least
one.

• Supported response types — Select the OAuth 2.0 response_type values that the Client will restrict itself to using.

• Authentication type — Select the type of authentication (as specified in RFC 6749 or OpenID Connect Core section
9) to be used for HTTP requests to the authorization server. Select one of the following:

– none

154 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

– basic

– form encoded body

– client secret JWT

– private key JWT

• Authentication signing algorithm — Select the algorithm that must be used for signing the JWTs used to authenticate
this client at the token endpoint (if the authentication type is client secret JWT or private key JWT). If you do not
select an option, any algorithm supported by the OpenID provider and the relying party may be used.

4. If needed, select the Client Credentials tab and view the following details:

• Client ID — Client ID as specified in RFC 6749. InterSystems IRIS generates this string.

• Client secret — Client secret as specified in RFC 6749. InterSystems IRIS generates this string.

5. On the Client Information tab, specify the following details:

• Launch URL — Specify the URL used to launch this client. In some circumstances, this value can be used to
identify the client and can be used as the value of the aud claim.

• Authorization display section:

– Client name — Specify the name of the client to be presented to the end user.

– Logo URL — Specify a URL that references a logo for the client application. If you specify this option, the
authorization server displays this image to the end user during approval. The value of this field must point to
a valid image file.

– Client home page — Specify the URL of the home page of the client. The value of this field must point to a
valid web page. If you specify this option, the authorization server displays this URL to the end user in a
followable fashion.

– Policy URL — Specify the URL that the Relying Party Client provides to the end user to read about the how
the profile data will be used. The value of this field must point to a valid web page.

– Terms of service URL — Specify the URL that the Relying Party Client provides to the end user to read about
the Relying Party's terms of service. The value of this field must point to a valid web page.

• Contact emails — Comma-separated list of email addresses suitable for use in contacting those responsible for
the client application.

• Default max age — Specify the default maximum authentication age, in seconds. If you specify this option, the
end user must be actively re-authenticated when the maximum authentication age is reached. The max_age request
parameter overrides this default value. If you omit this option, there is no default maximum authentication age.

• Default scope — Specify the default scope, as a blank separated list, for access token requests.

6. On the JWT Settings tab, specify the following details:

• JSON Web Token (JWT) Settings — Specifies the source of the public keys that the client uses to verify signatures
of JWTs from the authorization server and to encrypt JWTs sent to the authorization server.

By default, the dynamic registration process generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;
this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available. The
dynamic registration process also copies the public JWKS to the client.

The other options are as follows:

Reference for Operational and Actionable Resources for Security 155

OAuth 2.0 and OpenID Connect

– JWKS from URL — Specify a URL that points to a public JWKS and then load the JWKS into InterSystems
IRIS.

– JWKS from file — Select a file that contains a public JWKS and then load that file into InterSystems IRIS.

– X509 certificate — For details, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates
and JWTs (JSON Web Tokens).

To access any of these options, first select Source other than dynamic registration.

7. Select Save.

To perform this task, you must be logged in as a user who has USE permission on the %Admin_OAuth2_Registration

resource.

Rotating Keys Used for JWTs

In most cases, you can cause the authorization server to generate new public/private key pairs; this applies only to the RSA
keys used for the asymmetric RS256, RS384, and RS512 algorithms. (The exception is if you specify Source other than

dynamic registration as X509 certificate. In this case, it is not possible to generate new keys.)

Generating new public/private key pairs is known as key rotation; this process adds new private RSA keys and associated
public RSA keys to the private and public JWKSs.

When you perform key rotation on the authorization server, the authorization server uses the new private RSA keys to sign
JWTs to be sent to the clients. Similarly, the authorization server uses the new public RSA keys to encrypt JWTs to be sent
to the clients. To decrypt JWTs received from the clients, the authorization server uses the new RSA keys, and if that fails,
uses the old RSA keys; thus the server can decrypt a JWT that was created using its old public RSA keys.

Last, if the authorization server cannot verify a signed JWT received from a client, then if the authorization server has the
URL for the client public JWKS, the authorization server obtains a new public JWKS and tries again to verify the signature.
(Note that the authorization server has a URL for the client public JWKS if you used dynamic discovery or if the configu-
ration specified the JWKS from URL option; otherwise, the authorization server does not have this URL.)

To rotate keys for the authorization server:

1. Select System Administration > Security > OAuth 2.0 > Server Configuration.

The system displays the configuration for the authorization server.

2. Select the Rotate Keys button.

Note: The symmetric HS256, HS384, and HS512 algorithms always use the client secret as the symmetric key.

API for Key Rotation on the Authorization Server

To rotate keys programmatically on the authorization server, call the RotateKeys() method of OAuth2.Server.Configuration.

To obtain a new client JWKS, call the UpdateJWKS() method of OAuth2.Server.Client.

For details on these methods, see the class reference.

Getting a New Public JWKS from a Client

In most cases, a client generates a public/private pair of JWKSs. There are different ways in which the authorization server
can receive the public JWKS. One way is for the client to provide the public JWKS at a URL; see the JWKS from URL

option in Creating Client Definitions on an InterSystems IRIS OAuth 2.0 Authorization Server.

If the client was defined with JWKS from URL and if the client generates a new pair of JWKSs, you can cause the authorization
server to obtain the new public JWKS from the same URL. To do so:

156 Reference for Operational and Actionable Resources for Security

Identity and Access Management

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Server Configuration.

The system displays the configuration for the authorization server.

2. Select the Update JWKS button.

If the client was not defined with JWKS from URL and if the client generates a new pair of JWKSs, it is necessary to obtain
the public JWKS, send it to the authorization server, and load it from a file.

Creating Configuration Items Programmatically
Other articles describe how to use the Management Portal to configure OAuth 2.0 clients, resource servers, and authorization
servers. You can also create these configuration items programmatically. The following subsections provide the details for
clients (including resource servers) and for the authorization server.

Creating the Client Configuration Items Programmatically

To programmatically create the configuration items for an OAuth 2.0 client or an OAuth 2.0 resource server:

1. Create a server description.

2. Create an associated client configuration.

Creating a Server Description

A server description is an instance of OAuth2.ServerDefinition. To create a server description:

1. Switch to the %SYS namespace.

2. If the authorization server supports discovery, call the Discover() method of %SYS.OAuth2.Registration. This method
is as follows:

ClassMethod Discover(issuerEndpoint As %String,
 sslConfiguration As %String,
 Output server As OAuth2.ServerDefinition) As %Status

Where:

• issuerEndpoint specifies the endpoint URL to be used to identify the authorization server.

• sslConfiguration specifies the alias of the InterSystems IRIS SSL/TLS configuration to use calling the Discover()
method.

• server, which is returned as output, is an instance of OAuth2.ServerDefinition,

3. Then save the returned instance of OAuth2.ServerDefinition.

Or, if the authorization server does not support discovery:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.ServerDefinition.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Manually Creating a Server Description. The properties are as follows:

• IssuerEndpoint

• SSLConfiguration

• InitialAccessToken, which corresponds to the Registration access token field.

• Metadata, which is an instance of OAuth2.Server.Metadata, and which includes many properties. See OpenID
Provider Metadata in https://openid.net/specs/openid-connect-discovery-1_0.html.

Reference for Operational and Actionable Resources for Security 157

OAuth 2.0 and OpenID Connect

https://openid.net/specs/openid-connect-discovery-1_0.html

For information on ServerCredentials, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates
and JWTs (JSON Web Tokens).

4. Save the instance.

Creating a Client Configuration

A client configuration is an instance of OAuth2.Client. To create a client configuration:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Client.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Configuring and Dynamically Registering a Client. The properties
are as follows:

• ApplicationName

• ClientId, which you do not need to set manually if you will register the client dynamically.

• ClientSecret, which you do not need to set manually if you will register the client dynamically.

• DefaultScope

• Description

• Enabled

• JWTInterval

• Metadata, which is an instance of OAuth2.Client.Metadata, and which includes many properties. For information,
see Client Metadata in http://openid.net/specs/openid-connect-registration-1_0-19.html.

• RedirectionEndpoint, which corresponds to the option The client URL to be specified to the authorization server to

receive responses. This property is of type %OAuth2.Endpoint. The class OAuth2.Endpoint is a serial class with
the properties UseSSL, Host, Port, and Prefix.

• SSLConfiguration

• ServerDefinition, which must be an instance of OAuth2.ServerDefinition that you created previously.

For information on ClientCredentials, see Using Certificates for an OAuth 2.0 Client, in Certificates and JWTs (JSON
Web Tokens).

4. If the authorization server supports dynamic client registration, call the RegisterClient() method of
%SYS.OAuth2.Registration. This method is as follows:

ClassMethod RegisterClient(applicationName As %String) As %Status

Where applicationName is the name of the client application.

This method registers the client, retrieves client metadata (including the client ID and client secret), and then updates
the instance of OAuth2.Client.

Creating the Server Configuration Items Programmatically

To programmatically create the configuration items for an OAuth 2.0 authorization server:

1. Create an authorization server configuration.

Note that you cannot define more than one authorization server configuration on any given InterSystems IRIS instance.
Also, to create this configuration, you must be logged in as a user who has USE permission on the
%Admin_OAuth2_Server resource.

158 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-registration-1_0-19.html

2. Create the associated client descriptions.

Creating the Authorization Server Configuration

An authorization server configuration is an instance of OAuth2.Server.Configuration. To create an authorization server
configuration:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Server.Configuration

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Configuring the Authorization Server. The properties are as follows:

• AccessTokenInterval

• AllowUnsupportedScope

• AudRequired, which corresponds to the Audience required option

• AuthenticateClass

• AuthorizationCodeInterval

• ClientSecretInterval

• CustomizationNamespace

• CustomizationRoles

• DefaultScope

• Description

• EncryptionAlgorithm

• GenerateTokenClass

• IssuerEndpoint, which corresponds to the Issuer endpoint option, is of type OAuth2.Endpoint. The class
OAuth2.Endpoint is a serial class with the properties UseSSL, Host, Port, and Prefix.

• JWKSFromCredentials

• KeyAlgorithm

• Metadata, which is an instance of OAuth2.Server.Metadata, and which includes many properties. See OpenID
Provider Metadata in https://openid.net/specs/openid-connect-discovery-1_0.html.

• RefreshTokenInterval

• ReturnRefreshToken

• SSLConfiguration

• SessionClass

• SessionInterval, which corresponds to the Session termination interval option

• SigningAlgorithm

• SupportSession, which corresponds to the Support user session option

• SupportedScopes, which corresponds to the table with Scope and Description columns. This property is an array
of strings, and thus uses the usual array interface: SetAt(), GetAt(), and so on.

• ValidateUserClass

For allowed values for algorithms for signing, key management, and encryption, the class reference for %OAuth2.JWT.

Reference for Operational and Actionable Resources for Security 159

OAuth 2.0 and OpenID Connect

https://openid.net/specs/openid-connect-discovery-1_0.html

For information on ServerCredentials and ServerPassword, see Using Certificates for an OAuth 2.0 Authorization
Server, in Certificates and JWTs (JSON Web Tokens).

4. Save the instance using the OAuth2.Server.Configuration.Save() method. The Save() method should be
used instead of the %Save() method because it provides additional functionality like creating a web application.

Note that InterSystems IRIS does not support having more than one instance of this class.

Also note that in order to save this instance, you must be logged in as a user who has USE permission on the
%Admin_OAuth2_Server resource.

Creating a Client Description

A client description is an instance of OAuth2.Server.Client. To create a client description:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Server.Client.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Creating a Client Description. The properties are as follows:

• ClientCredentials

• ClientType

• DefaultScope

• Description

• LaunchURL

• Metadata, which is an instance of OAuth2.Client.Metadata, and which includes many properties. For information,
see Client Metadata in http://openid.net/specs/openid-connect-registration-1_0-19.html.

• Name

• RedirectURL, which corresponds to the Redirect URLs option. This property is an array of strings, and thus uses
the usual array interface: SetAt(), GetAt(), and so on.

4. Save the instance.

The system generates values for the ClientId and ClientSecret properties.

Implementing DirectLogin()
When you use InterSystems IRIS® as an OAuth 2.0 authorization server, normally you implement the DisplayLogin()
method of the Authenticate class, which displays a page where the user enters a username and password and logs in. If you
instead want the server to authenticate without displaying a login form and without using the current session, then implement
the DirectLogin() method of the Authenticate class. The following flowchart shows how an InterSystems IRIS authorization
server identifies the user, when processing a request for an access token:

160 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://openid.net/specs/openid-connect-registration-1_0-19.html

By default, the GetUser() method gets the username that was entered in the previous login.

Note that DisplayPermissions() is not called if you implement DirectLogin(), because DirectLogin() takes responsibility
for displaying permissions.

The DirectLogin() method has the following signature:

ClassMethod DirectLogin(scope As %ArrayOfDataTypes,
 properties As %OAuth2.Server.Properties,
 Output username As %String,
 Output password As %String) As %Status

Where:

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• username, returned as output, is a username.

• password, returned as output, is the corresponding password.

In your implementation, use your own logic to set the username and password arguments. To do so, use the scope and
properties arguments as needed. To deny access, your method can set the username argument to $char(0). In this case, the
authorization server will return the access_denied error.

The method can also set properties of properties; this object is available in later processing.

The method must return a %Status.

Reference for Operational and Actionable Resources for Security 161

OAuth 2.0 and OpenID Connect

Certificates and JWTs (JSON Web Tokens)
Each party in OAuth 2.0 requires public/private key pairs. For these pairs, you can use certificates and their private keys,
although this is not the typical technique. This page provides the details for each of the following scenarios.

• OAuth 2.0 client

• OAuth 2.0 resource server

• OAuth 2.0 authorization server

In each case, to generate the private keys and corresponding certificates, you can use the InterSystems public key infrastruc-
ture.

Note: InterSystems IRIS can generate a pair of JWKSs (JSON web key sets). One JWKS is private and contains all the
needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never
shared. The other JWKS contains the corresponding public keys and is publicly available. If you want to use the
option of generating JWKSs, ignore this page.

Using Certificates for an OAuth 2.0 Client

An OAuth 2.0 client can receive JWTs (which might be encrypted, signed, or both) from the authorization server. Similarly,
the client can send JWTs (which might be encrypted, signed, or both) to the authorization server. If you would like to use
certificate/private key pairs for these purposes, consult the table below to determine which certificates you need:

Requirement for Client ConfigurationScenario

Obtain a certificate owned by the authorization server, as
well as the CA (certificate authority) certificate that signs
the server certificate. The public key in this certificate is
used for signature verification and encryption.

Either:

• Client needs to verify signatures of JWTs
sent by authorization server

• Client needs to encrypt JWTs sent to
authorization server

Obtain a private key for the client, as well as the
corresponding certificate and the CA certificate that signs
the certificate. The private key is used for signing and
decryption.

Either:

• Client needs to sign JWTs before sending
to authorization server

• Client needs to decrypt JWTs sent by
authorization server

In each case, it is also necessary to do the following on the same instance that contains the client web application:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the client’s certificate and the authorization server’s certificate (either or both, depending on which certificates you
need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the client certificate, when you create the credential set, be sure to load the private key and provide the password
for the private key.

• When you configure the client, select the option Create JWT Settings from X509 credentials. Also specify the following:

– X509 credentials — Select the credential set that uses the client’s certificate and that contains the corresponding
private key (for example, ClientConfig).

162 Reference for Operational and Actionable Resources for Security

Identity and Access Management

– Private key password — Enter the password for the private key for this certificate.

Using Certificates for an OAuth 2.0 Resource Server

An OAuth 2.0 resource server can receive JWTs (which might be encrypted, signed, or both) from the authorization server.
Similarly, the resource server can send JWTs (which might be encrypted, signed, or both) to the authorization server. If
you would like to use certificate/private key pairs for these purposes, consult the table below to determine which certificates
you need:

Requirement for Resource Server ConfigurationScenario

Obtain a certificate owned by the authorization server, as
well as the CA certificate that signs the server certificate.
The public key in this certificate is used for signature
verification and encryption.

Resource server needs to verify signatures of
JWTs sent by authorization server

Resource server needs to encrypt JWTs sent
to authorization server

Obtain a private key for the resource server, as well as the
corresponding certificate and the CA certificate that signs
the certificate. The private key is used for signing and
decryption.

Resource server needs to sign JWTs before
sending to authorization server

Resource server needs to decrypt JWTs sent
by authorization server

In each case, it is also necessary to do the following on the same instance that contains the resource server web application:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the resource server’s certificate and the authorization server’s certificate (either or both, depending on which certificates
you need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the resource server’s certificate, when you create the credential set, be sure to load the private key and provide the
password for the private key.

• When you configure the resource server, select the option Create JWT Settings from X509 credentials. Also specify the
following:

– X509 credentials — Select the credential set that uses the resource server’s certificate and that contains the corre-
sponding private key (for example, ResourceConfig).

– Private key password — Enter the password for the private key for this certificate.

Using Certificates for an OAuth 2.0 Authorization Server

An OAuth 2.0 authorization server can receive JWTs (which might be encrypted, signed, or both) from its clients. Similarly,
it can send JWTs (which might be encrypted, signed, or both) to its clients. If you would like to use certificate/private key
pairs for these purposes, consult the table below to determine which certificates you need:

Reference for Operational and Actionable Resources for Security 163

OAuth 2.0 and OpenID Connect

Requirement for Authorization Server ConfigurationScenario

Obtain a certificate owned by that client, as well as the CA
certificate that signs the certificate. The public key in this
certificate is used for signature verification and encryption.

Authorization server needs to verify signatures
of JWTs sent by a client

Authorization server needs to encrypt JWTs sent
to a client

Obtain a private key for the authorization server, as well
as the corresponding certificate and the CA certificate that
signs the certificate. The private key is used for signing
and decryption.

Authorization server needs to sign JWTs before
sending to its clients

Authorization server needs to decrypt JWTs sent
by its clients

In each case, it is also necessary to do the following on the same instance that contains the authorization server:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the clients’ certificates and the authorization server’s certificate (either or both, depending on which certificates you
need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the authorization server certificate, when you create the credential set, be sure to load the private key and provide
the password for the private key.

• When you configure the server, select the JWT Settings tab. On that tab, select the option Create JWT Settings from

X509 credentials. Also specify the following:

– X509 credentials — Select the credential set that uses the authorization server’s certificate and that contains the
corresponding private key (for example, AuthConfig).

– Private key password — Enter the password for the private key for this certificate.

• When you create client definitions on the server, select the JWT Settings tab. On that tab, for Source other than dynamic

registration, select X509 certificate. Also, for Client credentials — Select the credential set that uses the client’s certificate
(for example, ClientConfig).

Working with JWT Headers
This topic discusses how to customize the header of a JWT and how to process custom values in a JWT header. Keep in
mind that a JWT can be generated by the authorization server or by custom code outside of the OAuth framework.

Adding Header Values (Authorization Server)

When the authorization server generates a JWT token, the alg, enc, kid, typ and cty headers are set automatically
based on the signature and encryption algorithms used and cannot be directly manipulated with custom code. However,
other header values can be added to the JWT header using the JWTHeaderClaims array. For example, JWTHeaderClaims
can be used to add jku and jwk header parameters to the token. In the case of jku, the server automatically adds the relevant
jwk_uri or JWKS to the JOSE array. Note that not all header parameters defined by RFC 7515 are supported. The
JWTHeaderClaims array can also be used to add arbitrary custom values to the JWT header.

164 Reference for Operational and Actionable Resources for Security

Identity and Access Management

For example, the following code could be added to a subclass of %OAuth2.Server.Validate to add two standard headers
and one custom header value to the JWT header:

ClassMethod ValidateUser(username As %String, password As %String, scope As %ArrayOfDataTypes, properties
 As %OAuth2.Server.Properties, Output sc As %Status) As %Boolean
{
 ...
 Do properties.SetClaimValue("co","intersystems")

 Do properties.JWTHeaderClaims.SetAt("","jku")
 Do properties.JWTHeaderClaims.SetAt("","co")
 Do properties.JWTHeaderClaims.SetAt("","iss")
 ...
}

Adding Header Values (Direct JWT Generation)

It is possible to use custom code to generate a JWT outside of the OAuth framework using the ObjectToJWT() method.
This method accepts an array of strings representing the JOSE header as its first parameter. To add values to the JWT
header, simply add values to the JOSE array before calling the ObjectToJWT method. For example, to add the jku header
parameter to the JOSE header:

Set JOSE("jku")=""
Set JOSE("jku_local")=%server.Metadata."jwks_uri"
Set JOSE("jku_remote")=%client.Metadata."jwks_uri"
// set JOSE("sigalg") and/or JOSE("encalg") and JOSE("keyalg")
Set sc=##class(%OAuth2.JWT).ObjectToJWT(.JOSE,json,%server.PrivateJWKS,%client.RemotePublicJWKS,.JWT)

For a description of JOSE array nodes that correspond to standard header parameters, see the class reference.

Adding Custom Header Parameters

The JOSE array passed to the ObjectToJWT method can include custom header parameters that are inserted into the JWT
header. To include custom header parameters, first define them as key-value pairs in a dynamic object, where the key is
the name of the custom parameter and the value is the parameter's value. Once the dynamic object is defined, add it to a
node of the JOSE array using the custom subscript. For example, the following code inserts two custom parameters, co
and prod, into the JWT header:

Set newParams={"co":"intersystems","prod":"bazbar"}
Set JOSE("custom")=newParams
// set JOSE("sigalg") and/or JOSE("encalg") and JOSE("keyalg")
Set sc=##class(%OAuth2.JWT).ObjectToJWT(.JOSE,json,%server.PrivateJWKS,%client.RemotePublicJWKS,.JWT)

The custom node of the JOSE array cannot be used to override the header values defined by RFC 7515. If doing nested
signing and encryption, the custom headers will only be included in the "inner" (signed) token.

Processing Custom Header Parameters

The JWTToObject method allows you to process a JWT to return its headers. These headers can be accessed in two ways.
Standard JOSE header parameters containing the algorithms used for Signature and/or Encryption operations performed
on the JWT are returned by the method in an array of strings. In addition, the "raw" header of the JWT is returned as a
dynamic object in the 6th parameter. By parsing the key-value pairs of this dynamic object, you can process custom and
standard header parameters that are present in the JWT header. If the token was created using nested signing and encryption,
the raw header returned by the method is from the "inner" (signed) token.

Reference for Operational and Actionable Resources for Security 165

OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/html/rfc7515

Delegated Authorization

Using Delegated Authorization
InterSystems IRIS® data platform supports the use of user-defined authorization code. This is known as delegated autho-
rization.

• Overview of Delegated Authorization

• Create Delegated (User-Defined) Authorization Code

• Configure an Instance to Use Delegated Authorization

• After Authorization — The State of the System

Overview of Delegated Authorization
Delegated authorization allows administrators to implement custom mechanisms to replace the role-assignment activities
that are part of InterSystems security. For example, user-defined authorization code might look up a user’s roles in an
external database and provide that information to InterSystems IRIS.

To use delegated authorization, there are the following steps:

1. Create Delegated (User-Defined) Authorization Code in the ZAUTHORIZE routine.

2. Configuring an Instance to Use Delegated Authorization for the InterSystems IRIS instance.

Note: Delegated authorization is only supported with Kerberos and Operating-System–based authentication.

Interactions between Delegated Authentication and Delegated Authorization
Delegated authorization through ZAUTHORIZE.mac is not supported for use with delegated authentication. The routine
for delegated authentication (ZAUTHENTICATE, which is described in Using Delegated Authentication) provides support
for authorization. When using ZAUTHENTICATE, you have the option to segregate authentication and authorization
code.

Important: If using authentication with HealthShare®, you must use the ZAUTHENTICATE routine provided by
InterSystems and cannot write your own.

Create Delegated (User-Defined) Authorization Code
Topics associated with creating delegated authorization code include:

• Start From the ZAUTHORIZE.mac Template

• ZAUTHORIZE Signature

• Authorization Code with ZAUTHORIZE

• ZAUTHORIZE Return Value and Error Messages

Start From the ZAUTHORIZE.mac Template

InterSystems provides a sample routine, ZAUTHORIZE.mac, that you can copy and modify. This routine is part of the
Samples-Security sample on GitHub (https://github.com/intersystems/Samples-Security). You can download the entire
sample as described in Downloading Samples for Use with InterSystems IRIS , but it may be more convenient to simply
open the file on GitHub and copy its contents.

To create your own ZAUTHORIZE.mac:

166 Reference for Operational and Actionable Resources for Security

Identity and Access Management

https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://github.com/intersystems/Samples-Security

1. To use ZAUTHORIZE.mac as a template, copy its contents and save them into a ZAUTHORIZE.mac routine in the %SYS

namespace.

2. Review the comments in the ZAUTHORIZE.mac sample. These provide important guidance about how to implement
a custom version of the routine.

3. Edit your routine by adding custom authorization code and any desired code to set user account characteristics.

CAUTION: Because InterSystems IRIS places no constraints on the authorization code in ZAUTHORIZE, the appli-
cation programmer is responsible for ensuring that this code is sufficiently secure.

Upgrade Delegated Authorization Code
Before upgrading to a new version of InterSystems IRIS, check ZAUTHORIZE.mac to determine if your current authorization
code needs any changes to support new functionality.

ZAUTHORIZE Signature

When configured for delegated authorization, the system automatically calls ZAUTHORIZE after authentication occurs.
InterSystems IRIS supplies values for the parameters defined in the ZAUTHORIZE signature as necessary. The signature
of ZAUTHORIZE is:

ObjectScript

ZAUTHORIZE(ServiceName, Namespace, Username, Password,
 Credentials, Properties) PUBLIC {

 // authorization code
 // optional code to specify user account properties and roles
}

where:

• ServiceName — A string specifying the name of the service through which the user is connecting to InterSystems IRIS,
such as %Service_Console or %Service_WebGateway.

• Namespace — A string specifying the namespace on the InterSystems IRIS server to which a connection is being
established. This is for use only with %Service_Bindings, such as connections for Studio or ODBC; for any other
service, the value should be "" (the empty quoted string).

• Username — A string specifying the user whose privileges are being determined.

• Password — A string specifying the password associated with account in use. This is for use only with the Kerberos
K5API authentication mechanism; for any other mechanism, the value should be "" (the empty quoted string).

• Credentials — Passed by reference. Not implemented in this version of InterSystems IRIS.

• Properties — Passed by reference. An array of returned values that specifies characteristics of the account named by
Username. For more information, see ZAUTHORIZE and User Properties.

Authorization Code with ZAUTHORIZE

The purpose of ZAUTHORIZE is to establish or update the roles and other characteristics for the authenticated user. The
content of authorization code is application-specific. It can include any user-written ObjectScript code, class method, or
$ZF callout.

Reference for Operational and Actionable Resources for Security 167

Delegated Authorization

ZAUTHORIZE specifies role information by setting the values of the Properties array, which is passed by reference to
ZAUTHORIZE. Typically, the source for the values being set is a repository of user information that is available to
ZAUTHORIZE.

CAUTION: Because InterSystems IRIS does not and cannot place any constraints on the authorization code in
ZAUTHORIZE, the application programmer is responsible for ensuring that this code is sufficiently
secure.

ZAUTHORIZE and User Properties

Elements of the Properties array specify values of attributes associated with the user specified by the Username parameter.
Typically, code within ZAUTHORIZE sets values for these elements. The elements in the Properties array are:

• Properties("Comment") — Any text.

• Properties("FullName") — The first and last name of the user.

• Properties("NameSpace") — The default namespace for a Terminal login.

• Properties("Roles") — The comma-separated list of roles that the user holds in InterSystems IRIS.

• Properties("Routine") — The routine that is executed for a Terminal login. A value of "" specifies that the Terminal
run in programmer mode.

• Properties("Password") — The user’s password.

• Properties("Username") — The user’s username.

Each of these elements is described in more detail in one of the following sections.

Note: It is not possible to manipulate the value of any member of the Properties array after authorization.

Comment

If ZAUTHORIZE returns a value for Properties("Comment"), then that string becomes the value of the user
account’s Comment property in InterSystems IRIS. (This property is described in User Account Properties.) If no
value is passed back to the calling routine, then the value of Comment for the user account is a null string and the
relevant field in the Management Portal holds no content.

FullName

If ZAUTHORIZE returns a value for Properties("FullName"), then that string becomes the value of the user
account’s Full name property in InterSystems IRIS. (This property is described in User Account Properties.) If
no value is passed back to the calling routine, then the value of Full name for the user account is a null string and
the relevant field in the Management Portal holds no content.

NameSpace

If ZAUTHORIZE sets the value of Properties("Namespace"), then that string becomes the value of the user
account’s Startup Namespace property in InterSystems IRIS. (This property is described in User Account Properties.)
If no value is passed back to the calling routine, then the value of Startup Namespace for the user account is a null
string and the relevant field in the Management Portal holds no content.

Once connected to InterSystems IRIS, the value of Startup Namespace — as specified by the value of
Properties("Namespace") — determines the initial namespace for any user authenticated for local access (such
as for Console, Terminal, or Telnet). If Startup Namespace has no value, then the initial namespace for any user
authenticated for local access is determined as follows:

1. If the USER namespace exists, that is the initial namespace.

168 Reference for Operational and Actionable Resources for Security

Identity and Access Management

2. If the USER namespace does not exist, the initial namespace is the %SYS namespace.

Note: If the user does not have the appropriate privileges for the initial namespace, access is denied.

Password

If ZAUTHORIZE sets the value of Properties("Password"), then that string becomes the value of the user
account’s Password property in InterSystems IRIS. (This property is described in User Account Properties.) If no
value is passed back to the calling routine, then the value of Password for the user account is a null string and the
relevant field in the Management Portal then holds no content.

If ZAUTHORIZE returns a password, this allows the user to log in to the system via Password authentication if
it is enabled. This is a possible mechanism to help migrate from delegated authentication to Password authentication,
though with the usual cautions associated with the use of multiple authentication mechanisms; see Cascading
Authentication for more details.

Roles

If ZAUTHORIZE sets the value of Properties("Roles"), then that string specifies the Roles to which a user is
assigned; this value is a string containing a comma-delimited list of roles. If no value is passed back to the calling
routine, then there are no roles associated with the user account and the Management Portal indicates this. Infor-
mation about a user’s roles is available on the Roles tab of a user’s Edit User page and a user’s profile.

If any roles returned in Properties("Roles") are not defined, then the user is not assigned to the role.

Hence, the logged-in user is assigned to roles as follows:

• If a role is listed in Properties("Roles") and is defined by the InterSystems IRIS instance, then the user is
assigned to the role.

• If a role is listed in Properties("Roles") and is not defined by the InterSystems IRIS instance, then the user is
not assigned to the role.

• A user is always assigned to those roles associated with the _PUBLIC user. A user also has access to all
public resources. For information on the _PUBLIC user, see The _PUBLIC account; for information on
public resources, see Services and their resources.

Routine

If ZAUTHORIZE sets the value of Properties("Routine"), then that string becomes the value of the user account’s
Startup Tag^Routine property in InterSystems IRIS. (This property is described in User Account Properties.) If
no value is passed back to the calling routine, then the value of Startup Tag^Routine for the user account is a null
string and the relevant field in the Management Portal then holds no content.

If Properties("Routine") has a value, then this value specifies the routine to execute automatically following login
on a terminal-type service (such as Console, Terminal, or Telnet). If Properties("Routine") has no value or a value
of "", then login starts the Terminal session in programmer mode, subject to whether they have the privilege to
access programmer mode or not.

Username

If ZAUTHORIZE sets the value of Properties("Username"), then that string becomes the value of the user
account’s Name property in InterSystems IRIS. (This property is described in User Account Properties.) This
provides the application programmer with an opportunity to normalize content provided by the end-user at the
login prompt (while ensuring that the normalized username only differ by case).

Reference for Operational and Actionable Resources for Security 169

Delegated Authorization

If there is no explicit call that passes the value of Properties("Username") back to the calling routine, then there
is no normalization and the value entered by the end-user at the prompt serves as the value of the user account’s
Name property without any modification.

The User Information Repository

ZAUTHORIZE can refer to any kind of repository of user information, such as a global or an external file. It is up to the
code in the routine to set any external properties in the Properties array so that the authenticated user can be created or
updated with this information. For example, while a repository can include information such as roles and namespaces,
ZAUTHORIZE code must make that information available to InterSystems IRIS.

If information in the repository changes, this information is only propagated back into the InterSystems IRIS user information
if there is code in ZAUTHORIZE to perform this action. Also, if there is such code, changes to users’ roles must occur
in the repository; if you change a user’s roles during a session, the change does not become effective until the next login,
at which point the user’s roles are reset by ZAUTHORIZE.

ZAUTHORIZE Return Value and Error Messages

The routine returns one of the following values:

• Success — $SYSTEM.Status.OK(). This indicates that ZAUTHORIZE has successfully executed. Depending on
the code in the routine, this can indicate successful authentication of the user associated with Username and Password,
successful authorization of the user associated Username, or both.

• Failure — $SYSTEM.Status.Error($$$ERRORMESSAGE). This indicates that authorization failed. When
ZAUTHORIZE returns an error message, it appears in the audit log if the LoginFailure event auditing is enabled; the
end-user only sees the $SYSTEM.Status.Error($$$AccessDenied) error message.

ZAUTHORIZE can return system-defined or application-specific error messages. All these messages use the Error method
of the %SYSTEM.Status class. This method is invoked as $SYSTEM.Status.Error and takes one or two arguments,
depending on the error condition.

The available system-defined error messages are:

• $SYSTEM.Status.Error($$$AccessDenied) — Error message of “Access Denied”

• $SYSTEM.Status.Error($$$InvalidUsernameOrPassword) — Error message of “Invalid Username or Password”

• $SYSTEM.Status.Error($$$UserNotAuthorizedOnSystem,Username) — Error message of “User username is
not authorized”

• $SYSTEM.Status.Error($$$UserAccountIsDisabled,Username) — Error message of “User username account is
disabled”

• $SYSTEM.Status.Error($$$UserInvalidUsernameOrPassword,Username) — Error message of “User username
invalid name or password”

• $SYSTEM.Status.Error($$$UserLoginTimeout) — Error message of “Login timeout”

• $SYSTEM.Status.Error($$$UserCTRLC) — Error message of “Login aborted”

• $SYSTEM.Status.Error($$$UserDoesNotExist,Username) — Error message of “User username does not exist”

• $SYSTEM.Status.Error($$$UserInvalid,Username) — Error message of “Username username is invalid”

• $SYSTEM.Status.Error($$$PasswordChangeRequired) — Error message of “Password change required”

• $SYSTEM.Status.Error($$$UserAccountIsExpired,Username) — Error message of “User username account has
expired”

• $SYSTEM.Status.Error($$$UserAccountIsInactive,Username) — Error message of “User username account is
inactive”

170 Reference for Operational and Actionable Resources for Security

Identity and Access Management

• $SYSTEM.Status.Error($$$UserInvalidPassword) — Error message of “Invalid password”

• $SYSTEM.Status.Error($$$ServiceDisabled,ServiceName) — Error message of “Logins for Service username
are disabled”

• $SYSTEM.Status.Error($$$ServiceLoginsDisabled) — Error message of “Logins are disabled”

• $SYSTEM.Status.Error($$$ServiceNotAuthorized,ServiceName) — Error message of “User not authorized for
service”

To use these error codes, uncomment the #include %occErrors statement that appears in ZAUTHORIZE.mac.

To generate a custom message, use the $SYSTEM.Status.Error() method, passing it the $$$GeneralError macro and
specifying any custom text as the second argument. For example:

$SYSTEM.Status.Error($$$GeneralError,"Any text here")

Note that when an error message is returned to the caller, it is logged in the audit database (if LoginFailure event auditing
is turned on). However, the only error message the user sees is $SYSTEM.Status.Error($$$AccessDenied). However, the
user also sees the message for the $$$PasswordChangeRequired error. Return this error if you want the user to change
from the current to a new password.

Configure an Instance to Use Delegated Authorization
Once you have created a customized ZAUTHORIZE routine, the next step is to enable it for the instance’s relevant services
or applications. This procedure is:

1. Run the ^SECURITY routine from the %SYS namespace in a Terminal or Console window.

2. In ^SECURITY, choose System parameter setup; under that, choose Edit authentication options; and under that,
choose either Allow Kerberos authentication or Allow Operating System authentication. (Delegated authorization is only
supported for these two authentication mechanisms.).

3. If you have selected Allow Operating System authentication, choose Allow Delegated Authorization for O/S authentication.
If you have selected Allow Kerberos authentication, choose Allow Delegated Authorization for Kerberos authentication.

Selecting either of these choices causes InterSystems IRIS to invoke the ZAUTHORIZE.mac routine, if one exists, in the
%SYS namespace.

Important: InterSystems IRIS only calls ZAUTHORIZE after user authentication.

Delegated Authorization and User Types

When a user first logs in to InterSystems IRIS with an authentication mechanism that uses delegated authorization, the
system creates a user account either of Type OS (for Operating System) or Kerberos. (Note that this value does not appear
in the Type column of the table of users on the Users page (System Administration > Security > Users).) At the time of
account creation and, for subsequent logins, the ZAUTHORIZE routine specifies the roles for the user.

Any attempt to log in without using delegated authorization will result in a login failure. This is because only delegated
authorization specifies the user Type as OS or Kerberos. When using these authentication mechanisms without delegated
authorization, the user is authenticated as being of the Password user type; the login fails because a user can only have one
type and a user of one type cannot log in using mechanisms associated with another type. (Delegated authentication and
LDAP authentication also both fail for the same reason.)

For general information about user types, see About User Types.

After Authorization — The State of the System
If the user is successfully authorized, the InterSystems IRIS security database is updated in one of the following ways:

Reference for Operational and Actionable Resources for Security 171

Delegated Authorization

1. If this is the first time the user has logged in, a user record is created in the security database for the entered username,
using properties returned by ZAUTHORIZE.

2. If the user has logged in before, the user record is updated in the security database, using properties returned by this
function.

Whether for a first-time user or not, the process that logs in has the value of the $ROLES system variable set to the value
of Properties("Roles"). For a terminal login, the namespace is set to the value of Properties("NameSpace") and the startup
routine is set to the value of Properties("Routine").

172 Reference for Operational and Actionable Resources for Security

Identity and Access Management

Advanced Topics in Authentication

System Variables and Authentication
After authentication, two variables have values:

• $USERNAME contains the username

• $ROLES contains a comma-delimited list of the roles that the user holds

You can use the $ROLES variable to manage roles programmatically.

Use Multiple Authentication Mechanisms
The one situation in which InterSystems recommends the use of multiple authentication mechanisms is when moving from
a less rigorous mechanism to a more rigorous one. For example, if an instance has been using no authentication and plans
to make a transition to Kerberos, the following scenario might occur:

1. For the transition period, configure all supported services to allow both unauthenticated and Kerberos-authenticated
access. Users can then connect using either mechanism.

2. If appropriate, install new client software (which uses Kerberos for authentication).

3. Once the list of InterSystems IRIS users has been synchronized with that in the Kerberos database, shut off unauthen-
ticated access for all services.

The use of multiple authentication mechanisms is often in conjunction with cascading authentication, described in the next
section.

Cascading Authentication
While InterSystems IRIS supports for a number of different authentication mechanisms, InterSystems recommends that
you do not use any other password-based authentication mechanism along with Kerberos. Also, there are limited sets of
circumstances when it is advisable for an instance to have multiple authentication mechanisms in use.

If a service supports multiple authentication mechanisms, InterSystems IRIS uses what is called cascading authentication
to manage user access. With cascading authentication, InterSystems IRIS attempts to authenticate users via the specified
mechanisms in the following order:

• Kerberos cache (includes Kerberos with or without integrity-checking or encryption)

• OS-based

• LDAP (with checking the LDAP credentials cache second)

• Delegated

• Instance authentication

• Unauthenticated

Note: If a service specifies Kerberos prompting and this fails, there is no cascading authentication. If a service specifies
both Kerberos prompting and Kerberos cache, then InterSystems IRIS uses Kerberos cache only.

For example, if a service supports authentication through:

1. Kerberos cache

2. OS-based

3. Unauthenticated

Reference for Operational and Actionable Resources for Security 173

Advanced Topics in Authentication

If a user attempts to connect to InterSystems IRIS, then there is a check if the user has a Kerberos ticket-granting ticket; if
there is such a ticket, there is an attempt to obtain a service ticket for InterSystems IRIS. If this succeeds, the user gets in.
If either there is no initial TGT or an InterSystems service cannot be obtained, authentication fails and, so, cascades
downward.

If the user has an OS-based identity that is in the InterSystems IRIS list of users, then the user gets in. If the user’s OS-
based identity is not in the InterSystems IRIS list of users, then authentication fails and cascades downward again.

When the final option in cascading authentication is unauthenticated access, then all users who reach this level gain access
to InterSystems IRIS.

Note: If an instance supports cascading authentication and a user is authenticated with the second or subsequent
authentication mechanism, then there have been login failures with any mechanisms attempted prior to the suc-
cessful one. If the %System/%Login/LoginFailure audit event is enabled, these login failures will appear in the
instance’s audit log.

Establish Connections with the UnknownUser Account
If instance authentication and unauthenticated mode are both enabled, then a user can simply press Enter at the Username

and Password prompts to connect to the service in unauthenticated mode, using the UnknownUser account. If only instance
authentication is enabled, then pressing Enter at the Username and Password prompts denies access to the service; InterSys-
tems IRIS treats this as a user attempting to log in as the UnknownUser account and providing the wrong password.

Programmatic Logins
In some situations, it may be necessary for a user to log in after execution of an application has begun. For example, an
application may offer some functionality for unauthenticated users and later request the user to log in before some protected
functionality is provided.

An application can call the InterSystems IRIS log in functionality through the Login method of the $SYSTEM.Security

class with the following syntax:

ObjectScript

 set success = $SYSTEM.Security.Login(username,password)

where

• success is a boolean where 1 indicates success and 0 indicates failure

• username is a string holding the name of the account logging in

• password is a string holding the password for the username account

If the username and password are valid and the user account is enabled and its expiration date has not been reached, then
the user is logged in, $USERNAME and $ROLES are updated accordingly, and the function returns 1. Otherwise,
$USERNAME and $ROLES are unchanged and the function returns 0.

No checking of privileges occurs as a result of executing $SYSTEM.Security.Login. As a result, it is possible that the
process has lost privileges that were previously held.

There is also a one-argument form of $SYSTEM.Security.Login:

ObjectScript

 set success = $SYSTEM.Security.Login(username)

It behaves exactly the same as the two-argument form except that no password checking is performed. The single-argument
form of $SYSTEM.Security.Login is useful when applications have performed their own authentication and want to set

174 Reference for Operational and Actionable Resources for Security

Identity and Access Management

the InterSystems IRIS user identity accordingly. It can also be used in situations where a process is executing on behalf of
a specific user but is not started by that user.

Note: The single-argument form of the Login method is a restricted system capability.

The JOB Command and Establishing a New User Identity
When a process is created using the JOB command, it inherits the security characteristics (that is, the values of $USERNAME
and $ROLES) of the process that created it. Note that all roles held by the parent process, User as well as Added, are
inherited.

In some cases, it is desirable for the newly created process to have $USERNAME and $ROLES values that are different
from its parent’s values. For example, a task manager might be created to start certain tasks at certain times on behalf of
certain users. While the task manager itself would likely have significant privileges, the tasks should run with the privileges
of the users on whose behalf they are executing, not with the task manager’s privileges.

The following pseudocode illustrates how this can be done:

WHILE ConditionToTest {
 IF SomeThingToStart {
 DO Start(Routine, User)
 }
}

Start(Routine, User) {
 NEW $ROLES // Preserve $USERNAME and $ROLES

 // Try to change username and roles
 IF $SYSTEM.Security.Login(User) {
 JOB ...
 QUIT $TEST
 }
 QUIT 0 // Login call failed
}

Authentication and the Management Portal
The Management Portal consists of several separate web applications. The main page of the Portal is associated with the
/csp/sys application and other pages are associated with various /csp/sys/* applications (such as the security-related content,
which is associated with the /csp/sys/sec application). If the applications do not all have a common set of authentication
mechanism(s) in use, users going from one Portal page to another may encounter login prompts or sudden shifts in their
level of privilege.

For example, if the /csp/sys application is using instance authentication exclusively, while other related Portal applications
are using unauthenticated access exclusively, then, as users move from one Portal page to another, they go from unauthen-
ticated access to requiring authentication. Another possible case is this: the /csp/sys application supports only instance
authentication, the other applications support only unauthenticated access, and UnknownUser has no special privileges; in
this case, when users go from the Portal’s main page to its other pages, they may not have sufficient privileges to perform
any action.

To check and configure the authentication mechanism for a web application, select the application from the Web Applications

page in the Portal (System Administration > Security > Applications > Web Applications) and, for the displayed application,
make selections under Allowed Authentication Methods as appropriate (typically, so that /csp/sys and /csp/sys/* share a
common set of authentication mechanisms).

Reference for Operational and Actionable Resources for Security 175

Advanced Topics in Authentication

Encryption

Reference for Operational and Actionable Resources for Security 177

Introduction to InterSystems Encryption

Introduction to InterSystems Encryption
InterSystems IRIS® data platform includes support for managed key encryption, a suite of technologies that protects data
at rest. These technologies are:

• Block-level database encryption, also known simply as database encryption — A set of administrative tools to allow
creation and management of databases in which all the data is encrypted. Such databases are managed through the
Management Portal.

• Data-element encryption for applications, also known simply as data-element encryption — A programmatic interface
that allows applications to include code for encrypting and decrypting individual data elements (such as particular class
properties) as they are stored to and retrieved from disk.

• Encryption key management, also known simply as key management — A set of tools for creating and managing the
keys that are used to encrypt either databases or data elements.

Keys for encrypting either databases or data elements are known as data-encryption keys and may also be known simply
as keys (when the context is clear). Each instance can simultaneously have up to 256 data-encryption keys activated for
database encryption and up to 256 data-encryption keys activated for data-element encryption; activating a key makes it
available for encryption and decryption operations.

Note: You can simultaneously use a key in a key file for database encryption and data-element encryption.

InterSystems IRIS uses AES (the Advanced Encryption Standard) to perform its encryption and decryption when an instance
writes to or reads from disk. For databases, InterSystems IRIS writes and reads in fixed-length blocks, and the entire database
is encrypted, except for the single label block; this encrypted content includes the data itself, indexes, bitmaps, pointers,
allocation maps, and incremental backup maps. For data elements, only the specified data is encrypted, and a unique iden-
tifier for the encryption key is included with the encrypted data on disk.

Encryption and decryption have been optimized, and their effects are both deterministic and small for any InterSystems
IRIS platform. For information about how InterSystems IRIS database encryption affects facilities related to but separate
from databases, see Encryption and Database-Related Facilities.

178 Reference for Operational and Actionable Resources for Security

Encryption

Key Management Tasks

Key Management Tasks
A key, short for data-encryption key, is a 128–, 196–, or 256–bit bit string that is used with a cryptographic algorithm to
reversibly encrypt or decrypt data. Each key has a unique identifier (known as a GUID), which InterSystems IRIS® data
platform displays as part of key management activities.

Key management is the set of activities associated with creating keys, activating keys, deactivating keys, assigning default
keys for various activities, and deleting keys. It also includes management activities associated with key storage. You can
store keys in either of two ways:

• In key files — The following types of key files are supported:

– Standard Key Files — Key files that can contain multiple keys, the contents of which are encrypted via a key
administrator passphrase. These key files can contain up to 256 encrypted keys. See Manage Keys in Standard
Key Files for details.

– KMS Key Files — Key files that contain keys encrypted via key management services (KMS) provided by the
AWS or Azure cloud service provider (CSP). Each KMS key file can only contain a single key. See Using a KMS
for Key Management for prerequisite and usage information.

• On a KMIP server — A KMIP server is a key management server that can send and receive communications using
the key management interoperability protocol (KMIP). KMIP servers are available from various third-party vendors;
those vendors provide instructions for configuring and using the KMIP server generally.

Note: If you wish to configure encryption for journal files or the IRISTEMP and IRISLOCALDATA databases, this is part
of InterSystems IRIS startup configuration. See Configure Encryption Startup Settings for details.

Manage Keys in Standard Key Files
A key file is a file that holds encrypted copies of one or more data-encryption keys (DEKs). Key file management is the
set of activities associated with key files themselves, such as adding administrators to or removing administrators from key
files. Within a particular standard key file, all administrators have access to all keys. All keys are stored in an encrypted
form, along with administrator information; each DEK is individually encrypted using a key-encryption key (KEK). For
each administrator in the standard key file, there is a unique, encrypted copy of the KEK, which is encrypted using a prin-
cipal key — where each principal key is derived from an individual key administrator’s password. Encryption tasks require
an activated DEK, and InterSystems IRIS requires an administrator username and password to decrypt that key so that it
can then be used for encryption tasks. See the following diagram for a visual depiction of the standard key file process:

Reference for Operational and Actionable Resources for Security 179

Key Management Tasks

Working with standard key files involves the following tasks:

• Create a Standard Key File

• Add a Key to a Standard Key File, or Delete a Key from a Standard Key File

• Add an Administrator to a Standard Key File, or Delete an Administrator from a Standard Key File

• Activate a Database Encryption Key from a Standard Key File, or Deactivate a Database Encryption Key

• Activate a Data-Element Encryption Key from a Standard Key File, or Deactivate a Data-Element Encryption Key

• Manage Keys and Standard Key Files with Multiple-Instance Technologies

• Specify the Default Encryption Key or Journaling Encryption Key for an Instance

Note: If an instance uses multiple keys at startup time (such as with journal files, the audit database, and other databases),
then those keys must all be in a single standard key file. This allows them all to be available when the instance
starts.

Create a Standard Key File

When you create a standard key file, it contains one key. To create a standard key file and its initial key:

1. From the Management Portal home page, go to the Create Encryption Key File page (System Administration > Encryption

> Create New Encryption Key File).

2. On the Create Encryption Key File page, specify the following values:

180 Reference for Operational and Actionable Resources for Security

Encryption

• Key File — The name of the standard key file where the encryption key is stored; this can be an absolute or relative
path name.

If you enter an absolute file name, the standard key file is placed in the specified directory on the specified drive;
if you enter a relative file name, the standard key file is placed in the manager’s directory for the InterSystems
IRIS instance (which is below the InterSystems IRIS installation directory — that is, in <install-dir>/mgr/). Also,
no file suffix is appended to the file name, so that the file MyKey is saved simply with that file name. You can also
use the Browse button to the right of this field to choose the directory where InterSystems IRIS will create the
standard key file. (If you provide the name of an existing file, InterSystems IRIS will not overwrite it and the save
will fail.)

WARNING! Any key stored in <install-dir>/Mgr/Temp is deleted when InterSystems IRIS next reboots —
never store a key in <install-dir>/Mgr/Temp.

• Administrator Name — The name of an administrator who can activate the key. There must be at least one
administrator.

Because the database encryption functionality exists independent of InterSystems IRIS security, this name need
not match any user names that are part of InterSystems IRIS security. By default, the initial administrator name
value is the current username. The administrator name cannot include Unicode characters.

• Password — A password for this user.

Because the database encryption functionality exists independent of InterSystems security, this password need
not match the password that a user has for InterSystems IRIS security. Note that this password is not stored anywhere
on disk; it is the responsibility of the administrator to ensure that this information is not lost.

InterSystems suggests that this password follow the administrator password strength guidelines. If someone can
successfully guess a valid password, the password policy is too weak. Also, this password cannot include Unicode
characters.

Important: The key administrator’s password is not stored anywhere on disk. It is the responsibility of the
key administrator to ensure that this information is not lost.

• Confirm Password — The password for this user entered again to confirm its value.

• Cipher Security Level — The length of the key, where choices are 128–bit, 192–bit, and 256–bit.

• Key Description — Text that describes the key that is initially created and stored in the standard key file. This text
appears in the Description column of the Encryption Keys Defined in Key File table.

3. Click Save at the top of the page to save the standard key file to disk.

4. Having just created a key, follow the instructions in Protection from Accidental Loss of Access to Encrypted Data to
create and store a backup copy of the newly updated standard key file.

This creates a standard key file with a single database encryption key in it and with a single administrator. The page displays
ID for the key, which is a string such as 9158980E-AE52-4E12-82FD-AA5A2909D029. The key ID is a unique identifier
for the key which InterSystems IRIS displays here and on other pages. It provides a means for you to keep track of the key,
regardless of its location. This is important because, once you save the standard key file, you can move it anywhere you
choose; this means that InterSystems IRIS cannot track it by its location.

The key is encrypted using the key-encryption key (KEK), and there is a single copy of the KEK, which is encrypted using
the administrator’s principal key. You can add additional keys to the standard key file according to the instructions in Add

Reference for Operational and Actionable Resources for Security 181

Key Management Tasks

a Key to a Standard Key File. You can add administrators to the standard key file according to the instructions in Add an
Administrator to a Standard Key File.

WARNING! InterSystems strongly recommends that you create and store a backup copy of the standard key file.
Each time you create a database encryption key, it is a unique key that cannot be re-created. Using the
same administrator and password for a new key still results in the creation of a different and unique key.
If an unactivated key is lost and cannot be recovered, the encrypted database that it protected will be
unreadable and its data will be permanently lost.

Add a Key to a Standard Key File

When using standard key files, there are two different ways to create a key:

• Create a standard key file. This causes InterSystems IRIS to create a key and place it in the file. To create a standard
key file, see Create a Standard Key File.

• Add a key to an existing standard key file, as described in this section.

To add a key to an existing standard key file:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. On the Manage Encryption Key File page, in the Key File field, enter the name of the standard key file to which you
want to add and store the key; click OK. This displays information about that standard key file; at the bottom of the
shaded area, the Encryption Keys Defined in Key File table displays a list of the one to 256 keys in the standard key file.
If there are 255 or fewer keys in the file, you can create a new key and add it to the file.

3. Click the Add button below the Encryption Keys Defined in Key File table to add a key to the standard key file. This
displays the Add a New Encryption Key screen.

4. In the Add a New Encryption Key screen, enter values in the following fields:

• Existing Administrator Name — The name of an administrator associated with the standard key file. (Administrators
associated with the file appear in the Administrators Defined in Key File table on the Manage Encryption Key File

page.)

• Existing Administrator Password — This administrator’s password.

• Description — Text to describe the key. This text appears in the Description column of the Encryption Keys Defined

in Key File table.

5. Click OK to save the key to the standard key file. This displays information about it in the Encryption Keys Defined in

Key File table, including its ID, which is a string such as 9158980E-AE52-4E12-82FD-AA5A2909D029. (The key
ID is a unique identifier for the key which InterSystems IRIS displays here and on other pages. It provides a means
for you to keep track of the key, regardless of its location. This is important because, once you save the standard key
file, you can move it anywhere you choose; this means that InterSystems IRIS cannot track it by its location.)

6. Having just added a new key to the standard key file, follow the instructions in Protection from Accidental Loss of
Access to Encrypted Data to create and store a backup copy of the newly updated standard key file.

WARNING! InterSystems strongly recommends that you create and store a backup copy of the standard key file.
Each time you create a database encryption key, it is a unique key that cannot be re-created. Using the
same administrator and password for a new key still results in the creation of a different and unique key.
If an unactivated key is lost and cannot be recovered, the encrypted database that it protected will be
unreadable and its data will be permanently lost.

182 Reference for Operational and Actionable Resources for Security

Encryption

Delete a Key from a Standard Key File

To delete a key from a standard key file:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. On the Manage Encryption Key File page, in the Key File field, enter the name of the standard key file from which you
want to delete the key; click OK. This displays information about that standard key file; at the bottom of the shaded
area, the Encryption Keys Defined in Key File table displays a list of the one to 256 keys in the standard key file. If there
is one or more keys in the file, you can delete a key from the file.

3. In the table of keys, click Delete in the row for a key to delete that key. Clicking Delete displays a confirmation page
for the action.

If the key’s Delete button is not available, this is because the key is the default encryption key or the journal encryption
key for the file. To delete the key, first specify that another key is the default encryption key or the journal encryption
key for the file by clicking Set Default or Set Journal for the other key.

4. Click OK on the confirmation dialog to delete the key from the file.

WARNING! Before deleting the only existing copy of a key, it is critical that you are absolutely sure that there is no
existing encrypted content that uses it. If there is no copy of the key that is required to decrypt data, the
encrypted data that it protected will be unreadable and permanently lost.

Add an Administrator to a Standard Key File

To add an administrator to an existing standard key file:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. In the Key File field, enter the path and filename of the standard key file to open and click OK; you can also use the
Browse button to look for the key. Once the Portal opens the standard key file, it displays a table with the administrators
listed in the file; administrator names appear in all capital letters, regardless of how they were defined.

3. In the table of administrators, click Add to add a new administrator. This displays a page with the following fields:

• Existing Administrator Name — The name of an administrator already in the file.

• Existing Administrator Password — The password associated with the already existing administrator in the file.

• New Administrator Name — The name of the new administrator to be added to the file. Because the encryption
functionality is independent of InterSystems IRIS security, the administrator name need not match any user names
that are part of InterSystems IRIS security. This user name cannot include Unicode characters.

• New Administrator Password — The password for the new administrator. InterSystems suggests that this password
follow the administrator password strength guidelines; also, this password cannot include Unicode characters.
Because the encryption functionality is independent of InterSystems IRIS security, the password need not match
the password that a user has for InterSystems IRIS security.

• Confirm New Administrator Password — Confirmation of the password for the new administrator.

Complete these fields and click OK. You have now added a new administrator to the standard key file.

Once you have added the new administrator to the standard key file, you may wish to copy the standard key file, making
sure that each copy is in a secure location. Further, InterSystems strongly recommends that you create multiple administrators
for each key, one of which has the name and password written down and stored in a secure location, such as in a fireproof
safe. However, if copies of the standard key file are made and later on, as an administrative function, a new administrator
is added, only the copy of the standard key file with the new administrator will be up to date.

Reference for Operational and Actionable Resources for Security 183

Key Management Tasks

Note: When you add a new administrator to a standard key file, that administrator’s password is permanently associated
with the entry for the administrator name created in the file. Once assigned, passwords cannot be changed. If you
wish to assign a new password, delete the entry in the standard key file for that administrator name and then create
a new entry with the same name and a new password.

Delete an Administrator from a Standard Key File

To delete an administrator from a standard key file:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. In the Key File field, enter the path and filename of the key and click OK. This displays a table with the administrators
listed in the file (as well as a table of encryption keys in the file).

3. In the table of administrators, click Delete next to an administrator to remove that administrator for the key. Clicking
Delete displays a confirmation page for the action. (If there is only one administrator in the file, there is no Delete

button, as it is not permitted to delete this administrator.)

4. Click OK to delete the administrator from the file.

Activate a Database Encryption Key from a Standard Key File

InterSystems IRIS supports up to 256 simultaneously activated keys for database encryption. To activate a key from a
standard key file for database encryption:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption). If there are already any activated keys, the page displays a table listing these.

2. On this page, click Activate Key, which displays the fields for activating a key.

3. Enter values for the following fields:

• Key File — The name of the file where the encryption key is stored. If you enter an absolute file name, InterSystems
IRIS looks for the standard key file in the specified directory on the specified drive; if you enter a relative file
name, InterSystems IRIS looks for the standard key file starting in the manager’s directory for the InterSystems
IRIS instance (which is below the InterSystems IRIS installation directory — that is, in <install-dir>/mgr/). You
can also use the Browse button to display a dialog for opening the standard key file.

• Administrator Name — The name of an administrator for this key, specified either when the key was created or
edited.

• Password — The password specified for the named administrator.

4. Click the Activate button.

InterSystems IRIS then attempts to activate all the keys in the specified file. If there are not enough slots to activate all the
keys in the file, then InterSystems IRIS opens as many keys as it can.

After key activation, the Database Encryption page displays the table of activated keys. For each key that InterSystems
IRIS activates, the page adds the key to table of activated keys and displays the key’s identifier. For each activated key,
you can also perform various actions:

• Set Default — Click to specify that InterSystems IRIS uses this key when creating new encrypted databases. For more
details, see Specify the Default Encryption Key or Journaling Encryption Key for an Instance.

• Set Journal — Click to specify that InterSystems IRIS uses this key to encrypt journal files. For more details, see
Specify the Default Encryption Key or Journaling Encryption Key for an Instance.

• Deactivate — Click to deactivate this key. For more details, see Deactivate a Database Encryption Key

184 Reference for Operational and Actionable Resources for Security

Encryption

Note: The table of keys does not display any file or path information. This is because, once a standard key file is created,
any sufficiently privileged operating system user can move it; hence, InterSystems IRIS may not have accurate
information about the operating system location and can only rely on the accuracy of the GUID for the activated
key in memory. When activating a second or subsequent key, note the identifier(s) for the currently activated
key(s) first, so that you can identify the new one.

Activate a Data-Element Encryption Key from a Standard Key File

InterSystems IRIS supports up to 256 activated keys at one time for data-element encryption. To activate a key for data-
element encryption:

1. From the Management Portal home page, go to the Data Element Encryption page (System Administration > Encryption

> Data Element Encryption). If there are already any activated keys, the page displays a table listing these.

2. On the Data Element Encryption page, select Activate Key, which displays the fields for activating a key. If key activation
is not available, this is because there are already 256 activated data element keys.

3. Enter values for the following fields:

• Key File — The name of the file where the encryption key is stored. If you enter an absolute file name, InterSystems
IRIS looks for the standard key file in the specified directory on the specified drive; if you enter a relative file
name, InterSystems IRIS looks for the standard key file starting in the manager’s directory for the InterSystems
IRIS instance (which is below the InterSystems IRIS installation directory — that is, in <install-dir>/mgr/).

• Administrator Name — The name of an administrator for this key, specified either when the key was created or
edited.

• Password — The password specified for the named administrator.

4. Click the Activate button.

InterSystems IRIS then attempts to activate all the keys in the specified file. If there are not enough slots to activate all the
keys in the file, then InterSystems IRIS opens as many keys as it can.

After key activation, the Data Element Encryption page displays the table of activated keys. For each key that InterSystems
IRIS activates, the page adds the key to table of activated keys and displays the key’s identifier.

Note: The table of keys does not display any file or path information. This is because, once the standard key file is
activated, any sufficiently privileged operating system user can move the key; hence, InterSystems IRIS may not
have accurate information about the operating system location and can only rely on the accuracy of the GUID for
the activated key in memory. When activating a second or subsequent key, note the identifier(s) for the currently
activated key(s) first, so that you can identify the new one.

Manage Keys and Standard Key Files with Multiple-Instance Technologies

If you are using encrypted databases or journal files within an InterSystems IRIS cluster, the InterSystems IRIS instances
on all nodes in the cluster must share a single database encryption key.

Before enabling journal file encryption for any instance that belongs to an InterSystems IRIS mirror, see Activating Journal
Encryption in a Mirror for important information. (There are no mirroring-related requirements in regard to database
encryption.)

There are two ways to enable sharing of a single key:

• All of the instances share a single standard key file, which is located on one cluster node or mirror member.

In this case, if you change the single copy of the standard key file, then these changes are visible to all nodes or members.
However, if the host holding the standard key file becomes unavailable to the other nodes or members, any attempt to
read the key from the standard key file fails; this can prevent InterSystems IRIS instances from restarting properly.

Reference for Operational and Actionable Resources for Security 185

Key Management Tasks

• Each cluster node or mirror member has its own copy of the standard key file.

Here, if you change the standard key file, then you propagate copies of the standard key file (containing the same key)
to all the other nodes or members. This increases the burden of administering the standard key file (which is typically
small), but ensures that each instance of InterSystems IRIS always has a key available at startup.

Important: Whether there are single or multiple standard key files, the database encryption key itself is the same for
all instances.

Using a Single Standard Key File

To use a single standard key file:

1. Create a database encryption key on one node or member. For more information on this procedure, see Create a Standard
Key File.

2. Secure this key according to the instructions in Protection from Accidental Loss of Access to Encrypted Data.

CAUTION: Failure to take these precautions can result in a situation in which the encrypted databases or journal
files are unreadable and permanently lost.

3. Configure each instance of InterSystems IRIS for unattended startup and provide InterSystems IRIS with the path to
the standard key file. For more information on this procedure, see Startup with Unattended Key Activation.

Since all the InterSystems IRIS instances use the same key, they are able to read data encrypted by each other. Any changes
to the standard key file are visible to all instances.

Using Multiple Standard Key Files

To use multiple copies of a standard key file:

1. Create a database encryption key on one node or member. For more information on this procedure, see Create a Standard
Key File.

2. Secure this key according to the instructions in Protection from Accidental Loss of Access to Encrypted Data.

CAUTION: Failure to take these precautions can result in a situation in which the encrypted databases or journal
files are unreadable and permanently lost.

3. Make a copy of the standard key file for each of the remaining nodes or members.

4. On each node or member:

a. Get a copy of the standard key file and put it in a secure and stable location on that machine.

b. Configure each instance of InterSystems IRIS for unattended startup. For more information on this procedure, see
Startup with Unattended Key Activation.

Since each copy of the standard key file contains the same key, all the InterSystems IRIS instances are able to read data
encrypted by each other. Since each InterSystems IRIS instance has a standard key file on its machine, the standard key
file should always be available for an InterSystems IRIS restart. If there are any changes to the standard key file (such as
adding or removing administrators), you must propagate new copies of the standard key file to each machine and reconfigure
each instance of InterSystems IRIS for unattended startup using the new copy of the standard key file (even if that file is
in the same location as the old file).

Using a KMS for Key Management
InterSystems IRIS enables you to use the key management services (KMS) provided by a cloud service provider (CSP).
The KMS key acts as the key-encryption key (KEK), as in the standard key file encryption process. That is, the KEK

186 Reference for Operational and Actionable Resources for Security

Encryption

encrypts the data-encryption key (DEK) which is then stored in the KMS key file. A diagram showing an overview of this
process is below:

Prerequisites

• Install the command line interface (CLI) specific to your KMS provider. See the KMS documentation provided by the
CSP for specifics.

• Create and configure the user/service principal that represents the InterSystems IRIS instance when authenticating to
the CSP. This user needs to have the appropriate key access policy configured through the key’s associated key policy.
For Azure, this is through the key’s associated key vault access configuration, using either vault access policy or RBAC
permission models. Check you can authenticate to the CSP through the CLI using the InterSystems IRIS user or service
principal you configured. See the KMS documentation provided by the CSP for specifics.

• Create a KMS key on the CSP. For AWS, create a symmetric key. See Creating Keys for AWS for more details. For
Azure, create an RSA key. See About Azure Key Vault Keys for more details. Keep the key ID of this key available
as you need it for creating the KMS key file.

Interacting with the KMS

To perform key management tasks using the KMS for encryption, you can either invoke the ^EncryptionKey routine
or the InterSystems IRIS KMS API, both are in the %SYS namespace in the InterSystems IRIS terminal. For the
^EncryptionKey routine, enter at the command line:

%SYS>do ^EncryptionKey

^EncryptionKey has a menu-driven interface that enables you to perform the following KMS key management tasks:

• Create a key.

• Activate a database encryption key.

• Activate a data element encryption key.

• Configure unattended key activation with a KMS key file.

Reference for Operational and Actionable Resources for Security 187

Key Management Tasks

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://learn.microsoft.com/en-us/azure/key-vault/keys/about-keys

See Command-Line Security Management Utilities for more information about ^EncryptionKey.

Creating a New KMS Encryption Key Using the ^EncryptionKey Routine

To create a new KMS encryption key using the ^EncryptionKey routine, follow these steps:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, switch to the %SYS namespace:

>zn "%SYS"

3. Run ^EncryptionKey:

>do ^EncryptionKey

4. In ^EncryptionKey, select option 1 Create new encryption file, then enter a name for your key file at the prompt.
No extension is appended so the name you enter is the exact name of the file.

5. To use KMS, enter y at the Use KMS? prompt.

6. If desired, enter a description.

7. Select the key size.

8. Optional: If you decide to back up to a standard key file:

a. Enter the name of the backup standard key file and a key description when prompted.

b. Enter the username and password of a key administrator.

Because the database encryption functionality exists independent of InterSystems security, this password need
not match the password that a user has for InterSystems IRIS security. Note that this password is not stored anywhere
on disk; it is the responsibility of the administrator to ensure that this information is not lost.

InterSystems suggests that this password follow the administrator password strength guidelines. If someone can
successfully guess a valid password, the password policy is too weak. Also, this password cannot include Unicode
characters.

9. Choose the desired KMS (AWS or Azure).

10. At the Server Key ID prompt, enter the key ID of the KMS key you wish to use. This is the ID of the key you previously
configured on the KMS.

11. If you are using Azure, skip this step. If you are using AWS:

a. Enter your region (for example, us-east-2).

b. Optional: You can enter AWS environment variables at the Environment variable key prompt. For each desired
variable, enter the variable key at the Environment variable key prompt. Then enter the value at the Environment

variable value prompt. See the AWS documentation for more information about AWS environment variables. One
reason for using environment variables is to use a shared credentials file (AWS_SHARED_CREDENTIALS_FILE)
for authentication to the CSP through the command line.

12. The new KMS key file and data-encryption key are created. The display will echo back the following information:

Encryption key file created

The name of the encryption file containing the data-encryption key.

Encryption key backup file created

The name of the backup standard key file (if provided).

188 Reference for Operational and Actionable Resources for Security

Encryption

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html

Encryption key created via KMS

The key used to encrypt data in InterSystems IRIS.

13. Optional: Configure InterSystems IRIS startup options to use the new KMS key file by default:

a. Choose 4 Configure InterSystems IRIS startup options.

b. Choose 3 Unattended key activation with a key file, then enter the KMS key file name. If you are not using AWS,
ignore the Environment variable key prompt.

For more information about unattended startup, see Startup with Unattended Key Activation.

Creating a New KMS Encryption Key Using the InterSystems IRIS KMS API

To create a new KMS encryption key file using the API, use the $System.Encryption.KMSCreateEncryptionKey()
method. It has the same KMS prerequisites as the ^EncryptionKey routine. It follows the below usage:

%SYS>set KeyID =
$System.Encryption.KMSCreateEncryptionKey(File,Server,ServerKeyID,KeyLength,.Backup,Region,Description,.Env,.Status)

We retrieve and store the KeyID because it is required to identify and import the desired data-encryption key. This works
for data-at-rest encryption and data-element encryption.

The method arguments are defined as follows:

• File — Required. Name of the key file to create.

• Server — Required. Name of the KMS CSP server. Currently accepted values are “AWS" and "Azure" (case
insensitive).

• ServerKeyID — Required. Key ID of the principal key on the server.

• KeyLength — Required. Length in bytes of the data- and key-encryption keys. Must be 16, 24, or 32.

• Backup — Passed by reference, optional. Information for creating a backup key file. If specified, it must
contain the following entries:

– Backup(“File”) — Required. Name of the backup key file.

– Backup(“Username”) — Required. Name of the initial encryption key administrator for the backup key file.

– Backup(“Password”) — Required. Password for the initial encryption key administrator for the backup key
file.

Note: You should always obtain this value from a user prompt. You should never embed it in application code.

– Backup(“Desc”) — Optional. Description of the key.

• Region — Required for AWS only. Name of the region, for example us-east-2.

• Description — Optional. Description of the key.

• Env — Passed by reference, optional for AWS only. Environment variable information. For example,
Env("AWS_CONFIG_FILE") or Env("AWS_SHARED_CREDENTIALS_FILE").

• Status — Passed by reference, required. Returns the method status.

On success, this method returns the unique identifier of the new encryption key. See the below examples for AWS and
Azure usage. Note, the API requires the calling user to have %Admin_Secure:U privileges as well as access to the %SYS

namespace.

Reference for Operational and Actionable Resources for Security 189

Key Management Tasks

https://docs.intersystems.com/iris20233/csp/docbook/DocBook.UI.Page.cls?KEY=ROARS_encrypt_dbmgmt#ROARS_encrypt_dbmgmt_startup_unatt

For AWS KMS API call:

%SYS>w ^KeyIDaws
604cae51-139d-4b88-b8ac-8b303446ebe7
%SYS>s
KeyID=$System.Encryption.KMSCreateEncryptionKey("KMSTestAWS.key","AWS",^KeyIDaws,16,,"us-east-2","aws
 test key",,.rc)
%SYS>w rc," ",KeyID
1 3C978FFD-DEA8-4393-A454-BC06B311D545

For Azure KMS API call:

%SYS>w ^KeyIDaz
https://test.vault.azure.net/keys/testkey/3ab1ba844c0b407c9b6063cefe5053dd
%SYS>s KeyID=$System.Encryption.KMSCreateEncryptionKey("KMSTestAZ.key","azure",^KeyIDaz,16,,,,,.rc)
%SYS>w rc," ",KeyID
1 8DC5555E-A464-4A59-9B3A-FD06857E5056

Managing Keys with the Key Management Interoperability Protocol (KMIP)
InterSystems supports the use of a KMIP server to manage database encryption keys. Using KMIP includes the following
tasks:

• Create, edit, or delete a KMIP Server Configuration

• List the KMIP Server Configurations

• List Details about a KMIP Server Configuration

• Create a Key on the KMIP Server or Delete a Key on the KMIP Server

• List the Keys on the KMIP Server

• Activate a Database Encryption Key from a KMIP Server or Deactivate a Database Encryption Key

• Activate a Data-Element Encryption Key from a KMIP Server or Deactivate a Data-Element Encryption Key

• Copy a Key from a KMIP Server to a Key File

• Specify the Default Encryption Key or Journaling Encryption Key for an Instance

Note: • InterSystems IRIS supports KMIP protocol versions 1.0–2.1.

• KMIP activities are not supported on macOS instances of InterSystems IRIS.

Create a KMIP Server Configuration

When establishing a connection between InterSystems IRIS and a KMIP server, you create a KMIP server configuration,
which defines properties of the KMIP server and represents it within the InterSystems IRIS instance. To create a KMIP
server configuration:

1. Set up the KMIP server according to its vendor’s instructions.

CAUTION: When configuring a KMIP server, follow all proper backup procedures according to your vendor’s
instructions. If you do not have backup copies of your keys, you may lose data permanently.

Once you have set up the server, you can then set up the KMIP server configuration in InterSystems IRIS:

2. To set up a KMIP server configuration, you must have:

• The certificate authority (CA) certificate for the KMIP server, which must a trusted CA. You should receive this
certificate from the vendor that provides the KMIP server or should obtain it according to instructions from that
vendor.

190 Reference for Operational and Actionable Resources for Security

Encryption

• A public-key certificate and private key for each instance of InterSystems IRIS that will communicate with the
KMIP server. The certificate must be issued by a trusted CA. You should receive this certificate and private key
from the vendor that provides the KMIP server or should obtain them according to instructions from that vendor.

• The following information about the KMIP server:

– Its fully-qualified DNS name or IP address

– The port number on which it accepts connections

– The version of the KMIP protocol that it supports

– Any TLS settings that it requires for its clients

3. On the InterSystems IRIS instance that will communicate with the KMIP server, create an TLS configuration that will
represent the instance to the KMIP server:

a. In the Portal, go to the SSL/TLS Configurations page (Home > System Administration > Security > SSL/TLS Config-

urations).

b. On the SSL/TLS Configurations page, click the Create New Configuration button, which displays the New SSL/TLS

Configuration page.

c. On the New SSL/TLS Configuration page, set up the TLS configuration. For the fields listed below, specify or select
values as follows

• Enabled — Select this check box.

• Type — Select Client.

The values for other fields (Server certificate verification, the This client’s credentials fields, and the Cryptographic

settings fields) depend on the requirements of the KMIP server. The values for the This client’s credentials fields
depend on the client certificate, client private key, and CA certificate that you have received from the vendor that
provides the KMIP server.

For more information on this creating an TLS configuration, see Create or Edit a TLS Configuration.

4. Create the configuration to the KMIP server:

a. Start the Terminal and log in as a sufficiently privileged user.

b. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

c. Run ^SECURITY

%SYS>do ^SECURITY

d. In ^SECURITY, select option 14, KMIP server setup.

e. In the KMIP server setup choices, select option 1, Create KMIP server.

f. At the Create KMIP server prompts, specify values for the following:

• KMIP server to create? — The name of the KMIP server configuration.

• Description? — A text description.

• Server host DNS name? — The fully-qualified DNS name or IP address of the KMIP server.

• TCP port number? — The port number on which the KMIP server accepts connections.

Reference for Operational and Actionable Resources for Security 191

Key Management Tasks

• OASIS KMIP protocol version? — The number associated with your KMIP server’s supported version of the
protocol. This is part of the information that you have received from the vendor that provides the KMIP server.

• SSL/TLS Configuration name? — The name of the TLS configuration that you created in the previous step.

Note: This case of the value that you enter here must match that of the TLS configuration name as defined.

• Non-blocking I/O? — Whether or not connections to the KMIP server enable non-blocking I/O. InterSystems
recommends Yes, which enables non-blocking I/O.

If non-blocking I/O is enabled, control returns to the application after the timeout specified at the I/O timeout,

in seconds? prompt (below). If non-blocking I/O is disabled, control returns to the application after an oper-
ating-system timeout (which may not occur).

• Auto-reconnect? — Whether or not InterSystems IRIS reconnects with the KMIP server if the connection
drops. InterSystems recommends that you select No; there is then no attempt to automatically reconnect if the
connection drops.

• I/O timeout, in seconds? — The amount of time, in seconds, before a timeout occurs in the connection to the
KMIP server. This is only relevant if the configuration has enabled non-blocking I/O.

• Log KMIP messages? — Whether or not InterSystems IRIS logs messages that it sends to the KMIP server.
If messages are logged, InterSystems IRIS stores them in the <install-dir>/mgr/kmipcmd.log file.

• Debug SSL/TLS? — Whether or not InterSystems IRIS logs TLS debugging information. If information is
logged, InterSystems IRIS stores it in the <install-dir>/mgr/kmipssl.log file.

g. After the prompts for KMIP server properties, confirm that you wish to create the KMIP server at the Confirm

creation of KMIP server prompt.

Note: InterSystems supports the use of multiple KMIP servers and the use of a single KMIP server that has multiple
configurations. The most recently activated configuration is the default.

Edit a KMIP Server Configuration

To modify the values of the properties of an existing KMIP server configuration:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^SECURITY:

%SYS>do ^SECURITY

4. In ^SECURITY, select option 14, KMIP server setup.

5. In the KMIP server setup choices, select option 2, Edit KMIP server.

6. At the Edit KMIP server prompt, enter the name of the configuration to edit.

7. ^SECURITY then presents prompts for the same properties as when creating a KMIP server configuration; it uses
the existing values for the configuration’s properties as its defaults. Modify these values as required.

8. After the prompts for KMIP server properties, confirm any edits to the properties of the KMIP server at the Confirm

changes to KMIP server <servername> prompt.

192 Reference for Operational and Actionable Resources for Security

Encryption

Delete a KMIP Server Configuration

To delete a KMIP server configuration:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^SECURITY

%SYS>do ^SECURITY

4. In ^SECURITY, select option 14, KMIP server setup.

5. In the KMIP server setup choices, select option 5, Delete KMIP server.

6. At the KMIP server to delete? prompt, enter the name of the configuration to delete.

7. Confirm the deletion when prompted.

List the KMIP Server Configurations

To list an InterSystems IRIS instance’s KMIP server configurations:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^SECURITY

%SYS>do ^SECURITY

4. In ^SECURITY, select option 14, KMIP server setup.

5. In the KMIP server setup choices, select option 3, List KMIP servers.

^SECURITY then displays a list of any existing configurations to KMIP servers by name, whether or not they are currently
in use.

List Details about a KMIP Server Configuration

To view details about a particular KMIP server configuration:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^SECURITY

%SYS>do ^SECURITY

4. In ^SECURITY, select option 14, KMIP server setup

5. In the KMIP server setup choices, select option 4, Detailed list KMIP server.

6. Enter the name of a KMIP server configuration at the Display which KMIP configuration? prompt.

^SECURITY then displays a list of the specified configuration’s properties, along with each one’s value.

Reference for Operational and Actionable Resources for Security 193

Key Management Tasks

Create a Key on the KMIP Server

To create a data-encryption key on a KMIP server:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 5, Manage KMIP server.

5. When prompted, enter the name of the configuration for the KMIP server on which you wish to create a key.

6. At the next prompt, where you select the action you wish to take, select option 2, for Create new key on KMIP server.

7. At the next prompt, select a key length.

The ^EncryptionKey routine then creates the key and displays its key ID. Newly created keys are not activated by default;
to activate the key, see Activate a Database Encryption Key from a KMIP Server.

Important: InterSystems recommends that you record the key ID, so that you have this information available for future
reference.

Delete a Key on the KMIP Server

To delete an encryption key on a KMIP server:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 5, Manage KMIP server.

5. When prompted, enter the name of the configuration for the KMIP server on which you wish to delete the key.

6. At the next prompt, where you select the action you wish to take, select option 3, for Destroy existing key on KMIP

server.

7. The routine then lists the keys on the KMIP server and prompts for the key to delete. Specify a key at the Select key

prompt.

WARNING! Before deleting the only existing copy of a key, it is critical that you are absolutely sure that there
is no existing encrypted content that uses it. If there is no copy the key required to decrypt data, the
encrypted data that it protected will be unreadable and will be permanently lost.

8. When prompted, confirm that you wish to delete the key.

The routine then deletes the key from the KMIP server.

List the Keys on the KMIP Server

To list the encryption keys on a KMIP server:

194 Reference for Operational and Actionable Resources for Security

Encryption

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 5, Manage KMIP server.

5. When prompted, enter the name of the configuration of the KMIP server for which you wish to list the key(s).

6. At the next prompt, select option 1, for List keys on KMIP server.

The routine then displays a list of all the keys on the KMIP server.

Activate a Database Encryption Key from a KMIP Server

To activate a database encryption key from a KMIP server:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 3, Database encryption.

5. In the Database encryption choices, select option 1, Activate database encryption keys.

6. In the Activate database encryption keys choices, select option 2, Use KMIP server.

Note: If this prompt does not appear, it is because the instance does not have any KMIP server configurations; see
Create a KMIP Server Configuration for instructions on this process.

7. When prompted, enter the name of the configuration of the KMIP server from which you wish to activate the key.

8. The routine then lists the keys on the KMIP server and prompts for which key to activate. Specify a key at the Select

key prompt.

The routine then activates the key, displaying its ID.

For each key that InterSystems IRIS activates, the Database Encryption page (System Administration > Encryption > Database

Encryption) adds the key to table of activated keys and displays the key’s identifier.

Note: The table of keys does not display any file or path information. When activating a second or subsequent key, note
the identifier(s) for the currently activated key(s) first, so that you can identify the new one.

Activate a Data-Element Encryption Key from a KMIP Server

InterSystems IRIS supports up to 256 activated keys at one time for data-element encryption. To activate a key for data-
element encryption from a KMIP server:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

Reference for Operational and Actionable Resources for Security 195

Key Management Tasks

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 4, Data element encryption for applications.

5. In the Data element encryption for applications choices, select option 1, Activate data element encryption key.

6. In the Activate data element encryption key choices, select option 2, Use KMIP server.

Note: If this prompt does not appear, it is because the instance does not have any KMIP server configurations; see
Create a KMIP Server Configuration for instructions on this process.

7. At the KMIP server prompt, enter the name of the configuration of the KMIP server from which you wish to activate
the key.

8. The routine then lists the keys on the KMIP server and prompts for which key to activate. Specify a key at the Select

key prompt.

The routine then activates the key, displaying its ID.

For each key that InterSystems IRIS activates, the Data Element Encryption page (System Administration > Encryption >
Data Element Encryption) adds the key to table of activated keys and displays the key’s identifier.

Note: The table of keys does not display any file or path information. When activating a second or subsequent key, note
the identifier(s) for the currently activated key(s) first, so that you can identify the new one.

Copy a Key from a KMIP Server to a Key File

You can copy a database encryption key from a KMIP server to a key file. This allows you to make keys available both
for backup and for recovery from a network or KMIP service outage. You can:

• Create a database encryption key file with a copy of a key from a KMIP server

• Add a copy of a database encryption key from a KMIP server to an existing encryption key file

Important: Always store encryption key files on removable devices that are kept in securely locked storage.

Create a Key File with a Copy of a Key from a KMIP Server

To create a key file and copy a key from a KMIP server to it:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 1, Create new encryption key file.

5. At the prompts that follow, specify:

• The name of the key file (which is relative the <install-dir>/mgr/ directory)

• A description of the key file

• The name of an administrator for the key — this is a new administrator and can have a new name

• The password (then confirmed) for that administrator — this is a new password, which can have any valid value

196 Reference for Operational and Actionable Resources for Security

Encryption

• Available cipher security levels — the length of the key used to encrypt keys stored in the file

6. At the next prompt, select option 2, Copy key from KMIP server. ^EncryptionKey then prompts for the key to copy to
the file.

7. At the Select key prompt, specify the number of the key to copy.

^EncryptionKey then creates the file with the administrator username and password that you specified, and places the
selected key in that file.

Adding a Copy of a Key from a KMIP Server to an Existing Key File

To add a key from a KMIP server to an existing key file:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 2, Manage existing encryption key file.

5. At the Encryption key file prompt, enter the path and name of the key file to which you are adding a key. The path is
relative to the <install-dir>/mgr/ directory.

6. At the next prompt, select option 5, Add encryption key. At the prompts that follow:

a. Under Existing administrator, enter the Username and Password of an administrator for the key file.

b. Enter a description of the key that you are adding to the key file.

7. At the next prompt, select option 2, Copy key from KMIP server. At the prompts that follow:

a. At the KMIP server prompt, enter the name of the KMIP server from which you are copying the key.

b. At the Select key prompt, specify the number of the key to copy.

^EncryptionKey then adds the selected key to selected key file.

Storage-Independent Key Management Tasks
Some tasks are the same for keys in files and keys on a KMIP server:

• Deactivate a Database Encryption Key

• Deactivate a Data-Element Encryption Key

• Specify the Default Database Encryption Key or Journaling Encryption Key for an Instance

Deactivate a Database Encryption Key

To deactivate a database encryption key:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption). If a key is currently activated, its identifier appears in the table of keys.

2. You cannot deactivate a key if it is the default key either for new encrypted databases or for encrypting journal files.
If you wish to deactivate a key that is InterSystems IRIS is using for either of these activities, then you must select a

Reference for Operational and Actionable Resources for Security 197

Key Management Tasks

different key to be used for them. Do this by clicking Set Default or Set Journal for another key. Once the key is not
in use for either of these activities, its Deactivate button will be available.

3. To deactivate the key, click Deactivate in its row.

Note: If it is not possible to deactivate the key for some other reason, the Portal displays an error message. InterSys-
tems IRIS does not allow you deactivate a key under the following circumstances:

• The IRISTEMP and IRISLOCALDATA databases are encrypted.

• There is a currently-mounted encrypted database (other than IRISTEMP and IRISLOCALDATA) that is
encrypted with this key.

• The key is currently in use to encrypt journal files. (Note that if you change the journal file encryption
key, until you switch the journal file, InterSystems IRIS continues to use the old key for encryption.)

See below for information about how to address the underlying condition.

4. Click OK on the confirmation dialog to deactivate the key.

To deactivate the key, each underlying condition requires a different action:

• For any encrypted database except IRISTEMP and IRISLOCALDATA, dismount the database on the Databases page
(System Operation > Databases). You can then deactivate the key.

• For IRISTEMP and IRISLOCALDATA, specify that these databases are not to be encrypted and then restart InterSystems
IRIS. To do this, select Configure Startup Settings on the Database Encryption page; either you can choose not to activate
a database encryption key at startup (in which case InterSystems IRIS turns off encryption for IRISTEMP and
IRISLOCALDATA) or you can choose interactive or unattended database encryption key activation at startup (in which
cases the choice whether or not to encrypt IRISTEMP and IRISLOCALDATA becomes available — choose No).

• For encrypted journal files, ensure that no encrypted journal file is required for recovery. This is described in Encrypted
Journal Files.

Deactivate a Data-Element Encryption Key

To deactivate a data-element encryption key:

1. From the Management Portal home page, go to the Data Element Encryption page (System Administration > Encryption

> Data Element Encryption) page. If there are any activated keys, the page displays a table listing them.

2. In the table of activated keys, for the key you wish to deactivate, click Deactivate. This displays a confirmation dialog.

3. In the confirmation dialog, click OK.

When the Data Element Encryption page appears again, the row in the table for the deactivated key should no longer be
present.

Specify the Default Database Encryption Key or Journal Encryption Key for an Instance

Each instance has a default database encryption key and a default journal encryption key. The instance sets the initial value
for each of these when an administrator first activates a database encryption key; the key that is initially the default depends
on the key(s) that are in the activated key file. These values are preserved across InterSystems IRIS shutdowns and restarts.

To specify a new key for either of these purposes:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption. This displays a table of currently activated encryption keys for the instance.

2. In the table of encryption keys:

198 Reference for Operational and Actionable Resources for Security

Encryption

• To specify a new default encryption key, click Set Default for that key. The Set Default button for the current
default key is unavailable.

• To specify a new journal encryption key, click Set Journal for that key. The Set Journal button for the current
journal encryption key is unavailable.

3. When prompted to confirm your action, click OK.

InterSystems IRIS then sets the selected key as the default or journal encryption key. If a key is either the default or journal
encryption key, then it cannot be deleted (since it is required for operations on the InterSystems IRIS instance). Hence,
specifying either of these for a key makes the key’s Delete button unavailable.

Reference for Operational and Actionable Resources for Security 199

Key Management Tasks

Using Encrypted Databases

Using Encrypted Databases
To protect entire databases that contain sensitive information, InterSystems IRIS® data platform supports block-level
database encryption (or, for short, database encryption). Database encryption is technology that allows you to create and
manage databases that, as entire entities, are encrypted; it employs the InterSystems IRIS key management tools to support
its activities.

When you create a database, you can choose to have it be encrypted; this option is available if there is a currently activated
key. Once you have created an encrypted database, you can use it in the same way as you would use an unencrypted database.
The encryption technology is transparent and has a small and deterministic performance effect.

This topic describes how to create and manage encrypted databases. The database encryption functionality also supports
the ability to encrypt the audit log and journal files. Both these features require access to the database encryption key at
startup time, as described in Configure Encryption Startup Settings.

Create an Encrypted Database
When creating a new database, you can specify that it is encrypted. However, before you can create an encrypted database,
InterSystems IRIS must have an activated database encryption key. Hence, the procedure is:

1. Activate a database encryption key.

2. From the Management Portal home page, go to the Local Databases page (System Administration > Configuration >
System Configuration > Local Databases).

3. On the Local Databases page, select Create New Database. This displays the Create Database wizard.

4. On the second page of the wizard, in the Encrypt Database? box, select Yes. This causes InterSystems IRIS to create
an encrypted database. On all the other pages of the wizard, choose database characteristics as you would when creating
any database. (For more information on creating databases, see Create Local Databases.)

Note: InterSystems IRIS also provides encryption management tools to encrypt unencrypted databases or decrypt
encrypted databases, if this is necessary.

Establish Access to an Encrypted Database
To perform various operations, such as adding a database to a mirror, the database must be mounted. However, for an
encrypted database to be mounted, its key must be activated. Hence, access to the database requires activating the key and
mounting the database, and the procedure for this is:

1. Activate the key.

2. From the Management Portal home page, go to the Databases page (System Operation > Databases).

3. On this page, for the database that you wish to mount, select the Mount button in the far right column of its row in the
table of databases. After selecting OK on the confirmation screen, the database is mounted. If the key is not activated,
InterSystems IRIS cannot mount the database and displays an error message.

You can now access the data within the database.

Close the Connection to an Encrypted Database
To close the connection to an encrypted database, the procedure is:

1. From the Management Portal home page, go to the Databases page (System Operation > Databases).

200 Reference for Operational and Actionable Resources for Security

Encryption

2. On this page, select the Dismount button on the right in the table of databases. After selecting OK on the confirmation
screen, the database is dismounted.

3. Deactivate the key.

Because the activated key is used for each read and write to the database, you cannot deactivate the key without first dis-
mounting the database. If you attempt to deactivate the key prior to dismounting the database, InterSystems IRIS displays
an error message.

Move an Encrypted Database Between Instances
If your organization has multiple InterSystems IRIS instances, you may need to use an encrypted database on one instance
that was created on another instance using a different key. To move the data from one instance to another, back up and then
re-encrypt the database using the available encryption management tools. For more information, see Modify Database
Encryption Using ^EncryptionKey.

Configure Encryption Startup Settings
This topic describes how to set up each of the three database encryption startup options:

• Startup without Key Activation (the default) — The instance does not have a database encryption key available at
startup time.

• Startup with Interactive Key Activation — The instance gathers database encryption key information at startup time
interactively.

• Startup with Unattended Key Activation — The instance gathers database encryption key information at startup time
without human intervention. This is also known as unattended startup.

InterSystems IRIS has several features that require having a key available at startup time (either interactively or through
unattended startup):

• Encrypting the InterSystems IRIS audit log.

• Encrypting the IRISTEMP and IRISLOCALDATA databases. (Either both are encrypted or neither.)

• Encrypting InterSystems IRIS journal files.

• Having an encrypted database mounted at startup time.

Startup without Key Activation

This is the default behavior for an instance of InterSystems IRIS prior to having any keys activated. If you have set up key
activation at startup and choose to turn it off, the procedure is:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

2. Select Configure Startup Settings. This displays the area with options for configuring InterSystems IRIS startup and
other options for encrypted databases.

3. In this area, from the Startup Options list, select None.

4. Click Save. InterSystems IRIS may prevent you from performing this action if:

• Any encrypted databases are required at startup. See Encrypted Databases Required at Startup for more details.

• There are any encrypted journal files with open transactions. See Encrypted Journal Files for more details.

• The audit log is encrypted. (The error message for this refers to an encrypted database because InterSystems IRIS
stores the audit log in a database called IRISAUDIT.) See Encrypted Audit Log for more details.

Reference for Operational and Actionable Resources for Security 201

Using Encrypted Databases

Address the issue that is preventing the change and then perform this procedure again. Once any issues are corrected,
you will be able to successfully change to having startup without key activation.

Encrypted Databases Required at Startup

If the instance has encrypted databases that are required at startup and you attempt to configure startup not to involve key
activation, the Management Portal displays an error message stating this and indicating that the key activation option cannot
be changed. (If the error message refers to the IRISAUDIT database, this is because the audit log is encrypted.)

To configure InterSystems IRIS to start without activating an encryption key, any encrypted databases can only be mounted
after startup. To configure a database to be mounted after startup:

1. Confirm that the database is mounted or mount it:

a. From the Management Portal home page, go to the Databases page (System Operation > Databases).

b. Find the database’s row in the table of databases. If it is mounted, there is a Dismount choice in its row; if it is not
mounted, there is no Dismount choice and there is a Mount choice.

c. If it is not mounted, select Mount

d. On the confirmation screen, select OK. (The database needs to be writable, so do not select the Read Only check
box.)

2. Edit the database’s properties so that it is not mounted at startup:

a. Go to the Local Databases page (System Administration > Configuration > System Configuration > Local Databases).

b. Find the database’s row in the table of databases.

c. Select the database by clicking on its name. This displays the page for editing the database.

d. On this Edit page, clear the Mount Required at Startup check box.

e. Click Save.

The database will no longer be mounted at startup. This means that it will no longer require key activation at startup (though
it may be required for other reasons.)

Encrypted Journal Files

If the instance uses journaling and you attempt to configure startup not to involve key activation, you may be unable to
turn off key activation at startup. These conditions are:

• The instance is configured to encrypt its journal files.

• There are open transactions in the journal file (which is fairly likely on a busy system).

If this occurs, you need to suspend the use of encrypted journal files before you change the startup key activation settings.
To do this, the procedure is:

1. On the Database Encryption page (System Administration > Encryption > Database Encryption), change the Encrypt

Journal Files setting to No. Leave the Key Activation at Startup setting as it is.

2. Switch journal files. To do this, click Switch Journal on the Journals page (System Operation > Journals).

Once all open transactions within the encrypted journal files have either been committed or rolled back, you can then change
the InterSystems IRIS startup configuration.

CAUTION: Even after there are no open transactions, you may need the encrypted journal files to restore a database.
For this reason, it is very important that you maintain copies of the key file containing the key used to
encrypt these files.

202 Reference for Operational and Actionable Resources for Security

Encryption

For more information on journal files generally, see Journaling.

Encrypted Audit Log

If the instance has an encrypted audit log and you attempt to configure startup not to involve key activation, InterSystems
IRIS displays an error message that an encrypted database is required at startup, such as:

ERROR #1217: Can not disable database encryption key activation at startup.
Encrypted databases are required at startup:
C:\InterSystems\IRIS\Mgr\IRISAudit\

The error message refers to encrypted databases because the audit log is stored in the InterSystems IRIS database IRISAUDIT.

The audit log cannot be encrypted if InterSystems IRIS starts without activating an encryption key. To configure startup
not to involve key activation, you must change the InterSystems IRIS setting to specify that the instance uses an unencrypted
audit log. The procedure is:

1. Back up the instance’s audit data.

2. Go to the Database Encryption page (System Administration > Encryption > Database Encryption).

3. Select Configure Startup Settings, which displays the area with options for configuring InterSystems IRIS startup and
other options for encrypted databases.

4. Under Optionally Encrypted Data, in the Encrypt Audit Log list, click No.

Changing this setting causes InterSystems IRIS to erase any existing audit data, to start using unencrypted auditing imme-
diately, and to write an AuditChange event to the audit log.

CAUTION: If you have not backed up audit data, changing the encryption setting for the audit log results in the loss
of that existing audit data.

Startup with Interactive Key Activation

This is the default behavior for an instance of InterSystems IRIS if a key has been activated. With interactive key activation,
the InterSystems IRIS instance prompts for the location of a key and its associated information during its startup.

Important: On Windows, interactive key activation is incompatible with configuring InterSystems IRIS as a service
that starts automatically as part of system startup.

To configure InterSystems IRIS for interactive key activation:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

2. Select Configure Startup Settings. This displays the Startup Options area, which includes the Key Activation at Startup

list.

3. In the Key Activation at Startup list, select Interactive. If the previous value for the field was None, then this displays
the page’s Optionally Encrypted Data area.

4. The fields in this area are:

• Encrypt IRISTEMP and IRISLOCALDATA Databases — Allows you to specify whether or not the IRISTEMP and
IRISLOCALDATA databases are encrypted. To encrypt them, select Yes; to have them be unencrypted, select No.

• Encrypt Journal Files — Allows you to specify whether or not the instance encrypts its own journal files. To
encrypt journal files, select Yes; to have them be unencrypted, select No. This choice depends on startup options
because InterSystems IRIS startup creates a new journal file; if you choose encryption, startup requires a key.

Note: This change takes effect the next time that InterSystems IRIS switches journal files. To begin journal
file encryption without a restart, switch journal files after completing this page.

Reference for Operational and Actionable Resources for Security 203

Using Encrypted Databases

• Encrypt Audit Log — Allows you to specify whether or not InterSystems IRIS encrypts the audit log. To encrypt
the audit log, select Yes; to have it be unencrypted, select No. This choice depends on startup options because the
InterSystems IRIS startup procedure records various events in the audit log; if you choose encryption, startup
requires a key.

CAUTION: This change takes effect immediately and deletes any existing audit data. Back up the audit
database prior to changing this setting; otherwise, audit data will be lost.

5. Click Save to save the selected settings.

Important: If InterSystems IRIS is configured to

• Encrypt IRISTEMP and IRISLOCALDATA, journal files, or the audit log

• Require an encrypted database at startup

then failure to activate the required encryption key causes an InterSystems IRIS startup failure. If this
occurs, use InterSystems IRIS emergency startup mode to configure InterSystems IRIS not to require any
encrypted facilities at startup.

Startup with Unattended Key Activation

Startup with unattended key activation, also known as unattended startup, activates a key and potentially mounts encrypted
databases at startup time without any human intervention. Successful unattended startup requires that the instance have
access to:

• The encrypted database

• The database encryption key, either through:

– The KMIP server that holds the key

– The database encryption key file that holds the key and the username and password used for unattended database
encryption key activation

This section includes the following topics:

• Configuring Unattended Startup Using a Key on a KMIP Server

• Configuring Unattended Startup Using a Key in a Key File

• Temporarily Addressing Issues with Unattended Startup

CAUTION: By making all these items available, the security of the data in InterSystems IRIS becomes entirely
dependent on the physical security of the machine(s) holding these elements. If your site cannot ensure
this physical security, your data will then be subject to the same level of risk as if it were not encrypted;
to avoid this situation, either use interactive startup (which prevents the simultaneous exposure of these
elements) or ensure the physical security of the relevant machine(s).

Configuring Unattended Startup Using a Key on a KMIP Server

To configure an InterSystems IRIS instance for unattended startup using a key on a KMIP server:

1. For the relevant instance, start the Terminal and log in as a sufficiently privileged user.

2. At the terminal prompt, go to the %SYS namespace:

>set $namespace="%SYS"

204 Reference for Operational and Actionable Resources for Security

Encryption

3. Run ^EncryptionKey:

%SYS>do ^EncryptionKey

4. In ^EncryptionKey, select option 3, Database encryption.

5. At the next prompt, select option 4, Configure startup options.

6. At the next prompt, select option 4, Unattended key activation with a KMIP server.

7. At the KMIP server instance name prompt, enter the name of a KMIP server configuration.

8. At the prompts that follow, specify what items to encrypt (all of which require an activated key at startup time):

• Encrypt journal files (no by default) — Allows you to specify whether or not the instance encrypts its own journal
files. To encrypt journal files, enter yes; to have them be unencrypted, enter or select no (the default). This choice
depends on startup options because InterSystems IRIS startup creates a new journal file; if you choose encryption,
startup requires a key.

This change takes effect the next time that InterSystems IRIS switches journal files. By default, this occurs the
next time that InterSystems IRIS restarts. To begin journal file encryption without a restart, switch journal files
after completing this page.

• Encrypt IRISTEMP and IRISLOCALDATA databases (no by default) — Allows you to specify whether or not the
IRISTEMP and IRISLOCALDATA databases are encrypted. To encrypt them, enter yes; to have them be unen-
crypted, enter or select no (the default).

• Encrypt audit database (no by default) — Allows you to specify whether or not InterSystems IRIS encrypts the
audit log. To encrypt the audit log, select yes; to have it be unencrypted, select no (the default). This choice depends
on startup options because the InterSystems IRIS startup procedure records various events in the audit log; if you
choose encryption, startup requires a key.

CAUTION: This change takes effect immediately and deletes any existing audit data. Back up the audit
database prior to changing this setting; otherwise, audit data will be lost.

9. The routine then displays the current list of KMIP keys to activate at startup, and then prompts for the next action:

• To add a key to the list of the startup keys, select option 1, Add key to list.

• To remove a key from the list of the startup keys, select option 2, Delete key from list.

• To save the list of startup keys, select option 3, Save list.

10. When the list contains the desired list of KMIP keys to activate at startup, select option 3, which saves the list.

Configuring Unattended Startup Using a Key in a Key File

CAUTION: When you configure InterSystems IRIS for unattended startup, the instance adds another administrator to
the database encryption key file; that administrator has a system-generated name and password. Once
InterSystems IRIS has modified the key file to add this username and password, InterSystems strongly
recommends that you place any copies of the key file only on hardware that can be physically locked in
place, such as a lockable CD-ROM or DVD drive in a rack. Further, you should lock and monitor the data
center facility where this hardware is stored. Do not store the database encryption key on the same drive
as any databases that it is used to encrypt.

To configure an InterSystems IRIS instance for unattended startup with a key in a key file:

1. You need to have a key currently activated. To activate a key, see Activating a Key.

Reference for Operational and Actionable Resources for Security 205

Using Encrypted Databases

2. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

3. Select Configure Startup Settings. This displays the Startup Options list.

4. In Startup Options, select Unattended (NOT RECOMMENDED). This changes the fields that the page displays.

5. The Startup Options area expands to display three fields. Complete these:

• Key File — The path of the database encryption key file. This can be an absolute or relative path; if you specify a
relative path, it is relative to the InterSystems IRIS installation directory. Click Browse to search for the database
encryption key file on the file system.

• Administrator Name — An administrator for this key file.

• Password — The administrator’s password.

6. Complete the fields in the Optionally Encrypted Data area:

• Encrypt IRISTEMP and IRISLOCALDATA Databases — Allows you to specify whether or not the IRISTEMP and
IRISLOCALDATA databases are encrypted. To encrypt them, select Yes; to have them be unencrypted, select No.

• Encrypt Journal Files — Allows you to specify whether or not the instance encrypts its own journal files. To
encrypt journal files, select Yes; to have them be unencrypted, select No. This choice depends on startup options
because InterSystems IRIS startup creates a new journal file; if you choose encryption, startup requires a key.

Note: This change takes effect the next time that InterSystems IRIS switches journal files. By default, this
occurs the next time that InterSystems IRIS restarts. To begin journal file encryption without a restart,
switch journal files after completing this page.

• Encrypt Audit Log — Allows you to specify whether or not InterSystems IRIS encrypts the audit log. To encrypt
the audit log, select Yes; to have it be unencrypted, select No. This choice depends on startup options because the
InterSystems IRIS startup procedure records various events in the audit log; if you choose encryption, startup
requires a key.

CAUTION: This change takes effect immediately and deletes any existing audit data. Back up the audit
database prior to changing this setting; otherwise, audit data will be lost.

7. Click Save to save the selected settings.

Temporarily Addressing Issues with Unattended Startup

If InterSystems IRIS is configured to

• Encrypt IRISTEMP and IRISLOCALDATA, journal files, or the audit log

• Require an encrypted database at startup

then failure to activate the encryption key causes an InterSystems IRIS startup failure. If this occurs, use InterSystems IRIS
emergency startup mode to configure InterSystems IRIS not to require any encrypted facilities at startup.

Encrypt the Databases that Ship with InterSystems IRIS
Each instance of InterSystems IRIS ships with a number of databases. The ability to encrypt and the value of encryption
depends on the database:

• IRISLOCALDATA: Can be encrypted in conjunction with the IRISTEMP database. Encrypting IRISLOCALDATA requires
that a key be available at startup, since the database is required at startup time.

206 Reference for Operational and Actionable Resources for Security

Encryption

• IRISAUDIT: Can be encrypted. Encrypting IRISAUDIT requires that a key be available at startup, since the database is
required at startup time.

• IRISLIB: Must not be encrypted. (Note that all content in IRISLIB is publicly available.)

• IRISSYS: Must not be encrypted. If an instance has an encrypted form of this database, InterSystems IRIS cannot start.

• IRISTEMP: Can be encrypted in conjunction with the IRISLOCALDATA database. Encrypting IRISTEMP requires that
a key be available at startup, since the database is required at startup time.

• USER: Can be encrypted.

Modify Database Encryption Using ^EncryptionKey
There are occasions when you may need to perform encryption management operations that are not available through the
Management Portal. Using the ^EncryptionKey utility, you can perform the following actions:

• Convert an Unencrypted Database to Be Encrypted

• Convert an Encrypted Database to Be Unencrypted

• Convert an Encrypted Database to Use a New Key

The following is true about the tools used by the ^EncryptionKey utility:

The ^EncryptionKey utility uses a set of encryption management tools:

• When built-in hardware instructions are available for encryption-related activities, these activities are considerably
faster than when using software-based encryption. The encryption management tools use hardware instructions when
they are available.

• The encryption management tools can use keys stored on a KMIP server.

• The encryption management tools can run in FIPS mode.

Note: The encryption management tools do not operate on journal files.

Convert an Unencrypted Database to be Encrypted

To convert an unencrypted database to an encrypted database:

1. Back up the data in the database to be encrypted.

InterSystems IRIS encrypts data in place. This means that it uses on-disk space for its operations (not copying the
database elsewhere and restoring it to its current disk location after successful completion). If the utility is interrupted
before completion, the database will be partly encrypted and partly unencrypted, rendering it unusable.

CAUTION: It is critical that you back up the database before converting it. Failure to do so can result in data being
lost.

2. Activate the key with which you wish to encrypt the database, either from a key file or a KMIP server.

3. Start the Terminal.

4. In the %SYS namespace, run the ^EncryptionKey utility.

5. In ^EncryptionKey, select option 3, Database encryption.

6. In the database encryption submenu, select option 7, Modify encrypted status of existing database.

7. In the Database directories submenu, select the database that you wish to modify; databases are listed by their directories.
When you select a database, the routine announces if the database is encrypted or not.

Reference for Operational and Actionable Resources for Security 207

Using Encrypted Databases

8. If the database is unencrypted, the routine allows you to encrypt it; at the Encrypt database? prompt, enter yes or y.
This is not case sensitive.

9. At the Select key for encryption prompt, select the key that the routine will use to encrypt the database. If the database
is currently mounted, the routine then displays this information.

10. If the database is currently mounted, the routine states this. At the Dismount database prompt, enter yes or y. This is
not case sensitive.

Important: Because dismounting and then remounting a database interrupts its operations, take the appropriate
precautions to ensure that this does not cause problems.

The routine then encrypts the database. As part of this process, if the database was mounted, the routine displays messages
that it has dismounted and mounted the database. When the database is mounted again, encryption is complete.

Convert an Encrypted Database to be Unencrypted

To convert an encrypted database to an unencrypted database:

1. Back up the data in the database to be unencrypted.

InterSystems IRIS unencrypts data in place. This means that it uses on-disk space for its operations (not copying the
database elsewhere and restoring it to its current disk location after successful completion). If the utility is interrupted
before completion, the database will be partly encrypted and partly unencrypted, rendering it unusable.

CAUTION: It is critical that you back up the database before converting it. Failure to do so can result in data being
lost.

2. Activate the key with which you wish to encrypt the database, either from a key file or a KMIP server.

3. Start the Terminal.

4. In the %SYS namespace, run the ^EncryptionKey utility.

5. In ^EncryptionKey, select option 3, Database encryption.

6. In the database encryption submenu, select option 7, Modify encrypted status of existing database.

7. In the Database directories submenu, select the database that you wish to modify; databases are listed by their directories.
When you select a database, the routine announces if the database is encrypted or not. If the database is encrypted and
its encryption key has not been activated, the routine announces this as well.

8. If the database is encrypted, the routine allows you to decrypt it; at the Decrypt database? prompt, enter yes or y. This
is not case sensitive.

9. After reporting the encryption key for the database, the routine prompts if you wish to encrypt the database with a
different key. Press Enter to simply convert it to a decrypted database and use a new key to encrypt it.

10. If the database is currently mounted, the routine states this. At the Dismount database prompt, enter yes or y. This is
not case sensitive.

Important: Because dismounting and then remounting a database interrupts its operations, take the appropriate
precautions to ensure that this does not cause problems.

The routine then decrypts the database. As part of this process, if the database was mounted, the routine displays messages
that it has dismounted and mounted the database. When the database is mounted again, decryption is complete.

Convert an Encrypted Database to Use a New Key

To convert an encrypted database to use a new key:

208 Reference for Operational and Actionable Resources for Security

Encryption

1. Back up the data in the database to be re-encrypted.

InterSystems IRIS encrypts data in place. This means that it uses on-disk space for its operations (not copying the
database elsewhere and restoring it to its current disk location after successful completion). If the utility is interrupted
before completion, the database will be partly encrypted and partly unencrypted, rendering it unusable.

CAUTION: It is critical that you back up the database before converting it. Failure to do so can result in data being
lost.

2. Activate the keys with which the database is encrypted and with which you wish to re-encrypt the database, either from
a key file or a KMIP server.

3. Start the Terminal.

4. In the %SYS namespace, run the ^EncryptionKey utility.

5. In ^EncryptionKey, select option 3, Database encryption.

6. In the database encryption submenu, select option 7, Modify encrypted status of existing database.

7. In the Database directories submenu, select the database that you wish to modify; databases are listed by their directories.
When you select a database, the routine announces if the database is encrypted or not.

8. If the database is encrypted, the routine allows you to decrypt it; at the Decrypt database? prompt, enter yes or y. This
is not case sensitive.

9. At the next prompt, which is the Re-encrypt database? prompt, enter yes or y. This is not case sensitive.

10. At the Select key for encryption prompt, select the key that the routine will use to encrypt the database.

11. If the database is currently mounted, the routine states this. At the Dismount database prompt, enter yes or y. This is
not case sensitive.

Important: Because dismounting and then remounting a database interrupts its operations, take the appropriate
precautions to ensure that this does not cause problems.

The routine then re-encrypts the database. As part of this process, if the database was mounted, the routine displays messages
that it has dismounted and mounted the database. When the database is mounted again, encryption is complete.

Change Encryption Keys
You can change the encryption key that InterSystems IRIS uses for encryption.

Change Journal Encryption Key

You can change the encryption key InterSystems IRIS uses for journal file encryption. To rotate journal encryption keys
on an instance, you must have both the current encryption key and the new encryption key activated simultaneously while
the journal file switches. The following steps details how to change the journal encryption key:

Assume that EK1 is the current encryption key used as the default encryption key for journaling and that EK2 is the new
encryption key you want to switch to.

1. Activate EK2 (System Administration > Encryption > Database Encryption > Activate Key).

2. Set EK2 as the default key for journals (Set Journal on Database Encryption page).

3. Switch the active journal file so that the newly created journal file uses EK2.

4. Once you no longer need the journal files encrypted with EK1, you also no longer need EK1.

You can check which encryption key each encrypted journal file uses via System Operation > Journals > Summary for the
relevant file.

Reference for Operational and Actionable Resources for Security 209

Using Encrypted Databases

Data-Element Encryption

Using Data-Element Encryption
Data-element encryption provides a means of encrypting application data at a finer level of granularity than the database
as a whole; it is for sensitive data elements whose exposure must be prevented. For example, customer records can exclusively
encrypt the credit card field; patient records can exclusively encrypt fields that display test results (such as for HIV testing);
or a record that includes a social security number can exclusively encrypt that field.

Data-element encryption is available programmatically (via an API), rather than through the Management Portal. Because
it is accessible through an API, you can use it in your application code. You have the option of using data-element
encryption with database encryption (though there is no requirement to use both).

For an application to use data-element encryption, the required keys must be available when the application is running. To
make a key available, activate it; for details, either see Programmatically Manage Keys or, if using the Portal, see Activating
a Key for Data-Element Encryption. When a key is activated, InterSystems IRIS® data platform displays its unique identifier
in the table of activated keys; the application then uses this identifier to refer to the key so that it can be loaded from
memory for encryption operations. Since there can be up to 256 keys simultaneously activated, data-element encryption
provides the infrastructure for tasks that require multiple keys.

When encrypting data for data-element encryption, InterSystems IRIS stores the encryption key’s unique identifier with
the resulting ciphertext. The unique identifier enables the system to identify the key at decryption time using only the
ciphertext itself.

This topic describes:

• Programmatically Manage Keys

• Data-Element Encryption Calls

• Support for Re-Encrypting Data in Real Time

Programmatically Manage Keys
Since data-element encryption is available through an API, there are also a set of calls for managing keys:

• $SYSTEM.Encryption.CreateEncryptionKey

• $SYSTEM.Encryption.ActivateEncryptionKey

• $SYSTEM.Encryption.DeactivateEncryptionKey

• $SYSTEM.Encryption.ListEncryptionKeys

These are all methods of the %SYSTEM.Encryption class.

Data-Element Encryption Calls
The system methods available for data-element encryption are all methods of the %SYSTEM.Encryption class and are:

• $SYSTEM.Encryption.AESCBCManagedKeyEncrypt

• $SYSTEM.Encryption.AESCBCManagedKeyDecrypt

• $SYSTEM.Encryption.AESCBCManagedKeyEncryptStream

• $SYSTEM.Encryption.AESCBCManagedKeyDecryptStream

These method names all begin with “AESCBCManagedKey” because the methods use AES (the Advanced Encryption
Standard) in cipher block chaining (CBC) mode and are part of the suite of tools for managed key encryption.

210 Reference for Operational and Actionable Resources for Security

Encryption

Important: The AESCBC methods that do not include “ManagedKey” in their names are older methods and cannot
be used for these purposes.

$SYSTEM.Encryption.AESCBCManagedKeyEncrypt

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyEncrypt
 (
 plaintext As %String,
 keyID As %String,
)
 As %String

where:

• plaintext — The unencrypted text to be encrypted.

• keyID — The GUID of the data-encryption key to be used to encrypt plaintext.

• The method returns the encrypted ciphertext.

If the method fails, it throws either the <FUNCTION> or <ILLEGAL VALUE> error. Place calls to this method in a
Try-Catch loop; for more information on Try-Catch, see The TRY-CATCH Mechanism.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyEncrypt class reference content.

$SYSTEM.Encryption.AESCBCManagedKeyDecrypt

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyDecrypt
 (
 ciphertext As %String
)
 As %String

where:

• ciphertext — The encrypted text to be decrypted.

• The method returns the decrypted plaintext.

If the method fails, it throws either the <FUNCTION> or <ILLEGAL VALUE> error. Place calls to this method in a
Try-Catch loop; for more information on Try-Catch, see The TRY-CATCH Mechanism.

You do not need to include the key ID with this call, as the key ID is associated with the ciphertext to be decrypted.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyDecrypt class reference content.

$SYSTEM.Encryption.AESCBCManagedKeyEncryptStream

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyEncryptStream
 (
 plaintext As %Stream.Object,
 ciphertext As %Stream.Object,
 keyID As %String,
)
 As %Status

where:

• plaintext — The unencrypted stream to be encrypted.

• ciphertext — The variable to receive the encrypted stream.

Reference for Operational and Actionable Resources for Security 211

Data-Element Encryption

• keyID — The GUID of the data-encryption key to be used to encrypt plaintext.

• The method returns a %Status code.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyEncryptStream class reference content.

$SYSTEM.Encryption.AESCBCManagedKeyDecryptStream

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyDecryptStream
 (
 ciphertext As %Stream.Object,
 plaintext As %Stream.Object
)
 As %Status

where:

• ciphertext — The encrypted stream to be decrypted.

• plaintext — The variable to receive the unencrypted stream.

• The method returns a %Status code.

You do not need to include the key ID with this call, as the key ID is associated with the ciphertext to be decrypted.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyDecryptStream class reference content.

Support for Re-Encrypting Data in Real Time
Data-element encryption allows InterSystems IRIS applications to support re-encrypting an encrypted data element with
a new key.

Because an encrypted data element has its encrypting key identifier stored with it, this simplifies the process of re-
encrypting data. Given merely the handle to ciphertext and an activated key, an application can perform re-encryption. For
example, data-element encryption supports the ability to re-encrypt sensitive data without any downtime; this is particularly
useful for users required to perform this action for legal reasons, such as those fulfilling PCI DSS (Payment Card Industry
Data Security Standard) requirements.

If you need to re-encrypt data, create a new key and specify to your application that this is the new encryption key. You
can then perform an action such as running a background application to decrypt the elements and encrypt them with the
new key. This uses the specified key for encryption and always uses the correct key for decryption, since it is stored with
the encrypted data.

212 Reference for Operational and Actionable Resources for Security

Encryption

Protecting Against Data Loss

Protecting Against Data Loss
To ensure that encrypted data is always available, InterSystems strongly suggests that you take the following preventative
actions:

• If you are using key files, then, for each key that you are using:

1. Create an additional administrator for the key file.

2. Record the username and password of that administrator on paper.

3. Place the recorded username and password in a physically secure location, such as a fireproof safe that is sufficiently
far from where the key is in use.

4. Create a backup copy of the key file and place it in the same secure location as the recorded username and password.

• If you are using a KMIP server, back up the contents of that server according to your server vendor’s instructions.

CAUTION: Failure to take these precautions can result in a situation where the encrypted data will be permanently
inaccessible — there will be no way to read it.

Reference for Operational and Actionable Resources for Security 213

Protecting Against Data Loss

Handling Emergency Situations

Handling Emergency Situations
Emergency situations involving encrypted data can result permanently losing access to the encrypted data. If an emergency
situation arises, you must act immediately to minimize the risk of the data being lost forever.

This topic describes the steps to take if an emergency situation with encrypted data arises. To take preventative steps against
an emergency situation, see Protecting Against Data Loss.

Handle Emergency Situations When Using Key Files
This topic describes what to do under certain circumstances when you are in danger of losing data. These situations include:

• If the File Containing an Activated Key is Damaged or Missing

– If There Is a Backup Copy of the Key File with a Known Administrator Username and Password

– If There Is No Backup Copy of the Key File or the Key Has No Known Administrator Username and Password

CAUTION: This is a dire situation. Act immediately.

• If the Database Encryption Key File Is Required at Startup and Is Not Present

– If You Can Make the Key File Available

– If a Backup Key File Is Available

– If No Key File Is Available

If the File Containing an Activated Key is Damaged or Missing

In this situation, the following circumstances have occurred:

• A database encryption key has been activated for the InterSystems IRIS® data platform instance.

• InterSystems IRIS is using encrypted data.

• The key file containing the database encryption key becomes damaged.

If There Is a Backup Copy of the Key File with a Known Administrator Username and Password

CAUTION: This procedure is for an emergency situation, where encrypted data in InterSystems IRIS databases is in
danger of being lost.

If the file containing an activated key becomes inaccessible or damaged, immediately perform the following procedure:

1. Get the backup copy of the key file. This is the copy that you stored as described in Protection from Accidental Loss
of Access to Encrypted Data.

2. Make a new backup copy of the key file and store it in a safe place.

3. Set up InterSystems IRIS to use the new copy of the key:

• If you are using interactive startup, incorporate the new copy of the key into your startup procedures.

• If you are using unattended startup, then reconfigure your startup options using the new copy of the key file —
even if you are setting it up for the same options as before.

214 Reference for Operational and Actionable Resources for Security

Encryption

If There Is No Backup Copy of the Key File or the Key has No Known Administrator Username and Password

WARNING! THIS PROCEDURE IS FOR AN EMERGENCY SITUATION, WHERE ENCRYPTED DATA IN
INTERSYSTEMS IRIS DATABASES IS IN DANGER OF BEING LOST.

If the file containing the activated key becomes inaccessible or damaged while InterSystems IRIS is running, immediately
perform the following procedure for each database encrypted with that key:

1. WARNING! Shutting down InterSystems IRIS or deactivating the active key will cause the permanent loss of
your data.

Do not shut down InterSystems IRIS.

Do not deactivate the currently active key.

2. Contact the InterSystems Worldwide Response Center. Engineers there can help guide you through the following
procedure and answer any questions that may arise.

3. Dismount the database. This prevents all users from making any changes to the database with encrypted content while
copying its data to an unencrypted database:

a. From the Management Portal home page, go to the Databases page (System Operation > Databases).

b. On the Databases page, if the encrypted database is mounted, select the Dismount option in the next-to-last column
in that database’s row. Then select OK in the confirmation dialog.

c. When the Databases page appears again, select the Mount option in the last column in the database’s row.

d. On the Mount database confirmation screen, check the Read Only box and select OK.

It is critical that no one makes any changes to the database during this procedure. Mounting the database read-only
prevents any user from changing any data.

4. Copy all data in unencrypted form to another database. The procedure for copying the data is:

a. In the Terminal, go to the %SYS namespace:

REGULARNAMESPACE>set $namespace="%SYS"

b. From that namespace, run the ^GBLOCKCOPY command:

%SYS>d ^GBLOCKCOPY

This routine will do a fast global copy from a database to another database or
to a namespace. If a namespace is the destination, the global will follow any
mappings set up for the namespace.

1) Interactive copy
2) Batch copy
3) Exit

Option?1

c. At the ^GBLOCKCOPY prompt, specify 1, for an interactive copy:

Option? 1

1) Copy from Database to Database
2) Copy from Database to Namespace
3) Exit

Option?

d. When ^GBLOCKCOPY prompts for a copy type, select 1, for copying from database to database

Option? 1
Source Directory for Copy (? for List)?

Reference for Operational and Actionable Resources for Security 215

Handling Emergency Situations

Here, either specify the name of the encrypted database or enter ? to see a numbered list of databases, which
includes the encrypted database. If you enter ?, ^GBLOCKCOPY displays a list such as this one:

Source Directory for Copy (? for List)? ?

1) C:\InterSystems\MyIRIS\mgr\
2) C:\InterSystems\MyIRIS\mgr\irislocaldata\
3) C:\InterSystems\MyIRIS\mgr\irisaudit\
4) C:\InterSystems\MyIRIS\mgr\irislib\
5) C:\InterSystems\MyIRIS\mgr\iristemp\
6) C:\InterSystems\MyIRIS\mgr\encrypted1\
7) C:\InterSystems\MyIRIS\mgr\encrypted2\
8) C:\InterSystems\MyIRIS\mgr\unencrypted\

Source Directory for Copy (? for List)?

Enter the number of the encrypted database, such as 7 here.

e. When ̂ GBLOCKCOPY prompts for a destination directory for copying the data, enter the name of an unencrypted
database or ? for a list similar to the one for the source directory.

f. When ^GBLOCKCOPY asks if you wish to copy all globals, enter Yes (can be Yes, Y, y, and so on):

All Globals? No => y

g. If there is an empty global in the database, ̂ GBLOCKCOPY will now ask if you wish to copy it. This will appear
something like the following:

All Globals? No => y

^oddBIND contains no data
Include it anyway? No =>

Enter No (can be No, N, n, and so on), which is the default.

h. ^GBLOCKCOPY then asks if you wish to skip all the other empty globals. Enter Yes (can be Yes, Y, y, and so
on), which is the default:

Exclude any other similar globals without asking again? Yes =>

There then appears a list of all the empty globals that are not being copied:

Exclude any other similar globals without asking again? Yes => Yes
^oddCOM contains no data -- not included
^oddDEP contains no data -- not included
^oddEXT contains no data -- not included
^oddEXTR contains no data -- not included
^oddMAP contains no data -- not included
^oddPKG contains no data -- not included
^oddPROC contains no data -- not included
^oddPROJECT contains no data -- not included
^oddSQL contains no data -- not included
^oddStudioDocument contains no data -- not included
^oddStudioMenu contains no data -- not included
^oddTSQL contains no data -- not included
^oddXML contains no data -- not included
^rBACKUP contains no data -- not included
^rINC contains no data -- not included
^rINCSAVE contains no data -- not included
^rINDEXEXT contains no data -- not included
^rINDEXSQL contains no data -- not included
^rMACSAVE contains no data -- not included
9 items selected from
29 available globals

i. ^GBLOCKCOPY then asks if you wish to disable journaling for this operation:

Turn journaling off for this copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default.

216 Reference for Operational and Actionable Resources for Security

Encryption

j. ^GBLOCKCOPY then asks if to confirm that you wish to copy the data:

Confirm copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default. Depending on the size of the database and the speed
of the processor, you may see the status of the copy as it progresses. When it completes, ̂ GBLOCKCOPY displays
a message such as:

Copy of data has completed

k. ^GBLOCKCOPY then asks if you wish to save statistics associated with the copy. Enter No (can be No, N, n,
and so on), which is the default:

Do you want to save statistics for later review? No =>

Control then returns to the main prompt.

5. Test that the copied data is valid. You can do this by examining the classes, tables, or globals in the Management
Portal’s System Explorer for the database into which ^GBLOCKCOPY has copied the data.

6. If the data is valid, perform steps 3 and 4 of this procedure for each database encrypted with the inaccessible or damaged
key.

7. Once you have made copies of every encrypted database into an unencrypted database, make a second copy of each
database, preferably to a different machine than that which holds the first copy of each.

8. Now — and only now — you can dismount all encrypted databases and deactivate the active key (that is, the key for
which the key file is missing or damaged). InterSystems IRIS requires that you dismount all encrypted databases prior
to deactivating their key.

You now have your data in one or more unencrypted databases and there is no activated key.

To re-encrypt the formerly encrypted databases, the procedure is:

1. Create a new database encryption key according to the procedure described in Creating a Key.

2. Create a new backup copy of the key file as described in Protection from Accidental Loss of Access to Encrypted Data.

CAUTION: Make sure you take the precautions described in Protection from Accidental Loss of Access to Encrypted
Data; failure to follow these procedures can result in the permanent loss of data.

3. Create one or more new encrypted databases, using the new key.

4. Import the data exported in the previous procedure into the new encrypted database(s).

Your data is now stored in encrypted databases for which you have a valid key and a backup copy of the key file containing
that key.

If the Database Encryption Key File Is Required at Startup and Is Not Present

Under certain conditions related to the required use of a database encryption key file at startup, the system starts in single-
user mode. These conditions are:

• InterSystems IRIS is configured for either interactive or unattended startup.

• Startup specifies that journal files and/or the IRISTEMP and IRISLOCALDATA databases are encrypted, or an encrypted
database is specified as required at startup.

• The database encryption key file is not present.

Reference for Operational and Actionable Resources for Security 217

Handling Emergency Situations

If You Can Make the Key File Available

This situation may have been caused simply by the appropriate key file not being present at InterSystems IRIS startup time
— such as if the media holding it is not currently available.

To correct the condition, after InterSystems IRIS starts running in single-user mode, then the procedure is:

1. Shut down InterSystems IRIS. For example, if the instance of InterSystems IRIS is called “MyIRIS”, the command
to do this would be:

iris force MyIRIS

2. If you know the location where InterSystems IRIS is expecting to find the database encryption key file, then place the
key file there. (Otherwise, you need to run ^STURECOV as specified in the next section.)

3. Start InterSystems IRIS again.

InterSystems IRIS should start in its typical mode (multi-user mode) and operate as expected.

If a Backup Key File Is Available

If the appropriate key file is not present at InterSystems IRIS startup time and is not available, you may have a backup key
file available. If so, then to correct the condition, after InterSystems IRIS starts running in single-user mode, then the pro-
cedure is:

1. Contact InterSystems Worldwide Response Center. Engineers there can help guide you through the following procedure
and answer any questions that may arise.

2. Start a Administrator Terminal Session according to the instructions in the most recent entry in the messages.log file.
Typically, this specifies starting a Terminal session with the -B flag..

For example, at a Windows command line, for an instance of InterSystems IRIS called “MyIRIS” that is installed in
the default location, the command would be:

c:\InterSystems\MyIRIS\bin\irisdb -sc:\InterSystems\MyIRIS\mgr -B

This connects you with InterSystems IRIS in the operating system terminal window; the prompt in that window changes
from the operating system prompt to the InterSystems IRIS %SYS prompt.

3. If you have or can obtain a copy of the database encryption key file (such as a backup), then place a copy of the key
file in a location accessible to InterSystems IRIS.

4. Run the ^STURECOV (startup recovery) routine at the Terminal prompt. In that routine, activate the encryption key
using an administrator username and password in that file. (You do not need to exit ^STURECOV when you have
completed this process.)

5. When you are satisfied that InterSystems IRIS is ready for use, use ^STURECOV to complete the startup procedure.
InterSystems IRIS then starts in multi-user mode.

InterSystems IRIS should now operate as expected.

If No Key File Is Available

If you do not have any copy of the database encryption key file, then the procedure is:

1. Contact InterSystems Worldwide Response Center (WRC). Engineers there can help guide you through the following
procedure and answer any questions that may arise.

2. Start a Administrator Terminal Session according to the instructions in the most recent entry in the messages.log file.
Typically, this specifies starting a Terminal session with the -B flag..

218 Reference for Operational and Actionable Resources for Security

Encryption

For example, at a Windows command line, for an instance of InterSystems IRIS called “MyIRIS” that is installed in
the default location, the command would be:

c:\InterSystems\MyIRIS\bin\irisdb -sc:\InterSystems\MyIRIS\mgr -B

This connects you with InterSystems IRIS in the operating system terminal window; the prompt in that window changes
from the operating system prompt to the InterSystems IRIS %SYS prompt.

3. If any encrypted databases require mounting at startup, disable this feature for them:

a. From the Management Portal Home page, go to the Local Databases page (System Administration > Configuration

> System Configuration > Local Databases).

b. Click the name of the database in the table of databases. This displays the Edit: page for the database.

c. On the Edit: page, clear the Mount Required at Startup check box.

d. Click Save.

4. Run the ^STURECOV routine at the Terminal prompt. In that routine, configure InterSystems IRIS database startup
options not to require a database encryption key. This means that the IRISTEMP and IRISLOCALDATA databases as
well as journal files should now operate as expected; it also means that any encrypted databases cannot be mounted.

5. When you are satisfied that InterSystems IRIS is ready for use, use ^STURECOV to complete the startup procedure.
InterSystems IRIS then starts in multi-user mode.

As you perform this procedure, you may need to perform other actions, according to the instructions of the representative
from the WRC. Follow these instructions.

CAUTION: If you have not performed the actions described in Protection from Accidental Loss of Access to Encrypted
Data, then your data may no longer be available in any form. This is a very serious problem, but if you do
not have a key, there is no way to retrieve the lost data.

Handle Emergency Situations When Using a KMIP Server
This topic describes what to do under certain circumstances when you are using a KMIP server and are in danger of losing
data. These situations include:

• If the KMIP Server Holding an Activated Key is Damaged or Missing

– If There Is a Backup Copy of the Key on the KMIP Server

– If There Is No Backup Copy of the Key on the KMIP Server

WARNING! This is a dire situation. Act immediately.

• If the KMIP Server Is Required at Startup and Is Not Accessible

– If the Connection to the KMIP Server is Briefly Unavailable

– If the KMIP Server Suffers a Longer-Term Outage

If the KMIP Server Holding an Activated Key is Damaged or Missing

In this situation, the following circumstances have occurred:

• A database encryption key has been activated for the InterSystems IRIS instance

• InterSystems IRIS is using encrypted data

• The KMIP server the database encryption key becomes damaged

Reference for Operational and Actionable Resources for Security 219

Handling Emergency Situations

If There Is a Backup Copy of the Key on the KMIP Server

If KMIP server holding an activated key becomes inaccessible or damaged, immediately perform restore procedures for
the KMIP server according to your vendor’s instructions.

If There Is No Backup Copy of the Key on the KMIP Server

WARNING! THIS PROCEDURE IS FOR AN EMERGENCY SITUATION, WHERE ENCRYPTED DATA IN
INTERSYSTEMS IRIS DATABASES IS IN DANGER OF BEING LOST.

If there is no way to restore the KMIP server holding the activated key from backup, immediately perform the following
procedure for each database encrypted with that key:

1. WARNING! Shutting down InterSystems IRIS or deactivating the active key will cause the permanent loss of
your data.

Do not shut down InterSystems IRIS.

Do not deactivate the currently active key.

2. Contact the InterSystems Worldwide Response Center. Engineers there can help guide you through the following
procedure and answer any questions that may arise.

3. Dismount the database. This prevents all users from making any changes to the database with encrypted content while
copying its data to an unencrypted database:

a. From the Management Portal home page, go to the Databases page (System Operation > Databases).

b. On the Databases page, if the encrypted database is mounted, select the Dismount option in the next-to-last column
in that database’s row. Then select OK in the confirmation dialog.

c. When the Databases page appears again, select the Mount option in the last column in the database’s row.

d. On the Mount database confirmation screen, check the Read Only box and select OK.

It is critical that no one makes any changes to the database during this procedure. Mounting the database read-only
prevents any user from changing any data.

4. Copy all data in unencrypted form to another database. The procedure for copying the data is:

a. In the Terminal, go to the %SYS namespace:

REGULARNAMESPACE>set $namespace="%SYS"

b. From that namespace, run the ^GBLOCKCOPY command:

%SYS>do ^GBLOCKCOPY

This routine will do a fast global copy from a database to another database or
to a namespace. If a namespace is the destination, the global will follow any
mappings set up for the namespace.

1) Interactive copy
2) Batch copy
3) Exit

Option?1

c. At the ^GBLOCKCOPY prompt, specify 1, for an interactive copy:

Option? 1

1) Copy from Database to Database
2) Copy from Database to Namespace
3) Exit

Option?

220 Reference for Operational and Actionable Resources for Security

Encryption

d. When ^GBLOCKCOPY prompts for a copy type, select 1, for copying from database to database

Option? 1
Source Directory for Copy (? for List)?

Here, either specify the name of the encrypted database or enter ? to see a numbered list of databases, which
includes the encrypted database. If you enter ?, ^GBLOCKCOPY displays a list such as this one:

Source Directory for Copy (? for List)? ?

1) C:\InterSystems\MyIRIS\mgr\
2) C:\InterSystems\MyIRIS\mgr\irislocaldata\
3) C:\InterSystems\MyIRIS\mgr\irisaudit\
4) C:\InterSystems\MyIRIS\mgr\irislib\
5) C:\InterSystems\MyIRIS\mgr\iristemp\
6) C:\InterSystems\MyIRIS\mgr\encrypted1\
7) C:\InterSystems\MyIRIS\mgr\encrypted2\
8) C:\InterSystems\MyIRIS\mgr\unencrypted\

Source Directory for Copy (? for List)?

Enter the number of the encrypted database, such as 7 here.

e. When ̂ GBLOCKCOPY prompts for a destination directory for copying the data, enter the name of an unencrypted
database or ? for a list similar to the one for the source directory.

f. When ^GBLOCKCOPY asks if you wish to copy all globals, enter Yes (can be Yes, Y, y, and so on):

All Globals? No => y

g. If there is an empty global in the database, ̂ GBLOCKCOPY will now ask if you wish to copy it. This will appear
something like the following:

All Globals? No => y

^oddBIND contains no data
Include it anyway? No =>

Enter No (can be No, N, n, and so on), which is the default.

h. ^GBLOCKCOPY then asks if you wish to skip all the other empty globals. Enter Yes (can be Yes, Y, y, and so
on), which is the default:

Exclude any other similar globals without asking again? Yes =>

There then appears a list of all the empty globals that are not being copied:

Exclude any other similar globals without asking again? Yes => Yes
^oddCOM contains no data -- not included
^oddDEP contains no data -- not included
^oddEXT contains no data -- not included
^oddEXTR contains no data -- not included
^oddMAP contains no data -- not included
^oddPKG contains no data -- not included
^oddPROC contains no data -- not included
^oddPROJECT contains no data -- not included
^oddSQL contains no data -- not included
^oddStudioDocument contains no data -- not included
^oddStudioMenu contains no data -- not included
^oddTSQL contains no data -- not included
^oddXML contains no data -- not included
^rBACKUP contains no data -- not included
^rINC contains no data -- not included
^rINCSAVE contains no data -- not included
^rINDEXEXT contains no data -- not included
^rINDEXSQL contains no data -- not included
^rMACSAVE contains no data -- not included
9 items selected from
29 available globals

Reference for Operational and Actionable Resources for Security 221

Handling Emergency Situations

i. ^GBLOCKCOPY then asks if you wish to disable journaling for this operation:

Turn journaling off for this copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default.

j. ^GBLOCKCOPY then asks if to confirm that you wish to copy the data:

Confirm copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default. Depending on the size of the database and the speed
of the processor, you may see the status of the copy as it progresses. When it completes, ̂ GBLOCKCOPY displays
a message such as:

Copy of data has completed

k. ^GBLOCKCOPY then asks if you wish to save statistics associated with the copy. Enter No (can be No, N, n,
and so on), which is the default:

Do you want to save statistics for later review? No =>

Control then returns to the main prompt.

5. Test that the copied data is valid. You can do this by examining the classes, tables, or globals in the Management
Portal’s System Explorer for the database into which ^GBLOCKCOPY has copied the data.

6. If the data is valid, perform steps 3 and 4 of this procedure for each database encrypted with the inaccessible or damaged
key.

7. Once you have made copies of every encrypted database into an unencrypted database, make a second copy of each
database, preferably to a different machine than that which holds the first copy of each.

8. Now — and only now — you can dismount all encrypted databases and deactivate the active key (that is, the key for
which the key file is missing or damaged). InterSystems IRIS requires that you dismount all encrypted databases prior
to deactivating their key.

You now have your data in one or more unencrypted databases and there is no activated key.

To re-encrypt the formerly encrypted databases, the procedure is:

1. Create a new database encryption key according to the procedure described in Create a Key on the KMIP Server.

2. Create a new backup copy of the key file as described in Protection from Accidental Loss of Access to Encrypted Data.

CAUTION: Make sure you take the precautions described in Protection from Accidental Loss of Access to Encrypted
Data; failure to follow these procedures can result in the permanent loss of data.

3. Create one or more new encrypted databases, using the new key.

4. Import the data exported in the previous procedure into the new encrypted database(s).

Your data is now stored in encrypted databases for which you have a valid key and a backup copy of the key file containing
that key.

If the KMIP Server Is Required at Startup and Is Not Accessible

Under certain conditions related to the required use of one or more database encryption keys at startup, the system starts
in single-user mode. These conditions are:

• InterSystems IRIS is configured for either interactive or unattended startup.

222 Reference for Operational and Actionable Resources for Security

Encryption

• Startup specifies that journal files and/or the IRISTEMP and IRISLOCALDATA databases are encrypted, or an
encrypted database is specified as required at startup.

• The KMIP server that holds the required database encryption key is not accessible.

If the Connection to the KMIP Server is Briefly Unavailable

The simplest solution to this case is when there has been a problem such as a network outage or the KMIP server is otherwise
temporarily not running; in these cases, address networking or server problem and, if required, restart InterSystems IRIS.

If the KMIP Server Suffers a Longer-Term Outage

If it is not possible to connect to the KMIP server longer-term:

1. Start a Administrator Terminal Session according to the instructions in the most recent entry in the messages.log file.
Typically, this specifies starting a Terminal session with the -B flag..

For example, at a Windows command line, for an instance of InterSystems IRIS called “MyIRIS” that is installed in
the default location, the command would be:

c:\InterSystems\MyIRIS\bin\irisdb -sc:\InterSystems\MyIRIS\mgr -B

This connects you with InterSystems IRIS in the operating system terminal window; the prompt in that window changes
from the operating system prompt to the InterSystems IRIS %SYS prompt.

2. If any encrypted databases require mounting at startup, disable this feature for them:

a. From the Management Portal Home page, go to the Local Databases page (System Administration > Configuration

> System Configuration > Local Databases).

b. Click the name of the database in the table of databases. This displays the Edit: page for the database.

c. On the Edit: page, clear the Mount Required at Startup check box.

d. Click Save.

3. Run the ^STURECOV routine at the Terminal prompt. In that routine, configure InterSystems IRIS database startup
options not to require a database encryption key. This means that the IRISTEMP and IRISLOCALDATA databases as
well as journal files should now operate as expected; it also means that any encrypted databases cannot be mounted.

4. When you are satisfied that InterSystems IRIS is ready for use, use ^STURECOV to complete the startup procedure.
InterSystems IRIS then starts in multi-user mode.

CAUTION: If you have not performed the actions described in Protection from Accidental Loss of Access to Encrypted
Data, then your data may no longer be available in any form. This is a very serious problem, but, if you
do not have a key, there is no way to retrieve the lost data.

Reference for Operational and Actionable Resources for Security 223

Handling Emergency Situations

Additional Encryption Information

Additional Encryption Information
This topic addresses additional information about InterSystems IRIS® data platform encryption.

Key File Encryption Information
Database encryption administrator names are stored in the clear in the key file. Database encryption administrator passwords
are not stored; when entered, they are used, along with other data, to derive key-encryption keys. If someone can successfully
guess a valid password, the password policy is too weak. Key-encryption keys are derived using the PBKDF2 algorithm
with 512 bits of salt and 65,536 iterations, making dictionary and brute force attacks impractical.

Encryption and Database-Related Facilities
InterSystems IRIS database encryption protects database files themselves. Regarding related facilities in InterSystems IRIS:

• InterSystems IRIS online backups are not encrypted. To ensure that the InterSystems IRIS database is encrypted in a
backup, it is recommended that you quiesce InterSystems IRIS and then perform a file system backup (as described
in External Backup).

• In the write image journal (WIJ) file, the blocks for encrypted databases are encrypted.

• The IRISTEMP and IRISLOCALDATA databases can optionally be encrypted. To provide encryption for IRISTEMP and
IRISLOCALDATA, see Configure Encryption Startup Settings.

• You can optionally encrypt journal files; see Configuring Database Encryption Settings.

About Calls to Perform Encryption, Hashing, and Other Key-Related Operations
InterSystems IRIS allows you to perform actions related to data encryption, Base64 encoding, hashing, and generating
message authentication codes using various methods of the %SYSTEM.Encryption class. It includes methods that invoke
AES encryption, various RSA algorithms, SHA-256 hash functions, and more. Some of the calls include:

• $System.Encryption.AESCBCManagedKeyEncrypt and $System.Encryption.AESCBCManagedKeyDecrypt

• $System.Encryption.AESKeyWrap and $System.Encryption.AESKeyUnwrap

• $System.Encryption.Base64Encode and $System.Encryption.Base64Decode

• $System.Encryption.RSASHASign and $System.Encryption.RSASHAVerify

• $System.Encryption.RSAEncrypt and $System.Encryption.RSADecrypt

• $System.Encryption.SHAHash

An Example of Using RSAEncrypt and RSADecrypt

Below is an example of using the RSAEncrypt and RSADecrypt calls. It assumes that:

• The code is running on Windows.

• There is an available certificate, private key, and certificate authority (CA) certificate. (To try this example, you will
need to obtain these.)

• All three of these items are in the C:\Keys\ directory.

See the comments within the example for more details of its operations.

224 Reference for Operational and Actionable Resources for Security

Encryption

ObjectScript

 set dir = "C:\Keys\"

 // certificate for the instance performing encryption and decryption
 // and private key associated with that above certificate
 set cert = dir_"test.crt"
 set key = dir_"test.key"

 // certificate for the CA of the instance
 set cacert=dir_"ca.crt"

 set data = "data to be encrypted"

 // create a local set of X.509 credentials with the
 // certificate and private key
 set credentials = ##class(%SYS.X509Credentials).%New()
 set credentials.Alias="TestCreds"
 write credentials.LoadCertificate(cert)
 write credentials.LoadPrivateKey(key)
 write credentials.Save(),!

 // encrypt the data using the public key in the certificate, write it
 // to the display, and display error information, if there is any
 set ciphertext=$System.Encryption.RSAEncrypt(data,credentials.Certificate,cacert)
 write ciphertext,!
 write $System.Encryption.RSASHA1GetLastError()

 // decrypt the data using the private key, write it to the display,
 // and display error information, if there is any
 write "now decrypting -=-=-=-=-=-=-=-=-=-=-",!
 set cleartext=$System.Encryption.RSADecrypt(ciphertext,credentials.PrivateKey)
 write cleartext,!
 write $System.Encryption.RSASHA1GetLastError()

Reference for Operational and Actionable Resources for Security 225

Additional Encryption Information

FIPS-2 Compliance

FIPS 140–2 Compliance for Database Encryption
On specific platforms, InterSystems IRIS® data platform supports FIPS 140–2 compliant cryptography for database
encryption. (FIPS 140–2 refers to Federal Information Processing Standard Publication 140-2, which is available at
https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf.)

This version of InterSystems IRIS supports FIPS 140-2–compliant cryptography for database encryption on Red Hat
Enterprise Linux 8 for x86-64. Red Hat has certificates of validation for the OpenSSL libcrypto.so and libssl.so libraries.
When running in FIPS mode, InterSystems IRIS uses these certified libraries. To determine if a minor version of Red Hat
Linux has current certification, consult the Red Hat documentation.

Note: With FIPS mode enabled:

• Red Hat 8 supports only TLSv1.2 and TLSv1.3.

For information about Red Hat support for government standards, see https://access.redhat.com/articles/2918071.

Important: InterSystems IRIS does not currently support FIPS mode on Red Hat 9.

Enabling FIPS Support
To enable InterSystems IRIS support for FIPS 140–2 compliant cryptography for database encryption, do the following:

1. Download and install the openssl package from the RedHat repository (rhel-8-server-rpms).

2. Enable FIPS mode for the operating system. For these instructions, see the article How can I make RHEL 6/7/8 FIPS
140-2 compliant? on the Red Hat web site. (Access to this article requires Red Hat login credentials.)

3. Check the directory /usr/lib64 for the following symbolic links. If these do not exist, create them:

• The symbolic link libssl.so.1.1 should point to the appropriate file (such as libssl.so.1.1.1g), in the same directory.

• The symbolic link libcrypto.so.1.1 should point to the appropriate file (such as libcrypto.so.1.1.1g), in the same
directory.

4. In InterSystems IRIS, specify the FIPSMode CPF parameter as True (1). To do so:

a. Open the Management Portal.

b. Select System Administration > Configuration > Additional Settings > Startup.

Here you will see a row for FIPSMode.

c. Specify the value for FIPSMode as True and save your change.

5. Restart InterSystems IRIS.

6. Enable and configure encrypted databases as outlined in Using Encrypted Databases.

Startup Behavior and messages.log
When InterSystems IRIS is started:

• If FIPSMode is 0, InterSystems IRIS native cryptography is used, including optimized assembly code using Intel AES-
NI hardware instructions, if supported by the CPU. In this mode, InterSystems IRIS writes the following to messages.log

upon startup:

226 Reference for Operational and Actionable Resources for Security

Encryption

https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf
https://access.redhat.com/products/red-hat-enterprise-linux/
https://access.redhat.com/articles/2918071
https://access.redhat.com/solutions/137833
https://access.redhat.com/solutions/137833

Terminal

FIPS 140-2 compliant cryptography for database encryption is not configured in iris.cpf

• If FIPSMode is 1, InterSystems IRIS attempts to resolve references to functions in the /usr/lib64/libcrypto.so FIPS-validated
library, and then attempts to initialize the library in FIPS mode. If these steps are successful, InterSystems IRIS writes
the following to messages.log:

Terminal

FIPS 140-2 compliant cryptography for database encryption is enabled for this instance.

• If FIPSMode is 1, but the initialization of the library is unsuccessful, InterSystems IRIS does not start. In this case,
messages.log contains the following message:

Terminal

FIPS 140-2 compliant cryptography for database encryption initialization failed. Aborting.

• On platforms other than lnxrhx64, if FIPSMode is 1, InterSystems IRIS native cryptography is used, and InterSystems
IRIS writes the following to messages.log:

Terminal

FIPS 140-2 compliant cryptography for database encryption is not supported on this platform.

Reference for Operational and Actionable Resources for Security 227

FIPS-2 Compliance

Cryptographic Standards and RFCs

Cryptographic Standards and RFCs
The following are standards and RFCs (requests for comment) that define the cryptographic primitives and algorithms used
in InterSystems security:

• AES (Advanced Encryption Standard) encryption — FIPS (Federal Information Processing Standards) 197

• AES Key Wrap —

– NIST (National Institute of Standards and Technology) document “Recommendation for Block Cipher Modes of
Operation: Methods for Key Wrapping” (https://csrc.nist.gov/CryptoToolkit/kms/AES_key_wrap.pdf)

– IETF (Internet Engineering Task Force) RFC 3394

• Base64 encoding — RFC 3548

• Block padding — PKCS (Public-Key Cryptography Standards) #7 and RFC 2040

• CBC (Cipher Block Chaining) cipher mode — NIST 800-38A

• Deterministic random number generator —

– FIPS PUB 140-2, Annex C

– FIPS PUB 186-2, Change Notice 1, Appendix 3.1 and Appendix 3.3

• GSS (Generic Security Services) API —

– The Kerberos Version 5 GSS-API Mechanism — RFC 1964

– Generic Security Service Application Program Interface, Version 2, Update 1 — RFC 2743

– Generic Security Service API Version 2: C Bindings — RFC 2744

– Generic Security Service API Version 2: Java Bindings — RFC 2853

• Kerberos Network Authentication Service (V5) — RFC 1510

• Hash-based Message Authentication Code (HMAC) — FIPS 198 and RFC 2104

• Message Digest 5 (MD5) hash — RFC 1321

• Password-Based Key Derivation Function 2 (PBKDF2) — PKCS #5 v2.1 and RFC 8018

• Secure Hash Algorithm (SHA-1) — FIPS 180-2 and RFC 3174

• Secure Hash Algorithm (SHA-512) — FIPS 180-2 and RFC 6234

All these documents are available online:

• FIPS documents

• NIST documents

• RFCs (IETF)

228 Reference for Operational and Actionable Resources for Security

Encryption

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/fips/
https://csrc.nist.gov/publications/nistpubs/
https://www.ietf.org/standards/rfcs/

Public Key Infrastructure

The InterSystems Public Key Infrastructure

Important: Implementation of InterSystems PKI is deprecated. It may be removed from future versions of InterSystems
products. The following documentation is provided as reference for existing users only. InterSystems urges
users to discontinue use of the PKI features.

This document covers the following topics:

• About the InterSystems Public Key Infrastructure (PKI)

• Certificate Authority Server Tasks

– Configuring an InterSystems IRIS® Instance as a Certificate Authority Server

– Managing Pending Certificate Signing Requests

• Certificate Authority Client Tasks

– Configuring an InterSystems IRIS Instance as a Certificate Authority Client

– Submitting a Certificate Signing Request to a Certificate Authority Server

– Getting Certificate(s) from the Certificate Authority Server

About the InterSystems Public Key Infrastructure (PKI)
A Public Key Infrastructure (PKI) provides a means of creating and managing private keys, public keys, and certificates.
These are used for cryptographic operations including encryption, decryption, and digital signing and signature verification.
Certificates provide a means of associating a public key with an identity. To do this, a PKI includes a trusted third party
known as a certificate authority (CA).

The InterSystems PKI implementation gives InterSystems IRIS the ability to serve as a Certificate Authority (CA). An
instance of InterSystems IRIS acting as a CA is known as a CA server; an instance of InterSystems IRIS using a CA’s
services is known as a CA client. A single instance of InterSystems IRIS can be both a CA server and a CA client. As a
CA server, an instance can either generate and use a self-signed CA Certificate, or it can use a CA Certificate issued by a
commercial third party or product. As a CA client, an instance is associated with a CA server; the CA client’s certificate
is available for use with TLS, XML encryption, and signature verification; there is also the option of configuring a CA
client to serve as an intermediate CA. Communications involving the PKI occur through web services.

When establishing itself as a CA server, an instance of InterSystems IRIS either creates a public/private key pair and then
embeds the public key in a self-signed X.509 certificate or it uses a private key and X.509 certificate signed by an outside
CA. X.509 is an industry-standard certificate structure that associates a public key with both identifying information for
an entity and other related data; this identifying information is known as a subject Distinguished Name (DN), and consists
of various specific information regarding an entity’s organization, location, or both. You can use X.509 certificates to
provide a high level of public-key–based security if, and only if, appropriate security policies regarding the protection of
private keys and the issuance of certificates are enforced, including strict control of the CA server’s private key file,
preferably stored on removable media which can be physically secured when not in use.

To use the InterSystems IRIS PKI infrastructure from the Management Portal, all actions start from the Public Key Infras-

tructure page (System Administration > Security > Public Key Infrastructure).

For more background on PKI and CAs, see “About Public Key Infrastructure (PKI).” For technical details about the TLS
calls underlying the InterSystems PKI, see the OpenSSL library. For technical details about X.509 certificates, see RFC
5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.”

Reference for Operational and Actionable Resources for Security 229

Public Key Infrastructure

https://openssl.org/
https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc5280.txt

Help for Management Portal PKI Tasks

The following are links to help for PKI tasks:

• Certificate Authority Client

– Submit Certificate Signing Request to Certificate Authority server

– Get Certificate(s) from Certificate Authority server

– Configure local Certificate Authority client

• Certificate Authority Server

– Process pending Certificate Signing Requests

– Configure local Certificate Authority server

Certificate Authority Server Tasks
An InterSystems IRIS instance can serve as a certificate authority (CA) server. This involves:

1. Configuring an InterSystems IRIS instance as a CA server. This involves providing information that is either related
to the certificate or that the CA server uses for processing certificate signing requests.

2. Managing pending certificate signing requests (CSRs). This is the ongoing work of a CA server.

Note: Because these tasks are for the CA server administrator, this section is addressed to those administrators. This
differs from the tasks in the CA client tasks, which are addressed to CA client administrators/technical contacts.

Configure an InterSystems IRIS Instance as a Certificate Authority Server

Before any PKI operations are possible, you need to configure an InterSystems IRIS instance as a Certificate Authority
(CA) server. This involves either:

• Configuring a CA Server with a New Private Key and Certificate

• Configuring a CA Server with an Existing Private Key and Certificate

It may also involve reinitializing a CA server.

Configure a CA Server with a New Private Key and Certificate

If you are creating a new private key and certificate, the procedure is:

1. For the selected InterSystems IRIS instance, in the Management Portal, go to the Public Key Infrastructure page (System

Administration > Security > Public Key Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Configure Local Certificate Authority

server. This displays fields for (1) the file name root for the CA server’s certificate and private key and (2) the directory
that holds these files.

Important: If you specify a path and file name root that point to an existing certificate and private key, InterSystems
IRIS uses these for the CA server. Otherwise, it creates a new certificate and private key. (Also, if
only one of the files exists, InterSystems IRIS renames it by appending the .old suffix to it and creates
new files.)

The fields are:

• File name root for Certificate Authority’s Certificate and Private Key files (without extension) — Required. Specifies
the part of the name of the private key and certificate files that is common to each. This can be for an existing pair

230 Reference for Operational and Actionable Resources for Security

Encryption

of files or for a new pair of files. Hence, if you select MyCA as the file name root, the private key is stored in the
MyCA.key file and the certificate is stored in the MyCA.cer file. Valid characters for this field are alphanumeric
characters, the hyphen, and the underscore. The root cannot be the string “cache”.

• Directory for Certificate Authority’s Certificate and Private Key files — Required. The path to a directory for storing
the CA’s certificate and private key files; if the directory does not exist, InterSystems IRIS attempts to create it.
This directory should always be on an external device (not a local hard drive or a network server), preferably on
an encrypted external device. As this is the directory that holds the CA’s private key, it is extremely important
that this be a completely secure location. If you provide a relative path here, the path is relative to <install-dir>/mgr/

for the InterSystems IRIS instance.

3. Click Next to continue.

4. The fields that appear next depend on whether you are creating a new private key and certificate pair or using an
existing private key and certificate. When you are creating a new private key and certificate, InterSystems IRIS displays
the following fields:

• Password to Certificate Authority's Private Key file and Confirm Password — Required. The password to encrypt
and decrypt the CA’s private key file.

• Certificate Authority Subject Distinguished Name — The set of one or more name-value pairs that define the distin-
guished name (DN) that describes the bearer of the CA certificate. You must provide a value for at least one
attribute. The attributes are:

– Country — A two-letter code identifying the country, using the ISO country codes.

– State or Province — The name of the CA’s state or province. The convention is not to use this field for CA
certificates.

– Locality — The name of the CA’s municipality. The convention is not to use this field for CA certificates.

– Organization — Name of the organization that is administering the CA. By convention, this value is spelled
out in full, such as “InterSystems Corporation,” rather than simply “InterSystems” or “InterSystems Corp.”

– Organizational Unit — Any other organizational information or special commentary on the CA. Examples of
this can include the CA’s department, a statement that the CA is for use only within an enterprise, and so on.

– Common Name — A descriptive name for the CA, such as “Documentation Test CA.”

• Validity period for Certificate Authority's Certificate (days) — Required. The validity period (lifespan) for the CA
certificate itself.

• Validity period for Certificates issued by Certificate Authority (days) — Required. The validity period (lifespan) for
certificates that the CA issues for its clients.

• Configure email — Information required for the email account for managing the CA and its tasks.

– SMTP server — The Simple Mail Transfer Protocol (SMTP) server that handles the CA mail in the form of
a fully qualified host name, such as “MyMachine.MyDomain.com”.

– SMTP username — A username that can be authenticated by the specified SMTP server. This field does not
require a fully qualified username.

– SMTP password — The password associated with the SMTP username.

– Confirm password — A confirmation of the password associated with the SMTP username.

– Certificate Authority server administrator's email address — The user who receives certificate signing requests
for the CA. This field requires a fully qualified username, such as “CAMgr@MyDomain.com”.

5. Complete these fields as required and click Save. InterSystems IRIS displays a message indicating success, such as:

Reference for Operational and Actionable Resources for Security 231

Public Key Infrastructure

https://www.iso.org/obp/ui/#search

Certificate Authority server successfully configured.
Created new files: C:\pki\FileNameRoot.cer .key, and .srl.
Certificate Authority Certificate SHA-1 fingerprint:
E3:FB:30:09:53:90:9A:31:30:D3:F0:07:8F:64:65:CD:11:0A:1A:A2
Confirmation email sent to: CAserver-admin@intersystems.com

This indicates that a private key, certificate, and their associated SRL (serial) file have been created. (Otherwise,
InterSystems IRIS displays an error message.)

Once the files have been created, it is strongly recommended that you store the private key on removable media that
can be physically secured.

WARNING! It is critical that you properly protect all private keys, and most important that you protect the private
key of a CA. The exposure of a private key can result in security breaches, data exposure, financial
losses, and legal vulnerability.

If it has succeeded, InterSystems IRIS has performed the following actions:

• Creating a key pair.

• Saving the private key to a file to a specified location with a specified file name root (see below).

• Creating a self-signed CA certificate containing the public key.

• Saving the certificate to a file to a specified location with a specified file name root (see below).

• Creating a counter of the number of certificates issued and storing it in an SRL (serial) file in the same directory
as the certificate and the private key. (Each time the CA issues a new certificate, InterSystems IRIS gives the
certificate a unique serial number based on this counter and then increments the value in the SRL file.)

Once you have created the CA private key and certificate, you can process certificate signing requests (CSRs). When a CA
client creates a CSR, you, as CA administrator, will receive email notification about this.

Configure a CA Server with an Existing Private Key and Certificate

If you are using an existing private key and certificate (such as from another InterSystems IRIS CA, or from an external
CA, such as a commercial CA), the procedure is:

1. Create or obtain a private key and certificate. The certificate must be in PEM format, or you must be able to convert
it to PEM format.

2. If they do not already have identical file name roots, rename them as filenameroot.cer for the certificate and
filenameroot.key for the private key, where filenameroot is the file name root you wish to use.

3. Store both files in the same directory, making sure that this directory is accessible to the InterSystems IRIS instance
that you are configuring as a CA server. This directory should always be on an external device (not a local hard drive
or a network server), preferably on an encrypted external device. As this is the directory that holds the CA’s private
key, it is extremely important that this be a completely secure location.

WARNING! It is critical that you properly protect all private keys, and most important that you protect the private
key of a CA. The exposure of a private key can result in security breaches, data exposure, financial
losses, and legal vulnerability.

4. For the selected InterSystems IRIS instance, in the Management Portal, go to the Public Key Infrastructure page (System

Administration > Security > Public Key Infrastructure).

5. On the Public Key Infrastructure page, under Certificate Authority Server, select Configure Local Certificate Authority

server. Complete the fields on this page as follows:

232 Reference for Operational and Actionable Resources for Security

Encryption

• File name root for Certificate Authority’s Certificate and Private Key files (without extension) — Required. The part
of the name of the private key and certificate files that is common to each. For this value, use the file name root
that the files have or that you selected in step 2 of this procedure.

• Directory for Certificate Authority’s Certificate and Private Key files — Required. The path to a directory that holds
the CA’s certificate and private key files. For this value, use the directory that you selected in step 3. If you provide
a relative path here, the path is relative to <install-dir>/mgr/ for the InterSystems IRIS instance.

6. Click Next to continue.

7. The fields that appear next depend on whether you are creating a new private key and certificate pair or using an
existing private key and certificate. When you are using an existing private key and certificate, InterSystems IRIS
displays the following fields:

• Validity period for Certificates issued by Certificate Authority (days) — Required. The validity period (lifespan) for
certificates that the CA issues for its clients.

• Configure email — Information required for the email account for managing the CA and its tasks.

– SMTP server — The Simple Mail Transfer Protocol (SMTP) server that handles the CA mail in the form of
a fully qualified host name, such as “MyMachine.MyDomain.com”.

– SMTP username — A username that can be authenticated by the specified SMTP server. This field does not
require a fully qualified username.

– SMTP password — The password associated with the SMTP username.

– Confirm password — A confirmation of the password associated with the SMTP username.

– Certificate Authority server administrator's email address — The user who receives certificate signing requests
for the CA. This field requires a fully qualified username, such as “CAMgr@MyDomain.com”.

Important: If the Management Portal displays more fields than these, then you have not properly directed it to
the private key and certificate that you wish to use. If you complete all the displayed fields, click Save,
and there is success, InterSystems IRIS will have created a new private key and certificate for the CA
server.

8. Click Save. When you save the configuration information for the local CA server, InterSystems IRIS uses the existing
certificate and private key. (It will also create an SRL file, if one does not exist.) It will display a success message such
as:

Certificate Authority server successfully configured.
Using existing files: C:\pki\FileNameRoot.cer and .key
Certificate Authority Certificate SHA-1 fingerprint:
E3:FB:30:09:53:90:9A:31:30:D3:F0:07:8F:64:65:CD:11:0A:1A:A2
Confirmation email sent to: CAserver-admin@intersystems.com

As with creating a new private key and certificate, at this point, the CA server is configured and is now ready to process
certificate signing requests (CSRs). Again, when a CA client creates a CSR, you, as CA administrator, will receive email
notification about this.

Reinitialize a CA Server

If you have already configured an instance as a CA server, then there is a Reinitialize button on the page for configuring a
CA. Selecting it has the following effects:

• It deletes all configuration information for the CA server.

• It discards all information for issued certificates.

• It discards all certificate signing requests pending with the CA.

Reference for Operational and Actionable Resources for Security 233

Public Key Infrastructure

Note: Reinitialization does not delete the files containing the private key or existing certificate for the CA, nor does it
delete the CA’s existing SRL file; in fact, these are still valid and can be used. Also, it does not render any already
signed certificates invalid.

When you click the button, there is a prompt to confirm that you want to reinitialize the CA. After reinitialization, you can
configure a new CA server.

Manage Pending Certificate Signing Requests

Once the Certificate Authority (CA) server has been configured, the principal task associated with the CA server is managing
certificate signing requests (CSRs) from potential CA clients. This can involve:

• Processing a Certificate Signing Request (CSR)

• Deleting a Certificate Signing Request (CSR)

If processing leads to approving the request, the CA server issues an X.509 certificate signed with the CA’s private key,
and sends email notification of the issued certificate’s serial number to the CA client’s technical contact. It is also possible
to delete (that is, reject) a request.

A critical step in this process is verification, in which the CA administrator uses communications that prevent impersonation
to verify the identity of the requester, the authority of the technical contact to hold a certificate with the requested DN, and
the purpose for which the certificate is being issued. (To do this, the CA server’s administrator uses the contact information
received from the potential CA client along with the CSR.)

Process a Certificate Signing Request (CSR)

To process a request is to convert the CSR into a certificate. The procedure is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Process pending Certificate Signing

Requests. This displays a table of CSRs that the CA has received and not processed or deleted; to the right of each
CSR there are Process and Delete links.

3. Mount the media containing the CA server certificate and private key files. (This is the media on which you stored
these files while configuring an InterSystems IRIS instance as a CA server.)

4. To process a CSR, click Process. This displays the contents of the CSR.

5. Prior to issuing the certificate, you need to specify the use of the certificate. The choices for the Certificate Usage radio
buttons specify which operations the certificate can perform:

• TLS/SSL and XML security — For CA clients that are directly using various security capabilities within InterSystems
IRIS.

• Intermediate Certificate Authority — For CA clients that will themselves be serving as CAs for other instances of
InterSystems IRIS.

• Code signing — For CA clients that perform code signing.

6. Important: This step requires that you verify the identity of the technical contact for the potential CA client using
a means that prevents impersonation.

As the instructions on this page specify, you must contact the designated technical contact for the instance that has
submitted the CSR. According to the policies of your organization, contact this person by phone or in person and verify:

• This person’s identity

234 Reference for Operational and Actionable Resources for Security

Encryption

• This person’s authority to hold a certificate containing the Subject Distinguished Name shown above, signed by
the CA for which you are responsible

• That the SHA-1 fingerprint shown above matches the one reported to them when they submitted the certificate
signing request

7. Once you have specified the purpose of the certificate and verified the relevant information with the technical contact,
you can issue the certificate. To do this, click Issue Certificate. This causes the page to display the Password for Certificate

Authority's Private Key file field.

8. In the Password for Certificate Authority's Private Key file field, enter the password to decrypt the CA server’s private
key file. If you created the private key and certificate with InterSystems IRIS, this is the value you entered in the
Password to Certificate Authority's Private Key file field; if you created the private key and certificate using other tools,
it is the password, if any, that you provided to those tools for this purpose.

9. Click Finish to create the certificate. If successful, InterSystems IRIS displays a message such as

Certificate number 31 issued for Certificate Signing Request
"Santiago Development Group"

10. Remove the media holding the CA server’s certificate and private key, and store it in a secure location.

InterSystems IRIS has now created the certificate and notified the technical contact for the CA client by email that the
certificate is available for download. The CA client’s technical contact can now download the certificate to the client host.

Delete a Certificate Signing Request (CSR)

To delete a request, the procedure is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Process pending Certificate Signing

Requests. This displays a table of CSRs that the CA has received and not processed or deleted; to the right of each
CSR there are Process and Delete links.

3. To delete a CSR, click Delete. This displays a confirmation dialog.

4. In the confirmation dialog, click OK.

5. Complete these fields as required and click Save.

This deletes the CSR.

Certificate Authority Client Tasks
A certificate authority (CA) client has one-time setup tasks, which are:

1. Configuring the InterSystems IRIS instance as a CA client. This involves providing location about the CA server to
the potential CA client; it also includes providing contact information about the CA client’s technical contact.

2. Getting a copy of the CA certificate. This allows for verifying other certificates.

After setup tasks, the CA client tasks are:

1. Submitting a certificate signing request (CSR) to the CA server. From the user’s perspective, this involves specifying
a distinguished name (DN) and other information. (This may happen repeatedly, if the instance has reason to have
multiple distinct certificates.)

2. Getting copies of various certificates. In addition to the CA client’s own certificate, this includes any other certificates
that the CA server has issued.

Reference for Operational and Actionable Resources for Security 235

Public Key Infrastructure

After performing these tasks, the CA client can then perform the operations that require use of the PKI. These are tasks in
which it is known as an end entity, since it is at the end of a secured connection.

Note: Because these tasks are for the CA client administrators/technical contacts, this section is addressed to those
individuals. This differs from the tasks in the Certificate Authority Server Tasks, which are addressed to CA server
administrators.

Configure an InterSystems IRIS Instance as a Certificate Authority Client

The procedure to configure an InterSystems IRIS instance as a certificate authority (CA) client involves providing location
about the CA server to the potential CA client; it also includes providing contact information about the CA client’s technical
contact. The steps are:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Configure Local Certificate Authority

Client. The fields on this page are:

• Certificate Authority server hostname — Required. The fully qualified name of the machine of the CA server.
(Specifically, this is a machine on which an instance of InterSystems IRIS is running, and this instance is serving
as a CA server. It must be configured as a CA server prior to configuring any instance as a CA client.)

• Certificate Authority WebServer port number — Required. The webserver port number for the instance of InterSys-
tems IRIS serving as the CA server.

• Certificate Authority server path — Required. The path of the web service of the CA server. By default, this is
/isc/pki/PKI.CAServer.cls. (This value is used along with the server hostname and port number to contact the web
service for the CA.)

• Local technical contact — The person who provides verification information to the CA server on behalf of the CA
client. For this person, the following information is required:

– Name — Required. The name of the technical contact for the CA client.

– Phone number — The contact’s phone number. This is so that the CA administrator can contact the CA client’s
technical contact to perform verification prior it issuing the CA client’s certificate. The phone number is not
required, since InterSystems IRIS does not require a particular mechanism of verification; for example, it
could happen in person.

– Email address — The contact’s email address. This is so that the CA client’s technical contact can receive
email notification that the CA server has processed the client’s CSR and issued a certificate. The email address
is not required, since the server administrator can use some other means to contact the client’s technical contact
about the newly issued certificate.

3. Complete these fields as required and click Save.

InterSystems IRIS acknowledges success through a message such as “Certificate Authority client successfully configured.”
At this point, the next task is to download the CA server’s certificate.

Submit a Certificate Signing Request to a Certificate Authority Server

Once an instance of InterSystems IRIS is configured as a certificate authority (CA) client, you can then submit a certificate
signing request (CSR) to the CA server. On the surface, this involves specifying a distinguished name (DN) and other
information. Under the covers, the CA client performs several actions:

1. Generating a public/private key pair.

2. Creating a Certificate Signing Request (CSR) containing the public key and a specified DN.

236 Reference for Operational and Actionable Resources for Security

Encryption

3. Submitting that to the CA server using a web service.

The PKI infrastructure automatically provides the CSR to the CA server, acknowledges the submission, and sends email
notification to the CA server’s administrator. The submission includes your contact information as the local technical
contact for the CA client. The CA administrator then processes the CSR by using communications that prevent impersonation
to verify the identity of the requester, the authority of the technical contact to hold a certificate with the requested DN, and
the purpose for which the certificate is being issued. If the request is approved, the completion of the process includes the
CA server creating a certificate.

To submit a CSR to a CA server, the procedure is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Submit Certificate Signing Request to

Certificate Authority Server. The fields on this page are:

• File name root for local Certificate and Private Key files (without extension) — Required. Specifies the part of the
name of the private key and certificate files that is common to each. Hence, if you select CAClient as the file
name root, the private key is stored in the CAClient.key file and the certificate is stored in the CAClient.cer file.
Valid characters for this field are alphanumeric characters, the hyphen, and the underscore. The root cannot be
the string “cache”.

• Password to Certificate Authority's Private Key file and Confirm Password — Optional. The password that for
encrypting and decrypting the CA client’s private key.

• Subject Distinguished Name — The set of one or more name-value pairs that define the distinguished name (DN)
that describes the bearer of the client certificate. You must provide a value for at least one attribute. The attributes
are:

– Country — A two-letter country code for the country, using the ISO country codes.

– State or Province — The name of the state or province, spelled out in full.

– Locality — The name of the municipality, spelled out in full.

– Organization — Name of the organization with which the certificate is associated. By convention, this value
is , spelled out in full, such as “InterSystems Corporation,” rather than simply “InterSystems” or “InterSys-
tems Corp.”

– Organizational Unit — Any other organizational information, such as a department.

– Common Name — A descriptive name for the client, such as “Documentation Test Client.”

3. Complete these fields as required and click Save. If successful, InterSystems IRIS then displays a message such as:

SHA-1 Fingerprint:
0C:DA:5F:06:04:C7:AE:64:61:9C:5C:29:35:49:88:0D:B6:E5:7D:98,
Certificate Signing Request "CAClient060412"
successfully submitted to the Certificate Authority at instance MyCA
on node CATESTCLIENT.CATESTDOMAIN.COM

If InterSystems IRIS has successfully created a CSR, it has performed the following actions:

• Creating a key pair.

• Saving the private key to a file in the manager’s directory with the specified file name root.

• Creating a CSR that includes the public key and saving it to a file in the manager’s directory with the specified
file name root.

• Submitting that CSR to the CA using the host name, port, and path specified as part of the CA client configuration
process.

Reference for Operational and Actionable Resources for Security 237

Public Key Infrastructure

https://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

(If the process does not succeed, InterSystems IRIS displays an error message.)

Once the files have been created, it is strongly recommended that you store this sensitive information on encrypted,
removable media that can be physically secured.

4. Make a copy of the SHA-1 fingerprint that InterSystems IRIS displays.

Important: Do not lose this information, as you will need to provide this later, as part of the verification process.

5. At this point, you have used InterSystems IRIS to create and submit the CSR. When the administrator of the CA contacts
you, provide the SHA-1 fingerprint that you copied in the last step. The administrator will then create certificate for
you, which you can obtain as described in Get Certificate(s) from Certificate Authority Server.

Get Certificate(s) from Certificate Authority Server

Once a certificate authority (CA) client has been configured, it can then download any certificate associated with the CA
server. This includes:

• The CA server certificate.

• Its own certificate. This is available if the CA client has submitted a certificate signing request (CSR) to the CA server
and the CA server has approved the request.

• Any other certificates that the CA server has created for any other CA clients.

The procedure to obtain certificates is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Get Certificate(s) from Certificate

Authority server. This displays a list of available certificates to download, as well as a button that displays certificates
issued for the current instance (whether downloaded or not). Ordinarily, you need both the CA server certificate as
well as your own. There are several tasks you can perform from this page:

• To download the CA certificate, click Get Certificate Authority Certificate. A confirmation message such as

Certificate Authority Certificate (SHA-1 Fingerprint:
E2:FB:30:09:53:90:9A:31:30:C3:F0:07:8F:64:65:CD:11:0A:1A:A2)
saved in file "c:\intersystems\myinstnace\mgr\MyCA.cer"

• To download any certificate that the CA has issued — including any certificate for the CA client itself, you can
locate the certificate by its serial number, the name of the host of the CA client (the Hostname column), the name
of the instance of the CA client (the Instance column), or the root file name of the certificate (the Filename column).

• To view any certificates issued for the current instance, click Show Certificates for This Instance. This displays a
table of certificates from which you can download a certificate, listing only the Serial Number and Filename

columns.

3. When you click Get to download a certificate, InterSystems IRIS displays a confirmation message, such as

Certificate number 74 (SHA-1 Fingerprint:
45:E8:DE:0C:15:BF:A7:89:58:04:5E:68:2E:4D:BB:01:F5:90:94:97)
saved in file "c:\intersystems\myinstance\mgr\IstanbulAcctsPayable.cer"

While InterSystems IRIS initially downloads certificates to the manager’s directory, once they are on the client host, you
can move them anywhere.

238 Reference for Operational and Actionable Resources for Security

Encryption

Demo: Database Encryption

InterSystems IRIS Demo: Database Encryption
This article introduces you to how InterSystems IRIS® data platform handles database encryption, which is an important
part of any organization’s security strategy.

This article presents an introduction to database encryption and walks you through some initial tasks associated with creating
an encrypted database. Once you’ve completed this guide, you will have created a key file, activated the key file, and then
used it to encrypt a database. These activities are designed to use only the default settings and features, so that you can
acquaint yourself with the fundamentals of the feature without having to deal with details that are off the topic (though
these may be important when performing an implementation). For the full documentation on database encryption, see
Encryption Guide.

Why Database Encryption Is Important
While encryption does not prevent all improper or unauthorized use or disclosure of confidential or personal information,
ensuring encryption of data at rest provides an important layer in the defense of the security of information. Putting
encryption in place at the database level provides an added dimension to your information protection controls.

Additionally, many laws and regulations regarding sensitive or personal information recommend or require that the organi-
zation processing the data employ encryption as a first line of defense. These include laws and regulations such as:

• Health Insurance Portability and Accountability Act (HIPAA) — Requirement that Secure Protected Health information
be unreadable, undecipherable, and unrecoverable

• Massachusetts 201 Code of Massachusetts Regulations (CMR) 17.00 — Requirement that personal information be
encrypted in transit and at rest

• New York 23 New York Codes, Rules and Regulations (NYCRR) Part 500 — Financial and other covered organizations
processing nonpublic information must utilize encryption as one means of safeguarding data

• European Union General Data Protection Regulation (GDPR) — Requirement for security safeguards to take into
account encryption as a protecting control

• Italian Personal Data Protection Code (PDPC) — Section 24 of the Technical Specifications on Minimum Data Security
Measures requires the processing of data disclosing health and sex life to be encrypted

• Australian Privacy Principles (APP) Principle 4 — Robust encryption implementation addresses necessary privacy
enhancing technologies to secure personal information

• Japan Ministry of Economy, Trade, and Industry (METI) Guidelines — Regulatory investigation must be undertaken
if compromise of personal or confidential information that was not encrypted, because under the Act on the Protection
of Personal Information (APPI), Art. 20, the processor of personal information obligated to prevent leakage, loss, or
damage of information

Note that many of these legal requirements focus on data breaches, as they are an increasingly common phenomenon, but
the current framework obligates organizations to address risk through proper security controls, such as role-based access,
password protections, intrusion detection, data loss prevention, and logging/auditing — as well as encryption. Encryption
alone will not address all mandatory requirements, but provides a secure foundation. Encryption at the database level
enhances protections by requiring an attacker to not only gain access to the system or file space, but to also have access to
the database. This additional layer provides assurances to the organization, its customers, and any stakeholders.

How InterSystems IRIS Uses Database Encryption
For activities associated with database operations, the InterSystems IRIS encryption and decryption processes are transparent
to users. From the perspective of the end user or the application developer, the application simply performs its usual

Reference for Operational and Actionable Resources for Security 239

Demo: Database Encryption

activities and the data is automatically encrypted on disk. From the perspective of the system administrator, there are a few
simple tasks to ensure that data encryption occurs; after performing these tasks, again, activities occur invisibly.

What’s more, these activities use a minimum of processor time, so they are likely to have no visible impact on your appli-
cations. Further, because of how our databases are constructed, these activities are highly optimized.

Encryption and decryption use the United States Government Advanced Encryption Standard (AES) in Cipher Block
Chaining (CBC) mode, often simply known as AES CBC. InterSystems IRIS supports all legal key sizes for AES CBC:
128–, 192–, and 256–bit keys.

InterSystems IRIS performs encryption and decryption using the fastest available implementation. Whenever available,
encryption and decryption take advantage of the processor-based instruction sets and their inherent efficiencies. Modern
Intel and IBM POWER8 processors have such instructions. InterSystems IRIS automatically detects and uses these
instructions, so you don’t have take any actions to make it happen. On Intel processors, these are the Advanced Encryption
Standard New Instructions (AES-NI); on IBM, they are the AES VMX instruction set.

You can store database encryption keys either on key management servers that support the key management interoperability
protocol (KMIP) or in files that contain encrypted copies of the database keys. Each has its own advantages:

• KMIP is an OASIS standard protocol for clients to communicate with key management systems. KMIP servers can
be specialized hardware appliances or general-purpose servers running key management software.

• When database encryption keys are stored in files, InterSystems encrypts the keys using multiple layers of the AES
key wrap algorithm, with individual administrator key-encryption keys derived using the PBKDF2 algorithm, thereby
making dictionary and brute force attacks impractical.

It is important to keep in mind that, while database encryption is an integral part of a security strategy, it cannot address
security vulnerabilities alone. Other tools, such as protection for data in motion, are also crucial. This is why database
encryption is part of the suite of tools that InterSystems IRIS provides for protecting data. These include:

• Support for government standards — You can configure InterSystems IRIS to use libraries that are validated to conform
to FIPS 140–2 Federal Information Processing Standards) for database encryption. This is available on Red Hat Linux.

• Protecting selected data elements — Known as data-element element encryption, this feature provides a programmatic
approach that allows you to encrypt only selected parts of records, such credit card or Social Security numbers

• Protecting data in motion — InterSystems IRIS protects data in motion using the newest version of Transport-Layer
Security (TLS). TLS is the industry-standard protocol for protecting data communications.

• Support for third-party authorization — InterSystems IRIS supports authorization for using resources on third-party
sites, as is frequently seen on the web with logins through Facebook or Google to use a site. This is through the Open
Authorization Framework version 2.0 (known as OAuth 2.0) and may include authentication through another layer,
known as OpenID Connect.

Trying Database Encryption for Yourself
It’s easy to use InterSystems IRIS database encryption. This simple procedure walks you through the basic steps of setting
up an encrypted database.

Before You Begin

To use the procedure, you will need a running instance of InterSystems IRIS. Your choices include several types of licensed
and free evaluation instances. For information on how to deploy each type of instance if you do not already have one to
work with, see Deploying InterSystems IRIS in InterSystems IRIS Basics: Connecting an IDE.

Creating an Encryption Key

First, create a key file, which automatically has a database encryption key in it:

240 Reference for Operational and Actionable Resources for Security

Encryption

1. Open the Management Portal for your instance in your browser, using the URL described for your instance in InterSys-
tems IRIS Basics: Connecting an IDE.

2. Navigate to the Create Encryption Key File page (System Administration > Encryption > Create New Encryption Key

File):

3. On the Create Encryption Key File page:

a. In the Key File field, enter a name and path for the key file. When you click the Browse button, the File Selection
Dialog opens by default in the instance’s install-dir/mgr directory (where install-dir is the InterSystems IRIS
installation directory), for example, C:\InterSystems\IRIS\mgr\testkeys.key; you can use this directory on all types
of instance, or select another location in the host or container file system.

b. In the Administrator Name, Password, and Confirm Password fields, enter values such as testadmin and
password. This is just an example case, so don’t reuse a password that you would use in a development environ-
ment.

c. Select the Save button near the top of the page.

You just created the testkeys.key key file in the C:\InterSystems\directory with a key in it that you can use for database
encryption. InterSystems IRIS displays a message with the key in it, such as

For more details about creating a key file and its initial key, see Create a Key File.

Activating an Encryption Key

Next, activate the key that you just created:

1. In the Management Portal, go to the Database Encryption page (System Administration > Encryption > Database

Encryption).

2. On the Database Encryption page, select the Activate Key button:

Reference for Operational and Actionable Resources for Security 241

Demo: Database Encryption

3. In the Key File field, enter the location of the key file you created, such as C:\InterSystems\IRIS\mgr\testkeys.key.

4. In the Administration Name and Password fields, enter the values you specified (testadmin and password).

5. Select the Activate button.

You can see the key ID on this page:

For more details about activating a key, see Activate a Database Encryption Key from a Key File.

Creating an Encrypted Database

Now, you can create an encrypted database:

1. Again in the Management Portal, go to the Namespaces page (System Administration > Configuration > System Con-

figuration > Namespaces).

2. On the Namespaces page, select Create New Namespace. This displays the New Namespace page:

3. On the New Namespace page, enter the name of the encrypted database that you are going to create, such as ENCDB.

4. Next to the Select an existing database for Globals drop-down menu, select the Create New Database button. This displays
the Database Wizard:

242 Reference for Operational and Actionable Resources for Security

Encryption

5. On the first page of the Database Wizard, in the Enter the name of your database field, enter the name of the database
you are creating, such as ENCDB. Enter a directory for the database, such as C:\InterSystems\IRIS\mgr\ENCDB. On that
page, select Next.

6. On the next page, change the value of Encrypt database from No to Yes. On that page, select Finish.

7. Back on the New Namespace page, in the Select an existing database for Routines drop-down menu, select the database
you just created, such as ENCDB.

8. Select the Save button near the top of the page and then select Close at the end of the resulting log.

You have now created an encrypted database called ENCDB that uses the key that InterSystems IRIS created when you
created the key file. You can use this database just as you would use an unencrypted database. Because InterSystems IRIS
hides all the machinery for encryption and decryption, you can perform all operations in the usual way and all your data
will be encrypted.

For more details about creating a namespace and its associated database, see “Create/Modify a Namespace” in the “Con-
figuring InterSystems IRIS” chapter of the InterSystems IRIS System Administration Guide. For background information,
see “Namespaces and Databases” in the Orientation Guide for Server-Side Programming.

Looking at Encrypted Data

Once you have created the encrypted database, you can use it just as you would use any other, unencrypted database. The
only difference is how the data is stored. To see the difference between data stored in encrypted and unencrypted databases,
you can perform the following, simple test:

1. Open the Terminal for your InterSystems IRIS instance, using the procedure described for your instance in InterSystems
IRIS Basics: Connecting an IDE.

2. Switch to the namespace for the encrypted database using the following command:

%SYS>set $namespace="ENCDB"
ENCDB>

3. In the ENCDB namespace, run the following command:

ENCDB>for i=1:1:1000 set ^x(i)="This is test number "_i

This creates a thousand persistent variables with content such as This is test number 22.

4. To confirm that you have succeeded, look at the value of one variable:

Reference for Operational and Actionable Resources for Security 243

Demo: Database Encryption

ENCDB>w ^x(22)
This is test number 22
ENCDB>

5. To open the database file, go to the directory where you created it in the previous section, such as
C:\InterSystems\IRIS\mgr\ENCDB, and open the database file, IRIS.DAT. You will see content such as:

6. Try searching for the string “This is test number” in the file. You won’t find it — because the database is encrypted.
In fact, the only unencrypted strings you’ll find are the name of the database or the identifier of its encryption key.

7. If you perform the same test on an unencrypted database, the resulting file will include content such as:

Note that the last line of the screen shot contains the values of the variables set in the Terminal.

Other Features Related to Database Encryption

InterSystems IRIS also has other notable database encryption features that may be important for your implementation:

• KMIP — InterSystems IRIS allows you to store keys on servers that are separate from those that host your instances.
To communicate with such servers, InterSystems IRIS supports the key management interoperability protocol (KMIP).
This allows InterSystems IRIS to benefit from the standardized approach to key management that KMIP provides.

• Changing keys and adding or removing encryption — You can easily change a database’s encryption key. It is also
straightforward to encrypt an unencrypted database or make an unencrypted copy of an encrypted database, should
either of these actions be necessary.

• Encryption for related data on disk — InterSystems allows you to easily encrypt its temporary cache databases and
other on-disk content that it uses to keep its recent transaction records current (that is, its journal files).

• Chip-based encryption — Chips are available that perform encryption as part of their activities, which provides much
faster speeds for operation. InterSystems IRIS supports the use of such chips. For more details on chip-based encryption,
see the next section.

Learn More About Database Encryption
InterSystems has lots of resources to help you learn more about database encryption:

244 Reference for Operational and Actionable Resources for Security

Encryption

• Encryption Awareness — InterSystems Online Learning interactive course providing conceptual introduction to our
encryption technology.

• Encryption Guide — InterSystems documentation on database encryption and related features.

• FIPS 140–2 Compliance for Database Encryption — InterSystems documentation on InterSystems IRIS support for
the FIPS 140–2 standard.

Reference for Operational and Actionable Resources for Security 245

Demo: Database Encryption

https://learning.intersystems.com/mod/resource/view.php?id=695

TLS

Reference for Operational and Actionable Resources for Security 247

TLS with the Superserver

Configuring the InterSystems IRIS Superserver to Use TLS
To use TLS for communications among components of InterSystems IRIS® data platform, configure the InterSystems IRIS
superserver to use TLS. To do this, the procedure is:

1. From the Management Portal home page, go to the SSL/TLS Configurations page (System Administration > Security >
SSL/TLS Configurations).

2. On the SSL/TLS Configurations page, select Create New Configuration, which displays the New SSL/TLS Configuration

page.

3. On the New SSL/TLS Configuration page, create a TLS server configuration. For details about creating a TLS configu-
ration, see Create or Edit a TLS Configuration.

4. Set up a superserver to use this configuration. See Managing a Superserver for more details.

5. Set up clients to use TLS as appropriate (see Configuring InterSystems IRIS Telnet to Use TLS).

248 Reference for Operational and Actionable Resources for Security

TLS

TLS with Telnet

Configure the InterSystems IRIS Telnet Server to use TLS
You can configure InterSystems IRIS® to accept TLS-protected connections from Telnet clients. To do this, configure the
InterSystems IRIS Telnet server to use TLS:

1. From the Management Portal home page, go to the SSL/TLS Configurations page (System Administration > Security >

SSL/TLS Configurations).

2. On the SSL/TLS Configurations page, select Create New Configuration, which displays the New SSL/TLS Configuration

page. On this page, create a TLS configuration with a configuration name of %TELNET/SSL.

3. Enable the Telnet service, %Service_Telnet:

a. On the Services page (System Administration > Security > Services), click %Service_Telnet to display the Edit

Service page for the Telnet service.

b. On the Edit Service page, check Service Enabled if it is not already checked.

c. Click Save.

4. Enable TLS for the relevant superserver. See TLS with the Superserver for more details.

5. On the System-wide Security Parameters page (System Administration > Security > System Security), select Enabled

for the Telnet server SSL/TLS support setting.

Configuring Telnet Clients to Use TLS
InterSystems IRIS accepts TLS connections from both the InterSystems Telnet client and third-party Telnet clients.

Configure the InterSystems Telnet Client to Use TLS

You can configure the InterSystems Telnet client to use a TLS connection. The process involves several steps:

1. On the instance that is the Telnet server, configure it according to the instructions in the previous section, which includes
the option of requiring TLS.

2. On the instance that is the Telnet client, configure the settings file according to the instructions in “Connecting from
a Windows Client Using a Settings File.”

Configure Third-Party Telnet Clients to Use TLS

You can configure third-party Telnet clients to connect to an InterSystems Telnet server. The required or recommended
configuration actions depend on the software in use and the selected cipher suites. The following guidelines apply:

• If the Telnet client requires server authentication, then the server must provide a certificate and the client must have
access to the server’s certificate chain.

• If the InterSystems IRIS Telnet server requires client authentication, then the client must provide a certificate and the
server must have access to the client’s certificate chain.

• If the InterSystems IRIS Telnet server requests client authentication, then the client has the option of providing a cer-
tificate and a certificate chain to its certificate authority (CA). If the client does not provide a certificate, then authen-
tication succeeds; if it provides a non-valid certificate or certificate chain, then authentication fails.

For information on how certificate and certificate chains are used for authentication, see Establishing the Required Certificate
Chain.

Reference for Operational and Actionable Resources for Security 249

TLS with Telnet

TLS with Python Clients

Configuring Python Clients to Use TLS with InterSystems IRIS
You can configure a Python client application to use TLS when it communicates with InterSystems IRIS® data platform.
To establish a Python connection using TLS:

1. Configure the superserver to use TLS as described in Configuring the InterSystems IRIS Superserver to Use TLS.

2. Ensure that you have installed any relevant CA certificates for verifying the server certificate.

3. Configure the Python client based on your version. Note that version 4 uses the SSLDefs.ini file for the SSL configuration.
For more information on how to configure this file, see Connecting from a Windows Client Using a Settings File.

V3

import ssl
import iris

context = ssl.SSLContext(ssl.PROTOCOL_TLS)
context.verify_mode = ssl.CERT_REQUIRED
cafile = "path/to/CACert.pem"
context.load_verify_locations(cafile)
context.load_cert_chain("path/to/Cert.pem", "path/to/Key.pem", "apasswordifany")

connection =
 iris.createConnection("127.0.0.1", 1972, "user", "_SYSTEM", "SYS", 10000, sslcontext=context)
...
connection.close()

V4

import iris
On Windows lookup is based on address-port pair in SSLDefs.ini. -- GDConfig will be used
connection =
 iris.createConnection("127.0.0.1", 1972, "user", "_SYSTEM", "SYS", 10000, sslconfig=True)

On Unix lookup is based on a provided configuration name instead of address-port pair. -- GDConfig2
 will be used
connection =
 iris.createConnection("127.0.0.1", 1972, "user", "_SYSTEM", "SYS", 10000, sslconfig="GDConfig2")
...
connection.close()

Below is an example of the SSLDefs.ini file for a Python client configuration as used in the V4 code above:

SSLDefs.ini

[IRIS]
Address=127.0.0.1
Port=1972
SSLConfig=GDConfig

[GDConfig]
TLSMinVersion=16
TLSMaxVersion=32
KeyType=2
VerifyPeer=0
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
Ciphersuites=TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256
Password=apasswordifany
CertFile=path/to/Cert.pem
KeyFile=path/to/Key.pem
CAfile=path/to/CACert.pem

[GDConfig2]
TLSMinVersion=16
TLSMaxVersion=32
KeyType=2
VerifyPeer=0
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
Ciphersuites=TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256
Password=apasswordifany

250 Reference for Operational and Actionable Resources for Security

TLS

CertFile=path/to/AnotherCert.pem
KeyFile=path/to/AnotherKey.pem
CAfile=path/to/AnotherCACert.pem

Note: As of this writing, you cannot change the Python TLSv1.3 ciphers. For TLSv1.3, only Ciphersuites is used and
its value must be exactly this list (order may vary):

TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256

For versions earlier than TLSv1.3, only CipherList is used.

Reference for Operational and Actionable Resources for Security 251

TLS with Python Clients

TLS with Java Clients

Configuring Java Clients to Use TLS with InterSystems IRIS
You can configure a Java client application to use TLS when it communicates with InterSystems IRIS® data platform.
This communication occurs through the superserver, so a related required step is setting up the superserver to use TLS;
this is described in Configuring the InterSystems IRIS Superserver to Use TLS. Java clients can be implemented using
either JDBC or object bindings.

The process for configuring a Java client application to use TLS with InterSystems IRIS is:

1. Determine if the client requires a keystore or a truststore. This depends on several factors: whether or not the InterSystems
IRIS server requests or requires client authentication; whether server authentication is required; and the cipher suites
in use. See “Determine the Need for a Keystore and a Truststore” for more information.

2. Create a configuration file with properties in it to provide those features. See “Create a Client Configuration” for more
information.

3. In the code for the client application, optionally specify the name of the client configuration; if you do not specify a
name, Java uses the default configuration information. See “Specify the Use of the Client Configuration” for more
information.

Determine the Need for a Keystore and a Truststore
A keystore serves as a repository for the client’s private key, public key certificate, and any Certificate Authority (CA)
information. This information is needed (1) if the InterSystems IRIS superserver requires client authentication or (2) if the
cipher suite in use requires a client key pair:

• Whether or not the InterSystems IRIS superserver requires client authentication is determined by the choice for the
Peer certificate verification level field on the Edit SSL/TLS Configuration page for the associated TLS configuration. If
the field has a value of Require, the client must have a certificate; if the field has a value of Request, the server
checks a certificate if one is available.

• The client and server agree upon a cipher suite to use. This cipher suite determines whether or not there is a client
certificate, a key pair, or both. The enabled server cipher suites are determined by the value of the Enabled ciphersuites

field on the Edit SSL/TLS Configuration page for the relevant superserver's TLS configuration. The cipher suites available
to the client depend on the version of Java it is using.

If the client has a private key and certificate, these are stored in the client’s keystore; the keystore can also hold the client’s
root CA certificate and any intermediate CA certificates. To authenticate the server, the client may need to have the root
CA certificate for the server and any intermediate CA certificates, these can be stored either in the client’s truststore or
along with client certificate information in the keystore. For more information on keystores and truststores, see the section
“Keystores and Truststores” in the Java Secure Socket Extension (JSSE) Reference Guide.

Create a Client Configuration
The behavior of a Java client depends on the values of properties in its configuration. The configuration gets these values
from what is known as a “configuration file,” either from the configuration file’s default values or from its configuration-
specific values. The following sections describe how configuration files work:

• Configuration Files, Configurations, Properties, Values, and Defaults

• Java Client Configuration Properties

• A Sample Configuration File

• Name the Configuration File

252 Reference for Operational and Actionable Resources for Security

TLS

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Configuration Files, Configurations, Properties,Values, and Defaults

Each configuration file specifies values for the properties that one or more configurations use. The file includes both default
values and configuration-specific values, in the form of name-value pairs. Generally, unversioned property names specify
default values for properties and versioned property names specify configuration-specific values.

If a configuration file contains only one configuration definition, that single configuration can use unversioned properties.
However, it cannot have an associated name property. Without a named configuration, invoke the configuration without
specifying a name (as described in “Specify the Use of the Client Configuration” and “Specify a Configuration without
a Name”).

If a configuration file contains multiple configurations, each configuration is defined by the existence of a numbered version
of the name property of the form name.n, where n is the number of the configuration. The names of a configuration’s other
properties use the same version number as the name property, so that they have a form of propertyname.n where propertyname
is the name of the property and n is the number of the configuration.

The definitions in a configuration file are case-sensitive. Their use of spaces is flexible. The order of property definitions
is also flexible.

To specify the default value of a property for use by all configurations, specify an unversioned property name and its value
in the following form:

propertyName = propertyValue

For example, to specify the default value for the keyStoreType property as pkcs12, the form is:

keyStoreType = pkcs12

To override the default value for a property, specify a versioned property name, such as:

keyStoreType.1 = jceks

If a configuration file contains multiple configuration definitions, then these versions must use sequential ordering; if client
application code refers to a configuration that follows a sequential gap, then an error results. For example, suppose that a
configuration file has three versioned name properties: name.1, name.2, and name.4; the configuration associated with the
name.4 property will not ever be created and a reference to it will fail with an error.

Java Client Configuration Properties

The properties are:

• cipherSuites — A comma-delimited list of supported cipher suites. The available cipher suites depend on the JRE (Java
Runtime Environment) on the machine. During the TLS handshake, the server selects the strongest cipher suite that
both it and the client support. [Optional]

• debug — Whether or not debugging information is logged to the Java system.err file. This property can have a value
of true or false (false is the default). The setting of this property has no effect on exception handling. [Optional]

• keyRecoveryPassword — Password used to access the client’s private key; this was created at the same time as the
private key pair. [Required if the private key has password protections and application code is not passing in the private
key as an input parameter.]

• keyStore — The file for storing the client private key and certificate information. The keystore can also hold the content
typically associated with the truststore. [Optional]

• keyStorePassword — Password to gain access to the keystore. [Required if a password was specified when the keystore
was created.]

• keyStoreType — The format of the keystore file, if one is specified. [Optional]

Supported formats are:

Reference for Operational and Actionable Resources for Security 253

TLS with Java Clients

– jks — Java KeyStore, the Java proprietary format. [Default]

– jceks — Java Cryptography Extension KeyStore format.

– pkcs12 — Public Key Certificate Standard #12 format.

• logFile — The file in which Java records errors. [Optional]

• name — A versioned identifier for the Java client configuration. (Each name property must be versioned. Any unver-
sioned name property is not meaningful and is ignored.) [Optional]

If the configuration file specifies only a single configuration and only uses unversioned property names, the name
property is not required (as described in “Specify the Use of the Client Configuration”). For information about speci-
fying multiple configurations with a single configuration file, see Configuration Files, Configurations, Properties,
Values, and Defaults).

• protocol — The version of the TLS protocol to be used for the connection. [Required]

Supported values include:

– TLS — Any version of the TLS protocol. During the TLS handshake, the server selects the latest (most recent)
version of the protocol that it supports. [Default]

– TLSv1 — Version 1 of TLS.

– TLSv1.1 — Version 1.1 of TLS.

– TLSv1.2 — Version 1.2 of TLS.

– TLSv1.3 — Version 1.3 of TLS.

• serverHostNameVerification – Whether or not the connection performs server hostname verification to prevent man-in-
the-middle attacks. This property can have a value of true or false (false is the default). [Optional]

• trustStore — The file for storing the server’s root CA certificate; it can also hold the certificates for any intermediate
CAs. (This information can also be placed in the keystore.) [Optional]

• trustStorePassword — Password to gain access to the truststore. [Required if a password was specified when the keystore
was created.]

• trustStoreType — The format of the truststore file, if one is specified. [Optional]

Supported formats are:

– jks — Java KeyStore, the Java proprietary format. [Default]

– jceks — Java Cryptography Extension KeyStore format.

– pkcs12 — Public Key Certificate Standard #12 format.

A Sample Configuration File

The following is a sample configuration file for use with a Java client:

debug = false
logFile = javatls.log
protocol = TLSv1.3
cipherSuites = TLS_AES_256_GCM_SHA384
keyStoreType = JKS
keyStore = keystore.jks
keyRecoveryPassword = <password>
keyStorePassword = <password>
trustStoreType = JKS
trustStore = truststore.jks
trustStorePassword = <password>
trustStoreRecoveryPassword = <password>

254 Reference for Operational and Actionable Resources for Security

TLS

name.1 = IRISJavaClient1
keyStorePassword.1 = <password>
keyRecoveryPassword.1 = <password>
trustStorePassword.1 = <password>
trustStoreRecoveryPassword.1 = <password>

name.2 = IRISJavaClient2
protocol.2 = TLS
keyStoreType.2 = pkcs12
keyStore.2 = keystore.p12
keyStorePassword.2 = <password>
trustStore.2 = cjc1.ts
trustStorePassword.2 = <password>

name.3 = IRISJavaClient3
protocol.3 = TLSv1.2
debug.3 = true
cipherSuites.3 = TLS_RSA_WITH_AES_128_CBC_SHA

Name the Configuration File

Either save the configuration file with the name SSLConfig.properties or set the value of the Java environment variable
com.intersystems.SSLConfigFile to the name of the file. The code checks for the file in the current working directory.

Specify the Use of the Client Configuration
Once a configuration has been defined, client application code invokes it when connecting to the server. You can do this
either with calls for the DriverManager object or the IRISDataSource object.

Use the DriverManager Object

With DriverManager, this involves the following steps:

1. Creating a Java Properties object.

2. Setting the value for various properties of that object.

3. Passing that object to Java Connection object for the connection from the client to the InterSystems IRIS server.

To specify information for the connection, the first part of the process is to create a Properties object from a configuration
file and set the values of particular properties in it. In its simplest form, the code to do this is:

java.util.Properties prop = new java.util.Properties();
prop.put("connection security level", "10");
prop.put("SSL configuration name",configName);
prop.put("key recovery password",keyPassword);

where

• The connection security level of 10 specifies that the client is attempting use TLS to protect the connection.

• configName is a variable whose value holds the name of Java client configuration. If the configuration file has only
default values and these are being used for a single configuration, do not include this line; see Specify a Configuration
without a Name for details.

• keyPassword is the password required to extract the client’s private key from the keystore.

Once the Properties object exists and has been populated, the final step is to pass it to the connection from the InterSystems
IRIS Java client to the InterSystems IRIS server. This is done in the call to the DriverManager.getConnection method.
The form of this call is:

Connection conn = DriverManager.getConnection(IRISServerAddress, prop);

where IRISServerAddress is a string that specifies the address of the InterSystems IRIS server and prop is the properties
object being passed to that string.

Reference for Operational and Actionable Resources for Security 255

TLS with Java Clients

If this call succeeds, the TLS-protected connection has been established. Typically, application code containing calls such
as those described in this section includes various checks for success and protection against any errors. For more details
about using InterSystems IRIS Java connectivity, see Using Java JDBC with InterSystems IRIS.

Use the IRISDataSourceObject

With the IRISDataSource object, the procedure is to create the object, call its methods to set the relevant values, and
establish the connection. The methods are:

• setConnectionSecurityLevel — This method takes a single argument: a connection security level of 10, which specifies
that the client is attempting use TLS to protect the connection.

• setSSLConfigurationName — This method takes a single argument: a variable whose value holds the name of Java
client configuration. If the configuration file has only default values and these are being used for a single configuration,
do not include this line; see Specify a Configuration without a Name for details.

• setKeyRecoveryPassword — This method takes a single argument: the password required to extract the client’s private
key from the keystore.

In its simplest form, the code to do this is:

try{
 IRISDataSource ds = new IRISDataSource();

 ds.setURL("jdbc:IRIS://127.0.0.1:1972/TESTNAMESPACE");
 ds.setConnectionSecurityLevel(10);
 ds.setSSLConfigurationName(configName);
 ds.setKeyRecoveryPassword(keyPassword);

 Connection dbconnection = ds.getConnection();
}

For a complete list of the methods for getting and setting properties, see the JDBC Quick Reference. The JavaDoc for
com.intersystems.jdbc.IRISDataSource is under <install-dir>/dev/java/doc/index.html

Specify a Configuration without a Name

If a configuration file contains only one configuration definition, that single configuration can use unversioned properties.
However, it cannot have an associated name property.

When working with a DriverManager object, the Properties object uses only the default values from the configuration file.
The code for creating this object differs from the typical case in that there is no call to specify a value for the “SSL config-
uration name” key:

java.util.Properties prop = new java.util.Properties();
prop.put("connection security level", "10");
prop.put("key recovery password",keyPassword);

When working with an IRISDataSource object, if you want to specify an unnamed configuration, simply do not call
setSSLConfigurationName.

256 Reference for Operational and Actionable Resources for Security

TLS

TLS with .NET Clients

Configuring .NET Clients to Use TLS with InterSystems IRIS
InterSystems IRIS® data platform supports TLS connections from .NET clients.

To establish a .NET connection that uses TLS:

1. If you have not done so already, configure the InterSystems IRIS superserver to use TLS so it can accept TLS connections
from the .NET client.

2. Create a TLS configuration for the .NET client.

3. Ensure that you have installed any relevant CA certificates for verifying the server certificate. The location for these
is the current user’s certificate store (Certificates – Current User\Trusted Root Certification Authorities).

4. Establish a connection to a server, based on the format of the connection string as described in the Creating a Connection
section of “Connecting to the InterSystems Database”. In addition to the name-value pairs for the server, port, and
namespace, include the SSL keyword and specify its value as true. For example, a connection that uses TLS protection
might have a connection string of the form:

IrisConnect.ConnectionString =
 "Server=localhost; Port=1972; Namespace=TESTNAMESPACE; SSL=true;"
 + "Password=SYS; User ID=_SYSTEM;";

The true value of the SSL keyword specifies that TLS secures the client-server connection (by authenticating the
InterSystems IRIS server to the .NET client and, optionally, authenticating the client to the server). Once the secure
connection is established, the InterSystems IRIS server uses the User ID and Password keywords to authenticate the
identity of the user connecting through the .NET client. (Note that the connection string does not specify anything
related to mutual authentication; it merely specifies a server, which in turn may request or require client authentication.)

Reference for Operational and Actionable Resources for Security 257

TLS with .NET Clients

TLS with Studio

Configuring Studio to Use TLS with InterSystems IRIS
You can configure Studio to use a TLS connection. The process involves several steps:

1. For the superserver handling the connection from Studio:

a. Set up the TLS configuration. For more information on this process, see “Configuring the InterSystems IRIS
Superserver to Use TLS.”

b. Enable TLS. See Managing Superservers for more details.

2. On the Windows machine where Studio is running (which is acting as a TLS client), configure the settings file for the
connection from Studio to the TLS server instance. For more information on this process, see Connecting from a
Windows Client Using a Settings File.

258 Reference for Operational and Actionable Resources for Security

TLS

TLS and Windows with .ini File

Connecting from a Windows Client Using a Settings File
If you are on Windows and are using Studio, ODBC, or the Terminal as a TLS client, you can use a settings file to configure
connections and configurations. This mechanism is available even if there is no instance of InterSystems IRIS® data platform
on the host.

To use a settings file:

1. Get the certificate authority (CA) certificate for the server. Store it on disk and note the location — you will use it
later.

2. Create a file containing connection definitions and configuration definitions, as described in the About the Settings
File section.

3. Name the file SSLDefs.ini and place it in the InterSystems\IRIS directory in the directory for 32-bit common program
files. Typically, this is the C:\Program Files (x86)\Common Files\InterSystems\IRIS\ directory; if you need to locate the
directory, check the value of the Windows environment variable CommonProgramFiles(x86) on 64-bit Windows or
CommonProgramFiles on 32-bit Windows.

By creating the file and placing it in this location, it will automatically be used when you connect to a host and a port that
match one of the connections listed in the file.

Note: Use of the settings file (SSLDefs.ini) has the following restrictions:

1. The settings file is only for connections that use the irisconnect.dll or irisconnect64.dll executable (which are
for 32-bit and 64-bit machines, respectively). Connections that use other mechanisms (such as for ADO) do
not use the settings file.

2. Connections from a Windows client to InterSystems IRIS that use the settings file do not support Kerberos
authentication.

About the Settings File
A settings file holds specifications for both connections to TLS servers and the TLS configurations that those connections
use. For each Windows host that is a TLS client, a single file holds all its connections and configurations. The necessary
information to create a file is:

• The Syntax of the Settings File

• Connection Properties

• Configuration Properties

The Syntax of the Settings File

The settings file contains one ore more connection definitions and one or more configuration definitions:

• Each definition begins with an identifier for the connection or configuration. This appears in brackets on its own line,
such as:

[MyConfiguration]

The identifier can include spaces and punctuation, such as:

[MyOtherConfiguration, which connects outside of my local network]

• Each definition ends either with the next bracketed identifier or the end of the file.

Reference for Operational and Actionable Resources for Security 259

TLS and Windows with .ini File

• Each definition includes multiple key-value pairs. All of these use the syntax:

key=value

• The group of key-value pairs specify the properties of a connection definition or configuration definition.

• The value in each key-value pair appears unquoted.

Connection Definitions

Each settings file contains one or more connection definitions, each of which specifies the properties a TLS connection and
matches that connection to a TLS configuration. The first line of a connection definition is its identifier, which appears in
brackets. After the identifier, there are multiple lines specifying information about the TLS server and the connection to it:

Address

Required. The address of the TLS server. This can be an IP address, an unqualified host name in the local domain,
or a fully-qualified hostname. (Note: The client only uses the specified configuration if the values of both Address

and either Port or TelnetPort match the server to which the client application is connecting.)

Port

Required. The port number on which the TLS server accepts connections. (Note: The client only uses the specified
configuration if the values of both Address and either Port or TelnetPort match the server to which the client
application is connecting.)

TelnetPort

The port number on the TLS server that accepts TLS-protected connections for InterSystems Telnet. If you do not
specify this value, connections using InterSystems Telnet do not support TLS. (Note: The client only uses the
specified configuration if the values of both Address and either Port or TelnetPort match the server to which the
client application is connecting.)

SSLConfig

Required. The TLS configuration that the client uses when connecting to the server specified in this definition.
Each configuration is defined in its own section.

Configuration Definitions

Each settings file contains one or more configuration definitions, each of which specifies the properties of a TLS configu-
ration; for more information on TLS configurations, see “About Configurations.” The first line of a configuration definition
is its identifier, which appears in brackets; if the configuration identifier appears as the value of a connection definition’s
SSLConfig property, the connection uses the configuration to specify its behavior. After the identifier, there are multiple
lines specifying the value of each of the configuration’s properties:

Protocols

Deprecated. Use TLSMinVersion and TLSMaxVersion instead.

The versions of the TLS protocol(s) that the configuration supports, where each version of the protocol has a
numeric value as listed in TLSMinVersion and TLSMaxVersion. To specify support for multiple versions of
the protocol, use the sum of their values. Hence, to specify support for TLS v1.1 and TLS v1.2, use a value of 24.

This property is equivalent to the Protocols field in the TLS configuration page in the Management Portal.

260 Reference for Operational and Actionable Resources for Security

TLS

TLSMinVersion

Required for configurations that support v1.3. The earliest version of the TLS protocol that this configuration
supports, where each version of the protocol has a numeric value and supported versions are:

• TLS v1 — 4

• TLS v1.1 — 8

• TLS v1.2 — 16

• TLS v1.3 — 32

This property is equivalent to the Minimum Protocol Version field in the TLS configuration page in the Management
Portal.

TLSMaxVersion

Required for configurations that support v1.3. The most recent version of the TLS protocol that this configuration
supports, where each version of the protocol has a numeric value and supported versions are:

• TLS v1 — 4

• TLS v1.1 — 8

• TLS v1.2 — 16

• TLS v1.3 — 32

This property is equivalent to the Maximum Protocol Version field in the TLS configuration page in the Management
Portal.

VerifyPeer

Required. Whether or not the client requires the verification of the certificate of the server to which it is connecting:

• 0 — Does not require (and does not perform) peer verification; the connection is established under all circum-
stances.

• 1 — Requires peer verification; the connection is established only if verification succeeds. This is the recom-
mended value; if you choose this value, you must specify a value for the CAFile property.

This property is equivalent to the Server certificate verification field in the TLS configuration page in the Management
Portal.

VerifyHost

Whether or not the client checks if the Common Name or subjectAlternativeName fields of the server’s certificate
match the host name or IP address as specified in the connection definition:

• 0 — Does not check.

• 1 — Checks.

This property does not have an equivalent in the Management Portal. However, it is the same type of check as the
SSLCheckServerIdentity property of the %Net.HttpRequest class.

CipherList

Required for configurations that support connections using TLS v1.2 or earlier. The set of cipher suites that the
client supports for encryption and hashing. For information on this property’s syntax, see the OpenSSL documen-
tation on the ciphers command.

Reference for Operational and Actionable Resources for Security 261

TLS and Windows with .ini File

https://www.openssl.org/docs/manmaster/man1/ciphers.html

The default value is ALL:!aNULL:!eNULL:!EXP:!SSLv2, and InterSystems strongly suggests using this value.
For more information about this syntax in InterSystems IRIS, see Enabled Cipher Suites Syntax.

This property is equivalent to the Enabled ciphersuites field in the TLS configuration page in the Management
Portal.

Ciphersuites

Required for configurations that support connections using TLS v1.3. The set of ciphers that the client supports
for encryption and hashing. For information on this property’s syntax, see the OpenSSL documentation on the
ciphers command.

InterSystems strongly recommends using a value of
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256, which
is the default. For more information about this syntax in InterSystems IRIS, see Enabled Cipher Suites Syntax.

CertFile

The absolute path and name of the file that contains the client’s trusted certificate authority (CA) file; if the client
does not have a CA, do not specify a value for this property. If specified, this is an X.509 certificate(s) in PEM
format and can include a certificate chain. For information on how this value is used, see Establishing the Required
Certificate Chain. (Note that certificates from the Windows Certificate Export Wizard must be in PEM-encoded
X.509 format, not the default of DER encoded binary X.509.)

This property is equivalent to the File containing this client’s certificate field in the TLS configuration page in the
Management Portal.

KeyFile

The absolute path and name of the configuration’s private key file; if the client does not have a private key, do
not specify a value for this property.

This property is equivalent to the File containing associated private key field in the TLS configuration page in the
Management Portal.

Password

The password for decrypting the configuration’s private key. If you are using a private key with a password, this
property is required; if you are not using a certificate for the client or if the private key does not have a password,
do not specify a value for this property. (If the private key is password-protected and you do not provide a value
here, InterSystems IRIS cannot decrypt and use the private key.)

This property is equivalent to the Private key password field in the TLS configuration page in the Management
Portal.

KeyType

If the configuration has a private key and certificate, the format in which the configuration’s private key is stored:

• DSA — 1

• RSA — 2

This property is equivalent to the Private key type field in the TLS configuration page in the Management Portal.

CAfile

Required. The absolute path and name of the file that contains the server’s trusted certificate authority (CA) file.
This is an X.509 certificate(s) in PEM format. Note that:

262 Reference for Operational and Actionable Resources for Security

TLS

https://www.openssl.org/docs/manmaster/man1/ciphers.html

• If you have specified a VerifyPeer value of 1, you must provide this value.

• This is the certificate for CA of the server to which you are connecting, not the certificate for your CA.

This property is equivalent to the File containing trusted Certificate Authority certificate(s) field in the TLS config-
uration page in the Management Portal. However, unlike the Portal, it does not support the use of the
%OSCertificateStore string.

A Sample Settings File
The following sample file defines two connections and two configurations:

[MyServer1 TLS to an InterSystems IRIS instance with TLS-protected InterSystems Telnet]
Address=myserver1
Port=57777
TelnetPort=23
SSLConfig=TLSConfig

[MyServer2 TLS to an InterSystems IRIS instance using TLSv1.2]
Address=myserver2.myexample.com
Port=57777
SSLConfig=TLSv1.2only

[TLSConfig]
TLSMinVersion=16
TLSMaxVersion=32
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
Ciphersuites=TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256
KeyType=2
VerifyPeer=1
Password=
CertFile=c:\InterSystems\certificates\nopwclicert.pem
KeyFile=c:\InterSystems\certificates\nopwclikey.pem
CAfile=c:\InterSystems\certificates\cacert.pem

[TLSv1.2only]
TLSMinVersion=16
TLSMaxVersion=16
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
KeyType=2
VerifyPeer=1
Password=
CertFile=c:\InterSystems\certificates\nopwclicert.pem
KeyFile=c:\InterSystems\certificates\nopwclikey.pem
CAfile=c:\InterSystems\certificates\cacert.pem

How It Works

Important: This section describes how InterSystems products use a settings file to establish a TLS connection. By
describing the mechanisms in use, it includes alternate means of creating a TLS connection. InterSystems
recommends that you use the standard approach described above, rather than the alternatives mentioned
here.

InterSystems IRIS uses the settings file as follows:

1. When you attempt to establish a TLS connection, the InterSystems IRIS TCP/IP client connection library locates the
settings file containing connection definitions and configurations. This file is irisconnect.dll on 32-bit machines and
irisconnect64.dll on 64-bit machines. To do this:

a. It checks the Windows registry for any TLS connection definitions.

b. If there are no connection definitions in the registry, the library attempts to locate any TLS configurations that are
stored in a settings file.

c. If the ISC_SSLconfigurations environment variable exists, the library uses the value of that variable as the full
path and file name of the settings file.

Reference for Operational and Actionable Resources for Security 263

TLS and Windows with .ini File

Note: If you need to define the value of the ISC_SSLconfigurations environment variable, you may need
administrator permissions.

d. If the ISC_SSLconfigurations environment variable does not exist, the library uses the SSLdefs.ini file in the
InterSystems\IRIS directory under the 32-bit common program files directory identified by the Windows environment
variables CommonProgramFiles(x86) on 64-bit Windows or CommonProgramFiles on 32-bit Windows.

2. Once it has located the settings file, the library locates the relevant connection definition for the connection you are
attempting to establish.

To do this, it searches the sections of the file for one that contains Address and Port properties that match those of the
connection you are attempting to establish. When it locates such a section, it uses the value of the SSLConfig property
there to locate the matching TLS configuration section.

3. In the specified TLS configuration section, the library uses the values of the configuration properties to specify the
type of connection to initiate with the server.

264 Reference for Operational and Actionable Resources for Security

TLS

Configuring InterSystems IRIS to Use TLS with Mirroring

About Mirroring and TLS
For general information about InterSystems IRIS® data platform support for mirroring, see Mirroring.

To provide security within a mirror, you can configure its nodes to use TLS. This provides for both authentication of one
node to another, and for encrypted communication between nodes. As sensitive data passes between the failover members
(and to an async member), it is recommended to encrypt the communication to prevent data theft or alteration over the
network. Additionally, since a failover member has the ability to request an ISCAgent to take action on another InterSystems
IRIS system (such as to request journal file information or force InterSystems IRIS down), it is important to protect such
communication between the failover members of a mirror (and their corresponding ISCAgent processes).

Note: If the failover members use database (or journal) encryption, then TLS is required for communications between
them and with any async members. (Specifically, InterSystems IRIS checks if either member has an encryption
key activated; if so, the instance requires that the user enable TLS with mirroring.) For more details on database
encryption and journal file encryption, see Encryption Guide.

To both participate in mirroring (either as a failover member or as an async member) and use TLS, an instance must have
two InterSystems IRIS TLS configurations – one of type server and the other of type client; each of these must have an
X.509 TLS certificate issued by a trusted Certificate Authority. InterSystems recommends that each mirror host has its own
set of certificates and that the certificates contain a unique identifier in the Common Name (CN) component of the certificate,
such as the fully qualified domain name (FQDN) of the instance plus the member’s InterSystems IRIS node name; because
the CN is a field in a certificate’s distinguished name (DN), establishing a unique CN ensures that the certificate’s DN
uniquely identifies the member. To create an instance’s mirroring configurations, follow the procedure in the next section.

When TLS is enabled, the following actions occur:

1. Server authentication: When the client connects to the server, it requires the server to authenticate itself. This authen-
tication verifies that the DN for the server’s certificate matches the DN for a system configured in the client’s mirror
configuration. If there is no match, the client drops the connection.

2. Client authentication: When the server accepts a connection from a client, it requires the client to authenticate itself.
This authentication also verifies that the DN for the client’s matches the DN for a system configured in the server’s
mirror configuration. Again, if there is no match, the server drops the connection.

3. Encryption: The TLS protocol automatically uses the server’s certificate to establish an encrypted channel between
the client and the server, so that any data passing through this channel is encrypted and thereby secured.

InterSystems strongly recommends using TLS with a mirror.

Note on Configuring an Async Member with TLS
If a mirror uses TLS, then in addition to enabling TLS for the mirror and creating the configurations for each member
(described in the following section), there are special steps that must be taken when configuring the second failover member
or an async member; for more information, see Authorize the Second Failover Member or Async (TLS Only). Specifically,
for each failover member, on the Mirror Monitor page, you need to enter the DN (distinguished name) in the ID listed as DN

in member’s X.509 credentials field; you can copy the value of the DN from X.509 Distinguished Name field of the Join as

Async page (System Administration > Configuration > Mirror Settings > Join as Async) for the async member. (InterSystems
IRIS populates the X.509 Distinguished Name field based on the information in the async member’s certificate, making this
field unavailable for manual editing.)

Note on Disabling TLS for a Mirror
To disable TLS for an existing mirror, disable it on the primary member.

Important: Use of TLS with mirroring is highly recommended. Disabling TLS for a mirror is strongly discouraged.

Reference for Operational and Actionable Resources for Security 265

Configuring InterSystems IRIS to Use TLS with Mirroring

Create and Edit a TLS Configuration for a Mirror
To use TLS with a mirror, each member (failover or async) uses a pair of TLS configurations that are called %MirrorClient
and %MirrorServer; the Portal allows you to create and edit these configurations.

Note: These configurations must already exist on each member when TLS is enabled for the mirror.

Create a TLS Configuration for a Mirror Member

To create the configurations, the procedure is:

1. Enable mirroring for that instance of InterSystems IRIS if it is not already enabled. To do this, use the Edit Service

page for the %Service_Mirror service; on this page, select the Service Enabled check box. You can reach this page
by either of two paths:

• On the Mirror Settings page (System Administration > Configuration > Mirror Settings), select Enable Mirror Service.

• On the Services page (System Administration > Security > Services), select %Service_Mirror.

2. Go to the Create SSL/TLS Configurations for Mirror page. You can do this either by:

• On the SSL/TLS Configurations page (System Administration > Security > SSL/TLS Configurations) select Create

Configurations for Mirror.

• On the Create Mirror page (System Administration > Configuration > Mirror Settings > Create Mirror) select Set up

SSL/TLS.

3. On the Create SSL/TLS Configurations for Mirror page, complete the fields on the form. The fields on this page are a
subset of those on the New SSL/TLS Configuration page (as described in Create or Edit a TLS Configuration). Since
this page creates both server and client configurations that mirroring automatically enables (%MirrorClient and
%MirrorServer), there are no Configuration Name, Description, or Enabled fields; also, for the private-key password,
this page allows you to enter or replace one (Enter new password), specify that none is to be used (Clear password),
or leave an existing one as it is (Leave as is).

Since both configurations need the same X.509 credentials, completing this form saves both configurations simultane-
ously. The fields described in Create or Edit a TLS Configuration on this page are:

• File containing trusted Certificate Authority certificate(s)

Note: This file must include the certificate(s) that can be used to verify the X.509 certificates belonging to
other mirror members. If the file includes multiple certificates, they must be in the correct order, as
described in Establishing the Required Certificate Chain, with the current instance’s certificate first.

• This server's credentials:

– File containing associated private key

– Private key type

– Private key password

– Private key password (confirm)

• Cryptographic settings:

– Minimum Protocol Version

– Maximum Protocol Version

Enabled cipherlist (TLSv1.2 and below)

– Enabled ciphersuites (TLSv1.3)

266 Reference for Operational and Actionable Resources for Security

TLS

– Diffie Hellman Bits

• OCSP Settings:

– OCSP Stapling

Once you complete the form, click Save.

For general information about configuring mirror members, see Creating a Mirror.

Edit TLS Configurations for a Mirror Member

If you have already created a member’s %MirrorClient and %MirrorServer configurations, you can edit them on the Edit

SSL/TLS Configurations for Mirror page (System Administration > Security > SSL/TLS Configurations; click Edit Configurations

for Mirror). This page displays the same fields as the Create SSL/TLS Configurations for Mirror page, as described in the
previous section.

Special Considerations for Certificates for Mirror Members

When using TLS with mirroring, the %MirrorClient and %MirrorServer configurations must use the same certificate and
private key. Hence, the certificate in use by both configurations must be usable as both a server and a client certificate.

There are certain certificate extensions that are specific to TLS clients or servers. Because the certificate in use with mirroring
must be able to serve both uses (as both a client and a server), if any of these extensions appear in a certificate, then the
extensions for client and server must both be present. For example, this is true for the Key Usage and Extended Key Usage
extensions. If the Key Usage extension is present, then it must specify both of the following:

• The Digital Signature key usage (for clients)

• The Key Encipherment key usage (for servers)

Similarly, if the Extended Key Usage extension is present, then it must specify both:

• The Client Authentication key usage

• The Server Authentication key usage

If both extensions are present, then each must specify both values. Of course, it is also valid to have neither extension
present.

If a certificate only specifies one value (either client or server), the TLS connection for mirroring fails with an error such
as:

error:14094413:SSL routines:SSL3_READ_BYTES:sslv3 alert unsupported certificate

The way to eliminate this error depends on how you obtained your certificates:

• If you are using self-signed certificates, create new certificates (such as with the OpenSSL library) that adhere to these
conditions.

• If you are using a commercial certificate authority tool (such as Microsoft Certificate Services), create new certificates
that adhere to these conditions and use the tool to sign your certificate signing requests (CSRs).

• If you are purchasing certificates from a commercial certificate authority (such as VeriSign), include a request along
with your CSRs that they adhere to these conditions.

Reference for Operational and Actionable Resources for Security 267

Configuring InterSystems IRIS to Use TLS with Mirroring

TLS with TCP Devices

Configuring InterSystems IRIS to Use TLS with TCP Devices
This section describes how to use TLS with an InterSystems IRIS® data platform TCP connection. The process is:

1. Creating a TLS configuration that specifies the characteristics you want.

2. Opening a TCP connection or open a socket for accepting such connections.

3. Securing the connection using TLS. This can occur either as part of opening the connection/socket or afterwards.

How you invoke the InterSystems IRIS TLS functionality depends on whether you are using InterSystems IRIS as a client
or server and whether you are creating an initially-secured TCP connection or adding TLS to an existing connection.

This section addresses the following topics:

• Configure a Client to Use TLS with a TCP Connection

• Configure a Server to Use TLS with a TCP Socket

Configure a Client to Use TLS with a TCP Connection
To establish a secure connection from a client, the choices are:

• Open a TLS-secured TCP Connection from a Client

• Add TLS to an Existing TCP Connection

Open a TLS-secured TCP Connection from a Client

In this scenario, InterSystems IRIS is part of the client and the TCP connection uses TLS from its inception. The procedure
is:

1. Make sure that the configuration you wish to use is available. If it was created before InterSystems IRIS was last
started, it is activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Open a TCP Connection Using TLS.

If InterSystems IRIS is a client, then it connects to the server via the client application. The connection uses the specified
configuration to determine its TLS-related behavior.

Open a TCP Connection Using TLS

This involves opening a named connection that uses TLS and communicates with a particular machine and port number.
The procedure is:

1. Specify the device that you are connecting to:

ObjectScript

 Set MyConn = "|TCP|1000"

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see OPEN
Command for TCP Devices.

2. Open the connection, specifying the use of TLS with the /TLS parameter.

ObjectScript

 OPEN MyConn:(SvrID:1000:/TLS="MyCfg")

268 Reference for Operational and Actionable Resources for Security

TLS

where

• MyConn is the device previously specified

• SvrID can be a string that is a resolvable DNS name or an IP address

• MyCfg is a saved (and activated) TLS configuration

This call opens a TCP connection to the loopback processor (that is, the local machine) on port 1000 using TLS. It
uses TLS according to the characteristics specified by the MyCfg configuration.

Optionally, the call can include a password for the private key file:

 OPEN MyConn:(SvrID:1000:/TLS="MyCfg|MyPrivateKeyFilePassword")

Here, all the arguments are as above and MyPrivateKeyFilePassword is the actual password.

Important: The ability to include a password when Open a TCP Connection Using TLS is for real-time interactive
use only. You should never store a private key password persistently without protecting it. If you need
to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs class.

For more information on opening a TCP device, see OPEN and USE Command Keywords for TCP Devices.

Once the connection is established, you can then use it in the same manner as any other TCP connection.

Add TLS to an Existing TCP Connection

This scenario assumes that the TCP connection has already been established. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before InterSystems IRIS was last
started, it is activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Securing the existing TCP connection using TLS.

Secure an Existing TCP Connection Using TLS

This involves adding TLS to an already-existing connection to a particular machine and port number. The procedure is:

1. Determine the name of the device to which there is a connection. For example, this might have been established using
the following code:

 SET MyConn="|TCP|1000"
 OPEN MyConn:("localhost":1000)

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see OPEN
Command for TCP Devices.

2. Specify the use of TLS as follows with the /TLS parameter:

 USE MyConn:(::/TLS="MyCfg")

where

• MyConn is the device previously specified

• MyCfg is a TLS configuration

Optionally, the call can include a password for the private key file:

 USE MyConn:(::/TLS="MyCfg|MyPrivateKeyFilePassword")

Here, all the arguments are as above and MyPrivateKeyFilePassword is the actual password.

Reference for Operational and Actionable Resources for Security 269

TLS with TCP Devices

Important: The ability to include a password when securing an existing TCP connection using TLS is for real-
time interactive use only. You should never store a private key password persistently without protecting
it. If you need to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs

class.

For more information on opening a TCP device, see OPEN and USE Command Keywords for TCP Devices.

Having added TLS security to the connection, you can continue to use it in the same manner as before.

Configure a Server to Use TLS with a TCP Socket
To enable a socket to require a secure connection from a client, you can either:

• Open a TCP socket specifying that this connection requires TLS.

• Establish the requirement for the use of TLS on an already-existing socket.

Establish a TLS-secured Socket

In this scenario, InterSystems IRIS is the server and the TCP socket uses TLS from its inception. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before InterSystems IRIS was last
started, it is activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Open a TCP socket that requires the use of TLS.

This socket requires the use of TLS from clients connecting to it. When a client attempts to connect to the server, the server
attempts to negotiate a connection that uses TLS. If this succeeds, the connection is available for normal use and commu-
nications are secured using the negotiated algorithm. If it fails, there is no connection available for the client.

Open a TCP Socket Requiring TLS

To open a socket that requires TLS, the procedure is:

1. Specify the device that is accepting connections:

ObjectScript

 SET MySocket = "|TCP|1000"

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see OPEN
Command for TCP Devices.

2. Open the connection, specifying the use of TLS with the /TLS parameter.

ObjectScript

 OPEN MySocket:(:1000:/TLS="MyCfg")

Optionally, the call can include a password for the private key file:

 OPEN MySocket:(:1000:/TLS="MyCfg|MyPrivateKeyFilePassword")

This call opens a TCP socket on port 1000 using TLS. For more information on opening a TCP device, see OPEN and
USE Command Keywords for TCP Devices.

Important: The ability to include a password when opening a TCP connection using TLS is for real-time interactive
use only. You should never store a private key password persistently without protecting it. If you need
to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs class.

270 Reference for Operational and Actionable Resources for Security

TLS

Add TLS to an Existing Socket

This scenario assumes that a connection to the TCP socket has already been established. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before InterSystems IRIS was last
started, it is activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Use TLS to secure the existing TCP connection to the socket.

Secure an Existing TCP Connection to the Socket Using TLS

This involves adding TLS to an already-existing connection to a socket on a particular machine and port number. The
procedure is:

1. Determine the name of the device on which the socket is open. For example, this might have been established using
the following code:

 SET MySocket = "|TCP|1000"
 OPEN MySocket:(:1000)

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see OPEN
Command for TCP Devices.

2. Specify the use of TLS as follows with the /TLS parameter:

 USE MySocket:(::/TLS="MyCfg")

where

• MySocket is the device previously specified

• MyCfg is a TLS configuration

Optionally, the call can include a password for the private key file:

 USE MySocket:(::/TLS="MyCfg|MyPrivateKeyFilePassword")

For more information on opening a TCP device, see OPEN and USE Command Keywords for TCP Devices.

Important: The ability to include a password when securing an existing TCP connection using TLS is for real-
time interactive use only. You should never store a private key password persistently without protecting
it. If you need to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs

class.

Having added TLS security to the socket, you can continue the connection to it in the same manner as before.

Reference for Operational and Actionable Resources for Security 271

TLS with TCP Devices

TLS with the Web Gateway

Configuring the Web Gateway to Connect to InterSystems IRIS Using TLS
You can use TLS to set up a secure, encrypted channel between the Web Gateway and the InterSystems IRIS® data platform
server. To do this, you need a TLS certificate and private key that represents the Gateway. The Gateway can then establish
an encrypted connection to the InterSystems IRIS server (which has its own certificate and private key), so that all information
is transmitted through the connection.

Note: For information on setting up a connection between the Web Gateway and the InterSystems IRIS server that is
protected by Kerberos, see Setting Up a Kerberized Connection from the Web Gateway to InterSystems IRIS.

The procedure is:

1. If there is not already a TLS configuration associated with the InterSystems IRIS system default superserver, create
one as described in Create or Edit a TLS Configuration.

2. On the system default superserver configuration page (System Administration > Security > Superservers), for the
SSL/TLS Support level choice, select Enabled or Required. For more details on these settings, see Managing Superservers.

3. Go to the Web Gateway’s Server Access page (System Administration > Configuration > Web Gateway Management).

4. On that page, under Configuration, select Server Access.

5. Next, select Edit Server and click Submit. This displays the configuration page for the Web Gateway.

6. On this page, configure the Web Gateway to use TLS. Specifically, for the Connection Security Level field, select
SSL/TLS. You must specify values for the SSL/TLS Protocol and SSL/TLS CA Certificate File fields. The other fields
may be required or optional depending on other settings. The SSL/TLS Certificate File and SSL/TLS Private Key File are
required if Require peer certificate verification is selected. If including a SSL/TLS private key file, you must also
specify a value for the SSL/TLS Key Type. Additionally, if the certificate or private key file require a password, then
you must provide in the SSL/TLS Private Key Password field either:

• The private key password (which cannot begin with { or end with })

• An operating system command enclosed in braces (for example, {sh /tmp/script.sh}). See Retrieve Passwords
Programmatically for more details.

For more details on the fields on this page, see the Configuring Server Access section of “Web Gateway Operation
and Configuration”.

272 Reference for Operational and Actionable Resources for Security

TLS

Mutual TLS (mTLS)

Introduction
InterSystems IRIS supports mutual TLS (mTLS) for authentication between an instance and the InterSystems Web Gateway.
Mutual TLS, also known as two-way TLS or client-authenticated TLS, is a security protocol that enhances the authentication
process in a network communication. It establishes a secure connection between a client and a server (for InterSystems
IRIS, this is the Web Gateway and an InterSystems IRIS instance respectively) by validating the identities of both parties
using digital certificates. Mutual TLS follows a standard TLS handshake process but with an additional step for client
authentication. After the client initiates a connection and the server responds with its certificate, the server requests the
client’s certificate for mutual authentication. The client then sends its certificate to the server, and both parties exchange a
finished message to confirm the completion of the handshake. Both certificates (server and client) must be signed by a
trusted Certificate Authority (CA).

Prerequisites
There are several prerequisites to enabling mutual TLS for InterSystems IRIS. Before getting started, ensure you have:

• A Web Gateway that can communicate with InterSystems IRIS. See Set Up a Web Gateway for more details on how
to set up the Web Gateway.

• A trusted CA certificate.

• The certificate and private key for the InterSystems IRIS superserver. See Managing Superservers for more details on
the superserver.

Once you have gathered the required certificates and installed the web server, you must configure a SSL/TLS definition
for the superserver. Refer to Configuring TLS for more details on how to do this. Ensure Client certificate verification is set
to Request or Require. After this, configure a superserver to use this TLS definition. Note the port for this superserver.

By now, you should have a Web Gateway set up and a superserver configured to use TLS with client certificate verification.

Set Up
Once you have a web server installed and a superserver configured to use TLS with client certificate verification, follow
the steps below to set up mTLS authentication for the Web Gateway.

1. Turn on mTLS authentication in %Service_WebGateway. See Services for details on this service.

2. Using your preferred method, generate a new certificate for the Web Gateway where the CN (common name) field is
the name of an existing InterSystems IRIS user. Have the trusted CA sign this certificate.

3. Configure the Web Gateway to use this certificate.

a. Authenticate to the Web Gateway management page. See Accessing the Web Gateway Management Pages for
details.

b. Under Configuration, go to Server Access and edit or create a server configuration profile.

c. Ensure the Superserver TCP Port field matches the port of the superserver you previously configured to use TLS.

d. Under Connection Security, set the Connection Security Level to SSL/TLS.

e. Clear any existing values for User Name and Password. These values take priority over mutual TLS.

f. Enter the path to the Web Gateway certificate that you generated in step 2 in the SSL/TLS Certificate File field.

g. Enter the path to the Web Gateway private key that you generated in step 2 in the SSL/TLS Private Key File field.

h. Enter the path to the CA certificate that signed the superserver certificate in the SSL/TLS CA Certificate File field
so that the Web Gateway can verify the superserver’s certificate.

Reference for Operational and Actionable Resources for Security 273

Mutual TLS (mTLS)

i. If applicable, enter the Web Gateway private key password in the SSL/TLS Private Key Password field.

j. Save the configuration.

Important: Make sure to clear any existing values for User Name and Password in the Web Gateway server access
settings. These values take priority over mutual TLS.

By now, you should have enabled mTLS authentication in %Service_WebGateway and configured the Web Gateway
to use TLS with the CA-signed certificate where the CN field is an existing InterSystems IRIS user.

Testing
Once you have completed set up, you can test whether mutual TLS authentication succeeds using the Web Gateway. Follow
the below steps to test the authentication:

1. Close all Web Gateway connections.

a. From the Web Gateway portal, go to Management > System Status.

b. Close all server connections and click the refresh button.

2. Test the server connection.

a. From the Web Gateway portal, go to Management > Test Server Connection.

b. Select the server profile name that you configured for mutual TLS during setup.

c. Click Connect.

If the server connection failed, you can check the audit database for LoginFailure events from %Service_WebGateway.
Ensure the CN field of the Web Gateway certificate matches the username of an existing InterSystems IRIS user. If no such
event exists in the audit database, ensure that the system is auditing for LoginFailure events. See Auditing for more details.

If you enabled auditing for LoginFailure events and do not see this event, go to the Event Log in the Web Gateway man-
agement page and review the log messages for further troubleshooting. If you have SELinux in enforcing mode, please
refer to the SELinux Considerations.

SELinux Considerations
If SELinux is set to enforcing mode, then mutual TLS authentication fails to connect to the superserver unless you configure
the SELinux contexts for the certificates correctly. You must ensure the contexts and OS permissions are correctly set for
the CA, the superserver, and the Web Gateway certificates and associated private keys.

Superserver Certificate Context

Ensure the superserver certificate and trusted CA certificate are readable by the irisusr group and are configured with the
appropriate context. If generated in <IRIS-install-dir>/mgr/, then they should already have the correct context as files inherit
the context of their original parent directory. If they were not, then move them to <IRIS-install-dir>/mgr/ and run the following
commands in the Linux command-line interface:

restorecon -vF <IRIS-install-dir>/mgr/<superserver_certificate.cer>
restorecon -vF <IRIS-install-dir>/mgr/<superserver_private.key>
restorecon -vF <IRIS-install-dir>/mgr/<trusted_CA_certificate.cer>

The restorecon command restores the context of the file to that of the parent directory. Ensure that the superserver TLS
configuration has the correct path for these files.

274 Reference for Operational and Actionable Resources for Security

TLS

Web Gateway Certificate Context

Additionally, you must ensure that the Web Gateway private key, certificate, and superserver CA certificate are readable
by the web server user or group and configured with the appropriate context. To set the appropriate context, first place the
Web Gateway private key, certificate, and superserver CA certificate in the /etc/ssl/certs/ directory. Then, run the following
commands in the Linux command-line interface.

restorecon -vF /etc/ssl/certs/<WebGateway_certificate.cer>
restorecon -vF /etc/ssl/certs/<WebGateway_private.key>
restorecon -vF /etc/ssl/certs/<superserver_CA_certificate.cer>

The restorecon command restores the context of the file to that of the parent directory. Ensure that the Web Gateway server
access profile has the correct path for these files.

Reference for Operational and Actionable Resources for Security 275

Mutual TLS (mTLS)

Certificate Chain

Establishing the Required Certificate Chain
For a connection to be successfully established using a cipher suite that uses certificates and keys, the client must be able
to verify the server’s certificate chain from the server’s own certificate to a self-signed certificate from a trusted certificate
authority (CA), including intermediate certificates (if any). If the server is authenticating the client user, then the server
must also be able to verify the client user’s certificate chain from the client user’s own certificate to a trusted CA’s self-
signed certificate, including intermediate certificates (if any).

Since authentication can be bidirectional, the requirements for certificate chains refer to the verifying entity (the side
requiring the authentication) and the verified entity (the side being authenticated), rather than the client and the server.

For authentication to be possible, the following conditions must be met:

• The verifying entity must have access to all the certificates that constitute the certificate chain from the verified entity’s
own certificate to a trusted CA’s self-signed root certificate. The certificates in the chain are obtained from the combi-
nation of the verified entity’s certificate file (the certificates are sent as part of the handshake protocol) and the verifying
entity’s trusted CA certificate file.

• The verifying entity must have the trusted CA’s self-signed root certificate in its CA certificate file.

• The verified entity’s own certificate must be the first entry in its certificate file.

• All intermediate CA certificates must be present.

• The certificates in the certificate chain may be divided between the verified entity’s certificate file and the verifying
entity’s trusted CA certificate file. However, each part must be a contiguous partial certificate chain, as described in
the following example.

Suppose there are:

• A verified entity (named “VE”) with a certificate signed by the certificate authority named “ICA1.”

• A certificate for “ICA1” signed by the certificate authority “ICA2,” and a certificate for “ICA2” signed by “RootCA”.

• A trusted CA (named “RootCA”) with a self-signed root certificate.

The following are valid distributions of certificates between the verified entity and the verifying entity:

Table D–1:Valid Certificate Distribution Schemes

Certificates in the Verifying Entity’s Trusted CA
Certificate File

Certificates in the Verified Entity’s Certificate File

ICA1, ICA2, RootCAVE

ICA2, RootCAVE, ICA1

RootCAVE, ICA1, ICA2

Note that it is not valid to have VE and ICA2 in the verified entity’s certificate file and ICA1 and RootCert in the verifying
entity’s trusted CA certificate file

276 Reference for Operational and Actionable Resources for Security

TLS

	Table of Contents
	Securing Your Instance
	Introduction to Securing Your Instance
	Prepare for InterSystems Security
	System Management and Security
	Tighten Security for an Instance
	Security Advisor
	Secure InterSystems Processes and Operating-System Resources
	Security Checklist

	Identity and Access Management
	Identity and Access Management Introduction
	Kerberos Authentication
	Operating System–Based Authentication
	Instance Authentication
	Delegated Authentication
	Two-Factor Authentication
	JSON Web Token (JWT) Authentication
	LDAP
	OAuth 2.0 and OpenID Connect
	Delegated Authorization
	Advanced Topics in Authentication

	Encryption
	Introduction to InterSystems Encryption
	Key Management Tasks
	Using Encrypted Databases
	Data-Element Encryption
	Protecting Against Data Loss
	Handling Emergency Situations
	Additional Encryption Information
	FIPS-2 Compliance
	Cryptographic Standards and RFCs
	Public Key Infrastructure
	Demo: Database Encryption

	TLS
	TLS with the Superserver
	TLS with Telnet
	TLS with Python Clients
	TLS with Java Clients
	TLS with .NET Clients
	TLS with Studio
	TLS and Windows with .ini File
	Configuring InterSystems IRIS to Use TLS with Mirroring
	TLS with TCP Devices
	TLS with the Web Gateway
	Mutual TLS (mTLS)
	Certificate Chain

	Index

