InterSystems-

IRIS Data Platform

Using InterSystems SQL

Version 2024.1
2024-05-16

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using InterSystems SQL

InterSystems IRIS Data Platform Version 2024.1 2024-05-16
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 USING INTEr SYSEEMS SQL .ttt ettt sb e bbb e b e e b e be e e e e e e e e ene 1
I C =] A -1 (=T OSSOSO 1
1.2 TOPICS vttt ettt ettt bt b bbb bbb b bR bbb R bbb b 1

1.2.1 InterSystems SQL SYNTAX ...eeveieeieieeresiesiesieseeeesieeeeseeeeeseeeseesseeseesseeseesseessessesssesseenes 1
1.2.2 SQL EXECULION INTEITACES ..viivviiriiieireciecte ettt ettt ettt e st sbe e b e esreenresreenns 1
1.2.3 SChema DEfINITIONScceiiiiiiie e et sb e 2
1.2.4 Data Management and QUETIEScoeriririerierieieiereee et sbe e bbb se e 2
1.2.5 SOQL SECUIILY ..veueiuietietisieste sttt sttt sttt ettt sttt sttt st bt e e ene st e besbesbeseeseeneas 2
1.2.6 SQL SEIHINGS ..euvevirieierietestee ettt st s b et b et bbbttt et 2
I @ T I 1441 1o 7] = o To o SO 2

2 INter SystemMS SQL FEALUINESeoiiiiieecee ettt e e te e sae s te e e tess et e esaenteeneenseeneesreeneenneennes 3
2.1 ATCRITECIUIE .ttt ettt b bbbt bt bbb b et e e e e e e eneens 4
2.2 FRATUIES ..ttt sttt sttt sttt sttt b et b et he e bt s ke e eb e e he e eb e e R e e eb e e R b e eb £ ea b e eb e e n b e eb e enbeshe et e eheesneean e e 4

2.2.1 SQL-92 COMPIIANCE ..eviviieeieieieeieieiee ettt sttt sttt sttt se s nesbesbesnesreneas 4
B A =101 (o] TSR RE 5
P22 T L1 C=T0] o =T oL 1 5
2.3 L IDBC .ottt bbb et n ettt nes 5
2.3.2 ODBC ..ttt bRttt bbbt nr e 6
2.3.3 EMDBEdded SQLooveiiieiiiiiiiesiste sttt nes 6
2.3.4 DYNAMIC SQL .eiviitiiitiiietiriet ettt b ekt b bbbt b e r et n e r e 6
2.4 LIMITALIONS .eitiiiiiiisiese e ettt sttt e e e e s e s e e seenesteseesaesbeseeseenseeeseeneeneenenneenens 7

3B 1INtEr SyStEMS SQL BASICS ..viuerieeiiirieierietesietesiete sttt ettt st st st et e bbb saesestenesbe e sbenesbeneebesee 9

K T0 R -1 o] LSOOI 9

311 SCRBIMAS ...ttt ettt b bbbt b s b st b e b b bbb et b e b e aeene s 9
T O 1= TS 10
BLB PIIVIIBOES ..ttt sttt sttt ettt b ettt s b e bt s et et st e e e s e st et e Rt ke b e bbb e e e 11
BT 1=od 1AV [T L= 11
3.5 Data COMALION ..ouviviitiiiiieicie etttk bbb e 12
3.6 EXECULING SQL ...viiveiiisiiiie sttt sttt e st et e e s ae et saesn e e e e e e neeseereeneetenrenrenrenrn 12

4L anguage ElEMENTS ...ttt e ae e e s reeae s reenaenreens 15
4.1 Commands and KEYWOITScueuiriiriiieiise sttt sttt e bbbt sb et sae b be e e se e 15
4.2 Functions: INtrinSic and EXIFINSIC ..cveviieieieieise st 15
N (=T 1SR 16

O I (a0 =T T4) SRS 17
4.3.2 CONCAENATION ..ttt ettt sttt bbb bttt e 17
4.4 NULL and the EMPLY SIHNG ...oooveieeeieeeseeece ettt ste st eneenneens 17
A 4.1 NULL PrOCESSING ...cveiteiteatertestestesie e sseieseseseeies et ssestesbesbesbesaeseesbesaeseesenessesseesessesseses 17
4.4.2 NULL N EXPIESSIONS ...vtviiiiteiiitisisteietesietesieiestese sttt ettt sttt st st be e 18
4.4.3The Length OF NULL ..ottt e 18
4.4.4 ObjJectSCript a0 SQLecveueeeresese et ens 19
4.5 Arithmetic Operators and FUNCLIONScocveieierieiisnse et e e nre s 20
4.5.1 ReSUILING Data TYPE .uveiueeiee ettt sttt et te s sae e te e s te s e steesaesaeenaenreens 20
4.5.2 OPErator PrECEABINCEoiuiiuiiiieieeeieiesiee sttt sttt sttt sttt sb e bbb e 21
4.5.3 PreCiSion and SCAIEcoceiiiiireiiesiee ettt re s 22
4.5.4 Arithmetic and Trigonometric FUNCLIONScooiiriiiniiriencee e 22
L O R e E A [0 0 LI @] 4 LCT - (0] £ SRR 23

Using InterSystems SQL

4.6.1 Contains and FOIIOWS OPEIALOrSccoeiirierierieie ettt 24

4.7 LOGICAI OPEIALOISeuiivirieiteiteste sttt sttt ettt e b b be st e sb e besbesb e b e e et e st et e ebe e bt ebesbesbesbenbees 24
4.7.1 NOT UNArY OPEIALOF ...veiviviriieieieiieiese sttt sre s 24
4.7.2 AND anNd OR OPEIALOLScvereeiirieiirieiesiesesteeste ettt sttt sbe s be e b snebeseese s 25

4.8 COMMEBNTS ..evietirteiteererte st sttt e et h ekt b e s bt e bt s b e se e e b b ne e s e se et ebe e b e e bt e b e eb e nb e s R e er e b neennenne e ene e 26
4.8.1 Single Line COMIMENTS ..o.viuiiiiieiirieiirieisiesesteesie ettt ettt snese b snene 26
4.8.2 Multiple Line COMIMENTScouiiiiiiriirieiiesieie ettt st sbe s 27
4.8.3 SQL Code Retained a5 COMIMENTScc.oiueiiiiieiieeieeie ettt e 27

51mMPlicit JOINS (ATTOW SYNTAX) .evevireerereeieriererieeseee ettt sre st sbe st s e b sesbese st ssesesresesrenesre e ssenessens 29

5.1 Property RETEIENCEc.oiviiiiiiiieiie ettt ettt snene s 29

5.2 Child Table REFEIENCEc.oiveiiiieiieese ettt 31

5.3 AITOW SYNEAX PTIVIIEJES ..veviiiiiiieiie ettt ettt sttt st a et e e enenee e e 31

B TABNTITIEN'S ettt h e h e ae bbbt se e b e b se e b et e e e e e e et e aeeaenbenaeens 33

6.1 SIMPIE TAENTITIEIS ...ttt bbbt b bbb b e 33
6.1.1 NamMING CONVENTIONSovivirieiirieiiitiisteiet ettt 33
TN - LTI o) I 1 =] TSP SO 34
6.1.3 Testing Valid 1deNntifierscoeiveieiiieie s 34
6.1.4 NAMESPACE NAMES .. .eiivreeeiiteeeisee e see e s e e st e te e sre e e e sreeseesreestesseesaesreesaeeseesteeneenreenes 35
6.1.5 Identifiers and Class ENtity NAMEScccocviieeiiiiee st 35
6.1.6 Identifier Length CONSIAEIALIONScoirierierieieieieeeieie et 36

6.2 Delimited TAENTITIEIS ..o.viuieieeieeieiee e e e et b et sne e e 36
6.2.1 Delimited Identifier Valid NAMESccccvviiriviiirieirrese e 37
6.2.2 Disabling Delimited Identifier SUPPOITcveviveicire e 37

6.3 SQL RESEIVED WOIGSvvcuviirieiiireecie it sttt sttt sttt e sbe et e sbeebesbeebesbeesbesaeesbesraesbesteens 38

7USINg EMDEAAEI SQL ...ttt sttt sttt sb e bbb besbe b e b e nneneen 39

7.1 Compiling EMbedded SQLcoi ittt 39
7.1.1 Embedded SQL and the Macro PrePrOCESSOccrveermeeerieirieiririeseeesreesresesieseeneseenes 40

7.2 EMbedded SQL SYNTAX ..c.oiveerieerieierieiesiee sttt sttt st st sttt sttt 41
O I ST | I T =T €AY SRS 42
7.2.2 &SOl AREINALIVE SYNTAX .vvevviieieiciisiesiesiesesiesiesiesreseesseese e s e stesre e seesaessesaesaensesseseenesnens 43
7.2.3 &SOl MATKEr SYNTAX ...vieiuieiiieiieiisesi ettt s b e et 43
7.2.4 Embedded SQL and Line OFfSELScc.ciieeiiiiiie et 43

7.3 EMDEAded SQL COUEeiviiieiiriirieiie sttt sttt sttt sttt et e e e eneebe e e 44
7.3.1 Simple SQL STAEMENTScuerieiiiieiiiieiiteeeie ettt e ebe e 44
7.3.2 Schema Name RESOIULIONcviuiiiiiiiiiieie ettt 44
7. 3.3 LILEIal VAIUES ..ottt bbb 45
7.3.4 Data FOMMAL ...c.eeieiie ettt s e s se e e e bbb nbe s 46
7.3.5 Privilege CheCKINGcociiiiiiiiise ettt s st ene 47

7.4 HOSE VAMADIES ...t bbbt sttt sttt neer e s 48
7.4.1 HoSt Variable EXAMPIESc.ooviiiiiiiiiiie et 49
7.4.2 Host Variable Subscripted by Column NUMDBETccocovvivivviiie e 50
7.4.3 NULL and Undefined HOSt Variablescccoviiiiiininniseeseeseesec e 52
7.4.4 Validity of HOSt VariabIescooveiiiieii et 53
7.4.5 Host Variables and Procedure BIOCKSccocuiiiiniiiiiiiiiscnee e 53

7.5 SQL CUISOIS ettt stee ettt ettt ettt b e et be e e bt e be s b e e be bt e b e eb e e bt e ae e ebeeaseebeeaseebeebesaeeneseeas 54
7.5.1 The DECLARE CUISOr STAtEMENTecveieeieirieriesienieierieeeree e see e see e seesee e seeneenens 55
7.5.2 The OPEN CuUrSOr SEAtEMENTcveviviieiirieierieiesiee sttt ettt 56
7.5.3 The FETCH CuUrsor StAEMENTc.evieiiiiiiirieisieieseeieseereseeesse s seens 56
7.5.4 The CLOSE CUrsor STAtEMENTcvieeieeeiieieriesie sttt se e sne s 56

Using InterSystems SQL

7.6 Embedded SQL Variablescccc i st sn e 57

7060 QOMIST vttt ettt sttt skttt b et b bt h e e bt he e bt Re e eE e Re e Rt R e e eEe e R e e Rt e R be bt e n b e nbeenbenne s 57
7.6.2 YOROWECOUNT ..ottt sttt bbbt bbbttt 58
7.6.3 YOROWID ...ttt ettt ettt st e e tesbe e tesre e teeb e nbeensenteeneennas 59
7.6.4 SQLCODE ..ottt 60
T.6.5 STLEVEL ..o 60
7.6.6 SUSERNAMEoooiiiiiiiie ettt 61

7.7 Embedded SQL in Methods of @ PersiStent Classccccoveveeiieiienienie s e seesie e 61
7.8 Validating Embedded SQL COUEcouciriiiiiiriiisieiteet et 62
7.8.1 Compile with /compileembedded QUAIITIEr ..o 62
7.8.2 TeSt With SNOW PNeiiiiccee s 62

7.9 Auditing EMBedded SQL ..ottt ne e 63
8 USING DYNAMIC SQL ..veeieiiesieiiesieetes e ete st et e s et e s eesaeseestesseesteentesteentesseensesseensesneessesnseseesnessansnsens 65
8.1 Introduction t0 DYNAMIC SQL ...ccuiiuiiiiiiieieeeeieee ettt bbb st ettt 65
8.1.1 Dynamic SQL versus Embedded SQLccoeriiiieneieineeceese e 65

8.2 The %SQL.StAtEMENT CIASS ...cvviveieereiiiriseriereeriee ettt e e eneerenns 66
8.3 Creating an ODJECt INSTANCEvveiiieiirirere et neenenns 66
8.3.1 %SElECtMOUE PrOPEITY ..veiviiveieieieierieee e etesesesteste e stestestestesrestesaesaensesaesaeneesessessennens 67
8.3.2 %SChemaPath PrOPEITYcc.ovirieieicieiieeet et 68
8.3.3 YODIAIECTE PrOPEITY ...ttt ettt bbb bbb e ene 69
8.3.4 %O0DbjectSeleCtMOdE PrOPEITY ..cviiiiiieierieterieie ettt 70

8.4 Preparing an SQL SEALEMENTc.viviiiieieeieee ettt ettt sne e 71
ST o o U=) SRS 71
8.4.2 YPrepareClasSQUETY() «vecueiuirieieieeeeeeiesiesestesesreste e seeeesee e s e s e s e s e sresreseestesseseeseeneenens 73
8.4.3 Results of a SUCCESSTUI PrEPATEcoiiiiiriiiiie et 75
8.4.4 The preparse() MEthOdcoeii i 76

8.5 Executing an SQL STALEMENTc..oiriiirieiiriee ettt 76
8.5.1 DOEXECULE() +rvvereerereeterteienieieste ettt stttk ettt bbbt b et b et b et b etk se et et nnebe e 77
ST I A) (= o] T | =T { (S 79
8.5.3 YOEXECDITECINOPTIV() .veuveveeeietieeeecteste e ste e s e st e te st e st et e e e e e e e e eressesnesnesresrennens 80

8.6 Returning the FUIl RESUIL SELccviiiiiecec ettt 81
8.6.1 %DISPlay() MELNOAc.ciiiiiie e 81
8.6.2 %DisplayFormatted() Methodcocovieiieiiiiisees e 81
8.6.3 Paginating @ RESUIT SBLciiiiiriiiie e 82

8.7 Returning Specific Values from the ReSUIt SEtccccvceiereieecec e 83
8.7.1 YOPriNt() MENOMoiviieiie et e e ene e nennens 84
8.7.2 %GetRow() and %GetROWS() MEthOOSccviiiiiiiieie e 85
8.7.3 ISEL.NAME PIOPEITY .eeitieiiiiieete sttt ettt sttt sttt bt e b s e bt ear b e e nnesaeeneas 86
8.7.4 %Get("'fieldname™) IMELhOUcovviiriiii e 89
8.7.5 %GetData(n) MELhOUccoviiiiiiiere e 90

8.8 Returning MUILiple RESUIL SELSvivieiireii et 91
SIS 1O I 1Y 1= v o 1 - RSSO 91
8.9.1 Statement TYPe Metadatacceoveieieiiierceire e e 92
8.9.2 SeleCt-ItemM IMELAAALAceeuieierieieeie et bbb bbb e 92
8.9.3 Query ArgumentS MEtAdALAccorveereiiiiieiseete ettt 97
8.9.4 Query ReSUlt Set METATALAccerveiriiiiiiiiesie et 98
8.10 Auditing DYNAMIC SQL ..ocuviviirieiiesiisisesiesee e e ettt sttt sr e e e e e e eneeneeneans 99
9 Using the SQL Shell INTEIrfACE ...vevueeeeeecececere e 101
9.1 InvoKing the SQL SHEllccuv e 101
9.1.1 GO COMMANG ..ttt sttt ettt e bbbt bt sa et e se e e e b e e e e e st ebeebeebesbeseeee 103

Using InterSystems SQL

9.1.2 INPUL PAIMELELSeeiiiiiieiieeie sttt bbbt b e e n e nne s 103

9.1.3 Executing ODbjectScript COMMANGScccieiirerieriene et 103
9.1.4 Browsing the NAMESPACEc.ccueereriieiieiiieisie ettt ere e 104
9.1.5 CALL COMMANG . .ovinieieieeieiieese sttt sesseenestestesnesreseeseeseennes 105
9.1.6 Executing an SQL SCHPL FIle ...ocviviiieie e 105

9.2 Storing and Recalling SQL StateMENLSccvieieriieiiericiereeeee e e e ereeneenens 105
9.2.1 ReCAll DY NUMDET ..c.eicei et seeanae 105
9.2.2 RECAIl DY NAIME ..ottt e ettt sbe s 106

9.3 PUrging Cached QUETIEScviueieierieieriete ettt ettt 107
9.4 Configuring the SQL ShEllc.coiiiiiiee s 107
9.4.1 Configuring SQL Shell System-wide Defaultsccccvivriviinieriercrcereee e 108
9.4.2 Configuring Parameters for an SQL Shell ... 108
9.4.3 SettiNg COLALIGN ...uiiiti ettt ettt st sbe e sbe b 109
9.4.4 Setting DISPLAYMODE and DISPLAYTRANSLATETABLEcccccovvieivieieiieenen, 109
9.4.5 Setting EXECUTEMODEcoviiiiieiset ettt sttt 110
9.4.6 SEttiNg ECHO ...oiiiiiiiicie bbb 112
9.4.7 Setting MESSAGES ..ottt ettt sttt sa e sb e e 112
0.4.8 SELLING LOG ..ottt sttt sttt e e 113
9.4.9 SELING PATH ...ociiiiciieesee sttt b et ettt et neete e 113
9.4.10 Setting SELECTMODEcoccoiieiiieisieie ettt sne e sne e sne e sne e 114

9.5 SQL Metadata, Query Plan, and Performance MEetriCScccooriirierinienienenieneseseeniereeeeeens 114
9.5.1 Displaying Metadatacccueeriieriiiriee s e 114
9.5.2 SHOW STATEMENT ..ottt s bbbt 114
9.5.3 EXPLAIN and SNOW PIAN ...oviviieirieiirieeneesiee ettt 115
9.5.4 SQL Shell PErfOrMAaNCEccciviieiieie ettt st aenreens 115

9.6 TranSaCt-SQL SUPPOITeeiiiiietieii ettt sttt sttt sttt b e bt e e b e sbesbe b e saeesbesaeesbesneesbennean 116
9.6.1 SEttiNg DIALECT ..oiviiieiceiete sttt sttt sttt sr et 116
9.6.2 Setting COMMANDPREFIX ...cooiiieeeieieeese et 116
9.6.3 RUN COMMANG ...ttt ettt sttt st st sa et sbe bbb et et neebe e 117
9.6.4 TSQL EXAMPIES ...veveieeiiieieeeee ettt esne st be s ne bt st sn e e e e e 118

9.7 Other Ways Of EXECULING SQLcuvoiiiiiiie ettt saennae s 119
10 Using the Management Portal SQL INTErfacecocoerreririrenenere e 121
10.1 Management Portal SQL FaCIlItIeSceovieiriiiiiee s 121
10.1.1 Selecting @ NAMESPACEc.ccveiiuiiereriete ettt ettt srene 122
10.1.2 USEr CUSLOMIZALION ...eiveviiveieieiieie ettt sttt 122
10.2 EXECULING SQL QUETY ..ocveeieeereteeie e stesiesteste e ste st e ae e seesae e seesestesaesnesbesteseesteeeseeneenseseeneens 122
10.2.1 Writing SQL SEatEMENTSeeiviiieiiieiesieeieste et se ettt st enaesreenee s 122
10.2.2 Execute QUETY OPLIONSc.eiiiiiiiiiiiriesiesie ettt re st sbe e sbe e b e e 123
10.2.3 SNOW PIan BULLON ...t sttt st 124
10.2.4 SQL Statement RESUILSocuiiiiiiiie et nes 124
10.2.5 SNOW HISTOTY vttt sttt ens 126
10.2.6 Other SQL INTEITACES ..vviiviiieireirieitieie ettt ettt r e sae e sresba e b sbe e besbeesbesre e 127
10.3 Filtering SChema CONTENLSccveieeieireiece e este et se e e et e e sre e e sneenresneenas 127
10.3.1 BIrOWSE TaD ..ottt st ettt bbb bbb bbb et b e 128
10.4 Catalog DELAIISccveviieiieiteiiteet et 128
10.4.1 Catalog Details for @ TaDIEcc.cviiiiiiiie e 128
10.4.2 Catalog Details fOr @ VIBWccvcveiiiiicese et 130
10.4.3 Catalog Details for a Stored ProCedUIecccevvevveieieeieeeeiese e se e 131
10.4.4 Catalog Details for a Cached QUETYccccieieiieierircieste st 131
F0.5 WIZAIUS vttt ettt bbbt bbb e b et e e st et e ae e bt e b e e bt ebesbesbesbesbenbeneen 131

Using InterSystems SQL

O C3Aw1 [0 R 132

10.7 OPEN TADIE ..ttt bbbt bbb bbbt et ne bbb sbe b e 132
IO JE ST o Lo [O TTSRRRO 133
10.9 SQL PrOCESS VIBW ...ouveieieiiieieseeiesieses et ettt stestesteste st seesaen e saesaensesaeseaseesessessessessessnssens 133
10.10 DIAGNOSTIC LOGS vvevvereerrereriesiesiesiestestesiessessesteseeseesessessessessessessessessessessessesessessessessessessessessens 134
I T o TT o 1= o = 135
11.1 Table Names and SChema NAMESccererieiiieieieiereee e sbe e 135
11,2 SCREMA INBIME ...ttt ettt b e b et e b bt sbesbesb e besbesn et e b e e eneeneas 135
11.2.1 Schema Naming CONSIAEIAtIONSc..ccvrueirieirieinieisiesi e 136
11.2.2 ReServed SChemMa NAMESooveierieieieiesese et sies e seeee e seesesses e sseseeseeseesseneenes 136
11.2.3 Default SChema NAMEcov ittt 137
11.2.4 Schema Search Path ..o e 138
11.2.5 Platform-Specific Schema Name INCIUSIONcccooviiiiiiiiiiiiir s 139
11.2.6 LIStING SCNEIMASeouiiiiiieeiieiisie sttt ettt enas 139
113 TADIE NAITIE ...ttt e bbb e st e b e be st saenbeneeseeneeneas 139
11,4 ROWID FHEIU ..ottt ettt st sttt e et et e et e beenr et 141
11.4.1 ROWID Based 0N FIEIAScccoueiriiiriiiriiiesese e 142
11.4.2 ROWID HIAEN? ..oviriiiiicieiceetreese sttt 142
T S T T YA) USSR 143
11.6 Row\Version, Autolncrement, and Serial Counter Fields ... 143
11.6.1 ROWVEISION FIEIA ..ottt et 144
11.6.2 Serial COUNLEr FIEIA ...cveveeeeicece et ens 145
11.6.3 AULOINCIEMENE FIEI ..c.oiviiieiieiriee e 145
11.7 Defining a Table by USING DDLcovcviiiiiiiieie st e et sne e neennenens 146
11.7.1 Using DDL in Embedded SQLcocviieiiiieiiciee et 146
11.7.2 Using a Class Method t0 EXECULE DDLccciiiiiririeiese e 147
11.7.3 Defining Tables by Importing and Executing @ DDL SCFiptcccvvvreriierieneeenn 148
11.8 Defining a Table by Creating a PersiStent ClIassccoeiererereriienie e 148
11.8.1 Defining Property Parameterscccivveriererieriereeieeeeresesesresesresresseseeseessesseseensenens 149
11.8.2 Embedded Object (%SerialObJECL)ovveiieieiciresr e e 153
11.8.3 ClaSS MEINOMScveveieieeeieeee ettt b r e 154
11.8.4 Defining a Sharded Table by Creating a Persistent Classccoceeeieieninieniencnnnnn, 154
11.9 Defining @ Sharded TabIec.cov i 155
11.10 Defining a Table by Querying an EXisting Table ... 156
0 I o =T T T T I Vo] =TS 157
11.11.1 Introduction to FOreign TabIEScccveiiieiisisie e 157
11.11.2 Creating @ FOreign TabIeccciieeii et st 157
11.11.3 Querying a FOreign TabIEccoiiiiiie e 158
11.11.4 Deleting a FOreign Tableccco oo 158
O e T [T =T I = o] PSP 159
11.12.1 Requirements for Creating a Federated Tableccccoevveivriviivinvin v, 159
11.12.2 Creating a Federated Tablecccviiiiiiiiiiie e 160
11.12.3 Querying a Federated TabIecccoviieiiiice e 161
11.12.4 Dropping or Disconnecting a Federated Tableccocooeieiiiiiiniinieiisee e 161
11,13 LiSTING TADIES ...ttt bbbt 162
11.14 Listing Column Names and NUMDEISccoiiiiiiiirireeees e 162
11.14.1 The Get ColumNnSs MEtNOUScoviiriiiriiirieine e 163
11.15 LiStiNG CONSLIAINTS ..eiveiviiveieiieiieieeeeeeeesestesesiesresteseestestesaeseessesaesaeseessssessessessesseseessessees 163
12 Defining @and USING VIBWSc.uee it ete st e et ste e st sae e st tesneentesseentesnnensesnnanseenes 165
12,1 CrEAING @ VIBW ...ttt sttt sttt ettt b e b e bt b e s b e b sb e b et e et e e e neeneens 165

Using InterSystems SQL vii

12.1.1 Management Portal Create View INterfaceccccccvvevvvievieiesie e 166

12.1.2 Views and Corresponding CIASSESerereruerieieierieiieiese et see e e e 166
12.2 ATEIING 8 VIBW ..ottt bbbttt bbbt 167
12.3 UPUAEADIE VIBWS ...ttt 167

12.3.1 The WITH CHECK OPLION ..ottt ettt sne e 167
12.4 REAU-ONIY VIBWScvveieeerctisie et te et e sttt e et te et ste et e e e e eseenaeneetesaesnesreneeneens 168
125 VIEBW ID: YOVID ..ecviieiiieiisieese ettt sttt ettt 168
12.6 LiStiNG VIBW PIOPEITIES ...cueiuiitiiiiiieitiite sttt sttt sttt e 169
12.7 Listing VIEW DEPENUENCIESeviviiieiieiirieiinieiesteesie sttt 170

13 Relationships BEtWEEN TaADIESccviieee e sre e 173
13.1 DefiniNg @ FOreign KEY ...c.ciiiiiiiiiieiieie sttt et sttt st st sbe b 173
13.2 Foreign Key Referential Integrity ChecKingccccoovviveriinniinnenssesec s 173
13.3 Parent and Child TADIEScoeiiiiiirieree e 174

13.3.1 Defining Parent and Child TabIEScoveoiiiiiiiiiirere e 174

13.3.2 Inserting Data into Parent and Child TabIesccoveiiiriiieiiceeeesee e 175

13.3.3 Identifying Parent and Child Tablescocoiiiiiniine e 175

O LT oo T I T o= OSSPSR 177
14.1 DEFINING TIIGGEIS terviveeetireetirieiisiesistesestees bttt ee sttt se st st e s s be b ebe st e sesbenesbenesbenentens 177
14.2 TYPES OF THIGUELS ..evietiiteite ittt sttt sttt ettt ettt b ettt b e b b e b sb e bbb e e e e et ebenbesnesbe s 178

14.2. 1 AFTER TFIQOEIS wvviveieiieriiteriiteistesteteseeteseesessesessesessesessesessesessesessessssessssessssessasessasensens 179

14.2.2 RECUISIVE TIIJUETS .veireriitirieteieete sttt ettt ettt se et et et sn e sn e sne e 179
14.3 ObjectSCript TrHGQEr COUEcviieiiriiiitiiiteeteeet ettt 179

14.3.1 %ok, %msg, and %oper System Variablescccoovvevereieieeieeeeese s 180

14.3.2 {fieldName} SYNTAX ..c.ciceirecieieiecieie et s e et resnesre e 180

14.3.3 Macros Within Trigger COUEcoviiieiiiiieiirierc ettt 181

14.3.4 {name*O}, {name*N}, and {name*C} Trigger Code Syntaxc.cceceveereerverernrunns 181

14.3.5 Additional ObjectScript Trigger Code SYNAXcovveerreierierineinee e 182
14.4 Python TrQGEN COUE ..ottt bbb bbbttt b et 182
14.5 PUIIING TIIGOEIS weuvevirteieieeeeetesestestesiesiesteste e stessesaeseeseeseeseeseesessessesnessessesaessesteseensensesennenns 183
14.6 Triggers and ODJECT ACCESS .u.vviveirirreriereeeeiereseeseeestesrestessestessessessessensessessessesessessssessessessens 184

14.6.1 Not Pulling Triggers DUring ODJECT ACCESSvevververierieiesiesieeresreeeesreesneseeseeseeas 184
14.7 Triggers and TraNSACTIONScoiiiruiriireieeit ettt sttt st e e et se st be b sbe e e 184
14.8 LISHING TIIGGETS w.vereetereetereetertesesteiestesest et see bt et ne bt e bt b h b s bbb bt b bt n bt st b e e bt e st nnenes 185

ST @ =14 o o 187
15.1 COIIALION TYPES .ottt bbb bbbt b bt bttt ettt 188
15.2 Namespace-wide Default COIation ... e 188
15.3 Table Field/Property Definition Collationcccooeiiiiiiiinieniineeee s 189
15.4 Index Definition COHALIONcccciiiiiiiiiiie e e 190
15.5 QUENY COIALION ..ttt bbbttt e e e 191

15.5.1 select-item COIIAtIONc.ccviiiiirresere et 191

15.5.2 DISTINCT and GROUP BY Collationccccocerrinninninseneenieie e 192
15.6 Legacy COlation TYPES ...uiieiiirieiiiieterieesiesesiesesteesiesesbe st saese st st ste s ssessssesees 193
15.7 SQL and NLS COHALIONSeiviitiriiiiisiiieiiesieieeee ettt sbe e e 193

= o 10 o I o] 1= SOOI 195
16.1 Requirements for Creating a Federated Table ... 195
16.2 Creating a Federated TaDIEcoiiiii e 195

16.2.1 Defining a Federated Tableccivviviiriiieieeccee e 196

16.2.2 Connecting Source Tables to a Federated Tableccocvvievevireiciccecsese e 197
16.3 Querying a Federated TaDIEcvccui it 197

viii Using InterSystems SQL

16.4 Dropping or Disconnecting a Federated Table ... 198

17 Defining FOreign TaDIEScoiiiiiieiiee ettt e e bbbt e e eaeeaas 199
17.1 Introduction t0 FOreign TaDIESccociiiiirieiricse s 199
17.2 Creating a FOreign Tablecociiiiiiiee e 199

17.2.1 Step 1: Define @ FOreign SEIVERccviveiiieie st 199
17.2.2 Step 2: Define a Foreign Tablecvoveicieicceese s 200
17.3 Querying a FOreign TaDIEcoi oo 200
17.4 Deleting @ FOreign TADIEceiiiiiiie et e e 200

18 Modifying the Dat@DASEcovcerieirieirieriee et b e 201

18.1 INSEITING DALA ...ecveviviieiiiiteieiteeet ettt b ettt b ettt a ettt abe s 201
18.1.1 Insert Data USING SQL ..vcvvveiiieieiireeseeeeeees e es ettt st aenesresneans 201
18.1.2 Insert Data Using Object PrOPEITIEScvivevriereririeresiesesieseeeeseeres e sressessesnesreseeseens 202

18.2 UPDATE STALEMENTS ...ccvviiiieiiiiieitieiiest ettt st st sb s sb e sn e sne e sne e e 202

18.3 Computed Field Values on INSERT 0r UPDATEcccoiiiiiiieieree e 202

18.4 Validating DALacevveiiieiiiiieeete ettt 204

18.5 DELETE STAEMENTS ...ecuiiivieiiitieieetieste st et st teesee st e e steenbesae et sseenbeeneeseeeneeseeaneas 205

18.6 TranSaCtioN PrOCESSING ..vvevververreriereieeeeesestesteseestesteseesseseeseessessessessenseseesessessessessessessessessens 205
18.6.1 Transactions and SAVEPOINTScccecvieiereiereirieiereee e e e e see e s seesreee e eeneerennes 206
18.6.2 NON-transaction OPEIatiONSccocerererieriinieieieeieiieies ettt see e e 206
18.6.3 TranSaCtioN LOCKScciiiiiiiii ettt 207
18.6.4 Transaction Size LIMItAtIONSccociiiririnine et s 207
18.6.5 Reading UnCOMMIIEd Dataccceverueiirieirieiieiisie e 207
18.6.6 ObjectScript Transaction COMMANGSccccvvvrrrerierererereseeeeeereseeresresresre e seeseens 208

19 QUENYIiNG the DAtADASEcevvieiiiiiii i st 209
19.1 TYPES OF QUETTES ...ttt sttt ettt bbbt b e bbb bt e b et se e e et eneas 209
19.2 USINg @ SELECT STAEMENT ..c.viiiiiieieeieieieeeieee ettt sttt ene s 209

19.2.1 SELECT Clause Order of EXECULIONcccviiiiieniniine e e 210
19.2.2 SEIECHING FIEIUS ..ottt 210
19.2.3 The JOIN OPEIAtiON ..vviuviveriesiesiesiesiesiee e seese e e re ettt sresae e sae e eneene e e enesrenrenns 211
19.2.4 Queries Selecting Large Numbers of Fieldsccccocvivvininiiicnciceeececese e 212

19.3 Defining and Executing Named QUETIESc.ccveiueieeiiereeieseeieseeste e ste e sresne e sae e e 212
19.3.1 CREATE QUERY and CALL ...ccviieiiieitiet ettt 212
19.3.2 ClaSS QUETIES ...vevieeeeteieieriesieiee ettt st sbe e st sbe e see b e s et eneeseebesbesbesbesbesnesbeseeseens 213

19.4 Queries Invoking User-defined FUNCLIONSc.ciiiiriiniineie e 213

19.5 Querying Serial OBJECt PrOPEITIES ...ccvecveivereeieieeeese e e ste st e e sre e e 214

19.6 QUETYING COIIECTIONSvvcviiecie sttt re e nesresaesnesreneesrens 215
19.6.1 Usage Notes and RESLICIIONSccvviieiiieieiicic sttt 216

19.7 Queries INVOKING Free-teXt SEAICHcociiiiiiieese e 216

19.8 PSeUdO-FIeld Vari@hlescccooiiiiiiiiiiesere et e 216

19.9 QUETY METAUALAeueiviiteietisiet ettt b e 217

19.10 Queries and Enterprise Cache ProtoCol (ECP)c.ccvvcvvereiiverereveeseeeeese s 217

S I O T o @ T =TSSP 218
19.11.1 Listing Cached QUEFIESeecueieeieiiesiesiesie ettt ste et seesre e saesree e nnaens 219
19.11.2 Purge Cached QUEFIESeueiuirueieieieieeiesieeie ettt b e et e e e e et sbe e b b e e 219

20 Defining and USiNg SLOred ProCeAUI €Soocecerireririeniere sttt st seeseeese e sseseesseseeseeseeseens 221
20.1 OVEIVIBW <.vveriereeeietieie ettt sttt te e aesae e s e eneeseeseeseetestesaeseentesaesaensesteseeneenseneeneeneesensenns 221
20.2 Defining StoOred PrOCEAUIEScoveveieeeeeeesiestese e seeste e aesa e e s sre e sre e sresre e snesneneennns 221

20.2.1 Defining a Stored Procedure USiNg DDLcccoovvvveieieiiesnsese e e 222
20.2.2 SQL to Class Name Transformationscccccvevveviviieeresiee e 222

Using InterSystems SQL

20.2.3 Defining a Method Stored Procedure using CIaSSEScccvevuereerierveieseesiesieenienenens 223

20.2.4 Defining a Query Stored Procedure usSing CIaSSesScccceererererienenene e seeieeenes 224

20.2.5 Customized Class QUEFIESevuerueuerierieieeieetietesie sttt sttt st e et ere e sbe e seenes 226

20.3 USING STOred PIrOCEAUIESoviuiieiniitiieieietereei ettt bbbttt 226
20.3.1 StOred FUNCLIONS ..o.voviieeeirieirieisie ettt 227

20.3.2 PIIVIIBUES ...vvveiveiteiieiiesiese s tesee e e et e e sttt ste st et sa et e s e e enseneesesneanestentesresreneeneens 228

20.4 LISEING PrOCEAUIES ...vviivieiieieeie s este st ste e steestesteeste s e e stestaesbeessesbeeneesseensesasesesseeseesneesennsnens 228

21 Storing and Using Stream Data (BLOBS and CLOBS)cocoiiiiiiiiiieie e 231
21.1 Stream Fields and SQLcciiiiiiiiee ettt sttt ene 231
21.1.1 BLOBS QN0 CLOBSoiciiiieiiisieiesienieieeeeesesee e sieste e stesaesseseeseesseseesesssssessessessesseses 231

21.1.2 Defining Stream Data FIelAScccviieiiriereeiceese s 231

21.1.3 Inserting Data into Stream Data FieldsScccccveiviieiieiinninrie e 232

21.1.4 Querying Stream Field Dataccccvoiveiieiie it 233

21.1.5 DISTINCT, GROUP BY, and ORDER BYcccceiviiiiiiiriierine s seee s sieesnenens 235

21.1.6 Predicate Conditions and SrEAMScccceeereririrerenene e 235

21.1.7 Aggregate FUNCLIONS AN STFEAMSc.viviiiiiieierieierieie sttt e 235

21.1.8 Scalar FUNCLIONS @Nd STFEAMSccveiiuerieierieie ettt 236

21.2 Stream Field ConcurrenCy LOCKINGcceieiieiieiieieseeeeesesestesesiesresie e sresie e saessensesasnsenens 236
21.3 Using Stream Fields within InterSystems IRIS Methodscccocvveviiienicvcse e, 237
21.4 Using Stream Fields from ODBCcooiiiiiieiiniese e 237
21.5 Using Stream Fields from JDBCccooiiiiiiniieieenee ettt 237

22 SQL Users, ROIES, aNd PriVIIEES ...ocueeuereee ettt see e nes 239
22.1 SQL Privileges and System PrivVilEgEScccvieierierieieiese s 239
22.2 %AdMIN_SECUIe PEIMISSION ...cuviviiiiiiesiestesiesiesteie e seees e e s e sre e sresaeseesaessesseseeeeneesessesnens 240
22.3 %AdMIN_ROIEEdit PEIMISSIONuvciiiiiciicieie sttt 240
22.4 %AdMIN_USErEdit PErMISSIONccviiiciiiicic ettt sae e 240
22.5 USBIS ittt ittt sttt ettt ettt ettt b e bttt he e E e R e ARt R e e k£ eR b e R £ e R b e R e e Rt Rt e bt ae e eheeaeenbeeneenheeaenteen 241
22.5.1 User Name as SChemMa NAIMEcc.oveieiiieieeee e s nne 241

22,8 ROIES ..ottt e bbb bbbt b ettt be e 242

FA7 O I o 4 Y =TT 243
22.7.1 Granting SQL PriVIIEOESccuv e st 243

22.7.2 LiStiNg SQL PrIVIIEEScviiiieieieeieiieeeic ettt sttt ettt sbe e saesne 243

22.7.3 AUditing PriVilEge EITOIS ..c.ociiiiiiicieiiee ettt 244

23 USING VECLOE SEAICR ...ttt et bbb e ettt 245
23.1 Vectors and EMBEATINGS ..vcvivieririreieiieieieeeesese e ettt sn e e ae e enessesnesnens 245
BT (4 0T Y /=T (o] £ 245
23.2.1 Translating Text to EMDeddiNgScccveiieiiiieieseee et 246

23.2.2 Inserting VECTOR-TYPEA DALAccuveuerieiiiiiiiiesie et 246

23.3 Perform VECION SEAICHcuiiviieieicee ettt s e 248
23.3.1 EXAMPIE <ottt bbbt bbb 248

24 SQL SettingS REFEIENCEovviviieiese sttt s re e s resbesee e e neenes 251
24.1 How to Change Each SQL SEtiNG ...ccciviiiiieiireie et neenens 251
24.2 Settings that ReqUIre PEIMISSIONSciiiirririeiieieieiieeee ettt st et sbe e sne 253

25 IMPOrting SQL COOE ...ccueiuiiuiitirieitisiesie ettt ettt sae et bbb b b eese e e e be e e e e e e e e e eaesaesaeene 255
25.1 Importing INTerSYStEMS SQL ...c.viuiiiiieiirieirieisie et 255
25.1.1 IMPOIt FIlE FOIMAEL .oveviiiiiiteicie ettt 256

25.1.2 Supported SQL COMMANGSccverveveieriereeeeesresesieseeseseessesseseeseesseseeseessssessessesseseenes 257

25.2 Code Migration: Importing non-INterSystems SQLccocvvivieiienineneieeeees e se e 257

Using InterSystems SQL

Appendix A: Importing and EXporting SQL Datacccccevererererenieniere et
A.1 Importing Data With LOAD DATA ...ttt sttt s sbe e
A.2 EXporting Data t0 @ TEXE FIlE ...c.ciriiiiiiiiisiese s

Using InterSystems SQL

Xi

List of Tables

Table 11-1: Available DDL Commands in INterSystems SQLccocevirinenerieneieeeeeesesese e 146
TADIE 2411 bbb Rt bbbt r e 251
TADIE 2427 bbb bbbttt bbb 254

Xii Using InterSystems SQL

Using InterSystems SQL

InterSystems SQL provides a full set of standard relational features, including the ability to define table schema, execute
queries, and define and execute stored procedures. You can execute InterSystems SQL interactively from the Management
Portal or programmatically from using a SQL shell interface. Embedded SQL enables you to embed SQL statements in
your ObjectScript code, while Dynamic SQL enables you to execute dynamic SQL statements from ObjectScript at runtime.

1.1 Get Started

* InterSystems SQL Features provides an overview of InterSystems SQL as it relates to software standards and interop-
erability.

» InterSystems SQL Basics describes the fundamental features of InterSystems SQL, such as tables and queries, and
how to execute InterSystems SQL.

1.2 Topics

1.2.1 InterSystems SQL Syntax

» Language Elements describes InterSystems SQL handling of literals, NULL, operators, and comments.

* Implicit Joins (Arrow Syntax) provides an InterSystems SQL shorthand extension to perform a left outer join on a
column specified in a SELECT clause.

« ldentifiers describes the conventions used for naming entities within InterSystems SQL.

1.2.2 SQL Execution Interfaces

» Using Embedded SQL describes how to embedded InterSystems SQL code within ObjectScript code.
* Using Dynamic SQL describes how to prepare and execute SQL code at runtime from ObjectScript code.

» Using the SQL Shell Interface describes how to write and execute SQL statements from the InterSystems Terminal
using a shell interface.

Using InterSystems SQL 1

Using InterSystems SQL

e Using the Management Portal SQL Interface describes how to execute SQL statements and view and manage SQL
features from the InterSystems Management Portal interface.

1.2.3 Schema Definitions

» Defining Tables describes fundamental elements of tables (schema and table names, RowID and Primary Key), and
how to define a table in InterSystems SQL, either by defining a persistent class or by using DDL commands.
e Defining and Using Views describes how to define views and the view ID (%VID) in InterSystems SQL.

» Relationships Between Tables describes how to define and maintain foreign keys and parent/child relationships in
InterSystems SQL.

» Using Triggers describes triggers that are automatically executed when a record is added, modified, or deleted in
InterSystems SQL.

» Collation describes collation types that specify how data values are ordered and compared in InterSystems SQL.

1.2.4 Data Management and Queries

* Modifying the Database describes how to insert, update, and delete data, and how to use transactions to group multiple
data modifications.

* Querying the Database describes how to create and execute queries in InterSystems SQL.
» Defining and Using Stored Procedures describes how to define and use stored procedures in InterSystems SQL.

e Storing and Using Stream Data (BLOBs and CLOBs) describes binary stream data and character stream data in Inter-
Systems SQL.

1.2.5 SQL Security

» SQL Users, Roles, and Privileges describes security features of InterSystems SQL, including defining users, associating
users with roles, and assigning privileges to a user or a role.

1.2.6 SQL Settings

» SQL Settings Reference describes the mechanisms you can use to change various SQL settings.

1.2.7 SQL Import/Export

» Importing SQL Code describes how to import and execute SQL code from a text file, either InterSystems SQL or SQL
code from other vendors.

* Importing and Exporting SQL Data describes InterSystems SQL tools to import data from a text file to a table and to
export data from a table to a text file.

2 Using InterSystems SQL

InterSystems SQL Features

InterSystems SQL provides uncompromising, standard relational access to data stored within an InterSystems IRIS® data
platform database.

InterSystems SQL offers the following benefits:

High performance and scalability — InterSystems SQL offers performance and scalability superior to other relational
database products. In addition, InterSystems SQL runs on a wide variety of hardware and operating systems; from
laptop computers to high-end, multi-CPU systems.

Integration with Inter Systems | RIS objects technology — InterSystems SQL is tightly integrated with InterSystems
IRIS object technology. You can mix relational and object access to data without sacrificing the performance of either
approach.

Low maintenance— Unlike other relational databases, InterSystems IRIS applications do not require table compression
in deployed applications.

Support for standard SQL queries— InterSystems SQL supports SQL-92 standard syntax and commands. In most
cases, you can migrate existing relational applications to InterSystems IRIS with little difficulty and automatically take
advantage of the higher performance and object capabilities of InterSystems IRIS.

You can use InterSystems SQL for many purposes including:

Object- and web-based applications— You can use SQL queries within InterSystems IRIS applications to perform
powerful database operations such as lookups and searches.

Online transaction processing — InterSystems SQL offers outstanding performance for insert and update operations
as well as the types of queries typically found within transaction processing applications.

Businessintelligence and data warehousing — The combination of the InterSystems IRIS multidimensional database
engine and bitmap indexing technology make it an excellent choice for data warehouse-style applications.

Ad hoc queries and reports — You can use the full-featured ODBC and JDBC drivers included with InterSystems
SQL to connect to popular reporting and query tools.

Enterprise application integration — The InterSystems SQL Gateway gives you seamless SQL access to data stored
in external relational databases that are ODBC- or JDBC-compliant. This makes it easy to integrate data from a variety
of sources within InterSystems IRIS applications.

Using InterSystems SQL 3

InterSystems SQL Features

2.1 Architecture

The core of InterSystems SQL consists of the following components:

The Unified Data Dictionary — a repository of all meta-information stored as a series of class definitions. InterSystems
IRIS automatically creates relational access (tables) for every persistent class stored within the Unified Dictionary.

The SQL Processor and Optimizer — a set of programs that parse and analyze SQL queries, determine the best search
strategy for a given query (using a sophisticated cost-based optimizer), and generate code that executes the query.

ThelInter Systems SQL Server — a set of InterSystems IRIS server processes that are responsible for all communications
with the InterSystems ODBC and JDBC drivers. It also manages a cache of frequently used queries; when the same
query is executed multiple times, its execution plan can be retrieved from the query cache instead of having to be
processed by the Optimizer again.

2.2 Features

InterSystems SQL includes a full set of standard, relational features. These include:

The ability to define tables and views (DDL or Data Definition Language).
The ability to execute queries against tables and views (DML or Data Manipulation Language).

The ability to execute transactions, including INSERT, UPDATE, and DELETE operations. When performing concurrent
operations, InterSystems SQL uses row-level locks.

The ability to define and use indexes for more efficient queries.

The ability to use a wide variety of data types, including user-defined types.
The ability to define users and roles and assign privileges to them.

The ability to define foreign keys and other integrity constraints.

The ability to define INSERT, UPDATE, and DELETE triggers.

The ability to define and execute stored procedures.

The ability to return data in different formats: ODBC mode for client access; Display mode for use within server-based
applications.

Note: We continue to add support for additional features within InterSystems SQL. If you require a feature that is not

supported within this release, please feel free to check with the InterSystems Worldwide Response Center (WRC)
to see if it will be included in a newer release.

2.2.1 SQL-92 Compliance

The SQL-92 standard is imprecise with regard to arithmetical operator precedence; assumptions on this matter differ amongst
SQL implementations. InterSystems SQL supports configuring your system for either of the following system-wide alter-
natives for SQL arithmetic operator precedence:

InterSystems SQL can be configured to parse arithmetic expressions in strict left-to-right order, with no operator
precedence. This is the same convention used in ObjectScript. Thus, 3+3*5=30. You can use parentheses to enforce
the desired precedence. Thus, 3+(3*5)=18.

Using InterSystems SQL

https://www.intersystems.com/support-learning/support/

Interoperability

» InterSystems SQL can be configured to parse arithmetic expressions using ANSI precedence, which gives higher
precedence to multiplication and division operators than addition, subtraction, and concatenation operators. Thus,
3+3*5=18. You can use parentheses to override this precedence, where desired. Thus, (3+3)*5=30.

The default for SQL operator precedence depends on your version of InterSystems IRIS. Refer to SQL arithmetic operator
precedence for details.

InterSystems SQL supports the complete entry-level SQL-92 standard with the following exceptions:

» There is no support for adding additional CHECK constraints to a table definition.

» The SERIALIZABLE isolation level is not supported.

» Delimited identifiers are not case-sensitive; the standard says that they should be case-sensitive.

» Within a subquery contained in a HAVING clause, one is supposed to be able to refer to aggregates which are
“available” in that HAVING clause. This is not supported.

2.2.2 Extensions

InterSystems SQL supports a number of useful extensions. Many of these are related to the fact that InterSystems IRIS
provides simultaneous object and relational access to data.

Some of these extensions include:

» Support for user-definable data type and functions.

» Special syntax for following object references.

e Support for subclassing and inheritance.

» Support for queries against external tables stored within other databases.

* A number of mechanisms for controlling the storage structures used for tables to achieve maximum performance.

2.3 Interoperability

InterSystems SQL supports a number of ways to interoperate relationally with other applications and software tools.

2.3.1JDBC

InterSystems IRIS includes a standards-compliant, level 4 (all pure Java code) JDBC client.

The InterSystems JDBC driver offers the following features:

» High-performance

* A pure Java implementation

» Unicode support

e Thread-safety

You can use InterSystems JDBC with any tool, application, or development environment that supports JDBC. If you
encounter problems or have questions about compatibility, contact the InterSystems InterSystems Worldwide Response

Center (WRC). You can contact the WRC from the Management Portal by using the Contact button found in the upper
right corner.

Using InterSystems SQL 5

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

InterSystems SQL Features

2.3.2 0DBC

The C-language call level interface for InterSystems SQL is ODBC. Unlike other database products, the InterSystems
ODBC driver is a native driver — it is not built on top of any other proprietary interface.

The InterSystems ODBC driver offers the following features:
» High-performance

e Portability

* Native Unicode support

* Thread-safety

You can use InterSystems ODBC with any tool, application, or development environment that supports ODBC. If you
encounter problems or have questions about compatibility, contact the InterSystems InterSystems Worldwide Response
Center (WRC). You can contact the WRC from the Management Portal by using the Contact button found in the upper
right corner.

2.3.3 Embedded SQL

Within ObjectScript, InterSystems SQL supports Embedded SQL: the ability to place an SQL statement within the body
of a method (or other code). Using Embedded SQL, you can query a single record, or define a cursor and use that to query
multiple records. Embedded SQL is compiled. By default, it is compiled the first time it is executed (runtime), not when
the routine that contains it is compiled. For this reason, it is important to check for SQLCODE errors at runtime. It is also
possible to compile Embedded SQL at the same time as the ObjectScript routine that contains it.

Embedded SQL is quite powerful when used in conjunction with the object access capability of InterSystems IRIS. For
example, the following method finds the RowID of the record with a given Name value:

Class Member

ClassMethod FindByName(fullname As %String)

&sql (SELECT %ID INTO :id FROM Sample.MyTable WHERE Name = :fullname)
IF SQLCODE<O {SET baderr="SQLCODE ERROR:"_SQLCODE_"" *'_%msg
RETURN baderr }
ELSEIF SQLCODE=100 {SET nodata="Query returns no data"
RETURN nodata }
RETURN ""RowlID=""_id

For more details, see Using Embedded SQL.

2.3.4 Dynamic SQL

As part of its standard library, InterSystems IRIS provides an %SQL.Statement class that you can use to execute dynamic
(that is, defined at runtime) SQL statements. You can use Dynamic SQL within ObjectScript methods. For example, the
following method queries for a specified number of people born in the 21st century. The query selects all people born after
December 31, 1999, orders the selected records by date of birth, then selects the top x records:

6 Using InterSystems SQL

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Limitations

Class Member

ClassMethod Born21stC(x) [language=objectscript]
{

SET
SET
SET
SET
SET

IF
SET

myquery=2
myquery(1) = "SELECT TOP ? Name,%EXTERNAL(DOB) FROM Sample.Person "
myquery(2) = "WHERE DOB > 58073 ORDER BY DOB"

tStatement = ##class(%SQL.Statement) .%New()

gStatus = tStatement.%Prepare(.myquery)

gStatus"=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
rset = tStatement.%Execute(x)

DO rset.%Display()
WRITE !,"End of data"

}

When you prepare a query, an optimized version of that query is stored as a cached query. This cached query is executed
for subsequent invocations of the query, avoiding the overhead of re-optimizing a query each time it is executed.

For more details, see Using Dynamic SQL.

2.4 Limitations

Note the following limitations of InterSystems SQL:

* NLS can be used to specify the behavior of SORDER for a particular national locale behavior for individual globals,
as well as for local variables in the currently running process. InterSystems SQL can be used and works well within
any National Language locale. However, a current limitation of InterSystems SQL is that for any particular process,
all the relevant globals it references have to be using the same national locale as the current process locale. See SQL
Collation and NLS Collations.

Using InterSystems SQL 7

InterSystems SQL Basics

This topic provides an overview of the features of InterSystems SQL, especially those that are not covered by the SQL
standard or are related to the InterSystems IRIS® data platform unified data architecture. It assumes prior knowledge of
SQL and is not designed to serve as an introduction to SQL concepts or syntax.

3.1 Tables

Within InterSystems SQL, data is presented within tables. Each table is defined to contain a number of columns. A table
may contain zero or more rows of data values. The following terms are roughly equivalent:

Data Terms Relational Database Terms InterSystems IRIS Terms
database schema package
table persistent class
field column property
record row

For further details, see Introduction to the Default SQL Projection.

There are two basic types of tables: base tables (which contain data and are usually referred to simply as tables) and views
(which present a logical view based on one or more tables).

To find out more on how to define tables, see Defining Tables.
To find out more on how to define views, see Defining Views.
In order to make queries against tables more efficient, you can define indexes on tables. See Defining and Building Indexes.

In order to enforce referential integrity you can define foreign keys and triggers on tables. See Defining Foreign Keys and
Defining Triggers.

3.1.1 Schemas

SQL schemas provides a means of grouping sets of related tables, views, stored procedures, and cached queries. The use
of schemas helps prevent naming collisions at the table level, because a table, view, or stored procedure name must only
be unique within its schema. An application can specify tables in multiple schemas.

Using InterSystems SQL 9

InterSystems SQL Basics

SQL schemas correspond to persistent class packages. Commonly a schema has the same name as its corresponding package,
but these names may differ because of different schema naming conventions or because different names have been deliberately
specified. Schema-to-package mapping is further described in SQL to Class Name Transformations.

Schemas are defined within a specific namespace. A schema name must be unique within its namespace. A schema (and
its corresponding package) is automatically created when the first item is assigned to it and automatically deleted when the
last item is deleted from it.

You can specify an SQL name as qualified or unqualified. A qualified name specifies the schema: schema.name. An
unqualified name does not specify the schema: name. If you do not specify the schema, InterSystems IRIS supplies the
schema as follows:

» For DDL operations, InterSystems IRIS uses the system-wide default schema name. This default is configurable. It
applies to all namespaces.

e For DML operations, InterSystems IRIS can use either a user-supplied schema search path or the system-wide default
schema name. Different techniques are used to supply a schema search path in Dynamic SQL, Embedded SQL, and
the SQL Shell.

To view all the existing schemas within a namespace:

1. From the Management Portal select System Explorer, then SQL. Select a namespace by clicking the name of the current
namespace displayed at the top of the page; this displays the list of available namespaces. Select a namespace.

2. Select the schema drop-down list on the left side of the screen. This displays a list of the schemas in the current
namespace. Select a schema from this list; the selected name appears in the Schema box.

3. The applies to drop-down list allows you to select Tables, Views, Procedures, or Cached Queries, or All of these that
belong to the schema. After setting this option, click the triangles to view a list of the items. If there are no items,
clicking a triangle has no effect.

3.2 Queries

Within InterSystems SQL, you view and modify data within tables by means of queries. Roughly speaking, queries come
in two flavors: those that retrieve data (SELECT statements), and those that modify data (INSERT, UPDATE, and DELETE
statements).

You can use SQL queries in a number of ways:

* Using Embedded SQL within ObjectScript.

e Using Dynamic SQL within ObjectScript.

e Calling a stored procedure created using CREATE PROCEDURE or CREATE QUERY.
e Using a class query. For further details, refer to Defining and Using Class Queries.

» Using the ODBC or JDBC interfaces from a variety of other environments.

SELECT queries are described in Querying the Database.

Queries are part of InterSystems IRIS objects or ObjectScript routines.

10 Using InterSystems SQL

Privileges

3.3 Privileges

InterSystems SQL provides a way to limit access to tables, views, and so on via privileges. You can define a set of users
and roles and grant various privileges (read, write, and so on) to them. See SQL Users, Roles, and Privileges.

3.4 SelectMode

InterSystems SQL uses a SelectMode option to specify how data is to be displayed or stored. The available options are
Logical, Display, and ODBC. Data is stored internally in Logical mode, and can be displayed in any of these modes. Every
data type class can define transformations between internal Logical format and Display format or ODBC format by using
the L ogical ToDisplay(), L ogical ToOdbc(), DisplayTolL ogical (), and OdbcToL ogical() methods. When SQL SelectMode
is Display, the LogicalToDisplay transformation is applied, and returned values are formatted for display. The default SQL
SelectMode is Logical; thus by default returned values are displayed in their storage format.

SelectMode affects the format that in which query result set data is displayed, SelectMode also affects the format in which
data values should be supplied, for example in the WHERE clause. InterSystems IRIS applies the appropriate transformation
method based on the storage mode and the specified SelectMode. A mismatch between a supplied data value and the
SelectMode can result in an error or in erroneous results. For example, if DOB is a date stored in $HOROLOG Logical
format, and a WHERE clause specifies WHERE DOB > 2000-01-01 (ODBC format), SelectMode = ODBC returns the
intended results. SelectMode = Display generates SQLCODE -146 Unable to convert date input to a valid
logical date value. SelectMode = Logical attempts to parse 2000-01-01 as a Logical date value, and returns zero
rows.

For most data types, the three SelectMode modes return the same results. The following data types are affected by the
SelectMode option:

« Date, Time, and Timestamp data types. InterSystems SQL supports numerous Date, Time, and Timestamp data types
(%Library.Date, %Library.Time, %Library.PosixTime, %Library. TimeStamp, and %MV.Date). With the exception of
%Library. TimeStamp, these data types use different representations for Logical, Display, and ODBC modes. In several
of these data types InterSystems IRIS stores dates in SHOROLOG format. This Logical mode internal representation
consists of an integer count of the number of days from an arbitrary starting date (December 31st, 1840), a comma
separator, and an integer count of the number of seconds since midnight of the current day. InterSystems IRIS stores
%PosixTime timestamps as an encoded 64-bit signed integer. In Display mode, dates and times commonly appear in
the format specified by the data type’s FORMAT parameter or the date and time format defaults for the current locale
in %SYS.NLS.Format. The default for the American locale is DD/MM/YYYY hh:mm:ss. In ODBC mode, dates and
times are always represented as YYYY-MM-DD hh:mm:ss.fff. The %Library. TimeStamp data type also uses this
ODBC format for Logical and Display modes.

* OList data type. InterSystems IRIS Logical mode stores lists using two non-printing characters that appear before the
first item in the list, and appear as a separator between list items. In ODBC SelectMode, list items are displayed with
a comma separator between list items. In Display SelectMode, list items are displayed with a blank space separator
between list items.

» Data types that specify VALUELIST and DISPLAYLIST. For required fields, if you are in display mode and you
insert a value into a table where the field has a DISPLAYLIST, the display value you enter must exactly match one of
the items in the DISPLAYLIST. For non-required fields, non-matching values are converted to NULL values.

» Empty strings, and empty BLOBs (stream fields). In Logical mode empty strings and BLOBs are represented by the
non-display character SCHAR(O). In Display mode they are represented by an empty string ("").

The SQL SelectMode may be specified as follows:

Using InterSystems SQL 11

InterSystems SQL Basics

» For the current process, using the SetOption(" SelectM ode") method.
» For aInterSystems SQL Shell session, using the SET SELECTMODE command.

» For a query result set from the Management Portal Execute Query user interface (System Explorer, SQL), using the
"Display Mode" drop-down list.

e For a Dynamic SQL %SQL.Statement instance, using the %SelectMode property.

e For Embedded SQL, using the ObjectScript #sqlcompile select preprocessor directive setting. This directive allows
for a fourth value, Runtime, which sets the select mode to whatever the RuntimeMode property setting is: Logical,
Display, or ODBC. The RuntimeMode default is Logical.

» Forthe SQL commands CREATE QUERY, CREATE METHOD, CREATE PROCEDURE, and CREATE FUNCTION
using the SELECTMODE keyword.

» Foranindividual column within an SQL query by using the %EXTERNAL, %INTERNAL, and %ODBCOUT functions.

3.5 Data Collation

Collation specifies how values are ordered and compared, and is part of both InterSystems SQL and InterSystems IRIS
objects.

You can specify a collation type as part of field/property definition. Unless otherwise specified, a string field/property
defaults to the namespace default collation. By default, the namespace default collation for strings is SQLUPPER.
SQLUPPER collation transforms strings into uppercase for the purposes of sorting and comparing. Thus, unless otherwise
specified, string ordering and comparison is not case-sensitive.

You can specify a collation type as part of index definition, or use the collation type of the indexed field.

An SQL query can override the defined field/property collation type by applying a collation function to a field name. The
ORDER BY clause specifies the result set sequence for a query; if a specified string field is defined as SQLUPPER, query
results order is not case-sensitive.

For further details refer to Collation.

3.6 Executing SQL

InterSystems IRIS supports numerous ways to write and execute SQL code. These include:

e Embedded SQL: SQL code embedded within ObjectScript code.

e Dynamic SQL: SQL code executed from within ObjectScript, using the %SQL.Statement class.

» Execute() method: execute SQL code using the Execute() method of the %SYSTEM.SQL class.

» Stored Procedure containing SQL code, created using CREATE PROCEDURE or CREATE QUERY.
e The SQL Shell: SQL statements executed from the Terminal interface.

» Execute Query Interface: SQL statements executed from the Management Portal.

You can use InterSystems IRIS objects (classes and methods) to:
» Define a persistent class (an SQL table).

e Define an index.

12 Using InterSystems SQL

Executing SQL

» Define and Use a Class Query.

Using InterSystems SQL 13

Language Elements

This page introduces the language elements in InterSystems SQL.

4.1 Commands and Keywords

An InterSystems SQL command (also known as an SQL statement) begins with a keyword followed by one or more argu-
ments. Some of these arguments may be clauses or functions, identified by their own keywords.

» InterSystems SQL commands do not have a command terminator, except in specific cases such as SQL procedure code
or trigger code, in which case SQL commands are terminated by a single semicolon (;). Otherwise, InterSystems SQL
commands do not require or accept a semicolon command terminator. Specifying a semicolon command terminator
in InterSystems SQL results in an SQLCODE -25 error. InterSystems IRIS® data platform implementation of TSQL
(Transact-SQL.) accepts, but does not require, a semicolon command terminator. When importing SQL code to Inter-
Systems SQL, semicolon command terminators are stripped out.

» InterSystems SQL commands have no whitespace restrictions. If command items are separated by a space, at least one
space is required. If command items are separated by a comma, no space is required. No space is required before or
after arithmetic operators. You may insert line breaks or multiple spaces between space-separated items, between items
in a comma-separated list of arguments, or before or after arithmetic operators.

InterSystems SQL keywords include command names, function names, predicate condition names, data type names, field
constraints, optimization options, and special variables. They also include the AND, OR, and NOT logical operators, the
NULL column value indicator, and ODBC function constructs such as {d dateval} and {fn CONCAT(str1,str2)}.

» Keywords are not case-sensitive. By convention, keywords are represented by capital letters in this documentation,
but InterSystems SQL has no letter case restriction.

e Many, but not all, keywords are SQL Reserved Words. InterSystems SQL only reserves those keywords that cannot
be unambiguously parsed. SQL reserved words can be used as delimited identifiers.

4.2 Functions: Intrinsic and Extrinsic

A function performs an operation and returns a value. Commonly in InterSystems SQL a function is specified ina SELECT
statement as a select-itemor in a WHERE clause, performing an operation either on a table field value or on a literal value.

Using InterSystems SQL 15

Language Elements

* Intrinsic: InterSystems SQL supports a large number of intrinsic (system-supplied) functions. These include numeric
functions, string functions, and date and time functions. These functions are described in the InterSystems SQL Reference.
The arithmetic and trigonometric functions are also listed on that page.

Aggregate functions are SQL intrinsic functions that evaluate all of the values of a column and return a single aggregate
value. Aggregate functions are described separately.

e Extrinsic: InterSystems SQL can also support user-supplied ObjectScript function calls (extrinsic functions), as shown
in the following example:

ObjectScript

MySQL
&sql (SELECT Name,$$MyFunc() INTO :n,:f FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE "name is: ",n,!
WRITE "function value is: ",f,!
QUIT
MyFunc(Q)
SET x="my text"
QUIT x

An SQL statement can only invoke user-supplied (extrinsic) functions if their use is configured as a system-wide
option. The default is “No”; by default, attempting to invoke user-supplied functions issues an SQLCODE -372 error.
You can configure SQL use of extrinsic functions system-wide using the $SY STEM.SQL .Util.SetOption() method,
asfollows: SET status=$SYSTEM.SQL.Util._SetOption("'AllowExtrinsicFunctions",1, oldval).
To determine the current setting, call $SY STEM.SQL .CurrentSettings() which displays the Al low extrinsic
functions in SQL statements option.

You cannot use a user-supplied function to call a % routine (a routine with a name that begins with the % character).
Attempting to do so issues an SQLCODE -373 error.

4.3 Literals

InterSystems SQL literals have the following syntax:

literal :=:= nunber | string-literal nunber ::= {digit}[-1digit{digit}[E[+]-1digit{digit}]
digit :z:= 0..9 string-literal ::= std-string-literal | ObjectScript-enpty-string

std-string-literal ::= * {std-character-representation} " std-character-representation :-:=
nonquot e- character | quote-synbol quote-synbol ::= " vjectScript-enpty-string ::=

A literal is a series of characters that represents an actual (literal) value. It can be either a number or a character string.

* A number does not require any delimiter character. It can consist of the digits 0 through 9, the decimal point character,
the exponent symbol and the plus and minus signs. Only one decimal point character can be used in a number. This
decimal point can only be used in the base portion of a number, not in the exponent portion. The decimal point does
not need to be followed by a digit. Leading and trailing zeros are permitted. The exponent (scientific notation) symbol
is the letter E; both uppercase and lowercase E are accepted, but uppercase E is the preferred usage. A plus or minus
sign can prefix a base number or an exponent. Multiple plus and minus signs can prefix a base number; SQL treats
these signs as operators. Only a single plus or minus sign can prefix an exponent; SQL treats this sign as part of the
literal. No commas or blanks are permitted in a number.

» A character string literal consists of a pair of delimiter characters enclosing a string of characters of any type. The
preferred delimiter character is the single-quote character (see below). To specify a delimiter character as a literal
within a character string, double the character; for example: 'Mary"s office'.

16 Using InterSystems SQL

NULL and the Empty String

The empty string is a literal string; it is represented by two single-quote characters (). NULL is not a literal value; it represents
the absence of any value. For further details, see NULL and the Empty String.

Note: In Embedded SQL, a few character sequences that begin with ## are not permitted within a string literal, as
described in Literal Values. This restriction does not apply to other invocations of SQL, such as Dynamic SQL.

4.3.1 String Delimiters

Use single quote (") characters as string delimiters. The use of the double-quote character (*') is supported for SQL compat-
ibility, but this use is strongly discouraged because of conflict with the delimited identifier standard. A pair of double quote
characters **** is parsed as an invalid delimited identifier and generates an SQLCODE -1 error.

To specify a single quote character as a literal character within a string, specify a pair of these characters as the literal escape
sequence. For example, "a ""normal*" string”.

4.3.2 Concatenation

The double vertical bar (|]) is the preferred SQL concatenation operator. It can be used to concatenate two numbers, two
character strings, or a number and a character string.

The underscore () is provided as an SQL concatenation operator for ObjectScript compatibility. This concatenation oper-
ator can only be used to concatenate two character strings.

If the two operands are both character strings, and both strings have the same collation type, the resulting concatenated
string has that collation type. In all other cases, the result of concatenation is of collation type EXACT.

4.4 NULL and the Empty String

Use the NULL keyword to indicate that a value is not specified. NULL is always the preferred way in SQL to indicate that
a data value is unspecified or nonexistent for any reason.

The SQL zero-length string (empty string) is specified by two single quote characters. The empty string (") is not the same
thing as NULL.

Note: The SQL zero-length string is not recommended for use as a field input value or a field default value; in
ObijectScript, this corresponds to a string of length one that contains the $SCHAR(0) character. Use NULL to rep-
resent the absence of a data value, which corresponds to the ObjectScript empty string (). See “ObjectScript
and SQL” for more information.

The SQL zero-length string should be avoided in SQL coding. However, because many SQL operations delete trailing
blank spaces, a data value that contains only whitespace characters (spaces and tabs) may result in an SQL zero-length
string.

Note that different SQL length functions return different values: LENGTH, CHAR_LENGTH, and DATALENGTH return
SQL lengths. SLENGTH returns ObjectScript representation length. See The Length of NULL below. LENGTH does not
count trailing blank spaces; all other length functions count trailing blank spaces.

4.4.1 NULL Processing

The NOT NULL data constraint requires that a field must receive a data value; specifying NULL rather than a value is not
permitted. This constraint does not prevent the use of an empty string value. For further details, refer to the CREATE
TABLE command.

Using InterSystems SQL 17

Language Elements

The IS NULL predicate in the WHERE or HAVING clause of a SELECT statement selects NULL values; it does not
select empty string values.

The IFNULL function evaluates a field value and returns the value specified in its second argument if the field evaluates
to NULL. It does not treat an empty string value as a non-NULL value.

The COALESCE function selects the first non-NULL value from supplied data. It treats empty string values as non-NULL.
When the CONCAT function or the concatenate operator (||) concatenate a string and a NULL, the result is NULL. This
is shown in the following example:

SQL

SELECT {fn CONCAT("fred" ,NULL)} AS FuncCat, -- returns <null>
“fred” | INULL AS OpCat -- returns <null>

The AVG, COUNT, MAX, MIN, and SUM aggregate functions ignore NULL values when performing their operations.
(COUNT * counts all rows, because there cannot be a record with NULL values for all fields.) The DISTINCT keyword
of the SELECT statement includes NULL in its operation; if there are NULL values for the specified field, DISTINCT
returns one NULL row.

The AVG, COUNT, and MIN, aggregate functions are affected by empty string values. The MIN function considers an
empty string to be the minimum value, even when there are rows that have a value of zero. The MAX and SUM aggregate
functions are not affected by empty string values.

4.4.2 NULL in Expressions

Supplying NULL as an operand to most SQL functions returns NULL.

Any SQL arithmetic operation that has NULL as an operand returns a value of NULL. Thus, 7+NULL=NULL. This includes
the binary operations addition (+), subtraction (-), multiplication (*), division (/), integer division (\), and modulo (#), and
the unary sign operators plus (+) and minus (-).

An empty string specified in an arithmetic operation is treated as a value of 0 (zero). Division (/), integer division (\), or
modulo (#) by empty string (6/") results in a <DIVIDE> error.

4.4.3The Length of NULL

Within SQL, the length of a NULL is undefined (it returns <null>). The length of an empty string, however, is defined as
length zero. This is shown in the following example:

SQL

SELECT LENGTH(NULL) AS NullLen, -- returns <null>
LENGTH("") AS EmpStrLen -- returns O

As shown in this example, the SQL LENGTH function returns the SQL lengths.

You can convert an SQL zero-length string to a NULL by using the ASCII function, as shown in the following example:

SQL

SELECT LENGTH(NULL) AS NullLen, -- returns <null>
LENGTH({fn ASCII("")}) AS AsciiEmpStrLen, -- returns <null>
LENGTH(" ") AS EmpStrLen -- returns O

However, certain InterSystems IRIS extensions to standard SQL treat the length of NULL and the empty string differently.
The $LENGTH function returns the InterSystems IRIS internal representation of these values: NULL is represented as a
defined value with length 0, the SQL empty string is represented as a string of length 0. This functionality is compatible
with ObjectScript.

18 Using InterSystems SQL

NULL and the Empty String

SQL

SELECT $LENGTH(NULL) AS NullLen, -- returns 0
$LENGTH(" ") AS EmpStrLen, -- returns 0
$LENGTH("a™) AS OneCharStrLen, -- returns 1
$LENGTH(CHAR(0)) AS CharZero -- returns 0

Another place where the internal representation of these values is significant is in the % STRING, % SQL STRING and
% SQL UPPER functions, which append a blank space to a value. Since a NULL truly has no value, appending a blank to
it creates a string of length 1. But an empty string does have a character value, so appending a blank to it creates a string
of length 2. This is shown in the following example:

SQL
SELECT CHAR_LENGTH(%STRING(NULL)) AS NulllLen, -- returns 1
CHAR_LENGTH(%STRING(" ")) AS EmpStrLen -- returns 2

Note that this example uses CHAR_LENGTH, not LENGTH. Because the LENGTH function removes trailing blanks,
LENGTH(%STRING(NULL)) returns a length of 0; LENGTH(%STRING(" ")) returns a length of 2, because % STRING
appends a leading blank, not a trailing blank.

4.4.4 ObjectScript and SQL

When an SQL NULL is output to ObjectScript, it is represented by an ObjectScript empty string ("), a string of length
Zero.

When an SQL zero-length string data is output to ObjectScript, it is represented by a string containing $CHAR(0), a string
of length 1.

ObjectScript

&sql (SELECT NULL,*"*
INTO :a,:b)

WRITE I,"NULL length: ",$LENGTH(a) // returns 0
WRITE !,"empty string length: " ,$LENGTH(b) // returns 1

In ObjectScript, the absence of a value is usually indicated by an empty string (
SQL, it is treated as a NULL value, as shown in the following example:

). When this value is passed into embedded

ObjectScript

set x=""
set myquery="SELECT NULL As NoVal,:x As EmpStr"
set tStatement=##class(%SQL.Statement) .%New()

set gStatus = tStatement.%Prepare(myquery)
it $$$I1SERR(qStatus) {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}

set rset = tStatement.%Execute()

if (rset_%SQLCODE "= 0) {write "%Execute failed:", I, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

while rset.%Next()

{

write "NoVal:",rset.%Get("'Noval')," length " ,$LENGTH(rset.%Get("'Noval')),! // length O
write "EmpStr:",rset.%Get("EmpStr')," length " ,$LENGTH(rset.%Get("EmpStr')),! // length O

b
iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write "End of data"

If you specify an input host variable that is not defined, embedded SQL treats its value as NULL.
In the following example, the SQL empty string with an appended blank is passed out as string of length 2:

Using InterSystems SQL 19

Language Elements

ObjectScript

&sql (SELECT %SQLUPPER(™ ")
INTO :y)

4.5 Arithmetic Operators and Functions

InterSystems SQL supports the following arithmetic operators:

Operator Description
+ Addition operator. For example, 17+7 equals 24.

- Subtraction operator. For example, 17-7 equals 10. Note that a pair of these characters is
the InterSystems SQL comment indicator. Therefore, to specify two or more subtraction
operators or negative signs you must use either spaces or parentheses. For example, 17-
-7 or 17-(-7) equals 24.

* Multiplication operator. For example, 17*7 equals 119.

/ Division operator. For example, 17/7 equals 2.428571428571428571.

\ Integer division operator. For example, 17\7 equals 2.

Modulo operator. For example, 17 # 7 equals 3. Note that because the # character is also

a valid identifier character, to use it as a modulo operator you should specify it separated
from its operands by spaces before and after.

E Exponentiation (scientific notation) operator. Can be uppercase or lowercase. For example,
7E3 equals 7000. A too-large exponent results in an SQLCODE -7 “Exponent out of range”
error. For example, 1E309 or 7E308.

0 Grouping operators. Used to nest arithmetic operations. Operations are executed according
to ANSI operator precedence. For example, 17+7*2 equals 31, but (17+7)*2 equals 48.

Il Concatenate operator. For example, 17]]7 equals 177.

Avrithmetic operations are performed on numbers in their canonical form.

4.5.1 Resulting DataType

When performing an arithmetic operation on two numeric values having different data types, the resulting data type is
determined as follows:

For addition (+), subtraction (-), integer division (\), and modulo (#):

20 Using InterSystems SQL

Arithmetic Operators and Functions

Data Type NUMERIC INTEGER TINYINT SMALLINT BIGINT DOUBLE

NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
INTEGER NUMERIC BIGINT BIGINT BIGINT BIGINT DOUBLE
TINYINT NUMERIC BIGINT SMALLINT INTEGER BIGINT DOUBLE
SMALLINT NUMERIC BIGINT INTEGER INTEGER BIGINT DOUBLE
BIGINT NUMERIC BIGINT BIGINT BIGINT BIGINT DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

For multiplication (*) or division (/):

Data Type NUMERIC INTEGER TINYINT SMALLINT BIGINT DOUBLE

NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
INTEGER NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
TINYINT NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
SMALLINT NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
BIGINT NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Concatenating two numbers of any data type results in a VARCHAR string.

In Dynamic SQL you can use SQL column metadata to determine the data type of a result set field. For further details on
numeric data types refer to SQL Data Types.

4.5.2 Operator Precedence

The SQL-92 standard is imprecise with regard to operator precedence; assumptions on this matter differ amongst SQL
implementations. InterSystems SQL can be configured to support either type of precedence:

At InterSystems IRIS 2019.1 and subsequent, InterSystems SQL supports ANSI precedence of arithmetic operators
by default. This is a system-wide configuration setting. When ANSI precedence is configured, the "*", "\", "/", and
"#" operators have a higher precedence than the "+", "-", and "||" operators. Operators with a higher precedence are
executed before operators with a lower precedence. Thus, 3+3*5 equals 18. You can use parentheses to override
precedence when desired. Thus, (3+3)*5 equals 30.

Default ANSI precedence is supported for a clean install of InterSystems IRIS 2019.1; when you upgrade InterSystems
IRIS 2018.1 to InterSystems IRIS 2019.1, the operator precedence remains configured to the InterSystems IRIS 2018.1
default; strict left-to-right order.

At InterSystems IRIS 2018.1, InterSystems SQL does not provide precedence of arithmetic operators by default. By
default, InterSystems SQL executes arithmetic expressions in strict left-to-right order, with no operator precedence.
This is the same convention used in ObjectScript. Thus, 3+3*5 equals 30. You can use parentheses to enforce the
desired precedence. Thus, 3+(3*5) equals 18. Careful developers should use parentheses to explicitly state their
intentions.

You can configure either type of SQL operator precedence system-wide using the $SY STEM .SQL .Util.SetOption()
method, as follows: SET status=$SYSTEM.SQL.Util.SetOption("’ANSIPrecedence”,1, .oldval) sets ANSI
precedence; SET status=$SYSTEM._SQL.Util._SetOption("'ANSIPrecedence™,0, .oldval) setsstrict left-to-

Using InterSystems SQL 21

Language Elements

right evaluation. To determine the current setting, call $SY STEM .SQL .CurrentSettings() which displays the Apply
ANSI1 operator precedence option. Changing this SQL option takes effect immediately system-wide. Changing this
option causes all cached queries to be purged system-wide.

Changing SQL precedence has no effect on ObjectScript. ObjectScript always follows strict left-to-right execution of
arithmetic operators.

4.5.3 Precision and Scale

The precision (maximum number of digits present in the number) for a NUMERIC result for:

» addition or subtraction is determined using the following algorithm: resultprecision=max(scalel, scale2) + max(preci-
sionl-scalel, precision2—scale2)+1. If the calculated resultprecision is greater than 36, the precision value is set to 36.

» multiplication is determined using the following algorithm: resultprecision=min(36, precisionl+precision2+1).

+ division (valuel / value2) is determined using the following algorithm: resultprecision=min(36, preci-
sionl-scalel+scale2+max(6, scalel+precision2+1)).

The scale (maximum number of fractional digits) for a NUMERIC result for:

» addition or subtraction is determined using the following algorithm: resultscale=max(scalel, scale2).

» multiplication is determined using the following algorithm: resultscale=min(17, scalel+scale2).

o division (valuel/value2) is determined using the following algorithm: resultscale=min(17, max(6, scalel+precision2+1)).

For further details on data types, precision, and scale, refer to SQL Data Types.

4.5.4 Arithmetic and Trigonometric Functions

InterSystems SQL supports the following arithmetic functions:

Function Description

ABS Returns the absolute value of a numeric expression.

CEILING Returns the smallest integer greater than or equal to a numeric expression.

EXP Returns the log exponential (base e) value of a numeric expression.

FLOOR Returns the largest integer less than or equal to a numeric expression.

GREATEST Returns the largest number from a comma-separated list of numbers.

ISNUMERIC Returns a boolean code specifying whether an expression is a valid number.

LEAST Returns the smallest number from a comma-separated list of numbers.

LOG Returns the natural log (base e) value of a numeric expression.

LOG10 Returns the base—10 log value of a numeric expression.

MOD Returns the modulus value (remainder) of a division operation. Same as the #
operator.

PI Returns the numeric constant pi.

POWER Returns the value of a numeric expression raised to a specified power.

ROUND Returns a numeric expression rounded (or truncated) to a specified number of
digits.

22 Using InterSystems SQL

Relational Operators

Function

SIGN

SQRT
SQUARE
TRUNCATE

Description

Returns a numeric code specifying whether a numeric expression evaluates to
positive, zero, or negative.

Returns the square root of a numeric expression.
Returns the square of a numeric expression.

Returns a numeric expression truncated to a specified number of digits.

InterSystems SQL supports the following trigonometric functions:

Function
ACOS
ASIN
ATAN
COS
CoT

SIN

TAN

Description

Returns the arc-cosine of a numeric expression.
Returns the arc-sine of a numeric expression.
Returns the arc-tangent of a numeric expression.
Returns the cosine of a numeric expression.
Returns the cotangent of a numeric expression.
Returns the sine of a numeric expression.

Returns the tangent of a numeric expression.

InterSystems SQL also supports the following angle conversion functions:

Function
DEGREES
RADIANS

Description
Converts radians to degrees.

Converts degrees to radians.

4.6 Relational Operators

A conditional expression evaluates to a boolean value. A conditional expression can use the following relational operators:

Operator

<>

Description
Equals operator.

Does not equal operator. The two syntactical forms are functionally identical.

Less than operator.
Greater than operator.
Less than or equal to operator.

Greater than or equal to operator.

When comparing a table field value, these equality operators use the field’s default collation. The InterSystems IRIS default
is not case-sensitive. When comparing two literals, the comparison is case-sensitive.

Using InterSystems SQL 23

Language Elements

Equality operators (equals, does not equal) should be avoided when comparing floating point numbers. Floating point
numbers (data types classes %Library.Decimal and %Library.Double) are stored as binary values, not as fixed-precision
numbers. During conversion, rounding operations may result in two floating point numbers that are intended to represent
the same number not being precisely equal. Use less-than / greater-than tests to determine if two floating point numbers
are “the same” to the desired degree of precision.

4.6.1 Contains and Follows Operators

InterSystems SQL also supports the Contains and Follows comparison operators:

Operator Description

[Contains operator. Returns all values that contain the operand, including values equal to the
operand. This operator uses EXACT (case-sensitive) collation. The inverse is NOT[.

e The Contains operator determines if a value contains a specified character or string of characters. It is case-sensitive.

e The %STARTSWITH predicate condition determines if a value starts with a specified character or string of characters.
It is not case-sensitive.

* InterSystems SQL Search can be used to determine if a value contains a specified word or phrase. SQL Search performs
context-aware matching. It is not case-sensitive.

Operator Description

] Follows operator. Returns all values that follow the operand in collation sequence. Excludes
the operand value itself. This operator uses the field’s default collation. The InterSystems IRIS
default is not case-sensitive. The inverse is NOT].

For example, SELECT Age FROM MyTable WHERE Age] 88 returns 89 and greater, but also returns 9 because 9 is
after 88 in the collation sequence. SELECT Age FROM MyTable WHERE Age > 88returns 89 and greater; it does not
return 9. A string operand such as ‘ABC’ collates before any string that contains additional characters, such as ‘ABCA’;
therefore, to exclude the operand string from a] operator or a > operator you must specify the entire string. Name 1]
“Smith,John” excludes ‘Smith,John’ but not ‘Smith,John P.’

4.7 Logical Operators

SQL logical operators are used in condition expressions that are evaluated as being True or False. These conditional
expressions are used in the SELECT statement WHERE and HAVING clauses, in the CASE statement WHEN clauses,
in the JOIN statement ON clause, and the CREATE TRIGGER statement WHEN clause.

4.7.1 NOT Unary Operator

You can use the NOT unary logical operator to specify the logical inverse of a condition, as shown in the following examples:

SQL

SELECT Name,Age FROM Sample.Person
WHERE NOT Age>21
ORDER BY Age

24 Using InterSystems SQL

Logical Operators

SQL
SELECT Name,Age FROM Sample.Person

WHERE NOT Name %STARTSWITH("A")
ORDER BY Name

You can place the NOT operator before the condition (as shown above). Or you can place NOT immediately before a single-
character operator; for example, NOT<, NOT[, and so forth. Note that there must be no space between NOT and the single-
character operator it inverts.

4.7.2 AND and OR Operators

You can use the AND and OR logical operators between two operands in a series of two or more conditions. These logical
operators can be specified by keyword or symbol:

Operator Description
AND &
OR !

Spaces are not required (though recommended for readability) between a symbol operator and its operand. Spaces are
required before and after a keyword operator.

These logical operators can be used with the NOT unary logical operator, such as the following: WHERE Age<65 & NOT
Age=21.

The following two examples use logical operators to schedule an assessment based on age. People between the ages of 20
and 40 are assessed every three years, people from 40 to 64 are assessed every two years, and those 65 and over are assessed
every year. The examples give identical results; the first example uses keywords, the second uses symbols:

SQL

SELECT Name,Age FROM Sample.Person

WHERE Age>20
AND Age<40 AND (Age # 3)=0
OR Age>=40 AND (Age # 2)=0
OR Age>=65

ORDER BY Age

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age>20

& Age<40 & (Age # 3)=0

1 Age>=40 & (Age # 2)=0

1 Age>=65
ORDER BY Age

Logical operators can be grouped using parentheses. This establishes a grouping level; evaluation proceeds from the lowest
grouping level to the highest. In the first of the following examples, the AND condition is applied only to the second OR
condition. It returns persons of any age from MA, and persons with age less than 25 from NY:

SQL

SELECT Name,Age,Home_State FROM Sample.Person
WHERE Home_State="MA®" OR Home_State="NY" AND Age < 25
ORDER BY Age

Using parentheses to group conditions gives a different result. The following example returns persons from MA or NY
whose age is less than 25:

Using InterSystems SQL 25

Language Elements

SQL

SELECT Name,Age,Home_State FROM Sample.Person
WHERE (Home_State="MA" OR Home_State="NY") AND Age < 25
ORDER BY Age

» SQL execution uses short-circuit logic. If a condition fails, the remaining AND conditions will not be tested. If a con-
dition succeeds, the remaining OR conditions will not be tested.

» However, because SQL optimizes WHERE clause execution, the order of execution of multiple conditions (at the same
grouping level) cannot be predicted and should not be relied upon.

4.8 Comments

InterSystems SQL supports both single-line comments and multi-line comments. Comment text can contain any characters
or strings, except, of course, the character(s) that indicate the end of the comment.

Note: Using Embedded SQL marker syntax (&sqgl<marker>(. . .)<reversemarker>) imposes a restriction on the
contents of SQL comments. If you are using marker syntax, the comments within the SQL code may not contain
the character sequence “)<reversemarker>". For further details, refer to The &sql Directive.

You can use the prepar se() method to return an SQL DML statement stripped of comments. The prepar se() method also
replaces each query argument with a ? character and returns a %L.ist structure of these arguments. The prepar se() method
in the following example returns a parsed version of the query, stripped of single-line and multi-line comments and
whitespace:

ObjectScript

SET myq=4

SET myq(1)=""SELECT TOP ? Name /* first name */, Age "

SET myq(2)="" FROM Sample._MyTable -- this is the FROM clause"
SET myq(3)=" WHERE /* various conditions "

SET myq(4)="apply */ Name="Fred®" AND Age > 21 -- end of query"
DO ##class(%SQL.Statement) .preparse(.myq, -stripped, .args)
WRITE stripped,!

WRITE $LISTTOSTRING(args)

4.8.1 Single Line Comments

A single-line comment is specified by a two-hyphen prefix. A comment can be on a separate line, or can appear on the
same line as SQL code. When a comment follows SQL code on the same line, at least one blank space must separate the
code from the double-hyphen comment operator. A comment can contain any characters, including hyphens, asterisks, and
slashes. The comment continues to the end of the line.

The following example contains multiple single-line comments:

SQL

-- This is a simple SQL query

-- containing -- (double hyphen) comments
SELECT TOP 10 Name,Age, -- Two columns selected
Home_State -- A third column

FROM Sample.Person -- Table name

-- Other clauses follow

WHERE Age > 20 AND -- Comment within a clause
Age < 40

ORDER BY Age, -- Comment within a clause
Home_State

-- End of query

26 Using InterSystems SQL

Comments

4.8.2 Multiple Line Comments

A multiple-line comment is specified by a /* opening delimiter and a */ closing delimiter. A comment can appear on one
or more separate lines, or can begin or end on the same line as SQL code. A comment delimiter should be separated from
SQL code by at least one blank space. A comment can contain any characters, including hyphens, asterisks and slashes,
with the obvious exception of the */ character pair.

Note: The syntax /7*#OPTIONS */, with no space between the /* and the #, specifies a comment option. A comment
option is not a comment; it specifies a code option that the query optimizer uses during the compile of the SQL
query. A comment option is specified using JSON syntax, commonly a key:value pair such as the following:
/*#OPTIONS {"'optionName':value} */.

The following example contains several multiple-line comments:

SQL

/* This is
a simple
SQL query. */
SELECT TOP 10 Name,Age /* Two fields selected */
FROM Sample.Person /* Other clauses
could appear here */ ORDER BY Age
/* End of query */

When commenting out Embedded SQL code, always begin the comment before the &sql directive or within the parentheses.
The following example correctly comments out two the Embedded SQL code blocks:

ObjectScript

SET a="default name',b=""default age"

WRITE "(not) Invoking Embedded SQL",!

/*&sql (SELECT Name INTO :a FROM Sample.Person) */
WRITE "The name is ",a,!

WRITE "Invoking Embedded SQL (as a no-op)",!

&sql (/* SELECT Age INTO :b FROM Sample.Person */)
WRITE "The age is ",b

4.8.3 SQL Code Retained as Comments

Embedded SQL statements can be retained as comments in the .INT code version of routines. This is done system-wide
by setting the $SY STEM .SQL .Util.SetOption() method, as follows: SET
status=$SYSTEM.SQL.Util.SetOption(*"RetainSQL",1, .oldval). To determine the current setting, call
$SY STEM.SQL .CurrentSettings(), which displays the Retain SQL as Comments setting. The defaultis 1 (“Yes”).

Set this option to “Yes” to retain SQL statements as comments in the .INT code version of a routine. Setting this option
to “Yes” also lists all non-% variables used by the SQL statements in the comment text. These listed variables should also
be listed in the ObjectScript procedure’s PUBLIC variable list and re-initialized using the NEW command. For further
details, refer to Host Variables.

Using InterSystems SQL 27

Implicit Joins (Arrow Syntax)

InterSystems SQL provides a special —> operator as a shorthand for getting values from a related table without the complexity
of specifying explicit JOINSs in certain common cases. This arrow syntax can be used instead of explicit join syntax, or in
combination with explicit join syntax. Arrow syntax performs a left outer join.

Arrow syntax can be used for a reference of a property of a class, or a relationship property of a parent table. Other types
of relationships and foreign keys do not support arrow syntax. You cannot use arrow syntax (—>) in an ON clause.

You can use arrow syntax in a query involving sharded tables.

For further information, see JOIN.

5.1 Property Reference

You can use the —> operator as a shorthand for getting values from a “referenced table.”

For example, suppose you define two classes: Company:

Class Definition

Class Sample.Company Extends %Persistent [DdIAllowed]

{

/// The Company name
Property Name As %String;
}

and Employee:

Class Definition

Class Sample.Employee Extends %Persistent [DdIAllowed]

{
/// The Employee name
Property Name As %String;

/// The Company this Employee works for
Property Company As Company;
}

The Employee class contains a property that is a reference to a Company object. Within an object-based application, you
can follow this reference using dot syntax. For example, to find the name of a company that an employee works for:

ObjectScript

Set name = employee.Company.Name

Using InterSystems SQL 29

Implicit Joins (Arrow Syntax)

You can perform the same task using an SQL statement that uses an OUTER JOIN to join the Employee and Company
tables:
SQL

SELECT Sample_Employee.Name, Sample.Company.Name AS CompName
FROM Sample._Employee LEFT OUTER JOIN Sample.Company
ON Sample.Employee.Company = Sample.Company.ID

Using the —> operator, you can perform the same OUTER JOIN operation more succinctly:

SQL

SELECT Name, Company->Name AS CompName
FROM Sample.Employee

You can use the —> operator any time you have a reference column within a table; that is, a column whose value is the ID
of a referenced table (essentially a special case of foreign key). In this case, the Company field of Sample.Employee contains
IDs of records in the Sample.Company table. You can use the —> operator anywhere you can use a column expression
within a query. For example, in a WHERE clause:

SQL

SELECT Name,Company AS ComplD,Company->Name AS CompName
FROM Sample.Employee
WHERE Company->Name %STARTSWITH *G*®

This is equivalent to:

SQL

SELECT E.Name,E.Company AS ComplD,C.Name AS CompName
FROM Sample.Employee AS E, Sample.Company AS C
WHERE E.Company = C.ID AND C.Name %STARTSWITH *G*

Note that in this case, this equivalent query uses an INNER JOIN.

The following example uses arrow syntax to access the Spouse field in Sample.Person. As the example shows, the Spouse
field in Sample.Employee contains the ID of a record in Sample.Person. This example returns those records where the
employee has the same Home_State or Office_State as the Home_State of their spouse:

SQL

SELECT Name,Spouse,Home_State,Office_State,Spouse->Home_State AS SpouseState
FROM Sample.Employee
WHERE Home_State=Spouse->Home_State OR Office_State=Spouse->Home_State

You can use the —> operator in a GROUP BY clause:

SQL

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
GROUP BY Company->Name

You can use the —> operator in an ORDER BY clause:

SQL

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
ORDER BY Company->Name

or refer to a column alias for a —> operator column in an ORDER BY clause:

30 Using InterSystems SQL

Child Table Reference

SQL

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
ORDER BY CompName

Compound arrow syntax is supported, as shown in the following example. In this example, the Cinema.Review table
includes the Film field, which contains Row IDs for the Cinema.Film table. The Cinema.Film table includes the Category
field, which contains Row IDs for the Cinema.Category table. Thus Fi Im->Category->CategoryName accesses these
three tables to return the CategoryName of each film that has a ReviewScore:

SQL

SELECT ReviewScore,Film,Film->Title,Film->Category,Film->Category->CategoryName
FROM Cinema.Review
ORDER BY ReviewScore

5.2 Child Table Reference

You can use —> operator to reference a child table. For example, if Lineltems is a child table of the Orders table, you can
specify:
SQL

SELECT Lineltems->amount
FROM Orders

Note that there is no property called Lineltems in Orders; Lineltems is the name of a child table that contains the amount
field. This query produces multiple rows in the result set for each Order row. It is equivalent to:
SQL

SELECT L.amount
FROM Orders O LEFT JOIN Lineltems L ON O.id=L.custorder

Where custorder is the parent reference field of the Lineltems table.

5.3 Arrow Syntax Privileges

When using arrow syntax, you must have SELECT privileges on the referenced data in both tables. Either you must have
atable-level SELECT privilege or a column-level SELECT privilege on the referenced column. With column-level privileges,
you need SELECT privilege on the ID of the referenced table, as well as the referenced column.

The following example demonstrates the required column-level privileges:

SQL

SELECT Name,Company->Name AS CompanyName
FROM Sample.Employee

GROUP BY Company->Name

ORDER BY Company->Name

In the above example, you must have column-level SELECT privilege for Sample.Employee.Name, Sample.Company.Name,
and Sample.Company.ID:

Using InterSystems SQL 31

Implicit Joins (Arrow Syntax)

ObjectScript

SET tStatement = ##class(%SQL.Statement) .%New()

SET privchkl="%CHECKPRIV SELECT (Name,ID) ON Sample.Company"

SET privchk2="%CHECKPRIV SELECT (Name) ON Sample.Employee"
CompanyPrivTest

SET gStatus = tStatement.%Prepare(privchkl)

IF gStatus™=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}

SET rset = tStatement.%Execute()

IF rset.%SQLCODE=0 {WRITE !,"have Company privileges",! }

ELSE { WRITE !,"No privilege: SQLCODE=",rset._%SQLCODE,! }
EmployeePrivTest

SET gStatus = tStatement.%Prepare(privchk2)

IF gStatus™=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}

SET rset = tStatement.%Execute()
IF rset.%SQLCODE=0 {WRITE !,"have Employee privilege"”,! }
ELSE { WRITE !,"No privilege: SQLCODE=",rset.%SQLCODE }

32

Using InterSystems SQL

ldentifiers

An identifier is the name of an SQL entity, such as a table, a view, a column (field), a schema, a table alias, a column alias,
an index, a stored procedure, a trigger, or some other SQL entity. An identifier name must be unique within its context; for
example, two tables in the same schema, or two fields within the same table cannot have the same name. However, two
tables in different schemas, or two fields in different tables can have the same name. In most cases, the same identifier
name can be used for SQL entities of different types; for example, a schema, a table in that schema, and a field in that table
can all have the same name without conflict. However, a table and a view in the same schema cannot have the same name.

InterSystems IRIS® data platform SQL identifiers follow a set of naming conventions, which may be further restricted
according to the use of the identifier. Identifiers are not case-sensitive.

An identifier may be either a simple identifier or a delimited identifier. The InterSystems SQL default is to support both
simple identifiers and delimited identifiers.

6.1 Simple Identifiers

A simple identifier has the following syntax:

ifier-start { identifier-part }
letter | % | _
letter | nunber | _ | @] # 1 $

sinple-identifier ::=ident
identifier-start =
identifier-part ::=

6.1.1 Naming Conventions

The identifier-start is the first character of an SQL identifier. It must be one of the following:

« Anuppercase or lowercase letter. A letter is defined as any character that passes validation by the ObjectScript $ZNAME
function; by default these are the uppercase letters A through Z (ASCI1 65-90), the lowercase letters a through z (ASCII
97-122), and the letters with accent marks (ASCII 192-255, exclusive of ASCII 215 and 247). InterSystems IRIS can
use any valid Unicode (16-bit) letter character within an SQL identifier in any locale. Simple identifiers are not case-
sensitive (however, see below). By convention they are represented with initial capital letters.

The Japanese locale does not support accented Latin letter characters in InterSystems IRIS names. Japanese names
may contain (in addition to Japanese characters) the Latin letter characters A-Z and a-z (65-90 and 97-122) and any
Unicode character.

* Anunderscore ().

Using InterSystems SQL 33

Identifiers

* A percent sign (%). InterSystems IRIS names beginning with a % character (except those beginning with %Z or %z)
are reserved as system elements and should not be used as identifiers. For further details, refer to Rules and Guidelines
for Identifiers.

The identifier-part is any of the subsequent characters of an SQL identifier. These remaining characters may consist of
Zero or more:

e Letters (including Unicode characters).

e Numbers. A number is defined as the digits 0 through 9.

» Underscores ().

o Atsigns (@).

* Pound signs (#).

« Dollar signs ($).

Some symbol characters are also used as operators. In SQL, the # sign is used as the modulo operator. In SQL, the underscore
character can be used to concatenate two strings; this usage is provided for compatibility with ObjectScript, the preferred
SQL concatenation operator is ||. The interpretation of a symbol as an identifier character always take precedence over its

interpretation as an operator. Any ambiguity concerning the correct parsing of a symbol character as an operator can be
resolved by adding spaces before and after the operator.

A simple identifier cannot contain blank spaces or non-alphanumeric characters (other than those symbol characters specified
above). The InterSystems SQL import tool removes blank spaces from imported table names.

Note: SQL cursor names do not follow identifier naming conventions. For details on cursor naming conventions, refer
to the DECLARE statement.

InterSystems SQL includes reserved words that cannot be used as simple identifiers. For a list of these reserved words, see
Reserved Words; to test if a word is a reserved word use the $SY STEM .SQL .| sReservedWor d() method. However, a
delimited identifier can be the same as an SQL reserved word.

Any identifier that does not follow these naming conventions must be represented as a delimited identifier within an SQL
statement.

6.1.2 Case of Letters

InterSystems SQL identifiers by default are not case-sensitive. InterSystems SQL implements this by comparing identifiers
after converting them to all uppercase letters. This has no effect on the actual case of the names being used. (Note that other
implementations of SQL may handle case sensitivity of identifiers differently. For this reason, it is recommended that you
avoid case-based identifiers.)

Note that cursor names and passwords in InterSystems SQL are case-sensitive.

6.1.3 Testing Valid Identifiers

InterSystems IRIS provides the I sValidRegular I dentifier () method of the %SYSTEM.SQL class, which tests whether a
string is a valid identifier. It tests both for character usage and for reserved words. It also performs a maximum length test
of 200 characters (this is an arbitrary length used to avoid erroneous input; it is not an identifier validation). The following
ObijectScript example shows the use of this method:

34 Using InterSystems SQL

Simple Identifiers

ObjectScript

WRITE 1,$SYSTEM.SQL. IsValidRegularldentifier("'Fred™)
WRITE 1,$SYSTEM.SQL. IsValidRegularldentifier(""%Fred#123")
WRITE !I,$SYSTEM.SQL.IsValidRegularildentifier("%#$@_Fred)
WRITE 1,$SYSTEM.SQL. IsValidRegularldentifier("'_1Fred™)
WRITE 1,$SYSTEM.SQL. IsValidRegularldentifier("'%#$")

WRITE 1,$SYSTEM.SQL. IsValidRegularldentifier("'1Fred™)
WRITE I,$SYSTEM.SQL. IsValidRegularldentifier("'Fr ed")
WRITE !I,$SYSTEM.SQL.IsValidRegularldentifier("%sqlupper')

The first three method calls return 1, indicating a valid identifier. The fourth and fifth method calls also return 1; these are
valid identifiers, although they are not valid for use as table or field names. The last three method calls return 0, indicating
an invalid identifier. Two of these are invalid because they violate the character rules — in these cases by beginning with

a number or containing a blank. The final method call returns 0 because the specified string is a reserved word. Note that
these rule tests are a minimum requirement; they do not certify an identifier as valid for all SQL uses.

This method can also be called as a stored procedure from ODBC or JDBC: %SYSTEM.SQL _IsValidRegularldenti-
fier("nnnn").

6.1.4 Namespace Names

A namespace name (also referred to as a database name) follows identifier naming conventions, with additional restrictions
on punctuation characters and maximum length. For further details, refer to the CREATE DATABASE command.

A namespace hame can be delimited identifier and can be the same as an SQL reserved word. However, the same namespace
name punctuation restrictions apply to both simple identifiers and delimited identifiers.

6.1.5 Identifiers and Class Entity Names

SQL table names, view names, field names, index names, trigger names, and procedure names are used to generate corre-
sponding persistent class entities by stripping out non-alphanumeric characters. The generated names of class entities and
globals follow these translation rules.

Note: Namespace names and SQL schema names and corresponding package names do not follow these translation
rules.

» ldentifiers that differ only in their inclusion of punctuation characters are valid. Because class object names cannot
include punctuation characters, InterSystems IRIS generates corresponding unique object names by stripping out all
punctuation characters. If stripping out the punctuation characters of an identifier results in a non-unique class object
name, InterSystems IRIS creates a unique name by replacing the last alphanumeric character with an incremented
character suffix.

For tables, views, fields, triggers, and procedure classmethod names, this is an integer suffix, beginning with 0. For
example, myname and my_name generate myname and mynam0, adding my#name generates mynam1. If the number
of generated unique names is larger than 10 (mynam9), additional names are generated by substituting a capital letter
suffix, starting with A (mynamA). Because tables and views share the same name space, the same suffix counter is
incremented for either a table or a view.

For index names, this suffix is a capital letter, beginning with A. For example, myindex and my_index generate
myindex and myindeA.

If you have defined a name that ends in a suffix character (for example my_name0O or my__indexA, InterSystems IRIS
handles unique name generation by incrementing to the next unused suffix.

« ldentifiers that have a punctuation character as the first character and a number as the second character are not valid
for table names, view names, or procedure names. They are valid for field names and index names. If the first character

Using InterSystems SQL 35

Identifiers

of an SQL field name or index name is a punctuation character (% or _) and the second character is a number, Inter-
Systems IRIS appends a lowercase “n” as the first character of the corresponding property name.

» ldentifiers that consist entirely of punctuation characters, or begin with two underscore characters (__name), or contains
two pound signs together (nn##nn) are generally invalid as SQL entity names and should be avoided in all contexts.

You can configure translation of specific characters in SQL identifiers to other characters in corresponding object identifiers
by creating a list of from/to character pairs. When converting an SQL identifier to an Objects identifier at DDL runtime,
the characters in the “From” string are converted to the corresponding characters in the “To” string. These system-wide
character translations facilitate the use of identifiers across environments where the rules for permitted identifier characters
differ. Use the $SY STEM .SQL .Util.SetDDL | dentifier Translations() method to set from/to character pairings. To
determine the current setting, call $SY STEM .SQL .CurrentSettings().

6.1.5.1 Specifying SQL Names in a Class Definition

When you define a persistent class that projects SQL entities, the name of each SQL entity are the same as the name of its
corresponding persistent class definition element. To make an SQL table, field, or index name different, use the SqlTable-
Name, SqlFieldName, or SgiName (for an index) keyword to specify the SQL name within your class definition. For
example:

Class Member

Property LName As %String [SqlFieldName = "Family#Name'];

Class Member

Index Nameldx As %String [SglName = ""FullNamelndex'];

6.1.6 Identifier Length Considerations

The maximum length for SQL identifiers is 128 characters. When InterSystems IRIS maps an SQL identifier to the corre-
sponding object entity, it creates the corresponding property, method, query, or index name with a maximum of 96 characters.
If two SQL identifiers are identical for the first 96 characters, InterSystems IRIS replaces the 96th character of the corre-

sponding object name with an integer (beginning with 0) to create a unique name.

The maximum length for schema and table names is subject to additional considerations and restrictions. Refer to Table
Names and Schema Names.

6.2 Delimited Identifiers

A delimited identifier has the following syntax:

delimted-identifier z:= " delimted-identifier-part { delimted-identifier-part } *
delimted-identifier-part ::= non-double-quote-character | doubl e-quote-synbol
doubl e- quot e-synbol ::= """

A delimited identifier is a unique identifier enclosed by delimiter characters. InterSystems SQL supports double quote
characters (") as delimiter characters. Delimited identifiers are generally used to avoid the naming restrictions of simple
identifiers.

Note that InterSystems SQL uses single quote characters (') to delimit literals. For this reason, delimited identifiers must
be specified using double quote characters (**), and literals must be specified using single quote characters ('). For example,
7" is the numeric literal 7, but "7" is a delimited identifier. When an SQL statement is enclosed in double quotes (for
example, in Dynamic SQL), double quote characters within that string must be doubled.

36 Using InterSystems SQL

Delimited Identifiers

An SQL empty string should always be specified as a pair of single quote characters " *. When delimited identifier support
is enabled, a pair of double quote characters **** is parsed as an invalid delimited identifier and generates an SQLCODE -
1error.

6.2.1 Delimited Identifier Valid Names

A delimited identifier must be a unique name. Delimited identifiers are not case-sensitive; by convention, identifiers are
represented with initial capital letters.

A delimited identifier can be the same as an SQL reserved word. Delimited identifiers are commonly used to avoid concerns
about naming conflicts with SQL reserved words.

A delimited identifier may contain almost any printable character, including blank spaces. Most delimited identifier names
cannot contain the following characters: comma (,), period (.), caret ("), and the two-character arrow sequence (->); however
delimited identifier role names and user names may contain these characters. A delimited identifier classname may contain
periods (.). No delimited identifier may begin with an asterisk (*). The following term cannot be used as a delimited iden-
tifier: %vid. Violating these naming conventions results in an SQLCODE -1 error.

A delimited identifier used as a table, schema, column, or index name must be able to be converted to a valid class entity
name. Therefore, it must contain at least one alphanumeric character. A delimited identifier that begins with a number (or
punctuation followed by a number) generates a corresponding class entity name with the letter “n” prefix.

The following example shows a query that makes use of delimited identifiers for both column and table names:

SQL

SELECT "My Field" FROM "My Table'™ WHERE "My Field" LIKE “A%"

Note that the delimited identifiers are delimited with double quotes, and the string literal A% is delimited with single quotes.

When specifying a delimited identifier for a table name, you must separately delimit the table name and the schema name.
Thus, ""schema' .""tablename’ or schema. " tablename' are valid identifiers, but "*'schema.tablename" is not
a valid identifier.

6.2.2 Disabling Delimited Identifier Support

By default, support is enabled for delimited identifiers.
When delimited identifier support is disabled, characters within double quotes are treated as string literals.

You can set delimited identifier support system-wide using the SET OPTION command with the SUPPORT_DELIM-
ITED_IDENTIFIERS keyword.

You can set delimited identifier support system-wide using the $SY STEM.SQL .Util.SetOption() method
Delimitedldentifiers option. Delimited identifiers are supported by default.

To determine the current setting, call $SY STEM.SQL .CurrentSettings().
Note: Delimited identifiers are required by other features of InterSystems IRIS, such as InterSystems IRIS Business

Intelligence. As such, take care when disabling them to ensure that other parts of your configuration are not
affected.

Using InterSystems SQL 37

Identifiers

6.3 SQL Reserved Words

SQL includes a long list of reserved words that cannot be used as identifiers. For a list of these reserved words, see Reserved
Words.

38 Using InterSystems SQL

Using Embedded SQL

You can embed SQL statements within ObjectScript code used by InterSystems IRIS® data platform. These Embedded
SQL statements are converted to optimized, executable code at runtime.

There are two kinds of Embedded SQL.:

» Asimple Embedded SQL query can only return values from a single row. Simple Embedded SQL can also be used
for single-row insert, update, and delete, and for other SQL operations.

» A cursor-based Embedded SQL query can iterate through a query result set, returning values from multiple rows.
Cursor-based Embedded SQL can also be used for multiple row update and delete SQL operations.

Note: Embedded SQL cannot be input to the Terminal command line, or specified in an XECUTE statement. To execute
SQL from the command line, either use the $SY STEM .SQL .Execute() method or the SQL Shell interface.

7.1 Compiling Embedded SQL

Embedded SQL is not compiled when the routine that contains it is compiled. Instead, compilation of Embedded SQL
occurs upon the first execution of the SQL code (runtime). First execution defines an executable cached query. This parallels
the compilation of Dynamic SQL, where the SQL code is not compiled until the SQL Prepare operation is executed.

Embedded SQL code is not validated against SQL tables and other entities until the first execution of the routine. Therefore,
you can compile a routine or a method of a persistent class containing Embedded SQL that references tables or other SQL
entities that do not exist at routine compilation time. For this reason, most SQL errors are returned upon runtime execution,
not compilation.

At routine compilation time SQL syntax checking is performed on Embedded SQL. The ObjectScript compiler fails and
generates compile errors for invalid SQL syntax in Embedded SQL.

You can use the Management Portal SQL interface to test for the existence of SQL entities specified in Embedded SQL
without executing the SQL code. This is described in Validating Embedded SQL Code, which both validates the SQL
syntax and checks for the existence of SQL entities. You can choose to validate Embedded SQL code prior to runtime
execution by compiling a routine containing Embedded SQL code using the /compi leembedded=1 qualifier, as described
in Validating Embedded SQL Code.

A successfully executed Embedded SQL statement generates a cached query. Subsequent execution of that Embedded SQL
uses the cached query, rather than recompiling the Embedded SQL source. This provides the performance benefits of cached
queries to Embedded SQL. These cached queries are listed in the Management Portal for each table in the Catalog Details
Cached Queries listing.

Using InterSystems SQL 39

Using Embedded SQL

Runtime execution of a cursor-based Embedded SQL statement occurs when the cursor is first opened using an OPEN
command. At this point in execution an optimized cached query plan is generated, as shown in the SQL Statements listing
in the Management Portal. The SQL Statements listed Location is the name of the routine containing the Embedded SQL
code. Note that execution of Embedded SQL does not generate an entry in the Cached Query listings; these listings, with
class names such as %sqlcq.USER.clsl, are created by Dynamic SQL queries.

Note: The #sqglcompile mode preprocessor statement used in earlier versions of InterSystems IRIS has been deprecated.
It is parsed, but no longer performs any operation for most Embedded SQL commands. Most Embedded SQL
commands are compiled at runtime regardless of the #sqlcompile mode setting. However, setting #sqlcompile
mode=deferred is still meaningful for a small number of Embedded SQL commands because it forces runtime
compilation of all types of Embedded SQL commands.

7.1.1 Embedded SQL and the Macro Preprocessor

You can use Embedded SQL within methods and within triggers (provided that they are defined to use ObjectScript) or
within ObjectScript MAC routines. A MAC routine is processed by the Macro Preprocessor and converted to INT (inter-
mediate) code which is subsequently compiled to executable OBJ code. These operations are performed at compile time
on the routine containing the Embedded SQL, but not on the Embedded SQL code itself, which is not compiled until runtime.
For further details, see ObjectScript Macros and the Macro Preprocessor.

If an Embedded SQL statement itself contains Macro Preprocessor statements (# commands, ## functions, or $$$macro
references) these statements are compiled when the routine is compiled and are made available to the SQL code at runtime.
This may affect CREATE PROCEDURE, CREATE FUNCTION, CREATE METHOD, CREATE QUERY, or
CREATE TRIGGER statements that contain an ObjectScript code body.

7.1.1.1 Include Files in Embedded SQL

Embedded SQL statements require any macro Include files that they reference to be loaded on the system at runtime.

Because the compilation of Embedded SQL is deferred until it is first referenced, the context in which an Embedded SQL
class is compiled will be the runtime environment rather than the compile-time environment of the containing class or
routine. If the runtime current namespace is different than the containing routine’s compile-time namespace, the Include
files in the compile-time namespace may not be visible in the runtime namespace. In this situation the following occurs:

1. Ifan Include file is not visible in the runtime namespace, Embedded SQL compilation removes all Include files. Because
Include files are rarely needed for SQL compilation, the runtime Embedded SQL compile will often succeed without
them.

2. If after removing the Include files the compile fails, the InterSystems IRIS error reports the routine compile-time
namespace, the Embedded SQL runtime namespace, and the list of Include files not visible from the runtime namespace.

7.1.1.2 The #SQLCompile Macro Directives

The Macro Preprocessor provides three preprocessor directives for use with Embedded SQL:

» #sqlcompile select specifies the format for data display when returned from a SELECT statement, or the required
format for data input when specified to an INSERT or UPDATE statement, or a SELECT input host variable. It
supports the following six options: Logical (the default), Display, ODBC, Runtime, Text (synonym for Display),
and FDBMS (see below). If #sqlcompile select=Runtime, you can use the
$SY STEM.SQL .Util.SetOption(" SelectM ode" ,n) method to change how the data is displayed. The n value can be
O=Logical, 1=ODBC, or 2=Display.

Regardless of the #sqlcompile select option specified, an INSERT or UPDATE automatically converts the
specified data value to its corresponding Logical format for storage.

40 Using InterSystems SQL

Embedded SQL Syntax

Regardless of the #sglcompile select option specified, a SELECT automatically converts an input host variable
value to its corresponding Logical format for predicate matching.

Using#sqlcompile select for query display is shown in the following examples. These examples display the
DOB (date of birth) value, then change the SelectMode to ODBC format, then display the DOB again. In the first
example, changing the SelectMode has no effect on the display; in the second example, because #sqlcompile
select=Runtime, changing the SelectMode changes the display:

ObjectScript

#sqlcompile select=Display
&sql (SELECT DOB INTO :a FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ',%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE "1st date of birth is ",a,!
DO $SYSTEM.SQL.Util.SetOption(*'SelectMode™, 1)
WRITE "changed select mode to: ",$SYSTEM.SQL.Util._GetOption(*'SelectMode™),!
&sql (SELECT DOB INTO :b FROM Sample.Person)
WRITE ""2nd date of birth is ",b

ObjectScript

#sqlcompile select=Runtime
&sql (SELECT DOB INTO :a FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE "1st date of birth is ",a,!
DO $SYSTEM.SQL.Util.SetOption(*"SelectMode™,1)
WRITE "changed select mode to: ",$SYSTEM.SQL.Util.GetOption("'SelectMode™),!
&sql (SELECT DOB INTO :b FROM Sample.Person)
WRITE "2nd date of birth is ",b

For further details on SelectMode options, refer to Data Display Options.

— #sqlcompile select=FDBMS is provided to enable Embedded SQL to format data in the same way as FDBMS.
If a query has a constant value in the WHERE clause, FDBMS mode assumes it to be a Display value and converts
it using DisplayToLogical conversion. If a query has a variable in the WHERE clause, FDBMS mode converts it
using FDBMSToLogical conversion. The FDBMSToLogical conversion method should be designed to handle
the three FDBMS variable formats: Internal, Internal_$c(1)_External, and $c(1)_External. If a query selects into
a variable, it invokes the LogicalToFDBMS conversion method. This method returns Internal_$c(1) External.

o #sqlcompile path (or #import) specifies the schema search path used to resolves unqualified table, view, and stored
procedure names in data management commands such as SELECT, CALL, INSERT, UPDATE, DELETE, and
TRUNCATE TABLE. If no schema search path is specified, or if the table is not found in the specified schemas,
InterSystems IRIS uses the default schema. #sqlcompi le path and #import are ignored by data definition state-
mentssuchas ALTER TABLE, DROPVIEW, CREATE INDEX, or CREATE TRIGGER. Data definition statements
use the default schema to resolve unqualified names.

o #sqlcompile audit is a boolean switch specifying whether or not the execution of Embedded SQL statements should
be recorded in the system events audit log. For further details, refer to Auditing Embedded SQL.

For further details on these preprocessor directives, refer to Preprocessor Directives Reference.

7.2 Embedded SQL Syntax

The syntax of the Embedded SQL directive is described below.

Using InterSystems SQL 41

Using Embedded SQL

7.2.1The &sql Directive

Embedded SQL statements are set off from the rest of the code by the &sql() directive, as shown in the following example:

ObjectScript

NEW SQLCODE,a
WRITE "Invoking Embedded SQL",!
&sql (SELECT Name INTO :a FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE "The name is ",a

Results are returned using the INTO clause specifying one or more host variables. In this case, the host variable is named
za. For further details, see Host Variables, which includes information on interactions between SQLCODE and host variables.

The &sql directive is not case-sensitive; you can use &sql, &SQL, &Sql, and so on. The &sql directive must be followed
by an open parenthesis, with no intervening spaces, line breaks, or comments. The &sql directive can be used on the same
line as a label, as shown in the following example:

ObjectScript

Mylabel &sqgl(
SELECT Name INTO :a
FROM Sample.Person

The body of an &sql directive should contain a valid Embedded SQL statement, enclosed in parentheses. You can format
your SQL statements in any way you like: white space and new lines are ignored by SQL. Studio recognizes the &sql
directive and uses an SQL-aware colorizer to syntax color the SQL code statements.

When the Macro Preprocessor encounters an &sql directive, it hands the enclosed SQL statement to the SQL Query Pro-
cessor. The Query Processor returns the code needed (in ObjectScript INT format) to execute the query. The Macro Prepro-
cessor then replaces the &sql directive with this code (or a call to a label containing the code). From within Studio, you
can view the generated code, if you like, by looking at the INT code generated for a class or routine (using the View Other
Code option from the view menu).

If an &sql directive contains an invalid Embedded SQL statement, the Macro Preprocessor generates a compilation error.
An invalid SQL statement may have syntax errors, or refer to tables or columns that do not exist at compile time. Refer to
Validating Embedded SQL Code.

An &sql directive can contain SQL-style comments anywhere within its parentheses, can contain no SQL code, or contain
only comment text. If an &sql directive contains no SQL code or only commented text, the directive is parsed as a no-op
and the SQLCODE variable is not defined.

ObjectScript

NEW SQLCODE

WRITE !,"Entering Embedded SQL"
&sql

WRITE !,"Leaving Embedded SQL"

ObjectScript

NEW SQLCODE

WRITE !,"Entering Embedded SQL"

&sql (/* SELECT Name INTO :a FROM Sample.Person */)
WRITE !,"Leaving Embedded SQL"

42 Using InterSystems SQL

Embedded SQL Syntax

7.2.2 &sql Alternative Syntax
Because complex Embedded SQL programs may contain multiple &sqgl directives — including nested &sql directives —
the following alternative syntax formats are provided:

o ##sql (.. .): this directive is functionally equivalent to &sql. It provides an alternative syntax for clarity of code.
However, it cannot include marker syntax.

« &sql<marker>(...)<reversemarker>: this directive allows you to specify multiple &sql directives, identifying
each with a user-selected marker character or string. This marker syntax is described in the following section.

7.2.3 &sql Marker Syntax

You can identify a specific &sql directive using user-defined marker syntax. This syntax consists of a character or string
specified between “&sql” and the open parenthesis character. The reverse of this marker must appear immediately after
the closing parenthesis at the end of the Embedded SQL. The syntax is as follows:

&sgl<marker>(SQL statement)<reverse-marker>

Note that no white space (space, tab, or line return) is permitted between &sql, marker, and the open parenthesis, and no
white space is permitted between the closing parenthesis and reverse-marker.

A marker can be a single character or a series of characters. A marker cannot contain the following punctuation characters:
C+-/7\N1*)

A marker cannot contain a whitespace character (space, tab, or line return). It may contain all other printable characters
and combinations of characters, including Unicode characters. The marker and reverse-marker are case-sensitive.

The corresponding reverse-marker must contain the same characters as marker in the reverse order. For example: &sqlABC(
---)CBA. If marker contains a [or { character, reverse-marker must contain the corresponding] or } character. The
following are examples of valid &sql marker and reverse-marker pairs:

&sql@@(--..)ee &sql[(---)] &sqgltest(...)tset &sql[Aa{(...)}aA]

When selecting a marker character or string, note the following important SQL restriction: the SQL code cannot contain
the character sequence “)<reversemarker>" anywhere in the code, including in literal strings and comments. For
example, if the marker is “ABC”, the character string “)CBA” cannot appear anywhere in the Embedded SQL code. If this
occurs, the combination of a valid marker and valid SQL code will fail compilation. Thus it is important to use care in
selecting a marker character or string to prevent this collision.

7.2.4 Embedded SQL and Line Offsets

The presence of Embedded SQL affects ObjectScript line offsets, as follows:

» Embedded SQL adds (at least) 2 to the total number of INT code lines at that point in the routine. Therefore, a single
line of Embedded SQL counts as 3 lines, two lines of Embedded SQL count as 4 lines, and so forth. Embedded SQL
that invokes other code can add many more lines to the INT code.

A dummy Embedded SQL statement, containing only a comment counts as 2 INT code lines, as in the following
example: &sqgl (/* for future use */).

» All lines within Embedded SQL count as line offsets, including comments and blank lines.

You can display INT code lines using the "ROUTINE global.

Using InterSystems SQL 43

Using Embedded SQL

7.3 Embedded SQL Code

Considerations for writing SQL code in Embedded SQL include the following:
e Simple (non-cursor) Embedded SQL statements

* Schema name resolution

» Literal data values

» Data formatting for %L.ist and date/time data values

* Privilege Checking

Host variables, which are used to export data values from Embedded SQL are described later on this page.

7.3.1 Simple SQL Statements

You can use a simple SQL statement (a single Embedded SQL statement) for a variety of operations including:
» INSERT, UPDATE, INSERT OR UPDATE, and DELETE statements.

» DDL statements.

* GRANT and REVOKE statements.

e SELECT statements that return only a single row (or if you are only interested in the first returned row).

Simple SQL statements are also referred to as non-cursor—based SQL statements. Also see Cursor-based Embedded SQL.

For example, the following statement finds the name of the (one and only) Patient with 1D of 43:

ObjectScript

&sql (SELECT Name INTO :name
FROM Patient
WHERE %ID = 43)

If you use a simple statement for a query that can return multiple rows, then only the first row is returned:

ObjectScript

&sql (SELECT Name INTO :name
FROM Patient
WHERE Age = 43)

Depending on the query, there is no guarantee which row will actually be returned first.

The INTO clause output host variables are set to the null string when Embedded SQL is compiled. For this reason, an
simple Embedded SQL statement should test for SQLCODE=100 (query returns no data), or SQLCODE=0 (successful
execution) before accessing output host variables.

7.3.2 Schema Name Resolution

A table name, view name, or stored procedure name is either qualified (specifies a schema name) or unqualified (does not
specify a schema name). If the name does not specify a schema name, InterSystems IRIS resolves the schema name as
follows:

» Data Definition: InterSystems IRIS uses the system-wide default schema to resolve an unqualified name. If the default
schema does not exist, InterSystems IRIS creates the schema and the corresponding class package. All data definition

44 Using InterSystems SQL

Embedded SQL Code

statements use the system-wide default schema; data definition statements ignore the #import and #sglcompile path
macro preprocessor directives.

» Data Management: InterSystems IRIS uses the schema search path specified by the #sqlcompile path and/or the #import
macro preprocessor directive(s) in effect for the class or routine that contains the Embedded SQL statement. The
#import and #sglcompile path directives are mutually independent lists of possible schema names with different
functionality. Either or both may be used to supply a schema name for an unqualified table, view, or stored procedure
name. If no schema search path is specified, InterSystems IRIS uses the system-wide default schema name.

See Packages for more details on schemas.

7.3.3 Literal Values

Embedded SQL queries may contain literal values (strings, numbers, or dates). Strings should be enclosed within single ()
quotes. (In InterSystems SQL., double quotes specify a delimited identifier):

ObjectScript

&sql (SELECT “Employee (" || Name |] ")" INTO :name
FROM Sample.Employee)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE name

Numeric values can be used directly. Literal numbers and timestamp values are “lightly normalized” before InterSystems
IRIS compares these literal values to field values, as shown in the following example where +0050.000 is normalized to
50:

ObjectScript

&sql (SELECT Name,Age INTO :name,:age
FROM Sample.Person
WHERE Age = +0050.000)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ',%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE name,' age=",age

Arithmetic, function, and special variable expressions can be specified:

ObjectScript

&sql (DECLARE C1 CURSOR FOR
SELECT Name,Age-65,$HOROLOG INTO :name,:retire, :today
FROM Sample.Person
WHERE Age > 60
ORDER BY Age,Name)
&sql (OPEN C1)
QUIT: (SQLCODE"=0)
&sql (FETCH C1)
WHILE (SQLCODE = 0) {
WRITE $ZDATE(today),™ ',name," has ",retire," eligibility years",!
&sqgl (FETCH C1) }
&sql (CLOSE C1)

You can also input a literal value using an input host variable. Input host numeric values are also “lightly normalized.” For
further details, see Host Variables.

In Embedded SQL, a few character sequences that begin with ## are not permitted within a string literal and must be
specified using ##lit. These character sequences are: ##;, ##beginlit, ##expression(, ##function(, ##quote(,
##stripg(, and ##unique(. For example, the following example fails:

Using InterSystems SQL 45

Using Embedded SQL

ObjectScript

WRITE "Embedded SQL test",!
&sql (SELECT "the sequence ##unique(is restricted™ INTO :x)
WRITE X

The following workaround succeeds:

ObjectScript

WRITE "Embedded SQL test",!
&sql (SELECT "the sequence ##lit(##unique() is restricted” INTO :x)
WRITE X

7.3.4 Data Format

Within Embedded SQL, data values are in “Logical mode”; that is, values are in the native format used by the SQL Query
Processor. For string, integers, and other data types that do not define a L ogical ToOdbc or L ogical ToDisplay conversion,
this has no effect. Data format affects %List data, and the %Date and %Time data types.

The %L.ist data type displays in Logical mode as element values prefaced with non-printing list encoding characters. The
WRITE command displays these values as concatenated elements. For example, the FavoriteColors field of Sample.Person
stores data in %L.ist data type, such as the following: $LISTBUILD("Red", "Black™). In Embedded SQL this displays
in Logical mode as RedBlack, with a length of 12 characters. In Display mode it displays as Red Black; in ODBC mode
it displays as Red ,Black. This is shown in the following example:

ObjectScript

&sql (DECLARE C1 CURSOR FOR
SELECT TOP 10 FavoriteColors INTO :colors
FROM Sample.Person WHERE FavoriteColors 1S NOT NULL)
&sql (OPEN C1)
QUIT: (SQLCODE"=0)
&sql (FETCH C1)
WHILE (SQLCODE = 0) {
WRITE $LENGTH(colors),": ",colors,!
&sql (FETCH C1) }
&sql (CLOSE C1)

The %Date and %Time data types provided by InterSystems IRIS use the InterSystems IRIS internal date representation
(3HOROLOG format) as their Logical format. A %Date data type returns INTEGER data type values in Logical mode;
VARCHAR data type values in Display mode, and DATE data type values in ODBC mode. The %TimeStamp data type
uses ODBC date-time format (YYYY-MM-DD HH:MM:SS) for its Logical, Display, and ODBC format.

For example, consider the following class definition:

Class Definition

Class MyApp.Patient Extends %Persistent

/// Patient name
Property Name As %String(MAXLEN = 50);

/// Date of birth
Property DOB As %Date;

/// Date and time of last visit
Property LastVisit As %TimeStamp;
3

A simple Embedded SQL query against this table will return values in logical mode. For example, consider the following
query:

46 Using InterSystems SQL

Embedded SQL Code

ObjectScript

&sql (SELECT Name, DOB, LastVisit
INTO :name, :dob, :visit
FROM Patient
WHERE %ID = :id)

This query returns logical value for the three properties into the host variables name, dob, and visit:

Host Variable Value

name "Weiss,Blanche"

dob 44051

visit "2001-03-15 11:11:00"

Note that dob is in $HOROLOG format. You can convert this to a display format using the $ZDATETIME function:

ObjectScript

SET dob = 44051
WRITE $ZDT(dob,3), !

The same consideration as true within a WHERE clause. For example, to find a Patient with a given birthday, you must
use a logical value in the WHERE clause:

ObjectScript

&sql (SELECT Name INTO :name
FROM Patient
WHERE DOB = 43023)

or, alternatively, using a host variable:

ObjectScript

SET dob = $ZDH(''01/02/1999",1)

&sql (SELECT Name INTO :name
FROM Patient
WHERE DOB = :dob)

In this case, we use the $ZDATEH function to convert a display format date into its logical, SHOROLOG equivalent.

7.3.5 Privilege Checking

Embedded SQL does not perform SQL privilege checking. You can access all tables, views, and columns and perform any
operation, regardless of the privileges assignments. It is assumed that applications using Embedded SQL will check for
privileges before using Embedded SQL statements.

You can use the InterSystems SQL %CHECKPRIV statement in Embedded SQL to determine the current privileges.

For further details, refer to SQL Users, Roles, and Privileges.

Using InterSystems SQL 47

Using Embedded SQL

7.4 Host Variables

A host variable is a local variable that passes a literal value into or out of Embedded SQL. Most commonly, host variables
are used to either pass the value of a local variable as an input value into Embedded SQL, or to pass an SQL query result
value as an output host variable from an Embedded SQL query.

A host variable cannot be used to specify an SQL identifier, such as a schema name, table name, field name, or cursor
name. A host variable cannot be used to specify an SQL keyword.

» Output host variables are only used in Embedded SQL. They are specified in an INTO clause, an SQL query clause
that is only supported in Embedded SQL. Compiling Embedded SQL initializes all INTO clause variables to the null
string ().

* Input host variables can be used in either Embedded SQL or Dynamic SQL. In Dynamic SQL, you can also input a
literal to an SQL statement using the “?” input parameter. This “?” syntax cannot be used in Embedded SQL.

Within Embedded SQL, input host variables can be used in any place that a literal value can be used. Output host variables
are specified using an INTO clause of a SELECT or FETCH statement.

Note: When an SQL NULL is output to ObjectScript, it is represented by an ObjectScript empty string (
length zero. See NULL and Undefined Host Variables.

), a string of

To use a variable or a property reference as a host variable, precede it with a colon (). A host variable in embedded Inter-
Systems SQL can be one of the following:

« One or more ObjectScript local variables, such as :myvar, specified as a comma-separated list. A local variable can
be fully formed and can include subscripts. Like all local variables, it is case-sensitive and can contain Unicode letter
characters.

» Asingle ObjectScript local variable array, such as :myvars(). A local variable array can receive only field values from
a single table (not joined tables or a view). For details, refer to “Host Variable Subscripted by Column Number”,
below.

» An object reference, such as :oref.Prop, where Prop is a property name, with or without a leading % character. This
can be a simple property or a multidimensional array property, such as :oref.Prop(1). It can be an instance variable,
such as :i%Prop or :i%%Data. The property name may be delimited; for example :Person."*Home City"". Delimited
property names can be used even when support for delimited identifiers is deactivated. Multidimensional properties
may include :i%Prop() and :m%Prop() host variable references. An object reference host variable can include any
number of dot syntax levels; for example, :Person.Address.City.

When an oref.Prop is used as a host variable inside a procedure block method, the system automatically adds the oref
variable (not the entire oref.Prop reference) to the PublicList and NEWs it.

Double quotes in a host variable specify a literal string, not a delimited identifier. For example,
:request._GetValueAt("'PI1D:SetIDPID™) or
request.GetValueAt("'PID:PatientName(1) . Fami lyName™).

Host variables should be listed in the ObjectScript procedure’s PublicList variables list and reinitialized using the NEW
command. You can configure InterSystems IRIS to also list all host variables used in Embedded SQL in comment text;
this is described in Comment.

Host variable values have the following behavior:

» Input host variables are never modified by the SQL statement code. They retain their original values even after
Embedded SQL has run. However, input host variable values are “lightly normalized” before being supplied to the
SQL statement code: Valid numeric values are stripped of leading and trailing zeros, a single leading plus sign, and a

48 Using InterSystems SQL

Host Variables

trailing decimal point. Timestamp values are stripped of trailing spaces, trailing zeros in fractional seconds, and (if
there are no fractional seconds) a trailing decimal point.

* Output host variables specified in the INTO clause are defined when the query is compiled. They are set to the null
string so that referencing them does not result in an <UNDEFINED> error. Host variable values only represent actual
values when SQLCODE=0. In DECLARE ... SELECT ... INTO statements, do not modify the output host variables
in the INTO clause between two FETCH calls, since that might cause unpredictable query results.

You must check the SQLCODE value before processing output host variables. Output host variable values should only be
used when SQLCODE=0.

When using a comma-separated list of host variables in the INTO clause, you must specify the same number of host variables
as the number of select-items (fields, aggregate functions, scalar functions, arithmetic expressions, literals). Too many or
too few host variables results in an SQLCODE -76 cardinality error upon compilation.

This is often a concern when using SELECT * in Embedded SQL. For example, SELECT * FROM Sample.Personis
only valid with a comma-separated list of 15 host variables (the exact number of non-hidden columns, which, depending
on the table definition, may or may not include the system-generated RowlID (1D) column). Note that this number of columns
may not be a simple correspondence to the number of properties listed in the Inter Systems Class Reference.

Because the number of columns can change, it is usually not a good idea to specify SELECT * with an INTO clause list
of individual host variables. When using SELECT *, it is usually preferable to use a host variable subscripted array, such
as the following:

ObjectScript

NEW SQLCODE
&sql (SELECT %ID,* INTO :tflds() FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE," ',%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
FOR 1=0:1:25 {
IF $DATA(tFIds(i)) {
WRITE "field ",i,"” = ",tflds(i),! }
}

This example uses %ID to return the RowlID as field number 1, whether or not the RowlID is hidden. Note that in this
example the field number subscripts may not be continuous sequence; some fields may be hidden and are skipped over.
Fields that contain NULL are listed with an empty string value. Using a host variable array is described in “Host Variable
Subscripted by Column Number”, below.

It is good programming practice to check the SQLCODE value immediately after exiting Embedded SQL. Output host
variable values should only be used when SQLCODE=0.

7.4.1 Host Variable Examples

In the following ObjectScript example, an Embedded SQL statement uses output host variables to return a name and home
state address from an SQL query to ObjectScript:

ObjectScript

&sql (SELECT Name,Home_State
INTO :CName, :CAddr
FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE !,"Name is: ",CName
WRITE 1,"State is: ",CAddr

The Embedded SQL uses an INTO clause that specifies the host variables - CName and - CAddr to return the selected
customer’s name in the local variable CName, and home state in the local variable CAddr.

The following example performs the same operation, using subscripted local variables:

Using InterSystems SQL 49

Using Embedded SQL

ObjectScript

&sql (SELECT Name,Home_State
INTO :CInfo(l), :CInfo(2)
FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results” QUIT}
WRITE 1,"Name is: ",CInfo(l)
WRITE 1,"State is: ",CInfo(2)

These host variables are simple local variables with user-supplied subscripts (:CInfo(1)). However, if you omit the
subscript (:CInfo()), InterSystems IRIS populates the host variable subscripted array using SqlColumnNumber, as
described below.

In the following ObjectScript example, an Embedded SQL statement uses both input host variables (in the WHERE clause)
and output host variables (in the INTO clause):

ObjectScript

SET minval = 10000
SET maxval = 50000
&sql (SELECT Name,Salary INTO :outname, :outsalary
FROM MyApp.Employee
WHERE Salary > :minval AND Salary < :maxval)
IF SQLCODE<O {WRITE "'SQLCODE error ",SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE !,"Name is: '",outname
WRITE !,"Salary is: ",outsalary

The following example performs “light normalization” on an input host variable. Note that InterSystems IRIS treats the
input variable value as a string and does not normalize it, but Embedded SQL normalizes this number to 65 to perform the
equality comparison in the WHERE clause:

ObjectScript

SET x="+065.000""
&sql (SELECT Name,Age
INTO :a,:b
FROM Sample.Person
WHERE Age=:Xx)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ',%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE I,"Input value is: ",x
WRITE I,"Name value is: ",a
WRITE 1,"Age value is: ",b

In the following ObjectScript example, an Embedded SQL statement uses object properties as host variables:

ObjectScript

&sql (SELECT Name, Title INTO :obj.Name, :obj.Title
FROM MyApp-Employee
WHERE %ID = :id)

In this case, obj must be a valid reference to an object that has mutable (that is, they can be modified) properties Name and
Title. Note that if a query includes an INTO statement and no data is returned (that is, that SQLCODE is 100), then executing
the query may result in the value of the host variable being modified.

7.4.2 Host Variable Subscripted by Column Number

If the FROM clause contains a single table, you can specify a subscripted host variable for fields selected from that table;
for example, the local array -myvar (). The local array is populated by InterSystems IRIS, using each field’s SqlColumn-
Number as the numeric subscript. Note that SqlColumnNumber is the column number in the table definition, not the
select-list sequence. (You cannot use a subscripted host variable for fields of a view.)

50 Using InterSystems SQL

Host Variables

A host variable array must be a local array that has its lowest level subscript omitted. Therefore, -:myvar(), :myvar(5,),
and :myvar(5,2,) are all valid host variable subscripted arrays.

* Anhostvariable subscripted array may be used for input in an INSERT, UPDATE, or INSERT OR UPDATE statement
VALUES clause. When used in an INSERT or UPDATE statement, a host variable array allows you to define which
columns are being updated at runtime, rather than at compile time.

e Ahost variable subscripted array may be used for output ina SELECT or DECL ARE statement INTO clause. Sub-
scripted array usage in SELECT is shown in the examples that follow.

In the following example, the SELECT populates the Cdata array with the values of the specified fields. The elements of
Cdata() correspond to the table column definition, not the SELECT elements. Therefore, the Name field is column 6, the
Age field is column 2, and the date of birth (DOB) field is column 3 in Sample.Person:

ObjectScript

&sql (SELECT Name,Age,DOB
INTO :Cdata()
FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ',%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE !I,"Name is: ",Cdata(6)
WRITE 1,"Age is: '",Cdata(2)
WRITE !1,"DOB is: ",$ZDATE(Cdata(3),1)

The following example uses a subscripted array host variable to return all of the field values of a row:

ObjectScript

&sql (SELECT * INTO :Allfields()
FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
SET x=1
WHILE x *="" {
WRITE 1,x," field is ",Allfields(x)
SET x=$0RDER(Allfields(x))
3

Note that this WHILE loop is incremented using $ORDER rather than a simple x=x+1. This is because in many tables
(such as Sample.Person) there may be hidden columns. These cause the column number sequence to be discontinuous.

If the SELECT list contains items that are not fields from that table, such as expressions or arrow-syntax fields, the INTO
clause must also contain comma-separated non-array host variables. The following example combines a subscripted array
host variable to return values that correspond to defined table columns, and host variables to return values that do not cor-
respond to defined table columns:

ObjectScript

&sql (SELECT Name,Home_City,{fn NOW},Age, ($HOROLOG-DOB)/365.25,Home_State
INTO :Allfields(),:timestmp(“now™), :exactage
FROM Sample.Person)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
SET x=$ORDER(Allfields(""))
WHILE x "=""" {
WRITE 1,x," field is ",Allfields(x)
SET x=$ORDER(Allfields(x)) }
WRITE 1,"date & time now is ", timestmp('now')
WRITE !,"exact age is ',exactage

Note that the non-array host variables must match the non-column SELECT items in number and sequence.
The use of a host variable as a subscripted array is subject to the following restrictions:

» Asubscripted list can only be used when selecting fields from a single table in the FROM clause. This is because when
selecting fields from multiple tables, the SqlColumnNumber values may conflict.

Using InterSystems SQL 51

Using Embedded SQL

» Asubscripted list can only be used when selecting table fields. It cannot be used for expressions or aggregate fields.
This is because these select-list items do not have an SqlColumnNumber value.

For further details on using a host variable array, see INTO Clause.

7.4.3 NULL and Undefined Host Variables

If you specify an input host variable that is not defined, Embedded SQL treats its value as NULL.

ObjectScript

NEW x
&sql (SELECT Home_State, :x
INTO :a,:b
FROM Sample.Person)
IF SQLCODE<O {WRITE "'SQLCODE error " ,SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results” QUIT}
WRITE !,"The length of Home_State is: ",$LENGTH(a)
WRITE !,"The length of x is: ",$LENGTH(b)

The SQL NULL is equivalent to the ObjectScript " string (a zero-length string).

When Embedded SQL is compiled, all INTO clause output host variables are defined as the ObjectScript " string (a zero-
length string). If you output a NULL to a host variable, Embedded SQL treats its value as the ObjectScript """ string (a zero-
length string). For example, some records in Sample.Person have a NULL Spouse field. After executing this query:

ObjectScript

&sql (SELECT Name,Spouse
INTO :-name, :spouse
FROM Sample.Person
WHERE Spouse 1S NULL)
IF SQLCODE<O {WRITE "'SQLCODE error " ,SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results” QUIT}
WRITE !,"Name: *,name," of length " ,$LENGTH(name)," defined: " ,$DATA(name)
WRITE 1,"Spouse: '"',spouse,' of length " ,$LENGTH(spouse)," defined: *,$DATA(spouse)

The host variable, spouse, will be set to " (a zero-length string) to indicate a NULL value. Therefore, the ObjectScript
$DATA function cannot be used to determine if an SQL field is NULL. $DATA returns true (variable is defined) when
passed an output host variable for an SQL field with a NULL value.

In the rare case that a table field contains an SQL zero-length string ("), such as if an application explicitly set the field to
an SQL " string, the host variable will contain the special marker value, $CHAR(0) (a string of length 1, containing only
a single, ASCII 0 character), which is the ObjectScript representation for the SQL zero-length string. Use of SQL zero-
length strings is strongly discouraged.

The following example compares host variables output from an SQL NULL and an SQL zero-length string:

ObjectScript

&sql (SELECT **,Spouse
INTO :zls, :spouse
FROM Sample.Person
WHERE Spouse 1S NULL)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE,"™ ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}
WRITE "In ObjectScript"”
WRITE !1,"ZLS is of length ",$LENGTH(zls)," defined: " ,$DATA(zls)
/* Length=1, Defined=1 */
WRITE !I,"NULL is of length " ,$LENGTH(spouse)," defined: " ,$DATA(spouse)
/* Length=0, Defined=1 */

Note that this host variable NULL behavior is only true within server-based queries (Embedded SQL and Dynamic SQL).
Within ODBC and JDBC, NULL values are explicitly specified using the ODBC or JDBC interface.

52 Using InterSystems SQL

Host Variables

7.4.4 Validity of Host Variables

* Input host variables are never modified by Embedded SQL.
» Output host variables are only reliably valid after Embedded SQL when SQLCODE = 0.

For example, the following use of OutVal is not reliably valid:

ObjectScript

Inval idExample
SET Inval = "1234"
SET OutVal = "None"
&sql (SELECT Name
INTO :Outval
FROM Sample.Person
WHERE %I1D=:1InVal)
IF OutVal="None" { ; Improper Use
WRITE !I,"No data returned"”
WRITE 1,"SQLCODE="",SQLCODE }
ELSE {
WRITE I,"Name is: ",OutVal }

The value of OutVal set before invoking Embedded SQL should not be referenced by the | F command after returning from
Embedded SQL.

Instead, you should code this example as follows, using the SQLCODE variable:

ObjectScript

ValidExample
SET InvVal = "1234"
&sql (SELECT Name
INTO :Outval
FROM Sample.Person
WHERE %ID=:1InVal)
IF SQLCODE®"=0 { SET OutVal="None"
IF OutVal="None" {
WRITE !,"No data returned"”
WRITE 1,"SQLCODE="",SQLCODE } }
ELSE {
WRITE I,"Name is: ",OutVal }

The Embedded SQL sets the SQLCODE variable to 0 to indicate the successful retrieval of an output row. An SQLCODE
value of 100 indicates that no row was found that matches the SELECT criteria. An SQLCODE negative number value
indicates a SQL error condition.

7.4.5 Host Variables and Procedure Blocks

If your Embedded SQL is within a procedure block, all input and output host variables must be public. This can be done
by declaring them in the PUBLIC section at the beginning of the procedure block, or by naming them with an initial %
character (which automatically makes them public). Note, however, that a user-defined % host variable is automatically
public, but is not automatically NEWed. It is the user’s responsibility to perform a NEW on such variables, as desired.
Some SQL % variables, such as %6ROWCOUNT, %ROWID, and %msg, are both automatically public and automatically
NEWed, as described in Embedded SQL Variables. You must declare SQLCODE as public. For further details on the
SQLCODE variable, see Embedded SQL Variables.

In the following procedure block example, the host variables zip, city, and state, as well as the SQLCODE variable are
declared as PUBLIC. The SQL system variables %ROWCOUNT, %ROWID, and %msg are already public, because their
names begin with a % character. The procedure code then performs a NEW on SQLCODE, the other SQL system variables,
and the state local variable:

Using InterSystems SQL 53

Using Embedded SQL

ObjectScript

UpdateTest(zip,city)
[SQLCODE, zip,city,state] PUBLIC {
NEW SQLCODE , %ROWCOUNT ,%ROWID,%msg, state
SET state="MA"
&sql (UPDATE Sample.Person
SET Home_City = :city, Home_State = :state
WHERE Home_Zip = :zip)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
QUIT %ROWCOUNT

7.5 SQL Cursors

A cursor is a pointer to data that allows an Embedded SQL program to perform an operation on the record pointed to. By
using a cursor, Embedded SQL can iterate through a result set. Embedded SQL can use a cursor to execute a query that
returns data from multiple records. Embedded SQL can also use a cursor to update or delete multiple records.

You must first DECLARE an SQL cursor, giving it a name. In the DECL ARE statement you supply a SELECT statement
that identifies which records the cursor will point to. You then supply this cursor name to the OPEN cursor statement. You
then repeatedly issue the FETCH cursor statement to iterate through the SELECT result set. You then issue a CLOSE
cursor statement; it is impreative that you close the cursor before exiting the ObjectScript method that contains Embedded
SQL.

» Acursor-based query uses DECLARE cursorname CURSOR FOR SELECT to select records and (optionally) return
select column values into output host variables. The FETCH statement iterates through the result set, using these
variables to return selected column values.

» Acursor-based DELETE or UPDATE uses DECLARE cursorname CURSOR FOR SELECT to select records for the
operation. No output host variables are specified. The FETCH statement iterates through the result set. The DELETE
or UPDATE statement contains a WHERE CURRENT OF clause to identify the current cursor position in order to
perform the operation on the selected record. For further details on cursor-based DEL ETE and UPDATE, see WHERE
CURRENT OF.

Note that a cursor cannot span methods. Therefore, you must declare, open, fetch, and close a cursor within the same class
method. It is important to consider this with all code that generates classes and methods, such as classes generated from a
.CSP file.

The following example, uses a cursor to execute a query and display the results to the principal device:

ObjectScript

&sql (DECLARE C1 CURSOR FOR
SELECT %ID,Name
INTO :id, :name
FROM Sample.Person
WHERE Name %STARTSWITH "A"
ORDER BY Name

)
&sql (OPEN C1)
QUIT: (SQLCODE"=0)
&sql (FETCH C1)
Whille (SQLCODE = 0) {

Write id, ": ', name,!
&sql (FETCH C1)

&sql (CLOSE C1)

This example does the following:

54 Using InterSystems SQL

SQL Cursors

1. It declares a cursor, C1, that returns a set of Person rows ordered by Name.
2. It opens the cursor.

3. ltcalls FETCH on the cursor until it reaches the end of the data. After each call to FETCH, the SQLCODE variable
will be set to 0 if there is more data to fetch. After each call to FETCH, the values returned are copied into the host
variables specified by the INTO clause of the DECLARE statement.

4. 1t closes the cursor.

7.5.1The DECLARE Cursor Statement

The DECLARE statement specifies both the cursor name and the SQL SELECT statement that defines the cursor. The
DECLARE statement must occur within a routine before any statements that use the cursor.

A cursor name is case-sensitive.

A cursor name must be unique within a class or routine. For this reason, a routine that is called recursively cannot contain
a cursor declaration. In this situation, it may be preferable to use Dynamic SQL.

The following example declares a cursor named MyCursor:

ObjectScript

&sql (DECLARE MyCursor CURSOR FOR
SELECT Name, DOB
FROM Sample.Person
WHERE Home_State = :state
ORDER BY Name

)

A DECLARE statement may include an optional INTO clause that specifies the names of the local host variables that will
receive data as the cursor is traversed. For example, we can add an INTO clause to the previous example:

ObjectScript

&sql (DECLARE MyCursor CURSOR FOR
SELECT Name, DOB
INTO -name, :dob
FROM Sample.Person
WHERE Home_State = :state
ORDER BY Name

)

The INTO clause may contain a comma-separated list of host variables, a single host variable array, or a combination of
both. If specified as a comma-separated list, the number of INTO clause host variables must exactly match the number of
columns within the cursor’s SELECT list or you will receive a “ Cardinality Mismatch™ error when the statement is compiled.

If the DECLARE statement does not include an INTO clause, then the INTO clause must appear within the FETCH statement.
A small performance improvement may result from specifying the INTO clause in the DECLARE statement, rather than
in the FETCH statement.

Because DECLARE is a declaration, not an executed statement, it does not set or kill the SQLCODE variable.

If a specified cursor has already been declared, compilation fails with a SQLCODE -52 error, Cursor name already
declared.

Executing a DECLARE statement does not compile the SELECT statement. The SELECT statement is compiled the first
time the OPEN statement is executed. Embedded SQL is not compiled at routine compile time, but at SQL execution time
(runtime).

Using InterSystems SQL 55

Using Embedded SQL

7.5.2The OPEN Cursor Statement

The OPEN statement prepares a cursor for subsequent execution:

ObjectScript

&sql (OPEN MyCursor)

Executing the OPEN statement compiles the Embedded SQL code found in the DECLARE statement, creates an optimized
query plan, and generates a cached query. Error involving missing resources (such as an undefined table or field) are issued
when the OPEN is executed (at SQL runtime).

Upon a successful call to OPEN, the SQLCODE variable will be set to 0.
You cannot FETCH data from a cursor without first calling OPEN.

7.5.3The FETCH Cursor Statement

The FETCH statement fetches the data for the next row of the cursor (as defined by the cursor query):

ObjectScript

&sql (FETCH MyCursor)

You must DECLARE and OPEN a cursor before you can call FETCH on it.

A FETCH statement may contain an INTO clause that specifies the names of the local host variables that will receive data
as the cursor is traversed. For example, we can add an INTO clause to the previous example:

ObjectScript

&sql (FETCH MyCursor INTO :a, :b)
The INTO clause may contain a comma-separated list of host variables, a single host variable array, or a combination of
both. If specified as a comma-separated list, the number of INTO clause host variables must exactly match the number of

columns within the cursor’s SELECT list or you will receive an SQLCODE -76 “Cardinality Mismatch” error when the
statement is compiled.

Commonly, the INTO clause is specified in the DECLARE statement, not the FETCH statement. If both the SELECT query
in the DECLARE statement and the FETCH statement contain an INTO clause, only the host variables specified by the
DECLARE statement are set. If only the FETCH statement contain an INTO clause, the host variables specified by the
FETCH statement are set.

If FETCH retrieves data, the SQLCODE variable is set to 0; if there is no data (or no more data) to FETCH, SQLCODE
is set to 100 (No more data). Host variable values should only be used when SQLCODE=0.

Depending on the query, the first call to FETCH may perform additional tasks (such as sorting values within a temporary
data structure).

7.5.4The CLOSE Cursor Statement

The CLOSE statement terminates the execution of a cursor:

ObjectScript

&sql (CLOSE MyCursor)

56 Using InterSystems SQL

Embedded SQL Variables

The CLOSE statement cleans up any temporary storage used by the execution of a query. Programs that fail to call CLOSE
will experience resource leaks (such as unneeded increase of the IRISTEMP temporary database).

Upon a successful call to CLOSE, the SQLCODE variable is set to 0. Therefore, before closing a cursor you should check
whether the final FETCH set SQLCODE to 0 or 100.

7.6 Embedded SQL Variables

The following local variables have specialized uses in Embedded SQL. These local variable names are case-sensitive. At
process initiation, these variables are undefined. They are set by Embedded SQL operations. They can also be set directly
using the SET command, or reset to undefined using the NEW command. Like any local variable, a value persists for the
duration of the process or until set to another value or undefined using NEW. For example, some successful Embedded

SQL operations do not set %ROWID; following these operations, %ROWID is undefined or remains set to its prior value.

* %msg

* %ROWCOUNT
* %ROWID

e SQLCODE

These local variables are not set by Dynamic SQL. (Note that the SQL Shell and the Management Portal SQL interface
execute Dynamic SQL.) Instead, Dynamic SQL sets corresponding object properties.

The following ObjectScript special variables are used in Embedded SQL. These special variable names are not case-sensitive.
At process initiation, these variables are initialized to a value. They are set by Embedded SQL operations. They cannot be
set directly using the SET or NEW commands.

 S$TLEVEL
* $USERNAME

As part of the defined InterSystems IRIS Embedded SQL interface, InterSystems IRIS may set any of these variables during
Embedded SQL processing.

If the Embedded SQL is in a class method (with ProcedureBlock=0ON), the system automatically places all of these variables
in the PublicList and NEWSs the SQLCODE, %ROWID, %ROWCOUNT, %msg, and all non-% variables used by the SQL
statement. You can pass these variables by reference to/from the method; variables passed by reference will not be NEWed
automatically in the class method procedure block.

If the Embedded SQL is in a routine, it is the responsibility of the programmer to NEW the %msg, %ROWCOUNT,
%ROWID, and SQLCODE variables before invoking Embedded SQL. NEWing these variables prevents interference with
prior settings of these variables. To avoid a <FRAMESTACK> error, you should not perform this NEW operation within
an iteration cycle.

7.6.1 %msg

A variable that contains a system-supplied error message string. InterSystems SQL only sets %msg if it has set SQLCODE
to a negative integer, indicating an error. If SQLCODE is set to 0 or 100, the %msg variable is unchanged from its prior
value.

This behavior differs from the corresponding Dynamic SQL %Message property, which is set to the empty string when
there is no current error.

Using InterSystems SQL 57

Using Embedded SQL

In some cases, a specific SQLCODE error code may be associated with more than one %msg string, describing different
conditions that generated the SQLCODE. %msg can also take a user-defined message string. This is most commonly used
to issue a user-defined message from a trigger when trigger code explicitly sets %0k=0 to abort the trigger.

An error message string is generated in the NLS language in effect for the process when the SQL code is executed. The
SQL code may be compiled in a different NLS language environment; the message will be generated according to the
runtime NLS environment. See $SYSNLS.Locale.Language.

7.6.2 %ROWCOUNT

An integer counter that indicates the number of rows affected by a particular statement.

* INSERT, UPDATE, INSERT OR UPDATE, and DELETE set %ROWCOUNT to the number of rows affected.
An INSERT command with explicit values can only affect one row, and thus sets %ROWCOUNT to either O or 1.
An INSERT query results, an UPDATE, or a DELETE can affect multiple rows, and can thus set % ROWCOUNT
to 0 or a positive integer.

« TRUNCATE TABLE always sets %ROWCOUNT to -1, regardless of how many rows were deleted or if any rows
were deleted. Therefore, to determine the actual number of rows deleted, either perform a COUNT(*) on the table
before TRUNCATE TABLE, or delete all the rows in the table using DELETE, rather than TRUNCATE TABLE.

e SELECT with no declared cursor can only act upon a single row, and thus execution of a simple SELECT always
sets %ROWCOUNT to either 1 (single row that matched the selection criteria retrieved) or 0 (no rows matched the
selection criteria).

e DECLARE cursorname CURSOR FOR SEL ECT does not initialize %6ROWCOUNT; %ROWCOUNT is unchanged
following the SEL ECT, and remains unchanged following OPEN cur sorname. The first successful FETCH sets
%ROWCOUNT. If no rows matched the query selection criteria, FETCH sets %ROWCOUNT=0; if FETCH retrieves
a row that matched the query selection criteria, it sets %ROWCOUNT=1. Each subsequent FETCH that retrieves a
row increments %ROWCOUNT. Upon CL OSE or when FETCH issues an SQLCODE 100 (No Data, or No More
Data), %ROWCOUNT contains the total number of rows retrieved.

This SELECT behavior differs from the corresponding Dynamic SQL %ROWCOUNT property, which is set to 0 upon
completion of query execution, and is only incremented when the program iterates through the result set returned by the

query.

If a SELECT query returns only aggregate functions, every FETCH sets %ROWCOUNT=1. The first FETCH always
completes with SQLCODE=0, even when there is no data in the table; any subsequent FETCH completes with SQL-
CODE=100 and sets %ROWCOUNT=L1.

The following Embedded SQL example declares a cursor and uses FET CH to fetch each row in the table. When the end
of data is reached (SQLCODE=100) %ROWCOUNT contains the number of rows retrieved:

ObjectScript

SET name=''LastName,FirstName',state="##"
&sql (DECLARE EmpCursor CURSOR FOR

SELECT Name, Home_State

INTO :name,:state FROM Sample.Person

WHERE Home_State %STARTSWITH *MT)
WRITE !,"BEFORE: Name="",name,' State=",state
&sql (OPEN EmpCursor)

QUIT: (SQLCODE"=0)

FOR { &sql (FETCH EmpCursor)

QUIT:SQLCODE

WRITE !1,"Row fetch count: ",%ROWCOUNT

WRITE ' Name='",name," State=", state

WRITE !,"Final Fetch SQLCODE: '',SQLCODE
&sql (CLOSE EmpCursor)

WRITE I,"AFTER: Name=',6name," State=",state
WRITE 1,"Total rows fetched: " ,%ROWCOUNT

58 Using InterSystems SQL

Embedded SQL Variables

The following Embedded SQL example performs an UPDATE and sets the number of rows affected by the change:

ObjectScript

&sql (UPDATE MyApp.Employee
SET Salary = (Salary * 1.1)
WHERE Salary < 50000)
IF SQLCODE<O {WRITE "'SQLCODE error '',SQLCODE," ",%msg QUIT}
WRITE "Employees: ", %ROWCOUNT,!

Keep in mind that all Embedded SQL statements (within a given process) modify the %ROWCOUNT variable. If you need
the value provided by %ROWCOUNT, be sure to get its value before executing additional Embedded SQL statements.
Depending on how Embedded SQL is invoked, you may have to NEW the %ROWCOUNT variable before entering
Embedded SQL.

Also note that explicitly rolling back a transaction will not affect the value of %ROWCOUNT. For example, the following
will report that changes have been made, even though they have been rolled back:

ObjectScript

TSTART // start an explicit transaction
NEW SQLCODE ,%ROWCOUNT , %ROWID
&sql (UPDATE MyApp.Employee
SET Salary = (Salary * 1.1)
WHERE Salary < 50000)
IF SQLCODE<O {WRITE "'SQLCODE error " ,SQLCODE,"™ ",%msg QUIT}

TROLLBACK // force a rollback; this will NOT modify %ROWCOUNT
Write "Employees: ", %ROWCOUNT,!

Implicit transactions (such as if an UPDATE fails a constraint check) are reflected by %ROWCOUNT.

7.6.3 %ROWID

When you initialize a process, %ROWID is undefined. When you issue a NEW % ROWID command, %ROWID is reset
to undefined. %ROWID is set by the Embedded SQL operations described below. If the operation is not successful, or
completes successfully but does not fetch or modify any rows, the %ROWID value remains unchanged from its prior value:
either undefined, or set to a value by a previous Embedded SQL operation. For this reason, it is important to NEW %ROWID
before each Embedded SQL operation.

%ROWID is set to the RowlID of the last row affected by the following operations:

* INSERT, UPDATE, INSERT OR UPDATE, or DEL ETE: After a single-row operation, the %ROWID variable
contains the system-assigned value of the RowID (Object ID) assigned to the inserted, updated, or deleted record. After
a multiple-row operation, the %ROWID variable contains the system-assigned value of the RowID (Object ID) of the
last record inserted, updated, or deleted. If no record is inserted, updated, or deleted, the %ROWID variable value is
unchanged. TRUNCATE TABLE does not set %ROWID.

* Cursor-based SELECT: The DECL ARE cursorname CURSOR and OPEN cur sor namestatements do not initialize
%ROWID; the %ROWID value is unchanged from its prior value. The first successful FETCH sets %ROWID. Each
subsequent FETCH that retrieves a row resets %ROWID to the current RowID value. FETCH sets %ROWID if it
retrieves a row of an updateable cursor. An updateable cursor is one in which the top FROM clause contains exactly
one element, either a single table name or an updateable view name. If the cursor is not updateable, %ROWID remains
unchanged. If no rows matched the query selection criteria, FET CH does not change the prior the %ROWID value
(if any). Upon CLOSE or when FETCH issues an SQLCODE 100 (No Data, or No More Data), %ROWID contains
the RowlID of the last row retrieved.

Cursor-based SELECT with a DISTINCT keyword or a GROUP BY clause does not set %ROWID. The %ROWID
value is unchanged from its previous value (if any).

Using InterSystems SQL 59

Using Embedded SQL

Cursor-based SEL ECT with an aggregate function does not set %ROWID if it returns only aggregate function values.
If it returns both field values and aggregate function values, the %ROWID value for every FETCH is set to the RowID
of the last row returned by the query.

e SELECT with no declared cursor does not set %ROWID. The %ROWID value is unchanged upon the completion of
a simple SELECT statement.

In Dynamic SQL, the corresponding %ROWID property returns the RowID value of the last record inserted, updated, or

deleted. Dynamic SQL does not return a %ROWID property value when performing a SELECT query.

You can retrieve the current %ROWID from ObjectScript using the following method call:

ObjectScript
WRITE $SYSTEM.SQL.GetROWID()
Following an INSERT, UPDATE, DELETE, TRUNCATE TABLE, or Cursor-based SELECT operation, the

LAST IDENTITY SQL function returns the value of the IDENTITY field for the most-recently modified record. If the
table does not have an IDENTITY field, this function returns the RowlID for the most-recently modified record.

7.6.4 SQLCODE

After running an embedded SQL Query, you must check the SQLCODE before processing the output host variables. In
particular, you should always check SQLCODEX<Q; if this condition holds true, then there was error while processing the
query and your application should respond accordingly.

If SQLCODE=0 the query completed successfully and returned data. The output host variables contain field values.
If SQLCODE=100 the query completed successfully, but output host variable values may differ. Either:

» The query returned one or more rows of data (SQLCODE=0), then reached the end of the data (SQLCODE=100), in
which case output host variables are set to the field values of the last row returned. %ROWCOUNT>0.

* The query returned no data, in which case the output host variables are set to the null string. %ROWCOUNT=0.

After any invocation of the &sql() directive, you should check SQLCODE<O. If this condition holds true, then an error
arose.

If a query returns only aggregate functions, the first FET CH always completes with SQLCODE=0 and %ROWCOUNT=1,
even when there is no data in the table. The second FETCH completes with SQLCODE=100 and %ROWCOUNT=1. If
there is no data in the table or no data matches the query conditions, the query sets output host variables to 0 or the empty
string, as appropriate.

If SQLCODE is a negative number the query failed with an error condition. For a list of these error codes and additional
information, refer to SQLCODE Values and Error Messages.

Depending on how Embedded SQL is invoked, you may have to NEW the SQLCODE variable before entering Embedded
SQL. Within trigger code, setting SQLCODE to a nonzero value automatically sets %0k=0, aborting and rolling back the
trigger operation.

In Dynamic SQL, the corresponding %SQLCODE property returns SQL error code values.

7.6.5 $STLEVEL
The transaction level counter. InterSystems SQL initializes $TLEVEL to 0. If there is no current transaction, $TLEVEL
is 0.

e Aninitial START TRANSACTION sets $TLEVEL to 1. Additional START TRANSACTION statements have no
effect on STLEVEL.

60 Using InterSystems SQL

Embedded SQL in Methods of a Persistent Class

e Each SAVEPOINT statement increments STLEVEL by 1.

* AROLLBACK TO SAVEPOINT pointname statement decrements $TL EVEL . The amount of decrement depends
on the savepoint specified.

e A COMMIT resets $TLEVEL to 0.
e A ROLLBACK resets $TLEVEL to 0.

You can also use the %INTRANSACTION statement to determine if a transaction is in progress.

$TLEVEL is also set by ObjectScript transaction commands. For further details, see $TLEVEL.

7.6.6 SUSERNAME

The SQL username is the same as the InterSystems IRIS username, stored in the ObjectScript SBUSERNAME special variable.
The username can be used as the system-wide default schema or as an element in the schema search path.

7.7 Embedded SQL in Methods of a Persistent Class

The following example shows a persistent class containing a class method and an instance method, both of which contain
Embedded SQL.:

Class Definition

Class Sample.MyClass Extends %Persistent [DdIAllowed]
{
ClassMethod Namelnitial(Myval As %String) As %String [SqlProc]
&sql (SELECT Name INTO :n FROM Sample.Stuff WHERE Name %STARTSWITH :Myval)
IF SQLCODE<O {WRITE "'SQLCODE error ",SQLCODE RETURN %msg}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" RETURN}
WRITE "Hello " RETURN n
¥
Method CountRows() As %lInteger
{
&sql (SELECT COUNT(*) INTO :count FROM Sample.Stuff)
IF SQLCODE<O {WRITE "SQLCODE error ',SQLCODE RETURN %msg}

ELSEIF SQLCODE=100 {WRITE "Query returns no results” RETURN}
WRITE "Number of rows is " RETURN count

}
3
The class method is invoked as follows:

ObjectScript

WRITE ##class(Sample._MyClass) .Namelnitial (*'G™)

The instance method is invoked as follows:

ObjectScript

SET x=##class(Sample_MyClass) .%New()
WRITE x.CountRows()

SQL entities such as tables and fields do not have to exist for these methods to successfully compile. Because checking for
the existence of SQL entities is performed at runtime, Embedded SQL methods should contain SQLCODE test logic.

You can test for the existence of SQL entities specified in Embedded SQL without executing the code. This is described
in Validating Embedded SQL Code.

Using InterSystems SQL 61

Using Embedded SQL

7.8 Validating Embedded SQL Code

You can validate Embedded SQL code without executing the code in three ways:
e Compiling a routine containing Embedded SQL code using the /compi leembedded=1 qualifier.
e Compiling multiple Embedded SQL routines using the $SY STEM .OBJ.Gener ateEmbedded() method.

» Testing the Embedded SQL code using the Management Portal SQL interface Show Plan option.

7.8.1 Compile with /compileembedded Qualifier

You can validate Embedded SQL code by using the compile class methods of the $SYSTEM.OBJ class and specifying in
the gspec argument the /compi leembedded=1 qualifier. The/compi leembedded default is 0.

* $SYSTEM.OBJ.Compile() compiles the specified class and all routines within that class.

* $SYSTEM.OBJ.CompileList() compiles a list of specified classes and all routines within those classes.

e $SYSTEM.OBJ.CompilePackage() compiles all classes/routines in the specified package (schema).

e $SYSTEM.OBJ.CompileAll() compiles all classes/routines in the current namespace.

* $SYSTEM.OBJ.CompileAlINamespaces() compiles all classes/routines in all namespaces.

You can specify use of the /compi leembedded=1 qualifier by default using the SetQualifier () method from the Terminal:

Terminal

USER>DO $SYSTEM.OBJ.SetQualifiers(''/compileembedded=1"") /* sets /compileembedded for current namespace
*/

Terminal

USER>DO $SYSTEM.OBJ.SetQualifiers(''/compileembedded=1",1) /* sets /compileembedded for all namespaces
*/

To display a list of gspec qualifiers, including /compi leembedded, invoke:

Terminal

USER>DO $SYSTEM.OBJ.ShowQualifiers()

The non-default qualifier settings are shown at the end of the ShowQualifier () display.

In Studio you can set the /comp i leembedded=1 qualifier in the Tools —> Options —> Compiler —> Flags and Optimization
—> Flags field. This is described in Setting Studio Options.

7.8.2 Test with Show Plan

You can use the Management Portal SQL interface to validate Embedded SQL code without executing the code. This
operation both validates the SQL syntax and checks for the existence of the specified SQL entities.

From the Management Portal System Explorer option select the SQL option to display the Execute Query code area.

1. Input your Embedded SQL query. For example SELECT Name INTO :n FROM Sample.MyTest or DECLARE
MyCursor CURSOR FOR SELECT Name,Age INTO :n,:a FROM Sample.MyTest WHERE Age > 21
FOR READ ONLY.

62 Using InterSystems SQL

Auditing Embedded SQL

2. Press the show Plan button to check the code. If the code is valid, Show Plan displays a Query Plan. If the code is
invalid, Show Plan displays an SQLCODE error value and message.

Note that Show Plan validation will not issue an error if the INTO clause is missing, because the INTO clause may be
specified in the FETCH statement. Show Plan will issue appropriate errors if the INTO clause contains an error or is
in the wrong location.

You cannot use the Execute button to execute Embedded SQL code.

7.9 Auditing Embedded SQL

InterSystems IRIS supports optional auditing of Embedded SQL statements. Embedded SQL auditing is performed when
the following two requirements are met:

1. The %System/%SQL/EmbeddedStatement system audit event is enabled system-wide. By default, this system audit
event is not enabled. To enable, go to Management Portal, System Administration, select Security, then Auditing, then
Configure System Events.

2. Theroutine containing the Embedded SQL statement must contain the #sqlcompile audit macro preprocessor directive.
If this directive is set to ON, any Embedded SQL statement following it in the compiled routine is audited when executed.

Auditing records information in the Audit Database. To view the Audit Database, go to the Management Portal, System
Administration, select Security, then Auditing, then View Audit Database. You can set the Event Name filter to Embedded-
Statement to limit the View Audit Database to Embedded SQL statements. The Audit Database lists Time (a local timestamp),
User, PID (process ID), and the Description, which specifies the type of Embedded SQL statement. For example, SQL
SELECT Statement.

By selecting the Details link for an event you can list additional information, including the Event Data. The Event Data
includes the SQL statement executed and the values of any input arguments to the statement. For example:

SELECT TOP :n Name,ColorPreference INTO :name,:color FROM Sample.Stuff WHERE Name %STARTSWITH :letter

Parameter values:

n=5
letter="F"

InterSystems IRIS also supports auditing of Dynamic SQL statements (Event Name=DynamicStatement) and ODBC and
JDBC statements (Event Name=XDBCStatement).

Using InterSystems SQL 63

Using Dynamic SQL

This topic discusses Dynamic SQL, queries and other SQL statements that are prepared and executed at runtime from
InterSystems IRIS® data platform.

This topic describes Dynamic SQL programming using the %SQL.Statement class, which is the preferred implementation
of Dynamic SQL. All statements about Dynamic SQL here, and throughout our documentation, refer specifically to the
%SQL.Statement implementation.

8.1 Introduction to Dynamic SQL

Dynamic SQL refers to SQL statements that are prepared and executed at runtime. In Dynamic SQL preparing and executing
an SQL command are separate operations. Dynamic SQL lets you program within InterSystems IRIS in a manner similar
to an ODBC or JDBC application (except that you are executing the SQL statement within the same process context as the
database engine). Dynamic SQL is invoked from an ObjectScript program.

Dynamic SQL queries are prepared at program execution time, not compilation time. This means that the compiler cannot
check for errors at compilation time and preprocessor macros cannot be used within Dynamic SQL. It also means that
executing programs can create specialized Dynamic SQL queries in response to user or other input.

Dynamic SQL can be used to perform an SQL query. It can also be used to issue other SQL statements. The examples here
perform a SELECT query. For Dynamic SQL program examples, see CREATE TABLE, INSERT, UPDATE, DELETE,
and CALL.

Dynamic SQL is used in the execution of the InterSystems IRIS SQL Shell, the InterSystems IRIS Management Portal
Execute Query interface, the SQL Code Import methods, and the Data Import and Export Utilities.

No row can exceed the string length limit.

8.1.1 Dynamic SQL versus Embedded SQL

Dynamic SQL differs from Embedded SQL in the following ways:

» Initial execution of a Dynamic SQL query is slightly less efficient than Embedded SQL, because it does not generate
in-line code for queries. However, re-execution of both Dynamic SQL and Embedded SQL is substantially faster than
the first execution of the query because both support cached queries.

» Dynamic SQL can accept a literal value input to a query in two ways: input parameters specified using the “?” char-
acter, and input host variables (for example, :var). Embedded SQL uses input and output host variables (for example,
var).

Using InterSystems SQL 65

Using Dynamic SQL

Dynamic SQL output values are retrieved using the API of the result set object (that is, the Data property). Embedded
SQL uses host variables (for example, :var) with the INTO clause of a SELECT statement to output values.

Dynamic SQL sets the %SQLCODE, %Message, %ROWCOUNT, and %ROWID object properties. Embedded SQL sets
the corresponding SQLCODE, %msg, %ROWCOUNT, and %ROWID local variables. Dynamic SQL does not set
%ROWID for a SELECT query; Embedded SQL sets %ROWID for a cursor-based SELECT query.

Dynamic SQL provides an easy way to find query metadata (such as quantity and names of columns).

Dynamic SQL performs SQL privilege checking by default; you must have the appropriate privileges to access or
modify a table, field, etc. Embedded SQL does not perform SQL privilege checking. Refer to the SQL %CHECKPRIV
statement for further details.

Dynamic SQL cannot access a private class method. To access an existing class method, the method must be made
public. This is a general SQL limitation. However, Embedded SQL gets around this limitation because the Embedded
SQL operation itself is a method of the same class.

Dynamic SQL and Embedded SQL use the same data representation (logical mode by default, but this can be changed)
and NULL handling.

8.2 The %SQL.Statement Class

The preferred interface for Dynamic SQL is the %SQL.Statement class. To prepare and execute Dynamic SQL statements,
use an instance of %SQL.Statement. The result of executing a Dynamic SQL statement is an SQL statement result object
that is an instance of the %SQL.StatementResult class. An SQL statement result object is either a unitary value, a result set,
or a context object. In all cases, the result object supports a standard interface. Each result object initializes the %SQLCODE,
%Message and other result object properties. The values these properties are set to depends on the SQL statement issued.
For a successfully executed SEL ECT statement, the object is a result set (specifically, an instance of %SQL.StatementResult)
and supports the expected result set functionality.

The following ObjectScript code prepares and executes a Dynamic SQL query:

ObjectScript

/* Simple %SQL.Statement example */

set myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person
set tStatement = ##class(%SQL.Statement) .%New()

set gStatus = tStatement.%Prepare(myquery)

if gStatus™"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}

set rset = tStatement.%Execute()
do rset.%Display()
write !,"End of data"

The examples on this page use methods associated with the %SQL.Statement and %SQL.StatementResult classes.

8.3 Creating an Object Instance

You can create an instance of the %SQL.Statement class using the % New() class method:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()

66

Using InterSystems SQL

Creating an Object Instance

At this point the result set object is ready to prepare an SQL statement. Once you have created an instance of the
%SQL.Statement class, you can use that instance to issue multiple Dynamic SQL queries and/or INSERT, UPDATE, or
DELETE operations.

% New() accepts three optional comma-separated parameters in the following order:

1. %SelectMode, which specifies the mode used for data input and data display.

2. %SchemaPath, which specifies the search path used to supply the schema name for an unqualified table name.

3. %Dialect, which specifies the Transact-SQL (TSQL) Sybase or MSSQL dialect. The default is IRIS (InterSystems
SQL).

There is also an %0bjectSelectMode property, which cannot be set as a % New() parameter. %ObjectSelectMode specifies

the data type binding of fields to their related object properties.

In the following ObjectScript example, the %SelectMode is 2 (Display mode), and the %SchemaPath specifies “Sample”

as the default schema:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(2," Sample'™)

In the following ObjectScript example, a %SelectMode is not specified (note the placeholder comma), and the %Schema-
Path specifies a schema search path containing three schema names:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(, ' 'MyTests,Sample,Cinema')

8.3.1 %SelectMode Property

The %Sd ectMode property specifies one of the following modes: 0=Logical (the default), 1=ODBC, 2=Display. These
modes specify how a data value is input and displayed. A mode is most commonly used for date and time values and for
displaying %L.ist data (a string containing an encoded list). Data is stored in Logical mode.

A SELECT query uses the %SelectMode value to determine the format used to display data.
An INSERT or UPDAT E operation uses the %SelectMode value to determine the permitted format(s) for data input.

%SelectMode is used for data display. SQL statements run internally in Logical mode. For example, an ORDER BY clause
orders records based on their Logical values, regardless of the %SelectMode setting. SQL functions use Logical values,
regardless of the %SelectMode setting. Methods projected as SQLPROC also run in Logical mode. SQL routines called as
functions in an SQL statement need to return the function value in Logical format.

» ForaSELECT query, %SelectMode specifies the format used for displaying the data. Setting %SelectMode to ODBC
or Display also affects the data format used for specifying comparison predicate values. Some predicate values must
be specified in the %SelectMode format, other predicate values must be specified in Logical format, regardless of the
%SelectMode. For details, refer to Overview of SQL Predicates.

— Time data type data in %SelectMode=1 (ODBC) can display fractional seconds, which is not the same as actual
ODBC time. The InterSystems IRIS Time data type supports fractional seconds. The corresponding ODBC TIME
data type (TIME_STRUCT standard header definition) does not support fractional seconds. The ODBC TIME
data type truncates a supplied time value to whole seconds. ADO DotNet and JDBC do not have this restriction.

— %dList data type data in %SelectMode=0 (Logical) does not display the internal storage value, because %L.ist data
is encoded using non-printing characters. Instead, Dynamic SQL displays a %L.ist data value as a $LISTBUILD
statement, such as the following: $1b(*"White™,"Green'"). See %Print() Method for an example. %L.ist data
type data in %SelectMode=1 (ODBC) displays list elements separated by commas; this elements separator is

Using InterSystems SQL 67

Using Dynamic SQL

specified as the CollectionOdbcDelimiter parameter. %L.ist data type data in %SelectMode=2 (Display) displays
list elements separated by $CHAR(10,13) (Line Feed, Carriage Return); this elements separator is specified as
the CollectionDisplayDelimiter parameter.

e Foran INSERT or UPDATE operation, %SelectMode specifies the format for input data that will be converted to
Logical storage format. For this data conversion to occur, the SQL code must have been compiled with a select mode
of RUNTIME (the default) so that a Display or ODBC %SelectMode is used when the INSERT or UPDATE is executed.
For permitted input values for dates and times, refer to the date and time data types. For further details, see INSERT
or UPDATE.

You can specify %SelectMode either as the first parameter of the % New() class method, or set it directly, as shown in the
following two examples:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(2)

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()
set tStatement.%SelectMode=2

The following example returns the current value of %SelectMode:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()

write !,"default select mode="",tStatement.%SelectMode
set tStatement.%SelectMode=2

write !,"set select mode=",tStatement.%SelectMode

You can determine the SelectMode default setting for the current process using the

$SYSTEM.SQL .Util.GetOption(" SelectM ode") method. You can change the SelectMode default setting for the current
process using the using the $SY STEM .SQL .Util.SetOption(" SelectM ode" ,n) method, when n can be O=Logical, 1=ODBC,
or 2=Display. Setting %SelectMode overrides this default for the current object instance; it does not change the SelectMode
process default.

For further details on SelectMode options, see Data Display Options.

8.3.2 %SchemaPath Property

The %SchemaPath property specifies the search path used to supply the schema name for an unqualified table name, view
name, or stored procedure name. A schema search path is used for data management operations such as SELECT, CALL,
INSERT, and TRUNCATE TABLE; it is ignored by data definition operations such as DROP TABLE.

The search path is specified as a quoted string containing a schema name or a comma-separated series of schema names.
InterSystems IRIS searches the listed schemas in left-to-right order. InterSystems IRIS searches each specified schema
until it locates the first matching table, view, or stored procedure name. Because schemas are searched in the specified
order, there is no detection of ambiguous table names. Only schema names in the current namespace are searched.

The schema search path can contain both literal schema names and the CURRENT_PATH, CURRENT_SCHEMA, and
DEFAULT_SCHEMA keywords.

» CURRENT_PATH specifies the current schema search path, as defined in a prior %SchemaPath property. This is
commonly used to add schemas to the beginning or end of an existing schema search path.

e« CURRENT_SCHEMA specifies the current schema container class name if the %SQL.Statement call is made from
within a class method. If a #sqlcompile path macro directive is defined in a class method, the CURRENT_SCHEMA

68 Using InterSystems SQL

Creating an Object Instance

is the schema mapped to the current class package. Otherwise, CURRENT_SCHEMA is the same as
DEFAULT_SCHEMA.

» DEFAULT_SCHEMA specifies the system-wide default schema. This keyword enables you to search the system-wide
default schema as a item within the schema search path, before searching other listed schemas. The system-wide default
schema is always searched after searching the schema search path if all the schemas specified in the path have been
searched without a match.

The %SchemaPath is the first place InterSystems IRIS searches schemas for a matching table name. If %SchemaPath is
not specified, or does not list a schema that contains a matching table name, InterSystems IRIS uses the system-wide default
schema.

You can specify a schema search path either by specifying the %SchemaPath property, or by specifying the second
parameter of the % New() class method, as shown in the following two examples:
ObjectScript

set path="MyTests,Sample,Cinema"
set tStatement = ##class(%SQL.Statement) .%New(,path)

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()
set tStatement.%SchemaPath=""MyTests,Sample,Cinema"

You can set %SchemaPath at any point prior to the % Prepare() method which uses it.

The following example returns the current value of %SchemaPath:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()
write !,"default path=",tStatement.%SchemaPath

set tStatement.%SchemaPath=""MyTests,Sample,Cinema"
write !1,"set path=",tStatement.%SchemaPath

You can use the % ClassPath() method to set %SchemaPath to the search path defined for the specified class name:

ObjectScript

set tStatement = ##class(%SQL.Statement).%New()
set tStatement.%SchemaPath=tStatement.%ClassPath(*'Sample.Person')
write tStatement.%SchemaPath

8.3.3 %Dialect Property

The %Dialect property specifies the SQL statement dialect. You can specify Sybase, MSSQL, or IRIS (InterSystems SQL).
The Sybase or MSSQL setting causes the SQL statement to be processed using the specified Transact-SQL dialect.

The Sybase and MSSQL dialects support a limited subset of SQL statements in these dialects. They support the SELECT,
INSERT, UPDATE, DELETE, and EXECUTE statements. They support the CREATE TABL E statement for permanent
tables, but not for temporary tables. CREATE VIEW is supported. CREATE TRIGGER and DROP TRIGGER are
supported. However, this implementation does not support transaction rollback should the CREATE TRIGGER statement
partially succeed but then fail on class compile. CREATE PROCEDURE and CREATE FUNCTION are supported.

The Sybase and MSSQL dialects support the | F flow-of-control statement. This command is not supported in the IRIS
(InterSystems SQL) dialect.

The default is InterSystems SQL, represented by an empty string (****), or specified as ""IR1S""

Using InterSystems SQL 69

Using Dynamic SQL

You can specify %Dialect either as the third parameter of the % New() class method, or set it directly as a property, or set
it using a method, as shown in the following three examples:

Setting %Dialect in % New() class method:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(, ,"'Sybase')
write "language mode set to=",tStatement.%Dialect

Setting the %Dialect property directly:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()

set defaultdialect=tStatement.%Dialect

write "default language mode=",defaultdialect,!

set tStatement.%Dialect="Sybase"

write "language mode set to=",tStatement.%Dialect,!

set tStatement.%Dialect="IRIS"

write "language mode reset to default=",tStatement.%Dialect,!

Setting the %Dialect property using the % DialectSet() instance method, which returns an error status:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()
set tStatus = tStatement.%DialectSet(''Sybase')

if tStatus™=1 {write "%DialectSet failed:" do $System.Status.DisplayError(tStatus) quit}
write "language mode set to=",tStatement.%Dialect

The % DialectSet() method returns a %Status value: Success returns a status of 1. Failure returns an object expression that
begins with 0, followed by encoded error information. For this reason, you cannot perform a tStatus=0 test for failure;
you can perform a $$$1SOK(tStatus)=0 macro test for failure.

8.3.4 %0bjectSelectMode Property

The %ObjectSelectMode property is a boolean value. If %0bjectSelectMode=0 (the default) all columns in the SELECT
list are bound to properties with literal types in the result set. If %ObjectSelectMode=1 then columns in the SELECT list
are bound to properties with the type defined in the associated property definition.

%O0bjectSelectMode allows you to specify how columns whose type class is a swizzleable class will be defined in the result
set class generated from a SELECT statement. If %ObjectSelectMode=0 the property corresponding to the swizzleable
column will be defined in result sets as a simple literal type corresponding to the SQL table's RowlID type. If
%0bjectSelectMode=1 the property will be defined with the column’s declared type. That means that accessing the result
set property will trigger swizzling.

%ObjectSelectMode cannot be set as a parameter of % New().

The following example returns the %ObjectSelectMode default value, sets %ObjectSelectMode, then returns the new
%O0bjectSelectMode value:

ObjectScript

set myquery = "SELECT TOP 5 %ID AS MylD,Name,Age FROM Sample.Person™
set tStatement = ##class(%SQL.Statement) .%New()

write !,"default ObjectSelectMode=",tStatement.%0bjectSelectMode
set tStatement.%ObjectSelectMode=1

write !,"set ObjectSelectMode=",tStatement.%0bjectSelectMode

%ObjectSelectMode=1 is principally used when returning values from a result set using the field name property. This is
further described with examples in Fieldname Property.

70 Using InterSystems SQL

Preparing an SQL Statement

%ObjectSelectMode=1 can be used when a field in the SELECT list is linked to a collection property. %ObjectSelectMode
will swizzle the collection. If %SelectMode = 1 or 2, the system converts the collection serial value into Logical mode form
before swizzling. The resulting OREF supports the full collection interface.

8.4 Preparing an SQL Statement

Preparing an SQL statement validates the statement, prepares it for subsequent execution, and generates metadata about
the SQL statement.

There are three ways to prepare an SQL statement using the %SQL.Statement class:
* %Prepare(), which prepares an SQL statement (a query, for example) for a subsequent % Execute().

* %PrepareClassQuery(), which prepares a call statement to an existing query. Once prepared, this query can be executed
using a subsequent % Execute().

* %ExecDirect(), which both prepares and executes an SQL statement. % ExecDirect() is described in “Executing an
SQL Statement”.

* %ExecDirectNoPriv(), which prepares and executes an SQL statement and does not perform privilege checking.
% ExecDirectNoPriv() is described in “Executing an SQL Statement”.

You can also prepare an SQL statement without creating an object instance by using the $SY STEM .SQL .Prepar () method.
The Prepare() method is shown in the following Terminal example:

Terminal

USER>set topnum=5
USER>set prep=$SYSTEM.SQL.Prepare(*'SELECT TOP :topnum Name,Age FROM Sample.Person WHERE Age=?'")

USER>do prep.%Display()

Preparing an SQL statement creates a cached query. Using a cached query allows the same SQL query to be executed
multiple times without the need to re-prepare the SQL statement. A cached query can be executed one or more times by
any process; it can be executed with different input parameter values.

Each time you prepare an SQL statement, InterSystems IRIS searches the query cache to determine if the same SQL statement
has already been prepared and cached. (Two SQL statements are considered “the same” if they differ only in the values of
literals and input parameters.) If the prepared statement does not already exist in the query cache, InterSystems IRIS creates
a cached query. If the prepared statement already exists in the query cache, no new cached query is created. For this reason,
it is important not to code a prepare statement within a loop structure.

8.4.1 %Prepare()

You can prepare an SQL statement using the % Prepar g() instance method of the %SQL.Statement class. The % Prepar &)
method takes, as its first argument, the SQL statement. This can be specified as a quoted string or a variable that resolves
to a quoted string, as shown in the following example:

ObjectScript

set gStatus = tStatement.%Prepare("'SELECT Name,Age FROM Sample.Person'™)

More complex queries can be specified using a subscripted array passed by reference, as shown in the following example:

Using InterSystems SQL 71

Using Dynamic SQL

ObjectScript

set myquery = 3
set myquery(1)
set myquery(2)
set myquery(3) "ORDER BY 2"

set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(.myquery)

""'SELECT %ID AS id, Name, DOB, Home_State"
""FROM Person WHERE Age > 80"

A query can contain duplicate field names and field name aliases.

A query supplied to % Prepare() can contain input host variables, as shown in the following example:

ObjectScript

set minage = 80
set myquery = 3
set myquery(1)
set myquery(2)
set myquery(3) "ORDER BY 2"

set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(.myquery)

"SELECT %ID AS id, Name, DOB, Home_State"
"FROM Person WHERE Age > :minage"

InterSystems IRIS substitutes the defined literal value for each input host variable when the SQL statement is executed.
Note however, that if this code is called as a method, the minage variable must be made Public. By default, methods are
ProcedureBlocks; this means that a method (such as % Prepare()) cannot see variables defined by its caller. You can either
override this default by specifying the class as [Not ProcedureBlock], specifying the method as [ProcedureBlock = 0],
or by specifying [PublicList = minage].

Note: Itis good program practice to always confirm that an input variable contains an appropriate value before inserting
it into SQL code.

You can also supply literal values to a query using ? input parameters. InterSystems IRIS substitutes a literal value for each
? input parameter using the corresponding parameter value you supply to the % Execute() method. Following a % Prepar (),
you can use the %GetimplementationDetails() method to list the input host variables and the ? input parameters in the
query.

The % Prepare() method returns a %Status value: Success returns a status of 1 (the query string is valid; referenced tables
exist in the current namespace). Failure returns an object expression that begins with 0, followed by encoded error information.

For this reason, you cannot perform a status=0 test for failure; you can perform a $$$1S0K(status)=0 macro test
for failure.

The % Prepare() method uses the %SchemaPath property defined earlier to resolve unqualified names.

Note: Dynamic SQL performance can be significantly improved by using fully qualified names whenever possible.
You can specify input parameters in the SQL statement by using the “? ” character:

ObjectScript

set myquery="SELECT TOP ? Name,Age FROM Sample.Person WHERE Age > ?"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)

You specify the value for each ? input parameter in the % Execute() instance method when you execute the query. An input
parameter must take a literal value or an expression that resolves to a literal value. An input parameter cannot take a field
name value or a field name alias. An input parameter must be declared PUBLIC for a SELECT statement to reference it
directly.

A query can contain field aliases. In this case, the Data property accesses the data using the alias, not the field name.

You are not limited to SEL ECT statements within Dynamic SQL: you can use the % Prepar &() instance method to prepare
other SQL statements, including the CALL, INSERT, UPDATE, and DEL ETE statements.

72 Using InterSystems SQL

Preparing an SQL Statement

You can display information about the currently prepared statement using the % Display() instance method, as shown in
the following example:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(, ' Sample')
set myquery = 3
set myquery(l) = "SELECT TOP ? Name,DOB,Home_State"
set myquery(2) = "FROM Person"
set myquery(3) = "WHERE Age > 60 AND Age < 65"
set gStatus = tStatement.%Prepare(.myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
do tStatement.%Display()
write 1,"End of %Prepare display"

This information consists of the Implementation Class, the Arguments (a comma-separated list of the actual arguments,
either literal values or ? input parameters), and the Statement Text.

% Prepar &) takes an optional second argument, checkPriv, which is a logical value that determines whether InterSystems
IRIS checks privileges on the statement. If checkPriv is 0, no privileges are checked. Disabling privilege checking gives
applications more control over the execution of dynamic queries but increases security risk. The default value is 1 (privileges
are checked). For example:

ObjectScript

set statement = ##class(%SQL.Statement) .%New()
set status =statement.%Prepare(''DELETE FROM T",0) // No privileges checked

set statement2 = ##class(%SQL.Statement) .%New()
set status =statement2.%Prepare(''DELETE FROM T') // Privilege is checked

8.4.2 %PrepareClassQuery()

You can prepare an existing SQL query using the % PrepareClassQuery() instance method of the %SQL.Statement class.
The % PrepareClassQuery() method takes three parameters: the class name of the existing query, the query name, and an
optional third argument that determines if privileges should be checked (if omitted, privileges are checked). The class name
and the query name are specified as a quoted string or a variable that resolves to a quoted string, and the privilege checking
option is specified as 0 or 1, as shown in the following example:

ObjectScript

set gStatus = tStatement.%PrepareClassQuery(*'User.queryDocTest", " DocTest"™, 0) // No privileges checked
set gStatus2 = tStatement.%PrepareClassQuery(*'User.queryDocTest", " DocTest", 1) // Privilege is checked

set gStatus3 = tStatement.%PrepareClassQuery(*'User.queryDocTest", " DocTest') // Privilege is checked

The % PrepareClassQuery() method returns a %Status value: Success returns a status of 1. Failure returns an object
expression that begins with 0, followed by encoded error information. For this reason, you cannot perform a qStatus=0
test for failure; you can perform a $$$1S0K(gStatus)=0 macro test for failure.

The % PrepareClassQuery() method uses the %SchemaPath property defined earlier to resolve unqualified names.

% PrepareClassQuery() executes using a CALL statement. Because of this, the executed class query must have an SqlProc
parameter.

The following example shows % PrepareClassQuery() invoking the ByName query defined in the Sample.Person class,
passing a string to limit the names returned to those that start with that string value:

Using InterSystems SQL 73

Using Dynamic SQL

ObjectScript

set statemt=##class(%SQL.Statement) .%New()
set cqStatus=statemt.%PrepareClassQuery(‘'Sample.Person', ' ByName')
if cqgStatus™=1 {write "%PrepareClassQuery failed:" do $System.Status.DisplayError(cqStatus) quit}
set rset=statemt.%Execute(''L')
do rset.%Display()

The following example shows % Prepar eClassQuery() invoking an existing query:

ObjectScript

set tStatement=##class(%SQL.Statement) .%New()
set cqStatus=tStatement.%PrepareClassQuery("%SYS.GlobalQuery","Size")
if cqgStatus®"=1 {write "%PrepareClassQuery failed:" do $System.Status.DisplayError(cqStatus) quit}

set instal I=$SYSTEM.Util .DataDirectory()
set rset=tStatement.%Execute(install_"mgr\User')
do rset.%Display()

The following example shows % Prepare() preparing a CREATE QUERY statement, and then % PrepareClassQuery()
invoking this class query:

ObjectScript

/* Creating the Query */

set query=4

set query(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME PROCEDURE
set query(2)="BEGIN "

set query(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
set query(4)="END"

set statement = ##class(%SQL.Statement) .%New()
set qStatus = statement.%Prepare(.query)
if gStatus "= 1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}

set rset = statement.%Execute()

if (rset_%SQLCODE "= 0) {write "%Execute failed:", I, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"Created a query",!

/* Calling the Query */

write !,"Calling a class query..."

set cqStatus = statement.%PrepareClassQuery(*'User.queryDocTest", "' DocTest")

if cqgStatus "= 1 {write "%PrepareClassQuery failed:" do $SYSTEM.Status.DisplayError(cqStatus) quit}

set rset = statement.%Execute()
if (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write "Query data:",!,!
while rset.%Next()
do rset.%Print()

}

1T (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ', rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"End of data."

/* Deleting the Query */

&sql (DROP QUERY DocTest)

if SQLCODE < O {write !,"Error deleting query:", SQLCODE, " ', %msg quit}
write !,"Deleted the query."

To display a row of data retrieved by a stored query you can use the % Print() method, as shown in this example. To display
specific column data that was retrieved by a stored query you must use either the % Get(" fieldname™) or the
% GetData(colnum) method. See Iterating through a Result Set.

If the query is defined to accept arguments, you can specify input parameters in the SQL statement by using the “? ”
character. You specify the value for each ? input parameter in the % Execute() method when you execute the query. An
input parameter must be declared PUBLIC for a SELECT statement to reference it directly.

You can display information about the currently prepared query using the % Display() method, as shown in the following
example:

74 Using InterSystems SQL

Preparing an SQL Statement

ObjectScript

/* Creating the Query */

set myquery=4

set myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME PROCEDURE "
set myquery(2)="BEGIN "

set myquery(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
set myquery(4)="END"

set statement = ##class(%SQL.Statement) .%New()
set gStatus = statement.%Prepare(.myquer

)
if gStatus "= 1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}

set rset = statement.%Execute()

if (rset_%SQLCODE "= 0) {write "%Execute failed:", I, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message

quit}
write !,"Created a query",!

/* Preparing and Displying Info about the Query */
write !,"Preparing a class query..."
set cqStatus = statement.%PrepareClassQuery(*'User.queryDocTest",""DocTest'")

if cgStatus = 1 {write "%PrepareClassQuery failed:" do $SYSTEM.Status.DisplayError(cqStatus) quit}

do statement.%Display()
write !,"End of %Prepare display"

/* Deleting the Query */

&sql (DROP QUERY DocTest)

if SQLCODE < O {write !,"Error Deleting query:",SQLCODE,"™ ",%msg quit }
write !1,"Deleted the query"

This information consists of the Implementation Class, the Arguments (a comma-separated list of the actual arguments,

either literal values or ? input parameters), and the Statement Text.

For further details, see Defining and Using Class Queries.

8.4.3 Results of a Successful Prepare

Following a successful prepare (% Prepare(), % PrepareClassQuery(), or % ExecDirect()) you can invoke the

%SQL.Statement % Display() instance method or % Getl mplementationDetails() instance method to return the details of

the currently prepared statement. For example:
% Display():

ObjectScript

set myquery = "SELECT TOP 5 Name,Age FROM Sample.Person WHERE Age > 21"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gqStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
do tStatement.%Display()
set rset = tStatement.%Execute()

% GetlmplementationDetails():

ObjectScript

set myquery = "SELECT TOP ? Name,Age FROM Sample.Person WHERE Age > 21 AND Name=:fname"

set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
set bool = tStatement._%GetlmplementationDetails(.pclassname, .ptext, .pargs)
if bool=1 {write "Implementation class= ",pclassname,!
write "Statement text= ",ptext,!
write "Arguments= ",$listtostring(pargs),! } // returns "?,?,c,21,v,fname
else {write "%GetImplementationDetails() failed”,!}
set rset = tStatement.%Execute()

These methods provide the following information:

* Implementation class: the class name corresponding to the cached query. For example: %sqlcq.SAMPLES.cls49.

Using InterSystems SQL

75

Using Dynamic SQL

* Arguments: A list of the query arguments in the order specified. If an argument is enclosed in double parentheses to
suppress literal substitution the argument is not included in the argument list.

% Display() displays a comma-separated list of the query arguments. Each argument can be a literal value, the name
of an input host variables (without the colon), or a question mark (?) for an input parameter. If there are no arguments,
this item displays <<none>>. A predicate that specifies multiple values, such as IN or %I NLIST lists each value as
a separate argument.

% Getl mplementationDetails() returns the query arguments as a %L.ist structure. Each argument is represented by a
pair of elements, a type and a value: Type c¢ (constant) is followed by a literal value; Type v (variable) is followed by
the name of an input host variable (without the colon); Type ? is an input parameter, and is followed by a second
question mark. If there are no arguments, the arguments list is an empty string. A predicate that specifies multiple
values, such as IN or % INLIST lists each value as a separate type and value pair.

e Statement Text: the query text, exactly as specified. Letter case is preserved, host variables and input parameters are
shown as written, the default schema is not shown. For % Prepar e() for example, SELECT TOP :n Name FROM
Clients. For % PrepareClassQuery() for example, call Sample.SP_Sample_By_Name(?).

For other metadata information generated for a prepared query, refer to SQL Metadata.

8.4.4The preparse() Method

You can use the prepar se() method to return a %L.ist structure of the query arguments without having to prepare the SQL
query. The query arguments are returned in the same format as % Getl mplementationDetail ().

The preparse() method also returns the query text. However, unlike % Display() and % Getl mplementationDetails()
which return the query text exactly as specified, the prepar se() method replaces each query argument with a ? character,
removes comments, and normalizes whitespace. It does not supply a default schema name. The prepar se() method in the
following example returns a parsed version of the query text and a %L.ist structure of the query arguments:

ObjectScript

set myq=2

set myq(1l)="SELECT TOP ? Name /* first name */, Age "

set myq(2)=""FROM Sample.MyTable WHERE Name="Fred" AND Age > :years -- end of query"
do ##class(%SQL.Statement) .preparse(.myq, -stripped, .args)

write "preparsed query text: " ,stripped,!

write "arguments list: ",$listtostring(args)

8.5 Executing an SQL Statement

There are two ways to execute an SQL statement using the %SQL.Statement class:

* % Execute(), which executes an SQL statement previous prepared using % Prepare() or % PrepareClassQuer y().

* %ExecDirect(), which both prepares and executes an SQL statement.

* %ExecDirectNoPriv(), which prepares and executes an SQL statement and does not perform privilege checking.
You can also execute an SQL statement without creating an object instance by using the $SY STEM .SQL .Execute() method.

This method both prepares and executes the SQL statement. It creates a cached query. The Execute() method is shown in
the following Terminal example:

USER>set topnum=5
USER>set rset=$SYSTEM.SQL.Execute("'SELECT TOP :topnum Name,Age FROM Sample.Person')

USER>do rset.%Display()

76 Using InterSystems SQL

Executing an SQL Statement

8.5.1 %Execute()

After preparing a query, you can execute it by calling the % Execute() instance method of the %SQL.Statement class. In
the case of anon-SELECT statement, % Execute() invokes the desired operation (such as performing an INSERT). In the
case of a SELECT query, % Execute() generates a result set for subsequent traversal and data retrieval. For example:

ObjectScript

set rset = tStatement.%Execute()

The % Execute() method sets the %SQL.StatementResult class properties %SQLCODE and %Message for all SQL statements.
Successful execution of the statement sets %SQLCODE to 0. This does not mean that the statement successfully retrieved
results. Similarly, % Execute() does not set %SQLCODE to 100 if the statement retrieves no results. The check for results,
and subsequent setting of %SQLCODE to 0, 100, or a negative error value occurs as you fetch the results one row at a time,
such as by using the % Next() method.

% Execute() sets other %SQL.StatementResult properties as follows:

* INSERT, UPDATE, INSERT OR UPDATE, DELETE, and TRUNCATE TABL E statements set %ROWCOUNT
to the number of rows affected by the operation. TRUNCATE TABLE cannot determine the actual number of rows
deleted, so it sets %ROWCOUNT to -1.

INSERT, UPDATE, INSERT OR UPDATE, and DEL ETE set %ROWID to the RowID value of the last record
inserted, updated, or deleted. If the operation did not insert, update, or delete any records, %ROWID is undefined, or
remains set to its prior value. TRUNCATE TABL E does not set %ROWID.

» A SELECT statement sets the %ROWCOUNT property to 0 when it creates the result set. % ROWCOUNT is incremented
when the program iterates through the contents of the result set, for example by using the % Next() method. % Next()
returns 1 to indicate that it is positioned on a row or 0 to indicate that it is positioned after the last row (at the end of
the result set). If the cursor is positioned after the last row, the value of %ROWCOUNT indicates the number of rows
contained in the result set.

If a SELECT query returns only aggregate functions, every % Next() sets %ROWCOUNT=L1. The first % Next()
always sets %SQLCODE-=0, even when there is no data in the table; any subsequent % Next() sets %SQLCODE=100
and sets %ROWCOUNT=1.

A SELECT also sets the %CurrentResult and the %ResultColumnCount. SEL ECT does not set %ROWID.

You can use ZWRITE to return the values for all of the %SQL.StatementResult class properties.

For further details, see SQL System Variables. If you are executing TSQL code with %Dialect set to Sybase or MSSQL,
errors are reported both in the standard protocols for that SQL dialect and in the InterSystems IRIS %SQLCODE and
%Message properties.

8.5.1.1 %Execute() with Input Parameters

The % Execute() method can take one or more parameters that correspond to the input parameters (indicated by “?”
within the prepared SQL statement. The % Execute() parameters correspond to the sequence in which the “?” characters
appear within the SQL statement: the first parameter is used for the first “?”, the second parameter for the second “?”,
and so on. Multiple % Execute() parameters are separated by commas. You can omit a parameter value by specifying the
placeholder comma. The number of % Execute() parameters must correspond to the “?” input parameters. If there are
fewer or more % Execute() parameters than corresponding “?” input parameters, execution fails with the %SQLCODE
property set to an SQLCODE -400 error.

You can use an input parameter to supply a literal value or an expression to the SELECT list and to the other query clauses,
including the TOP clause and the WHERE clause. You cannot use an input parameter to supply a column name or a column
name alias to the SELECT list or to the other query clauses.

Using InterSystems SQL 77

Using Dynamic SQL

When an input parameter is used in a greater than or less than comparison, such as in a WHERE clause, the parameter is
normalized only if it is a valid number. If the input parameter is not a valid number, the comparison condition is checked
using either the sorts after operator (]]) or the no sorts after operator (]]), depending on the comparison. Note that this
operator orders all numbers before any nonnumeric values (such as strings).

The maximum number of input parameters when specified as explicit % Execute() parameters is 255. The maximum
number of input parameters when specified using a variable length array % Execute(vals...) is 380.

Following a Prepare, you can use Prepare arguments metadata to return the count and required data types for ? input
parameters. You can use the %GetImplementationDetails() method to return a list of ? input parameters in a prepared query
and the query text with the ? input parameters shown in context.

The following ObjectScript example executes a query with two input parameters. It specifies the input parameter values
(21 and 26) in the % Execute() method.

ObjectScript

SET tStatement = ##class(%SQL.Statement) .%New(1)
SET tStatement.%SchemaPath = "MyTests,Sample,Cinema"
SET myquery=2
SET myquery(1)="SELECT Name,DOB,Age FROM Person"
SET myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
SET qStatus = tStatement.%Prepare(.myquery)
IF gStatus™=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute(21,26)
WRITE 1,"Execute OK: SQLCODE=",rset.%SQLCODE,!!
DO rset.%Display()
WRITE !,"End of data: SQLCODE=",rset.%SQLCODE

The following ObjectScript example executes the same query. The % Execute() method formal parameter list uses a variable
length array (dynd...) to specify an indefinite number of input parameter values; in this case, the subscripts of the dynd
array. The dynd variable is set to 2 to indicate two subscript values.

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New(1)
set tStatement.%SchemaPath = "MyTests,Sample,Cinema"
set myquery=2
set myquery(1)=""SELECT Name,DOB,Age FROM Person"
set myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
set dynd=2,dynd(1)=21,dynd(2)=26
set gStatus = tStatement.%Prepare(.myquery)
if gStatus™=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set rset = tStatement.%Execute(dynd...)
write !,"Execute OK: SQLCODE=",rset.%SQLCODE,!!
do rset.%Display()
write !,"End of data: SQLCODE=",rset.%SQLCODE

You can issue multiple % Execute() operations on a prepared result set. This enables you to run a query multiple times,
supplying different input parameter values. It is not necessary to close the result set between % Execute() operations, as
shown in the following example:

ObjectScript

set myquery=""SELECT Name,SSN,Age FROM Sample.Person WHERE Name %STARTSWITH ?"
set tStatement = ##class(%SQL.Statement) .%New()
set qStatus = tStatement.%Prepare(myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
set rset = tStatement.%Execute(''A™)
do rset.%Display()
write !,"End of A data™,!!
set rset = tStatement.%Execute(''B'")
do rset.%Display()
write !,"End of B data"

78 Using InterSystems SQL

Executing an SQL Statement

8.5.1.2 Handling %Execute Errors Using Try/Catch

You can execute Dynamic SQL within a TRY block structure, passing runtime errors to the associated CATCH block
exception handler. For % Execute() errors, you can use the %Exception.SQL class to create an exception instance, which
you can then THROW to the CATCH exception handler.

The following example creates an SQL exception instance when an % Execute() error occurs. In this case, the error is a
cardinality mismatch between the number of ? input parameters (1) and the number of % Execute() parameters (3). It throws
the %SQLCODE and %Message property values (as Code and Data) to the CAT CH exception handler. The exception
handler uses the % 1sA() instance method to test the exception type, then displays the % Execute() error:

ObjectScript

try {
set myquery = "SELECT TOP ? Name,DOB FROM Sample.Person™
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
it gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
set rset = tStatement.%Execute(7,9,4)
if rset.%SQLCODE=0 { write !,"Executed query",! }
else { set badSQL=##class(%Exception.SQL) .-%New(, rset.%SQLCODE, ,rset.%Message)
throw badSQL }
do rset.%Display()
write !,"End of data"
return

}
catch exp { write "In the catch block",!
iT l=exp.%IsA("%Exception.SQL"™) {
write "SQLCODE: ",exp.Code,!
write "Message: '",exp.Data,! }
else { write "Not an SQL exception™,! }
return

8.5.2 %ExecDirect()

The %SQL.Statement class provides the % ExecDirect() class method, that both prepares and executes a query in a single
operation. It can prepare either a specified query (like %Prepare()) or an existing class query (like %PrepareClassQuery()).

% ExecDirect() prepares and executes a specified query:

ObjectScript

set myquery=2
set myquery(1)="SELECT Name,Age FROM Sample.Person"
set myquery(2)="WHERE Age > 21 AND Age < 30 ORDER BY Age™
set rset = ##class(%SQL. Statement) %Exechrect(myquery)
iT rset %SQLCODE=0 { write !,"ExecDirect OK"
else { write !,"ExecDirect SQLCODE-" rset. %SQLCODE 1 rset.%Message quit}
do rset. %Dlsplay()
write !,"End of data: SQLCODE=",rset.%SQLCODE

% ExecDirect() prepares and executes an existing class query:

ObjectScript

set mycallg = "?=CALL Sample.PersonSets("A","NH")""
set rset = ##class(%SQL. Statement) %Exechrect(mycallq)
if rset_%SQLCODE=0 { write !,"ExecDirect OK"
else { write !,"ExecDirect SQLCODE—" rset. %SQLCODE,!,rset.%Message quit}
do rset.%Display()
write !,"End of data: SQLCODE=",rset.%SQLCODE

You can specify input parameter values as the third and subsequent parameters of the % ExecDirect() class method, as
shown in the following example:

Using InterSystems SQL 79

Using Dynamic SQL

ObjectScript

set myquery=2
set myquery(1)="SELECT Name,Age FROM Sample.Person"
set myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
set rset = ##class(%SQL.Statement) .%ExecDirect(, .myquery,12,20)
iT rset %SQLCODE"=0 {write !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message quit}
do rset.%Display()
write !,"End of teen data",!!
set rset2 = ##class(%SQL.Statement) .%ExecDirect(, .myquery,19,30)
if rset2_%SQLCODE"=0 {write !,"2nd ExecDirect SQLCODE=",rset2.%SQLCODE,!,rset2_%Message quit}
do rset2_%Display()
write !,"End of twenties data"

The % ExecDirect() input parameters correspond to the sequence in which the “?” characters appear within the SQL
statement: the third parameter is used for the first “?”, the fourth parameter for the second “?”, and so on. You can omit
a parameter value by specifying a placeholder comma. If there are fewer % ExecDirect() input parameters than corresponding
“?” input parameters, the default value (if one exists) is used.

In the following example, the first % ExecDirect() specifies all three “?” input parameters, the second % ExecDir ect()
specifies only the second ? input parameter, and omits the first and third. It takes the Sample.Per sonSets() default (MA")
for the third input parameter:

ObjectScript

set mycall = "?=CALL Sample.PersonSets(?,?)"
set rset = ##class(%SQL.Statement) .%ExecDirect(,mycall, " ,"A" "NH'")
iT rset %SQLCODE"=0 {write !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message quit}
do rset.%Display()
write 1,"End of A people data™,!!
set rset2 = ##class(%SQL.Statement) .%ExecDirect(,mycall,,'B')
it rset2_%SQLCODE"=0 {write !,"2nd ExecDirect SQLCODE=",rset2._%SQLCODE,!,rset2._%Message quit}
do rset2_%Display()
write !,"End of B people data"

% ExecDirect() can invoke the %SQL.Statement % Display() instance method or % Getl mplementationDetails() instance
method to return the details of the currently prepared statement. Because % ExecDirect() can prepare and execute either a
specified query or an existing class query, you can use the % Getl mplementationDetails() pSatementType parameter to
determine which kind of query was prepared:

ObjectScript

set mycall = "?=CALL Sample.PersonSets("A",?)"
set rset = ##class(%SQL.Statement) .%ExecDirect(tStatement,mycall,," " NH")
if rset_%SQLCODE"=0 {write !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset._%Message quit}
set bool = tStatement.%GetlImplementationDetails(.pclassname, .ptext, .pargs, -pStatementType)
it bool=1 {if pStatementType=1 {write "Type= specified query",!}
elseif pStatementType=45 {write "Type= existing class query",!}
write "Implementation class= " ,pclassname,!
write "Statement text= ",ptext,!
write "Arguments= ",$listtostring(pargs),!! }
else {write "%GetImplementationDetails() failed"}
do rset.%Display()
write !,"End of data"

For further details, see Results of a Successful Prepare.

8.5.3 %ExecDirectNoPriv()

The %SQL.Statement class provides the % ExecDirectNoPriv() class method, which, like %ExecDirect, prepares and
executes a query in a single operation. % ExecDirectNoPriv() also disables privilege checking on the statement during
query preparation. Disabling privilege checking gives applications more control over the execution of dynamic queries but
increases security risk

80 Using InterSystems SQL

Returning the Full Result Set

8.6 Returning the Full Result Set

Executing a statement with either % Execute() or % ExecDir ect() returns an object that implements the %SQL.StatementResult
interface. This object can be a unitary value, a result set, or a context object that is returned from a CALL statement.

8.6.1 %Display() Method

You can display the entire result set (the contents of the result object) by calling the % Display() instance method of the
%SQL.StatementResult class, as shown in the following example:
ObjectScript

do rset.%Display()

Note that the % Display() method does not return a %Status value.

When displaying a query result set, % Display() concludes by displaying the row count: “5 Rows(s) Affected”. (This is
the %ROWCOUNT value after % Display() has iterated through the result set.) Note that % Display() does not issue a line
return following this row count statement.

% Display() has two optional arguments:

» Delimiter: a string inserted between data columns and data headers. It appears between resultset columns, immediately
before the header or data value. The default is no delimiter. If omitted, specify a placeholder comma before the Column
Alignment flag.

e ColumnAlignment: an integer flag that specifies how whitespace is calculated between data columns and data headers.
The available options are:

— 0: Resultset header/data columns will be aligned based on the standard delimiter (tab). This is the default.

— 1: Resultset header/data columns will be aligned based on the length of the column header and the standard
delimiter (tab).

— 2: Resultset header/data columns will be aligned based on the precision/length of the column data property and
the standard delimiter (tab).

8.6.2 %DisplayFormatted() Method

You can reformat and redirect the result set contents to a generated file by calling the % DisplayFor matted() instance
method of the %SQL.StatementResult class, rather than calling % Display().

You can specify the result set format either by specifying the string option %DisplayFormatted(*"HTML"") or the cor-
responding integer code %DisplayFormatted(1). InterSystems IRIS generates a file of the specified type, appending
the appropriate file name extension. This table shows the options you can specify and the files you can generate.

String Option Integer Code Extension of Generated File
XML 0 -xml

""HTML" 1 -html

""PDF" 2 -pdf

UTXT™ 99 -txt

"CSv 100 .Csv

Using InterSystems SQL 81

Using Dynamic SQL

Note that the values in the generated CSV file are separated by tabs, not commas.

If you specify any other number or string, then % DisplayFor matted() generates a text (.txt) file. Text files conclude with
the row count (for example “5 Rows(s) Affected”). The other formats do not include a row count.

You can specify or omit a result set file name:

» Ifyou specify a destination file (for example, %¥DisplayFormatted(99, "myresults’)) a file with that name
and the appropriate suffix (file name extension) is generated in the mgr directory in the subdirectory for the current
namespace. For example, C:\InterSystems\IRIS\mgr\user\myresults.txt. If the specified file with that suffix already
exists, InterSystems IRIS overwrites it with new data.

» If you do not specify a destination file (for example, %DisplayFormatted(99)) a file with a randomly-generated
name and the appropriate suffix (file name extension) is generated in the mgr directory in the Temp subdirectory. For
example, C:\InterSystems\IRIS\mgr\Temp\w4FR2gM7tX2Fjs.txt. Each time a query is run a new destination file is
generated.

These examples show Windows filenames; InterSystems IRIS supports equivalent locations on other operating systems.

If the specified file cannot be opened, this operation times out after 30 seconds with an error message; this commonly
occurs when the user does not have write privileges to the specified directory (file folder).

If data cannot be rendered in the specified format, the destination file is created but no result set data is written to it. Instead,
an appropriate message is written to the destination file. For example, a stream field OID contains characters that conflict
with XML and HTML special formatting characters. This XML and HTML stream field issue can be resolved by using
the XMLELEMENT function on stream fields; for example, SELECT Name ,XMLELEMENT (*'Para'',Notes).

You can optionally supply the name of a translate table that % DisplayFor matted() will use when performing the specified
format conversion.

In the case of multiple result sets in a result set sequence, the content of each result set is written to its own file.

The optional third % DisplayFor matted() argument specifies that messages are stored in a separate result set. Upon suc-
cessful completion a message like the following is returned:

Message
21 row(s) affected.

The following Windows example creates two PDF (integer code 2) result set files in C:\InterSystems\IRIS\mgriuser\. It
creates the mess result set for messages, then uses % Display() to display messages to the Terminal:

ObjectScript

set $NAMESPACE="'USER"
set myquery=2
set myquery(1)=""SELECT Name,Age FROM Sample.Person"
set myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
set rset = ##class(%SQL.Statement) .%ExecDirect(, .myquery,12,20)
if rset_%SQLCODE"=0 {write !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message quit}
do rset.%DisplayFormatted(2," " Teenagers', .mess)
do mess.%Display()
write !,"End of teen data",!!
set rset2 = ##class(%SQL.Statement) .%ExecDirect(, -myquery,19,30)
iT rset2_%SQLCODE"=0 {write !,"2nd ExecDirect SQLCODE=",rset2._%SQLCODE,!,rset2._%Message quit}
do rset2_%DisplayFormatted(2,"Twenties', .mess)
do mess.%Display()
write !,"End of twenties data"

8.6.3 Paginating a Result Set

You can use a view 1D (%VID) to paginate a result set. The following example returns pages from the result set, each page
containing 5 rows:

82 Using InterSystems SQL

Returning Specific Values from the Result Set

ObjectScript

set q1=""SELECT %VID AS RSRow,* FROM '
set q2=""(SELECT Name,Home_State FROM Sample.Person WHERE Home_State %STARTSWITH *M") *
set q3=""WHERE %VID BETWEEN ? AND ?"
set myquery = gl_g2_g3
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus=tStatement.%Prepare(myquery)
if gStatus™=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
for 1=1:5:25 {
write 1!, "Next Page",!
set rset=tStatement.%Execute(i,i+4)
do rset.%Display()
3

Refer to %GetRows() for another way to return groups of rows (records) from a result set.

8.7 Returning Specific Values from the Result Set

To return specific values from a query result set, you must iterate through the result set one row at a time. To iterate through
a result set, use the % Next() instance method. You can then either display the results of the whole current row using the
% Print() method, or retrieve the value of a specified column in the current row.

The % Next() method fetches the data for the next row within the query results and places this data in the Data property of
the result set object. % Next() returns one of these values:

* %Next() = 1 — Cursor is positioned on a row in the query result.

* 9%Next() = 0 — Cursor is positioned after the last row, indicating that there are no more rows to return or that the
query returned O rows.

Each call to % Next() that returns 1 increments the %ROWCOUNT property of the result set by 1. If the cursor is positioned
after the last row (% Next() returns 0), %ROWCOUNT indicates the number of rows in the result set.

Each call to % Next() also updates the %SQLCODE property of the result set. The updated %SQLCODE value depends on
the fetched results:

* %SQLCODE = 0 — % Next() successfully fetched a row of results.

* 9%SQLCODE =100 — % Next() fetched no results. Either the query returned no results or the cursor is positioned after
the last row and there are no more results to fetch.

* %SQLCODE < 0 — % Next() failed to perform the fetch. % Next() sets %SQLCODE to the SQLCODE of the error
that caused the fetch to fail. It also sets the %Message property of the result set to the error message text. When calling
% Next() iteratively in a loop, to avoid silent errors, check for negative %SQLCODE values and display the %SQLCODE
error and its %Message text. For example:

ObjectScript

while rset.%Next()

write "%Next succeeded."
by
if (rset.%SQLCODE < 0)

write "%Next failed:', I, "SQLCODE ", rset.%SQLCODE, ': ', rset.%Message
quit

If a SELECT query returns only aggregate functions, every % Next() sets %ROWCOUNT=1. The first % Next() returns 1
and sets %SQLCODE=0 and %ROWCOUNT=1, even when there is no data in the table. Any subsequent % Next() returns
0 and sets %SQLCODE=100 and %ROWCOUNT=1.

Using InterSystems SQL 83

Using Dynamic SQL

After fetching a row from the result set, you can display data from that row using these methods:
* rset.%Print() to return all of the data values for the current row from the query result set.

* rset.%GetRow() and rset.GetRows() to return the data values for a row as elements in an encoded List structure from
the query result set.

e rset.name to return a data value by property name, field name, alias property name, or alias field name from a query
result set.

* rset.%Get("fieldname™) to return a data value by field name or alias field name from either a query result set or a stored
query.
* rset.%GetData(n) to return a data value by column number from either a query result set or a stored query.

8.7.1 %Print() Method

The % Print() instance method retrieves the current record from the result set. By default, % Print() inserts a blank space
delimiter between data field values. % Print() does not insert a blank space before the first field value or after the last field
value in a record; it issues a line return at the end of the record. If a data field value already contains a blank space, that
field value is enclosed in quotation marks to differentiate it from the delimiter. For example, if % Print() is returning city
names, it would return them as follows: Chicago '""New York' Boston Atlanta "'Los Angeles' "'Salt Lake
City" Washington. %Print() quotes field values that contain the delimiter as part of the data value even when the

% Print() delimiter is never used; for example if there is only one field in the result set.

You can optionally specify a % Print() parameter that provides a different delimiter to be placed between the field values.
Specifying a different delimiter overrides the quoting of data strings that contain blank spaces. This % Print() delimiter
can be one or more characters. It is specified as a quoted string. It is generally preferable that the % Print() delimiter be a
character or string not found in the result set data. However, if a field value in the result set contains the % Print() delimiter
character (or string), that field value is returned enclosed in quotation marks to differentiate it from the delimiter.

If a field value in the result set contains a line feed character, that field value is returned delimited by quotation marks.

The following ObjectScript example iterates through the query result set using % Print() to display each result set record,
separating values with a """ delimiter. Note how % Print() displays data from the FavoriteColors field which is an encoded
list of elements:

ObjectScript

set q1="SELECT TOP 5 Name,DOB,Home_State,FavoriteColors "
set g2=""FROM Sample.Person WHERE FavoriteColors IS NOT NULL"
set query = ql_qg2

set statement = ##class(%SQL.Statement) .%New()

set status = statement.%Prepare(query)
iT $$SISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
ifT (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()

write "Row count "', rset.%ROWCOUNT,!
do rset.%Print("'MNY)

T

if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"End of data"

write 1,"Total row count=",rset.%ROWCOUNT

The following example shows how field values that contain the delimiter are returned enclosed in quotation marks. In this
example, the capital letter A is used as the field delimiter; therefore, any field value (name, street address, or state abbrevi-
ation) that contains a capital A literal is returned delimited by quotation marks.

84 Using InterSystems SQL

Returning Specific Values from the Result Set

ObjectScript

set query = "SELECT TOP 25 Name,Home_Street,Home_State,Age FROM Sample.Person"
set statement = ##class(%SQL.Statement) .%New()

set status = statement.%Prepare(query)
iT $$SISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
ifT (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()

do rset.%Print("'A™)

}
iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"End of data"

write I,"Total row count=",rset.%ROWCOUNT

8.7.2 %GetRow() and %GetRows() Methods

The % GetRow() instance method retrieves the current row (record) from the result set as an encoded list of field value
elements:

ObjectScript

set myquery = "SELECT TOP 17 %ID,Name,Age FROM Sample.Person"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gStatus™=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set rset = tStatement.%Execute()
for {set x=rset._%GetRow(.row, .status)
if x=1 {write $listtostring(row,"™ | "),! }
else {write !,"End of data”
write !,"Total row count=",rset.%ROWCOUNT
return }

}

The % GetRows() instance method retrieves a group of rows (records) of a specified size from the result set. Each row is
returned as an encoded list of field value elements.

The following example returns the 1st, 6th, and 11th row in the result set. In this example, the % GetRows() first parameter
(5) specifies that % GetRows() should retrieve successive groups of five rows. % GetRows() returns 1 if it successfully
retrieves a group of five rows. The . rows parameter passes by reference a subscripted array of these five rows, so rows (1)
returns the first row from each set of five: rows 1, 6, and 11. Specifying rows(2) would return rows 2, 7, and 12.

ObjectScript

set myquery = "SELECT TOP 17 %ID,Name,Age FROM Sample.Person"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
set rset = tStatement.%Execute()
for {set x=rset.%GetRows(5, -rows, .status)
if x=1 {write $listtostring(rows(1)." | ").! }
else {write !,"End of data"”
write !,"Total row count=",rset.%ROWCOUNT
return }

}

Rather than retrieving individual rows by subscript, you can use the ZWRI TE rows command to return all of the subscripts
in the retrieved array. Note that above example ZWRITE rows does not return the 16th and 17th row in the result set,
because these rows are remainders after the last group of five rows was retrieved.

Using InterSystems SQL 85

Using Dynamic SQL

8.7.3 rset.name Property

When InterSystems IRIS generates a result set, it creates a result set class that contains a unique property corresponding
to each field name and field name alias in the result set.

You can use the rset.name property to return a data value by property name, field name, property name alias, or field
name alias.

Property Name: If no field alias is defined, specify the field property name as rset.PropName. The result set field
property name is taken from the corresponding property name in the table definition class.

Field Name: If no field alias is defined, specify the field name (or the property name) as rset."fieldname". This
is the SqlFieldName specified in the table definition. InterSystems IRIS uses this field name to locate the corresponding
property name. In many cases, the property name and the field name (SqlFieldName) are identical.

Alias Property Name: If a field alias is defined, specify the alias property name as rset.AliasProp. An alias
property name is generated from the column name alias in the SEL ECT statement. You cannot specify a field property
name for a field with a defined alias.

Alias Name: If a field alias is defined, specify this alias name (or the alias property name) as rset."alias". This
is the column name alias in the SELECT statement. You cannot specify a field name for a field with a defined alias.

Aggregate, Expression, or Subquery: InterSystems IRIS assigns these select-items a field name of Aggregate_n,
Expression_n, or Subquery_n (where the integer n corresponds to the sequence of the select-item list specified in the
query). You can retrieve these select-item values using the field name (rset. "'SubQuery_7' not case-sensitive),
the corresponding property name (rset.Subquery7 case-sensitive), or by a user-defined field name alias. You can
also just specify the select-item sequence number using rset.%GetData(n).

When specifying a property name, you must use correct letter case; when specifying a field name, correct letter case is not
required.

This invocation of rset.name using the property name has the following consequences:

Letter Case: Property names are case-sensitive. Field names are not case-sensitive. Dynamic SQL can automatically
resolve differences in letter case between a specified field or alias name and the corresponding property name. However,
letter case resolution takes time. To maximize performance, you should specify the exact letter case of the property
name or the alias.

Non-alphanumeric Characters: A property name can only contain alphanumeric characters (except for an initial %
character). If the corresponding SQL field name or field name alias contains non-alphanumeric characters (for example,
Last_Name) you can do either of the following:

— Specify the field name delimited with quotation marks. For example, rset."Last_Name). This use of delimiters
does not require that delimited identifiers be enabled. Letter case resolution is performed.

— Specify the corresponding property hame, eliminating the non-alphanumeric characters. For example,
rset.LastName (or rset."LastName"). You must specify the correct letter case for the property name.

% Property Names: Generally, property names beginning with a % character are reserved for system use. If a field
property name or alias begins with a % character and that name conflicts with a system-defined property, the system-
defined property is returned. For example, for SELECT Notes AS %Message, invoking rset.%Message will not
return the Notes field values; it returns the %6Message property defined for the statement result class. You can use
rset.%Get("%Message") to return the field value.

Column Alias: If an alias is specified, Dynamic SQL always matches the alias rather than matching the field name or
field property name. For example, for SELECT Name AS Last_Name, the data can only be retrieved using
rset.LastName or rset. " 'Last_Name', not by using rset.Name.

86

Using InterSystems SQL

Returning Specific Values from the Result Set

» Duplicate Names: Names are duplicate if they resolve to the same property name. Duplicate names can be multiple
references to the same field in a table, alias references to different fields in a table, or references to fields in different
tables. For example SELECT p.DOB,e.DOB specifies two duplicate names, even though those names refer to fields
in different tables.

If the SEL ECT statement contains multiple instances of the same field name or field name alias, rset.PropName
or rset."Fieldname’ always return the first one specified in the SELECT statement. For example, for SELECT
c.Name,p.-.Name FROM Sample.Person AS p,Sample.Company AS c using rset.Name retrieves the
company name field data; SELECT c.Name,p.-Name AS Name FROM Sample.Person AS p,Sample.Company
AS cusing rset.""name" also retrieves the company name field data. If there are duplicate Name fields in the query
the last character of the field name (Name) is replaced by a character (or characters) to create a unique property name.
Thus a duplicate Name field name in a query has a corresponding unique property hame, beginning with Nam0 (for
the first duplicate) through Nam9 and continuing with capital letters NamA through NamZ.

For a user-specified query prepared using % Prepar&() you can use the property name by itself. For a stored query prepared
using % PrepareClassQuery(), you must use the % Get(" fieldname") method.

The following example returns the values of three fields specified by property names: two field values by property name
and the third field value by alias property name. In these cases, the specified property name is identical to the field name
or field alias:

ObjectScript

set query = "SELECT TOP 5 Name,DOB AS bdate,FavoriteColors FROM Sample.Person"
set statement = ##class(%SQL.Statement) .%New(1)

set status = statement.%Prepare(query)
ifT $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
if (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message

quit}
while rset.%Next()

write "Row count " ,rset.%ROWCOUNT,!
write rset.Name

write " prefers ",rset.FavoriteColors
write ", Birth date ",rset.bdate,!!

T

ifT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write !,"End of data"

write !,"Total row count=",rset.%ROWCOUNT

In the above example, one of the fields returned is the FavoriteColors field, which contains %L.ist data. To display this data,
the % New(1) class method sets the %SelectMode property parameter to 1 (ODBC), causing this program to display %L.ist
data as a comma-separated string and the birth date in ODBC format:

The following example returns the Home_State field. Because a property name cannot contain an underscore character,
this example specifies the field name (the SqlFieldName) delimited with quotation marks ("Home_State™). You could also
specify the corresponding generated property name without quotation marks (HomeState). Note that the delimited field
name ("Home_State") is not case-sensitive, but the generated property name (HomeState) is case-sensitive:

Using InterSystems SQL 87

Using Dynamic SQL

ObjectScript

set query = "SELECT TOP 5 Name,Home_State FROM Sample.Person™
set statement = ##class(%SQL.Statement) .%New(2)

set status = statement.%Prepare(query)
iT $$SISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
ifT (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()
{

write "Row count "', rset.%ROWCOUNT,!
write rset.Name
write " lives in ",rset."Home_State",!

b

iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write !,"End of data"

write !,"Total row count=",rset.%ROWCOUNT

8.7.3.1 Swizzling a Fieldname Property with %ObjectSelectMode=1

The following example is prepared with %0ObjectSelectMode=1, which causes fields whose type class is a swizzleable type
(a persistent class, a serial class, or a stream class) to automatically swizzle when returning a value using the field name
property. The result of swizzling a field value is the corresponding object reference (OREF). InterSystems IRIS does not
perform this swizzling operation when accessing a field using the % Get() or % GetData() methods. In this example,
rset.Home is swizzled, while rset.%GetData(2), which refers to the same field, is not swizzled:

ObjectScript

set query = "SELECT TOP 5 Name,Home FROM Sample.Person™

set statement = ##class(%SQL.Statement) .%New(0)

set statement.%ObjectSelectMode = 1

write !,"set ObjectSelectMode=",statement.%0ObjectSelectMode, !

set status = statement.%Prepare(query)
iT $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
ifT (rset . %SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

while rset.%Next()
{

write "Row count: ",rset.%ROWCOUNT,!
write rset.Name,!

write " ",rset._Home,!
write rset.%GetData(l)
write " ",$listtostring(rset.%GetData(2)),!!
by
iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write !,"End of data"
write !,"Total row count=",rset.%ROWCOUNT

The following example uses %ObjectSelectMode=1 to derive Home_State values for the selected records from the unique
record ID (%ID). Note that the Home_State field is not selected in the original query:

88 Using InterSystems SQL

Returning Specific Values from the Result Set

ObjectScript

set query = "SELECT TOP 5 %ID AS MylD,Name,Age FROM Sample.Person"
set statement = ##class(%SQL.Statement) .%New()
set statement.%ObjectSelectMode=1

set status = statement.%Prepare(query)
it $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
if (rset_%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()
{

write rset.Name
write " Home State:",rset._MylD.Home.State,!

b

iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write !,"End of data"

write !,"Total row count=",rset.%ROWCOUNT

If configured, the system generates a <SWIZZLE FAIL> error if the swizzled property is defined but cannot be referenced.
This can occur if the referenced property has been unexpectedly deleted from disk or is locked by another process. To
determine the cause of the swizzle failure look in %objlasterror immediately after the <SWIZZLE FAIL> error and decode
this %Status value.

By default, <SWIZZLE FAIL> is not configured. You can set this behavior globally by setting set
~pSYS("ThrowSwizzleError'™)=1, or by using the InterSystems IRIS Management Portal. From System Administration,
select Configuration, then SQL and Object Settings, then Objects. On this screen you can set the <SWIZZLE FAIL> option.

8.7.4 %Get("fieldname") Method

You can use the % Get(" fieldname") instance method to return a data value by field name or field name alias. Dynamic
SQL resolves letter case as needed. If the specified field name or field name alias does not exist, the system generates a
<PROPERTY DOES NOT EXIST> error.

The following example returns values for the Home_State field and the Last_Name alias from the query result set.

ObjectScript

set query = "SELECT TOP 5 Home_State,Name AS Last_Name FROM Sample.Person"
set statement = ##class(%SQL.Statement) .%New(2)

set status = statement.%Prepare(query)
iT $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
if (rset_%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()
{
write rset.%Get(''Home_State')," : ",rset.%Get(''Last_Name'),!

T

if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"End of data"

write 1,"Total row count=",rset.%ROWCOUNT

You must use the % Get (" fieldname™) instance method to retrieve individual data items by field property name from an
existing query prepared using % PrepareClassQuery(). If the field property name does not exist, the system generates a
<PROPERTY DOES NOT EXIST> error.

The following example returns the Nsp (namespace) field values by field property name from a built-in query. Because
this query is an existing stored query, this field retrieval requires the use of the % Get(" fieldname") method. Note that
because "Nsp" is a property name, it is case-sensitive:

Using InterSystems SQL 89

Using Dynamic SQL

ObjectScript

set statement = ##class(%SQL.Statement) .%New(2)
set status = statement.%PrepareClassQuery("'%SYS.Namespace", " List'")
it $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
if (rset_%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()
write "Namespace: ",rset.%Get("'Nsp'™),!

T

if (rset.%SQLCODE < 0) {write "%Next failed:', !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write !,"End of data"

write 1,"Total row count=",rset.%ROWCOUNT

Duplicate Names: Names are duplicate if they resolve to the same property name. Duplicate names can be multiple references
to the same field, references to different fields in a table, or references to fields in different tables. If the SELECT statement
contains multiple instances of the same field name or field name alias, % Get(" fieldname") always returns the last instance
of a duplicate name as specified in the query. This is the opposite of rset.PropName, which returns the first instance of
a duplicate name as specified in the query. This is shown in the following example:

ObjectScript

set query = "SELECT c.Name,p-Name FROM Sample.Person AS p,Sample.Company AS c"
set statement = ##class(%SQL.Statement) .%New()

set status = statement.%Prepare(query)
ifT $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
if (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

while rset.%Next()
write "Prop=",rset.Name," Get=",rset.%Get("'"Name'),!
}
ifT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message

quit}
write !,rset_%ROWCOUNT," End of data"

8.7.5 %GetData(n) Method

The % GetData(n) instance method returns data for the current row indexed by the integer count column number of the
result set. You can use % GetData(n) with either a specified query prepared using % Prepare() or a stored query prepared
using % PrepareClassQuery().

The integer n corresponds to the sequence of the select-item list specified in the query. The RowlID field is not given an
integer n value, unless explicitly specified in the select-item list. If nis higher than the number of select-items in the query,
or 0, or a negative number, Dynamic SQL returns no value and issues no error.

% GetData(n) is the only way to return a specific duplicate field name or duplicate alias; rset.Name returns the first
duplicate, %Get("*Name'") returns the last duplicate.

90 Using InterSystems SQL

Returning Multiple Result Sets

ObjectScript

set query = "SELECT TOP 5 Name,SSN,Age FROM Sample.Person"
set statement = ##class(%SQL.Statement) .%New()

set status = statement.%Prepare(query)
iT $$SISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

set rset = statement.%Execute()
ifT (rset.%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

while rset.%Next()
write "Years:",rset._%GetData(3)," Name:",rset.%GetData(l),!
}
iT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message
quit}

write "End of data"
write !,"Total row count=",rset.%ROWCOUNT

8.8 Returning Multiple Result Sets

A CALL statement can return multiple dynamic result sets as a collection referred to as a result set sequence (RSS).

The following example uses the % NextResult() method to return multiple result sets separately:

ObjectScript

set mycall = "CALL Sample.CustomSets()"

set rset = ##class(%SQL.Statement) .%ExecDirect(,mycall)

if rset_%SQLCODE"=0 {write !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message quit}
set rsetl = rset.%NextResult()

do rsetl._%Display()

write !,"End of 1st Result Set data",!!

set rset2 = rset.%NextResult()

do rset2._%Display()
write !,"End of 2nd Result Set data"

8.9 SQL Metadata

Dynamic SQL provides the following types of metadata:
» After a Prepare, metadata describing the type of query.
o After a Prepare, metadata describing the select-items in the query (Columns and Extended Column Info).

e After a Prepare, metadata describing the query arguments: ? parameters, :var parameters, and constants. (Statement
Parameters, Formal Parameters, and Objects)

» After an Execute, metadata describing the query result set.

%SQL.StatementMetadata property values are available following a Prepare operation (% Prepar€(), % PrepareClassQuer y(),
or % ExecDirect()).

* You can return %SQL.StatementMetadata properties directly for the most recent % Prepar &().

e You can return the %SQL.Statement %Metadata property containing the OREF for the %SQL.StatementMetadata
properties. This enables you to return metadata for multiple Prepare operations.

Using InterSystems SQL 91

Using Dynamic SQL

A SELECT or CALL statement returns all of this metadata. An INSERT, UPDATE, or DEL ETE returns Statement Type
Metadata and the Formal Parameters.

8.9.1 Statement Type Metadata

Following a Prepare using the %SQL.Statement class, you can use the %SQL.StatementMetadata statementType property
to determine what type of SQL statement was prepared, as shown in the following example. This example uses the
%SQL.Statement %Metadata property to preserve and compare the metadata for two Prepare operations:

ObjectScript

set tStatement = ##class(%SQL.Statement) .%New()
set myqueryl = "SELECT TOP ? Name,Age,AVG(Age),CURRENT_DATE FROM Sample.Person"
set myquery2 = "CALL Sample.SP_Sample_By_Name(?)"
set gStatus = tStatement.%Prepare(myqueryl)
if gStatus™"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set metal = tStatement.%Metadata
set gStatus = tStatement.%Prepare(myquery2)
if gStatus™"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set meta2 = tStatement.%Metadata
write "Statement type query 1: ",metal.statementType,!
write "Statement type query 2: ",meta2.statementType,!
write "End of metadata"

The Class Reference entry for the statementType property lists the statement type integer codes. The most common codes
are 1 (a SELECT query) and 45 (a CALL to a stored query).

You can return the same information using the % Getl mplementationDetails() instance method, as described in Results
of a Successful Prepare.

After executing a query, you can return the statement type name (for example, SELECT) from the result set.

8.9.2 Select-item Metadata

Following a Prepare of a SELECT or CALL statement using the %SQL.Statement class, you can return metadata about
each select-item column specified in the query, either by displaying all of the metadata or by specifying individual metadata
items. This column metadata includes ODBC data type information, as well as client type and InterSystems Objects property
origins and class type information.

The following example returns the number of columns specified in the most recently prepared query:

ObjectScript

set myquery = "SELECT %ID AS id,Name,DOB,Age,AVG(Age),CURRENT_DATE,Home_State FROM Sample.Person"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gqStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
write "Number of columns=",tStatement.%Metadata.columnCount,!
write "End of metadata'

The following example returns the column name (or column alias), ODBC data type, maximum data length (precision),
and scale for each select-item field:

92 Using InterSystems SQL

SQL Metadata

ObjectScript

set $NAMESPACE="'SAMPLES"
set myquery=2
set myquery(1)=""SELECT Name AS VendorName,lLastPayDate,MinPayment,NetDays,"
set myquery(2)="AVG(MinPayment) ,$HOROLOG,%TABLENAME FROM Sample.Vendor"
set rset = ##class(%SQL.Statement) .%New()
set gStatus = rset.%Prepare(.-myquery)
if gStatus™"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set x=rset.%Metadata.columns.Count()
set x=1
while rset.%Metadata.columns.GetAt(x) {
set column=rset.%Metadata.columns.GetAt(x)
write 1,x," ",column_colName," is data type ",column.ODBCType
write " with a size of ",column.precision,”" and scale = ",column.scale
set x=x+1 }
write !,"End of metadata"

The following example displays all of the column metadata using the %SQL.StatementMetadata % Display() instance
method:

ObjectScript

set query = "SELECT %ID AS id,Name,DOB,Age,AVG(Age),CURRENT_DATE,Home_State FROM Sample.Person"
set tStatement = ##class(%SQL.Statement) .%New()

set gStatus = tStatement.%Prepare(query)

if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}

do tStatement.%Metadata.%Display()

write !,"End of metadata"

This returns two table listings of the selected fields. The first columns metadata table lists column definition information:

Using InterSystems SQL

93

Using Dynamic SQL

Display Header

Column Name

Type

Prec

Scale

Null

Label

Table

Schema

CType

%SQL.StatementColumn
Property

colName

ODBCType

precision

scale

isNullable

label

tableName

schemaName

clientType

Description

The SQL name of the column. If the column is given an
alias, the column alias, not the field name, is listed here.
Names and aliases are truncated to 12 characters.

For an expression, aggregate, literal, host variable, or
subquery, the assigned “Expression_n", “Aggregate_n”,
“Literal_n”, “HostVar_n", or “Subquery_n" label is listed
(with n being the SELECT item sequence number). If you
have assigned an alias to an expression, aggregate, lit-
eral, host variable, or subquery, the alias is listed here.

The integer code for the ODBC data type. These codes
are listed in Integer Codes for Data Types. Note that these
ODBC data type codes are not the same as the CType
data type codes.

The precision or maximum length, in characters. Precision
and scale metadata for TIME data types are described in
Date, Time, PosixTime, and TimeStamp Data Types.

The maximum number of fractional decimal digits.
Returns 0 for integer or non-numeric values. Precision
and scale metadata for TIME data types are described in
Date, Time, PosixTime, and TimeStamp Data Types.

An integer value that indicates whether the column is
defined as Non-NULL (0), or if NULL is permitted (1). The
RowID returns 0. If the SELECT item is an aggregate or
subquery that could result in NULL, or if it specifies the
NULL literal, this item is set to 1. If the SELECT item is
an expression or host variable, this item is set to 2 (cannot
be determined).

The column name or column alias (same as Column
Name).

The SQL table name. The actual table name is always
listed here, even if you have given the table an alias. If
the SELECT item is an expression or an aggregate no
table name is listed. If the SELECT item is a subquery,
the subquery table name is listed.

The table’s schema name. If no schema name was
specified, returns the system-wide default schema. If the
SELECT item is an expression or an aggregate no
schema name is listed. If the SELECT item is a subquery
no schema name is listed.

The integer code for the client data type. See the
%SQL.StatementColumn clientType property for a list of
values.

94

Using InterSystems SQL

SQL Metadata

The second columns metadata table lists extended column information. The Extended Column Info table lists each column

with twelve boolean flags (SQLRESULTCOL), specified as Y (Yes) or N (No):

Boolean Flag

1: Autolncrement

2: CaseSensitive

3: Currency

4: ReadOnly

5: RowVersion

6: Unique

7: Aliased

8: Expression

9: Hidden

10: Identity

%SQL.StatementColumn Property

isAutolncrement

isCaseSensitive

isCurrency

isReadOnly

isRowVersion

isUnique

isAliased

isExpression

isHidden

isldentity

Description

The RowlID and IDENTITY fields
returns'.

A string data type field with
%EXACT collation returns Y.

A property that references a
%SerialObject embedded object
returns.

A field defined with a data type of
%Library.Currency, such as the
MONEY data type.

An Expression, Aggregate, Literal,
HostVar, or Subquery returns'Y.
The RowlID, IDENTITY, and
RowVersion fields returns Y.

The RowVersion field returns'Y.

A field defined as having a unique
value constraint. The RowID and
IDENTITY fields returns .

The system supplies an alias to a
non-field select-item. Therefore,
an Expression, Aggregate, Literal,
HostVar, or Subquery returns,
whether or not the user replaced
the system alias by specifying a
column alias. This flag is not
affected by user-specified column
aliases.

An Expression returns'Y.

If the table is defined with
%PUBLICROWID or
SglRowldPrivate=0 (the default),
the RowID field returns N.
Otherwise, the RowID field returns
Y. A property that references a
%SerialObject embedded object
returns.

A field defined as an IDENTITY
field returns Y. The RowID field if
the RowID is not hidden returns'Y.

Using InterSystems SQL

95

Using Dynamic SQL

Boolean Flag %SQL.StatementColumn Property Description

11: KeyColumn isKeyColumn A field defined as a primary key
field or the target of a foreign key
constraint. The RowlID field returns

Y.

12: RowlID isRowld The RowlID and IDENTITY fields
returns'.

13:isList isList A field defined as data type

%Library.List or %Library.ListOfBi-
nary, or a field that is a list or array
collection returns Y. CType (client
data type)=6.

An expression using the $LIST-
BUILD or $LISTFROMSTRING
function to generate a list returns
Y.

The Extended Column Info metadata table lists the Column Name (the SQL name or column alias), the Linked Prop (linked
persistent class property) and Type Class (data type class) for each of the selected fields. Note that the Linked Prop lists the
persistent class name (not the SQL table name) and the property name (not the column alias).

» For an ordinary table field (SELECT Name FROM Sample.Person): Linked Prop=Sample.Person.Name, Type
Class=%L.ibrary.String.

* Forthe table’s RowID (SELECT %ID FROM Sample.Person): Linked Prop= [none], Type Class=Sample.Person.

» For an Expression, Aggregate, Literal, HostVar, or Subquery (SELECT COUNT(Name) FROM Sample.Person):
Linked Prop= [none], Type Class=%L.ibrary.Bigint.

e Forareferenced %SerialObject embedded object property (SELECT Home State FROM Sample.Person). Linked
Prop=Sample.Address.State, Type Class=%L.ibrary.String.

» For afield referencing a %SerialObject embedded object (SELECT Home FROM Sample.Person). Linked
Prop=Sample.Person.Home, Type Class=Sample.Address.

In this example, the Home_State field in Sample.Person references the State property of the %SerialObject class Sam-
ple.Address.

The following example returns the metadata for a called stored procedure with one formal parameter, which is also a
statement parameter:

ObjectScript

set mysql = "CALL Sample.SP_Sample_By Name(?)"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(.mysql)
if gStatus™=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
do tStatement.%Metadata.%Display()
write !,"End of metadata"

It returns not only column (field) information, but also values for Statement Parameters, Formal Parameters, and Objects.

The following example returns the metadata for a with three formal parameters. One of these three parameters is designated
with a question mark (?) making it a statement parameter:

96 Using InterSystems SQL

SQL Metadata

ObjectScript

set mycall = "CALL personsets(?,"MA™)"
set tStatement = ##class(%SQL.Statement) .%New(0, sample')
set gStatus = tStatement.%Prepare(mycall)
if gStatus™"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
do tStatement.%Metadata.%Display()
write !,"End of metadata"

Note that this metadata returns no column information, but the Statement Parameters, Formal Parameters lists contain the
column names and data types.

8.9.3 Query Arguments Metadata

Following a Prepare using the %SQL.Statement class, you can return metadata about query arguments: input parameters
(specified as a question mark (?)), input host variables (specified as - varname), and constants (literal values). The following
metadata can be returned:

» Count of ? parameters: parameter Count property
» ODBC data types of ? parameters: %SQL.StatementMetadata % Display() instance method Statement Parameters list.

e Listof ?, v (zvar), and ¢ (constant) parameters: % Getl mplementationDetails() instance method, as described in
Results of a Successful Prepare.

» ODBC data types of ?, v (:var), and c (constant) parameters: formal Parameters property.
%SQL.StatementMetadata % Display() instance method Formal Parameters list.

» Text of query showing these arguments: % Getl mplementationDetails() instance method, as described in Results of
a Successful Prepare.

The statement metadata % Display() method lists the Statement Parameters and Formal parameters. For each parameter it
lists the sequential parameter number, ODBC data type, precision, scale, whether it is nullable (2 means that a value is
always supplied), and its corresponding property name (colName), and column type.

Note that some ODBC data types are returned as negative integers. For a table of ODBC data type integer codes, see Data
Types.

The following example returns the ODBC data types of each of the query arguments (?, :var, and constants) in order.
Note that the TOP argument is returned as data type 12 (VARCHAR) rather than 4 (INTEGER) because it is possible to
specify TOP ALL:

ObjectScript

set myquery = 4
set myquery(1)
set myquery(2)
set myquery(3)

"SELECT TOP ? Name,DOB,Age+10 ™
"FROM Sample.Person"
"WHERE %ID BETWEEN :startid :endid AND DOB=?"
set myquery(4) "ORDER BY $PIECE(Name,",",?)"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(.myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(qStatus) quit}
set prepmeta = tStatement.%Metadata
write "Number of ? parameters=",prepmeta.parameterCount,!
set formalobj = prepmeta.formalParameters
set i=1
while formalobj.GetAt(i) {
set prop=formalobj.GetAt(i)
write prop.colName," type= ",prop.ODBCType,!
set i=i+l }
write "End of metadata'

Following an Execute, arguments metadata is not available from the query result set metadata. In a result set all parameters
are resolved. Therefore parameterCount = 0, and formalParameters contains no data.

Using InterSystems SQL 97

Using Dynamic SQL

8.9.4 Query Result Set Metadata

Following an Execute using the %SQL.Statement class, you can return result set metadata by invoking:
* 9%SQL.StatementResult class properties.

* 9%SQL.StatementResult % GetM etadata() method, accessing %SQL.StatementMetadata class properties.

8.9.4.1 %SQL.StatementResult Properties

Following an Execute query operation, %SQL.StatementResult returns:

* The %SatementType property returns an integer code that corresponds to the SQL statement most recently executed.
The following is a partial list of these integer codes: 1 = SELECT; 2 = INSERT; 3 = UPDATE; 4 = DELETE or
TRUNCATE TABLE; 9 = CREATE TABLE; 15 = CREATE INDEX; 45 = CALL. For a complete list of these
values, see %SQL.StatementResult.

» The %SatementTypeName calculated property returns the command name of the SQL statement most recently executed,
based on the %StatementType. This name is returned in uppercase letters. Note that a TRUNCATE TABLE operation
is returned as DELETE. An INSERT OR UPDATE is returned as INSERT, even when it performed an update oper-
ation.

* The %ResultColumnCount property returns the number of columns in the result set rows.
The following example shows these properties:

ObjectScript

set myquery = "SELECT TOP ? Name,DOB,Age FROM Sample.Person WHERE Age > ?"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(myquery)
if gStatus™=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set rset = tStatement.%Execute(10,55)
if rset.%SQLCODE=0 {
write "Statement type=",rset.%StatementType,!
write "Statement name=",rset.%StatementTypeName, !
write "Column count=",rset.%ResultColumnCount,!
write "End of metadata" }
else { write !,"SQLCODE=",rset.%SQLCODE," ", rset.%Message }

8.9.4.2 %SQL.StatementResult %GetMetadata()

Following an Execute, you can use the %SQL.StatementResult % GetM etadata() method to access the
%SQL.StatementMetadata class properties. These are the same properties accessed by the %SQL.Statement %Metadata
property following a Prepare.

The following example shows the properties:

98 Using InterSystems SQL

Auditing Dynamic SQL

ObjectScript

set myquery=2
set myquery(1)="SELECT Name AS VendorName,LastPayDate,MinPayment,NetDays,"
set myquery(2)="AVG(MinPayment) ,$HOROLOG,%TABLENAME FROM Sample.Vendor"
set tStatement = ##class(%SQL.Statement) .%New()
set gStatus = tStatement.%Prepare(.myquery)
if gStatus"=1 {write "%Prepare failed:" do $System.Status.DisplayError(gStatus) quit}
set rset = tStatement.%Execute()
iT rset.%SQLCODE=0 {
set rsmeta=rset._%GetMetadata()
set x=rsmeta.columns.Count()
set x=1
while rsmeta.columns._GetAt(x) {
set column=rsmeta.columns.GetAt(x)
write 1,x," ",column.colName," is data type ",column.ODBCType
write " with a size of ",column.precision,"” and scale = ",column.scale
set x=x+1 }

}
else { write !,"SQLCODE="",rset.%SQLCODE," ",rset.%Message }
write !,"End of metadata"

Note that the result set metadata does not provide arguments metadata. This is because the Execute operation resolves all
parameters. Therefore, in a result set, parameterCount = 0, and formalParameters contains no data.

8.10 Auditing Dynamic SQL

InterSystems IRIS supports optional auditing of Dynamic SQL statements. Dynamic SQL auditing is performed when the
%System/%SQL/DynamicStatement system audit event is enabled. By default, this system audit event is not enabled.

If you enable %System/%SQL/DynamicStatement, the system automatically audits every %SQL.Statement dynamic
statement that is executed system-wide. Auditing records information in the Audit Database.

To view the Audit Database, go to the Management Portal, System Administration, select Security, then Auditing, then View
Audit Database. You can set the Event Name filter to DynamicStatement to limit the View Audit Database to Dynamic SQL
statements. The Audit Database lists Time (a local timestamp), User, PID (process ID), and the Description of the event.
The Description specifies the type of Dynamic SQL statement. For example, SQL SELECT Statement
(%SQL.Statement) or SQL CREATE VIEW Statement (%SQL.Statement).

By selecting the Details link for an event you can list additional information, including the Event Data. The Event Data
includes the SQL statement executed and the values of any arguments to the statement. For example:

SELECT TOP ? Name , Age FROM Sample . MyTest WHERE Name %STARTSWITH ?

[#OPTIONS {"DynamicSQLTypeList":",1"} */

Parameter values:

%CallArgs(1)=5
%CallArgs(2)="Fred"

The total length of Event Data, which includes the statement and parameters, is 3,632,952 characters. If the statement and
parameters are longer than 3632952, the Event Data will be truncated.

InterSystems IRIS also supports auditing of ODBC and JDBC statements (Event Name=XDBCStatement), and auditing of
Embedded SQL statements (Event Name=EmbeddedStatement).

Using InterSystems SQL 99

Using the SQL Shell Interface

One way to test SQL statements is to execute them from the Terminal using the SQL Shell. This interactive SQL Shell
allows you to execute SQL statements dynamically. The SQL Shell uses Dynamic SQL, which means that queries are
prepared and executed at runtime. It accesses resources and performs operations within the current namespace.

Unless otherwise indicated, SQL Shell commands and SQL code are not case-sensitive.

9.1 Invoking the SQL Shell

You can use the $SY STEM .SQL .Shell() method to invoke the SQL Shell from the Terminal prompt, as follows:

ObjectScript

DO $SYSTEM.SQL.Shell()

Alternatively, you can invoke the SQL Shell as an instantiated instance using the %SQL.Shell class, as follows:

ObjectScript

DO ##class(%SQL.Shell) . %Go(""IRIS™)

or

ObjectScript

SET sqlsh=##class(%SQL.Shell) .%New()
DO sqlsh.%Go(*"IRIS™)

Regardless of how invoked, the SQL Shell returns the SQL Shell prompt, which displays as follows:
[SQL]termprompt>>

Where [SQL] is a literal indicating that you are in the SQL Shell, termprompt is the configured terminal prompt, and >>
is a literal indicating the SQL command line. By default, the SQL Shell prompt appears as follows [SQL]nsp>>, where
nsp is the name of the current namespace.

At this prompt you can use either of the following Shell modes:

» Single line mode: at the prompt type a line of SQL code. To end the SQL statement, press Enter. By default, this both
prepares and executes the SQL code (this is known as Immediate execute mode). For a query, the result set is displayed

Using InterSystems SQL 101

Using the SQL Shell Interface

on the terminal screen. For other SQL statements, the SQLCODE and row count values are displayed on the terminal
screen.

* Multiline mode: at the prompt press Enter. This puts you in multiline mode. You can type multiple lines of SQL code,
each new line prompt indicating the line number. (A blank line does not increment the line number.) To conclude a
multiline SQL statement, type GO and press Enter. By default, this both prepares and executes the SQL code. For a
query, the result set is displayed on the terminal screen. For other SQL statements, the SQLCODE and row count values
are displayed on the terminal screen.

Multiline mode provides the following commands, which you type at the multiline prompt and then press Enter: L or
LIST to list all SQL code entered thus far. C or CLEAR to delete all SQL code entered thus far. C n or CLEAR n
(where nis a line number integer) to delete a specific line of SQL code. G or GO to prepare and execute the SQL code
and return to single line mode. Q or QUIT to delete all SQL code entered thus far and return to single line mode. These
commands are not case-sensitive. Issuing a command does not increment the line number of the next multiline prompt.
Typing ? at the multiline prompt lists these multiline commands.

To prepare an SQL statement, the SQL Shell first validates the statement, including confirming that the specified tables
exist in the current namespace and the specified fields exist in the table. If not, it displays the appropriate SQLCODE.

The SQL Shell performs SQL privilege checking; you must have the appropriate privileges to access or modify a table,
field, etc. For further details, refer to SQL Users, Roles, and Privileges.

If the statement is valid and you have appropriate privileges, the SQL Shell echoes your SQL statement, assigning a
sequential number to it. These numbers are assigned sequentially for the duration of the terminal session, regardless of
whether you change namespaces and/or exit and re-enter the SQL Shell. These assigned statement numbers permit you to
recall prior SQL statements, as described below.

To list all the available SQL Shell commands, enter ? at the SQL prompt.

To terminate an SQL Shell session and return to the Terminal prompt, enter either the Q or QUIT command or the E or
EXIT command at the SQL prompt. SQL Shell commands are not case-sensitive. The Ctrl-C command is disabled while
in the SQL Shell.

The following is a sample SQL Shell session using the default parameter settings:

USER>DO $SYSTEM.SQL.Shell()

SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.

Enter q to quit, ? for help.

[SQLJUSER>>SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
1. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State

Name Home_State
Djokovic,Josephine W. AK
KIingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL

Roentgen,Alexandria Q. AR

5 Row(s) Affected

[SQLJUSER>>SELECT GETDATE()
2. SELECT GETDATEQ)

Expression_1
2009-09-29 11:41:42

1 Row(s) Affected

[SQLJUSER>>QUIT
USER>

102 Using InterSystems SQL

Invoking the SQL Shell

The following is a multiline SQL Shell session using the default parameter settings:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
[SQLJUSER>> << entering multiline statement mode >>
1>>SELECT TOP 5
2>>Name ,Home_State
3>>FROM Sample.Person
4>>0RDER BY Home_State
5>>G0

1. SELECT TOP 5
Name ,Home_State
FROM Sample.Person
ORDER BY Home_State

Name Home_State
Djokovic,Josephine W. AK
KIingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL

Roentgen,Alexandria Q. AR
5 Row(s) Affected

[SQLJUSER>>

9.1.1 GO Command

The SQL Shell GO command executes the most recent SQL statement. In single line mode, GO re-executes the SQL
statement most recently executed. When in multiline mode, the GO command is used to execute the multiline SQL statement
and exit multiline mode. A subsequent GO in single line mode re-executes the prior multiline SQL statement.

9.1.2 Input Parameters

The SQL Shell supports the use of input parameters using the “?” character in the SQL statement. Each time you execute
the SQL statement, you are prompted to specify values for these input parameters. You must specified these values in the

same sequence that the “?” characters appear in the SQL statement: the first prompt supplies a value to the first “?”, the
second prompt supplies a value to the second “?”, and so on.

There is no limit on the number of input parameters. You can use input parameters to supply values to the TOP clause, the
WHERE clause, and to supply expressions to the SELECT list; you cannot use input parameters to supply column names
to the SELECT list.

You can specify a host variable as an input parameter value. At the input parameter prompt, specify a value prefaced by a
colon (:). This value may be a public variable, an ObjectScript special variable, a numeric literal, or an expression. The
SQL Shell then prompts you with “is this a literal (Y/N)?”. Specifying N (No) at this prompt (or just pressing Enter) means
that the input value is parsed as a host variable. For example, :myval would be parsed as the value of the local variable
myval; :~myval would be parsed as the value of the global variable “myval; : $SHOROLOG would be parsed as the value
of the SHOROL OG special variable; =3 would be parsed as the number 3; - 10-3 would be parsed as the number 7.
Specifying Y (Yes) at this prompt means that the input value, including the colon preface, is supplied to the input parameter
as a literal.

9.1.3 Executing ObjectScript Commands

Within the SQL Shell, you may wish to issue an ObjectScript command. For example, to change the InterSystems IRIS
namespace by using the SET $NAM ESPACE command to the namespace containing the SQL table or stored procedure
you wish to reference. You can use the SQL Shell I command or OBJ command to issue an ObjectScript command line,

Using InterSystems SQL 103

Using the SQL Shell Interface

consisting of one or more ObjectScript commands. (OBJ is an abbreviation for OBJECTSCRIPT.) The !, OBJ, and
OBJECTSCRIPT commands are synonyms. Use of these commands is shown in the following example:

%SYS>DO $SYSTEM.SQL.Shell()

SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.

Enter q to quit, ? for help.

[SQLJ%SYS>>! SET oldns=$NAMESPACE SET $NAMESPACE="USER" WRITE "changed the namespace"
changed the namespace

[SQLJUSER>>0BJ SET $NAMESPACE=oldns WRITE "‘reverted to old namespace"

reverted to old namespace

[SQLI%SYS>>

The rest of the command line following the OBJ command is treated as ObjectScript code. A space is not required between
the ! and the ObjectScript command line. You can specify an OBJ command while in SQL Shell single-line mode or in
SQL Shell multiline mode. The following example executes a SELECT query on a table defined in the USER namespace:

%SYS>DO $SYSTEM.SQL.Shell()

SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.

Enter q to quit, ? for help.

[SQL]%SYS>> << entering multiline statement mode >>
1>>0BJ SET $NAMESPACE="'USER"

1>>SELECT TOP 5 Name,Home_State
2>>FROM Sample.Person
3>>G0
/* SQL query results */
[SQLJUSER>>

Note that the OBJ statement does not advance the SQL line count.

In SQL Shell multiline mode, an OBJ command is executed upon line return, but an SQL statement is not issued until you
specify GO. Thus, the following example is functionally identical to the previous example:

%SYS>DO $SYSTEM.SQL.Shell ()
SQL Command Line Shell
The command prefix is currently set to: <<nothing>>.
Enter g to quit, ? for help.
[SQL]%SYS>> << entering multiline statement mode >>
1>>SELECT TOP 5 Name,Home_State
2>>FROM Sample.Person
3>>0BJ SET $NAMESPACE="USER'" WRITE '‘changed namespace"
changed namespace
3>>G0
/* SQL query results */
[SQLJUSER>>

The following example uses an OBJ command to define a host variable:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter g to quit, ? for help.
[SQLJUSER>> << entering multiline statement mode >>
1>>SELECT TOP :n Name,Home_State
2>>FROM Sample.Person
3>>0BJ SET n=5

3>>G0

9.1.4 Browsing the Namespace

The SQL Shell supports a BROW SE command that displays the schemas, tables, and views defined in or accessible from
the current namespace. The display consists of several levels of prompts. To return to the previous prompt level, press the
Return key at a prompt. Names are case-sensitive.

104 Using InterSystems SQL

Storing and Recalling SQL Statements

1. Type BROWSE at the SQL Shell prompt to list the schemas in the current namespace.
2. At the schema: prompt, select a schema by name or by number. This lists the tables and views in the schema.

3. Atthe Table/view: prompt, select a table (T) or view (V) by name or by number. This displays table information then
presents a list of options.

4. At the Option: prompt, select an option by number. You can use this option to list the fields or maps defined for the
table.

Specify option 1 (Fields by name) or option 2 (fields by number) to display the Field: prompt. Specify option 3 (maps)
to display the Map: prompt.

5. Atthe Field: prompt, select a field by number or by name, or specify * to list all fields. This lists detailed field infor-
mation.

At the Map: prompt, select a map by number or by name, or specify * to list all maps. This lists detailed map information.

9.1.5 CALL Command

You can use the SQL Shell to issue the SQL CALL statement to call an SQL stored procedure, as shown in the following
example:

[SQLJUSER>>CALL Sample.PersonSets("G","NY")

The SQL Shell issues an SQLCODE -428 error if the specified stored procedure does not exist in the current namespace.

The SQL Shell issues an SQLCODE -370 error if you specify more input parameters than are defined in the stored procedure.
You can specify parameter values to the stored procedure using any combination of literals ('string’), host variables (:var),
and input parameters (?).

* You can use host variables in a CALL statement, as shown in the following example:

[SQLJUSER>>0BJ SET a="'G",b=""NY"
[SQLJUSER>>CALL Sample.PersonSets(:a,:b)

* You can use input parameters (“?” characters) in a CALL statement, as shown in the following example:
[SQLJUSER>>CALL Sample.PersonSets(?,?)

The SQL Shell prompts you for a value for each of these input parameters when the CALL statement is executed.

9.1.6 Executing an SQL Script File

The SQL Shell RUN command executes an SQL script file. The type of script file is determined by the DIALECT setting.
The DIALECT default is IRIS (InterSystems SQL). For further details, see RUN Command.

9.2 Storing and Recalling SQL Statements

9.2.1 Recall by Number

The SQL Shell automatically stores each successful SQL statement issued during the terminal session in a local cache and
assigns it a sequential number. These numbers are used for recalling prior SQL statements during the current Terminal
process. SQL Shell only assigns numbers to SQL statements that are successful; if an error occurs during preparation of

Using InterSystems SQL 105

Using the SQL Shell Interface

an SQL statement, no number is assigned. These number assignments are not namespace-specific. The following are the
available recall by number commands:

* #: You can use #to list all of the prior cached SQL statements with their assigned numbers.

* #n:You can recall and execute a prior SQL statement by specifying #n at the SQL Shell prompt, where n is an integer
that SQL Shell assigned to that statement.

e #0: You can recall and execute the most recently prepared SQL statement by specifying #0 at the SQL Shell prompt.
#0 recalls the most recently prepared SQL statement, not necessarily the most recently executed SQL statement.
Therefore, recalling and executing SQL statements has no effect on which SQL statement is recalled by #0.

Recalling an SQL statement by number does not assign a new number to the statement. SQL Shell assigns numbers
sequentially for the duration of the Terminal session; exiting and re-entering the SQL Shell or changing namespaces have
no effect on number assignment or the validity of prior assigned numbers.

To delete all number assignments, use #CL EAR and confirm this action at the displayed prompt. This deletes all prior
number assignments and restarts number assignment with 1.

9.2.2 Recall by Name

You can optionally assign a name to an SQL statement, then recall the statement by name. These names are used for
recalling prior SQL statements issued from any of the current user's Terminal processes. There are two ways to save and
recall an SQL statement by name:

e Save to a global using SAVEGL OBAL; recall from a global using OPEN.
» Save to a file using SAVE; recall from a file using L OAD.

9.2.2.1 Saving to a Global

To assign a global name to the most recent SQL statement, use the SQL Shell command SAVEGL OBAL name, which
can be abbreviated as SG name. You can then use the SQL Shell command OPEN nameto recall the SQL statement from
the global. If EXECUTEMODE is IMMEDIATE, the SQL Shell both recalls and executes the statement. If EXECUTEMODE
is DEFERRED, the statement will be prepared but will not be executed until you specify the GO command.

Each time you use OPEN nameto recall an SQL statement by global name, the SQL Shell assigns a new number to the
statement. Both the old and new numbers remain valid for recall by number.

A name can contain any printable characters except the blank space character. Letters in a name are case-sensitive. A name
can be of any length. A name is specific to the current namespace. You can save the same SQL statement multiple times
with different names; all of the saved names remain valid. If you attempt to save an SQL statement using a name already
assigned, SQL Shell prompts you whether you wish to overwrite the existing name, reassigning it to the new SQL statement.

Global names are assigned for the current namespace. You can list all assigned global names for the current namespace
using the SQL Shell L (or L1ST) command. Once assigned, a nameis available to all of the current user's Terminal processes.
An assigned name persists after the Terminal process that created it has ended. If there are no name assignments, L1ST
returns a “No statements saved” message.

To delete a global name assignment, use CLEAR name. To delete all global name assignments for the current namespace,
use CLEAR and confirm this action at the displayed prompt.

9.2.2.2 Saving to a File

To assign a file name to the most recent SQL statement, use the SQL Shell command SAVE name. You can then use the
SQL Shell command L OAD nameto recall the SQL statement. If EXECUTEMODE is IMMEDIATE, the SQL Shell both
recalls and executes the statement. Each time you use L OAD nameto recall an SQL statement by file name, the SQL Shell
assigns a new number to the statement. Both the old and new numbers remain valid for recall by number.

106 Using InterSystems SQL

Purging Cached Queries

A name can contain any printable characters except the blank space character. Letters in a name are case-sensitive. A name
can be of any length. A name is specific to the current namespace. You can save the same SQL statement multiple times
with different names; all of the saved names remain valid. If you attempt to save an SQL statement using a name already
assigned, SQL Shell prompts you whether you wish to overwrite the existing name, reassigning it to the new SQL statement.

Names are assigned for the current namespace. Once assigned, a name is available to all of the current user's Terminal
processes. An assigned name persists after the Terminal process that created it has ended.

9.3 Purging Cached Queries

The SQL Shell provides a PURGE (abbreviated P) command to purge all cached queries in the current namespace. This
command purges all cached queries in the namespace, not just those generated using the SQL Shell.

The $SYSTEM.SQL..Purge() methods and the Management Portal Actions drop-down list options provides you with more
specific options to purge only selected cached queries or to purge all of the cached queries in the namespace.

9.4 Configuring the SQL Shell

* You can configure the SQL Shell defaults system-wide using the Management Portal.

* You can configure an individual SQL Shell using SQL Shell Parameters. Changing an SQL Shell parameter overrides
the system-wide default for the current invocation of the SQL Shell; it does not change the system-wide SQL Shell

default value.

The following are the available SQL Shell configuration options, the corresponding shell parameters, and the default settings:

Management Portal Shell Shell Parameter Default
Configuration

Select Mode selectmode Logical
SQL Dialect (TSQL) dialect (TSQL) IRIS
Schema Search Path path none
Result Column Alignment colalign Delimiter
Command Prefix (TSQL) commandprefix (TSQL) none

Result Output Display Mode displaymode Current Device
Display Path displaypath none
Display File displayfile none
Display File Translate Table displaytranslatetable none
Echo Mode echo On
Execute Mode executemode Immediate
Messages Mode messages On
IF condition to allow execution 1
log Off

Using InterSystems SQL

107

Using the SQL Shell Interface

The parameters labelled (TSQL) are principally used for executing Sybase or MSSQL Transact-SQL code from the SQL
Shell. They are described in Transact-SQL Support.

9.4.1 Configuring SQL Shell System-wide Defaults

Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. Select the SQL
Shell tab. View and set the current default settings for SQL Shell system-wide.

If you change one or more configuration settings, this is indicated by an asterisk (*) in the upper left-hand corner of the
screen immediately following the Management Portal path. For example, System > Configuration > SQL *.Press
the Save button to accept the changes. The changes are activated and the asterisk disappears.

9.4.2 Configuring Parameters for an SQL Shell

SQL Shell configuration parameters are specific to the current SQL Shell invocation on the current Terminal process. Settings
apply across namespaces. However, if you exit the SQL Shell, all SQL Shell parameters reset to system-wide default values.
InterSystems IRIS provides system default values; you can establish different default values for the current process using
SET SAVE, as described below.

The SQL Shell SET command (with no arguments) displays the current shell configuration parameters, as shown in the
following example. In this example, the SET shows the system default values, which are the values established when you
invoke the SQL Shell:

[SQLJUSER>>SET

commandprefix = """
dialect = IRIS
displayfile
displaymode
displaypath
displaytranslatetable =
echo = on

executemode = immediate
log = off

messages = on

path = SQLUser
selectmode = logical
[SQLJUSER>>

currentdevice

To display the current setting for a single configuration parameter, specify SET param. For example, SET SELECTMODE
returns the current selectmode setting.

You can use the SQL Shell SET command to set a shell configuration parameter. A set value persists for the duration of
the SQL Shell invocation; each time you invoke the SQL Shell, the parameters reset to default values. SET can use either
of the following syntax forms:

SET param value SET param = value

Both param and value are not case-sensitive. Spaces are permitted, but not required, before and after the equal sign.

The SQL Shell SET SAVE command saves the current shell configuration parameter settings as the user defaults. These
defaults are applied to all subsequent SQL Shell invocations from the current process. They are also applied as SQL shell
defaults to any subsequently invoked SQL Shell on a Terminal process invoked by that user. They remain in effect until
specifically reset. Using SET SAVE does not affect currently running SQL Shell invocations.

The SQL Shell SET CLEAR command clears (resets to system defaults) the current shell configuration parameter settings
for the current process. InterSystems IRIS applies this reset to defaults to subsequent SQL Shell invocations by the current
process, or any new Terminal process invoked by the current user. SET CLEAR does not affect currently running SQL
Shell invocations.

108 Using InterSystems SQL

Configuring the SQL Shell

Neither SET SAVE nor SET CLEAR change the system-wide SQL Shell default settings configured and displayed using
the Management Portal.

9.4.3 Setting COLALIGN

You can use SET COLALIGN to specify the whitespace format used to display query resultset data and column headers.
The available options are:

» delimiter; Resultset header/data columns will be aligned based on the standard delimiter (tab). This is the default.

» header: Resultset header/data columns will be aligned based on the length of the column header and the standard
delimiter (tab).

» data: Resultset header/data columns will be aligned based on the precision/length of the column data property and the
standard delimiter (tab).

For further details, see %Display() method.

9.4.4 Setting DISPLAYMODE and DISPLAYTRANSLATETABLE

You can use SET DISPL AYMODE to specify the format used to display query data, as shown in the following example:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
[SQLJUSER>>SET DISPLAYMODE XML

displaymode = xml
[SQLJUSER>>

The DISPLAYMODE default is CURRENTDEVICE, which displays the query data on the Terminal in TXT format. You
can specify SET DISPLAYMODE = CUR to restore the CURRENTDEVICE default.

The other available options are TXT, HTML, PDF, XML, and CSV. The selection of a format determines the file type.
InterSystems IRIS creates a file of this type, writes the query data to the file, and, when possible, launches the appropriate
program to display this query data file. For all options except TXT, a second file is created to record result set messages.
By default, SQL Shell creates these files in the InterSystems IRIS mgr\Temp\ directory and assigns a randomly generated
file name with the appropriate file type suffix. The generated Message file name is the same as the data file name, except
for the appended string “Messages”. For the HTML, PDF, and XML options, the Messages file has the same file type suffix
as the query data file. For the CSV option, the Messages file has the TXT file type suffix.

The following is an example of the files created when DISPLAYMODE = TXT:

C:\InterSystems\IRIS\mgr\Temp\sGm7qLdVZn5VbA.txt
C:\InterSystems\IRIS\mgr\Temp\sGm7qLdVZn5VbAMessages. txt

Each time you run a query, the SQL Shell creates a new pair of files with randomly generated file names.

If DISPLAYMODE is TXT or CSV, you can optionally specify the name of a translate table to apply when performing
format conversion. You can specify either SET DISPLAYTRANSLATE or SET DISPLAYTRANSLATETABLE. Translate
table name values are case-sensitive.

If DISPLAYMODE is set to a value other than CURRENTDEVICE, any query result set data containing a control character
results in a generated Warning message. Generally, control characters only appear in query result set data when it is in
Logical mode. For example, data in a List structure contains control characters when displayed in Logical mode. For this
reason, it is recommended that when you set DISPLAYMODE to a value other than CURRENTDEVICE that you also set
SELECTMODE to either DISPLAY or ODBC.

Using InterSystems SQL 109

Using the SQL Shell Interface

9.4.4.1 Setting DISPLAYFILE and DISPLAYPATH

If DISPLAYMODE is set to a value other than CURRENTDEVICE, you can specify the target file location using the
DISPLAYFILE and DISPLAYPATH parameters:

e DISPLAYFILE: set this parameter to a simple file name with no suffix; for example, SET DISPLAYFILE myfile.
You can also set this parameter to a partially-qualified path, which InterSystems IRIS appends to the DISPLAYPATH
value or the default directory, creating subdirectories as needed; for example, SET DISPLAYFILE mydir\myfile. If
DISPLAYPATH is set, the system creates a file with this file name in the specified directory; if DISPLAYPATH is
not set, the system creates a file with this file name in the InterSystems IRIS mgr\Temp\ directory.

» DISPLAYPATH: set this parameter to an existing fully-qualified directory path structure ending in a slash (“/”) or
backslash (“\), depending on operating system platform. If DISPLAYFILE is set, the system creates a file with the
DISPLAYFILE name in this directory; if DISPLAYFILE is not set, the system creates a file with a randomly-generated
name in this directory. If the DISPLAYPATH directory does not exist, InterSystems IRIS ignores DISPLAYPATH
and DISPLAYFILE settings and instead uses the default directory and default randomly-generated file name.

When necessary, the system automatically adds a slash (or backslash) to the end of your DISPLAYPATH value and/or
removes a slash (or backslash) from the beginning of your DISPLAYFILE value to create a valid fully-qualified directory
path.

The following example sets DISPLAYMODE, DISPLAYFILE, and DISPLAYPATH:

[SQLJUSER>>SET DISPLAYMODE XML

displaymode = xml
[SQLJUSER>>SET DISPLAYFILE myfile

displayfile = myfile
[SQLJUSER>>SET DISPLAYPATH C:\temp\mydir\

displaypath = C:\temp\mydir\
[SQLJUSER>>

When you execute a query the SQL Shell will generate the following files. The first contains the query data. The second
contains any messages resulting from the query execution:

C:\temp\mydir\myfile.xml
C:\temp\mydir\myfileMessages.xml

If you specify neither DISPLAYFILE or DISPLAYPATH, the system creates files in the Mgr\Temp\ directory for your
InterSystems IRIS installation (for example, C:\InterSystems\IRIS\Mgr\Temp\) with a randomly generated file name.

If DISPLAYMODE is not set to CURRENTDEVICE, each time you run a query with DISPLAYFILE set, any existing
data in the named file and the corresponding Messages file is replaced by the new query data. Each time you run a query
with DISPLAYFILE not set, the SQL Shell creates a new file with a randomly generated file name and a new corresponding
Messages file.

If DISPLAYMODE is set to CURRENTDEVICE, the DISPLAYFILE and DISPLAYPATH parameters have no effect.

9.4.5 Setting EXECUTEMODE

The SQL Shell supports immediate and deferred SQL statement execution. Immediate execution prepares and executes the
specified SQL statement when you press Enter. Deferred execution prepares the statement when you press Enter, but does
not execute it until you specify GO at the SQL prompt.

110 Using InterSystems SQL

Configuring the SQL Shell

The available options are SET EXECUTEMODE IMMEDIATE (the default), SET EXECUTEMODE DEFERRED, and SET
EXECUTEMODE to display the current mode setting. The following example sets the execute mode:

USER>DO $SYSTEM.SQL.Shell()

SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.

[SQLJUSER>>SET EXECUTEMODE DEFERRED

Executemode = deferred
[SQLJUSER>>

Deferred execution allows you to prepare multiple SQL queries, then recall them by name or number for execution. To
execute a prepared SQL statement, recall the desired statement (from the appropriate namespace) then specify GO.

The following example shows the preparation of three queries in Deferred mode. The first two are saved and assigned a
recall name; the third is not assigned a name, but can be recalled by number:

[SQLJUSER>>SELECT TOP 5 Name,Home_State FROM Sample.Person

1. SELECT TOP 5 Name,Home_State FROM Sample.Person

[SQLJUSER>>SAVE 5sample

Query saved as: 5sample

[SQLJUSER>>SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
2. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
[SQLJUSER>>SAVE 5ordered

Query saved as: 5ordered

[SQLJUSER>>SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
3. SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
[SQLJUSER>>

The following example shows the deferred mode execution of two of the queries defined in the previous example. Note
that this example recalls one query by name (upon recall the SQL Shell gives it a new number), and one query by number:

[SQLJUSER>>0PEN 5ordered
SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
4. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State

[SQLJUSER>>GO

Name Home_State
Djokovic,Josephine W. AK
KIingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL

Roentgen,Alexandria Q. AR

5 Row(s) Affected

[SQLJUSER>>#3

SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State

3. SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State

[SQLJUSER>>GO

Using InterSystems SQL 111

Using the SQL Shell Interface

9.4.6 Setting ECHO

You can use SET ECHO to specify whether to echo the query results to the SQL Shell. If you specify SET ECHO=0FF,
the query is prepared, a cached query is defined, and the query is executed. No query results are displayed to the Terminal.
This is shown in the following example:

[SQLJUSER>>set echo=off

echo = off
[SQL]USER>>SELECT Name,Age FROM Sample._MyTest
SELECT Name,Age FROM Sample.MyTest

statement prepare time(s)/globals/cmds/disk: 0.0002s/5/155/0ms
execute time(s)/globals/cmds/disk: 0.0001s/0/105/0ms
cached query class: %sqlcq.USER.cls3

[SQLJUSER>>

If you specify SET ECHO=O0N (the default) the query results are displayed to the Terminal. This is shown in the following
example:

[SQLJUSER>>set echo=on

echo = on
[SQL]USER>>SELECT Name,Age FROM Sample._MyTest
SELECT Name,Age FROM Sample.MyTest

Name Age

Fred Flintstone 41

Wilma Flintstone 38
Barney Rubble 40

Betty Rubble 42

4 Rows(s) Affected
statement prepare time(s)/globals/cmds/disk: 0.0002s/5/155/0ms
execute time(s)/globals/cmds/disk: 0.0002s/5/719/0ms
cached query class: %sqlcq.USER.cls3

[SQL]USER>>

SET ECHO is only meaningful if DISPLAYMODE=CURRENTDEVICE (the default).

SET ECHO and SET MESSAGES specify what is displayed on the Terminal; they do not affect the prepare or execution
of the query. If both SET MESSAGES=0FF and SET ECHO=0FF, the query is prepared, a cached query is created, and
query execution creates a query result set, but nothing is returned to the Terminal.

9.4.7 Setting MESSAGES

You can use SET M ESSAGES o specify whether to display the query error message (if unsuccessful), or query execution
information (if successful):

» If query execution is unsuccessful: If you specify SET MESSAGES=0FF, nothing is displayed to the Terminal. If you
specify SET MESSAGES=0N (the default) the query error message is displayed, such as the following: ERROR
#5540: SQLCODE: -30 Message: Table "SAMPLE_NOTABLE®" not found.

» Ifquery execution is successful: If you specify SET MESSAGES=0FF, only the query results and the line n Rows(s)
Affected are displayed to the Terminal. If you specify SET MESSAGES=0N (the default) the query results and the
linen Rows(s) Affected are followed by the statement prepare metrics, the statement execution metrics, and the
name of the generated cached query.

Prepare and Execute metrics are measured in elapsed time (in fractional seconds), total number of global references,
total number of commands executed, and disk read latency (in milliseconds).

112 Using InterSystems SQL

Configuring the SQL Shell

The information displayed when SET MESSAGES=0N is not changed by setting DISPLAYMODE. Some DISPLAYMODE
options create both a query result set file and a messages file. This messages file contains result set messages, not the query
prepare and execute messages displayed to the Terminal when SET MESSAGES=0N.

SET MESSAGESand SET ECHO specify what is displayed on the Terminal; they do not affect the prepare or execution
of the query. If both SET MESSAGES=0FF and SET ECHO=0FF, a successful query is prepared, a cached query is created,
and query execution creates a query result set, but nothing is returned to the Terminal.

9.4.8 Setting LOG

You can use SET L OG to specify whether to log SQL Shell activity to a file. The available options are:

o SET LOG OFF: The default. InterSystems IRIS does not log activity for the current SQL Shell.

o SET LOG ON: InterSystems IRIS logs SQL Shell activity to the default log file.

e SET LOG pathname: InterSystems IRIS logs SQL Shell activity to the file specified by pathname.

SET LOG ON creates a log file in IRIS\mgr\namespace, where namespace is the name of the current namespace for the
process. This default log file is named xsglnnnn.log, where nnnn is the process ID (pid) number for the current process.

By default, a log file is specific to the current process and the current namespace. To log SQL Shell activity from multiple
processes and/or from multiple namespaces in the same log, specify SET LOG pathname for each process and/or namespace
using the same pathname.

A log file can be suspended and resumed. Once a log file has been created, SET LOG OFF suspends writing to that log
file. SET LOG ON resumes writing to the default log file. Log restarted: date time is written to the log file when
logging resumes. SET LOG ON always activates the default log file. Thus, if you suspend writing to a specified pathname
log file, you must specify SET LOG pathname when resuming.

Activating a log file creates a copy of SQL Shell activity displayed on the terminal; it does not redirect SQL Shell terminal
output. The SQL Shell log records SQL errors for failed SQL execution and the SQL code and resulting row count for
successful SQL execution. The SQL Shell log does not record result set data.

If a log is already active, specifying SET LOG ON has no effect. If a log is already active, specifying SET LOG pathname
suspends the current log and activates the log specified by pathname.

9.4.9 Setting PATH

You can use SET PATH schema to set the schema search path, which SQL uses to supply the correct schema name for
an unqualified table name. schema can be a single schema name, or a comma-separated list of schema names, as shown in
the following example:

[SQLJUSER>>SET PATH cinema,sample,user

SET PATH with no argument deletes the current schema search path, reverting to the system-wide default schema name.

If SET PATH schema is not specified, or the table is not found in the specified schemas, SQL Shell uses the system-wide
default schema name. For further details on schema search paths, see the #sglcompile path macro.

Using InterSystems SQL 113

Using the SQL Shell Interface

9.4.10 Setting SELECTMODE

You can use SET SELECTM ODE to specify the mode used to display query data.

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.

[SQLJUSER>>SET SELECTMODE DISPLAY

selectmode = display

[SQLJUSER>>

The available options are DISPLAY, LOGICAL, and ODBC. LOGICAL is the default. To determine the current mode,
specify SET SELECTM ODE without a value:

[SQLJUSER>>SET SELECTMODE

selectmode = logical
[SQLJUSER>>

%L.ist data is encoded using non-printing characters. Therefore, when selectmode=logical, SQL Shell displays a %L.ist data
value as a $LISTBUILD statement, such as the following: $1b(**White™,"Green'). Time data type data supports
fractional seconds. Therefore, when selectmode=odbc, SQL Shell displays fractional seconds, which does not correspond
to the ODBC standard. The actual ODBC TIME data type truncates fractional seconds.

For further details on SelectMode options, see Data Display Options.

You can also use SET SEL ECTM ODE to specify whether input data will be converted from display format to logical
storage format. For this data conversion to occur, the SQL code must have been compiled with a select mode of RUNTIME.
At execution time, SET SELECTM ODE must be set to LOGICAL (the default). For further details, refer to the INSERT
or UPDATE statement.

9.5 SQL Metadata, Query Plan, and Performance Metrics

9.5.1 Displaying Metadata

The SQL Shell supports the M or METADATA commands to display metadata information about the current query.

For each result set item, this command lists the following metadata: Column Name (SQL field name), Type (ODBC data
type integer code), Prec (precision or maximum length), Scale (maximum fractional digits), Null (boolean: 1=NULL allowed,
0=NULL not allowed), Label (header label, see column alias), Table (SQL table name), Schema (schema name), CType
(client data type, see the %SQL.StatementColumn clientType property).

For further details, refer to Select-item Metadata.

For further details on InterSystems SQL Shell commands, enter ? at the SQL prompt, or see %SYSTEM.SQL.Shell().

9.5.2 SHOW STATEMENT

You can executing a query, then issue SHOW STATEMENT or SHOW ST to display the prepared SQL statement. By
default, you must execute the query. You can avoid executing the query by setting executemode=deferred, issuing the
query, then issuing the SHOW STATEMENT SQL Shell command.

114 Using InterSystems SQL

SQL Metadata, Query Plan, and Performance Metrics

SHOW STATEMENT information consists of the Implementation Class (cached query name), the Arguments (a comma-
separated list of the actual argument values, such as the TOP clause and WHERE clause literal values), and the Statement
Text (the literal text of the SQL command, including letter case and argument values).

9.5.3 EXPLAIN and Show Plan

There are two ways to display the query plan for an SQL query; both can display alternate query plans if desired.

e EXPLAIN: preface a SELECT query with the EXPLAIN command. For example:
SQLJUSER>>EXPLAIN SELECT Name FROM Sample.MyTable WHERE Name="Fred Rogers*”
e SHOW PLAN: issue a query, then issue the SHOW PLAN Shell command. For example:

SQLJUSER>>SELECT Name FROM Sample_MyTable WHERE Name="Fred Rogers®
SQLJUSER>>SHOW PLAN

The EXPLAIN SQL command displays query plan information about a specified SELECT query without executing the
query. EXPLAIN ALT allows you to display alternate queries plans. EXPLAIN STAT returns performance statistics as
well as the query plan(s). EXPLAIN can only be used to return a query plan for a SELECT query; it does not return a query
plan for other commands such as INSERT, UPDATE, or DELETE statements that perform a query operation.

The SHOW PLAN SQL Shell command allows you to display the query plan information for the last query successfully
issued by the SQL Shell. SHOW PL AN can be used for any SQL command that performs a query operation, including
SELECT, INSERT, UPDATE, and DELETE. By default, you must execute the query. You can avoid executing the query
by setting executemode=deferred, issuing the query, then issuing one of the following SQL Shell commands:

e SHOW PLAN, SHOW PL (or simply SHOW) to display query plan information about the current query. The query
plan can be used for debugging and optimizing the performance of a query. It specifies how the query executes,
including the use of indexes and a cost value for the query. A query plan can be returned for the following statements:
SELECT, DECLARE, non-cursor UPDATE or DELETE, and INSERT...SELECT. This command hasaV (VERBOSE)
option.

 SHOW PLANALT to display alternate show plans for the current query. This command has a V (VERBOSE) option.
For further details, refer to Alternate Show Plans.
For further details on InterSystems SQL Shell commands, enter ? at the SQL prompt, or see %SYSTEM.SQL.Shell().

You can generate query plans from ObjectScript using the $SY STEM.SQL .Explain() method. For further details refer to
Query Execution Plans.

For further details on interpreting a query plan, see Interpreting an SQL Query Plan.

9.5.4 SQL Shell Performance

Following the successful execution of an SQL statement, the SQL Shell displays four statement prepare values
(times(s)/globals/cmds/disk) and four statement execute values (times(s)/globals/cmds/disk):

» The statement prepare time is the time it took to prepare the dynamic statement. This includes the time it took to gen-
erate and compile the statement. It includes the time it took to find the statement in the statement cache. Thus, if a
statement is executed, then recalled by number or recalled by name, the prepare time on the recalled statement is near
zero. If a statement is prepared and executed, then re-executed by issuing the GO command, the prepare time on the
re-execution is zero.

* The elapsed execute time is the elapsed time from the call to % Execute() until the return from % Display(). It does
not include wait time for input parameter values.

Using InterSystems SQL 115

Using the SQL Shell Interface

The statement globals is the count of global references, cmds is the count of SQL commands executed, and disk is the disk
latency time in milliseconds. The SQL Shell keeps separate counts for the Prepare operation and the Execute operation.

These performance values are only displayed when DISPLAYMODE is set to currentdevice, and MESSAGES is set to
ON. These are the SQL Shell default settings.

9.6 Transact-SQL Support

By default, the SQL Shell executes InterSystems SQL code. However, the SQL Shell can be used to execute Sybase or
MSSQL code.

9.6.1 Setting DIALECT

By default, the SQL Shell parses code as InterSystems SQL. You can use SET DIALECT to configure the SQL Shell to
execute Sybase or MSSQL code. To change the current dialect, SET DIALECT to Sybase, MSSQL, or IRIS. The default
is Dialect=IRIS. These SET DIALECT options are not case-sensitive.

he following is an example of the executing a MSSQL program from the SQL Shell:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter g to quit, ? for help.
[SQLJUSER>>SET DIALECT MSSQL

dialect = MSSQL
[SQL]USER>>SELECT TOP 5 name + "-" + ssn FROM Sample.Person
SELECT TOP 5 name + "-" + ssn FROM Sample.Person

Expression_1

Zweifelhofer,Maria H.-559-20-7648
Vonnegut,Bill A_-552-41-2071
Clinton,Terry E.-757-30-8013
Bachman,Peter U.-775-59-3756
Avery,Emily N.-833-18-9563

5 Rows(s) Affected
statement prepare time: 0.2894s, elapsed execute time: 0.0467s.

[SQL]JUSER>>

The Sybase and MSSQL dialects support a limited subset of SQL statements in these dialects. They support the SELECT,
INSERT, UPDATE, and DEL ETE statements. They support the CREATE TABLE statement for permanent tables, but
not for temporary tables. CREATE VIEW is supported. CREATE TRIGGER and DROP TRIGGER are supported.
However, this implementation does not support transaction rollback should the CREATE TRIGGER statement partially
succeed but then fail on class compile. CREATE PROCEDURE and CREATE FUNCTION are supported.

9.6.2 Setting COMMANDPREFIX

You can use SET COMM ANDPREFI X to specify a prefix (usually a single character) that must be appended to subsequent
SQL Shell commands. This prefix is not used on SQL statements issued from the SQL Shell prompt. The purpose of this

prefix is to prevent ambiguity between SQL Shell commands and SQL code statements. For example, SET is an SQL Shell
command; SET is also an SQL code statement in Sybase and MSSQL.

116 Using InterSystems SQL

Transact-SQL Support

By default, there is no command prefix. To establish a command prefix, SET COMMANDPREFIX=prefix, with prefix
specified without quotation marks. To revert to having no command prefix, SET COMMANDPREFIX="". The following
example shows the command prefix / (the slash character) being set, used, and reverted:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell

The command prefix is currently set to: <<nothing>>.
Enter g to quit, ? for help.
[SQLJUSER>>SET COMMANDPREFIX=/

commandprefix = /
[SOLJUSER>>/SET LOG=ON

log = xsql4148.1og
[SQLJUSER>> << entering multiline statement mode >>
1>>SELECT TOP 3 Name,Age
2>>FROM Sample.Person
3>>/G0
9. SELECT TOP 3 Name,Age
FROM Sample.Person

Name Age

Frith,Jose M. 13
Finn,William D. 15
Ximines,Uma Y. 44

3 Rows(s) Affected
statement prepare time: 0.0010s, elapsed execute time: 0.0014s.

[SQLJUSER>>/SET COMMANDPREFIX

commandprefix = /
[SQLJUSER>>/SET COMMANDPREFIX=""

commandprefix = """
[SQLJUSER>>SET COMMANDPREFIX

commandprefix =
[SQLJUSER>>

When a command prefix is set, the command prefix is required for all SQL Shell commands, except ?, #, and GO; these
three SQL Shell commands can be issued with or without the command prefix.

The SQL Shell displays the current command prefix as part of the SQL Shell initialization, when you issue a SET or a SET
COMMANDPREFIX command, and at the end of the ? commands option display.

9.6.3 RUN Command

The SQL Shell RUN command executes an SQL script file. You must SET DIALECT before issuing a RUN command to
specify either IRIS (InterSystems SQL), Sybase (Sybase TSQL), or MSSQL (Microsoft SQL); the default dialect is IRIS.
You can either invoke RUN scriptname or just invoke RUN and be prompted for the script file name.

RUN loads the script file, then prepares and executes each statement contained in the file. Statements in the script file must
be delimited, usually either with a GO line, or with a semicolon (;). The RUN command prompts you to specify the
delimiter.

The SQL script file results are displayed on the current device and, optionally, in a log file. Optionally, a file containing
statements that failed to prepare can be produced.

The RUN command returns prompts to specify these options, as shown in the following example:

[SQLJUSER>>SET DIALECT=Sybase

dialect = Sybase
[SQLJUSER>>RUN

Enter the name of the SQL script file to run: SybaseTest

Enter the file name that will contain a log of statements, results and errors (.log): SyTest.log
SyTest. log

Using InterSystems SQL 117

Using the SQL Shell Interface

Many script files contain statements not supported by IRIS SQL.

Would you like to log the statements not supported to a file so they

can be dealt with manually, if applicable? Y=>

Enter the file name in which to record non-supported statements (_Unsupported.log): SyTest_Unsupported.log

Please enter the end-of-statement delimiter (Default is "GO"): GO=>
Pause how many seconds after error? 5 => 3

Sybase Conversion Utility (v3)
Reading source from file:
Statements, results and messages will be logged to: SyTest.log

9.6.4TSQL Examples

The following SQL Shell example creates a Sybase procedure AvgAge. It executes this procedure using the Sybase EXEC
command. It then changes the dialect to InterSystems IRIS and executes the same procedure using the InterSystems SQL
CALL command.

[SQLJUSER>>SET DIALECT Sybase

dialect = Sybase

[SQLJUSER>> << entering multiline statement mode >>
1>>CREATE PROCEDURE AvgAge
2>>AS SELECT AVG(Age) FROM Sample.Person
3>>G0

12. CREATE PROCEDURE AvgAge
AS SELECT AVG(Age) FROM Sample.Person

statement prepare time: 0.1114s, elapsed execute time: 0.4364s.

[SQLJUSER>>EXEC AvgAge
13. EXEC AvgAge

Dumping result #1
Aggregate_1
44_35

1 Rows(s) Affected
statement prepare time: 0.0956s, elapsed execute time: 1.1761s.

[SQLJUSER>>SET DIALECT=IRIS

dialect = IRIS
[SQLJUSER>>CALL AvgAge()
14. CALL AvgAge()

Dumping result #1
Aggregate_1
44 _35

1 Rows(s) Affected
statement prepare time: 0.0418s, elapsed execute time: 0.0040s.

[SQL]JUSER>>

118 Using InterSystems SQL

Other Ways of Executing SQL

9.7 Other Ways of Executing SQL

You can execute a single line of SQL code from the Terminal command line without invoking the SQL Shell by using the
$SY STEM .SQL .Execute() method. The following examples show how this method is used from the Terminal prompt:

USER>SET result=$SYSTEM.SQL.Execute(*'SELECT TOP 5 name,dob,ssn FROM Sample.Person')
USER>DO result.%Display()
USER>SET result=$SYSTEM.SQL.Execute("'CALL Sample.PersonSets("M",*MA®)")

USER>DO result._%Display()

If the SQL statement contains an error, the Execute() method completes successfully; the % Display() method returns the
error information, such as the following:

USER>DO result.%Display()

[SQLCODE: <-29>:<Field not found in the applicable tables>]

[%msg: < Field "GAME®" not found in the applicable tables”™ SELECT TOP ? game ,>]
0 Rows Affected

USER>

The Execute() method also provides optional SelectMode, Dialect, and ObjectSelectMode parameters.

InterSystems IRIS supports numerous other ways to write and execute SQL code:

e Embedded SQL: SQL code embedded within ObjectScript code.

e Dynamic SQL: using %SQL.Statement class methods to execute SQL statements from within ObjectScript code.

* Management Portal SQL Interface: executing Dynamic SQL from the InterSystems IRIS Management Portal using
the Execute Query interface.

Using InterSystems SQL 119

10

Using the Management Portal SQL
Interface

This topic describes how to perform SQL operations from the InterSystems IRIS® data platform Management Portal. The
Management Portal interface uses Dynamic SQL, which means that queries are prepared and executed at runtime. The
Management Portal interface is intended as an aid for developing and testing SQL code against small data sets. It is not
intended to be used as an interface for SQL execution in a production environment.

The Management Portal also provides various options to configure SQL. For further details, refer to SQL and Object Settings
Pages.

For general information on using the Management Portal, select the Help button found in the upper left corner. You can
report an issue with InterSystems software to the InterSystems Worldwide Response Center (WRC) from the Management
Portal by using the Contact button found in the top right corner. To report an SQL performance issue to the WRC, see
Tools.

10.1 Management Portal SQL Facilities

InterSystems IRIS allows you to examine and manipulate data using SQL tools from the InterSystems IRIS Management
Portal. The starting point for this is the Management Portal System Explorer option. From there you select the SQL option.
This displays the SQL interface, which allows you to:

e Execute SQL Query — write and run SQL commands. You can execute an SQL query against existing tables and data,
create a table, or insert, update, or delete table data. You can either write the SQL code directly into a text box
(including SELECT, INSERT, UPDATE, DELETE, CREATE TABLE and other SQL statements), retrieve a statement
from the SQL history into the text box, drag and drop a table into the text box to generate a query (SELECT statement),
or compose a query (SELECT statement) using the Query Builder interface.

» Filtering Schema Contents — on the left side of the screen display the SQL schemas for the current namespace or a
filtered subset of these schemas, with each schema’s tables, views, procedures, and cached queries. You can select an
individual table, view, procedure, or cached query to display its Catalog Details.

» Wizards — execute a wizard to perform data import, data export, or data migration. Execute a wizard to link to tables
or views or to link to stored procedures.

» Actions — define a view; print out the details of a table definition; improve the performance of a query by running
Tune Table and/or rebuilding indexes; or perform clean up by purging unwanted cached queries and/or dropping
unwanted table, view, or procedure definitions.

Using InterSystems SQL 121

https://www.intersystems.com/support-learning/support/

Using the Management Portal SQL Interface

» Open Table — display the current data in the table in Display mode. This is commonly not the complete data in the
table: both the number of records and the length of data in a column are restricted to provide a manageable display.

» Tools — execute one of the following tools: SQL Runtime Statistics, Index Analyzer, Alternate Show Plans, Generate
Report, Import Report.

» Documentation — Allows you to view the list of SQL error codes and the list of SQL reserved words. If you select a
table, allows you to display Class Documentation.

In addition to the features under the System Explorer option, you can view monitor currently running queries with the SQL
Process View under the System Operation option.

10.1.1 Selecting a Namespace

All SQL operations occur within a specific namespace. Therefore, you must first specify which namespace you wish to
use by clicking the name of the current namespace displayed at the top of the SQL interface page. This displays the list of
available namespaces, from which you can make your selection.

You can set your Management Portal default namespace. From the Management Portal select System Administration,
Security, Users. Click the name of the desired user. This allows you to edit the user definition. From the General tab, select
a Startup Namespace from the drop-down list. Click Save. If no startup namespace is selected, it defaults to %SYS.

10.1.2 User Customization

Many of the Management Portal SQL operations are automatically customized for each user. If you set a filter, maximum,
mode, or other option in the Execute Query tab or the SQL Statements tab, this user-specified value is retained for future
use. When the same user activates the Management Portal, the user’s prior settings are shown. Restarting InterSystems
IRIS returns all options to default values.

Namespace selection is not customized. It reverts to the user definition Startup Namespace.

For details on using Filter options, see Filtering Schema Contents.

10.2 Executing SQL Query

From the Management Portal select System Explorer, then SQL. Select a namespace by clicking the name of the current
namespace displayed at the top of the page; this displays the list of available namespaces. To execute an SQL query, there
are three options:

e Execute Query: write and execute an SQL command. The SQL command can be a SELECT query, or it can be an
InterSystems SQL DDL or DML statement; the statement is validated on the InterSystems IRIS server when it executes.

e Show History: recall a previously run SQL statement, and either re-run it, or modify it and then run it. All executed
statements are listed, including those that did not successfully execute.

e Query Builder: invoke the SQL Query Builder (which is exclusively for creating SELECT statements). Within the
SQL Query Builder, create an SQL SELECT query by choosing tables, columns, WHERE clause predicates, and other
query components. You can then run the query by clicking Execute Query.

10.2.1 Writing SQL Statements

The Execute Query text box allows you to write not only SELECT and CAL L queries, but most SQL statements, including
DDL statements such as CREATE TABLE, and DML statements such as INSERT, UPDATE, and DELETE.

122 Using InterSystems SQL

Executing SQL Query

You can specify SQL code in the Execute Query text box using the following:

» Type (or paste) the SQL code into the text box. The SQL code area does not colorize SQL text or provide any syntax
or existence validation. However, it does provide automatic spelling verification. You can erase the contents of the
text box using the X icon.

» Use the Show History list to select a prior SQL statement. The selected statement is copied into the text box. Upon
execution, this statement moves to the top of the Show History list. Note that Show History lists all previously executed
statements, including those that failed execution.

» Use Table Drag and Drop to construct SQL code in the text box.

* You can use the Query Builder, rather than the Execute Query text box, to specify and execute a SELECT query. A
SELECT query executed using Query Builder is not shown in Execute Query or listed in Show History.

SQL code in the Execute Query text box can include:

e ?Input Parameters. If you specify input parameters, such as TOP ? or WHERE Age BETWEEN ? AND ?,the Execute
button displays the Enter Parameter Value for Query window, with entry fields for each input parameter in the order
specified in the query. For further details on ? input parameters, refer to Executing an SQL Statement.

* Whitespace Characters. You can specify multiple blank spaces, single and multiple line returns. The tab key is disabled:;
when copying code into the SQL code area, existing tabs are converted to single blank spaces. Line returns and multiple
blank spaces are not retained.

e Comments. The SQL code area supports single-line and multiline comments. Comments are retained and shown in
the Show History display. Comments are not shown in the Show Plan Statement Text display or in cached queries.

* Queries that Return Multiple Result Sets.

After writing SQL code in the text box, you can click the Show Plan button to check the SQL code without executing the
SQL code. If the code is valid, Show Plan displays a Query Plan. If the code is invalid, Show Plan displays an SQLCODE
error value and message. You can also use the Show Plan button to display this information for the most-recently-executed
SQL code.

To execute the SQL code, click the Execute button.

10.2.1.1 Table Drag and Drop

You can generate a query by dragging a table (or view) from the Tables list (or Views list) on the left side of the screen
and dropping it into the Execute Query text box. This generates a SELECT with a select-item list of all of the non-hidden
fields in the table and a FROM clause specifying the table. You can then further modify this query and execute it using the
Execute button.

You can also drag and drop a procedure name from the Procedures list on the left side of the screen.

10.2.2 Execute Query Options

The SQL execution interface has the following options:

e The Select Mode drop-down list with a SELECT specifies the format that the query should use to supply data values
(for example, in the WHERE clause) and to display data values in the query result set. The options are Display Mode
(the default), oDBC Mode, and Logical Mode. For further details on these options, refer to Data Display Options.

The Select Mode drop-down list with an INSERT or UPDATE allows you to specify whether input data will be con-
verted from display format to logical storage format. For this data conversion to occur, the SQL code must have been
compiled with a select mode of RUNTIME. At execution time, the Select Mode drop-down list must be set to Logical
Mode. For further details, refer to the INSERT or UPDATE statements.

Using InterSystems SQL 123

Using the Management Portal SQL Interface

Select Mode is meaningful for data types whose Logical storage format differs from the desired display format (Display
or ODBC), such as InterSystems IRIS dates and times and ObjectScript %L.ist structured data.

» The Max field allows you to limit how many rows of data to return from a query. It can be set to any positive integer,
including 0. Once you set Max, that value is used for all queries for the duration of the session, unless explicitly changed.
The default is 1000. The maximum value is 100,000, which is the default if you enter no value (set Max to null), enter
a value greater than 100,000, or a non-numeric value. You can also limit the number of rows of data to return by using
a TOP clause. Max has no effect on other SQL statements, such as DELETE.

If you click the more option, the SQL execution interface displays the following additional options:

» Dialect: the dialect of SQL code. Available values are IRIS, Sybase, and MSSQL. The default is IRIS. Sybase and
MSSQL are described in the InterSystems Transact-SQL (TSQL) Migration Guide. Note that the dialect you select
becomes the user customized default the next time you access the Management Portal.

If Dialect is Sybase or MSSQL, you can specify multiple SQL commands in the Execute Query text box. All insert,
delete, and update commands are executed first, then SELECT commands in the order specified. Multiple result sets
are returned in separate tabs.

* Row Number: a check box specifying whether to include a row count number for each row in the result set display.
Row Number is a sequential integer assigned to each row in the result set. This is simply a numbering of the returned
rows, it does not correspond to either the RowID or the %VID. The row number column header name is #. The default
is to not display row numbers.

* Execute Query in the foreground: a check box specifying whether or not to run the query in the foreground. Simple
queries run in the foreground are often significantly faster than those run in the background. However, long queries
run in the foreground may cause the Management Portal to be unresponsive during query execution. The default is to
run all queries in the background.

All of these options are user customized.

10.2.3 Show Plan Button

The Show Plan button displays the Statement Text and the Query Plan including the relative cost (overhead) of the current
query plan for the query in the page’s text box. You can invoke Show Plan from either the Execute Query or Show History
interface. A query plan is generated when a query is Prepared (compiled); this occurs when you write a query and select
the show Plan button. You do not have to execute a query to show its query plan. Show Plan displays an SQLCODE and
error message when invoked for an invalid query.

10.2.4 SQL Statement Results

After writing SQL code in the Execute Query text box, you can execute the code by clicking the Execute button. This either
successfully executes the SQL statement and displays the results below the code window, or the SQL code fails. If the SQL
code fails, it displays an error message (in red) below the code window; pressing the Show Plan button displays the SQLCODE
error and error message.

Execute Query SQL code execution is performed as a background process. While the code is executing, the Execute button
is replaced by a Cancel button. This allows you to cancel execution of a long-running query.

10.2.4.1 Query Data Display

The result set is returned as a table with a row counter displayed as the first column (#), if the Row Number box is checked.
The remaining columns are displayed in the order specified. The RowID (ID field) may be displayed or hidden. Each column
is identified by the column name (or the column alias, if specified). An aggregate, expression, subquery, host variable, or

124 Using InterSystems SQL

Executing SQL Query

literal SELECT item is either identified by a column alias (if specified), or by the word Aggregate_, Expression_,
Subquery_, HostVar_, or Literal_ followed by the SELECT item sequence number (by default).

If a row column contains no data (NULL) the result set displays a blank table cell. Specifying an empty string literal displays
a HostVar _ field with a blank table cell. Specify NULL displays a Literal_ field with a blank table cell.

If a selected field is a date, time, timestamp, or %L.ist-encoded field, the displayed value depends on the Display Mode.

The following display features are unique to the Management Portal SQL interface Execute Query results display and Open
Table data display:

» Astream field of data type %Stream.GlobalCharacter displays the actual data (up to 100 characters) as a string. If the
data in a stream field is longer than 100 characters, the first 100 characters of the data are displayed followed by an
ellipsis (. . .) indicating additional data.

» Astream field of data type %Stream.GlobalBinary displays as <binary>.
* Astring data field displays the actual data in full with line wrapping as needed.

» Aninteger field is right-aligned within the result table cell. RowlD, numeric, and all other fields are left-aligned.

These result display features do not occur when the same query is executed using Dynamic SQL code, the SQL Shell, or
Embedded SQL code.

If the specified query returns more than one result set, Execute Query displays these result sets as named tabs: Result #1,
Result #2, and so forth.

10.2.4.2 Query Execution Metrics

If successful, Execute Query displays performance information and the name of the cached query routine. If there is
resulting data to display, this appears below the performance information. The execution information includes the Row
count, the Performance, the Cached Query showing the cached query name, and Last update specifying the
timestamp for the last execution of the query.

* Row count: ForaDDL statement such as CREATE TABLE, displays Row count: O if the operation was successful.
For a DML statement such as INSERT, UPDATE, or DELETE, displays the number of rows affected.

For a SELECT, displays the number of rows returned as a result set. Note that the number of rows returned is governed
by the Max setting, which may be lower than the number of rows which could have been selected. For multiple result
sets, the number of rows for each result set are listed, separated by the / character. A query that specifies one or more
aggregate functions (and no selected fields) always displays Row count: 1 and returns the results of expressions,
subqueries, and aggregate functions, even if the FROM clause table contains no rows. A query that specifies no
aggregate functions and selects no rows always displays Row count: 0 and returns no results, even if the query
specifies only expressions and subqueries that do not reference the FROM clause table. A query with no FROM clause
always displays Row count: 1 and returns the results of expressions, subqueries, and aggregate functions.

* Performance: measured in elapsed time (in fractional seconds), total number of global references, total number of
commands executed, and disk read latency (in milliseconds). If a cached query exists for the query these performance
metrics are for executing the cached query. Therefore, the first execution of a query will have substantially higher
performance metrics than subsequent executions. If the specified query returns more than one result set, these perfor-
mance metrics are totals for all of the queries.

To analyze these performance metrics in greater depth you can run MONLBL (the monitor line-by-line utility) and
specify the Routine Name using the asterisk wildcard as %sglcg*. Refer to Examining Routine Performance Using
"%SYS.MONLBL.

e Cached Query:the automatically generated cached query class name. For example, %sqlcq.USER.cls2 indicating
the second cached query in the USER namespace. Each new query is assigned a new cached query name with the next
consecutive integer. By clicking this cached query name, you can display information about the cached query and

Using InterSystems SQL 125

Using the Management Portal SQL Interface

further links to display its Show Plan or to Execute the cached query. (For a DDL statement, see SQL Commands That
Are Not Cached.)

Closing the Management Portal or stopping InterSystems IRIS does not delete cached queries or reset cached query
numbering. To purge cached queries from the current namespace, invoke the % SY STEM .SQL .Purge() method.

Not all SQL statements result in a cached query. A query that is the same as an existing cached query, except for literal
substitution values (such as the TOP clause value and predicate literals) does not create a new cached query. Some
SQL statements are not cached, including DDL statements and privilege assignment statements. Non-query SQL
statements, such as CREATE TABLE, also display a cached query name. However, this cached query name is created
then immediately deleted; the next SQL statement (query or non-query) reuses the same cached query name.

» Frozen state: if a query plan is frozen, the frozen plan state (in parentheses) is displayed after the cached query class
name. For example (Frozen/Explicit). If the query plan is not frozen, nothing is displayed here.

e Last update: the date and time that the last Execute Query (or other SQL operation) was performed. This timestamp
is reset each time the query is executed, even when repeatedly executing the identical query.

» Successful execution also provides a Print link that displays the Print Query window, which gives you the options to
either print or export to a file the query text and/or the query result set. The clickable Query and Result toggles enable
you to display or hide the query text or the query result set. The displayed query result set includes the namespace
name, the result set data and row count, a timestamp, and the cached query name. (Note that the timestamp is the time
when the Print Query window was invoked, not the time when the query was executed.) The Print Query window Print
button prints a screenshot of the Print Query window. The Export to File check box displays options to specify an
export file format (xml, hdml, pdf, txt, csv) and an export file pathname. The Export option ignores the Query and
Result toggles and always exports only the result set data (by default to: exportQuery . pdf) and the row count (by
default to: exportQueryMessages . pdf); the query text, namespace, timestamp, and cached query name are not
included.

If unsuccessful, Execute Query displays an error message. You can click the Show Plan button to display the corresponding
SQLCODE error value and message.

10.2.5 Show History

Click show History to list prior SQL statements executed during the current session. Show History lists all SQL statements
invoked from this interface, both those successfully executed and those whose execution failed. By default, SQL statements
are listed by Execution Time, with the most recently executed appearing at the top of the list. You can click on any of the
column headings to order the SQL statements in ascending or descending order by column values. Executing an SQL
Statement from the Show History listing updates its Execution Time (local date and time stamp), and increments its Count
(number of times executed).

You can filter the Show History listing, as follows: in the Filter box specify a string then press the Tab key. Only those history
items that contain that string will be included in the refreshed listing. The filter string can either be a string found in the
SQL Statement column (such as a table name), or it can be a string found in the Execution Time column (such as a date).
The filter string is not case-sensitive. A filter string remains in effect until you explicitly change it.

You can modify and execute an SQL statement from Show History by selecting the statement, which causes it to be displayed
in the Execute Query text box. In Execute Query you can modify the SQL code and then click Execute. Making any change
to an SQL statement retrieved from Show History causes it to be stored in Show History as a new statement; this include
changes that do not affect execution, such as changing letter case, whitespace, or comments. Whitespace is not shown in
Show History, but it is preserved when an SQL statement is retrieved from Show History.

You can execute (re-run) an unmodified SQL statement directly from the Show History list by clicking the Execute button
found to the right of the SQL statement in the Show History listing.

You can also select buttons for Plan, Print, or Delete. The Print button displays the Print Query window, which gives you
the options to either print or export to a file the query text and/or the query result set. The Delete button deletes the SQL

126 Using InterSystems SQL

Filtering Schema Contents

statement from the history; the Delete All button at the end of the Show History list deletes all the SQL statements in the
history.

Note that the Show History listing is not the same as the list of cached queries. Show History lists all invoked SQL statements
from the current session, including those that failed during execution.

10.2.6 Other SQL Interfaces

InterSystems IRIS supports numerous other ways to write and execute SQL code. These include:

Embedded SQL: SQL code embedded within ObjectScript code.

Dynamic SQL: using %SQL.Statement class methods (or other result set class methods) to execute SQL statements
from within ObjectScript code.

SQL Shell: executing Dynamic SQL from the Terminal using the SQL Shell interface.

10.3 Filtering Schema Contents

The left side of the Management Portal SQL interface allows you to view the contents of a schema (or multiple schemas
that match a filter pattern).

1.

Specify which namespace you wish to use by clicking the name of the current namespace displayed at the top of the
SQL interface page. This displays the list of available namespaces, from which you can make your selection.

Apply a Filter or select a schema from the Schema drop-down list.

You can use the Filter field to filter the lists by typing a search pattern. You can filter for schemas, or for
table/view/procedure names (items) within a schema or within multiple schemas. A search pattern consists of the name
of a schema, a dot (.), and the name of an item — each name composed of some combination of literals and wildcards.
Literals are not case-sensitive. The wildcards are:

» asterisk (*) meaning 0 or more characters of any type.

e underscore (_) meaning a single character of any type.

» anapostrophe (") inversion prefix meaning “not” (everything except).

» abackslash (\) escape character: _means a literal underscore character.

For example, S* returns all schemas that begin with S. S* . Person returns all Person items in all schemas that begin
with S. *_Person™ returns all items that begin with Person in all schemas. You can use a comma-separated list of

search patterns to select all items that fulfil any one of the listed patterns (OR logic). For example,
_Person,*_Employee™ selects all Person and Employee items in all schemas.

To apply a Filter search pattern, click the refresh button, or press the Tab key.

A Filter search pattern remains in effect until you explicitly change it. The “x” button to the right of the Filter field
clears the search pattern.

Selecting a schema from the Schema drop-down list overrides and resets any prior Filter search pattern, selecting for
a single schema. Specifying a Filter search pattern overrides any prior Schema.

Optionally, use the drop-down “applies to” list to specify which categories of item to list: Tables, Views, Procedures,
Cached Queries, or all of the above. The default is All. Any category that was specified in the “applies to” drop-down
list is limited by Filter or Schema. Those categories not specified in “applies to” continue to list all of the items of that
category type in the nhamespace.

Using InterSystems SQL 127

Using the Management Portal SQL Interface

5. Optionally, click the System check box to include system items (items whose names begin with %). The default is to
not include system items.

6. Expand the list for a category to list its items for the specified Schema or specified Filter search pattern. When you
expand a list, any category that contains no items does not expand.

7. Click on an item in an expanded list to display its Catalog Details on the right side of the SQL interface.

If the selected item is a Table or a Procedure, the Catalog Details Class Name information provides a link to the corre-
sponding class documentation.

Note that Filter settings are user customized, and are retained for future use for that user.

10.3.1 Browse Tab

The Browse tab provides a convenient way to quickly view all the schemas in a namespace, or a filtered subset of the
schemas in the namespace. You can select Show All Schemas or Show Schemas with Filter, which applies the filter specified
on the left side of the Management Portal SQL interface. By clicking on the Schema Name heading, you can list the schemas
in ascending or descending alphabetical order.

Each listed schema provides links to lists of its associated Tables, Views, Procedures, and Queries (cached queries). If the
schema has no items of that type, a hyphen (rather than a named link) is shown in that schema list column. This enables
you to quickly get information about the contents of schemas.

Clicking a Tables, Views, Procedures, or Queries link displays a table of basic information about those items. By clicking
on a table heading, you can sort the list by that column’s values in ascending or descending order. The Procedures table
always includes Extent procedures, regardless of the Procedures setting on the left side of the Management Portal SQL
interface.

You can get more information on individual Tables, Views, Procedures, and Cached Queries using the Catalog Details tab.
Selecting a Table or View from the Browse tab does not activate the Open Table link for that table.

10.4 Catalog Detalls

The Management Portal provides Catalog Details information for each Table, View, Procedure, and Cached Query. The
filtering schema contents (left side) component of the Management Portal SQL interface allows you to select an individual
item to display its Catalog Details.

10.4.1 Catalog Details for a Table

The following Catalog Details options are provided for each table:

» Table Info: Table Type: either TABLE, GLOBAL TEMPORARY, or SYSTEM TABLE (system tables are only displayed
if the System check box is selected), Owner name, Last Compiled timestamp, External and Readonly boolean values,
Class Name, Extent Size, the name of the Child Table(s) and/or the Parent Table (if relevant) and one or more References
fields to other tables (if relevant), whether it uses the %Storage.Persistent default storage class, whether it Supports
Bitmap Indexes, the RowID field name, a list of the fields that Rowld is based on (if relevant), and whether the table
is sharded. If there is an explicit shard key, it displays the shard key fields.

Class Name is a link to the corresponding entry in the Inter Systems Class Reference documentation. The Class Name
is a unique package.class name derived from the table name by removing punctuation characters, as described in
Identifiers and Class Entity Names.

128 Using InterSystems SQL

Catalog Details

References only appears in Table Info if there is one or more references from a field in the current table to another
table. These references to other tables are listed as links to the Table Info for the referenced table.

Sharded: if the table is a shard-master table, the Table Info displays the name of the shard-local class and table with a
link to the corresponding entry in the class documentation. If the table is a shard-local table, the Table Info displays
the name of the shard-master class and table with a link to the corresponding entry in the class documentation. Shard-
local tables are only displayed if the System check box is selected.

This option also provides a modifiable value for the Number of rows to load when table is opened. This sets the maximum
number of rows to display in Open Table. The available range is from 1 to 10,000; the default is 100. The Management
Portal corrects a value outside the available range to a valid value: 0 corrects to 100; a fractional number rounds up to
the next higher integer; a number greater than 10,000 corrects to 10,000.

e Fields: alist of the fields (columns) in the table showing: Field Name, Datatype, Column #, Required, Unique, Collation,
Hidden, MaxLen, MaxVal, MinVal, Stream, Container, SQLType, Reference To, Version Column, Selectivity, Outlier
Selectivity, and Average Field Size.

» Maps/Indices: a list of the indexes defined for the table showing: Index Name, SQL Map Name, Columns, Type, Block
Count, Map Inherited, and Global.

Index Name is the index property name and follows property naming conventions; when generated from an SQL index
name, punctuation characters (such as underscores) in the SQL index name are stripped out. The SQL Map Name is the
SQL name for the index. A generated SQL Map Name is the same as the Constraint Name, and follows the same naming
conventions (described below). Columns specifies a field or a comma-separated list of fields specified for the index;
it may specify the index collation type and full schema.table.field reference, as in the following example:
$$SQLUPPER({Sample.People_Name}). Type can be one of the following: Bitmap Extent, Data/Master, Index
(standard index), Bitmap, or Bitslice index, and the Unique constraint. The Block Count contains both the count and
how that count was determined: set explicitly by the class author (Defined), computed by TuneTable (Measured), or
estimated by the class compiler (Estimated). If Map Inherited? is Yes, this map was inherited from a superclass. Global
is the name of the subscripted global containing the index data. The naming conventions for index globals are described
in Index Global Names. You can supply this global name to ZWRITE to display the index data.

This option also provides a link for each index to rebuild the index.

* Maps/Indices: a list of the indexes defined for the table showing: Index Name, SQL Map Name, Columns, Type, Block
Count, Map Inherited, and Global.

Index Name is the index property name and follows property naming conventions; when generated from an SQL index
name, punctuation characters (such as underscores) in the SQL index name are stripped out. The SQL Map Name is the
SQL name for the index. A generated SQL Map Name is the same as the Constraint Name, and follows the same naming
conventions (described below). Columns specifies a field or a comma-separated list of fields specified for the index;
it may specify the index collation type and full schema.table.field reference, as in the following example:
$$SQLUPPER({Sample.People.Name}). Type can be one of the following: Bitmap Extent, Data/Master, Index
(standard index), Bitmap, or Bitslice index, and the Unique constraint. The Block Count contains both the count and
how that count was determined: set explicitly by the class author (Defined), computed by TuneTable (Measured), or
estimated by the class compiler (Estimated). If Map Inherited? is Yes, this map was inherited from a superclass. Global
is the name of the subscripted global containing the index data. The naming conventions for index globals are described
in Index Global Names. You can supply this global name to ZWRITE to display the index data.

This option also provides a link for each index to rebuild the index.
e Triggers: a list of the triggers defined for the table showing: Trigger Name, Time Event, Order, Code.

» Constraints: a list of the constraints for fields of the table showing: Constraint Name, Constraint Type, and Constraint
Data (field name(s) listed in parentheses). Constraints include primary key, foreign key, and unique constraints. A
primary key is, by definition, unique; it is only listed once. This option list constraints by constraint name; a constraint
involving multiple fields is listed once with Constraint Data displaying a comma-separated list of the component fields.

Using InterSystems SQL 129

Using the Management Portal SQL Interface

The Constraint Type can be UNIQUE, PRIMARY KEY, Implicit PRIMARY KEY, FOREIGN KEY, or Implicit
FOREIGN KEY.

You can also list constraints by invoking INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE. This list con-
straints by field name. The following example returns the name of the field and the name of the constraint for all
UNIQUE, PRIMARY KEY, FOREIGN KEY and CHECK constraints:

SQL

SELECT Column_Name,Constraint_Name FROM INFORMATION_SCHEMA_CONSTRAINT_COLUMN_USAGE WHERE
TABLE_SCHEMA="Sample® AND TABLE_NAME="Person”

If the table is defined with %PUBLICROWID and no explicit primary key is defined, the RowID field is listed with
a Constraint Type of Implicit PRIMARY KEY with the Constraint Name RowlDField_As_PKey.

For explicit constraints, the Constraint Name is generated as follows:

— Constraint specified in the field definition: For example, Ful IName VARCHAR(48) UNIQUE or Ful IName
VARCHAR(48) PRIMARY KEY. The Constraint Name value for the field is a generated value with the syntax
TABLENAME_CTYPE#, where CTYPE is UNIQUE, PKEY, or FKEY, and # is a sequential integer assigned to
unnamed constraints in the order specified in the table definition. For example, if FullName has the 2nd unnamed
unique constraint (excluding the 1D field) in the MyTest table, the generated Constraint Name for FullName would
be MYTEST_UNIQUEZ2; if FullName is the primary key and the 3rd unnamed constraint (excluding the 1D field)
specified in the MyTest table, the generated Constraint Name for FullName would be MYTEST_PKEY3.

— CONSTRAINT keyword named constraint clause: For example, CONSTRAINT UFul IName
UNIQUE(FirstName,LastName) or CONSTRAINT PKName PRIMARY KEY(FullName)), the Constraint
Name is the specified unique constraint name. For example, FirstName and LastName in the MyTest table would
each have the Constraint Name UFul IName; FullName would have the Constraint Name PKName.

— Unnamed constraint clause: For example, UNIQUE(FirstName, LastName) or PRIMARY KEY (Ful IName).
The Constraint Name value is a generated value with the syntax TABLENAMECType#, where CType is Unique,
PKey, or FKey, and # is a sequential integer assigned to unnamed constraints in the order specified in the table
definition. For example, if FirstName and LastName have the 2nd unnamed unique constraint (excluding the ID
field) in the MyTest table, the generated Constraint Name for FirstName and LastName would be MYTESTUnique2;
if FullName is the primary key and the 3rd unnamed constraint (excluding the ID field) specified in the MyTest
table, the generated Constraint Name for FullName would be MYTESTPKey3. (Note mixed uppercase/lowercase
and absence of an underscore.)

If a field is involved in more than one uniqueness constraint, it is listed separately for each Constraint Name.

e Cached Queries: a list of the cached queries for the table showing: Routine name, Query text, Creation Time, Source,
Query Type.

* Table’s SQL Statements: a list of the SQL Statements generated for this table. Same information as namespace-wide
SQL Statements display.

10.4.2 Catalog Details for a View

Management Portal SQL interface also provides Catalog Details for views, procedures, and cached queries:
The following Catalog Details options are provided for each view:

* View Info: Owner name, Last Compiled timestamp. This timestamp updates when you use the Edit View link and save
changes.

130 Using InterSystems SQL

Wizards

Defined as Read Only and View is Updateable booleans: if view definition included WITH READ ONLY, these are set
to 1 and O respectively. Otherwise, if the view is defined from a single table they are set to 0 and 1; if the view is
defined from joined tables they are set to 0 and 0. You can change this option using the Edit View link.

Class Name is a unique package.class name derived from the view name by removing punctuation characters, as
described in Identifiers and Class Entity Names.

Check Option is only listed if the view definition included the WITH CHECK OPTION clause. It can be LOCAL or
CASCADED. You can change this option using the Edit View link.

Class Type is VIEW. It provides an Edit View link to edit the view definition.

View Text is the SELECT statement used to define the view. You can change the view definition using the Edit View
link.

The list of fields includes the Field Name, Data Type, MAXLEN Parameter, MAXVAL Parameter, MINVAL
Parameter, BLOB (%Stream.GlobalCharacter or %Stream.GlobalBinary field), Length, Precision, and Scale.

View’s SQL Statements: a list of the SQL Statements generated for this view. Same information as namespace-wide
SQL Statements display.

10.4.3 Catalog Details for a Stored Procedure

The following Catalog Details options are provided for each procedure:

Stored Procedure Info:

Class Name is a unique package.class name derived from the procedure name by pre-pending a type identifier (“func’,
‘meth’, “proc’, or ‘query’) to the class name (for example, the SQL function MyProc becomes funcMyProc) and
removing punctuation characters, as described in Identifiers and Class Entity Names. Class Document is a link to the
corresponding entry in the class documentation. Procedure Type (for example, function). Method or Query Name the
name of the generated class method or class query; this name is generated described in Identifiers and Class Entity
Names. The Run Procedure link provides an option to interactively run the procedure.

Stored Procedure’s SQL Statements: a list of the SQL Statements generated for this stored procedure. Same information
as namespace-wide SQL Statements display.

10.4.4 Catalog Details for a Cached Query

Cached Query provides the full text of the query, an option to show the query execution plan, and an option to interactively
execute the cached query.

10.5Wizards

Data Import Wizard — Runs a wizard to import data from a text file into an InterSystems IRIS class.
Data Export Wizard — Runs a wizard to export data from an InterSystems IRIS class into a text file.

Data Migration Wizard — Runs a wizard to migrate data from an external source and create an InterSystems IRIS class
definition to store it.

Link Table Wizard — Runs a wizard to link to tables or views in external sources as if it were native InterSystems IRIS
data.

Link Procedure Wizard — Runs a wizard to link to procedures in external sources.

Using InterSystems SQL 131

Using the Management Portal SQL Interface

10.6 Actions

» Create View — Displays a page for creating a view.

e Print Catalog — Allows you to print complete information about a table definition. Clicking Print Catalog displays a
print preview. By clicking Indices, Triggers, and/or Constraints on this print preview you can include or exclude this
information from the catalog printout.

* Purge Cached Queries — Provides three options for purging cached queries: purge all cached queries for the current
namespace, purge all cached queries for the specified table, or purge only selected cached queries.

e TuneTable Information — Run the Tune Table facility against the selected table. This calculates the selectivity of each
table column against the current data. A selectivity value of 1 indicates a column that defined as unique (and therefore
has all unique data values). A selectivity value of 1.0000% indicates a column not defined as unique for which all
current data values are unique values. A percentage value greater that 1.0000% indicates the relative number of
duplicate values for that column in the current data. By using these selectivity values you can determine what indexes
to define and how to use these indexes to optimize performance.

* Tuneall tables in schema — Run the Tune Table facility against all of the tables belonging to a specified schema in
the current namespace.

* Rebuild Table’s Indices — Rebuild all indexes for the specified table.

» Drop this item — Drop (delete) the specified table definition, view definition, procedure, or cached query. You must
have the appropriate privileges to perform this operation. Drop cannot be used on a table created by defining a persistent
class, unless the table class definition includes [DdlAllowed]. Otherwise, the operation fails with an SQLCODE-300
error with the %msg DDL not enabled for class "Schema.tablename®. Drop cannot be used on a table
if the corresponding persistent class has a subclass (a derived class); the operation fails with an SQLCODE -300 error
with the %msg Class "Schema.tablename® has derived classes and therefore cannot be
dropped via DDL.

If a class is defined as a linked table, the Drop action drops the linked table on the local system, even if the linked table
class is not defined as DdIAllowed. Drop does not drop the actual table this link references that resides on the server.

* Export All Statements — Exports all SQL Statements in the current namespace. SQL Statements are exported in XML
format. You can choose to export to a file, or export to a browser display page.

* Import Statements — Imports SQL Statements from an XML file into the current namespace.

10.7 Open Table

If you select a table or view on the left side of the Management Portal SQL interface, the Catalog Details for that tableor
view are displayed. The Open Table link at the top of the page also becomes active. Open Table displays the actual data in
the table (or accessed via the view). The data is shown in Display format.

By default, the first 100 rows of data are displayed; this default is modifiable by setting the Number of rows to load when
table is opened in the Catalog Details tab Table Info. If there are more rows in the table than this number of rows to load
value, the More data. - . indicator is shown at the bottom of the data display. If there are fewer rows in the table than
this number of rows to load value, the Comp lete indicator is shown at the bottom of the data display.

A column of data type %Stream.GlobalCharacter displays the actual data (up to 100 characters) as a string. Additional data
beyond the first 100 characters is indicated by an ellipsis (- - .).

A column of data type %Stream.GlobalBinary displays as <binary>.

132 Using InterSystems SQL

Tools

10.8 Tools

The System Explorer, SQL, Tools drop-down list provides access to the following tools. These are the same tools available
from System Explorer, Tools, SQL Performance Tools:

* SQL Runtime Statistics: user interface to generate SQL Runtime Statistics for a specified query.
» Index Analyzer: user interface for gathering various types of index analysis for a specified schema.
» Alternative Show Plans: user interface to generate Alternate Show Plans for a specified query.

» Generate Report to submit an SQL query performance report to InterSystems WRC (Worldwide Response Center
customer support). To use this reporting tool you must first get a WRC tracking number from the WRC.

e Import Report to import an existing WRC report by file name. For InterSystems use only.

10.9 SQL Process View

Within the Management Portal, you can view which queries are currently running on an instance of InterSystems IRIS. To
do so, navigate to the view the Current SQL Statements page (System Operation > SQL Activity).

The table on this page lists each of the currently running SQL statements, based on the data stored in INFORMA-
TION_SCHEMA.CURRENT_STATEMENTS. The table, as presented in the Management Portal, contains the following
columns:

* Process — the process ID in which the SQL Statement is running

» Server — the instance that the query is running on

* User — the user that issued the query

* Namespace — the namespace in which the query is running

» Type — the type of the currently running query

e Elapsed time — the current amount of time that the query has been running

» Statement — the text of the query

To view further details about a statement, select an individual row in the table of currently executing SQL statements. These
details include the following information:

» Transaction? — whether the query is being executed as part of a transaction

» Parameters — the parameters that the query is currently using to run, listed in the order in which they have been sub-
stituted into the query

* Cached Query — the name of the cached query
In addition, on the Current SQL Statements page, you can also view the execution statistics, which provide information

about the performance of the selected query. These statistics are presented both for all time and for the previous week.
These execution statistics include the following information:

* Time executed
* Average runtime

. Runtime standard deviation

Using InterSystems SQL 133

Using the Management Portal SQL Interface

* Average rowcount (the average number of rows that the query returns)

* Average commands (the average number of commands the system performs as it processes the query)

10.10 Diagnostic Logs

From the home page of the Management Portal, navigate to System Operation < System Logs < SQL Diagnostics Logs t0
view a log that details the performance of LOAD DATA commands that have run within the current namespace.

Each command is viewable on a different row. When a row is selected, the details appear on the right. These details include:
e Start time: The time that the LOAD DATA command started running.

» User: The user that issued the LOAD DATA command.

e Status: The current status of the statement.

* Process ID: The process ID that the LOAD DATA command ran in.

e SQLCODE: The SQLCODE returned when the LOAD DATA command has finished running.

e Input record count: The number of input records from the data source.

* Error count: The number of errors loading specific rows of the data source.

» statement: The full statement text of the command that was run.

* Messages: Any messaged logged as the LOAD DATA statement ran, including errors.

To purge older entries, select the check box for the rows you would like to delete, then click the Delete button at the top of
the screen.

134 Using InterSystems SQL

11

Defining Tables

This topic describes how you create tables in InterSystems SQL.

11.1 Table Names and Schema Names

You can create a table either by defining the table (using CREATE TABLE) or by defining a persistent class that is projected
to a table:

» DDL: InterSystems IRIS® data platform uses the table name specified in CREATE TABLE to generate a corresponding
persistent class name, and uses the specified schema name to generate a corresponding package name.

» Class Definition: InterSystems IRIS® data platform uses the persistent class name to generate a corresponding table
name, and uses the package name to generate a corresponding schema name.
The correspondence between these two names may not be identical for the following reasons:

» Persistent classes and SQL tables follow different naming conventions. Different valid character and length requirements
apply. Schema and table names are not case-sensitive; package and class names are case-sensitive. The system auto-
matically converts a valid supplied name to a valid corresponding name, insuring that the generated name is unique.

» The match between a persistent class name and the corresponding SQL table name is a default. You can use the
SqlTableName class keyword to supply a different SQL table name.

e The default schema name may not match the default package name. If you specify an unqualified SQL table name or
persistent class name, the system supplies a default schema name or package name. The initial default schema name
is SQLUser; the initial default package name is User.

11.2 Schema Name

A table, view, or stored procedure name is either qualified (schema.name) or unqualified (name).

» Ifyou specify a schema name (qualified name), the specified table, view, or stored procedure is assigned to that schema.
If the schema does not exist, InterSystems SQL creates the schema and assigns the table, view, or stored procedure to
it.

» If you do not specify a schema name (unqualified name), InterSystems SQL assigns a schema using either the default
schema name or a schema search path, as described below.

Using InterSystems SQL 135

Defining Tables

This section describes the following topics:

» Schema Naming Considerations

* Reserved Schema Names

o Default Schema Name

* Useof CURRENT_USER to Specify a Schema
» Schema Search Path

» Platform-Specific Schema Name Inclusion

e Listing Schemas

11.2.1 Schema Naming Considerations

Schema names follow identifier conventions, with significant considerations concerning the use of non-alphanumeric
characters. A schema name should not be specified as a delimited identifier. Attempting to specify “USER” or any other
SQL reserved word as a schema name results in an SQLCODE -312 error. The INFORMATION_SCHEMA schema name
and the corresponding INFORMATION.SCHEMA package name are reserved in all namespaces. Users should not create
tables/classes within this schema/package.

When you issue a create operation, such as CREATE TABLE, that specifies a schema that does not yet exist, InterSystems
IRIS creates the new schema. InterSystems IRIS uses the schema name to generate a corresponding package name. Because
the naming conventions for schemas and their corresponding packages differ, the user should be aware of name conversion
considerations for non-alphanumeric characters. These name conversion considerations are not the same as for tables:

* Initial character:

— % (percent): Specify % as the first character of a schema name denotes the corresponding package as a system
package, and all of its classes as system classes. This usage requires appropriate privileges; otherwise, this usage
issues an SQLCODE -400 error with the %msg indicating a <PROTECT> error.

— _ (underscore): If the first character of a schema name is the underscore character, this character is replaced by a
lowercase “u” in the corresponding package name. For example, the schema name _MySchema generates the
package name uMySchema.

e Subsequent characters:

— _ (underscore): If any character other than the first character of a schema name is the underscore character, this
character is replaced by a period (.) in the corresponding package name. Because a period is the class delimiter,
an underscore divides a schema into a package and a sub-package. Thus My_Schema generates the package My
containing the package Schema (My.Schema).

- @, #, $ characters: If a schema name contains any of these characters, these characters are stripped from the cor-
responding package name. If stripping these characters would produce a duplicate package name, the stripped
package name is further modified: the final character of the stripped schema name is replaced by a sequential
integer (beginning with 0) to produce a unique package name. Thus My@#$Schema generates package MySchema,
and subsequently creating My#$Schema generates package MySchem0O. The same rules apply to table name cor-
responding class names.

11.2.2 Reserved Schema Names

The INFORMAT I0ON_SCHEMA schema name and the corresponding INFORMATION.SCHEMA package name are reserved
in all namespaces. Users should not create tables/classes within this schema/package.

136 Using InterSystems SQL

Schema Name

The IRIS_Shard schema name is reserved in all namespaces. Users should not create tables, views, or procedures within
this schema. Items stored in the IRIS_Shard schema are not displayed by catalog queries or INFORMATION_SCHEMA
queries.

11.2.3 Default Schema Name

* When performing a DDL operation, such as creating or deleting a table, view, trigger, or stored procedure, an unqual-
ified name is supplied the default schema name. Schema search path values are ignored.

* When performing a DML operation, such as a SELECT, CALL, INSERT, UPDATE, or DELETE to access an existing
table, view, or stored procedure, an unqualified name is supplied the schema name from the schema search path (if
provided). If there is no schema search path, or the named item is not located using the schema search path, the default
schema name is supplied.

The initial setting is to use the same default schema name for all namespaces (system-wide). You can set the same default
schema name for all namespace, or set a default schema name for the current namespace.

If you create a table or other item with an unqualified name, InterSystems IRIS assigns it the default schema name, and the
corresponding persistent class package name. If a named or default schema does not exist, InterSystems IRIS creates the
schema (and package) and assigns the created item to the schema. If you delete the last item in a schema, InterSystems
IRIS deletes the schema (and package). The following description of schema name resolution applies to table names, view
names, and stored procedure names.

The initial system-wide default schema name is SQLUser. The corresponding persistent class package name is User.
Therefore, either the unqualified table name Employee or the qualified table name SQLUser.Employee would generate the
class User .Employee.

Because USER is a reserved word, attempting to specify a qualified name with the schema name of User (or any SQL
Reserved Word) results in an SQLCODE -1 error.

To return the current default schema name, invoke the $SY STEM .SQL .Schema.Default() method.

Or use the following pre-processor macro:

ObjectScript

#include %occConstant
WRITE $$$DefSchema

You can change the default schema name using either of the following:

e Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
SQL. On this screen you can view and edit the current system-wide setting of Default Schema. This option sets the
default schema name system-wide. This system-wide setting can be overridden by a SetDefault() method value for
the current namespace.

e The $SYSTEM.SQL .Schema.SetDefault() method. By default, this method sets the default schema name system-
wide. However, by setting the Boolean 3rd argument = 1, you can set the default schema for just the current namespace.
When different namespaces have different default schema names, the $SY STEM .SQL .CurrentSettings() method
returns the default schema name for the current namespace.

CAUTION: When you change the default SQL schema name, the system automatically purges all cached queries in
all namespaces on the system. By changing the default schema name, you change the meaning of all queries
that contain unqualified table, view, or stored procedure names. It is strongly recommended that the default
SQL schema name be established at InterSystems IRIS installation and not subsequently modified.

Using InterSystems SQL 137

Defining Tables

The schema name is used to generate the corresponding class package name. Because these names have different naming
conventions, they may not be identical.

You can create a schema with the same name as an SQL reserved word by setting this as the system-wide Default Schema,
though this is not recommended. A default schema named User generates the corresponding class package name UseO,
following the class naming uniqueness convention.

11.2.3.1 CURRENT USER Keyword

» As System-wide Default Schema Name: If you specify CURRENT _USER as the default schema name, InterSystems
IRIS assigns the user name of the currently logged-in process as the default schema name. The _CURRENT_USER
value is the first part of the SUSERNAME ObjectScript special variable value. If SUSERNAM E consists of a name
and a system address (Deborah@TestSys), CURRENT_USER contains only the name piece; this means that CUR-
RENT_USER can assign the same default schema name to more than one user. If the process has not logged in,
_CURRENT_USER specifies SQLUser as the default schema name.

If you specify _CURRENT_USER/name as the default schema name, where name is any string of your choice, then
InterSystems IRIS assigns the user name of the currently logged-in process as the default schema name. If the process
has not logged in, name is used as the default schema name. For example, CURRENT_USER/HMO uses HMO as
the default schema name if the process has not logged in.

In $SY STEM .SQL .Schema.SetDefault(), specify **_CURRENT_USER™ as a quoted string.

* As Schema Name in DDL Command: If you specify CURRENT_USER as the explicit schema name in a DDL
statement, InterSystems IRIS replaces it with the current system-wide default schema. For example, if the system-wide
default schema is SQLUser, the command DROP TABLE _CURRENT_USER.OldTable drops SQLUser.OldTable.
This is a convenient way to qualify a name to explicitly indicate that the system-wide default schema should be used.
It is functionally identical to specifying an unqualified name. This keyword cannot be used in DML statements.

11.2.4 Schema Search Path

When accessing an existing table (or view, or stored procedure) for a DML operation, an unqualified name is supplied the
schema name from the schema search path. Schemas are searched in the order specified and the first match is returned. If
no match is found in the schemas specified in the search path, or no search path exists, the default schema name is used.
(Note that the #import macro directive uses a different search strategy and does not “fall through” to the default schema
name.)

e InEmbedded SQL you can use the #sglcompile path macro directive or the #import macro directive to supply a schema
search path that InterSystems IRIS uses to resolve unqualified names. #sqlcompile path resolves an unqualified name
with the first match encountered. #import resolves an unqualified name if there is exactly one match for all the schemas
listed in the search path.

» The following example provides a search path containing two schema names:

ObjectScript

#sqlcompile path=Customers,Employees

For further details, refer to Macro Preprocessor Directives.

e In Dynamic SQL you can use the %SchemaPath property to supply a schema search path that InterSystems IRIS uses
to resolve unqualified table names. You can specify the %SchemaPath property directly or specify it as the second
parameter of the %SQL.Statement % New() method. The following example provides a search path containing two
schema names:

138 Using InterSystems SQL

Table Name

ObjectScript

SET tStatement = ##class(%SQL.Statement) .%New(O, "'Customers,Employees'™)

* InSQL Shell you can set the PATH SQL Shell configuration parameter to supply a schema search path that InterSystems
IRIS uses to resolve unqualified names.

If the unqualified name does not match any of the schemas specified in the schema search path or the default schema name,
an SQLCODE -30 error is issued, such as the following: SQLCODE: -30 Message: Table "PEOPLE" not found
within schemas: CUSTOMERS,EMPLOYEES,SQLUSER.

11.2.5 Platform-Specific Schema Name Inclusion

When creating an ODBC-based query to run from Microsoft Excel via Microsoft Query on the Mac, if you choose a table
from the list of those available, the generated query does not include the table’s schema (equivalent to the package for a
class). For example, if you choose to return all the rows of the Person table from the Sample schema, the generated query
is:

SQL

SELECT * FROM Person

Because InterSystems IRIS interprets an unqualified table name as being in the SQLUser schema, this statement either fails
or returns data from the wrong table. To correct this, edit the query (on the SQL View tab) to explicitly refer to the desired
schema. The query should then be:

SELECT * FROM Sample.Person

11.2.6 Listing Schemas

The INFORMATION.SCHEMA.SCHEMATA persistent class lists all schemas in the current namespace.

The following example returns all non-system schema names in the current namespace:

SQL

SELECT SCHEMA_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE NOT SCHEMA_NAME %STARTSWITH "%"

The left side of the Management Portal SQL interface allows you to view the contents of a schema (or multiple schemas
that match a filter pattern). See Filtering Schema Contents for further details.

11.3 Table Name

Every table has a unique name within its schema. A table has both an SQL table name and a corresponding persistent class
name; these names differ in permitted characters, case-sensitivity, and maximum length. If defined using the SQL CREATE
TABLE command, you specify an SQL table name that follows identifier conventions; the system generates a corresponding
persistent class name. If defined as a persistent class definition, you must specify a name that contains only alphanumeric
characters; this name is used as both the case-sensitive persistent class name and (by default) the corresponding non-case-
sensitive SQL table name. The optional SqglTableName class keyword allows the user to specify a different SQL table
name.

Using InterSystems SQL 139

Defining Tables

When you use the CREATE TABL E command to create a table, InterSystems IRIS uses the table name to generate a
corresponding persistent class name. Because the naming conventions for tables and their corresponding classes differ, the
user should be aware of name conversion considerations for non-alphanumeric characters:

Initial character:

— % (percent): % as the first character of a table name is reserved and should be avoided (see Identifiers). If specified,
the % character is stripped from the corresponding persistent class name.

— _ (underscore): If the first character of a table name is the underscore character, this character is stripped from the
corresponding persistent class name. For example, the table name _MyTable generates the class name MyTable.

— Numbers: The first character of a table name cannot be a number. If the first character of the table name is a
punctuation character, the second character cannot be a number. This results in an SQLCODE -400 error, with a
%msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without the punctuation character). For
example, specifying the table name _7A generates the %msg “ERROR #5053: Class name 'User.7A" is invalid ™.

Subsequent characters:

— Letters: A table name must include at least one letter. Either the first character of the table name or the first char-
acter after initial punctuation characters must be a letter. A character is a valid letter if it passes the $ZNAME test;
$ZNAME letter validation differs for different locales. (Note that $ZNAM E cannot be used validate SQL identifiers
because an identifier can contain punctuation characters.)

— _ (underscore), @, #, $ characters: If a table name contains any of these characters, these characters are stripped
from the corresponding class name and a unique persistent class name is generated. Because generated class names
do not include punctuation characters, it is not advisable to create table names that differ only in their punctuation
characters.

A table name must be unique within its schema. Attempting to create a table with a name that differs only in letter case
from an existing table generates an SQLCODE -201 error.

A view and a table in the same schema cannot have the same name. Attempting to do so results in an SQLCODE -201
error.

You can determine if a table name already exists using the $SY STEM .SQL .Schema.TableExists() method. You can
determine if a view name already exists using the $SY STEM .SQL .Schema.ViewEXxists() method. These methods
also return the class name corresponding to the table or view name. The Management Portal SQL interface Catalog
Details Table Info option displays the Class Name corresponding to the selected SQL table name.

Attempting to specify “USER” or any other SQL reserved word as a table name or schema name results in an SQLCODE
-312 error. To specify an SQL reserved word as a table name or schema name, you can specify the name as a delimited
identifier. If you use a delimited identifier to specify a table or schema name that contains non-alphanumeric characters,
InterSystems IRIS strips out these non-alphanumeric characters when generating the corresponding class or package name.

The following table name length limits apply:

Uniqueness: InterSystems IRIS performs uniqueness checking on the first 189 characters of the persistent class name.
The corresponding SQL table name may be more than 189 characters long, but, when stripped of non-alphanumeric
characters, it must be unique within this 189 character limit. InterSystems IRIS performs uniqueness checking on the
first 189 characters of a package name.

Recommended maximum length: as a general rule, a table name should not exceed 128 characters. A table name may
be much longer than 96 characters, but table names that differ in their first 96 alphanumeric characters are much easier
to work with.

Combined maximum length: a package name and its persistent class name (when added together) cannot exceed 220
characters. This includes the default schema (package) name (if no schema name was specified) and the dot character
separating the package name and class name. A combined schema and table name can be longer than 220 characters

140

Using InterSystems SQL

RowlID Field

when the characters in excess of 220 are stripped out when the table name is converted to the corresponding persistent
class name.

For further details on table names, refer to the CREATE TABLE command. For further details, see Classes.

11.4 RowID Field

In SQL, every record is identified by a unique integer value, known as the RowlID. In InterSystems SQL you do not need

to specify a RowlID field. When you create a table and specify the desired data fields, a RowID field is automatically created.
This RowID is used internally, but is not mapped to a class property. By default, its existence is only visible when a persistent
class is projected to an SQL table. In this projected table, an additional RowID field appears. By default, this field is named
"ID" and is assigned to column 1.

By default, when a table is populated with data, InterSystems IRIS assigns sequential positive integers to this field, starting
with 1. The RowID data type is BIGINT (%Library.Bigint). The values generated for the RowID have the following constraints:
Each value is unique. The NULL value is not permitted. Collation is EXACT. By default, values are not modifiable.

By default, InterSystems IRIS names this field “ID”. However this field name is not reserved. The RowID field name is
re-established each time the table is compiled. If the user defines a field named “ID”, when the table is compiled InterSystems
IRIS names the RowlID as “ID1”. If, for example, the user then uses ALTER TABLE to define a field named “1D1”, the
table compile renames the RowlD as “ID2”, and so forth. In a persistent class definition you can use the SqIRowldName
class keyword to directly specify the RowlID field name for the table to which this class is projected. For these reasons,
referencing the RowID field by name should be avoided.

InterSystems SQL provides the % 1D pseudo-column name (alias) which always returns the RowlID value, regardless of
the field name assigned to the RowlID. (InterSystems TSQL provides the SIDENTITY pseudo-column name, which does
the same thing.)

ALTER TABLE cannot modify or delete the RowlID field definition.

When records are inserted into the table, InterSystems IRIS assigns each record an integer ID value. RowlID values always
increment. They are not reused. Therefore, if records have been inserted and deleted, the RowID values will be in ascending
numeric sequence, but may not be numerically contiguous.

* By default, a table defined using CREATE TABLE performs ID assignment using $SEQUENCE, allowing for the
rapid simultaneous populating of the table by multiple processes. When $SEQUENCE is used to populate the table,
a sequence of RowID values is allocated to a process, which then assigns them sequentially. Because concurrent processes
are assigning RowIDs using their own allocated sequences, records inserted by more than one process cannot be
assumed to be in the order of insert.

You can configure InterSystems IRIS to perform ID assignment using $INCREMENT by setting the SetOption()
method DDLUseSequence option; to determine the current setting, call the $SY STEM .SQL .CurrentSettings()
method.

« By default, atable defined by creating a persistent class performs ID assignment using $INCREMENT. In a persistent
class definition, the IdFunction storage keyword can be set to either sequence or increment; for example,
<ldFunction>sequence</IldFunction>.

In a persistent class definition, the IdLocation storage keyword global (for example, for persistent class Sample.Person:
<ldLocation>"Sample.PersonD</ldLocation>) contains the highest assigned value of the RowlID counter. (This
is the highest integer assigned to a record, not the highest allocated to a process.) Note that this RowID counter value may
no longer correspond to an existing record. To determine if record with a specific RowlD value exists, invoke the table’s
% Existsid() method.

Using InterSystems SQL 141

Defining Tables

The RowlID counter is reset by the TRUNCATE TABLE command. It is not reset by a DEL ETE command, even when
the DEL ETE command deletes all rows in the table. If no data has been inserted into the table, or TRUNCATE TABLE
has been used to delete all table data, the IdLocation storage keyword global value is undefined.

By default, RowlID values are not user-modifiable. Attempting to modify a RowlID value generates an SQLCODE -107
error. Overriding this default to allow modifying of RowID values can have serious consequences and should only be done
in very specific cases and with extreme caution. The Config.SQL.AllowRowl DUpdate property allows RowlID values to be
user-modifiable.

11.4.1 RowID Based on Fields

By defining a persistent class that projects a table, you can define the RowlID to have values from a field or a combination
of fields. To do this, specify an index with the IdKey index keyword. For example, a table can have a RowlID whose values
are the same as the values of the PatientName field by specifying the index definition 1dx1d On PatientName
[1dKey];, or the combined values of the PatientName and SSN fields by specifying the index definition 1dx1d On
(PatientName,SSN) [1dKey];.

* A RowlD based on fields is less efficient than a Rowld that takes system-assigns sequential positive integers.

* On INSERT: The values specified for the field or combination of fields that make up the Rowld must be unique.
Specifying a non-unique value generates an SQLCODE -119 “UNIQUE or PRIMARY KEY constraint failed
uniqueness check upon INSERT”.

e On UPDATE: By default, the values of each of the fields that makes up the Rowld are non-modifiable. Attempting to
modify the value of one of these fields generates an SQLCODE -107 “Cannot UPDATE RowID or RowlID based on
fields”.

When a RowID is based on multiple fields, the RowlID value is the values of each of its component fields joined by the ||
operator. For example, Ross,Betsy| | 123-45-6789. InterSystems IRIS attempts to determine the maximum length of
a RowlD that is based on multiple fields; if it cannot determine the maximum length, the RowID length defaults to 512.

For further details, refer to Primary Key.

11.4.2 RowID Hidden?

* When using CREATE TABLE to create a table, the RowID is hidden by default. A hidden field is not displayed by
SELECT * and is PRIVATE. When you create a table you can specify the %PUBLICROWID keyword to make the
RowlID not hidden and public. This optional %PUBLICROWID keyword can be specified anywhere in the CREATE
TABLE comma-separated list of table elements. It cannot be specified in ALTER TABLE. For further details, refer
to The RowID Field and %PUBLICROWID in the CREATE TABLE reference page.

* When creating a persistent class that projects as a table, the RowID is not hidden by default. It is displayed by SELECT
*and is PUBLIC. You can define a persistent class with a RowID that is hidden and PRIVATE by specifying the class
keyword SqlRowIdPrivate.

A RowID used as a foreign key reference must be public.

By default, a table with a public RowID cannot be used as either source or destination table to copy data into a duplicate
table using INSERT INTO Sample.DupTable SELECT * FROM Sample.SrcTable.

You can display whether the RowID is hidden using the Management Portal SQL interface Catalog Details Fields listing
Hidden column.

You can use the following program to return whether a specified field (in this example, I1D) is hidden:

142 Using InterSystems SQL

Primary Key

ObjectScript

SET myquery = "SELECT FIELD_NAME,HIDDEN FROM %Library.SQLCatalog_SQLFields(?) WHERE FIELD_NAME="ID""

SET tStatement = ##class(%SQL.Statement) .%New()
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus®"=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()
WRITE !,"End of data"

To list the field names (hidden and non-hidden) in a table, refer to “Column Names and Numbers”.

11.5 Primary Key

InterSystems IRIS provides two ways to uniquely identify a row in a table: the RowID and the Primary Key.

The optional primary key is a meaningful value an application can use to uniquely identify a row in the table (for example
in joins). A primary key can be user-specified data field or can be a combination of more than one data fields. Primary key
values must be unique, but are not required to be integer values. The RowlID is an integer value used internally to identify
arow in the table. Often the primary key is a value generated by the application, while the RowID is a unique integer value
generated by InterSystems IRIS.

The system automatically creates a Master Map to access rows of data using the RowID field. If you define a primary key
field, the system automatically creates and maintains a primary key index.

Obviously, the duality of having two different fields and indexes to identify rows might not necessarily be a good thing.
You can resolve to a single row identifier and index in either of two ways:

» Use the application-generated primary key value as the IDKEY. You can do this by identifying the primary key index
in the class definition with both keywords PrimaryKey and IdKey (you can also do that from DDL if you set the PKey
is IDKey flag for this purpose). This makes the primary key index the table's Master Map. Thus, the primary key will
be used as the main internal address for the rows. This can be less efficient if the primary key consists of more than
one field, or if the primary key values are not integers.

» Do not use an application-generated primary key value, but instead use the system-generated RowlID integer within
the application as the application-used primary key (for example in joins). The advantage of doing this is that the
integer RowID lends itself to more efficient processing, including use of bitmap indexes.

Depending on the nature of the application, you may wish to resolve to a single row identifier and index or to have separate
indexes for the application-generated primary key and the system-generated RowID.

11.6 RowVersion, Autolncrement, and Serial Counter
Fields

InterSystems SQL supports three special-purpose data types for automatically-incrementing counter values. All three data
types are subclasses that extend the %Library.Bigint data type class.

* 9YLibrary.RowVersion: Counts inserts and updates to all Row\ersion tables namespace-wide. Only inserts and updates
in tables that contain a ROWVERSION field increment this counter. ROWVERSION values are unique and non-
modifiable. This namespace-wide counter never resets. For further details, see ROWVERSION Field .

Using InterSystems SQL 143

Defining Tables

* %Library.Counter (also known as a SERIAL counter field): Counts inserts to the table. By default, this field receives
an automatically incremented integer. However, a user can specify a non-zero integer value to this field. A user can
specify a duplicate value. If the user-supplied value is greater than the highest system-supplied value, the automatic
increment counter is set to increment from the user-specified value. For further details, see Serial Counter Field.

* %Library.Autoincrement: Counts inserts to the table. By default, this field receives an automatically incremented integer.
However, a user can specify a non-zero integer value to this field. A user can specify a duplicate value. Specifying a
user value has no effect on the automatic increment counter. For further details, see Autolncrement Field.

All three of these fields, and the IDENTITY field, return AUTO_INCREMENT =YES, as shown in the following example:

SQL

SELECT COLUMN_NAME,AUTO_INCREMENT FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = “MyTable*®

11.6.1 RowVersion Field

The Row\Version field is an optional user-defined field that provides row-level version control, allowing you to determine
the order in which changes were made to the data in each row namespace-wide. InterSystems IRIS maintains a namespace-
wide counter, and assigns a unique incremental positive integer to this field each time the row data is modified (insert,
update, or %Save). Because this counter is namespace-wide, an operation on one table with a ROWVERSION field sets
the increment point for the ROWVERSION counter that is used for all other tables with a ROWVERSION field in the
same namespace.

You create a Row\Version field by specifying a field of data type ROWVERSION (%Library.RowVersion). You can only
specify one ROWVERSION data type field per table. Attempting to create a table with more than one ROWVERSION
field results in a 5320 compilation error.

This field can have any name and can appear in any column position. The ROWVERSION (%Library.RowVersion) data
type maps to BIGINT (%Library.Bigint).

This field receives a positive integer from an automatic increment counter, starting with 1. This counter increments whenever
data in any ROWVERSION-enabled table is modified by an insert, update, or %Save operation. The incremented value is
recorded in the ROWVERSION field of the row that has been inserted or updated.

A namespace can contain tables with a RowVersion field and tables without this field. Only data changes to tables that
have a Row\ersion field increment the namespace-wide counter.

When a table is populated with data, InterSystems IRIS assigns sequential integers to this field for each inserted row. If
you use ALTER TABLE to add a ROWVERSION field to a table that already contains data, this field is created as NULL
for pre-existing fields. Any subsequent insert or update to the table assigns a sequential integer to the RowVersion field
for that row. This field is read-only; attempting to modify a Row\ersion value generates an SQLCODE -138 error: Cannot
INSERT/UPDATE a value for a read only Ffield. Therefore, a RowVersion field is defined as unique and non-
modifiable, but not required or non-null.

Row\ersion values always increment. They are not reused. Therefore, inserts and updates assign unique Row\ersion values
in temporal sequence. Delete operations remove numbers from this sequence. Therefore, RowVersion values may not be
numerically contiguous.

This counter is never reset. Deleting all table data does not reset the Row\ersion counter. Even dropping all tables in the
namespace that contain a ROWVERSION field does not reset this counter.

The Row\Version field should not be included in a unique key or primary key. The Row\ersion field cannot be part of an
IDKey index.

A sharded table cannot include a RowVersion field.

The Row\Version field is not hidden (it is displayed by SELECT *).

144 Using InterSystems SQL

RowVersion, Autolncrement, and Serial Counter Fields

This is shown in the following example of three tables in the same namespace.

1. Create Tablel and Table3, each of which has a ROWVERSION field, and Table2 that does not have a ROWVERSION
field.

2. Insert ten rows into Tablel. The ROWVERSION values of these rows are the next ten counter increments. Since the
counter has not previously been used, they are 1 through 10.

3. Insert ten rows into Table2. Because Table2 does not have a ROWVERSION field, the counter is not incremented.

4. Update a row of Tablel. The ROWVERSION values for this row is changed to the next counter increment (11 in this
case).

5. Insert ten rows into Table3. The ROWVERSION values of these rows are the next ten counter increments (12 through
21).

6. Update a row of Tablel. The ROWVERSION values for this row is changed to the next counter increment (22 in this
case).

7. Delete a row of Tablel. The ROWVERSION counter is unchanged.

8. Update a row of Table3. The ROWVERSION values for this row is changed to the next counter increment (23 in this
case).

11.6.2 Serial Counter Field

You can use the SERIAL data type (%Library.Counter in a persistent class table definition) to specify one or more optional
integer counter fields to record the order of inserts of records into a table. Each serial counter field maintains its own inde-
pendent counter.

A serial counter field receives a positive integer from its automatic increment counter whenever a row is inserted into the
table with either no value supplied to this field (NULL) or a value of 0. However, a user can specify a non-zero integer
value for this field during an insert, overriding the table counter default.

» Ifan INSERT does not specify a non-zero integer value for the counter field, the counter field automatically receives
a positive integer counter value. Counting starts from 1. Each successive value is an increment of 1 from the highest
allocated counter value for this field.

» If an INSERT specifies a non-zero integer value for the counter field, the field receives that value. It can be a positive
or negative integer value, can be lower or higher than the current counter value, and can be an integer already assigned
to this field. If this value is higher than any assigned counter value, it sets the increment starting point for the automatic
increment counter to that value.

Attempting to UPDATE a counter field value results in an SQLCODE -105 error.

This counter is reset to 1 by the TRUNCATE TABLE command. It is not reset by a DEL ETE command, even when the
DELETE command deletes all rows in the table.

A sharded table cannot include a serial counter field.

11.6.3 Autolncrement Field

You can use the %Library.Autoincrement data type (or BIGINT AUTO_ INCREMENT) to specify an integer counter field to
record the order of inserts of records into a table. You can only specify one %Autolncrement data type field per table. This
field receives a positive integer from an automatic increment counter whenever a row is inserted into the table with either
no value supplied to this field (NULL) or a value of 0. However, a user can specify a non-zero integer value for this field
during an insert, overriding the table counter default.

Using InterSystems SQL 145

Defining Tables

Attempting to UPDATE a counter field value results in an SQLCODE -105 error.

If an INSERT does not specify a non-zero integer value for the counter field, the counter field automatically receives
a positive integer counter value. Counting starts from 1. Each successive value is an increment of 1 from the highest

allocated counter value for this field.

If an INSERT specifies a non-zero integer value for the counter field, the field receives that value. It can be a positive
or negative integer value, can be lower or higher than the current counter value, and can be an integer already assigned
to this field. User-assigned values have no effect on the automatic increment counter.

This counter is reset to 1 by the TRUNCATE TABLE command. It is not reset by a DEL ETE command, even when the
DELETE command deletes all rows in the table.

A sharded table can include an Autolncrement field.

11.7 Defining a Table by Using DDL

You can define tables in InterSystems SQL using standard DDL commands:

Table 11-1: Available DDL Commands in InterSystems SQL

ALTER Commands CREATE Commands
ALTER TABLE CREATE TABLE
ALTER VIEW CREATE VIEW

CREATE INDEX
CREATE TRIGGER

You can execute DDL commands in a variety of ways, including:

Using Dynamic SQL.
Using Embedded SQL.
Using a DDL script file.
Using ODBC calls.
Using JDBC calls.

11.7.1 Using DDL in Embedded SQL

Within an ObjectScript method or routine, you can use Embedded SQL to invoke DDL commands.

For example, the following method creates a Sample.Employee table:

DROP Commands
DROP TABLE
DROP VIEW
DROP INDEX
DROP TRIGGER

146

Using InterSystems SQL

Defining a Table by Using DDL

Class Member

ClassMethod CreateTable() As %String
&sql (CREATE TABLE Sample.Employee (

EMPNUM INT NOT NULL,
NAMELAST CHAR (30) NOT NULL,
NAMEFIRST CHAR (30) NOT NULL,
STARTDATE TIMESTAMP,

SALARY MONEY,
ACCRUEDVACATION INT,
ACCRUEDSICKLEAVE INT,

CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM)))

IF SQLCODE=0 {WRITE "Table created" RETURN "'Success"}
ELSEIF SQLCODE=-201 {WRITE "Table already exists" RETURN SQLCODE}
ELSE {WRITE "Serious SQL Error, returning SQLCODE™ RETURN SQLCODE_"" *'_%msg}

}

When this method is invoked it attempts to create a Sample.Employee table (as well as the corresponding Sample.Employee
class). If successful, the SQLCODE variable is set to 0. If unsuccessful, SQLCODE contains an SQL Error Code indicating
the reason for the failure.

The most common reasons that a DDL command such as this one will fail are:

* SQLCODE -99 (Privilege Violation): This error indicates that you do not have permission to execute the desired DDL
command. Typically this is because an application has not established who the current user is. You can do this program-
matically using the $SY STEM .Security.L ogin() method:

ObjectScript

DO $SYSTEM.Security.Login(username,password)

» SQLCODE -201 (Table or view name not unique): This error indicates that you are attempting to create a new table
using the name of a table that already exists.

11.7.2 Using a Class Method to Execute DDL

Within ObjectScript you can use the Dynamic SQL %SQL.Statement object to prepare and execute DDL commands using
Dynamic SQL.

The following example defines a class method to create a table using Dynamic SQL.:

Class Definition

Class Sample.NewT
ClassMethod DefTable(user As %String,pwd As %String) As %Status [Language=objectscript]

{
DO ##class(%SYSTEM.Security).Login(user,pwd)
SET myddl=2
SET myddl (1)="CREATE TABLE Sample._MyTest "
SET myddl(2)="(NAME VARCHAR(30) NOT NULL,SSN VARCHAR(15) NOT NULL)"
SET tStatement=##class(%SQL.Statement) .%New()
SET tStatus=tStatement.%Prepare(.myddl)
IF tStatus®=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset=tStatement.%Execute()
IF rset_%SQLCODE=0 {WRITE "Created a table"}
ELSEIF rset.%SQLCODE=-201 {WRITE "table already exists"}
ELSE {WRITE "Unexpected error SQLCODE=",rset.%SQLCODE}
3
b

This method is invoked as follows:

ObjectScript

DO ##class(Sample._NewT).DefTable(*'myname", "mypassword')

Using InterSystems SQL 147

Defining Tables

As with the embedded SQL example, this method will fail if there is no current user logged in.

11.7.3 Defining Tables by Importing and Executing a DDL Script

You can import InterSystems SQL DDL script files using either the $SY STEM .SQL .Schema.Run() method interactively
from a Terminal session, or the $SY STEM .SQL .Schema.l mportDDL (" IRIS") method as a background job. This method
can import and execute multiple SQL commands, enabling you to use a txt script file to define tables and views and populate
them with data. For further details, see Importing SQL Code.

If you are migrating tables from another vendor’s relational database to InterSystems IRIS, you may have one or more
DDL scripts within text files. InterSystems IRIS provides several %SYSTEM.SQL.Schema methods to help load such tables
into InterSystems IRIS. You can use the general-purpose ImportDDL () method or the %SYSTEM.SQL.Schema Load
method for the specific vendor. The vendor-specific SQL is converted to InterSystems SQL and executed. Errors and
unsupported features are recorded in log files. For further details, see Code Migration: Importing non-InterSystems SQL.

For example, to load an Oracle DDL file from the ObjectScript command line:
1. Start a Terminal session using the Terminal command in the InterSystems IRIS launcher menu.

2. Switch to the namespace in which you wish to load the table definitions:

ObjectScript

SET $namespace = ""MYNAMESPACE"

3. Invoke the desired DDL import method:

ObjectScript

DO $SYSTEM.SQL.Schema.LoadOracle()

and follow the directions displayed at the terminal.

11.8 Defining aTable by Creating a Persistent Class

Although the standard way to define SQL tables is through using the CREATE TABLE DDL command, either from a SQL
prompt or over a JDBC or ODBC connection, you can also create a persistent class table definition through an IDE such
as VS Code or Studio. A class must either be defined as %Persistent or inherit from a superclass that is defined as %Persistent.
When these classes are saved and compiled within the InterSystems IRIS database, they automatically project to a relational
table that corresponds to the class definition: each class represents a table; each property represents a column, and so on.
The maximum number of properties (columns) definable for a class (table) is 1000.

For example, the following defines the persistent class MyApp.Person:

Class Definition

Class MyApp.Person Extends %Persistent

{

Parameter USEEXTENTSET = 1;

Property Name As %String(MAXLEN=50) [Required];

Property SSN As %String(MAXLEN=15) [InitialExpression = "Unknown'];
Property DateOfBirth As %Date;

Property Sex As %String(MAXLEN=1);

Index BitmapExtent [Extent, Type = bitmap];
b

148 Using InterSystems SQL

Defining a Table by Creating a Persistent Class

The class has these characteristics:

* When compiled, this definition creates the MyApp.Person persistent class and the corresponding SQL table, Person
within the MyApp schema. For details on how to perform these operations, see Defining Classes.

e The class definition includes a package name, MyApp. When defining a persistent class, an unspecified package name
defaults to User. This name corresponds to the default SQL schema name, SQLUser. For example, defining a table
named Students as a persistent class creates the class User . Students, and the corresponding SQL schema.table
name SQLUser .Students.

» The persistent class name, Person, is used as the SQL table name. To supply a different SQL table name, you can
use the SglTableName class keyword.

e The USEEXTENTSET class parameter is defined and set to 1. This parameter organizes table storage into a more efficient
set of globals. As a best practice, specify the USEEXTENTSET parameter for all persistent classes that project to SQL
tables.

» The bitmap extent index creates an index of all IDs in the extent set. This settings makes counting and other operations
more efficient. As a best practice, create a bitmap extent index for all persistent classes that project to SQL tables.

The same MyApp . Person table could have been defined using the DDL CREATE TABL E statement, specifying the
SQL schema.table name. Successful execution of this SQL statement generates a corresponding persistent class with
package name MyApp and class name Person:

SQL

CREATE TABLE MyApp.Person (
Name VARCHAR(50) NOT NULL,
SSN VARCHAR(15) DEFAULT "Unknown®,
DateOfBirth DATE,
Sex VARCHAR(1)
)

When defining a table using DDL commands, you do not need to specify USEEXTENTSET or create a bitmap extent
index. InterSystems SQL applies these settings automatically and includes them in the projected persistent class.

By default, CREATE TABLE specifies the Final class keyword in the corresponding class definition, indicating that it
cannot have subclasses.

To learn how the object view of the database corresponds to the relational view, see Introduction to the Default SQL Pro-
jection.

A persistent class definition such as the one shown above creates the corresponding table when it is compiled, but this table
definition cannot be modified or deleted using SQL DDL commands (or by using the Management Portal Drop action),
which give you the message “DDL not enabled for class "schema.name” .. .”).You mustspecify [DdlAllowed]
in the table class definition to permit these operations:

Class MyApp.Person Extends %Persistent [DdIAllowed]

11.8.1 Defining Property Parameters

When defining a table in a persistent class, the properties you define project to columns of the table. Every property definition
must specify a data type class, which specifies the class that the property is based on. A specified data type limits a property’s
allowed values to that data type. When defining a persistent class that projects to a table you must specify this data type
using a class in the %Library package. This class can be specified as either %L ibrary.Datatype or as %Datatype.

Many data type classes provide parameters that allow you to further define allowed property values. These parameters are
specific to individual data types. The following are some of the more common data definition parameters:

e Property Value Limits

Using InterSystems SQL 149

Defining Tables

e Permitted Property Values
* Unique Property Values
e Computed Property Values

When data is inserted or updated in a field, InterSystems SQL automatically validates the data, enforcing data type and
referential integrity constraints. If you use other means to populate a table with data, you should validate the table data.

11.8.1.1 Property Value Limits

For numeric data types, you can specify MAXVAL and MINVAL parameters to limit the range of allowed values. By
definition, a numeric data type has a maximum supported values (positive and negative). You can use MAXVAL and
MINVAL to further limit the allowed range.

For string data types, you can specify a MAXLEN and MINLEN parameters to limit the allowed length (in characters). By
definition, a string data type has a maximum supported length. You can use MAXLEN and MINLEN to further limit the
allowed range. The length limits imposed by the MAXLEN and MINLEN parameters are applied only when data is being
stored in the database, as queries assume all data in the database is valid. Specifically, the limits are enforced when using
INSERT or UPDATE (or %Save() in ObjectScript) to add or edit data in the database. By default, a property value that
exceeds MAXLEN generates a validation error: SQLCODE -104 for INSERT or SQLCODE -105 for UPDATE. You can
specify TRUNCATE=1 to permit string values that exceed MAXLEN; the specified string is truncated to the MAXLEN
length. The default maximum length of a string is 4096; this limit can be configured with the ODBCVarcharMaxlen field
in the CPF.

11.8.1.2 Permitted Property Values

You can limit the actual property values in two ways:
e Alist of allowed values (Enumerated Values with VALUELIST and DISPLAYLIST).
e A match pattern for allowed values (PATTERN).

Enumerated Property Values

Defining a table as a persistent class allows you to define properties (columns) that can only contain certain specified values.
This is done by specifying the VALUELIST parameter. VALUELIST (which specifies a list of logical storage values) is
commonly used with DISPLAYLIST (which specifies a list of corresponding display values). Both lists begin with the list
delimiter character. Several data types can specify VALUELIST and DISPLAYLIST. The following example defines two
properties with enumerated values:

Class Definition

Class Sample.Students Extends %Persistent
Parameter USEEXTENTSET = 1;

Property Name As %String(MAXLEN=50) [Required];

Property DateOfBirth As %Date;

Property ChoiceStr As %String(VALUELIST=",0,1,2",DISPLAYLIST="",NO,YES,MAYBE");
Property ChoiceODBCStr As %EnumString(VALUELIST=",0,1,2",DISPLAYLIST="",NO,YES,MAYBE");

Index BitmapExtent [Extent, Type = bitmap];
3

If VALUELIST is specified, an INSERT or UPDATE can only specify one of the values listed in VALUELIST, or be
provided with no value (NULL). VALUELIST valid values are case-sensitive. For required properties, specifying a value
that doesn’t match the VALUELIST values results in a validation error;: SQLCODE -104 for INSERT or SQLCODE -105
for UPDATE. For non-required properties, non-matching VALUELIST values are converted to NULL values.

150 Using InterSystems SQL

Defining a Table by Creating a Persistent Class

The %String and the %EnumString data types behave differently when displayed in ODBC mode. Using the example above,
when displayed in Logical mode, both ChoiceStr and ChoiceODBCStr display their VALUELIST values. When displayed
in Display mode, both ChoiceStr and ChoiceODBCStr display their DISPLAYLIST values. When displayed in ODBC
mode, ChoiceStr displays VALUELIST values; ChoiceODBCStr displays DISPLAYLIST values.

Pattern Matching for Property Values

Several data types can specify a PATTERN parameter. PATTERN restricts allowed values to those that match the specified
ObjectScript pattern, specified as a quoted string with the leading question mark omitted. The following example defines
a property with a pattern:

Class Definition

Class Sample.Students Extends %Persistent

{

Parameter USEEXTENTSET = 1;

Property Name As %String(MAXLEN=50) [Required];

Property DateOfBirth As %Date;

Property Telephone As %String(PATTERN = "3N1""'-"""3N1'"*"-"""4N");

Index BitmapExtent [Extent, Type = bitmap];

Because a pattern is specified as a quoted string, literals specified in the pattern need to have their enclosing quotes doubled.
Note that pattern matching is applied before MAXLEN and TRUNCATE. Therefore, if you are specifying a pattern for a
string that may exceed MAXLEN and be truncated, you may wish to end the pattern with “_E” (an unlimited number of

trailing characters of any type).

A value that does not match PATTERN generates a validation error; SQLCODE -104 for INSERT or SQLCODE -105 for
UPDATE.

11.8.1.3 Unique Property Values

CREATE TABL E allows you to define a column as UNIQUE. This means that every field value is a unique (hon-duplicate)
value.

Defining a table as a persistent class does not support a corresponding unigqueness property keyword. Instead, you must
define both the property and a unique index on that property. The following example provides for a unique Num value for
each record:

Class Definition
Class Sample.CaveDwellers Extends %Persistent [DdIAllowed]

{
Parameter USEEXTENTSET = 1;

Property Num As %Integer;
Property Troglodyte As %String(MAXLEN=50);

Index UniqueNumldx On Num [Type=index,Unique];
Index BitmapExtent [Extent, Type = bitmap];

The index name follows the naming conventions for properties. The optional Type keyword specifies the index type. The
Unique keyword defines the property (column) as unique.

Having a unique value column is necessary for using the INSERT OR UPDATE statement.

11.8.1.4 Computed Property Values

The following class definition example defines a table containing a column (Birthday) that uses SqlComputed to compute
its value when you initially set the DateOfBirth value and SqlComputeOnChange to recompute its value when you update

Using InterSystems SQL 151

Defining Tables

the DateOfBirth value. The Birthday value includes the current timestamp to record when this value was computed/recom-
puted:

Class Definition

Class Sample.MyStudents Extends %Persistent [DdIAllowed]
{
Parameter USEEXTENTSET = 1;

Property Name As %String(MAXLEN=50) [Required];
Property DateOfBirth As %Date;
Property Birthday As %String
[SqlComputeCode = {SET {Birthday}=$PIECE($ZDATE({DateOfBirth},9),",")
" changed: "~ $ZTIMESTAMP},
SqlComputed, SqlComputeOnChange = DateOfBirth];

Index BitmapExtent [Extent, Type = bitmap];

Note that an UPDAT E to DateOfBirth that specifies the existing DateOfBirth value does not recompute the Birthday value.

The SqlComputeCode property keyword contains the ObjectScript code used to compute the value. Alternatively, you can
specify the compute code in a Pr oper t yComputation method, where Pr oper t y is the name of the property you want
to compute. This method enables you to specify the compute code in languages other than ObjectScript, such as Python.

In this class, the AgeComputation method computes the Age property based on the DOB (date of birth) property. The
cols input argument is a %Library.PropertyHelper object. You can use the getFfield method of this object to reference
other properties.

Class/ObjectScript

Class Sample.MyStudents Extends %Persistent [DdlIAllowed]
{
Parameter USEEXTENTSET = 1;
Property Name As %String(MAXLEN = 50) [Required];
Property DOB As %Date;
Property Age As %lInteger [Calculated, SqlComputed, SqlComputeOnChange = DOB];
Index BitmapExtent [Extent, Type = bitmap];
ClassMethod AgeComputation(cols As %Library.PropertyHelper) As %lInteger
{
set today = $zdate($horolog,8)

set bdate = $zdate(cols.getfield("'DOB™"), 8)
return $select(bdate = "":""", 1:(today - bdate) \ 10000)

}

Class/Python

Class Sample.MyStudents Extends %Persistent [DdIAllowed]
{
Parameter USEEXTENTSET = 1;

Property Name As %String(MAXLEN = 50) [Required];
Property DOB As %Date;
Property Age As %Integer [Calculated, SqlComputed, SqlComputeOnChange = DOB];

Index BitmapExtent [Extent, Type = bitmap];
ClassMethod AgeComputation(cols As %Library.PropertyHelper) As %Integer [Language = python]
{

import datetime as d

iris_date_offset = d.date(1840,12,31) . toordinal()

bdate = d.date.fromordinal(cols.getfield(''DOB") + iris_date offset).strftime("%Y%m%d)
today = d.date.today().strftime("%Y%mdk%d")

return str((int(today) - int(bdate)) // 10000) if bdate else "

152 Using InterSystems SQL

Defining a Table by Creating a Persistent Class

If ComputeLocalOnly is specified in addition to SqlComputed and SqlComputeCode, then the compute code is only executed
when the data is stored on the same server that the query is issued from. This option is used primarily in sharded environments
to return only locally-stored computed data.

For more details on specifying compute code, see Computed Columns.

For more details on class property keywords, see Property Keywords.

11.8.2 Embedded Object (%SerialObject)

You can simplify the structure of a persistent table by referencing an embedded serial object class that defines properties.
For example, you want the MyData.Person to contain address information, consisting of street, city, state, and postal code.
Rather than specifying these properties in MyData.Person, you can define a serial object (%SerialObject) class that defines
these properties, and then in MyData.Person specify a single Home property that references that embedded object. This is
shown in the following class definitions:

Class Definition

Class MyData.Person Extends (%Persistent) [DdIAllowed]
Parameter USEEXTENTSET = 1;
Property Name As %String(MAXLEN=50);
Property Home As MyData.Address;
Property Age As %Integer;
Index BitmapExtent [Extent, Type = bitmap];
}

Class Definition

Class MyData.Address Extends (%SerialObject)
{ Property Street As %String;

Property City As %String;

Property State As %String;

Property PostalCode As %String;

You cannot access the data in a serial object property directly, you must access them through a persistent class/table that
references it:

» Torefer to an individual serial object property from the persistent table, use an underscore. For example, SELECT
Name, Home_State FROM MyData.Person returns the State serial object property value as a string. Serial object
property values are returned in the order specified in the query.

» To refer to all of the serial object properties from the persistent table, specify the referencing field. For example,
SELECT Home FROM MyData.Person returns values of all of the MyData.Address properties as a %L.ist structure.
Serial object property values are returned in the order specified in the serial object: Home_Street, Home_City,
Home_State, Home_PostalCode. In the Management Portal SQL interface Catalog Details, this referencing field is
referred to as a Container field. It is a Hidden field, and therefore not returned by SELECT * syntax.

 ASELECT =*fora persistent class returns all of the serial object properties individually, including nested serial objects.
For example, SELECT * FROM MyData.Person returns Age, Name, Home_City, Home_PostalCode, Home_State,
and Home_Street values (in that order); it does not return the Home %L.ist structure value. Serial object property values
are returned in collation sequence. SELECT * first lists all of the fields in the persistent class in collation sequence
(commonly alphabetical order), followed by the nested serial object properties in collation sequence.

Note that an embedded serial object does not have to be in the same package as the persistent table that references it. The
SqlCategory for %L ibrary.SerialObject (and all sub-classes of %SerialObject that do not define the SglCategory explicitly)
is STRING.

Defining embedded objects can simplify persistent table definitions:

Using InterSystems SQL 153

Defining Tables

» A persistent table can contain multiple properties that reference different records in the same embedded object. For
example, the MyData.Person table can contain a Home and an Office property, both of which reference the
MyData.Address serial object class.

» Multiple persistent tables can reference instances of the same embedded object. For example, the MyData.Person table
Home property and the MyData.Employee WorkPlace property can both reference the MyData.Address serial object
class.

* Anembedded object can reference another embedded object. For example, the MyData.Address embedded object
contains the Phone property that references the MyData. Telephone embedded object, containing CountryCode, AreaCode,
and PhoneNum properties. From the persistent class you use multiple underscores to refer to a nested serial object
property, for example Home_Phone_AreaCode.

Compiling a serial object class generate a data specification in the storage definition. The compiler assigns this specification
a data name by appending the word “State” to the serial object class name. Therefore, MyData.Address is assigned <Data
name=""AddressState"'>. If this name (AddressState in this example) is already used as a property name, the compiler
appends an integer to create a unique data name: <Data name=""AddressStatel'>.

Refer to Introduction to Serial Objects.

For information on creating an index for a serial object property, refer to Indexing an Embedded Object (%SerialObject)
Property.

11.8.3 Class Methods

You can specify class methods as part of a table definition, as shown in the following example:

Class Definition

Class MyApp.Person Extends %Persistent
Parameter USEEXTENTSET = 1;
Property Name As %String(MAXLEN=50) [Required];
Property SSN As %String(MAXLEN=15) [InitialExpression = "Unknown'];
Property DateOfBirth As %Date;
Property Sex As %String(MAXLEN=1);
Index BitmapExtent [Extent, Type = bitmap];
ClassMethod Numbers() As %Integer [SglName = Numbers, SqglProc]
{
QUIT 123

}

The SqlProc keyword is required to project the class method to a SQL procedure. Ina SELECT query, you can call this
method by using the defined SqlName value you defined for the method. For example:

SQL

SELECT Name, SSN,MyApp.Numbers() FROM MyApp.Person

11.8.4 Defining a Sharded Table by Creating a Persistent Class

Before you can define a persistent class that projects as a sharded table, you must establish a sharding environment. Then,
to define a sharded persistent class, specify the class keyword Sharded=1, along with any optional shard-related class
attributes.

CAUTION: Define sharded tables only for new persistent classes that contain no data. Applying sharding to an existing
class can make your data inaccessible.

This class defines a sample sharded persistent class with optional shard-related class attributes set:

154 Using InterSystems SQL

Defining a Sharded Table

Class Definition

Class Sample.MyShardT Extends %Persistent [Sharded = 1]
{

Parameter DEFAULTCONCURRENCY As BOOLEAN = O;

Parameter USEEXTENTSET = 1;

Index BitmapExtent [Extent, Type = bitmap];
3

The following class attributes apply:

e The Sharded = 1 keyword defines the projected table for this class as sharded. With this setting, the sharding
infrastructure manages the sharded table storage, including data distribution. Therefore, you cannot customize the
default storage definition generated and maintained by InterSystems IRIS. Any changes made to the storage definition
in this class definition are ignored.

» The DEFAULTCONCONCURRENCY class parameter is set to 0 (no locking). Due to the distributed nature of sharded
tables, the parameter value of 0 is required. This value is used as the default in object methods such as % Open and
% Openld, so that you do not have to pass the concurrency argument to every method call.

» The USEEXTENTSET class parameter is set to 1, which organizes table storage into a more efficient set of globals.
When defining a sharded table using DDL commands, InterSystems SQL applies this setting automatically.

» The bitmap extent index creates an index of all IDs in the extent set. This settings makes counting and other operations
more efficient. When defining a sharded table using DDL commands, InterSystems SQL applies this setting automat-
ically.

You can then define the shard key index. When you create a sharded table, an abstract shard key index is generated auto-
matically. The shard key index determines the shard in which a row resides. For more details on defining a shard key index
and creating sharded tables, see Creating Sharded Tables and Loading Data.

11.8.4.1 Sharded Class Restrictions

e Class parameters that are not supported for sharded classes: CONNECTION, DEFAULTGLOBAL, DSINTERVAL,
DSTIME, IDENTIFIEDBY, OBJJOURNAL.

» Class keywords that are not supported for sharded classes: Language, ViewQuery.

» Super classes that are not supported for sharded classes: %L ibrary.IndexBuilder, %DocDB.Document.
» Property data types not supported for sharded classes: %Library.Text.

* Relationship properties are not supported for sharded classes.

e Projections are not supported for sharded classes.

« Any methods with a Language other than "objectscript” are not supported for sharded classes.

* Any class queries not of Type %SQLQuery are not supported for sharded classes.

An attempt to compile a sharded class using any of these features results in a compile-time error.

11.9 Defining a Sharded Table

There are three requirements for creating a sharded table.

1. The License Key must support sharding. Use the Management Portal, System Administration, Licensing, License Key
to display the current licence or activate a new license.

Using InterSystems SQL 155

Defining Tables

2. You must enable sharding on your InterSystems IRIS instance. You must have the %Admin_Secure privilege to enable
sharding. Use the Management Portal, System Administration, Configuration, System Configuration, Sharding Configu-
ration to select the Enable Sharding button. This enables the current InterSystems IRIS instance for use in a sharded
cluster. Select either Enable this instance for any roleorEnable this instance for the shard
master role only. Press OK. Restart your InterSystems IRIS instance.

3. You must deploy a sharded cluster on your InterSystems IRIS instance. This sharded cluster contains a Shard Master
namespace. If the current namespace is not configured for sharding, attempting to define a shard table fails with ERROR
#9319: Current namespace %1 has no shards configured. For details, refer to Deploy the Cluster
Using the API or the Management Portal.

You can then define a sharded table within the Shard Master namespace that has been defined as part of the sharded cluster.
You can use CREATE TABLE to define a sharded table by specifying a shard key. Alternately, you can create a persistent
class that projects to a sharded table.

For further details about defining a sharded table, refer to Create Target Sharded Tables.

11.10 Defining aTable by Querying an Existing Table

You can define and populate a new table based on an existing table (or tables or views). You specify a query and a new
table name. The existing table name and/or the new table name can be qualified or unqualified. The query can contain JOIN
syntax. The query can supply column name aliases that become the column names in the new table.

You can perform this operation using either the CREATE TABLE AS SELECT command or the
$SY STEM .SQL .Schema.QueryToTable() method, as described below:

1. QueryToTable&() copies the DDL definition of a existing table and assigns it the specified new table name. It copies
the definitions of the fields specified in the query, including the data type, maxlength, and minval/maxval. It does not
copy field data constraints, such as default value, required value, or unique value. It does not copy references from a
field to another table.

If the query specifies SELECT * or SELECT %ID, the RowID field of the original table is copied as a non-required,
non-unique data field of data type integer. QueryToTable() generates a unique RowlID field for the new table. If the
copied RowID is named ID, the generated RowID is named ID1.

QueryToTable() creates a corresponding persistent class for this new table. The persistent class is defined as DdIAI-
lowed. The owner of the new table is the current user.

The new table is defined with Default Storage = YES and Supports Bitmap Indices = YES, regardless of these settings
in the source table.

The only index created for the new table is the IDKEY index. No bitmap extent index is generated. Index definitions
for the copied fields are not copied into the new table.

2. QueryToTable() then populates the new table with data from the fields selected by the query. It sets the table’s Extent
Size to 100,000. It estimates the IDKEY Block Count. Run Tune Table to set the actual Extent Size and Block Count,
and the Selectivity and Average Field Size values for each field.

QueryToTable() both creates a table definition and populates the new table with data. If you wish to only create a table
definition, specify a condition in the query WHERE clause that selects for no data rows. For example, WHERE Age < 20
AND Age > 20.

The following example copies the Name, and Age, fields from Sample.Person and creates an AVG(Age) field. These field
definitions are used to create a new table named Sample.Youth. The method then Populates Sample.Youth with the Sam-

156 Using InterSystems SQL

Foreign Tables

ple.Person data for those records where Age < 21. The Avglnit field contains the aggregate value for the selected records
at the time that the table was created.

ObjectScript

DO $SYSTEM.SQL .Schema.QueryToTable("'SELECT Name,Age,AVG(Age) AS Avglnit FROM Sample.Person WHERE Age
< 21","Sample.Youth",1, .errors)

11.11 Foreign Tables

Important: Foreign Tables are available in InterSystems IRIS 2023.3 as an Experimental Feature. This means they
are not supported for production environments. However, the feature is well-tested and InterSystems
believes it can add significant value to customers.

InterSystems is looking for feedback on this new capability based on customers’ use in real-world environ-
ments. Please reach out on the Developer Community or contact the Worldwide Response Center (WRC)
if you would like to share your experiences or you have questions.

InterSystems SQL enables you to define a foreign table, which projects data from an external data source into an instance
of InterSystems IRIS and allows you to query such external data alongside data stored within the instance.

11.11.1 Introduction to Foreign Tables

For various reasons, it may not be feasible or reasonable for you to load data directly into InterSystems IRIS. For example,
perhaps a data file is extremely large and will not be queried often enough to justify the storage cost of loading it into an
InterSystems IRIS table. A foreign table is a projection of data managed by another system that can be queried and accessed
alongside data that is managed and stored within an instance of InterSystems IRIS.

11.11.2 Creating a Foreign Table

Prior to creating a foreign table, you must define a foreign server to determine how InterSystems IRIS will interact with
the external data source. Once you have defined a foreign server, you can then define one or more foreign tables that represent
data in the external source by specifying column names and types, as well as any other details required to map fields in the
external data source to columns within InterSystems IRIS.

11.11.2.1 Step 1: Define a Foreign Server

Before you can define a foreign table, you must define a foreign server and specify which foreign data wrapper to use. To
do so, you should use the CREATE FOREIGN SERVER command.

The CREATE FOREIGN SERVER command requires you to specify a foreign data wrapper. Foreign data wrappers
determine how InterSystems IRIS interacts with a specific type of data source. Within a CREATE FOREIGN SERVER
command, you will need to specify both a foreign data wrapper and the metadata that the foreign data wrapper requires.
At present, the InterSystems SQL supports two foreign data wrappers: CSV and JDBC. The CSV foreign data wrapper
requires you to specify a path to a folder in a local file system. The JDBC foreign data wrapper requires you to hame a
JDBC connection to connect with an external database.

There is no limit on the amount of foreign tables you can define on a foreign server.

The following example demonstrates how to create a foreign server that uses the CSV foreign data wrapper.

SQL

CREATE FOREIGN SERVER Sample.TestFile FOREIGN DATA WRAPPER CSV HOST "\path\to\file~

Using InterSystems SQL 157

Defining Tables

The following example demonstrates how to create a foreign server that uses the JDBC foreign data wrapper.

SQL

CREATE FOREIGN SERVER Sample.PostgresDB FOREIGN DATA WRAPPER JDBC CONNECTION "postgresConnection®

11.11.2.2 Step 2: Define a Foreign Table

After defining a foreign server, you can use the CREATE FOREIGN TABLE command to define a foreign table. This
table may have the same column names as the data from the external source, or you may choose to refer to the columns by
new names within InterSystems IRIS. The syntax for creating a foreign table is similar to the LOAD DATA command.

SQL

CREATE FOREIGN TABLE Sample.AccountTeam (
TeamlD BIGINT,
Name VARCHAR(50),
CountryCode VARCHAR(10)

) SERVER Sample.PostgresDB TABLE "Sample.Teams*”

Creating a foreign table through a data definition language statement will create a corresponding class, which has a ClassType
of “view”. You should not manually edit this class; furthermore, you must define a foreign table with the CREATE FOREIGN
TABLE command and cannot create one by creating a class definition.

11.11.3 Querying a Foreign Table
Querying a foreign table is exactly like querying a native table:

SQL

SELECT Name, CountryCode FROM Sample.AccountTeam ORDER BY Name

Your queries can also take advantage of more advanced syntaxes:

SQL

SELECT t.Name, COUNT(m.*)

FROM Sample.AccountManager m JOIN Sample.AccountTeam t
ON m.TeamlD = t.TeamlD

WHERE t.CountryCode = "UK" AND m.Salary > 100000

GROUP BY t.Name

Where possible, InterSystems SQL will send, or push down, simple predicates in a WHERE clause, limiting the amount
of data transferred over the network and taking advantage of optimizations on the remote database. However, some more
complicated clauses, such as a GROUP BY or a JOIN between two foreign tables, occur within InterSystems IRIS after

the external data has been retrieved.

The user that issues the query must have the %Gateway Object:USE privilege.

Note: Issuing a query against a foreign table makes use of an underlying Java-based engire that requires a Java Virtual
Machine (JVM) installation on your server. If you have a JVM set up and accessible in your PATH environment
variable, then the first time you issue a query, InterSystems IRIS automatically uses that JVM to start an External
Language Server. To customize your External Language Server to use a specific JVM, or to use a remote server,
see Managing External Server Connections.

11.11.4 Deleting a Foreign Table

To delete a foreign table, you should use the DROP FOREIGN TABLE command:

158 Using InterSystems SQL

Federated Tables

SQL

DROP FOREIGN TABLE Example.MyForeignTable

Alternatively, you may use the DROP FOREIGN SERVER command with the CASCADE option to drop a foreign server
and all the foreign tables defined on that foreign server:

SQL

DROP FOREIGN SERVER Example.PostgresDB CASCADE

11.12 Federated Tables

Important: Federated tables are available in InterSystems IRIS 2023.3 as an Experimental Feature. This means they
are not supported for production environments. However, the feature is well-tested and InterSystems
believes it can add significant value to customers.

InterSystems is looking for feedback on this new capability based on customers’ use in real-world environ-
ments. Please reach out on the Developer Community or contact the Worldwide Response Center (WRC)
if you would like to share your experiences or you have questions.

A federated table offers query access to data that lives in disparate instances of InterSystems IRIS® data platform hosting
the identical or similar schemas. Unlike a sharded table, federated tables are read-only and do not manage or distribute data
among the sources based on a shard key. The source tables for a federated table, which physically store the its data and live
in the distinct instances or namespaces, are managed exclusively by their host instance. As such, federated tables are read
only. Federated tables offer a solution to use cases that require analytics or querying across different deployments of the
same application or schema, such as multi-tenant environments.

11.12.1 Requirements for Creating a Federated Table

To connect source tables together as a federated table, you must first configure a sharded cluster that spans all the instances
containing the relevant source data. For more information about configuring a sharded cluster, see “Deploying the Sharded
Cluster.” Users that are new to sharding may find it useful to familiarize themselves with the terminology and concepts in
“Horizontally Scaling for Data Volume with Sharding.”

A cluster namespace must be created for each namespace that contains one or more source tables, called a source namespace.
This requirement applies to both cases where each namespace resides on a separate instance and to cases where multiple

source namespaces reside on the same instance; in the latter case, multiple cluster namespaces on the same instance need
to be configured so that each source namespace has a corresponding cluster namespace.

The following image shows the relationships between federated tables, source tables, cluster namespaces, and source
namespaces.

Using InterSystems SQL 159

Defining Tables

11.12.2 Creating a Federated Table

Once you have configured a sharded cluster, creating a federated table consists of two parts: defining the federated table
and connecting source tables to the federated table.

11.12.2.1 Defining a Federated Table

From the master namespace of the sharded cluster, you can create a federated table by using $SYSTEM.Sharding.CreateFed-
eratedTable(). See complete documentation on how to use this method in the Class Reference.

CreateFeder atedTable() registers the federated table definition in the cluster namespace that represents the federated table
and defines how columns from a source table are projected into the federated table. As part of the API call, columns from
the source table may be left out of the federated table or dummy columns with a constant value may be added (for example,
to identify the source namespace). This method also attaches the initial source table from the specified source namespace,
which is stored on the same instance. A source namespace is never impacted by the existence of a federated table that any
of its tables projects to.

There are a few notes about federated table definitions:

» Private properties in a source table are not projected to a federated table unless explicitly listed as an argument to
CreateFederatedTable().

e The types of source fields do not need to match the types of the corresponding fields in the federated tables. Implicit
ype conversions are identical to those used in UNION clauses and return a data type with the highest precedence as
follows: VARCHAR, DOUBLE, NUMERIC, BIGINT, INTEGER, SMALLINT, TINYINT.

» The SqlRowldPrivate class keyword is determined by the source table and the ID is projected with the name from the
source table. If this keyword is defined, the RowID is not projected to the federated table. Note that tables created via
DDL specify SqlPrivateRowld by default.

The newly created federated table is immediately accessible from any cluster namespace in the sharded cluster.

At this point, the newly created federated table only projects data from the source table in the source namespace that was
referred to in the call to CreateFederatedTable(). See Connecting Source Tables to a Federated Table below for information
about including data from source table in other source namespaces.

Examples

The following example demonstrates a call to CreateFeder atedTable() from the terminal that creates a federated table,
Hospital. Employees, in the IRISCLUSTER namespace (the default name for a cluster namespace). This federated table
uses Employees.Doctors from the USER namespace as an initial source table. The federated table’s columns are identical
to those of the source table.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable(,""Hospital .Employees"™, "USER", "Employees.Doctors')

The following example creates a federated table, Hospital.DiagnosisLog, in the IRISCLUSTER cluster namespace. This
federated table uses Hospital.Patient from the HOSPITAL namespace as an initial source table and projects the Diagnosis
and DateAdmitted columns from the source table. In this case, the DateAdmitted column is projected as AdmissionDate
to the federated table. The resulting federated table in this example has only two columns.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable(""IRISCLUSTER", "Hospital .DiagnosisLog', "HOSPITAL",
"Hospital .Patient”, $Ib($Ib("'Diagnosis™), $lb("'DateAdmitted", " AdmissionDate')))

160 Using InterSystems SQL

Federated Tables

11.12.2.2 Connecting Source Tables to a Federated Table

After creating the federated table, connect source tables from other source namespaces to it. To do so, use the $SYS-
TEM.Sharding.ConnectFederatedTable() method in each source namespace. See complete documentation for this method
in the Class Reference.

When a source table is connected to the federated table, any table statistics that have been collected by TUNE TABLE are
reported to the federated table. For optimal query performance, you should run TUNE TABLE on a source table before
connecting it to a federated table, so the table statistics are most accurate. If the source table needs to be re-tuned and you
wish to propagate the updated statistics to the federated table, tune the source table, then re-connect it to the federated table,
specifying 1 for the Force argument to ConnectFeder atedTable().

If the source table is altered or dropped, the federated table definition is not automatically updated. This is a consequence
of how federated tables treat the source namespace as read-only and cannot be triggered by any events in it. When a source
table is altered, you will need to call ConnectFeder atedTable() in the cluster namespace corresponding to the source
namespace that has changed and specify the alterations, specifying 1 for the Force argument to ConnectFeder atedTabl&().
For example, changing a column name in the source table requires you to re-specify the column names that are projected
into the federated table. Note that this step is not required for any compatible changes, such as adding a column to the
source table that does not need to be projected to the federated table.

When the source tables’ structure matches exactly between different source namespaces, calls to ConnectFeder atedTable()
are easy to script, as you can leverage the % SY STEM .ShardWor kM gr.Broadcast() instance method to execute them
once in each cluster namespace. See the Examples for further explanation.

Examples

The following example uses ConnectFederatedTable() to connect the Employees.Nurses source table in the USER namespace
to the Hospital. Employees federated table in the IRISCLUSTER namespace.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable ("' IRISCLUSTER","Hospital .Employees',"USER",""Employees.Nurses')

The following example employs the % SY STEM .Shar dWor kM gr.Broadcast() instance method to connect source tables,
called Employees.Nurses in the HOSPITAL namespace, to a newly created federated table, also called Employees.Nurses.
Note that this approach requires each instance to have identically named source tables and source namespaces, due to the
same arguments being broadcast across instances. The cluster namespace argument to ConnectFederatedTable() should
be left blank.

ObjectScript

zn "IRISCLUSTER"

set status=$SYSTEM.Sharding.CreateFederatedTable(, "Employees.Nurses',""HOSPITAL",""Employees_Nurses')
set shardManager=$SYSTEM.ShardWorkMgr .%New()

set

status=shardvanager .Broadcast(TS, Wclass(USYSTEM.- Sharding) -ConnectiFederatedTable™, , Brployees Nurses™”, " HOSPITAL", " Erployees .Nurses')

11.12.3 Querying a Federated Table

Querying a federated table is transparently similar to querying a standard table. Federated tables can be queried with
Dynamic SQL, Embedded SQL, or with a database driver, such as JDBC or ODBC.

11.12.4 Dropping or Disconnecting a Federated Table

To drop a federated table from your sharded cluster, use $SYSTEM.Sharding.DropFederatedTable(). This method, called
from the cluster namespace of any instance, drops the federated table definition from all the cluster namespaces. Further

Using InterSystems SQL 161

Defining Tables

attempts to query the federated table will fail, as it no longer exists. Dropping a federated table does not affect the source
tables or their data.

To remove a single source table from a federated table, call $SYSTEM.Sharding.DisconnectFederatedTable() from the
cluster namespace corresponding to the source namespace that contains the source table to be disconnected. This method
disconnects a source table from the federated table. When a source table is disconnected from a federated table, queries on
the federated table will no longer return data from that source table. The source table can later be re-connected to the federated
table with ConnectFederatedTable().

11.13 Listing Tables

The INFORMATION.SCHEMA.TABLES persistent class displays information about all tables (and views) in the current
namespace. It provides a number of properties including the schema and table names, the owner of the table, and whether
you can insert new records. The TABLETYPE property indicates whether it is a base table or a view.

The following example returns the table type, schema name, table name, and owner for all tables and views in the current
namespace:

SQL

SELECT Table_Type,Table_Schema,Table_Name,Owner FROM INFORMATION_SCHEMA.TABLES

The INFORMATION.SCHEMA.CONSTRAINTTABLEUSAGE persistent class displays one row for each Primary Key (explicit
or implicit), Foreign Key, or Unique constraint defined for each table in the current namespace.
INFORMATION.SCHEMA.KEYCOLUMNUSAGE displays one row for each field defined as part of one of these constraints
for each table in the current namespace.

You can display much of the same information for a single table using the Catalog Details tab in the Management Portal
SQL Interface.

11.14 Listing Column Names and Numbers

You can list all of the column names (field names) for a specified table in four ways:

* The GetAllColumns() method. This lists all column names and column numbers, including hidden columns. The
GetVisibleColumns() method lists all non-hidden columns. The ID (RowID) field may or may not be hidden. The
X__classname column is always hidden; it is automatically defined unless the persistent class is defined with the Final
class keyword.

» The Management Portal SQL interface (System Explorer, SQL) schema contents Catalog Details tab. This lists all
column names and column numbers (including hidden columns) and other information, including data types and a
flag indicating if a column is hidden.

* SELECT TOP O * FROM tablename. This lists all non-hidden column names in column number order. Note that
because hidden columns can appear anywhere in the column number order, you cannot determine the column number
by counting these non-hidden column names. For further details on Asterisk Syntax, refer to the SELECT command.

* The INFORMATION.SCHEMA.COLUMNS persistent class lists a row for each non-hidden column in each table or view
in the current namespace. INFORMATION.SCHEMA.COLUMNS provides a large number of properties for listing char-
acteristics of table and view columns. Note that ORDINALPOSITION is not the same as column number, because
hidden fields are not counted. The GetAllColumns() method counts both hidden and non-hidden fields.

162 Using InterSystems SQL

Listing Constraints

The following example uses INFORMATION.SCHEMA.COLUMNS to list some of the column properties:

SQL

SELECT TABLE_NAME,COLUMN_NAME,ORDINAL_POSITION,DATA_TYPE,CHARACTER_MAXIMUM_LENGTH,
COLUMN_DEFAULT, IS_NULLABLE,UNIQUE_COLUMN,PRIMARY_KEY
FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA="Sample*

11.14.1 The Get Columns Methods

To list the names of the columns in a table in column number order, you can use either the GetAllColumns() or
GetVisibleColumns() method, as follows:

ObjectScript

SET stat=##class(%SYSTEM.SQL.Schema) .GetAllColumns(**'Sample.Person™, .byname, .bynum)
IF stat=1 {
SET i=1
WHILE $DATA(bynum(i)) { WRITE *‘name is ",bynum(i)," col num is ",i,!
SET i=i+1 }

}
ELSE { WRITE "GetAllColumns() cannot locate specified table” }

GetAllColumns() lists all defined columns, including hidden columns. If a table references an embedded %SerialObject
class, GetAllColumns() first lists all of the columns in the persistent class, including the property that references the
%SerialObject, then lists all of the %SerialObject properties. This is shown in the following GetAllColumns() results:

nameisID colnumis 1

name is Age col num is 2

name is Home col numis 3

name is Name col numis 4

name is X__classname col numis 5

name is Home_City col num is 6

name is Home_Phone col numis 7

name is Home_Phone_AreaCode col num is 8
name is Home_Phone_Country col numis 9
name is Home_Phone_TNum col num is 10
name is Home_PostalCode col num is 11
name is Home_State col num is 12

name is Home_Street col num is 13

You can also use this method to determine the column number for a specified column name, as follows:

ObjectScript

SET stat=##class(%SYSTEM.SQL.Schema) .GetAllColumns(‘'Sample.Person', .byname)
IF stat=1 {

WRITE "Home_State is column number " ,byname(‘'Home_State'),! }
ELSE { WRITE "GetAllColumns() cannot locate specified table" }

11.15 Listing Constraints

The INFORMATION.SCHEMA.TABLECONSTRAINTS persistent class lists the table name, constraint type, and constraint
name. Constraint types include UNIQUE, PRIMARY KEY, and FOREIGN KEY. If the table definition did not specify a
name for a constraint, a constraint name is generated from the table name, constraint type, and table column number — for
example, MYTABLE_UNIQUES3. This is shown in the following example:

SQL

SELECT Table_Schema,Table_Name,Constraint_Type,Constraint_Name FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

Using InterSystems SQL 163

Defining Tables

The INFORMATION.SCHEMA.CONSTRAINTCOLUMNUSAGE persistent class lists the table name, column name, and con-
straint name. If a constraint involves multiple columns a separate item is listed for each column. If the table definition did
not specify a name for a constraint, a constraint name is generated from the table name, constraint type, and table column
number — for example, MYTABLE_UNIQUES. This is shown in the following example:

SQL

SELECT Table_Schema, Table_Name,Column_Name,Constraint_Name FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE

The INFORMATION.SCHEMA.REFERENTIALCONSTRAINTS persistent class lists foreign key constraints including the
referencing table (CONSTRAINT_SCHEMA, CONSTRAINT_TABLE_NAME), the referenced table (UNIQUE_CON-
STRAINT_SCHEMA, UNIQUE_CONSTRAINT_TABLE), the foreign key name (CONSTRAINT_NAME), and the
UPDATE and DELETE referential actions (UPDATE_RULE, DELETE_RULE) with the values NO ACTION, SET
DEFAULT, SET NULL, or CASCADE. This is shown in the following example:

SQL

SELECT Constraint_Table_Name,Unique_Constraint_Table,Constraint_Name,Update_Rule,Delete_Rule FROM
INFORMAT ION_SCHEMA . REFERENT IAL_CONSTRAINTS

164 Using InterSystems SQL

12

Defining and Using Views

A view is a virtual table consisting of data retrieved at execution time from one or more physical tables by means of a
SELECT statement or a UNION of several SEL ECT statements. The SELECT can access data by specifying any combi-
nation of tables or other views. Thus a view is a stored query that provides all of the flexibility and security privileges of
a physical table.

The same Selectivity value is used for a field specified in a SELECT query and the same field specified in the SELECT
clause of a view. Note that a view may have a different distribution of rows than the source table. This can affect the
accuracy of view field selectivity.

InterSystems SQL on InterSystems IRIS® data platform supports the ability to define and execute queries on views. All
views are either updateable or read-only.

Note: You cannot create a view on data stored in a database that is mounted read-only.

You cannot create a view on data stored in an Informix table linked through an ODBC or JDBC gateway connection.
This is because InterSystems IRIS query conversion uses subqueries in the FROM clause for this type of query;
Informix does not support FROM clause subqueries. See the ISQL Migration Guide for InterSystems support for
Informix SQL.

12.1 Creating aView

You can define views in several ways:
e Using the SQL CREATE VIEW command (either in a DDL script or via JDBC or ODBC).

e Using the Management Portal Create View interface.

A view name may be unqualified or qualified. An unqualified view name is a simple identifier: MyView. A qualified view
name consists of two simple identifiers, a schema name and a view name, separated by a period: MySchema .MyView.
View names and table names follow the same naming conventions and perform the same schema name resolution for
unqualified names. A view and a table in the same schema cannot have the same name.

You can determine if a view name already exists using the $SY STEM .SQL .Schema.ViewEXxists() method. This method
also returns the class name that projected the view. You can determine if a table name already exists using the
$SY STEM.SQL .Schema.TableExists() method.

A view can be used to create a restricted subset of a table. The following Embedded SQL example creates a view that
restricts both the rows (through the WHERE clause) and columns (assuming that Sample.Person contains more than two
columns) of the original table that can be accessed thorough the view:

Using InterSystems SQL 165

Defining and Using Views

ObjectScript

&sql (CREATE VIEW Sample.VSrStaff
AS SELECT Name AS Vname,Age AS Vage
FROM Sample.Person WHERE Age>75)
IF SQLCODE=0 {WRITE "Created a view",!}
ELSEIF SQLCODE=-201 {WRITE "View already exists",!}
ELSE {WRITE "Serious SQL problem: *,SQLCODE,"™ ',%msg,! }

SQL
SELECT * FROM Sample.VSrStaff ORDER BY Vage

The following Embedded SQL example creates a view based on the SalesPeople table, creating a new calculated value
column TotalPay:

ObjectScript

&sql (CREATE VIEW Sample.VSalesPay AS
SELECT Name, (Salary + Commission) AS TotalPay
FROM Sample.SalesPeople)
IF SQLCODE=0 {WRITE "Created a view",!}
ELSEIF SQLCODE=-201 {WRITE "View already exists",!}
ELSE {WRITE "Serious SQL problem: ",SQLCODE,"™ ",%msg,! }

12.1.1 Management Portal Create View Interface

You can create a view from the Management Portal. Go to the InterSystems IRIS Management Portal. From System Explorer,
select sSQL. Select a namespace by clicking the name of the current namespace displayed at the top of the page; this displays
the list of available namespaces. Once you have selected a namespace, click the Actions drop-down list and select Create
View.

This displays the Create a View window with the following fields:

» Schema: You can decide to include the view within an existing schema, or create a new schema. If you opt to select
an existing schema, a drop-down list of existing schemas is provided. If you opt to create a new schema, you enter a
schema name. In either case, if you omit the schema, InterSystems IRIS uses the default schema name.

e View Name: a valid view name. You cannot use the same name for a table and a view in the same schema.
e With Check Option: the options are READONLY, LOCAL, CASCADED.

e Grantall privilege on the view to _PUBLIC: if selected, this option gives all users execution privileges for this view.
The default is to not give all users access to the view.

* View Text: you can specify the View Text in any of the following three ways:
— Type a SELECT statement into the View Text area.
— Use the Query Builder to create a SELECT statement, then press OK to supply this query to the View Text area.

— Ifyou selecta Cached Query name (for example %sqlcq.USER . cls4) on the left side of the Management Portal
SQL interface, then invoke Create View, this cached query is provided to the View Text area. Note that in the View
Text area you must replace host variable references (question marks) with actual values before saving the view
text.

12.1.2 Views and Corresponding Classes

When you define a view, InterSystems IRIS generates a corresponding class. An SQL view name is used to generate a
corresponding unique class name, following name translation rules. The Management Portal SQL interface displays Catalog
Details for existing views, including this class name. Refer to Catalog Details for a View.

166 Using InterSystems SQL

Altering a View

12.2 Altering aView

In the Management Portal SQL interface you can select an existing view to display Catalog Details for that view. The Cat-
alog Details View Info option displays an Edit View link that provides an interface to edit the view text (the SELECT
statement for the view). It also provides a drop-down list to select the with Check Option as none, READONLY, LOCAL,
or CASCADED.

12.3 Updateable Views

An updateable view is one on which you can perform INSERT, UPDATE, and DELETE operations. A view is considered
updateable only if the following conditions are true:

e The FROM clause of the view’s query contains only one table reference. This table reference must identify either an
updateable base table or an updateable view.

» The value expressions within the SELECT list of the view’s query must all be column references.
* The view’s query must not specify GROUP BY, HAVING, or SELECT DISTINCT.
» The view is not a class query projected as a view.

» The view’s class does not contain the class parameter READONLY=1 (true if the view definition contains a WITH
READ ONLY clause).

12.3.1The WITH CHECK Option

In order to prevent an INSERT or UPDATE operation on a view which would result in a row in the underlying base table
which is not part of the derived view table, InterSystems SQL supports the WITH CHECK OPTION clause within a View
definition. This clause can only be used with updateable views.

The WITH CHECK OPTION clause specifies that any INSERT or UPDATE operations on an updateable view must validate
the resulting row against the WHERE clause of the view definition to make sure the inserted or modified row will be part
of the derived view table.

For example, the following DDL statement defines an updateable GoodStudent view containing all Students with a high
GPA (grade point average):

SQL

CREATE VIEW GoodStudent AS
SELECT Name, GPA
FROM Student
WHERE GPA > 3.0
WITH CHECK OPTION

Because the view contains a WITH CHECK OPTION, any attempt to INSERT or UPDATE a row in the GoodStudent view
with a GPA value of 3.0 or less will fail (such a row would not represent a “good student™).
There are two flavors of WITH CHECK OPTION:

* WITH LOCAL CHECK OPTION means that only the WHERE clause of the view specified in the INSERT or UPDATE
statement is checked.

Using InterSystems SQL 167

Defining and Using Views

WITH CASCADED CHECK OPTION (and WITH CASCADE CHECK OPTION) means that the WHERE clause of
the view specified in the INSERT or UPDATE statement as well as ALL views on which that view is based are checked,
regardless of the appearance or absence of other WITH LOCAL CHECK OPTION clauses in those view definitions.

The default is CASCADED if just WITH CHECK OPTION is specified.

During an UPDATE or INSERT, the WITH CHECK OPTION conditions are checked after all default values and triggered
computed fields have been calculated for the underlying table’s fields and before the regular table’s validation (required
fields, data type validation, constraints, and so on).

After the WITH CHECK OPTION validation passes, the INSERT or UPDATE operation continues as if the INSERT or
UPDATE was performed on the base table itself. All constraints are checked, triggers pulled, and so on.

If the %NOCHECK option is specified on the INSERT or UPDATE statement, the WITH CHECK OPTION validation is
not checked.

There are two SQLCODE values related to the WITH CHECK OPTION validation (the INSERT/UPDATE would have
resulted in a row not existing in the derived view table):

* SQLCODE -136—View's WITH CHECK OPTION validation failed in INSERT.
*+ SQLCODE -137—View's WITH CHECK OPTION validation failed in UPDATE.

12.4 Read-only Views

A read-only view is one on which you cannot perform INSERT, UPDATE, and DELETE operations. Any view that does
not meet the criteria for updateable views is a read-only view.

A view definition may specify a WITH READ ONLY clause to force it to be a read-only view.

If you attempt to compile/prepare an INSERT, UPDATE, or DELETE statement against a read-only view an SQLCODE
-35 error is generated.

12.5View ID: %VID

InterSystems IRIS assigns an integer view ID (%VID) to each row returned by a view or by a FROM clause subquery. Like
table row 1D numbers, these view row ID numbers are system-assigned, unique, non-null, non-zero, and non-modifiable.
This %VID is commonly invisible to the user, and is only returned when explicitly specified. It is returned as data type
INTEGER. Because %VID values are sequential integers, they are far more meaningful if the view returns ordered data;
a view can only use an ORDER BY clause when it is paired with a TOP clause. The following Embedded SQL example
creates a view named VSrStaff:

ObjectScript

&sql (CREATE VIEW Sample.VSrStaff
AS SELECT TOP ALL Name AS Vname,Age AS Vage
FROM Sample.Person WHERE Age>75
ORDER BY Name)
IF SQLCODE=0 {WRITE "Created a view",!}
ELSEIF SQLCODE=-201 {WRITE "View already exists",!}
ELSE {WRITE "Serious SQL problem: *,SQLCODE,"™ ",%msg,! }

168 Using InterSystems SQL

Listing View Properties

The following example returns all of the data defined by the VVSrStaff view (using SELECT *) and also specifies that the
view 1D for each row should be returned. Unlike the table row ID, the view row ID is not displayed when using asterisk
syntax; it is only displayed when explicitly specified in the SELECT:

SQL

SELECT *,%VID AS ViewlD FROM Sample.VSrStaff

The %VID can be used to further restrict the number of rows returned by a SELECT from a view, as shown in the following
example:

SQL

SELECT *,%VID AS ViewlD FROM Sample.VSrStaff WHERE %VID BETWEEN 5 AND 10

Thus %VID can be used instead of TOP (or in addition to TOP) to restrict the number of rows returned by a query. Generally,
a TOP clause is used to return a small subset of the data records; %VID is used to return most or all of the data records,
returning records in small subsets. This feature may be useful, especially for porting Oracle queries (%VID maps easily to
Oracle ROWNUM). However, the user should be aware of some performance limitations in using %VID, as compared to
TOP:

* %VID does not perform time-to-first-row optimization. TOP optimizes to return the first row of data as quickly as
possible. %VID optimizes to return the full data set as quickly as possible.

* %VID does not perform a limited sort (which is a special optimization performed by TOP) if the query specifies sorted
results. The query first sorts the full data set, then restricts the return data set using %VID. TOP is applied before
sorting, so the SELECT performs a limited sort involving only a restricted subset of rows.

To preserve time to first row optimization and limited sort optimization, you can use a FROM clause subquery with a
combination of TOP and %VID. Specify the upper bound (in this case, 10) in the FROM subquery as the value of TOP,
rather than using TOP ALL. Specify the lower bound (in this case, >4) in the WHERE clause with %VID. The following
example uses this strategy to return the same results as the previous view query:

SQL

SELECT *,%VID AS SubQuerylID
FROM (SELECT TOP 10 Name,Age
FROM Sample.Person
WHERE Age > 75
ORDER BY Name)
WHERE %VID > 4

Parallel execution cannot be performed on a query that specifies a %VID, even when the %PARALLEL keyword is
explicitly specified.

12.6 Listing View Properties

The INFORMATION.SCHEMA.VIEWS persistent class displays information about all views in the current namespace. It
provides a number of properties including the view definition, the owner of the view, and the timestamps when the view
was created and last modified. These properties also include whether the view is updateable and if so, whether it was defined
with a check option.

When specified in Embedded SQL, INFORMATION.SCHEMA.VIEWS requires the #include % occl nclude macro preprocessor
directive. This directive is not required for Dynamic SQL.

Using InterSystems SQL 169

Defining and Using Views

The VIEWDEFINITION property (SqlFieldName = VIEW_DEFINITION) returns as a string the view field names and the
view’s query expression for all views in the current namespace. For example,
SQL

SELECT View_Definition FROM INFORMATION_SCHEMA.VIEWS

returns strings such as: **(vName ,vAge) SELECT Name,Age FROM Sample.Person WHERE Age > 21'.When
issued from the Management Portal SQL Execute Query interface, returns a string with a space between the view fields
list with whitespace and line breaks removed and (if necessary) an appended ellipsis (...) indicating truncated content.
Otherwise, issuing this query returns a string of up to 1048576 characters for each view, with a line break between the view
fields list and the query text, with the whitespace specified in the view’s query expression preserved, and (if necessary) an
appended ellipsis (...) indicating truncated content.

The following example returns the view name (Table_Name field) and owner name for all views in the current namespace:

SQL

SELECT Table_Name,Owner FROM INFORMATION_SCHEMA.VIEWS

The following example returns all information for all non-system views in the current namespace:

SQL

SELECT * FROM INFORMATION_SCHEMA.VIEWS WHERE Owner != "_SYSTEM®

The INFORMATION.SCHEMA.VIEWCOLUMNUSAGE persistent class displays the names of the source table fields for each
of the views in the current namespace:
SQL

SELECT * FROM INFORMATION_SCHEMA.VIEW_COLUMN_USAGE WHERE View_Name="MyView"

You can display much of the same information as INFORMATION.SCHEMA.VIEWS for a single view using the Catalog
Details tab in the Management Portal SQL Interface. The Catalog Details for a view include the definition of each view
field (data type, max length, minval/maxval, etc.), details that are not provided by the INFORMATION.SCHEMA view classes.
The Catalog Details View Info display also provides an option to edit the view definition.

12.7 Listing View Dependencies

The INFORMATION.SCHEMA .VIEWTABLEUSAGE persistent class displays all views in the current namespace and the
tables they depend on. This is shown in the following example:

SQL

SELECT View_Schema,View_Name,Table_Schema,Table_Name FROM INFORMATION_SCHEMA.VIEW_TABLE_USAGE

You can invoke the %Library.SQLCatalog.SQLViewDependsOn class query to list the tables that a specified view depends
upon. You specify schema.viewname to this class query. If you specify only viewname, it uses the system-wide default
schema name. The caller must have privileges for the specified view to execute this class query. This is shown in the fol-
lowing example:

170 Using InterSystems SQL

Listing View Dependencies

ObjectScript

SET statemt=##class(%SQL.Statement).%New()
SET cqStatus=statemt.%PrepareClassQuery(*'%Library.SQLCatalog", ' SQLViewDependsOn'")
IF cgStatus™=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

SET rset=statemt.%Execute("'vschema.vname')
DO rset.%Display()

This SQLViewDependsOn query lists the tables that the view depends upon, listing the table schema followed by the table
name. If the caller does not have privileges for a table that the view depends upon, that table and its schema are listed as
<NOT PRIVILEGED>. This allows a caller without table privileges to determine how many tables the view depends upon,
but not the names of the tables.

Using InterSystems SQL 171

13

Relationships Between Tables

To enforce referential integrity between tables you can define foreign keys. When a table containing a foreign key constraint
is madified, the foreign key constraints are checked.

13.1 Defining a Foreign Key

There are several ways to define foreign keys in InterSystems SQL.:

* You can define a relationship between two classes. Defining a relationship automatically projects a foreign key constraint
to SQL. For more information on relationships, see Defining and Using Classes.

* You can add an explicit foreign key definition to a class definition (for cases not covered by relationships). For infor-
mation, see Foreign Key Definitions.

e You can add a foreign key using the CREATE TABLE or ALTER TABLE command. You can remove a foreign key
using the ALTER TABLE command. These commands are described in the InterSystems SQL Reference.

A RowID field used as a foreign key reference must be public. Refer to RowID Hidden? for how to define a table with a
public (or private) RowlD field.

The maximum number of foreign keys for a table (class) is 400.

13.2 Foreign Key Referential Integrity Checking

A foreign key constraint can specify a referential action on update or on delete. Defining this referential action using DDL
is described in CREATE TABLE Referential Action Clause. Defining this referential action using a persistent class that
projects to a table is defined in the OnDelete and OnUpdate foreign key keywords in the Class Definition Reference. When
creating a sharded table, these referential actions must be set to NO ACTION.

By default, InterSystems IRIS® data platform performs foreign key referential integrity checking on INSERT, UPDATE
and DELETE operations. If the operation would violate referential integrity, it is not performed; the operation issues an
SQLCODE -121, -122, -123, or -124 error. A failed referential integrity check generates an error such as the following:
ERROR #5540: SQLCODE: -124 Message: At least 1 Row exists in table 'HealthLanguage.FKey?2'

which references key NewlIndex1 - Foreign Key Constraint 'NewForeignKey1' (Field 'Pointerl)
failed on referential action of NO ACTION [Execute+5"IRISSqI16:USER]

Using InterSystems SQL 173

Relationships Between Tables

If you use other means to populate a table with data, referential integrity constraints may not be enforced. If this is a concern
you should validate the table data.

This checking can be suppressed system-wide using the $SY STEM .SQL .Util.SetOption() method, as follows: SET
status=$SYSTEM.SQL .Util .SetOption("FilerRefIntegrity",0, .oldval). The default is 1 (referential
integrity checking performed). To determine the current setting, call $SY STEM .SQL .CurrentSettings().

By default, when a row with a foreign key is deleted, InterSystems IRIS acquires a long term (until the transaction ends)
shared lock on the corresponding referenced table's row. This prevents an update or delete of the referenced row until the
DEL ETE transaction on the referencing row completes. This prevents the situation where the referenced row is deleted
and then the delete of the referencing row is rolled back. If that happened, the foreign key would reference a non-existent
row. This lock is not acquired if the foreign key is defined with NoCheck, or if the DEL ETE of the referencing row is
specified with %NOCHECK or %NOLOCK.

When using a persistent class definition to define a table, you can define a foreign key with the NoCheck keyword to suppress
future checking of that foreign key. CREATE TABLE does not provide this keyword option.

You can suppress checking for a specific operation by using the %NOCHECK keyword option.

By default, InterSystems IRIS also performs foreign key referential integrity checking on the following operations. If the
specified action violates referential integrity, the command is not executed:

* ALTER TABLE DROP COLUMN.

e ALTER TABLE DROP CONSTRAINT. Issues SQLCODE -317. Foreign Key integrity checking can be suppressed
using SET OPTION COMPILEMODE=NOCHECK.

» DROP TABLE. Issues SQLCODE -320. Foreign Key integrity checking can be suppressed using SET OPTION
COMPILEMODE=NOCHECK.

* TRUNCATE TABLE (same considerations as DELETE).
e Trigger events, including BEFORE events. For example, a BEFORE DELETE trigger is not executed if the DELETE
operation would not be performed because it violates foreign key referential integrity.

In a parent/child relationship there is no defined ordering of the children. Application code must not rely on any particular
ordering.

13.3 Parent and Child Tables

This section provides a brief overview on defining and working with parent/child relationships. For further details, see
Defining and Using Relationships.

13.3.1 Defining Parent and Child Tables

When defining persistent classes that project to tables you can specify a parent/child relationship between two tables using
the Relationship property.

The following example defines the parent table:

Class Definition

Class Sample.Invoice Extends %Persistent

Property Buyer As %String(MAXLEN=50) [Required];
Property InvoiceDate As %TimeStamp;
Relationship Pchildren AS Sample.Lineltem [Cardinality = children, Inverse = Cparent];

}

174 Using InterSystems SQL

Parent and Child Tables

The following example defines a child table:

Class Definition

Class Sample.Lineltem Extends %Persistent

Property ProductSKU As %String;
Property UnitPrice As %Numeric;
Relationship Cparent AS Sample.lInvoice [Cardinality = parent, Inverse = Pchildren];

}

In the Management Portal SQL interface Catalog Details tab, the Table Info provides the name of the Child Table(s) and/or
the Parent Table. If a child table, it provides references to the parent table, such as Cparent->Sample. Invoice.

A child table can itself be the parent of a child table. (This child of a child is known as a “grandchild” table.) In this case,
the Table Info provides the names of both the Parent Table and the Child Table.

13.3.2 Inserting Data into Parent and Child Tables

You must insert each record into the parent table before inserting the corresponding records in the child table. To find the
ROWID of the record in the parent table, select the %ID column and use a WHERE clause to specify the newly added
record. For example:

SQL

INSERT INTO Sample.lInvoice (Buyer,InvoiceDate) VALUES ("Fred®,CURRENT_TIMESTAMP)

SQL

SELECT %ID FROM Sample.lnvoice WHERE Buyer = "Fred" // returns 1

SQL

INSERT INTO Sample.Lineltem (Cparent,ProductSKU,UnitPrice) VALUES (1, "45-A7",99.95)
INSERT INTO Sample.Lineltem (Cparent,ProductSKU,UnitPrice) VALUES (1,"22-A1",0.75)

Attempting to insert a child record for which no corresponding parent record 1D exists generates an SQLCODE -104 error
with a %msg Child table "Sample.Lineltem™ references non-existent row in parent table.

During an INSERT operation on a child table, a shared lock is acquired on the corresponding row in the parent table. This
row is locked while inserting the child table row. The lock is then released (it is not held until the end of the transaction).
This ensures that the referenced parent row is not changed during the insert operation.

13.3.3 Identifying Parent and Child Tables

In Embedded SQL, you can use a host variable array to identify parent and child tables. In a child table, Subscript 0 of the
host variable array is set to the parent reference (Cparent), with the format parentref, Subscript 1 is set to the child
record ID with the format parentref] |childref. In a parent table, Subscript 0 is undefined. This is shown in the fol-
lowing examples:

Using InterSystems SQL 175

Relationships Between Tables

ObjectScript

KILL tflds,SQLCODE,C1
&sql (DECLARE C1 CURSOR FOR
SELECT *,%TABLENAME INTO :tflds(),:tname
FROM Sample.lInvoice)
&sql (OPEN C1)
IF SQLCODE<O {WRITE "Serious SQL Error:",SQLCODE," ",%msg QUIT}
&sql (FETCH C1)
IF SQLCODE=100 {WRITE "The ",tname," table contains no data",! QUIT}
WHILE $DATA(tFflds(0)) {
WRITE tname," is a child table",!,"parent ref: ",tflds(0)," %ID:
", tflds(1),!

&sql (FETCH C1)
IF SQLCODE=100 {QUIT}

}
IF $DATA(tFflds(0))=0 {WRITE tname," is a parent table",!}
&sqgl (CLOSE C1)
IF SQLCODE<O {WRITE "Error closing cursor:",SQLCODE," ",%msg QUIT}

ObjectScript

KILL tflds,SQLCODE,C1
&sql (DECLARE C1 CURSOR FOR
SELECT *,%TABLENAME INTO :tflds(),:tname
FROM Sample.Lineltem)
&sql (OPEN C1)
IF SQLCODE<O {WRITE "Serious SQL Error:",SQLCODE," ",%msg QUIT}
&sql (FETCH C1)
IF SQLCODE=100 {WRITE "The ",tname,' table contains no data",! QUIT}
WHILE $DATA(tflds(0)) {
WRITE tname,”™ is a child table",!,"parent ref: ",tflds(0)," %ID:
", tflds(1),!
&sql (FETCH C1)
IF SQLCODE=100 {QUIT}

¥
IF $DATA(tflds(0))=0 {WRITE tname," is a parent table",!}
&sql (CLOSE C1)
IF SQLCODE<O {WRITE "Error closing cursor:",SQLCODE," ",%msg QUIT}

For a child table, tflds(0) and tflds(1) return values such as the following:

parent ref: 1 %ID: 1||1
parent ref: 1 %ID: 1||2
parent ref: 1 %ID: 1||3
parent ref: 1 %ID: 1||9
parent ref: 2 %ID: 2||4
parent ref: 2 %ID: 2||5
parent ref: 2 %ID: 2||6
parent ref: 2 %ID: 2||7
parent ref: 2 %ID: 2||8

For a “grandchild” table (a table that is the child of a child table), tflds(0) and tflds(1) return values such as the following:

%ID:
%ID:

parent ref: 1||1 111
parent ref: 1||1 1[2]|7
parent ref: 1||1 %ID: 1||1||8
parent ref: 1||2 %ID: 1||2]|2
parent ref: 1|2 %ID: 1]|2||3
parent ref: 1||2 %ID: 1||2||4
parent ref: 1||2 %ID: 1||2||5
parent ref: 1||2 %ID: 1]|2||6

176 Using InterSystems SQL

14

Using Triggers

This topic describes how you can define triggers in InterSystems SQL. Triggers are lines of code that are executed in
response to certain SQL events.

14.1 Defining Triggers

There are several ways to define a trigger for a specific table:

» Include a trigger definition in the persistent class definition that projects to an SQL table. For example, this definition
of the MyApp.Person class includes a definition of the LogEvent trigger, which is invoked after each successful INSERT
of data into the MyApp.Person table:

Class/ObjectScript

Class MyApp.Person Extends %Persistent [DdIAllowed]
{
// ... Class Property Definitions
Trigger LogEvent [Event = INSERT, Time = AFTER]

// Trigger code to log an event

}

Class/Python

Class MyApp.Person Extends %Persistent [DdIAllowed]
t // ... Class Property Definitions
Trigger LogEvent [Event = INSERT, Time = AFTER, Language = python]
// Trigger code to log an event

}

For further details, refer to Trigger Definitions.

* Usethe SQL CREATE TRIGGER command to create a trigger. This generates a trigger object definition in the corre-
sponding persistent class. SQL trigger names follow identifier naming conventions. InterSystems IRIS® data platform
uses the SQL trigger name to generate a corresponding trigger class entity name.

You must have the %CREATE_TRIGGER administrative-level privilege to create a trigger. You must have the
%DROP_TRIGGER administrative-level privilege to drop a trigger.

The maximum number of user-defined triggers for a class is 200.

Using InterSystems SQL 177

Using Triggers

Note: InterSystems IRIS does not support triggers on tables projected by collections. A user cannot define such a trigger,
and the projection of a collection as a child table does not consider triggers involving that base collection.

InterSystems IRIS does not support triggers that modify the Security.Roles and Security.Users tables.

14.2 Types of Triggers

A trigger is defined by the following:

» The type of event that causes it to execute. A trigger may be either a single-event trigger or a multiple-event trigger.
A single-event trigger is defined to execute when an INSERT, an UPDATE, or a DELETE event occurs on the specified
table. A multiple-event trigger is defined to execute when any one of the multiple specified events occurs on the
specified table. You can define an INSERT/UPDATE, an UPDATE/DELETE, or an INSERT/UPDATE/DELETE
multiple-event trigger using either a class definition or the CREATE TRIGGER command. The type of event is
specified in a class definition by the required Event trigger keyword.

» Thetime that the trigger executes: Before or After the event occurs. This is specified in a class definition by the optional

Time trigger keyword. The default is Before.

* You can associate multiple triggers with the same event and time; in this case, you can control the order in which
multiple triggers are fired using the Order trigger keyword. Triggers with a lower Order value are fired first. If multiple
triggers have the same Order value, then the order in which they are fired is not specified.

» The optional Foreach trigger keyword provides additional granularity. This keyword controls whether the trigger is
fired once per row (Foreach = row), once per row or object access (Foreach = row/object), or once per
statement (Foreach = statement). A trigger defined with no Foreach trigger keyword is fired once per row. If a
trigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access,
as described later on this page. You can list the Foreach value for each trigger using the ACTIONORIENTATION property

of INFORMATION.SCHEMA.TRIGGERS

Note: Python supports only the Foreach = row/object option.

For a full list of trigger keywords, see the Class Definition Reference.

This table shows the available triggers and their corresponding callback methods:

Trigger
BEFORE INSERT

AFTER INSERT

BEFORE UPDATE

AFTER UPDATE

BEFORE UPDATE OF (specified columns)
AFTER UPDATE OF (specified columns)
BEFORE DELETE

AFTER DELETE

Corresponding Callback Method
%OnBeforeSave()

%OnAfterSave()
%OnBeforeSave()
%OnAfterSave()
None

None
%OnDelete()

%OnAfterDelete()

178

Using InterSystems SQL

ObjectScript Trigger Code

Triggers and callback methods are similar, but they can execute at different times:
» Triggers execute either right before or right after modification of stored data.

» Callback methods execute before or after the % SaveData() or % DeleteData() methods, depending on the type of
callback. Therefore, the % OnBeforeSave() method before the object locks or is modified by a referential action.

Note: When a trigger is executed, it cannot directly modify the value of a property in the table that is being processed.
This is because InterSystems IRIS executes trigger code after field (property) value validation code. For example,
atrigger cannot set a LastModified field to the current timestamp in the row being processed. However, the trigger
code can issue an UPDATE to a field value in the table. The UPDATE performs its own field value validation.

For further details, refer to CREATE TRIGGER.

14.2.1 AFTER Triggers

An AFTER trigger executes after an INSERT, UPDATE, or DELETE event occurs:

* If SQLCODE=0 (event completed successfully) InterSystems IRIS executes the AFTER trigger.

» If SQLCODE is a negative number (event failed) InterSystems IRIS does not executes the AFTER trigger.

» If SQLCODE=100 (no row was found to insert, update, or delete) InterSystems IRIS executes the AFTER trigger.

14.2.2 Recursive Triggers

Trigger execution can be recursive. For example, if table T1 has a trigger that performs an insert into table T2 and table
T2 has a trigger that performs an insert into table T1. Recursion can also occur when table T1 has a trigger that calls a
routine/procedure and that routine/procedure performs an insert into T1. Handling of trigger recursion depends on the type
of trigger:

» Row and Row/Object triggers: InterSystems IRIS does not prevent row triggers and row/object triggers from being
executed recursively. It is the programmer’s responsibility to handle trigger recursion. A runtime <FRAMESTACK>
error may occur if the trigger code does not handle recursive execution.

» Statement triggers: InterSystems IRIS prevents an AFTER statement trigger from being executed recursively. InterSys-
tems IRIS will not issue an AFTER trigger if it detects that the trigger has been called previously in the execution
stack. No error is issued; the trigger is simply not executed a second time.

InterSystems IRIS does not prevent a BEFORE statement trigger from being executed recursively. It is the programmer’s
responsibility to handle BEFORE trigger recursion. A runtime <FRAMESTACK> error may occur if the BEFORE
trigger code does not handle recursive execution.

14.3 ObjectScript Trigger Code

Each trigger contains one or more lines of code that perform a triggered action. This code is invoked by the SQL Engine

whenever the event associated with the trigger occurs. If the trigger is defined using CREATE TRIGGER, this action code
can be written in either ObjectScript or SQL. (InterSystems IRIS converts code written in SQL to ObjectScript in the class
definition.) If the trigger is defined in an IDE such as Studio or VS Code, this action code must be written in ObjectScript.

Because the code for a trigger is not generated as a procedure, all local variables in a trigger are public variables. With the
exception of the system variables %ok, %msg, and %oper (described in the next section), all variables in triggers should

Using InterSystems SQL 179

Using Triggers

therefore be explicitly declared with a NEW statement; this protects them from conflicting with variables in the code that
invokes the trigger.

14.3.1 %ok, %msg, and %oper System Variables

* %ok: A variable used only in trigger code. If trigger code succeeds, it sets %ok=1. If trigger code fails, it sets %0k=0.
If during trigger execution an SQLCODE error is issued, InterSystems IRIS sets %0k=0. When %0k=0, the trigger
code aborts and the trigger operation and the operation that invoked the trigger are rolled back. If INSERT or UPDATE
trigger code fails and there is a foreign key constraint defined for the table, InterSystems IRIS releases the lock on the
corresponding row in the foreign key table.

Trigger code can explicitly set %0k=0. This creates a runtime error that aborts execution of the trigger and rolls back
the operation. Commonly, before setting %0k=0, trigger code explicitly sets the %msg variable to a user-specified
string describing this user-defined trigger code error.

The %ok variable is unchanged from its prior value upon the completion of a non-trigger code SELECT, INSERT,
UPDATE, or DEL ETE statement. %ok is only defined by the execution of trigger code. It is passed by reference to
the trigger code to allow the trigger code to update it; therefore, it must not be explicitly declared with a NEW statement
within the trigger code.

* %msg: Trigger code can explicitly set the %msg variable to a string describing the cause of the runtime error. SQLCODE
errors set the %msg variable. Similar to the %ok variable, it is passed by reference to the trigger code and must not be
explicitly declared with a NEW statement within the trigger code.

* %aoper: A variable used only in trigger code. Trigger code can refer to the variable %oper, which contains the name
of the event that fired the trigger (INSERT, UPDATE, or DELETE).

14.3.2 {fieldname} Syntax

Within trigger code, you can refer to field values (for the fields belonging to the table the trigger is associated with) using
a special {fieldname} syntax. For example, the following definition of the LogEvent trigger in the MyApp.Person class
includes a reference to the ID field, as {1D}:

Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]
{
// ... Definitions of other class members

/// This trigger updates the LogTable after every insert
Trigger LogEvent [Event = INSERT, Time = AFTER]
{

// get row id of inserted row
NEW id, SQLCODE
SET id = {ID}

// INSERT value into Log table
&sql (INSERT INTO LogTable
(TableName, IDValue)
VALUES ("MyApp-Person®, :id))
IF SQLCODE<O {SET baderr=' SQLCODE ERROR:"_SQLCODE_" '_%msg
SET %o0k=0
RETURN baderr }

// ... Definitions of other class members

}

This {fieldname} syntax supports unitary fields. It does not support %SerialObject collection properties. For example, if
a table references the embedded serial object class Address, which contains the property City, the trigger syntax
{Address_City} is avalid reference to a field. The trigger syntax {Address} is a reference to a collection property,
and cannot be used.

180 Using InterSystems SQL

ObjectScript Trigger Code

14.3.3 Macros within Trigger Code

Your trigger code can contain a macro definition that references a field name (using {fieldname} syntax). However, if your
trigger code contains a #include preprocessor directive for a macro that references a field name (using {fieldname} syntax),
the field name cannot be accessed. This is because InterSystems IRIS translates {fieldname} references in the trigger code
before the code is passed to the macro preprocessor. If a {fieldname} reference is in the #include file, it is not “seen” in
the trigger code, and is therefore not translated.

The work-around for this situation is to define the macro with an argument, then pass the {fieldname} in to the macro in
the trigger. For example, the #include file could contain a line such as the following:
ObjectScript

#define dtThrowTrigger(%val) SET x=$GET(%val,"?')

And then within the trigger invoke the macro supplying the {fieldname} syntax as an argument:

ObjectScript

$$$dtThrowTrigger ({%%1D3})

14.3.4 {name*Q}, {name*N}, and {name*C} Trigger Code Syntax

Three ObjectScript syntax shortcuts are available in UPDATE trigger code.

You can reference the old (pre-update) value using the following syntax:
{fieldname*0}

where fieldname is the name of the field and the character after the asterisk is the letter “O” (for Old). For an INSERT
trigger, {fieldname*0} is always the empty string ().

You can reference the new (post-update) value using the following syntax:
{fieldname*N}

where fieldname is the name of the field and the character after the asterisk is the letter “N” (for New). This
{fieldname*N} syntax can be used only to reference a value to be stored; it cannot be used to change the value. You
cannot set {Fieldname*N} in trigger code. Computing the value of a field on INSERT or UPDATE should be achieved
by other means, such as SqlComputeOnChange.

You can test whether a field value has been changed (updated) using the following syntax:
{fieldname*C}

where fieldname is the name of the field and the character after the asterisk is the letter “C” (for Changed). {fieldname*C}
evaluates to 1 if the field has been changed and 0 if it has not been changed. For an INSERT trigger, InterSystems IRIS
sets {fieldname*C} to 1.

For a class with stream properties, an SQL trigger reference to the stream property {Stream*N} and {Stream*0} returns
the OID for the stream, if the SQL statement (INSERT or UPDATE) did not insert/update the stream property itself.
However, if the SQL statement did insert/update the stream property, {Stream*0} remains the OID, but the {Stream*N}
value is set to one of the following:

» BEFORE trigger returns the value of the stream field in whatever format it was passed to the UPDATE or INSERT.
This could be the literal data value that was entered into the stream property, or the OREF or OID of a temporary
stream object.

Using InterSystems SQL 181

Using Triggers

e AFTER trigger returns the Id of the stream as the {Stream*N} value. This is the Id value InterSystems IRIS stored
in the ~classnameD global for the stream field. This value is in the appropriate 1d format based on the CLASSNAME
type parameter for the stream property.

If a stream property is updated using InterSystems IRIS objects, the {Stream*N} value is always an OID.

Note: For atrigger for child-tables created by an array collection of serial objects, trigger logic works with object
access/save but does not work with SQL access (INSERT or UPDATE).

14.3.5 Additional ObjectScript Trigger Code Syntax

Trigger code written in ObjectScript can contain the pseudo-field reference variables {%%CLASSNAME},
{%%CLASSNAMEQ}, {%%OPERATION}, {%%TABLENAME}, and {%%ID}. These pseudo-fields are translated into
a specific value at class compilation time. For further details, refer to CREATE TRIGGER.

You can use class methods from within trigger code, SQL computed code, and SQL map definitions since class methods
do not depend on having an open object. You must use the ##class(classname) -.Methodname () syntax to invoke
a method from within trigger code. You cannot use the ..Methodname() syntax, because this syntax requires a current open
object.

You can pass the value of a field of the current row as an argument of the class method, but the class method itself cannot
use field syntax.

14.4 Python Trigger Code

Within a trigger block containing embedded Python, you can access a trigger object that contains attributes and methods
related to that trigger. You can access these attributes, which are described in more detail in Types of Triggers.

e trigger.type — Valid values are ""'row/object’ or ""row".

e trigger.operation — Valid values are ""BEFORE", ""UPDATE", and "'DELETE"".

» trigger.time — Valid values are ""before' and ""after".

The trigger object also provides a getfield() method that enables you to access the names of table fields. You can specify
these options:

» trigger.getfield(fieldName) returns the value of the specified field, fieldName. If the trigger operation changes the
field value, then getfield() returns the new value.

» trigger.getfield(fieldName, new) uses a boolean value, new, to determine whether to return the new or original field
value.

— If new =1 (default), then getfield() returns the new value resulting from the trigger operation. This option applies
to INSERT and UPDATE operations.

— If new =0, then getfield() returns the value prior to the trigger operation. This option applies to UPDATE and
DELETE operations.

This example uses a trigger object to write the results of a trigger operation, the renaming of the Name field, to a log
file. Both the Python code and the equivalent ObjectScript code are shown.

182 Using InterSystems SQL

Pulling Triggers

Python

Trigger LogRename [Event = UPDATE, Foreach = row/object, Language = python, Time = AFTER]

with open("C:/temp/log.txt*, "a+") as file:
file.write(''Rename Event Occurred')
file.write("'\nID: " + str(trigger.getfield("ID™)))
Ffile.write(""\nOperation: " + trigger.operation)
file.write(''\nOld Name: " + trigger.getfield(''Name', 0))
file.write("\nNew Name: " + trigger.getfield("Name™"™, 1) + "\n\n")
3

ObjectScript

Trigger LogRename [Event = UPDATE, Foreach = row/object, Time = AFTER]
{

set file = "C:/temp/log.txt"
open file:("EWA™) use Tile
write "Rename Event Occurred"

write 1,"ID: "_{ID}

write !,"Operation: ""_{%%OPERATION}
write 1,"0ld Name: "_{Name*0}

write I,"New Name: "_{Name*N},!!
close file

14.5 Pulling Triggers

A defined trigger is “pulled” (executed) if the corresponding DML command for that table is invoked.
A Row or Row/Object trigger is pulled for each row that the DML command successfully inserts, updates, or deletes.

A Statement trigger is pulled once for each INSERT, UPDATE, or DELETE statement that successfully executes, regardless
of whether the statement actually changes any rows of the table data.

e AnINSERT statement pulls the corresponding INSERT trigger. An INSERT can prevent pulling of this corresponding
trigger by specifying the %NOTRIGGER keyword. An INSERT that specifies the %NOJOURN keyword does not
journal the insert or the corresponding INSERT trigger. This means that rollback is not possible for either the insert
event or the trigger event.

* An UPDATE statement pulls the corresponding UPDATE trigger. An UPDAT E can prevent pulling of this corresponding
trigger by specifying the %NOTRIGGER keyword. An UPDATE that specifies the %NOJOURN keyword does not
journal the update or the corresponding UPDATE trigger. This means that rollback is not possible for either the update
event or the trigger event.

* An INSERT OR UPDATE statement pulls the corresponding INSERT trigger or UPDATE trigger, depending on the
type of DDL operation performed. To prevent pulling of either type of trigger, specify the % NOTRIGGER keyword.

* A DELETE statement pulls the corresponding DELETE trigger. A DEL ETE can prevent pulling of this corresponding
trigger by specifying the %NOTRIGGER keyword. A DEL ETE that specifies the %NOJOURN keyword does not
journal the delete or the corresponding DELETE trigger. This means that rollback is not possible for either the delete
event or the trigger event.

» A TRUNCATE TABLE statement does not pull a DELETE trigger.

By default, DDL statements and the corresponding triggered actions are journaled. The %NOJOURN keyword prevents
journaling of both the DDL command and the triggered action.

Using InterSystems SQL 183

Using Triggers

14.6 Triggers and Object Access

If atrigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access,
depending on the Event and Time keywords of the trigger definition, as follows:

Event Time Trigger is also called at this time

INSERT BEFORE Just before %Save() for a new object
INSERT AFTER Just after %Save() for a new object

UPDATE BEFORE Just before %Save() for an existing object
UPDATE AFTER Just after %Save() for an existing object
DELETE BEFORE Just before %Deleteld() for an existing object
DELETE AFTER Just after %Deleteld() for an existing object

As a consequence, it is not necessary to also implement callback methods in order to keep SQL and object behavior syn-
chronized,

For information on the Foreach trigger keyword, see Foreach.

14.6.1 Not Pulling Triggers During Object Access

By default, SQL objects are stored using %Storage.Persistent. InterSystems IRIS also supports %Storage.SQL storage.

When saving or deleting objects in a class that uses %Storage.SQL storage, all statement (Foreach = statement), row
(Foreach = row), and row/object (Foreach = row/object) triggers are pulled. A trigger defined with no Foreach
trigger keyword is a row trigger. Pulling all triggers is the default behavior.

However, when saving or deleting objects in a class using %Storage.SQL, you can specify that only triggers defined as
Foreach = row/object should be pulled. Triggers defined as Foreach = statement or Foreach = row are
not pulled. This done by specifying the class parameter OBJECTSPULLTRIGGERS = 0. The default is OBJECTSPULL-
TRIGGERS = 1.

This parameter only applies to classes defined as using %Storage.SQL.

14.7Triggers and Transactions

A trigger executes trigger code within a transaction. It sets the transaction level, then executes the trigger code. Upon suc-
cessful completion of trigger code, the trigger commits the transaction.

Note: A consequence of triggers using transactions is that if a trigger invokes code that commits a transaction, completion
of the trigger fails because the transaction level has already been decremented to 0. This situation can occur when
invoking a Business Service of a Production.

With an AFTER INSERT statement-level ObjectScript trigger, if the trigger sets %0k=0, the insert of the row fails with
an SQLCODE -131 error. Depending on your automatic transaction setting, transaction rollback might also occur. In SQL,
the SET TRANSACTION %COMMITMODE commitmode option controls this setting. In ObjectScript, the **AutoCommit"
option of the SetOption() method controls this setting, using this syntax: SET
status=$SYSTEM.SQL.Util.SetOption('AutoCommit", intval, .oldval). This table shows the effect the

184 Using InterSystems SQL

Listing Triggers

automatic transaction setting has on rollback. It also shows the corresponding commitmode option to set for SQL and
"AutoCommi t' integer value to set for ObjectScript.

Automatic Transaction %COVM TMODE Option " Aut oCommi t " Value Transaction
Setting (SQL) (ObjectScript) Rollback Result
No automatic transaction ~ NONE 0 No transaction was
processing started, so the
INSERT cannot be
rolled back.
Automatic transaction IMPLICIT 1 The transaction for
commitment is on (default) the INSERT is rolled
back.
Automatic transaction EXPLICIT 2 Itis up to the
commitment is off application to either
rollback or commit
the transaction for
the INSERT.

The trigger can set an error message in the %msg variable in the trigger. This message will be returned to the caller, giving
information why the trigger failed.

The %ok and %msg system variables are described in System Variables.

14.8 Listing Triggers

Triggers defined for a specified table are listed in the Management Portal SQL interface Catalog Details. This lists basic
information for each trigger. To list more detailed information, use INFORMATION.SCHEMA.TRIGGERS.

The INFORMATION.SCHEMA.TRIGGERS class lists the defined triggers in the current namespace. For each trigger
INFORMATION.SCHEMA.TRIGGERS lists various properties, including the name of the trigger, the associated schema and
table name, the EVENTMANIPULATION property (INSERT, UPDATE, DELETE, INSERT/UPDATE,
INSERT/UPDATE/DELETE), the ACTIONTIMING property (BEFORE, AFTER), the CREATED property (trigger creation
timestamp), and the ACTIONSTATEMENT property, which is the generated SQL trigger code.

The CREATED property derives the trigger creation timestamp from when the class definition was last modified. Therefore,
subsequent use of this class (for example, to define other triggers) may result in unintended updating of the CREATED
property value.

You can access this INFORMATION.SCHEMA.TRIGGERS information from an SQL query, as shown in the following
example:
SQL

SELECT
TABLE_NAME, TRIGGER_NAME,CREATED, EVENT_MANIPULATION,ACTION_TIMING,ACTION_ORIENTATION,ACTION_STATEMENT
FROM INFORMATION_SCHEMA.TRIGGERS WHERE TABLE_SCHEMA="Sample*

Using InterSystems SQL 185

15

Collation

Collation specifies how values are ordered and compared. There are two fundamental collations: numeric and string.

* Numeric collation orders numbers based on the complete number in the following order: null, then negative numbers
from largest to smallest, zero, then positive numbers from smallest to largest. This creates a sequence such as the fol-
lowing: —210, -185, -54, -34, -.02, 0, 1, 2, 10, 17, 100, 120.

» String collation orders strings by collating on each sequential character. This creates an order such as the following:
null, A, AA, AAA, AAB, AB, B. For numbers, this creates an order such as the following: —.02, —185, -210, —34, -54,
0, 1, 10, 100, 120, 17, 2.

The default string collation is SQLUPPER; this default is set for each namespace. SQLUPPER collation converts all letters
to uppercase (for the purpose of collation), and prepends a space character to the beginning of the string. This conversion
is for the purposes of collation only; in InterSystems SQL strings are usually displayed in uppercase and lowercase letters,
regardless of the collation applied, and the length of a string does not include the prepended space character.

A timestamp is a string, and therefore follows the current string collation. However, because a timestamp is in ODBC format,
the string collation is the same as chronological sequence, if leading zeros are specified.

e Astring expression (such as those using the scalar string functions LEFT or SUBSTR) makes its result collation
EXACT.

* Any comparison of two literals uses EXACT collation.

You can use the ObjectScript Sorts After operator to determine the relative collation sequence order of two values.
You can specify collation as follows:

» Namespace default

» Table field/property definition

* Index definition

e Query SELECT item

* Query DISTINCT and GROUP BY clause

Also see SQL Collation and NLS Collations.

Using InterSystems SQL 187

Collation

15.1 Collation Types

Collation can be specified as a keyword in the definition of a field/property or the definition of an index.

Collation can be specified by applying a collation function to a field name in a query clause. The % prefix is required when
specifying a collation function.

Collation is in ascending ASCII/Unicode sequence, with the following transformations:

* EXACT — Enforces case sensitivity for string data without adding or stripping characters. Collates canonical numbers
in numeric order, then collates strings in character-by-character ASCII order. String collation is case sensitive. String
collation includes non-canonical numbers (such as 088) and mixed numeric strings (such as 22 EIm Street). Because
canonical numbers collate before strings, including single characters and non-canonical numeric strings, EXACT is
generally not recommended for string data that may contain values in canonical numeric format (for example 123 or
-.57).

* SQLSTRING — Strips trailing whitespace (spaces, tabs, and so on), and adds one leading blank space to the beginning
of the string. It collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty string.
SQLSTRING supports an optional maxien integer value.

 SQLUPPER — Converts all alphabetic characters to uppercase, strips trailing whitespace (spaces, tabs, and so on),
and then adds one leading space character to the beginning of the string. The reason this space character is prepended
is to force numeric values to be collated as strings (because the space character is not a valid numeric character). This
transformation also causes SQL to collate the SQL empty string (") value and any value containing only whitespace
(spaces, tabs, and so on) as a single space character. SQLUPPER supports an optional maxien integer value. Note that
the SQLUPPER transform is not the same as the result of the SQL function UPPER.

« TRUNCATE — Enforces case sensitivity for string data and (unlike EXACT) allows you to specify a length at which
to truncate the value. This is useful when indexing exact data that is longer than what is supported for use in a subscript.
It takes a positive integer argument, in the form %TRUNCATE (string,n), to truncate the string to the first n characters,
which improves indexing and sorting on long strings. If you do not specify a length for TRUNCATE, it behaves
identically to EXACT; while this behavior is supported. your definitions and code may be easier to maintain if you
use TRUNCATE only when you have a length defined and EXACT when you do not.

e PLUS — Makes the value numeric. A non-numeric string value is returned as 0.

* MINUS — Makes the value numeric and changes its sign. A non-numeric string value is returned as 0.

Note: There are also various legacy collation types, the use of which is not recommended.
In an SQL query, you can specify a collation function without parentheses %SQLUPPER Name or with parentheses
%SQLUPPER(Name). If the collation function specifies truncation, the parentheses are required %¥SQLUPPER(Name , 10).

Three collation types: SQLSTRING, SQLUPPER, and TRUNCATE support an optional maxlen integer value. If specified,
maxlen truncates parsing of the string to the first n characters. This can be used to improve performance when indexing
and sorting long strings. You can use maxlen in a query to sort on, group by, or return a truncated string value.

You can also perform collation type conversions using the % SY STEM .Util.Collation() method.

15.2 Namespace-wide Default Collation

Each namespace has a current string collation setting. This string collation is defined for the data type in %Library.String.
The default is SQLUPPER. This default can be changed.

188 Using InterSystems SQL

Table Field/Property Definition Collation

You can define the collation default on a per-namespace basis. By default, namespaces have no assigned collation, which
means they use SQLUPPER collation. You can assign a different default collation to a namespace. This namespace default
collation applies to all processes, and persists across InterSystems IRIS restarts until explicitly reset.

ObjectScript

SET stat=$$GetEnvironment”%apiOBJ('collation","%Library.String", .collval)
WRITE "initial collation for " ,$NAMESPACE,!
ZWRITE collval
SetNamespaceCollation
DO SetEnvironment™%apiOBJ(*'collation”,"%Library.String","SQLstring")
SET stat=$$GetEnvironment™%apiOBJ(‘''collation","%Library.String", .collnew)
WRITE "user-assigned collation for ",$NAMESPACE,!
ZWRITE collnew
ResetCollationDefault
DO SetEnvironment™%apiOBJ("'collation™,"%Library.String",_collval)
SET stat=$$GetEnvironment™%apiOBJ("'collation”,"%Library.String", .collreset)
WRITE "restored collation default for ",$NAMESPACE,!
ZWRITE collreset

Note that if you have never set the namespace collation default, $$GetEnvironment returns an undefined collation variable,
such as .collval in this example. This undefined collation defaults to SQLUPPER.

Note: If your data contains German text, uppercase collation may not be a desirable default. This is because the German
eszett character (SCHAR(223)) has only a lowercase form. The uppercase equivalent is the two letters “SS”. SQL
collations that convert to uppercase do not convert eszett, which remains unchanged as a single lowercase letter.

15.3 Table Field/Property Definition Collation

Within SQL, collation can be assigned as part of field/property definition. The data type used by a field determines its
default collation. The default collation for string data types in tables that use row storage is SQLUPPER; however, in tables
that use columnar storage, the default collation is EXACT. Non-string data types do not support collation assignment.

You can specify collation for a field in CREATE TABLE and ALTER TABLE:

SQL

CREATE TABLE Sample.MyNames (
LastName CHAR(30),
FirstName CHAR(30) COLLATE SQLstring)

Note: When specifying collation for a field using CREATE TABLE and ALTER TABLE, the % prefix is optional:
COLLATE SQLstring or COLLATE %SQLstring.

You can specify collation for a property when defining a table using a persistent class definition:

Class Definition

Class Sample.MyNames Extends %Persistent [DdIAllowed]

Property LastName As %String;
Property FirstName As %String(COLLATION = "'SQLstring");
}

Note: When specifying collation for class definitions and class methods do not use the % prefix for collation type names.

In these examples, the LastName field takes default collation (SQLUPPER, which is not case-sensitive), the FirstName
field is defined with SQLSTRING collation, which is case-sensitive.

Using InterSystems SQL 189

Collation

If you change the collation for a class property and you already have stored data for that class, any indexes on the property
become invalid. You must rebuild all indexes based on this property.

15.4 Index Definition Collation

The CREATE INDEX command cannot specify an index collation type. The index uses the same collation as the field
being indexed.

An index defined as part of class definition can specify a collation type. By default, an index on a given property (or prop-
erties) uses the collation type of the property data. For example, suppose you have defined a property Name of type %String:
Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]

Property Name As %String;
Index NamelDX On Name;

}

The collation for Name is SQLUPPER (the default for %String). Suppose that the Person table contains the following data:

ID Name
1 Jones
2 JOHNSON
3 Smith
4 jones
5

SMITH

Then an index on Name will contain the following entries:

Name ID(s)
JOHNSON 2
JONES 1,4
SMITH 3,5

The SQL Engine can use this index directly for ORDER BY or comparison operations using the Name field.

You can override the default collation used for an index by adding an As clause to the index definition:

Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]

Property Name As %String;
Index NamelDX On Name As SQLstring;

}

In this case the NamelDX index will now store values in SQLSTRING (case-sensitive) form. Using the data from the above
example:

190 Using InterSystems SQL

Query Collation

Name ID(s)
JOHNSON 2
Jones 1
jones 4
SMITH 5
Smith 3

In this case, the SQL Engine can take advantage of this index for any queries requiring case-sensitive collation.

In general, you should not have to change the collations of indexes. If you want to use a different collation, it is better to
define it at the property level and let any indexes on the property pick up the correct collation.

If you are performing a property comparison using an indexed property, the property as specified in the comparison should
have the same collation type as the corresponding index. For example, the Name property in the WHERE clause of a
SELECT or in the ON clause of a JOIN should have the same collation as the index defined for the Name property. If there
is a mismatch between the property collation and the index collation, the index may be less effective or may not be used
at all. For further details, refer to Index Collation.

If your index is defined to use multiple properties, you can specify the collation of each individually:

Class Member

Index MyIDX On (Name As SQLstring, Code As Exact);

15.5 Query Collation

InterSystems SQL provides collation functions that can be used to change the collation or display of a field.

15.5.1 select-item Collation

Applying a collation function to a query select-item changes the display of that item.

» Letter Case: By default, a query displays strings with uppercase and lowercase letters. The exceptions to this are the
DISTINCT or GROUP BY operations on a field of collation type SQLUPPER. These operations display that field in
all uppercase letters. You can use the %EXACT collation function to reverse this letter case transformation and display
the field in uppercase and lowercase letters. You should not use an %SQLUPPER collation function in the select-item
list to display a field in all uppercase letters. This is because %SQLUPPER adds a space character to the length of the
string. Use the UPPER function instead:

SQL

SELECT TOP 5 Name,$LENGTH(Name) AS NLen,
%SQLUPPER(Name) AS UpCol IN, $LENGTH(%SQLUPPER(Name)) AS UpCollLen,
UPPER(Name) AS UpN,$LENGTH(UPPER(Name)) AS UpLen

FROM Sample.Person

» String Truncation: You can use the % TRUNCATE collation function to limit the length of the string data you wish to
display. % TRUNCATE is preferable to %SQLUPPER, which adds a space character to the length of the string.

Using InterSystems SQL 191

Collation

SQL

SELECT TOP 5 Name,$LENGTH(Name) AS NLen,
%TRUNCATE(Name,8) AS TruncN,$LENGTH(%TRUNCATE(Name,8)) AS TrunclLen
FROM Sample.Person

Note that you cannot nest collation functions or case-transformation functions.

WHERE clause comparisons: Most WHERE clause predicate condition comparisons use the collation type of the
field/property. Because string fields default to SQLUPPER, these comparisons are commonly not case-sensitive. You
can use the %EXACT collation function to make them case-sensitive:

The following example returns Home_City string matches regardless of letter case:

SQL

SELECT Home_City FROM Sample.Person WHERE Home_City = “albany”

The following example returns Home_City string matches that are case-sensitive:

SQL

SELECT Home_City FROM Sample.Person WHERE %EXACT(Home_City) = "albany*®

The SQL Follows operator (]) uses the field/property collation type.
However, the SQL Contains operator ([) uses EXACT collation, regardless of the collation type of the field/property:

SQL

SELECT Home_City FROM Sample.Person WHERE Home City ["c*
ORDER BY Home_City

The %MATCHES and %PATTERN predicate conditions use EXACT collation, regardless of the collation type of the
field/property. The % PATTERN predicate provides both case-sensitive wildcards and a wildcard (‘A’) which is not
case-sensitive.

ORDER BY clause: The ORDER BY clause uses the namespace default collation to order string values. Therefore,
ORDER BY does not order based on lettercase. You can use %EXACT collation to order strings based on lettercase.

15.5.2 DISTINCT and GROUP BY Collation

By default, these operation use the current namespace collation. The default namespace collation is SQLUPPER.

DISTINCT: The DISTINCT keyword uses the namespace default collation to eliminate duplicate values. Therefore,
DISTINCT Name returns values in all uppercase letters. You can use EXACT collation to return values in mixed
uppercase and lowercase. DISTINCT eliminates duplicates that differ only in letter case. To preserve duplicates that
differ in case, but eliminate exact duplicates, use EXACT collation. The following example eliminates exact duplicates
(but not lettercase variants) and returns all values in mixed uppercase and lowercase:

SQL
SELECT DISTINCT %EXACT(Name) FROM Sample.Person

A UNION involves an implicit DISTINCT operation.

GROUP BY: The GROUP BY clause uses the namespace default collation to eliminate duplicate values. Therefore,
GROUP BY Name returns values in all uppercase letters. You can use EXACT collation to return values in mixed
uppercase and lowercase. GROUP BY eliminates duplicates that differ only in letter case. To preserve duplicates that

192

Using InterSystems SQL

Legacy Collation Types

differ in case, but eliminate exact duplicates, you must specify the %EXACT collation function on the GROUP BY
clause, not the select-item.

The following example returns values in mixed uppercase and lowercase; the GROUP BY eliminates duplicates,
including those that differ in lettercase:

SQL

SELECT %EXACT(Name) FROM Sample.Person GROUP BY Name

The following example returns values in mixed uppercase and lowercase; the GROUP BY eliminates exact duplicates
(but not lettercase variants):

SQL

SELECT Name FROM Sample.Person GROUP BY %EXACT(Name)

15.6 Legacy Collation Types

InterSystems SQL supports several legacy collation types. These are deprecated and not recommended for use with new
code, as their purpose is to provide continued support for legacy systems. They are:

* %ALPHAUP — Removes all punctuation characters except question marks (“?”) and commas (“,”), and translates
all the lowercase letters to uppercase. Used mostly for mapping legacy globals. Replaced by SQLUPPER.

* %STRING — Converts a logical value to uppercase, strips all punctuation and white space (except for commas), and
adds one leading blank space to the beginning of the string. It collates any value containing only whitespace (spaces,
tabs, and so on) as the SQL empty string. Replaced by SQLUPPER.

* %UPPER — Translates all lowercase letters into uppercase letters. Used mostly for mapping legacy globals. Replaced
by SQLUPPER.

e SPACE — SPACE collation prepends a single leading space to a value, forcing it to be evaluated as a string. To
establish SPACE collation, CREATE TABLE provides a SPACE collation keyword, and ObjectScript provides a
SPACE option in the Collation() method of the %SYSTEM.Util class. There is no corresponding SQL collation function.

Note: If a string data type field is defined with EXACT, UPPER, or ALPHAUP collation, and a query applies a
%STARTSWITH condition on this field, inconsistent behavior may result. If the substring you specify to
% STARTSWITH is a canonical number (especially a negative and/or fractional number), % STARTSWITH
may give different results depending on whether the field is indexed. The % STARTSWITH should perform as
expected if the column is not indexed. If the column is indexed, unexpected results may occur.

15.7 SQL and NLS Collations

The SQL collations described above should not be confused with the InterSystems IRIS NLS collation feature, which provides
subscript-level encoding that adhere to particular national language collation requirements. These are two separate systems
of providing collations, and they work at different levels of the product.

InterSystems IRIS NLS collations can have a process-level collation for the current process, and different collations for
specific globals.

Using InterSystems SQL 193

Collation

To ensure proper functioning when using InterSystems SQL, it is a requirement that the process-level NLS collation matches
exactly the NLS collation of all globals involved, including globals used by the tables and globals used for temporary files
such as process private globals and for IRISTEMP globals. If this is not the case, the Query Processor might give different
results and ignores parallel processing. In situations where sorting occurs, such as an ORDER BY clause or a range condition,
the Query Processor selects the most efficient sorting strategy. It may use an index, use a temporary file in a process-private
global, sort within a local array, or use a "]]" (Sorts After) comparison. All these are subscript-type comparisons that adhere
to the InterSystems IRIS NLS collation that is in effect, which is why it is necessary that all these types of globals use the
exact same NLS collation.

The system creates a global with the data base default collation. You can use the Create() method of the %Library.GlobalEdit
class to create a global with a different collation. The only requirement is that the specified collation be either built-in (such
as the InterSystems IRIS standard) or one of the national collations available in the current locale. See Using
%L.ibrary.GlobalEdit to Set Collation For A Global.

194 Using InterSystems SQL

16

Federated Tables

A federated table offers query access to data that lives in disparate instances of InterSystems IRIS® data platform hosting
the identical or similar schemas. Unlike a sharded table, federated tables are read-only and do not manage or distribute data
among the sources based on a shard key. The source tables for a federated table, which physically store the its data and live
in the distinct instances or namespaces, are managed exclusively by their host instance. As such, federated tables are read
only. Federated tables offer a solution to use cases that require analytics or querying across different deployments of the
same application or schema, such as multi-tenant environments.

16.1 Requirements for Creating a Federated Table

To connect source tables together as a federated table, you must first configure a sharded cluster that spans all the instances
containing the relevant source data. For more information about configuring a sharded cluster, see “Deploying the Sharded
Cluster.” Users that are new to sharding may find it useful to familiarize themselves with the terminology and concepts in
“Horizontally Scaling for Data Volume with Sharding.”

A cluster namespace must be created for each namespace that contains one or more source tables, called a source namespace.
This requirement applies to both cases where each namespace resides on a separate instance and to cases where multiple

source namespaces reside on the same instance; in the latter case, multiple cluster namespaces on the same instance need
to be configured so that each source namespace has a corresponding cluster namespace.

The following image shows the relationships between federated tables, source tables, cluster namespaces, and source
namespaces.

16.2 Creating a Federated Table

Once you have configured a sharded cluster, creating a federated table consists of two parts: defining the federated table
and connecting source tables to the federated table.

Using InterSystems SQL 195

Federated Tables

16.2.1 Defining a Federated Table

From the master namespace of the sharded cluster, you can create a federated table by using $SYSTEM.Sharding.CreateFed-
eratedTable(). See complete documentation on how to use this method in the Class Reference.

CreateFeder atedTable() registers the federated table definition in the cluster namespace that represents the federated table
and defines how columns from a source table are projected into the federated table. As part of the API call, columns from
the source table may be left out of the federated table or dummy columns with a constant value may be added (for example,
to identify the source namespace). This method also attaches the initial source table from the specified source namespace,
which is stored on the same instance. A source namespace is never impacted by the existence of a federated table that any
of its tables projects to.

There are a few notes about federated table definitions:

» Private properties in a source table are not projected to a federated table unless explicitly listed as an argument to
CreateFederatedTable().

» The types of source fields do not need to match the types of the corresponding fields in the federated tables. Implicit
ype conversions are identical to those used in UNION clauses and return a data type with the highest precedence as
follows: VARCHAR, DOUBLE, NUMERIC, BIGINT, INTEGER, SMALLINT, TINYINT.

» The SqlRowldPrivate class keyword is determined by the source table and the ID is projected with the name from the
source table. If this keyword is defined, the RowID is not projected to the federated table. Note that tables created via
DDL specify SqlPrivateRowld by default.

The newly created federated table is immediately accessible from any cluster namespace in the sharded cluster.

At this point, the newly created federated table only projects data from the source table in the source namespace that was
referred to in the call to CreateFeder atedTable(). See Connecting Source Tables to a Federated Table below for information
about including data from source table in other source namespaces.

16.2.1.1 Examples

The following example demonstrates a call to CreateFederatedTable() from the terminal that creates a federated table,
Hospital. Employees, in the IRISCLUSTER namespace (the default name for a cluster namespace). This federated table
uses Employees.Doctors from the USER namespace as an initial source table. The federated table’s columns are identical
to those of the source table.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable(, "Hospital .Employees', "USER", "Employees.Doctors')

The following example creates a federated table, Hospital.DiagnosisLog, in the IRISCLUSTER cluster namespace. This
federated table uses Hospital.Patient from the HOSPITAL namespace as an initial source table and projects the Diagnosis
and DateAdmitted columns from the source table. In this case, the DateAdmitted column is projected as AdmissionDate
to the federated table. The resulting federated table in this example has only two columns.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable(*"IRISCLUSTER", ""Hospital .DiagnosisLog', "HOSPITAL",
"Hospital .Patient”, $1b($lb("'Diagnosis'), $lb("'DateAdmitted”, AdmissionDate')))

196 Using InterSystems SQL

Querying a Federated Table

16.2.2 Connecting Source Tables to a Federated Table

After creating the federated table, connect source tables from other source namespaces to it. To do so, use the $SYS-
TEM.Sharding.ConnectFederatedTable() method in each source namespace. See complete documentation for this method
in the Class Reference.

When a source table is connected to the federated table, any table statistics that have been collected by TUNE TABLE are
reported to the federated table. For optimal query performance, you should run TUNE TABLE on a source table before
connecting it to a federated table, so the table statistics are most accurate. If the source table needs to be re-tuned and you
wish to propagate the updated statistics to the federated table, tune the source table, then re-connect it to the federated table,
specifying 1 for the Force argument to ConnectFeder atedTable().

If the source table is altered or dropped, the federated table definition is not automatically updated. This is a consequence
of how federated tables treat the source namespace as read-only and cannot be triggered by any events in it. When a source
table is altered, you will need to call ConnectFeder atedTable() in the cluster namespace corresponding to the source
namespace that has changed and specify the alterations, specifying 1 for the Force argument to ConnectFeder atedTable&().
For example, changing a column name in the source table requires you to re-specify the column names that are projected
into the federated table. Note that this step is not required for any compatible changes, such as adding a column to the
source table that does not need to be projected to the federated table.

When the source tables’ structure matches exactly between different source namespaces, calls to ConnectFeder atedTable()
are easy to script, as you can leverage the % SY STEM .ShardWor kM gr.Broadcast() instance method to execute them
once in each cluster namespace. See the Examples for further explanation.

16.2.2.1 Examples

The following example uses ConnectFederatedTable() to connect the Employees.Nurses source table in the USER namespace
to the Hospital. Employees federated table in the IRISCLUSTER namespace.

ObjectScript

do $SYSTEM.Sharding.CreateFederatedTable ("' IRISCLUSTER","Hospital .Employees',""USER",""Employees.Nurses')

The following example employs the % SY STEM .Shar dWor kM gr.Broadcast() instance method to connect source tables,
called Employees.Nurses in the HOSPITAL namespace, to a newly created federated table, also called Employees.Nurses.
Note that this approach requires each instance to have identically named source tables and source namespaces, due to the
same arguments being broadcast across instances. The cluster namespace argument to ConnectFederatedTable() should
be left blank.

ObjectScript

zn "IRISCLUSTER"

set status=$SYSTEM.Sharding.CreateFederatedTable(, "Employees.Nurses',""HOSPITAL",""Employees._Nurses')
set shardManager=$SYSTEM.ShardWorkMgr .%New()

set

status=shardvienager -Broadcast(TS, #class(USYSTEV. Sharding) . ComnectiederatedTable™, , " Erployees.Nurses™, "HOSPITAL", " Erployees .Nurses'™™)

16.3 Querying a Federated Table

Querying a federated table is transparently similar to querying a standard table. Federated tables can be queried with
Dynamic SQL, Embedded SQL, or with a database driver, such as JDBC or ODBC.

Using InterSystems SQL 197

Federated Tables

16.4 Dropping or Disconnecting a Federated Table

To drop a federated table from your sharded cluster, use $SYSTEM.Sharding.DropFederatedTable(). This method, called
from the cluster namespace of any instance, drops the federated table definition from all the cluster namespaces. Further

attempts to query the federated table will fail, as it no longer exists. Dropping a federated table does not affect the source
tables or their data.

To remove a single source table from a federated table, call $SYSTEM.Sharding.DisconnectFederatedTable() from the
cluster namespace corresponding to the source namespace that contains the source table to be disconnected. This method
disconnects a source table from the federated table. When a source table is disconnected from a federated table, queries on
the federated table will no longer return data from that source table. The source table can later be re-connected to the federated
table with ConnectFederatedTable().

198 Using InterSystems SQL

17

Defining Foreign Tables

InterSystems SQL enables you to define a foreign table, which projects data from an external data source into InterSystems
IRIS® data platform and allows you to query such external data alongside data stored in InterSystems IRIS.

17.1 Introduction to Foreign Tables

For various reasons, it may not be feasible or reasonable for you to load data directly into InterSystems IRIS. For example,
perhaps a data file is extremely large and will not be queried often enough to justify the storage cost of loading it into an
InterSystems IRIS table. A foreign table is a projection of data managed by another system that can be queried and accessed
alongside data that is managed and stored within an instance of InterSystems IRIS.

17.2 Creating a Foreign Table

Prior to creating a foreign table, you must define a foreign server to determine how InterSystems IRIS will interact with
the external data source. Once you have defined a foreign server, you can then define one or more foreign tables that represent
data in the external source by specifying column names and types, as well as any other details required to map fields in the
external data source to columns within InterSystems IRIS.

17.2.1 Step 1: Define a Foreign Server

Before you can define a foreign table, you must define a foreign server and specify which foreign data wrapper to use. To
do so, you should use the CREATE FOREIGN SERVER command.

The CREATE FOREIGN SERVER command requires you to specify a foreign data wrapper. Foreign data wrappers
determine how InterSystems IRIS interacts with a specific type of data source. Within a CREATE FOREIGN SERVER
command, you will need to specify both a foreign data wrapper and the metadata that the foreign data wrapper requires.
At present, the InterSystems SQL supports two foreign data wrappers: CSV and JDBC. The CSV foreign data wrapper
requires you to specify a path to a folder in a local file system. The JDBC foreign data wrapper requires you to name a
JDBC connection to connect with an external database.

There is no limit on the amount of foreign tables you can define on a foreign server.

The following example demonstrates how to create a foreign server that uses the CSV foreign data wrapper.

CREATE FOREIGN SERVER Sample.TestFile FOREIGN DATA WRAPPER CSV HOST “\path\to\file~

Using InterSystems SQL 199

Defining Foreign Tables

The following example demonstrates how to create a foreign server that uses the JDBC foreign data wrapper.

CREATE FOREIGN SERVER Sample.PostgresDB FOREIGN DATA WRAPPER JDBC "postgresConnection”

17.2.2 Step 2: Define a Foreign Table

After defining a foreign server, you can use the CREATE FOREIGN TABLE command to define a foreign table. This
table may have the same column names as the data from the external source, or you may choose to refer to the columns by
new names within InterSystems IRIS. The syntax for creating a foreign table is similar to the LOAD DATA command.

CREATE FOREIGN TABLE Sample.AccountTeam (
TeamlID BIGINT,
Name VARCHAR(50),
CountryCode VARCHAR(10)

) SERVERT Sample.PostgresDB TABLE "Sample.Teams*®

Creating a foreign table through a data definition language statement will create a corresponding class. This class has a
ClassType of “view” and should not be edited.

17.3 Querying a Foreign Table

Querying a foreign table is exactly like querying a native table:
SELECT Name, CountryCode FROM Sample.AccountTeam ORDER BY Name
Your queries can also take advantage of more advanced syntaxes:

SELECT t.Name, COUNT(m.*)

FROM Sample.AccountManager m JOIN Sample.AccountTeam t
ON m.TeamlD = t.TeamlD

WHERE t.CountryCode = "UK" AND m.Salary > 100000

GROUP BY t.Name

Where possible, InterSystems SQL will send, or push down, simple predicates in a WHERE clause, limiting the amount
of data transferred over the network and taking advantage of optimizations on the remote database. However, some more
complicated clauses, such as a GROUP BY or a JOIN between two foreign tables, occur within InterSystems IRIS after

the external data has been retrieved.

17.4 Deleting a Foreign Table

To delete a foreign table, you should use the DROP FOREIGN TABLE command:
DROP FOREIGN TABLE Example.MyForeignTable

Alternatively, you may use the DROP FOREIGN SERVER command with the CASCADE option to drop a foreign server
and all the foreign tables defined on that foreign server:

DROP FOREIGN SERVER Example.PostgresDB CASCADE

200 Using InterSystems SQL

18

Modifying the Database

You can use either SQL statements against an existing table or ObjectScript operations on the corresponding persistent
class to modify the contents of an InterSystems IRIS® data platform database. You cannot modify a persistent class (table)
that is defined as READONLY.

Using SQL commands provides automatic support for maintaining the integrity of the data. An SQL command is an atomic
(all or nothing) operation. If there are indexes defined on the table, SQL will automatically update them to reflect the
changes. If there are any data or referential integrity constraints defined, SQL will automatically enforce them. If there are
any defined triggers, performing these actions will pull the corresponding insert, update, or delete trigger.

18.1 Inserting Data

You can insert data into a table either by using the SQL statements or by setting and saving persistent class properties.

18.1.1 Insert Data Using SQL

The INSERT statement inserts a new record into an SQL table. You can insert a single record or multiple records.

The following example inserts a single record. It is one of several available syntax forms to insert a single record:

SQL

INSERT INTO MyApp.Person
(Name,HairColor)
VALUES ("Fred Rogers®, "Black®)

The following example inserts multiple records by querying data from an existing table:

SQL
INSERT INTO MyApp.Person

(Name,HairColor)
SELECT Name,Haircolor FROM Sample.Person WHERE Haircolor 1S NOT NULL

For more details on how to insert various types of data using the INSERT command, see the INSERT command reference
page.

You can also issue an INSERT OR UPDATE statement. This statement inserts a new record into an SQL table if the record
does not already exist. If the record exists, this statement updates the record data with the supplied field values.

Using InterSystems SQL 201

Modifying the Database

18.1.2 Insert Data Using Object Properties

You can use ObjectScript to insert one or more records of data. Create an instance of an existing persistent class, set one
or more property values, then use %Save() to insert the data record:

The following example inserts a single record:

ObjectScript

SET oref=##class(MyApp.-Person) .%New()
SET oref.Name="Fred Rogers"

SET oref.HairColor="Black"

DO oref.%Save()

The following example inserts multiple records:

ObjectScript

SET nom=$LISTBUILD("'Fred Rogers'","Fred Astare'","Fred Flintstone')
SET hair=$LISTBUILD(''Black",'Light Brown",'Dark Brown')
FOR 1=1:1:$LISTLENGTH(nom) {

SET oref=##class(MyApp.-Person) .%New()

SET oref.Name=$LIST(nom, i)

SET oref.HairColor=$LIST(hair,i)

SET status = oref.%Save() }

18.2 UPDATE Statements

The UPDATE statement modifies values in one or more existing records within an SQL table:

SQL
UPDATE MyApp.Person

SET HairColor = "Red”
WHERE Name %STARTSWITH “"Fred®

18.3 Computed Field Values on INSERT or UPDATE

When you define a computed field, you can specify code to compute a data value for that field. This data value can be
computed when the row is inserted, updated, both inserted and updated, or when queried. The following table shows the
keywords required for each type of compute operation and a field/property definition example:

202 Using InterSystems SQL

Computed Field Values on INSERT or UPDATE

Compute Type DDL SQL Keywords to Specify Persistent Class Keywords to Specify
On INSERT only COMPUTECODE SqglComputeCode and SqlComputed
Birthday VARCHAR(50) COMPUTECODE Property Birthday As
{SET %String(MAXLEN = 50) [
{Birthday}=$PIECE(SDATE({DOB},9),",') " SqglComputeCode = {SET
changed: "_$ZTIMESTAMP } {Birthday }=$P1ECE($DATE({DOB},9),"",")"

changed: "_$ZTIMESTAMP},
SqglComputed];

On UPDATE only DEFAULT, COMPUTECODE, and COM- n/a
PUTEONCHANGE

Birthday VARCHAR(50) DEFAULT " *
COMPUTECODE {SET

{Birthday }=$PIECE(SZDATE({DOB},9), ™, ™)
changed: " _S$ZTIMESTAMP }
COMPUTEONCHANGE (DOB)

On both INSERT COMPUTECODE and COMPUTEON- SqlComputeCode, SqlComputed, and
and UPDATE CHANGE SglComputeOnChange
Birthday VARCHAR(50) COMPUTECODE Property Birthday As
{SET %String(MAXLEN = 50) [
{Birthday }=$P1ECE(SDATE({D0B},9),",') " SqlComputeCode = {SET
changed: "_$ZTIMESTAMP } {Birthday}=$PIECE(SZDATE({DOB},9),","D)_ "
COMPUTEONCHANGE (DOB) changed: **_$ZTIMESTAMP},
SqlComputed, SqglComputeOnChange
= DOB];
On query COMPUTECODE and CALCULATED or SqglComputeCode, SglComputed, and
TRANSIENT Calculated orTransient
Birthday VARCHAR(50) COMPUTECODE Property Birthday As
{SET %String(MAXLEN = 50) [
{Birthday}=$PIECE(SDATE({D0OB},9),",') " SqglComputeCode = {SET
changed: "_$ZTIMESTAMP } {Birthday}=$P1ECE($DATE({DOB},9) ",)"
CALCULATED changed: "_$ZTIMESTAMP},

SqlComputed, Calculated];

The DDL DEFAULT keyword takes precedence over computing a data value upon insert. DEFAULT must take a data
value, such as an empty string; it cannot be NULL. In a persistent class definition, the InitialExpression property keyword
does not override an SqlComputed data value upon insert.

The DDL COMPUTEONCHANGE keyword can take a single field name or a comma-separated list of field names. These
field names specify the fields which when updated will trigger the compute of this field; the listed field names must exist
in the table, but they do not have to appear in the compute code. You must specify actual field names; you cannot specify
asterisk syntax.

You can use the ON UPDATE keyword phrase to set a field to a literal or a system variable (such as the current timestamp)
when a record is modified, rather than using COMPUTECODE and COMPUTEONCHANGE. The ON UPDATE phrase
modifies on both INSERT and UPDATE; to modify only on UPDATE, use the DEFAULT phrase and the ON UPDATE
phrase.

Using InterSystems SQL 203

Modifying the Database

The DDL CALCULATED or TRANSIENT keyword computes a data value each time the field is accessed by a query.
The field does not need to be specified in the select list. For example, SELECT Name FROM MyTable WHERE
LENGTH(Bi rthday)=36 computes the Birthday field before evaluating the condition expression. The Management
Portal Open Table option performs a query, and therefore computes CALCULATED and TRANSIENT data values.

Computed field restrictions:

e UPDATE that doesn’t update: An UPDATE that supplies the same values to the fields in a record as their prior values
does not actually update the record. COMPUTEONCHANGE is not invoked if no real update is performed for a record.
ON UPDATE is invoked on an update operation even if no real update is performed for a record. If you wish to always
recalculate a computed field upon update regardless of whether the record was actually updated, use an update trigger.

» User-specified explicit value for a computed field:

— INSERT: On INSERT you can always supply an explicit value to a COMPUTECODE, DEFAULT, or ON UPDATE
field. InterSystems SQL always takes the explicit value rather than the generated value.

— UPDATE COMPUTEONCHANGE: An UPDATE operation can supply an explicit value to a COMPUTEON-
CHANGE field. InterSystems SQL always takes the explicit value rather than the computed value.

— UPDATE ON UPDATE: An UPDATE operation cannot supply an explicit value to an ON UPDATE field.
InterSystems SQL ignores the user-supplied value and takes the ON UPDATE generated value. However, Inter-
Systems SQL does perform field validation on the explicit value and can, for example, generate an SQLCODE -
104 error if the supplied value is longer than the maximum data size.

— CALCULATED or TRANSIENT: An INSERT or UPDATE operation cannot supply an explicit value to a
CALCULATED or TRANSIENT field, because a CALCULATED or TRANSIENT field does not store data.
However, InterSystems SQL does perform field validation on the explicit value and can, for example, generate
an SQLCODE -104 error if the supplied value is longer than the maximum data size.

18.4 Validating Data

The insert and update operations described on this page automatically perform data validation. They prevent invalid data
being stored in a table. Data that is stored in a table by other means may not be validated. You can use the

$SY STEM.SQL .Schema.ValidateTable() method to validate the data in a table. The table name can be qualified
(""'schema.table™), or unqualified (*"table"). An unqualified table name takes the default schema name; schema search
path values are not used.

ValidateTable() returns a result set containing a row for each validation issue found in the table’s data. This method performs
the following data validations:

» Validates each data value against the field’s data type, using the data type IsValid() method.
» Validates that any field with a Required constraint does not have a null value.
* Validates that any field with a Unique constraint does not have a duplicate value.

» Validates that any Foreign Key field references a valid row in the referenced table.

204 Using InterSystems SQL

DELETE Statements

The validation result set is held in the %sqlcontext object. DO %sqlcontext.%Display() will display the data validation
results to the current device, as shown in the following Terminal example:

USER>DO $SYSTEM.SQL.Schema.ValidateTable('Sample._MyTable'™)
USER>DO %sqglcontext.%Display()

Dumping result #1

Row(s) With an Issue Field Or Constraint Name Error
%ID 3 Home_City Cannot be null
%ID 14 Home_City Cannot be null
%ID 10 Home_City Cannot be null
%ID 13 Home_City Cannot be null

%ID 6 Home_PostalCode Value is invalid: BadZip
%ID 8 Home_PostalCode Value is invalid: WhoKnows
%ID 9 Home_PostalCode Value is invalid: BadZip
%ID 10 Home_PostalCode Value is invalid: WhoKnows
%ID 11 Home_PostalCode Value is invalid: BadZip

%ID 9 Home_State Cannot be null
%ID 3 Home_State Cannot be null
%ID 10 Home_State Cannot be null

12 Rows(s) Affected
USER>

Fields are listed in alphabetical order. In this example, Home_City and Home_State fields failed required value validation;
Home_PostalCode (%Integer data type) fields failed data type validation.

You can also invoke this data validation operation from SQL by calling the ValidateTable stored procedure, as shown in
the following example:

SQL
CALL %SYSTEM.ValidateTable("Sample._MyTable™)

If the table is sharded, ValidateTable() should be called on the shard master table.

ValidateTable() does not perform locking. Therefore, if it is run against a table on a live system with concurrent operations
you could receive false-positive error reports.

18.5 DELETE Statements

The DELETE statement removes one or more existing records from an SQL table:

SQL

DELETE FROM MyApp.-Person
WHERE HairColor = "Aqua“

You can issue a TRUNCATE TABLE command to delete all records in a table. You can also delete all records in a table
using DELETE. DELETE (by default) pulls delete triggers; TRUNCATE TABLE does not pull delete triggers. Using
DELETE to delete all records does not reset table counters; TRUNCATE TABLE resets these counters.

18.6 Transaction Processing

A transaction is a series of INSERT, UPDATE, DELETE, INSERT OR UPDATE, and TRUNCATE TABLE data
modification statements that comprise a single unit of work.

Using InterSystems SQL 205

Modifying the Database

The SET TRANSACTION command can be used to set the transaction parameters for the current process. The same
parameters can also be set using the START TRANSACTION command. These transaction parameters continue in effect
across multiple transactions until explicitly changed.

A START TRANSACTION command explicitly starts a transaction. This command is generally optional; if transaction
%COMMITMODE is either IMPLICIT or EXPLICIT, a transaction begins automatically with the first database modification
operation. If transaction %COMMITMODE is NONE, you must explicitly specify START TRANSACTION to initiate
transaction processing.

If a transaction succeeds, committing its changes can be implicit (automatic) or explicit; the %COMMITMODE value
determines whether you need to explicitly use the COMMIT statement to permanently add the data modifications to the
database and release resources.

If a transaction fails, you can use the ROLLBACK statement to undo its data modifications so that these do not go into the
database.

Note: SQL transaction statements are not supported when running SQL through the Management Portal Execute SQL
Query interface. This interface is intended as a test environment for developing SQL code, not for modifying
actual data.

18.6.1 Transactions and Savepoints

In InterSystems SQL, you can perform two kinds of transaction processing: full transaction processing and transaction
processing using savepoints. With full transaction processing, a transaction begins with START TRANSACTI ON statement
(explicit or implicit) and continues until either a COMMIT statement (explicit or implicit) concludes the transaction and
commits all work, or a ROLLBACK statement reverses all work done during the transaction.

With savepoints, InterSystems SQL supports levels within a transaction. You begin a transaction with a START
TRANSACTION statement (explicit or implicit). Then during the transaction you use SAVEPOINT to specify one or
more named savepoints within the program. You can specify a maximum of 255 named savepoints in a transaction. Adding
a savepoint increments the STLEVEL transaction level counter.

» A COMMIT commits all work performed during the transaction. Savepoints are ignored.
« A ROLLBACK rolls back all work performed during the transaction. Savepoints are ignored.

e A ROLLBACK TO SAVEPOINT pointnamerolls back all work performed since the SAVEPOINT specified by
pointname and decrements an internal transaction level counter by the appropriate number of savepoint levels. For
example, if you established two savepoints, svptl and svpt2, and then rolled back to svptl, the ROLLBACK TO
SAVEPOINT svptl reverse the work done since svptl and, in this case, decrements the transaction level counter by
2.

18.6.2 Non-transaction Operations

While a transaction is in effect, the following operations are not included in the transaction and therefore cannot be rolled
back:

e The IDKey counter increment is not a transaction operation. The IDKey is automatically generated by SINCREMENT
(or $SEQUENCE), which maintains a count independent of the SQL transaction. For example, if you insert records
with IDKeys of 17, 18, and 19, then rollback this insert, the next record to be inserted will have an IdKey of 20.

» Cached query creation, modification, and purging are not transaction operations. Therefore, if a cached query is purged
during a transaction, and that transaction is then rolled back, the cached query will remain purged (will not be restored)
following the rollback operation.

206 Using InterSystems SQL

Transaction Processing

* A DDL operation or a Tune Table operation that occur within a transaction may create and run a temporary routine.
This temporary routine is treated the same as a cached query. That is, the creation, compilation, and deletion of a
temporary routine are not treated as part of the transaction. The execution of the temporary routine is considered part
of the transaction.

For non-SQL items rolled back or not rolled back, refer to the ObjectScript TROLLBACK command.

18.6.3 Transaction Locks

A transaction uses locks to safeguard unique data values. For example, if a process deletes a unique data value, this value
is locked for the duration of the transaction. Therefore, another process could not insert a record using this same unique
data value until the first transaction completed. This prevents a rollback resulting in a duplicate value for a field with a
uniqueness constraint. These locks are automatically applied by the INSERT, UPDATE, INSERT OR UPDATE, and
DEL ETE statements, unless the statement includes a %NOLOCK restriction argument.

18.6.4 Transaction Size Limitations

There is no limitation on the number of operations you can specify in a transaction, other than space availability for journal
files. The size of the lock table does not normally impose a limit, because InterSystems IRIS provides automatic lock
escalation.

There is a default lock threshold of 1000 locks per table. A table can have 1000 unique data value locks for the current
transaction. The 1001st lock operation escalates the locking for that table to a table lock for the duration of the transaction.

This lock threshold value is configurable using either of the following:

* Invoke the $SY STEM .SQL .Util.SetOption(" Lock Threshold") method. This method changes both the current system-
wide value and the configuration file setting. To determine the current lock escalation threshold, use the
$SY STEM.SQL .Util.GetOption(" Lock Threshold") method.

» Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
SQL. On this screen you can view and edit the current setting of Lock Threshold.

There is no limit on the number of subnodes (child tables) that can be killed. All subnode kills are journaled, and thus can
be rolled back.

18.6.5 Reading Uncommitted Data

You can specify the read isolation level by setting SET TRANSACTION or START TRANSACTION for the process

issuing the query.

* ISOLATION LEVEL READ UNCOMMITTED: Uncommitted inserts, updates, and deletes to data are visible for
query (read only) access by other users. This is the default if no transaction is specified.

* ISOLATION LEVEL READ VERIFIED: Uncommitted inserts, updates, and deletes to data are visible for query (read
only) access by other users. Provides re-checking of data used by query conditions and displayed by the query.

* ISOLATION LEVEL READ COMMITTED: Changes made to the data by uncommitted inserts and updates are not
shown in the query result set. The query result set only contains inserts and updates that have been committed. However,
changes made to the data by uncommitted deletes are shown in the query result set.

The following SELECT command clauses always return uncommitted data, regardless of the current isolation level: an
aggregate function, a DISTINCT clause, a GROUP BY clause, or a SELECT with the %NOLOCK keyword. For further
details, refer to Isolation Level.

Using InterSystems SQL 207

Modifying the Database

18.6.6 ObjectScript Transaction Commands

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

208 Using InterSystems SQL

19

Querying the Database

This page discusses how to query data on InterSystems IRIS® data platform.

19.1 Types of Queries

A query is a statement which performs data retrieval and generates a result set. A query can consist of any of the following:
» Asimple SELECT statement that accesses the data in a specified table or view.

* A SELECT statement with JOIN syntax that accesses the data from several tables or views.

* A UNION statement that combines the results of multiple SELECT statements.

» Asubquery that uses a SELECT statement to supply a single data item to an enclosing SELECT query.

e In Embedded SQL, a SELECT statement that uses an SQL cursor to access multiple rows of data using a FETCH
statement.

19.2 Using a SELECT Statement

A SELECT statement selects one or more rows of data from one or more tables or views. A simple SELECT is shown in
the following example:

SQL

SELECT Name,DOB FROM Sample.Person WHERE Name %STARTSWITH "A" ORDER BY DOB

In this example, Name and DOB are columns (data fields) in the Sample.Person table.

The order that clauses must be specified in a SELECT statement is: SELECT DISTINCT TOP ... selectltems INTO ...
FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY. This is the command syntax order. All of these clauses
are optional, except SELECT selectltems. (The optional FROM clause is required to perform any operations on stored data,
and therefore is almost always required in a query.) Refer to the SELECT statement syntax for details on the required order
for specifying SELECT clauses.

Using InterSystems SQL 209

Querying the Database

19.2.1 SELECT Clause Order of Execution

The operation of a SELECT statement can be understood by noting its semantic processing order (which is not the same
as the SELECT syntax order). The clauses of a SELECT are processed in the following order:

1. FROM clause — specifies a table, a view, multiple tables or views using JOIN syntax, or a subquery.
2. WHERE clause — restricts what data is selected using various criteria.

3. GROUP BY clause — organizes the selected data into subsets with matching values; only one record is returned for
each value.

4. HAVING clause — restricts what data is selected from groups using various criteria.

5. selectltem — selects a data fields from the specified table or view. A selectltem can also be an expression which may
or may not reference a specific data field.

6. DISTINCT clause — applied to the SELECT result set, it limits the rows returned to those that contain a distinct (non-
duplicate) value.

7. ORDER BY clause — applied to the SELECT result set, it sorts the rows returned in collation order by the specified
field(s).

This semantic order shows that a table alias (which is defined in the FROM clause) can be recognized by all clauses, but
a column alias (which is defined in the SELECT selectitems) can only be recognized by the ORDER BY clause.

To use a column alias in other SELECT clauses you can use a subquery, as shown in the following example:

SQL

SELECT Interns FROM
(SELECT Name AS Interns FROM Sample.Employee WHERE Age<21)
WHERE Interns %STARTSWITH “A®

In this example, Name and Age are columns (data fields) in the Sample.Person table, and Interns is a column alias for
Name.

19.2.2 Selecting Fields

When you issue a SELECT, InterSystems SQL attempts to match each specified selectitemfield name to a property defined
in the class corresponding to the specified table. Each class property has both a property name and a SqlFieldName. If you
defined the table using SQL, the field name specified in the CREATE TABLE command is the SqlFieldName, and Inter-
Systems IRIS generated the property name from the SqlFieldName.

Field names, class property names, and SqlFieldName names have different naming conventions:
e Field names ina SELECT statement are not case-sensitive. SqlFieldName names and property names are case-sensitive.

» Field names in a SELECT statement and SqlFieldName names can contain certain non-alphanumeric characters fol-
lowing identifier naming conventions. Property names can only contain alphanumeric characters. When generating a
property name, InterSystems IRIS strips out non-alphanumeric characters. InterSystems IRIS may have to append a
character to create a unique property name.

The translation between these three names for a field determine several aspects of query behavior. You can specify a
selectltemfield name using any combination of letter case and InterSystems SQL will identify the appropriate corresponding
property. The data column header name in the result set display is the SqlFieldName, not the field name specified in the
selectltem. This is why the letter case of the data column header may differ from the selectltem field name.

210 Using InterSystems SQL

Using a SELECT Statement

You can specify a column alias for a selectltem field. A column alias can be in any mix of letter case, and can contain non-
alphanumeric characters, following identifier naming conventions. A column alias can be referenced using any combination
of letter case (for example, in the ORDER BY clause) and InterSystems SQL resolves to the letter case specified in the
selectitemfield. InterSystems IRIS always attempts to match to the list of column aliases before attempting to match to the
list of properties corresponding to defined fields. If you have defined a column alias, the data column header name in the
result set display is the column alias in the specified letter case, not the SqlFieldName.

When a SELECT query completes successfully, InterSystems SQL generates a result set class for that query. The result
set class contains a property corresponding to each selected field. If a SELECT query contains duplicate field names, the
system generates unique property names for each instance of the field in the query by appending a character. For this reason,
you cannot include more than 36 instances of the same field in a query.

The generated result set class for a query also contains properties for column aliases. To avoid the performance cost of
letter case resolution, you should use the same letter case when referencing a column alias as the letter case used when
specifying the column alias in the SELECT statement.

In addition to user-specified column aliases, InterSystems SQL also automatically generates up to three aliases for each
field name, aliases which correspond to common letter case variants of the field name. These generated aliases are invisible
to the user. They are provided for performance reasons, because accessing a property through an alias is faster than
resolving letter case through letter case translation. For example, if SEL ECT specifies FAMILYNAME and the corresponding
property is familyname, InterSystems SQL resolves letter case using a generated alias (FAMILYNAME AS familyname).
However, if SELECT specifies fAmILyNaMe and the corresponding property is familyname, InterSystems SQL must
resolves letter case using the slower letter case translation process.

A selectitemitem can also be an expression, an aggregate function, a subquery, a user-defined function, as asterisk, or some
other value. For further details on selectltemitems other than field names, refer to the selectltem argument of the SELECT
command reference page.

19.2.3The JOIN Operation

A JOIN provides a way to link data in one table with data in another table and are frequently used in defining reports and
queries. Within SQL, a JOIN is an operation that combines data from two tables to produce a third, subject to a restrictive
condition. Every row of the resulting table must satisfy the restrictive condition.

InterSystems SQL supports five types of joins (some with multiple syntactic forms): CROSS JOIN, INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. Outer joins support the ON clause with a full range of
conditional expression predicates and logical operators. There is partial support for NATURAL outer joins and outer joins
with a USING clause. For definitions of these join types and further details, see JOIN.

If a query contains a join, all of the field references within that query must have an appended table alias. Because InterSystems
IRIS does not include the table alias in the data column header name, you may wish to provide column aliases for selectltem
fields to clarify which table is the source of the data.

The following example uses a join operation to match the “fake” (randomly-assigned) zip codes in Sample.Person with the
real zip codes and city names in Sample.USZipCode. A WHERE clause is provided because USZipCode does not include
all possible 5-digit zip codes:

SQL

SELECT P.Home_City,P.Home_Zip AS FakeZip,Z.ZipCode,Z.City AS ZipCity,Z.State
FROM Sample.Person AS P LEFT OUTER JOIN Sample.USZipCode AS Z

ON P_Home_ZzZip=Z.ZipCode

WHERE Z.ZipCode IS NOT NULL

ORDER BY P.Home_City

Using InterSystems SQL 211

Querying the Database

19.2.4 Queries Selecting Large Numbers of Fields

A query cannot select more than 1,000 selectltem fields.

A query selecting more than 150 selectltem fields may have the following performance consideration. InterSystems IRIS
automatically generates result set column aliases. These generated aliases are provided for field names without user-defined
aliases to enable rapid resolution of letter case variations. Letter case resolution using an alias is significantly faster than
letter case resolution by letter case translation. However, the number of generated result set column aliases is limited to
500. Because commonly InterSystems IRIS generates three of these aliases (for the three most common letter case variations)
for each field, the system generates aliases for roughly the first 150 specified fields in the query. Therefore, a query refer-
encing less than 150 fields commonly has better result set performance than a query referencing significantly more fields.
This performance issue can be avoided by specifying an exact column alias for each field selectitemin a very large query
(for example, SELECT FamilyName AS FamilyName) and then making sure that you use the same letter case when
referencing the result set item by column alias.

19.3 Defining and Executing Named Queries

You can define and execute a named query as follows:

» Define the query using CREATE QUERY. This query is defined as a stored procedure, and can be executed using
CALL.

» Define a class query (a query defined in a class definition). A class query is projected as a stored procedure. It can be
executed using CALL. A class query can also be prepared using the %SQL.Statement %PrepareClassQuery() method,
and then executed using the % Execute() method. See Using Dynamic SQL.

19.3.1 CREATE QUERY and CALL

You can define a query using CREATE QUERY, and then execute it by name using CALL. In the following example, the
first is an SQL program that defines the query AgeQuery, the second is Dynamic SQL that executes the query:

SQL

CREATE QUERY Sample.AgeQuery(IN topnum INT DEFAULT 10, IN minage INT 20)
PROCEDURE
BEGIN
SELECT TOP :topnum Name,Age FROM Sample.Person
WHERE Age > :minage
ORDER BY Age ;
END

ObjectScript

SET mycall = "CALL Sample.AgeQuery(11,65)"
SET tStatement = ##class(%SQL.Statement) .%New()
SET gStatus = tStatement.%Prepare(mycall)
IF gStatus™=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

SQL

DROP QUERY Sample.AgeQuery

212 Using InterSystems SQL

Queries Invoking User-defined Functions

19.3.2 Class Queries

You can define a query in a class. The class may be a %Persistent class, but does not have to be. This class query can ref-
erence data defined in the same class, or in another class in the same namespace. The tables, fields, and other data entities
referred to in a class query must exist when the class that contains the query is compiled.

A class query is not compiled when the class that contains it is compiled. Instead, compilation of a class query occurs upon
the first execution of the SQL code (runtime). This occurs when the query is prepared in Dynamic SQL using the %Prepare-
ClassQuery() method. First execution defines an executable cached query.

The following class definition example defines a class query:

Class Sample.QClass Extends %Persistent [DdIAllowed]
Query MyQ(Myval As %String) As %SQLQuery (CONTAINID=1,ROWSPEC='"Name,Home_State') [SqlProc]

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State = :Myval ORDER BY Name

}
}

The following example executes the MyQ query defined in the Sample.QClass in the previous example:

ObjectScript

SET Myval="NY"
SET stmt= ##class(%SQL Statement) .%New()
SET status = stmt. %PrepareCIassQuery(Sample QClass",""MyQ™)
IF status™=1 {WRITE "%Prepare failed:" DO $System. Status. DisplayError(status) QUIT}
SET rset = stmt.%Execute(Myval)
DO rset.%Display()
WRITE !,"End of data"

The following Dynamic SQL example uses %SQL.Statement to execute the ByName query defined in the Sample.Person
class, passing a string to limit the names returned to those that start with that string value:

ObjectScript

SET statemt=##class(%SQL.Statement) .%New()
SET cqStatus=statemt.%PrepareClassQuery(‘'Sample.Person', ' ByName')
IF cgStatus™=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}
SET rs=statemt.%Execute(''L')
DO rs.%Display(Q)

For further details, refer to Defining and Using Class Queries.

19.4 Queries Invoking User-defined Functions

InterSystems SQL allows you to invoke class methods within SQL queries. This provides a powerful mechanism for
extending the syntax of SQL.

To create a user-defined function, define a class method within a persistent InterSystems IRIS class. The method must have
a literal (non-object) return value. This has to be a class method because there will not be an object instance within an SQL
query on which to invoke an instance method. It also has to be defined as being an SQL stored procedure.

For example, we can define a Cube() method within the class MyApp.Person:

Using InterSystems SQL 213

Querying the Database

Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]

/// Find the Cube of a number
ClassMethod Cube(val As %Integer) As %Integer [SqlProc]

RETURN val * val * val
b
b
You can create SQL functions withthe CREATE FUNCTION, CREATE METHOD or CREATE PROCEDURE statements.

To call an SQL function, specify the name of the SQL procedure. A SQL function may be invoked in SQL code anywhere
where a scalar expression may be specified. The function name may be qualified with its schema name, or unqualified.
Unqualified function names take either a user-supplied schema search path or the default schema name. A function name
may be a delimited identifier.

An SQL function must have a parameter list, enclosed in parentheses. The parameter list may be empty, but the parentheses
are mandatory. All specified parameters act as input parameters. Output parameters are not supported.

An SQL function must return a value.

For example, the following SQL query invokes a user-defined SQL function as a method, just as if it was a built-in SQL
function:

SQL

SELECT %ID, Age, MyApp.Person_Cube(Age) FROM MyApp.Person

For each value of Age, this query will invoke the Cube() method and place its return value within the results.
SQL functions may be nested.

If the specified function is not found, InterSystems IRIS issues an SQLCODE -359 error. If the specified function name is
ambiguous, InterSystems IRIS issues an SQLCODE -358 error.

19.5 Querying Serial Object Properties

A serial object property that is projected as a child table to SQL from a class using default storage (%Storage.Persistent)
is also projected as a single column in the table projected by the class. The value of this column is the serialized value of
the serial object properties. This single column property is projected as an SQL %L.ist field.

For example, the column Home in Sample.Person is defined as Property Home As Sample.Address;. Itis projected
to Class Sample.Address Extends (%SerialObject), which contains the properties Street, City, State, and
PostalCode. See Embedded Object (%SerialObject) for details on defining a serial object.

The following example returns values from individual serial object columns:

SQL

SELECT TOP 4 Name,Home_Street,Home_City,Home_State,Home_PostalCode
FROM Sample.Person

The following example returns the values for all of the serial object columns (in order) as a single %L.ist format string, with
the value for each column as an element of the %L.ist:
SQL

SELECT TOP 4 Name,$LISTTOSTRING(Home, "~%)
FROM Sample.Person

214 Using InterSystems SQL

Querying Collections

By default, this Home column is hidden and is not projected as a column of Sample.Person.

19.6 Querying Collections

Collections may be referenced from the SQL WHERE clause, as follows:
WHERE FOR SOME %ELEMENT(collectionRef) [AS label] (predicate)

The FOR SOME %ELEMENT clause can be used for list collections and arrays that specify STORAGEDEFAULT="list".
The predicate may contain one reference to the pseudo-columns %KEY, %VALUE, or both. A few examples should help
to clarify how the FOR SOME %ELEMENT clause may be used. The following returns the name and the list of Favorite-
Colors for each person whose FavoriteColors include 'Red'.

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%Value = "Red")

Any SQL predicate may appear after the %Value (or %Key), so for example the following is also legal syntax:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(Sample.Person.FavoriteColors)
(%Vvalue IN ("Red", "Blue®, "Green%))

A list collection is considered a special case of an array collection that has sequential numeric keys 1, 2, and so on. Array
collections may have arbitrary non-null keys:

FOR SOME (children) (%Key = “betty" AND %Value > 5)

In addition to the built-in list and array collection types, generalized collections may be created by providing a
BuildValueArray() class method for any property. The BuildValueArray() class method transforms the value of a property
into a local array, where each subscript of the array is a %KEY and the value is the corresponding %VALUE.

In addition to simple selections on the %KEY or %VALUE, it is also possible to logically connect two collections, as in
the following example:

FOR SOME %ELEMENT(flavors) AS f
(F.%VALUE IN ("Chocolate”, "Vanilla®) AND
FOR SOME %ELEMENT(toppings) AS t
(t.%VALUE = T"Butterscotch®™ AND
F.%KEY = t.%KEY))

This example has two collections: flavors and toppings, that are positionally related through their key. The query qualifies
a row that has chocolate or vanilla specified as an element of flavors, and that also has butterscotch listed as the corresponding
topping, where the correspondence is established through the %KEY.

You can change this default system-wide using the CollectionProjection option of the $SY STEM.SQL .Util.SetOption()
method. SET status=$SYSTEM.SQL.Util_.SetOption(*'CollectionProjection',1, .oldval) to projecta
collection as a column if the collection is projected as a child table; the default is 0. Changes made to this system-wide
setting takes effect for each class when that class is compiled or recompiled. You can use

$SYSTEM.SQL .Util.GetOption(" CollectionProjection™) to return the current setting.

For information on indexing a collection, refer to Indexing Collections.

Using InterSystems SQL 215

Querying the Database

19

.6.1 Usage Notes and Restrictions

FOR SOME %ELEMENT may only appear in the WHERE clause.
%KEY and/or %VALUE may only appear in a FOR predicate.
Any particular %KEY or %VALUE may be referenced only once.
%KEY and %VALUE may not appear in an outer join.

%KEY and %VALUE may not appear in a value expression (only in a predicate).

19.7 Queries Invoking Free-text Search

InterSystems IRIS supports what is called “free-text search,” which includes support for:

Wildcards

Stemming

Multiple-word searches (also called n-grams)
Automatic classification

Dictionary management

This feature enables SQL to support full text indexing, and also enables SQL to index and reference individual elements
of a collection without projecting the collection property as a child table. While the underlying mechanisms that support
collection indexing and full text indexing are closely related, text retrieval has many special properties, and therefore special
classes and SQL features have been provided for text retrieval.

For further details refer to Using InterSystems SQL Search.

19.8 Pseudo-Field Variables

InterSystems SQL queries support the following pseudo-field values:

%ID — returns the RowID field value, regardless of the actual name of the RowlID field.

%TABLENAME — returns the qualified name of an existing table that is specified in the FROM clause. The qualified
table name is returned in the letter case used when defining the table, not the letter case specified in the FROM clause.
If the FROM clause specifies an unqualified table name, % TABLENAME returns the qualified table name (schema.table),
with the schema name supplied from either a user-supplied schema search path or the system-wide default schema
name. For example, if the FROM clause specified mytable, the % TABLENAME variable might return

SQLUser .MyTable.

%CLASSNAME — returns the qualified class name (package.class) corresponding to an existing table specified in
the FROM clause. For example, if the FROM clause specified SQLUser .mytable, the %CLASSNAME variable
might return User .MyTable.

Note: The %CLASSNAME pseudo-field value should not be confused with the % ClassName() instance method.
They return different values.

216

Using InterSystems SQL

Query Metadata

Pseudo-field variables can only be returned for a table that contains data.

If multiple tables are specified in the FROM clause you must use table aliases, as shown in the following Embedded SQL
example:

ObjectScript

&sql (SELECT P.Name,P.%ID,P.%TABLENAME,E.%TABLENAME

INTO :name,:rid, :ptname, :etname

FROM Sample.Person AS P,Sample._Employee AS E)
IF SQLCODE<O {WRITE "SQLCODE error ' ,SQLCODE," ",%msg QUIT}
ELSEIF SQLCODE=100 {WRITE "Query returns no results" QUIT}

WRITE ptname,"Person table Name is: ' ,name,!

WRITE ptname,"Person table Rowld is: ",rid,!

WRITE P alias TableName is: " ,ptname,!

WRITE "E alias TableName is: ',etname,!

The % TABLENAME and %CLASSNAME columns are assigned the default column name Literal_n, where n is the
selectltem position of the pseudo-field variable in the SELECT statement.

19.9 Query Metadata

You can use Dynamic SQL to return metadata about the query, such as the number of columns specified in the query, the
name (or alias) of a column specified in the query, and the data type of a column specified in the query.

The following ObjectScript Dynamic SQL example returns the column name and an integer code for the column's ODBC
data type for all of the columns in Sample.Person:

ObjectScript

SET myquery="SELECT * FROM Sample.Person"
SET rset = ##class(%SQL.Statement) .%New()
SET gStatus = rset._%Prepare(myquery)
IF gStatus®"=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET x=rset.%Metadata.columns.Count()
WHILE x>0 {
SET column=rset.%Metadata.columns.GetAt(x)
WRITE 1,x," ",column.colName," *,column._ODBCType
SET x=x-1 }
WRITE !,"end of columns"

In this example, columns are listed in reverse column order. Note that the FavoriteColors column, which contains list
structured data, returns a data type of 12 (VARCHAR) because ODBC represents an InterSystems IRIS list data type value
as a string of comma-separated values.

For further details, see Dynamic SQL and see the %SQL.Statement class in the Inter Systems Class Reference.

19.10 Queries and Enterprise Cache Protocol (ECP)

InterSystems IRIS implementations that use Enterprise Cache Protocol (ECP), such as distributed cache clusters, can syn-
chronize query results. ECP is a distributed data caching architecture that manages the distribution of data and locks among
a heterogeneous network of server systems.

If ECP synchronization is active, each time a SELECT statement is executed InterSystems IRIS forces all pending ECP
requests to the dataserver. On completion this guarantees that the client cache is in sync. This synchronization occurs in
the Open logic of the query. This is in the OPEN cursor execution if this is a cursor query.

Using InterSystems SQL 217

Querying the Database

To activate ECP synchronization system-wide, use the $SY STEM .SQL .Util.SetOption() method, as follows: SET
status=$SYSTEM.SQL.Util _SetOption("'ECPSync",1, -oldval); the default is 0. To determine the current
setting, call $SY STEM .SQL .CurrentSettings().

For further details, refer to Horizontally Scaling Systems for User Volume with InterSystems Distributed Caching.

19.11 Cached Queries

The system automatically maintains a cache of prepared SQL statements (“queries™). This permits the re-execution of an
SQL query without repeating the overhead of optimizing the query and developing a Query Plan; this improves performance
of the query on subsequent executions. A cached query is created when certain SQL statements are prepared. Preparing a
query occurs at runtime, not when the routine containing the SQL query code is compiled. Commonly, a prepare is imme-
diately followed by the first execution of the SQL statement, though in Dynamic SQL it is possible to prepare a query
without executing it.

Subsequent executions ignore the prepare statement and instead access the cached query. To force a new prepare of an
existing query it is necessary to purge the cached query.

All invocations of SQL create cached queries, whether invoked in an ObjectScript routine or a class method.

» Dynamic SQL, ODBC, JDBC, and the $SY STEM .SQL .DDL Import() method create a cached query when the query
is prepared. The Management Portal execute SQL interface, the InterSystems SQL Shell, and the
% SY STEM .SQL .Execute() method use Dynamic SQL, and thus use a prepare operation to create cached queries.

They are listed in the Management Portal general Cached Queries listing for the namespace (or specified schema), the
Management Portal Catalog Details Cached Queries listings for each table being accessed, and the SQL Statements
listings.

» Class Queries create a cached query upon prepare (%PrepareClassQuery() method) or first execution (CALL).

They are listed in the Management Portal general Cached Queries listing for the namespace. If the class query is defined
in a Persistent class, the cached query is also listed in the Catalog Details Cached Queries for that class. It is not listed
in the Catalog Details for the table(s) being accessed. It is not listed in the SQL Statements listings.

» Embedded SQL creates a cached query upon first execution of the SQL code, or the initiation of code execution by
invoking the OPEN command for a declared cursor. Embedded SQL cached queries are listed in the Management
Portal cached Queries listings with a Query Type of Embedded cached SQL, and the SQL Statements listings.

SQL query statements that generate a cached query are SELECT, CALL, INSERT, UPDATE, INSERT OR UPDATE,
DELETE, TRUNCATE TABLE, SET TRANSACTION, START TRANSACTION, % INTRANSACTION, COMMIT,
ROLLBACK.

A cached query is created when you prepare the query. For this reason, it is important not to put a % Prepar () method in
a loop structure. A subsequent % Prepare() of the same query (differing only in specified literal values) uses the existing
cached query rather than creating a new cached query.

Changing the SetM apSelectability() value for a table invalidates all existing cached queries that reference that table. A
subsequent prepare of an existing query creates a new cached query and removes the old cached query from the listing.

Comments are stripped from the text of the query when it is cached. A cached query can include comment options following
the query text, such as /7*#OPTIONS {'"'optionName':value} */.

All comments in queries issued over a JDBC or ODBC connection are stripped from the corresponding cached query,
unless it begins with /7#TAG and ends with a backslash (/).

The creation of a cached query is not part of a transaction. The creation of a cached query is not journaled.

218 Using InterSystems SQL

Cached Queries

19.11.1 Listing Cached Queries

You can list (and manage) the contents of the query cache using the InterSystems IRIS Management Portal. From System
Explorer, select SQL. Select a namespace by clicking the name of the current namespace displayed at the top of the page;
this displays the list of available namespaces. On the left side of the screen open the Cached Queries folder. Selecting one
of these cached queries displays the details.

The Query Type can be one of the following values:

* %SQL.Statement Dynamic SQL:a Dynamic SQL query using %SQL.Statement.

* Embedded cached SQL:an Embedded SQL query.

* ODBC/JDBC Statement: a dynamic query from either ODBC or JDBC.

The statement is displayed for a Dynamic SQL cached query. This consists of the statement hash, which is a selectable
link that takes you to the SQL Statement Details, and the plan state, such as (Unfrozen) or (Frozen/Explicit).

When you successfully prepare an SQL statement, the system generates a new class that implements the statement. If you
have set the Retain cached query source system-wide configuration option, the source code for this generated class is
retained and can be opened for inspection using Studio. To do this, go to the InterSystems IRIS Management Portal. From
System Administration, Select Configuration, then SQL and Object Settings, then SQL. On this screen you can set the Retain
cached query source option. If this option is not set (the default), the system generates and deploys the class and does not
save the source code. You can set this system-wide behavior with the CachedQuerySaveSource SQL setting.

19.11.2 Purge Cached Queries

A cached query is deleted when you purge cached queries. There are four methods of purging cached queries:
* PURGE CACHED QUERIES
* PURGE command issued from the SQL Shell

e $SYSTEM.SQL .Purge(n), $SY STEM.SQL .PurgeCQClass(), $SY STEM.SQL .PurgeFor Table(), or
$SY STEM .SQL .PurgeAllNamespaces()

e One of the Purge Cached Queries options in the Management Portal
In addition, modifying a table definition automatically purges any queries that reference that table. Issuing a Prepare or

Purge automatically requests an exclusive system-wide lock while the query cache metadata is updated. To turn these
automatic requests off, modify the CachedQueryLockTimeout SQL setting.

Using InterSystems SQL 219

20

Defining and Using Stored Procedures

This topic describes how to define and use stored procedures in InterSystems SQL on InterSystems IRIS® data platform.

20.1 Overview

An SQL routine is an executable unit of code that can be invoked by the SQL query processor. There are two types of SQL
routines: functions and stored procedures. Functions are invoked from any SQL statement that supports functionname ()
syntax. Functions accept some number of input directed arguments and return a single result value. Stored procedures
accept some number of input, input-output, and output arguments. A stored procedure can be a user-defined function,
returning a single value. A function can also be invoked by a CALL statement.

Like most relational database systems, InterSystems IRIS allows you to create SQL stored procedures. A Stored Procedure
(SP) provides a callable routine that is stored in the database and can be invoked within an SQL context (for example, by
using the CALL statement or via ODBC or JDBC).

Unlike relational databases, InterSystems IRIS enables you to define stored procedures as methods of classes. In fact, a
stored procedure is nothing more than a class method that is made available to SQL. Within a stored procedure, you can
use the full range of InterSystems IRIS object-based features.

* You can defined a stored procedure as a query that returns a single result set of data by querying the database.

* You can define a stored procedure as a function procedure that can serve as a user-defined function, returning a single
value.

* You can define a stored procedure as a method that can modify the database data and return either a single value or
one or more result sets.

You can determine if a procedure already exists using the $SY STEM .SQL .Schema.Procedur eExists() method. This
method also returns the procedure type: “function” or “query”.

20.2 Defining Stored Procedures

As with most aspects of InterSystems SQL, there are two ways of defining stored procedures: using DDL and using classes.
These are described in the following sections.

Using InterSystems SQL 221

Defining and Using Stored Procedures

20.2.1 Defining a Stored Procedure Using DDL

InterSystems SQL supports the following commands to create a query:

» CREATE PROCEDURE can create a query that is always projected as a stored procedure. A query can return a single
result set. Note that this command can be used to create.

 CREATE QUERY creates a query that can optionally be projected as a stored procedure. A query can return a single
result set.

Note: In InterSystems SQL, a table-valued function is the same as a class query projected as a stored procedure. You
can therefore use either CREATE PROCEDURE or CREATE QUERY to create a table-valued function.

InterSystems SQL supports the following commands to create a method or function:

» CREATE PROCEDURE can create a method that is always projected as a stored procedure. A method can return a
single value, or one or more result sets.

» CREATE METHOD can create a method that can optionally be projected as a stored procedure. A method can return
a single value, or one or more result sets.

« CREATE FUNCTION can create a function procedure that can optionally be projected as a stored procedure. A
function can return a single value.

The block of executable code specified within these commands can be written either in InterSystems SQL or ObjectScript.
You can include Embedded SQL within an ObjectScript code block.

20.2.2 SQL to Class Name Transformations

When you use DDL to create a stored procedure, the name you specify is transformed into a class hame. If the class does
not exist, the system creates it.

e Ifthe name is unqualified and no FOR clause is provided: the system-wide default schema name is used as the package
name, followed by a dot, followed by a generated class name consisting of the string “func’, ‘meth’, “proc’, or ‘query’,
followed by the SQL name stripped of punctuation characters. For example, the unqualified procedure name
Store_Name results in a class hame such as the following: User . procStoreName. This procedure class contains
the method StoreName().

» Ifthe name is qualified and no FOR clause is provided: the name of the schema is converted to a package name, followed
by a dot, followed by the string ‘func’, ‘meth’, “proc’, or ‘query’, followed by the SQL name stripped of punctuation
characters. If necessary, the specified package name is converted to a valid package name.

If the name is qualified and a FOR clause is provided: the qualified class name specified in the FOR clause overrides
the schema name specified in the function, method, procedure, or query name.

* SQL stored procedure names follow identifier naming conventions. InterSystems IRIS strips punctuation characters
from the SQL name to generate unique class entity names for the procedure class and its class methods.
The following rules govern the transformation of a schema name to valid package name:

» If the schema name contains an underscore, this character is converted to a dot, denoting a subpackage. For example,
the qualified name myprocs - myname creates the package myprocs. The qualified name my_procs -.myname creates
the package my containing the subpackage procs.

The following example shows how the punctuation differs in a class name and its SQL invocation. It defines a method with
a class name containing two dots. When invoked from SQL, the example replace the first dot with an underscore character:

222 Using InterSystems SQL

Defining Stored Procedures

Class Definition

Class Sample.ProcTest Extends %RegisteredObject

{ ClassMethod myfunc(dummy As %String) As %String [SqlProc]
{ /* method code */

) Quit "abc" }

SQL

SELECT Sample.ProcTest_myfunc(Name)
FROM Sample.Person

20.2.3 Defining a Method Stored Procedure using Classes

Class methods can be exposed as Stored Procedures. These are ideal for actions that do not return data, such as a Stored
Procedure that calculates a value and stores it in the database. Almost all classes can expose methods as Stored Procedures;
the exception is generator classes, such as a data type class ([ClassType = datatype]). Generator classes do not have a runtime
context. It is only valid to use a datatype context within the runtime of some other entity, such as a property.

To define a method stored procedure, simply define a class method and set its SqlProc keyword:

Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]
{

/// This procedure finds total sales for a territory
ClassMethod FindTotal(territory As %String) As %Integer [SqlProc]

// use embedded sql to find total sales
&sql (SELECT SUM(SalesAmount) INTO :total
FROM Sales
WHERE Territory = :territory

)

Quit total
1
}

After this class is compiled, the FindTotal () method will be projected to SQL as the stored procedure
MyApp.Person_FindTotal(). You can change the name that SQL uses for the procedure using the SqiName keyword of
the method.

The method uses a procedure context handler to pass the procedure context back and forth between the procedure and its
caller (for example, the ODBC server). This procedure context handler is automatically generated by InterSystems IRIS
(as %qHandle:%SQLProcContext) using the %sglcontext object.

%sqglcontext consists of properties for the SQLCODE error status, the SQL row count, an error message, and so forth, which
are set using the corresponding SQL variables, as follows:

SET %sqglcontext.%SQLCode=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
SET %sqlcontext.%Message=%msg

There is no need to do anything with these values, but their values will be interpreted by the client. The %sqglcontext object
is reset before each execution.

The method should return no value.

The maximum number of user-defined methods for a class is 2000.

Using InterSystems SQL 223

Defining and Using Stored Procedures

For instance, suppose there is a CalcAvgScor &() method:

ClassMethod CalcAvgScore(firstname As %String, lastname As %String) [sqlproc]

New SQLCODE,%ROWID
&sql (UPDATE students SET avgscore =
(SELECT AVG(sc.score)
FROM scores sc, students st
WHERE sc.student_id=st.student_id
AND st.lastname=:lastname
AND st.firstname=:firstname)
WHERE students. lastname=: lastname
AND students.firstname=:firstname)

) {
SET %sqlcontext.%SOLCODE = SQLCODE
SET %sqlcontext.%ROWCOUNT = %ROWCOUNT
}
uUIT

20.2.4 Defining a Query Stored Procedure using Classes

Many Stored Procedures that return data from the database can be implemented through the standard query interface. This
approach works well as long as the procedure can be written in embedded SQL. Note the use of the Embedded SQL host
variable to supply a value to the WHERE clause in the following example:

Class Definition

Class MyApp.Person Extends %Persistent [DdIAllowed]
{

/// This procedure result set is the persons in a specified Home_State, ordered by Name
Query ListPersons(state As %String = ") As %SQLQuery [SqlProc]
{

SELECT ID,Name,Home_State
FROM Sample.Person

WHERE Home_State = :state
ORDER BY Name

}
}

To expose a query as a Stored Procedure, either change the value of the SQLProc field to True in the Studio Inspector’s
entry for the query or add the following “[SqlProc]” string to the query definition:

Query QueryName() As %SQLQuery(... query definition ...)
[SqlProc]

After this class is compiled, the ListPersons query will be projected to SQL as the stored procedure
MyApp.Person_ListPersons. You can change the name that SQL uses for the procedure using the SqlName keyword of
the query.

When MyApp.Person_L istPersonsis called from SQL, it will automatically return the result set defined by the query’s
SQL statement.

The following example is a stored procedure using a result set:

Class Definition

Class apc.OpiLLS.SpCollectResultsl [Abstract]
{

/// This SP returns a number of rows (pNumRecs) from WebService.LLSResults, and updates a property for
each record

Query MyQuery(pNumRecs As %lInteger) As %Query(ROWSPEC = "*Name:%String,DOB:%Date'™) [SqlProc]

{

}

/// You put initial code here in the Execute method
ClassMethod MyQueryExecute(ByRef gHandle As %Binary, pNumRecs As %lInteger) As %Status

224 Using InterSystems SQL

Defining Stored Procedures

SET mysql=""SELECT TOP ? Name,DOB FROM Sample.Person"
SET rset=##class(%SQL.Statement) .%ExecDirect(,mysql,pNumRecs)
IF rset.%SQLCODE"=0 {QUIT rset.%SQLCODE}
SET gHandle=rset
QUIT $$$0K
}

/// This code is called by the SQL framework for each row, until no more rows are returned
ClassMethod MyQueryFetch(ByRef gHandle As %Binary, ByRef Row As %List,

ByRef AtEnd As %Integer = 0) As %Status [PlaceAfter = NewQuerylExecute]
{

SET rset=qgHandle
SET tSC=$$$0K

FOR {
///Get next row, quit if end of result set
IF "rset_%Next() {
SET Row = """, AtEnd = 1
SET tSC=$$$0K
QUIT

SET name=rset.Name

SET dob=rset.DOB

SET Row = $LISTBUILD(name,dob)
QUIT

by
QUIT tSC
3

ClassMethod MyQueryClose(ByRef gHandle As %Binary) As %Status [PlaceAfter = NewQuerylExecute]

KILL gHandle //probably not necesary as killed by the SQL Call framework
QUIT $$$0K

If it is possible to write the query as a simple SQL statement and create it through the Query Wizard, it is not necessary to
know anything about the underlying methods that implement the query.

Behind the scenes, for each query the class compiler generates methods based on the name of the Stored Procedure,
including:

e stored-procedure-nameExecute()

e stored-procedure-nameFetch()

» stored-procedure-nameFetchRows()

» stored-procedure-nameGetinfo()

» stored-procedure-nameClose()

If the query is of type %SQLQuery, the class compiler automatically inserts some embedded SQL into the generated
methods. Execute() declares and opens a stored cursor for the SQL. Fetch() is called repeatedly until it returns an empty
row (SET Row=""). You can, optionally, also have Fetch() return an AtEnd=1 boolean flag to indicate that the current
Fetch constitutes the last row and the next Fetch is expected to return an empty row. However, an empty row (Row="")
should always be used as the test to determine when the result set has ended; Row=""" should always be set when setting
AtEnd=1.

FetchRows() is logically equivalent to repeated calls to Fetch(). Getlnfo() is called to return details of the signature for
the Stored Procedure. Close() closes the cursor.

All these methods are called automatically when a Stored Procedure is invoked from a client, but could in theory be called
directly from ObjectScript running on the server.

To pass an object from the Execute() to a Fetch(), or from a Fetch() to the next invocation of Fetch(), you can set the
query handler to the object reference (OREF) of the object you wish to pass. To pass multiple objects, you can set qHandle
as an array:

Using InterSystems SQL 225

Defining and Using Stored Procedures

ObjectScript

SET gHandle(1)=orefl,qHandle(2)=oref2

It is possible to create a result set stored procedure that is based on custom-written code (not an SQL statement).

The maximum number of user-defined queries for a class is 200.

20.2.5 Customized Class Queries

For complex queries, or for Stored Procedures that do not fit the query model, it is often necessary to customize the query
by replacing some or all of its methods. You can use %Library.Query, as described in this section.

It is often easier to implement the query if you choose type %Query (%Library.Query) instead of %SQLQuery
(%Library.SQLQuery). This generate the same five methods, but now the FetchRows() is simply a repeated invocation of
Fetch() (%SQLQuery has some optimization that causes other behavior). Getl nfo() simply gets information from the sig-
nature, so it is very unlikely that the code will need to be changed. This reduces the problem to creating class methods for
each of the other three. Note that when the class is compiled, the compiler detects the presence of these methods, and does
not overwrite them.

The methods need specific signatures: They all take a Qhandle (query handler) of type %Binary. This is a pointer to a
structure holding the nature and state of the query. This is passed by reference to Execute() and Fetch() and by value to

Close():

ClassMethod SP1Close(gHandle As %Binary) As %Status
{

/7 ...
}

ClassMethod SP1Execute(ByRef gHandle As %Binary,
pl As %String) As %Status

/7 ...
}

ClassMethod SP1Fetch(ByRef gHandle As %Binary,
ByRef Row As %List, ByRef AtEnd As %Integer=0) As %Status

/7 ...
}

Query SP1(pl As %String)
As %Query(CONTAINID=0,ROWSPEC=""lastname:%String') [sqlproc]

{
}
The code usually includes declaration and use of an SQL cursor. Cursors generated from queries of type %SQLQuery

automatically have names such as Q14. You must ensure that your queries are given distinct names.

The class compiler must find a cursor declaration, before making any attempt to use the cursor. Therefore the DECLARE
statement (usually in Execute) must be in the same MAC routine as the Close and Fetch and must come before either of
them. Editing the source directly, use the method keyword PLACEAFTER in both the Close and the Fetch definitions to
make sure this happens.

Error messages refer to the internal cursor name, which typically has an extra digit. Therefore an error message for cursor
Q140 probably refers to Q14.

20.3 Using Stored Procedures

You can use stored procedures in two distinct ways:

* You can invoke a stored procedure using the SQL CALL statement; see CALL for more details.

226 Using InterSystems SQL

Using Stored Procedures

* You can use a stored function (that is, a method-based stored procedure that returns a single value) as if it were a built-
in function within an SQL query.

Note: When executing a stored procedure that takes an SQL function as a argument, invoke the stored procedure using
CALL, as in the following example:
SQL

CALL sp.MyProc(CURRENT_DATE)

A SELECT query does not support executing a stored procedure with an SQL function argument. SEL ECT does
support executing a stored function with an SQL function argument.

You cannot execute a stored procedure with an SQL function argument using either SELECT or CALL over a
driver connection.

20.3.1 Stored Functions

A stored function is a method-based stored procedure that returns a single value. For example, the following class defines
a stored function, Square, that returns the square of a given value:
Class Definition

Class MyApp.Utils Extends %Persistent [DdIAllowed]
ClassMethod Square(val As %lInteger) As %lInteger [SqlProc]

Quit val * val
1
}
A stored function is simply a class method with the SqlProc keyword specified.

Note: For a stored function, the ReturnResultsets keyword must either be not specified (the default) or prefaced by the
keyword Not.

You can use a stored function within an SQL query as if it were a built-in SQL function. The name of the function is the
SQL name of the stored function (in this case “Square”) qualified by the schema (package) name in which it was defined
(in this case “MyApp™).

The following query uses the Squar e function:

SQL

SELECT Cost, MyApp.Utils_Square(Cost) As SquareCost FROM Products

If you define multiple stored functions within the same package (schema), you must make sure that they have unique SQL
names.

The following example defines a table named Sample.Wages that has two defined data fields (properties) and two defined
stored functions, TimePlus and DTime:

Using InterSystems SQL 227

Defining and Using Stored Procedures

Class Definition

Class Sample.Wages Extends %Persistent [DdIAllowed]
Property Name As %String(MAXLEN = 50) [Required];
Property Salary As %Integer;

ClassMethod TimePlus(val As %Integer) As %Integer [SqlProc]
{

QUIT val * 1.5

}

ClassMethod DTime(val As %Integer) As %Integer [SqlProc]

{

QUIT val * 2

3

}

The following query uses these stored procedures to return the regular salary, time-and-a-half, and double time salary rates
for each employee in the same table, Sample.Wages:

SQL

SELECT Name,Salary,
Sample._Wages_TimePlus(Salary) AS Overtime,
Sample_Wages_DTime(Salary) AS DoubleTime FROM Sample.Wages

The following query uses these stored procedures to return the regular salary, time-and-a-half, and double time salary rates
for each employee in a different table, Sample.Employee:

SQL

SELECT Name,Salary,
Sample._Wages_TimePlus(Salary) AS Overtime,
Sample._Wages_DTime(Salary) AS DoubleTime FROM Sample.Employee

20.3.2 Privileges

To execute a procedure, a user must have EXECUTE privilege for that procedure. Use the GRANT command or the
$SYSTEM .SQL .Security.GrantPrivilege() method to assign EXECUTE privilege for a specified procedure to a specified
user.

You can determine if a specified user has EXECUTE privilege for a specified procedure by invoking the
$SY STEM.SQL .Security.CheckPrivilege() method.

For more information about which class queries check privileges, refer to SQL Users, Roles, and Privileges.

To list all the procedures for which a user has EXECUTE privilege, go to the Management Portal. From System Adminis-
tration select Security, then select either Users or Roles. Select Edit for the desired user or role, then select the SQL Procedures
tab. Select the desired Namespace from the drop-down list.

20.4 Listing Procedures

The INFORMATION.SCHEMA.ROUTINES persistent class displays information about all routines and procedures in the
current namespace.

When specified in Embedded SQL, INFORMATION.SCHEMA.ROUTINES requires the #include % occl nclude macro pre-
processor directive. This directive is not required for Dynamic SQL.

The following example returns the routine name, method or query name, routine type (PROCEDURE or FUNCTION),
routine body (SQL=class query with SQL, EXTERNAL=not a class query with SQL), the return data type, and the routine
definition for all routines in the schema “Sample” in the current namespace:

228 Using InterSystems SQL

Listing Procedures

SQL

SELECT ROUTINE_NAME,METHOD_OR_QUERY_NAME ,ROUTINE_TYPE,ROUTINE_BODY,SQL_DATA ACCESS, IS_USER_DEFINED_CAST,
DATA_TYPE]|" *||CHARACTER_MAXIMUM_LENGTH AS Returns,NUMERIC_PRECISION||":"| INUMERIC_SCALE AS
PrecisionScale,

ROUTINE_DEFINITION

FROM INFORMATION_SCHEMA_ROUTINES WHERE ROUTINE_SCHEMA="Sample*

The INFORMATION.SCHEMA.PARAMETERS persistent class displays information about input and output parameters for
all routines and procedures in the current namespace.

The following example returns the routine name, parameter name, whether it is an input or output parameter, and the
parameter data type information for all routines in the schema “Sample” in the current namespace:

SQL

SELECT SPECIFIC_NAME, PARAMETER_NAME ,PARAMETER_MODE ,ORDINAL_POSITION,
DATA_TYPE,CHARACTER_MAXIMUM_LENGTH AS MaxLen,NUMERIC_PRECISION||":"| INUMERIC_SCALE AS PrecisionScale
FROM INFORMATION_SCHEMA.PARAMETERS WHERE SPECIFIC_SCHEMA="Sample*

You can display much of the same information for a single procedure using the Catalog Details tab in the Management
Portal SQL Interface. The Catalog Details for a procedure include the procedure type (query or function), class name,
method or query name, the description, and the number of input and output parameters. The Catalog Details Stored Procedure
Info display also provides an option to run the stored procedure.

Using InterSystems SQL 229

21

Storing and Using Stream Data (BLOBs
and CLOBSs)

InterSystems SQL supports the ability to store stream data as either BLOBs (Binary Large Objects) or CLOBs (Character
Large Objects) within an InterSystems IRIS® data platform database.

21.1 Stream Fields and SQL

InterSystems SQL supports two kinds of stream fields:
e Character streams, used for large quantities of text.

e Binary streams, used for images, audio, or video.

21.1.1 BLOBs and CLOBs

InterSystems SQL supports the ability to store BLOBSs (Binary Large Objects) and CLOBs (Character Large Objects) within
the database as stream objects. BLOBs are used to store binary information, such as images, while CLOBs are used to store
character information. BLOBs and CLOBs can store up to 4 Gigabytes of data (the limit imposed by the JDBC and ODBC
specifications).

The operation of the BLOBs and CLOBs is identical in every respect except how they handle character encoding conversion
(such as Unicode to multibyte) when accessed via an ODBC or JDBC client: the data in a BLOB is treated as binary data
and is never converted to another encoding, while the data in a CLOB is treated as character data and is converted as nec-
essary.

If a binary stream file (BLOB) contains the single non-printing character SCHAR(0), it is considered to be an empty binary
stream. It is equivalent to the """ empty binary stream value: it exists (is not null), but has a length of 0.

From the object point of view, BLOBs and CLOBs are represented as stream objects. For more information, see Working
with Streams.

21.1.2 Defining Stream Data Fields

InterSystems SQL supports a variety of data type names for stream fields. These InterSystems data type names are synonyms
that correspond to the following:

Using InterSystems SQL 231

Storing and Using Stream Data (BLOBs and CLOBS)

» Character streams: data type LONGVARCHAR, which maps to the %Stream.GlobalCharacter class and the ODBC/JDBC
data type -1.

e Character streams: data type LONGVARBINARY, which maps to the %Stream.GlobalBinary class and the ODBC/JDBC
data type -4.

Some InterSystems stream data types allow you to specify a data precision value. This value is a no-op and has no effect
on the permitted size of the stream data. It is provided to allow the user to document the anticipated size of future data.

For data type mappings of stream data types, refer to the SQL Data Types reference page.

For how to define fields (properties) of a table (persistent class), refer to Defining a Table by Creating a Persistent Class
and Defining a Table by Using DDL. When defining a stream property of a persistent class, you can optionally specify the
LOCATION parameter; see Declaring Stream Properties.

The following example defines a table containing two stream fields:

SQL

CREATE TABLE Sample.MyTable (
Name VARCHAR(50) NOT NULL,
Notes LONGVARCHAR,

Photo LONGVARBINARY)

21.1.2.1 Stream Field Constraints

The definition of a stream field is subject to the following field data constraints:

A stream field can be defined as NOT NULL.

A stream field can take a DEFAULT value, an ON UPDATE value, or a COMPUTECODE value.

A stream field cannot be defined as UNIQUE, a primary key field, or an 1dKey. Attempting to do so results in an SQLCODE
-400 fatal error with a %msg such as the following: ERROR #5414: Invalid index attribute:

Sample._MyTable: :MYTABLEUNIQUE2: :Notes, Stream property is not allowed in a unique/primary
key/idkey index > ERROR #5030: An error occurred while compiling class "Sample.MyTable".

A stream field cannot be defined with a specified COLLATE value. Attempting to do so results in an SQLCODE -400 fatal
error with a %msg such as the following: ERROR #5480: Property parameter not declared:
Sample_MyTable:Photo:COLLATION > ERROR #5030: An error occurred while compiling class
"Sample.MyTable®.

21.1.3 Inserting Data into Stream Data Fields

There are three ways to INSERT data into stream fields:

* %Stream.GlobalCharacter fields: you can insert character stream data directly. For example,

SQL

INSERT INTO Sample.MyTable (Name,Notes)
VALUES ("Fred","These are extensive notes about Fred")

e 9%Stream.GlobalCharacter and %Stream.GlobalBinary fields: you can insert stream data using an OREF. You can use
the Write() method to append a string to the character stream, or the WriteLine() method to append a string with a
line terminator to the character stream. By default, the line terminator is $CHAR(13,10) (carriage return/line feed);
you can change the line terminator by setting the LineTerminator property. In the following example, the first part of
the example creates a character stream consisting of two strings and their terminators, then inserts it into a stream field
using Embedded SQL. The second part of the example returns the character stream length and displays the character
stream data showing the terminators:

232 Using InterSystems SQL

Stream Fields and SQL

ObjectScript

CreateAndInsertCharacterStream
SET gcoref=##class(%Stream.GlobalCharacter).%New()
DO gcoref.WriteLine("First Line')
DO gcoref._WriteLine(''Second Line™)
&sql (INSERT INTO Sample.MyTable (Name,Notes)
VALUES ("Fred®, :gcoref))
IF SQLCODE<O {WRITE "SQLCODE ERROR:'"'_SQLCODE_' "_%msg QUIT}
ELSE {WRITE "Insert successful™,!}
DisplayTheCharacterStream
KILL ~CacheStream
WRITE gcoref.%Save(),!
ZWRITE ~CacheStream

%Stream.GlobalCharacter and %Stream.GlobalBinary fields: you can insert stream data by reading it from a file. For
example,

ObjectScript

SET myf="C:\InterSystems\IRIS\mgr\temp\IMG_0190.JPG"

OPEN myf:("RF'):10

USE myf:0

READ x(1):10

&sgl (INSERT INTO Sample_MyTable (Name,Photo) VALUES ("George®,:x(1)))

IF SQLCODE<O {WRITE "INSERT Failed:"_SQLCODE_" " _%msg QUIT}
ELSE {WRITE "INSERT successful*,!}
CLOSE myf

For further details, refer to Sequential File I/O.

String data that is inserted as a DEFAULT value or a computed value is stored in the format appropriate for the stream
field.

21.1.4 Querying Stream Field Data

A query select-itemthat selects a stream field returns the fully formed OID (object ID) value of the stream object, as shown
in the following example:

SQL

SELECT Name,Photo,Notes
FROM Sample.MyTable WHERE Photo 1S NOT NULL

An OID is a %L.ist formatted data address such as the following:
$Ib('1", "%Stream.GlobalCharacter", " EW3K.Cn9X.S").

The first element of the OID is a sequential positive integer (starting with 1) that is assigned to each inserted stream
data value in a table. For example, if Row 1 is inserted with values for the stream fields Photo and Notes, these are
assigned 1 and 2. If Row 2 is inserted with a value for Notes, that is assigned 3. If Row 3 is inserted with a value for
Photo and Notes, those are assigned 4 and 5. The assignment sequence is the order that the fields are listed in the table
definition, not the order they are specified in the INSERT command. By default, a single integer sequence is used
which corresponds to the stream location global counter. However, a table may have multiple stream counters, as
described below.

An UPDATE operation does not change the initial integer value. A DEL ETE operation may create gaps in the integer
sequence, but does not change these integer values. Using DEL ETE to delete all records does not reset this integer
counter. Using TRUNCATE TABLE to delete all records resets this integer counter if all of the table stream fields use
the default StreamLocation value. TRUNCATE TABLE cannot be used to reset the stream integer counter for a
embedded object (%SerialObject) class.

The second element of the OID is the stream data type, either %Stream.GlobalCharacter or %Stream.GlobalBinary.

Using InterSystems SQL 233

Storing and Using Stream Data (BLOBs and CLOBS)

» The third element of the OID is a global variable. By default, its name is generated from the package name and the
persistent class name that correspond to the table. An “S” (for Stream) is appended.

— If the table was created using the SQL CREATE TABL E command, these package and persistent class names
are hashed to four characters each (for example, ~"EW3K .Cn9X. S). This global contains the most recently assigned
value of the stream data inserts counter. If no stream field data has been inserted, or TRUNCATE TABLE has
been used to delete all table data, this global is undefined.

— Ifthe table was created as a persistent class, these package and persistent class names are not hashed (for example,
~Sample._MyTableS). By default, this is the StreamLocation storage keyword
<StreamLocation>"Sample.MyTableS</StreamLocation> value.

The default stream location is a global such as *"Sample.MyTableS. This global is used to count the inserts to
all stream properties (fields) that do not have a custom LOCATION. For example, if all stream properties in
Sample.MyTable use the default stream location, when ten stream data values have been inserted into stream
properties of Sample.MyTable, the *Sample .MyTableS global contains the value 10. This global contains the
most recently assigned value of the stream data inserts counter. If no stream field data has been inserted, or
TRUNCATE TABLE has been used to delete all table data, this global is undefined.

When defining a stream field property, you can define a custom LOCATION, such as the following: Property
Note2 As %Stream.GlobalCharacter (LOCATION="~MyCustomGlobalS™);. In this situation, the
~MyCustomGlobals global serves as the stream data inserts counter for the stream property (or properties) that
specify this LOCATION; stream properties that do not specify a LOCATION use the default stream location
global (*"Sample.MyTableS) as the stream data inserts counter. Each global counts the inserts for the stream
properties associated with that location. If no stream field data has been inserted the location global is undefined.
TRUNCATE TABLE does not reset stream counters if one or more stream properties defined a LOCATION.

Subscripts of these stream location global variables contain the data for each stream field. For example,
AEW3K.Cn9X.S(3) represents the third inserted stream data item. ~EW3K.Cn9X.S(3,0) is the length of the data.
NEW3K.Cn9X.S(3,1) is the actual stream data value.

Note: The OID for a stream field is not the same as the OID returned for a RowlD or a reference field. The %0ID
function returns the OID for a RowlID or a reference field; % OI D cannot be used with a stream field. Attempting
to use a stream field as an argument to % OID results in an SQLCODE -37 error.

Use of a stream field in the WHERE clause or HAVING clause of a query is highly restricted. You cannot use an equality
condition or other relational operator (=, I=, <, >), or a Contains operator (]) or Follows operator ([) with a stream field.
Attempting to use these operators with a stream field results in an SQLCODE -313 error. Refer to Predicate Conditions
and Streams for valid predicates using a stream field.

21.1.4.1 Result Set Display

* Dynamic SQL executed from a program returns the OID in the format
$Ib (6", "%Stream.GlobalCharacter™, " "EW3K.Cn9X.S").

* The SQL Shell executes as Dynamic SQL and returns the OID in the format
$Ib('6","%Stream.GlobalCharacter™,"~"EW3K.Cn9X.S").

e Embedded SQL returns the same OID, but as an encoded %L.ist. You can use the SLISTTOSTRING function to display
the OID as a string with its elements separated by commas: 6 ,%Stream.GlobalBinary, "EW3K.Cn9X.S.
When a query is run from the Management Portal SQL Execute interface, the OID is not returned. Instead:

» A character stream field returns the first 100 characters of character stream data. If the character stream data is longer
than 100 characters, this is indicated by an ellipsis (...) following the 100th character. This is equivalent to SUB-
STRING(cstreamfield,1,100).

234 Using InterSystems SQL

Stream Fields and SQL

e Abinary stream field returns the string <binary>.

The same values are shown in the Management Portal SQL interface Open Table display of table data.

To display the OID value from the Management Portal SQL Execute interface, concatenate an empty string to a stream
value, as shown in the following: SELECT Name, ""]|Photo, ""]|Notes FROM Sample._MyTable.

21.1.5 DISTINCT, GROUP BY, and ORDER BY

Every stream data field OID value is unique, even when the data itself contains duplicates. These SEL ECT clauses operate
on the stream OID value, not the data value. Therefore, when applied to a stream field in a query:

» ADISTINCT clause has no effect on duplicate stream data values. A DISTINCT clause reduces the number records
where the stream field is NULL to one NULL record.

A GROUP BY clause has no effect on duplicate stream data values. A GROUP BY clause reduces the number records
where the stream field is NULL to one NULL record.

« AnORDER BY clause orders stream data values by their OID value, not their data value. An ORDER BY clause lists
records where the stream field is NULL before listing records with a stream field data value.

21.1.6 Predicate Conditions and Streams

The IS [NOT] NULL predicate can be applied to the data value of a stream field, as shown in the following example:

SQL

SELECT Name,Notes
FROM Sample.MyTable WHERE Notes 1S NOT NULL

The BETWEEN, EXISTS, IN, %INLIST, LIKE, %MATCHES, and %PATTERN predicates can be applied to the OID
value of the stream object, as shown in the following example:

SQL

SELECT Name,Notes
FROM Sample.MyTable WHERE Notes %MATCHES ®*1[0-9]*GlobalChar**

Attempting to use any other predicate condition on a stream field results in an SQLCODE -313 error.

21.1.7 Aggregate Functions and Streams

The COUNT aggregate function takes a stream field and counts the rows containing non-null values for the field, as shown
in the following example:

SQL

SELECT COUNT(Photo) AS PicRows,COUNT(Notes) AS NoteRows
FROM Sample.MyTable

However, COUNT (DISTINCT) is not supported for stream fields.

No other aggregate functions are supported for stream fields. Attempting to use a stream field with any other aggregate
function results in an SQLCODE -37 error.

Using InterSystems SQL 235

Storing and Using Stream Data (BLOBs and CLOBS)

21.1.8 Scalar Functions and Streams

InterSystems SQL cannot apply any function to a stream field, except the % OBJECT, CHARACTER_LENGTH (or
CHAR_LENGTH or DATALENGTH), SUBSTRING, CONVERT, XMLCONCAT, XMLELEMENT, XMLFOREST,
and % INTERNAL functions. Attempting to use a stream field as an argument to any other SQL function results in an
SQLCODE -37 error.

The %0OBJECT function opens a stream object (takes an OID) and returns the OREF (object reference), as shown in
the following example:
SQL

SELECT Name,Notes,%0BJECT(Notes) AS NotesOref
FROM Sample._MyTable WHERE Notes 1S NOT NULL

The CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH functions take a stream field and return the
actual data length, as shown in the following example:
SQL

SELECT Name,DATALENGTH(Notes) AS NotesNumChars
FROM Sample.MyTable WHERE Notes 1S NOT NULL

The SUBSTRING function takes a stream field and returns the specified substring of the stream field’s actual data
value, as shown in the following example:
SQL

SELECT Name,SUBSTRING(Notes,1,10) AS NoteslstlOChars
FROM Sample.MyTable WHERE Notes 1S NOT NULL

When issued from the Management Portal SQL Execute interface, a SUBSTRING function returns up to a 100 char-
acter substring of the stream field data. If the specified substring of the stream data is longer than 100 characters, this
is indicated by an ellipsis (...) following the 100th character.

The CONVERT function can be used to convert a stream data type to VARCHAR, as shown in the following example:

SQL

SELECT Name, CONVERT(VARCHAR(100) ,Notes) AS NotesTextAsStr
FROM Sample.MyTable WHERE Notes 1S NOT NULL

CONVERT (datatype, expression) syntax supports stream data conversion. If the VARCHAR precision is less
than the length of the actual stream data, it truncates the returned value to the VARCHAR precision. If the VARCHAR
precision is greater than the length of the actual stream data, the returned value has the length of the actual stream data.
No padding is performed.

{fn CONVERT(expression,datatype)} syntax does not support stream data conversion; it issues an SQLCODE
-37 error.

The %INTERNAL function can be used on a stream field, but performs no operation.

21.2 Stream Field Concurrency Locking

InterSystems IRIS protects stream data values from concurrent operations by another process by taking out a lock on the
stream data.

236

Using InterSystems SQL

Using Stream Fields within InterSystems IRIS Methods

The system takes an exclusive lock before performing a write operation; the exclusive lock is released immediately after
the writer operation completes.

Additionally, the system takes a shared lock when the first read operation occurs. A shared lock is only acquired if the
stream is actually read, and is released immediately after the entire stream has been read from disk into the internal temporary
input buffer.

21.3 Using Stream Fields within InterSystems IRIS
Methods

You cannot use a BLOB or CLOB value using Embedded SQL or Dynamic SQL directly within an InterSystems IRIS
method; instead you use SQL to find the stream identifier for a BLOB or CLOB and then create an instance of the
%AbstractStream object to access the data.

21.4 Using Stream Fields from ODBC

The ODBC specification does not provide for any recognition or special handling for BLOB and CLOB fields. InterSystems
SQL represents CLOB fields within ODBC as having type LONGVARCHAR (-1). BLOB fields are represented as having
type LONGVARBINARY (-4). For ODBC/JDBC data type mappings of stream data types, refer to Integer Codes for Data
Types in the SQL Data Types reference page.

The ODBC driver/server uses a special protocol to access BLOB and CLOB fields. Typically you have to write special
code within ODBC application to use CLOB and BLOB fields; the standard reporting tools typically do not support them.

21.5 Using Stream Fields from JDBC

Within a Java program you can retrieve or set data from a BLOB or CLOB using the standard JDBC BLOB and CLOB
interfaces. For example:

Statement st = conn.createStatement();
ResultSet rs = st.executeQuery("'SELECT MyCLOB,MyBLOB FROM MyTable');
rs.next(); // fetch the Blob/Clob

java.sql .Clob clob = rs.getClob(1);
Java.sql.Blob blob = rs.getBlob(2);

// Length
System.out.printin(""Clob length
System.out.printIn("Blob length

" + clob.length());
" + blob.length());

// ...

Note: When finished with a BLOB or CLOB, you must explicitly call the free() method to close the object in Java and
send a message to the server to release stream resources (objects and locks). Just letting the Java object go out of
scope does not send a message to clean up the server resources.

Using InterSystems SQL 237

22

SQL Users, Roles, and Privileges

InterSystems IRIS® data platform has both system-level security, and an additional set of SQL-related security features.
The InterSystems SQL security provides an additional level of security capabilities beyond its database-level protections.
Some of the key differences between SQL and system-level security are:

» SQL protections are more granular than system-level protections. You can define privileges for tables, views, and
stored procedures.

* SQL privileges can be granted to users as well as to roles. System-level privileges are only assigned to roles.

» Holding an SQL privilege implicitly grants any related system privileges that are required to perform the SQL action.
(Conversely, system-level privileges do not imply table-level privileges.) The different types of privileges are described
in the “SQL Privileges and System Privileges™ section.

Note: InterSystems SQL enforces privilege checking for ODBC, JDBC, Dynamic SQL, and the SQL Shell interface on
InterSystems IRIS data platform. Embedded SQL statements do not perform privilege checking; it is assumed
that applications using Embedded SQL will check for privileges before using Embedded SQL statements. Similarly,
direct invocation of class queries that do not involve %SQL.Statement objects is considered application access
and does not check for SQL privileges.

22.1 SQL Privileges and System Privileges

To manipulate tables or other SQL entities through SQL-specific mechanisms, a user must have the appropriate SQL
privileges. System-level privileges are not sufficient. A user may be granted SQL privileges directly, or the user may belong
to a role that has SQL privileges.

Note: Roles are shared by SQL and system level security: a single role can include both system and SQL privileges.

Consider the following example for an instance of InterSystems IRIS on a Windows machine:

e There is a persistent class in the USER namespace called User.MyPerson. This class is projected to SQL as the
SQLUser.MyPerson table.

e Thereis auser called Test, who belongs to no roles (and therefore has no system privileges) and who has all privileges
on the SQLUser.MyPerson table (and no other SQL privileges).

» There is a second user, called Test2. This user is assigned to the following roles: %DB_USER (and so can read or write
data on the USER database); %8QL (and so has SQL access through the %Service_Bindings service); and, through a
custom role, has privileges for using the Console and %evel opnent .

Using InterSystems SQL 239

SQL Users, Roles, and Privileges

If the Test user attempts to read or write data in the SQLUser.MyPerson table through any SQL-specific mechanism (such
as one that uses ODBC), the attempt succeeds. This is because InterSystems IRIS makes the Test user a member of the
%8QL role (which includes the %8er vi ce_SQL: Use privilege) and the %0B_USER role, so the user has the necessary
privileges to establish the connection; this is visible in audit events that the connection generates, such as the %Sys-
tem/%Login/Login event. (If the Test user attempts to use Terminal object mechanisms, these attempts fail, because the
user lacks sufficient privilege for these.)

If the Test2 user attempts to read or write data in the SQLUser.MyPerson table through any SQL-specific mechanism (such
as one that uses ODBC), the attempt fails because the user does not have sufficient privileges for the table. (If the Test2
user attempts to view the same data in the Terminal using object mechanisms, the attempt succeeds — because the user is
sufficiently privileged for this type of connection.)

For more information about SQL privileges, see SQL privileges.

InterSystems IRIS persistent classes also support privileges for row-level security.

22.2 %Admin_Secure Permission

If you are a user with the %Admin_Secure administrative resource with USE permission, you can perform the following
operations:

» Create, modify, or delete a user.
» Create, modify, or delete a role.
» See the privileges granted to a user.
e See the privileges granted to a role.

» Revoke SQL privileges that were granted by another user.

%Admin_Secure allows a user to perform these operations without being given full security privileges on the system.

22.3 %Admin_RoleEdit Permission

Users with the %Admin_RoleEdit administrative resource with USE permission can perform the following operations:
» Create or delete a role.
%Admin_RoleEdit allows a user to perform these operations without being given full security privileges on the system.

Users with %Admin_RoleEdit but not %Admin_Secure can delete any non-system role and system roles that they have
created themselves.

22.4 %Admin_UserEdit Permission

Users with the %Admin_UserEdit administrative resource with USE permission can perform the following operations:

» Create, modify, or delete a user.

240 Using InterSystems SQL

Users

%Admin_UserEdit allows a user to perform these operations without being given full security privileges on the system.
Users with %Admin_UserEdit but not %Admin_Secure can drop other users they have created, as well as any user created
by a user they have created. Such a user cannot drop system users or themselves.

22.5 Users

An InterSystems SQL user is the same as a user defined for InterSystems security. You can define a user using either SQL
commands or the Management Portal.

* In SQL you use the CREATE USER statement to create a user. This simply creates a user name and user password.
The newly created user has no roles. You must use the GRANT statement to assign privileges and roles to the user.
You can use the ALTER USER and DROP USER statements to modify existing user definitions.

» Inthe Management Portal Select System Administration select Security, then select Users. Click the Create New User
button at the top of the page. This takes you to the Edit User page where you can specify the user name, user password,
and other parameters. Once you create a user, the other tabs become available, where you can specify which roles a
user holds, which general SQL privileges the user holds, which table-level privileges the user holds, which views are
available, and which stored procedures can be executed.

If a user has SQL table privileges, or general SQL privileges, then roles granted or revoked on the user’s Roles tab do not
affect a user’s access to tables through SQL-based services, such as ODBC. This is because, in the SQL-based services,
table-based privileges take precedence over resource-based privileges.

You can use %Library.SQLCatalogPriv class queries to list:

» All users SQLUsers()

» All privileges granted to a specified user SQLUserPrivs(*“username”)

» All system privileges granted to a specified user SQLUserSysPrivs(“username™)

« Allroles granted to a specified user SQLUserRole(*“username™)
The following example lists the privileges granted to the current user:

ObjectScript

SET statemt=##class(%SQL.Statement) .%New()
SET cqStatus=statemt.%PrepareClassQuery(*'%Library.SQLCatalogPriv',' SQLUserPrivs')
IF cqStatus™=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

SET rset=statemt.%Execute ($USERNAME)

WRITE "Privileges for ",$USERNAME
DO rset.%Display()

22.5.1 User Name as Schema Name

Under some circumstances, a username can be implicitly used as an SQL schema name. This may pose problems if the
username contains characters that are forbidden in an SQL identifier. For example, in a multiple domain configuration the
username contains the “@” character.

InterSystems IRIS handles this situation differently depending on the setting of the Delimited Identifiers configuration
parameter:

» If the use of delimited identifiers is enabled, no special processing occurs.

Using InterSystems SQL 241

SQL Users, Roles, and Privileges

» If the use of delimited identifiers is disabled, then any forbidden characters are removed from the username to form a
schema name. For example, the username “documentation@intersystems.com” would become the schema name
*“documentationintersystemscom”.

This does not affect the value returned by the SQL CURRENT _USER function. It is always the same as SUSERNAME.

22.6 Roles

SQL privileges are assigned to a user or role. A role enables you to set the same privileges for multiple users. Roles are
shared by SQL and system level security: a single role can include both system privileges and SQL privileges.

The Management Portal, System Administration, Security, Roles page provides a list of role definitions for an InterSystems
IRIS instance. To view or change details on a particular role, select the Name link for the role. On the Edit Role page that
appears, there is information regarding the roles privileges, and which users or roles hold it.

The General tab lists a role’s privileges for InterSystems security resources. If a role only holds SQL privileges, the General
tab’s Resources table lists the role’s privileges as “None defined.”

The SQL Privileges tab lists a role’s privileges for InterSystems SQL resources, where a drop-down list of namespaces
allows you to view each namespace’s resources. Because privileges are listed by namespace, the listing for a role holding
no privileges in a particular namespace displays “None.”

Note: You should define privileges using roles and associate specific users with these roles. There are two reasons for
this:

1. Itis much more efficient for the SQL Engine to determine privilege levels by checking a relatively small role
database than by checking individual user entries.

2. Itis much easier to administer a system using a small set of roles as compared with a system with many
individual user settings.

For example, you can define a role called *“ ACCOUNTING ” with certain access privileges. As the Accounting Department
grows, you can define new users and associate them with the ACCOUNTING role. If you need to modify the privileges
for ACCOUNTING, you can do it once and it will automatically cover all the members of the Accounting Department.

A role can hold other roles. For example, the ACCOUNTING role can hold the BILLINGCLERK role. A user granted the
ACCOUNTING role would have the privileges of both the ACCOUNTING role and the BILLINGCLERK role.

You can also define users and roles with the following SQL commands: CREATE USER, CREATE ROLE, ALTER USER,
GRANT, DROP USER, and DROP ROLE.

Note: If you manually create a role names SQLAdminRole, there is some special behavior if you would like a user with
this role to issue a DROP ROLE command. In particular, you will need to give the %Admin_Secure resource to
SQLAdminRole to allow users with this role to perform a DROP ROLE.

You can use %Library.SQLCatalogPriv class queries to list:

e Allroles SQLRoles()

« All privileges granted to a specified role SQLRolePrivileges(“rolename™)

» Allroles or users granted to a specified role SQLRoleUser(*rolename”)

» Allroles granted to a specified user SQLUserRole(*username”

242 Using InterSystems SQL

SQL Privileges

22.7 SQL Privileges

SQL privileges are assigned to a user or role. A role enables you to set the same privileges for multiple users.

InterSystems SQL supports two types of privileges: administrative and object.

Administrative privileges are namespace-specific.

Administrative privileges cover the creation, altering, and deleting of types of objects, such as the %CREATE_TABLE
privilege required to create tables. The %ALTER_TABLE privilege is required not only to alter a table, but to create
or drop an index, to create or drop a trigger, and to run TUNE TABLE.

Administrative privileges also include %NOCHECK, %NOINDEX, %NOLOCK, %NOJOURN, and %NOTRIGGER,
which determine whether the user can apply the corresponding keyword restrictions when performing an INSERT,
UPDATE, INSERT OR UPDATE, or DELETE. Assigning the %NOTRIGGER administrative privilege is required
for a user to perform a TRUNCATE TABLE.

Obiject privileges are specific to a table, view, or stored procedure. They specify the type of access to specific named
SQL objects (in the SQL sense of the word: a table, a view, a column, or a stored procedure). If the user is the Owner
(creator) of the SQL object, the user is automatically granted all privileges for that object.

Table-level object privileges provide access (YALTER, DELETE, SELECT, INSERT, UPDATE, EXECUTE, REF-
ERENCES, CANCEL) to the data in all columns of a table or view, both those columns that currently exist and any
subsequently added columns.

Column-level object privileges provide access to the data in only the specified columns of a table or view. You do not
need to assign column-level privileges for columns with system-defined values, such as RowlID and Identity.

Stored procedure object privileges permit the assignment of EXECUTE privilege for the procedure to specified users
or roles.

For further details, refer to the GRANT command.

22.7.1 Granting SQL Privileges

You can grant privileges in the following ways:

Use the Management Portal. From System Administration select Security, then select either Users or Roles. Select the
desired user or role, then select the appropriate tab: SQL Privileges for administrative privileges, SQL Tables, SQL
Views, Or SQL Procedures for object privileges.

From SQL, use the GRANT command to grant specific administrative privileges or object privileges to a specified
user or role (or list of users or roles). You can use the REVOKE command to remove privileges.

From ObjectScript, use the $SY STEM .SQL .Security.GrantPrivilege() method to grant specific object privileges to
a specified user (or list of users).

22.7.2 Listing SQL Privileges

Use the Management Portal. From System Administration select Security, then select either Users or Roles. Select the
desired user or role, then select the appropriate tab: SQL Privileges for administrative privileges, SQL Tables, SQL
Views, Or SQL Procedures for object privileges.

From SQL, use the %CHECKPRIV command to determine if the current user has a specific administrative or object
privilege.

Using InterSystems SQL 243

SQL Users, Roles, and Privileges

» From ObjectScript, use the $SY STEM .SQL .Security.CheckPrivilege() method to determine if a specified user has
a specific object privilege.

22.7.3 Auditing Privilege Errors

When an InterSystems IRIS process invokes an SQL statement for which the user is not privileged, the operation fails and
an SQLCODE -99 error is generated. When the Audit Event %System/%SQL/PrivilegeFailure is enabled, a record will be
placed in the Audit database for each SQLCODE -99 error encountered. This Audit database option is disabled by default.

244 Using InterSystems SQL

23

Using Vector Search

Vector search is a foundational concept to systems that use machine learning and artificial intelligence. In vector search,
an embedding model transforms unstructured data, such as text, into a piece of structured data, called a vector. Users can
then perform operations on these vectors, rather than the unstructured data itself, to process input and generate a response.

InterSystems IRIS SQL supports the storage of vectors in the compressed and performant VECTOR type, enabling you to
efficiently store vectorized data as a part of your traditional relational schemas.

23.1Vectors and Embeddings

Vectors can be used to represent the semantic meaning of language in embeddings. These embeddings are determined by
an embedding model, which is an machine learning model that maps words to a geometric space with high dimensionality.
Modern embedding vectors typically range between hundreds and thousands of dimensions. Words that share similar
semantic meaning occupy nearby positions in that space, while words with disparate semantic meaning occupy positions
distant from each other. These spatial positions allow an application to algorithmically determine the similarity between
two words, or even sentences, by performing operations on their embedding vectors.

In vector search, a user can compare an input vector with the vectors stored in the database using operations that determine
the similarity between two vectors, such as the dot product. When the vectors that the search is performed on represent
embeddings, a vector search enables you to algorithmically determine which pieces of text are semantically most similar
to an input. As a result, vector search is a great fit for tasks that involve information retrieval.

23.2 Storing Vectors

While many platforms support vectors through data structures like lists, InterSystems IRIS® data platform supports a
dedicated VECTOR type that leverages chip-level optimizations to efficiently perform operations often performed on
vectors, including those that operate on multiple elements at once. There are three numeric vector types: decimal (the most
precise), double, and integer (the least precise). As VECTOR is a standard SQL datatype, you can store vectors alongside
other data in a relational table, converting a SQL database transparently into a hybrid vector database.

Vector data can be added to a table with INSERT statements. Additionally, you can create objects through ObjectScript
with a property that is of the %Library.Vector type and store a vector in that property.

In many cases, vectors saved in a table in InterSystems SQL represent embeddings, which cannot be easily represented or
added into a table by hand. Since most applications deal with a high volume of embeddings vectors, it is important to pro-

Using InterSystems SQL 245

Using Vector Search

grammatically load these embeddings into a table. The following sections provide guidance on how to translate text into
an embedding and load the embedding into a table as a VECTOR.

23.2.1 Translating Text to Embeddings

Before you can store embeddings as vectors in InterSystems IRIS, you first need to create them from a text source. In
general, you can transform a piece of text into an embedding in four steps.

1. Import a package to use to turn your text into a series of embeddings.

2. Pre-process your text to best fit your chosen embedding model’s input specifications.

3. Instantiate the model and convert your text to the embeddings, using your chosen package’s workflow.
4

Convert each individual embedding to a string. This step is hecessary to convert an embedding to a VECTOR at a later
point.

With Embedded Python, you can execute Python code that converts text to embeddings (using whichever package you
like) alongside ObjectScript code that can insert those embeddings directly into your database. For information on importing
a Python package into InterSystems IRIS, see Install and Import Python Packages.

23.2.1.1 Example: Create Embeddings with Embedded Python

The following example takes an input list of sentences, passed as a built-in Python list, converts them to embeddings using
the sentence_transformers package, and returns a list of the embeddings for later insertion into a table. See Inserting
VECTOR-typed Data for more information on inserting the embeddings. This example assumes that the input sentences
have already been pre-processed to match the embedding model’s specifications.

Class Member

ClassMethod GetEmbeddingPy(sentences) [Language = python]
import json

// import the package
import sentence_transformers

// create the model and form the embeddings
model = sentence_transformers.SentenceTransformer("all-MiniLM-L6-v2%)
embeddings = model.encode(sentences)

// convert the embeddings to a string
embeddings_list = [str(embedding.tolist()) for embedding in embeddings]
return embeddings_list

23.2.2 Inserting VECTOR-typed Data

Once you have a list of strings that represent embeddings, you can insert them into your table as VECTORS either with an
INSERT statement or by creating an object and storing the embedding as a property of the object. The following example
demonstrates how to insert data with an INSERT.

In this example, the embedding is stored in a table alongside a unique identifier. When the embedding vectors are inserted
in these examples, the assumption is that the source text is stored in another table with the same unique identifier. The
shared value of the unique identifiers allows you to perform a JOIN, linking an embedding vector with the text it represents.
If you choose to store the embeddings and text in the same table, the unique identifier is not necessary.

23.2.2.1 Example

For each embedding, execute an INSERT statement that adds the embedding to the desired table. Use TO_VECTOR to
convert the string representation of the embedding to a VECTOR.

246 Using InterSystems SQL

Storing Vectors

In the following command, one embedding is inserted into a table called Sample.Embeddings that has two columns: one

for the embedding itself and the other for a unique identifier that can be used to link the embedding with the text it is derived
from (implicitly stored in a separate table with the same unique identifier). (Note that the example uses ?s as placeholders
for the embedding and the unique identifier, as these are typically supplied programmatically as parameters to the statement.)

SQL

INSERT INTO Sample.Embeddings (Embedding, UID)
VALUES (TO_VECTOR(?,double), ?)

The following code samples use this query to insert a single embedding into the table.

ObjectScript

ClassMethod InsertEmbeddings(embedding As %String, uid As %Integer)

set sc=$$$0K
try {
set myquery = "INSERT INTO Sample.Embeddings (Embedding, UID)"
"VALUES (TO_VECTOR(?,double), ?)"
set tStatement = ##class(%SQL.Statement). %New()
$$$ThrowOnError (##class(%SQL . Statement) .%Prepare(myquery))

set rset = tStatement.%Execute(embedding, uid)
if (rset.%SQLCODE < 0) {
throw ##class(%Exception.SQL).CreateFromSQLCODE(rset.%SQLCODE, rset.%Message)

3

catch e {
set sc = e.AsStatus()
return sc

}
3
Java/JDBC

public void InsertEmbeddings(String embeddings, Integer uid) {
try {
// set connection parameters
IRISDataSource ds = new IRISDataSource();
ds.setServerName(''127.0.0.1");
ds.setPortNumber(51776);
ds.setDatabaseName(*'USER");
ds.setUser (""_SYSTEM"™);
ds.setPassword(*'SYS");
IRISConnection conn = ds.GetConnection();

String sql = "INSERT INTO Sample.Embeddings (Embeddlng, uib) "
"VALUES (TO_VECTOR(?,double), ?)";
PreparedStatement pstmt = conn. prepareStatement(sql)

pstmt.SetString(embedding);
pstmt._Setint(uid);

pstmt.executeUpdate();

pstmt.close();
} catch (Exception ex) {
System.out._printIn(“caught exception: "
3 + ex.GetClass().getName() + ": " + ex.GetMessage());

}

Python/DB-API

def insertEmbeddings(embeddings, uid):
// set the connection parameters
conn_string = "localhost:1972/USER"
username = "'_system"
password = "'SYS"
connection = iris.connect(conn_string, username, password)
cursor = connection.cursor()

try:
sql = "INSERT INTO Sample.Embeddings (Embedding, UID) " +
"VALUES (TO_VECTOR(?,double), ?)"

Using InterSystems SQL 247

Using Vector Search

params = [embeddings,uid]
cursor.execute(sqgl,params))
cursor.close()
except Exception as ex:
print(ex)
finally:
it cursor:
cursor.close()
if connection:
connection.close()

.NET/ODBC

static void InsertEmbeddings(string emb, Integer uid)

// set the connection parameters
String host = "127.0.0.1";
String port = "51776";

String username = *_SYSTEM";
String password = "'SYS";
String namespace = "USER";
IRISConnection conn = new IRISConnection();
IR1SConnect.ConnectionString = "Server = " + host

+ "; Port =" + port + '"'; Namespace = " + namespace

+ '; Password = " + password + ''; User ID = " + username;

conn.Open(Q);

String sql = "INSERT INTO Sample.Embeddings (Embedding, UID) " +
"VALUES (TO_VECTOR(?,double), ?)";

IRISCommand cmd = new IRISCommand(sqgl, conn);

cmd . ExecuteNonQuery();

cmd.Dispose();
conn.Close();

23.3 Perform Vector Search

Vector search enables you to use one vector to search for other similar vectors stored within the database. In InterSystems
SQL, you can perform such a search with a single query.

InterSystems SQL currently supports two functions that determine the similarity between two vectors:
VECTOR_DOT_PRODUCT and VECTOR_COSINE. The larger the value of these functions, the more similar the
vectors are.

23.3.1 Example

The following example demonstrates how to use SQL to issue a query that uses VECTOR_DOT_PRODUCT to find the
most semantically similar descriptions to an input sentence. After converting an input search term to an embedding, use
either VECTOR_DOT_PRODUCT or VECTOR_COSINE within an ORDER BY clause to return the most similar
pieces of text. Additionally, use a TOP clause to select only the most similar results.

The query selects the five most relevant descriptions based on an input query. The example assumes that the embeddings
and the descriptions are stored in separate tables (Sample.Embeddings and Sample.Descriptions, respectively),
with a unique 1D field (called UID) identifying which embeddings correspond with which descriptions. A JOIN on this
field links the embeddings with the descriptions. If you choose to store embeddings alongside the text they represent, you
do not need to perform a JOIN.

The following example shows a SQL statement that selects the five descriptions that are the most similar to the input user
query. (Note that the example uses ? as a placeholder for the embedding of the search term, as this value is typically provided
as a parameter, not as a literal.)

248 Using InterSystems SQL

Perform Vector Search

SQL

SELECT

TOP 5 descrip.Description FROM Sample_Embeddings emb

JOIN Sample.Description descrip ON emb.UID = descrip.UID
ORDER BY VECTOR_DOT_PRODUCT(emb.Embeddings,

The fol

TO_VECTOR(?,double)) DESC

lowing demonstrates an ObjectScript method that executes this query in Dynamic SQL, iterating through the result

set to append the descriptions in a long string:

Class

Member

ClassMethod GetSimilarDesc(searchTerms As %String)

set sc = $$$0K
try {
set query = "SELECT TOP 5 descrip.Description FROM Sample.Embeddings emb"
_"JOIN Sample.Description descrip ON emb.UID = descrip.UID"
_"ORDER BY VECTOR_DOT_PRODUCT (emb.Embeddings,""
_"TO_VECTOR(?,double)) DESC"
set tStatement = ##class(%SQL.Statement) .%New()
$$$ThrowOnError (tStatement.%Prepare(query))
// convert input string to an embedding
set searchTermsEmbedding = ..GetEmbeddings(searchTerms)
set rset = tStatement.%Execute(searchTermsEmbedding)
ifT (rset.%SQLCODE < 0) {
throw ##class(%Exeception.SQL) .CreateFromSQLCODE(rset.%SQLCODE, rset.%Message)
// process retrieved descriptions here and return the result
set retrievedinfo = "
while rset.%Next() {
set retrievedInfo = retrievedInfo_" Description: "_rset._%Get("'Description™™)
return retrievedinfo
¥
catch e {

set sc = e.AsStatus()
return sc

Using InterSystems SQL 249

24

SQL Settings Reference

InterSystems SQL enables you to control various settings to set up your SQL environment. These settings can be controlled
through various interfaces, including the Configuration Parameter File, the Management Portal, the SET OPTION command,
and methods in the %SYSTEM.SQL.Util class. However, not all options are available through all interfaces and some have
different names across the multiple interfaces they might be available through. This page acts as a reference for how you

can change each of the settings.

24.1 How to Change Each SQL Setting

Since there are many different SQL settings and multiple mechanisms to change them, the table below provides a summary

of how you may change each one.

To find the SQL settings page in the Management Portal, navigate to System Administration > Configuration > SQL and

Object Settings > SQL.

Table 24-1:

Option Name / Management
Portal Name (if applicable)

AdaptiveMode / Turn off
Adaptive Mode to disable run time
plan choice and automatic tuning

AllowExtrinsicFunction
AllowRowIDUpdate
ANSIPrecedence
AutoCommit

AutoParallel / Execute queries
in a single process

AutoParallelThreshold

BiasQueriesAsOutlier
BitmapFriendlyCheck
CachedQueryLockTimeout

CPF Name

AdaptiveMode

ExtrinsicFunctions
AllowRowIDUpdate
ANSIPrecedence
n/a

AutoParallel

AutoParallelThreshold

BiasQueriesAsOutlier
n/a

n/a

API

SetOption()

SetOption()
n/a

SetOption()
SetOption()
SetOption()

SetOption()

n/a
SetOption()
SetOption()

SET OPTION Name

n/a

n/a
n/a
n/a
n/a

n/a

AUTO_PARALLEL _
THRESHOLD

n/a
n/a

n/a

Using InterSystems SQL

251

SQL Settings Reference

Option Name /Management CPF Name API SET OPTION Name
Portal Name (if applicable)
CachedQuerySaveSource / SaveMAC SetOption() n/a
Retain cached query source
ClientMaxIdleTime / Client ClientMaxIdleTime SetOption() n/a
maximum idle time (seconds)
CollectionProjection n/a SetOption() n/a
CompileModeDeferred n/a SetOption() COMPILEMODE
CompileModelmmediate n/a SetOption() COMPILEMODE
CompileModelnstall n/a SetOption() COMPILEMODE
CompileModeNocheck n/a SetOption() COMPILEMODE
DDLDefineBitmapExtent DDLDefineBitmapExtent SetOption() n/a
DDLDropTabDelData DropDelete SetOption() n/a
DDLFinal DDLFinal SetOption() n/a
DDLNo0201 / ignore redundant DDLN0201 n/a n/a
DDL
DDLNo030 / Ignore redundant DDLNo030 n/a n/a
DDL
DDLNo0307 / Ignore redundant ~ DDLN0307 n/a n/a
DDL
DDLNo0311 / ignore redundant DDLN0311 n/a n/a
DDL
DDLNo0315 / Ignore redundant DDLN0315 n/a n/a
DDL
DDLNo0324 / ignore redundant DDLN0324 n/a n/a
DDL
DDLN0333/ Ignore redundant DDLN0333 n/a n/a
DDL
DDLPKeyNotIDKey / Define IDKey SetOption() PKEY_IS_IDKEY
primary key as ID key for tables
created via DDL
DDLSQLOnNlyCompile DDLSQLOnlyCompile n/a n/a
DDLUseExtentSet DDLUseExtentSet SetOption() n/a
DDLUseSequence DDLUseSequence SetOption() n/a
DefaultSchema / Default DefaultSchema n/a DEFAULT_SCHEMA
schema
DefaultTimePrecision TimePrecision SetOption() n/a
Delimitedldentifiers Delimitedlds SetOption() SUPPORT_DELIMITED_
IDENTIFIERS

ECPSync ECPSync SetOption() n/a

252 Using InterSystems SQL

Settings that Require Permissions

Option Name /Management CPF Name API SET OPTION Name
Portal Name (if applicable)
FastDistinct / GROUP BY and FastDistinct SetOption() EXACT_DISTINCT

DISTINCT queries must produce
original values

FilterRefIntegrity ReferentialChecks SetOption() n/a

Identitylnsert n/a SetOption() n/a

IdTrxFrom IdTrxFrom SetDDLIdentifier n/a
Translations()

IdTrxTo IdTrxTo SetDDLlIdentifier n/a
Translations()

IsolationMode n/a SetOption() n/a

LockThreshold / Lock LockThreshold SetOption() LOCK_ESCALATION_

escalation threshold THRESHOLD

LockTimeout / Lock timeout LockTimeout SetOption() LOCK_TIMEOUT

(seconds)

ODBCVarcharMaxlen / Default ODBCVarcharMaxlen n/a n/a

length for VARCHAR

ProcessLockTimeout n/a SetOption() n/a

ParameterSampling / Turnon ParameterSampling SetOption() n/a

parameter sampling to sample the

parameter value for query

execution

QueryProcedures QueryProcedures SetOption() n/a

RetainSQL Comment SetOption() n/a

RTPC RTPC SetOption() n/a

SQLFunctionArgConversion n/a SetOption() n/a

SQLSecurity DBMSSecurity SetOption() n/a

SelectMode n/a SetOption() n/a

ServerDisconnectCode n/a SetOption() n/a

ServerlnitCode n/a SetOption() n/a

TCPKeepAlive / TCP keepalive ~ TCPKeepAlive SetOption() n/a

for client connections (seconds)

ToDateDefaultFormat / TODATEDefaultFormat SetOption() n/a

TO_DATE default format

24.2 Settings that Require Permissions

In order to change the following settings, a user must have the %Admin:USE:

Using InterSystems SQL

253

SQL Settings Reference

Table 24-2:
AdaptiveMode ExtrinsicFunctions ANSIPrecedence AutoParallel
SaveMAC DropDelete DDLFinal IDKey
DDLUseExtentSet DDLUseSquence TimePrecision Delimitedlds
ECPSync FastDistinct ReferentialChecks IdTrxFrom
IdTrxTo LockThreshold LockTimeout ParameterSampling
QueryProcedures Comment RTPC DBMSSecurity

TCPKeepAlive

TODATEDefaultFormat

254

Using InterSystems SQL

29

Importing SQL Code

This topic describes how to import SQL code from a text file into InterSystems SQL. When you import SQL code, Inter-
Systems IRIS® data platform prepares and executes each line of SQL using Dynamic SQL. If it encounters a line of code
it cannot parse, SQL import skips over that line of code and continues to prepare and execute subsequent lines until it
reaches the end of the file. All SQL code import operations import to the current namespace.

SQL Import is primarily used to import Data Definition Language (DDL) commands, such as CREATE TABLE, and to
populate tables using INSERT, UPDATE, and DELETE commands. SQL import does prepare and execute SELECT queries,
but does not create a result set.

SQL import can be used to import InterSystems SQL code. It can also be used for code migration, to import SQL code
from other vendors (FDBMS, Informix, InterBase, MSSQLServer, MySQL, Oracle, Sybase). Code from other vendors is
converted to InterSystems SQL code and executed. SQL import cannot import all SQL commands into InterSystems SQL.
It imports those commands and clauses that are compatible with the InterSystems IRIS implementation of the SQL standard.
Incompatible features are commonly parsed, but ignored.

SQL import can successfully prepare an SQL query — creating a corresponding cached query,where appropriate — but it
does not execute the query.

You perform SQL code import by invoking the appropriate method from the %SYSTEM.SQL.Schema class. When
importing SQL code, these methods can create two other files: an Errors.log file which records errors in parsing SQL
commands, and an Unsupported.log file, which contains the literal text of lines that the method does not recognize as an
SQL command.

Note: It is worth noting that the %SYSTEM.SQL.Schema class also allows for exporting DDL commands using the
ExportDDL () method. In brief, this method allows you to export a DDL script file that can later be imported via
methods described in this page.

This topic describes importing different types of SQL code:

* Importing InterSystems SQL

* Importing non-InterSystems SQL: FDBMS, Informix, InterBase, MSSQLServer, MySQL, Oracle, Sybase

25.1 Importing InterSystems SQL

You can import InterSystems SQL code from a text file using either of the following %SYSTEM.SQL.Schema methods:

* ImportDDL () is a general-purpose SQL import method. This method runs as a background (non-interactive) process.
To import InterSystems SQL you specify “IRIS” as the third parameter.

Using InterSystems SQL 255

Importing SQL Code

* Run() is an InterSystems SQL import method. This method runs interactively from the Terminal. It prompts you to
specify the location of the import text file, the location to create the Errors.log file and the Unsupported.log file, and
other information.

Note: This import and execution of SQL DDL code should not be confused with the Import Statements Action from the
Management Portal SQL interface. That operation imports SQL Statements in XML format.

The following example imports the InterSystems IRIS SQL code file pathname mysglcode.txt, executing the SQL commands
listed in that file in the current namespace:

ObjectScript

DO $SYSTEM.SQL.Schema. ImportDDL(*"c:\InterSystems\mysqlcode.txt",,"IRIS™)

By default, ImportDDL () creates an errors log file, as specified in the second parameter. This example, which omits the
second parameter, creates by default a file named mysqglcode Errors. log in the same directory as the SQL code file.
This log file is created even when there is nothing written to it.

When executing ImportDDL () from the Terminal, it first lists the input file, then the error log file, then lists each SQL
command imported, as shown in the following example:

Importing SQL Statements from file: c:\InterSystems\mysqglcode.txt
Recording any errors to principal device and log file: c:\InterSystems\mysqglcode_Errors.log

SQL statement to process (number 1):
CREATE TABLE Sample.NewTab (Name VARCHAR(40))
Preparing SQL statement. ..
Executing SQL statement...
DONE

SQL statement to process (number 2):
CREATE INDEX NamelDX ON Sample.NewTab (Name)
Preparing SQL statement. ..
Executing SQL statement...
DONE

Elapsed time: 7.342532 seconds
If an error occurs in any SQL command, the Terminal display the error, as shown in the following example:

SQL statement to process (number 3):
INSERT INTO Sample.MyStudents (StudentName,StudentDOB) SELECT Name,
DOB FROM Sample.Person WHERE Age <= "21°*
Preparing SQL statement. ..
ERROR #5540: SQLCODE: -30 Message: Table "SAMPLE.PERSON®" not found
Pausing 5 seconds - read error message! (Type Q to Quit)

If you do not Quit within 5 seconds, ImportDDL () proceeds to execute the next SQL command. The error is recorded in
the errors log file with a timestamp, the user name, and the namespace name.

25.1.1 Import File Format

An SQL text file must be an unformatted file such as a .txt file. Each SQL command must begin on its own line. An SQL
command may be broken into multiple lines and indentation is permitted. Each SQL command must be followed by a GO
statement on its own line.

The following is an example of a valid InterSystems SQL import file text:

256 Using InterSystems SQL

Code Migration: Importing non-InterSystems SQL

CREATE TABLE Sample.MyStudents (StudentName VARCHAR(32),StudentDOB DATE)
GO

CREATE INDEX Nameldx ON TABLE Sample.MyStudents (StudentName)
GO

INSERT INTO Sample.MyStudents (StudentName,StudentDOB) SELECT Name,

DOB FROM Sample.Person WHERE Age <= 21"
GO

INSERT INTO Sample.MyStudents (StudentName,StudentDOB)

VALUES ('Jones,Mary',60123)

GO

UPDATE Sample.MyStudents SET StudentName="'Smith-Jones,Mary' WHERE StudentName="Jones,Mary'
GO

DELETE FROM Sample.MyStudents WHERE StudentName %STARTSWITH ‘A’
GO

25.1.2 Supported SQL Commands

Not all valid InterSystems SQL commands can be imported. The following is a list of supported InterSystems SQL commands:
» CREATETABLE, ALTER TABLE, DROP TABLE

* CREATEVIEW, ALTERVIEW, DROP VIEW

* CREATE INDEX all index types, except bitslice

« CREATE USER, DROP USER

» CREATEROLE

* GRANT, REVOKE

* INSERT, UPDATE, INSERT OR UPDATE, DELETE

e SET OPTION

» SELECT for optimizer plan mode only

25.2 Code Migration: Importing non-InterSystems SQL

You can import SQL code that is in the SQL format used by other vendors. Code from other vendors is converted to
InterSystems SQL code and executed. The following methods are provided:

* ImportDDL () is a general-purpose SQL import method. This method runs as a background (non-interactive) process.
Refer to Importing InterSystems SQL for general information on using this method.

To import SQL in a specific format you specify the name of that format as the third parameter: FDBMS, Informix,
InterBase, MSSQLServer (or MSSQL), MySQL, Oracle, or Sybase.

The following example imports the MSSQL code file mssqlcode.txt, executing the SQL commands listed in that file
in the current namespace:
ObjectScript

DO $SYSTEM.SQL.Schema. ImportDDL($1b(**C:\temp\somesql.sql*,""UTF8"), ,""MSSQL")

Note that if the third parameter is MSSQL, Sybase, Informix, or MySQL, the first parameter can be either an SQL
code file pathname or a two-element %L.ist with the first element the SQL code file pathname and the second element
is the 1/O translation table to use.

» Individual interactive methods are provided in %SYSTEM.SQL.Schema to import the following types of SQL:
LoadFDBM S(), L oadl nformix(), L oadl nter Base(), L oadM SSQL Ser ver (), LoadOr acle(), and L oadSybase().

Using InterSystems SQL 257

Importing SQL Code

These methods runs interactively from the Terminal. It prompts you to specify the location of the import text file, the
location to create the Errors.log file and the Unsupported.log file, and other information.

ImportDDL Dir () allow you to import SQL code from multiple files in a directory. This method runs as a background

(non-interactive) process. It supports Informix, MSSQLServer, and Sybase. All files to be imported must have a .sql
extension suffix.

ImportDir () allow you to import SQL code from multiple files in a directory. Provides more options than

ImportDDL Dir (). This method runs as a background (non-interactive) process. It supports MSSQLServer, and Sybase.
You can specify a list of allowed file extension suffixes.

258

Using InterSystems SQL

Importing and Exporting SQL Data

In the InterSystems IRIS® data platform Management Portal, there are tools for importing and exporting data. These tools
use Dynamic SQL, which means that queries are prepared and executed at runtime. InterSystems IRIS cannot import a row
that exceeds the string length limit, and within InterSystems IRIS, no row can exceed that limit.

You can also import data using the %SQL.Import.Mgr class, and export data using the %SQL.Export.Mgr class.

A.1 Importing Data with LOAD DATA

You can import data into InterSystems IRIS using the LOAD DATA SQL command. This utility can be used to import
data either from a file or from a table accessed with JDBC. Before calling LOAD DATA, you must first use CREATE
TABLE to define the table and its columns.

If the table is empty when loading data, L OAD DATA populates the table with rows from the data source. If the table
already contains data, L OAD DATA inserts rows into the table without overwriting any data in the table.

The following example creates a table and loads data into it using a file stored on a local system, named people.csv:

>>> CREATE TABLE Sample.Person (
Name VARCHAR(25),
Age INT,
DOB DATE)

>>> LOAD DATA FROM FILE "C://sampledata/people.csv®™ INTO Sample.Person

L OAD DATA also provides options for speeding up the loading operation through use of the BULK keyword. Refer to
the L OAD DATA reference for a full description of this behavior.

A.2 Exporting Data to aText File

You can export data for a given class to a text file. To do so:

1. From the Management Portal, select System Explorer, then SQL. Select a namespace by clicking the name of the current
namespace displayed at the top of the page; this displays the list of available namespaces.

2. At the top of the page, click the wizards drop-down list, and select Data Export.
3. On the first page of the wizard:

» Enter the complete path and filename of the file that you are going to create to hold the exported data.

Using InterSystems SQL 259

Importing and Exporting SQL Data

From the drop-down lists, select a Namespace, Schema Name, and Table Name from which you want to export
the data.

Optionally select a character set from the Charset drop-down list; the default is Device Default.

Then click Next.

4. On the second page of the wizard, select which columns to export. Then click Next.
5. On the third page of the wizard, describe the format of the external file.
» For what delimiter separates your columns?, click the option corresponding to the delimiter in this file.
» Click the Export column headers? check box if you want to export column headers as the first line of the file.
» For string quote, click an option to indicate how to start and end string data in this file.
» For Date format, click an option to indicate the date format to use in this file.
e For Time format, click an option to indicate the time format to use in this file.
e Optionally click Preview Data to see what the results will look like.
Then click Next.
6. Review your entries and click Finish. The wizard displays the Data Export Result dialog box.
7. Click close. Or click the given link to view the background tasks page.
In either case, the wizard starts a background task to do the work.
260 Using InterSystems SQL

	Table of Contents
	1 Using InterSystems SQL
	1.1 Get Started
	1.2 Topics
	1.2.1 InterSystems SQL Syntax
	1.2.2 SQL Execution Interfaces
	1.2.3 Schema Definitions
	1.2.4 Data Management and Queries
	1.2.5 SQL Security
	1.2.6 SQL Settings
	1.2.7 SQL Import/Export

	2 InterSystems SQL Features
	2.1 Architecture
	2.2 Features
	2.2.1 SQL-92 Compliance
	2.2.2 Extensions

	2.3 Interoperability
	2.3.1 JDBC
	2.3.2 ODBC
	2.3.3 Embedded SQL
	2.3.4 Dynamic SQL

	2.4 Limitations

	3 InterSystems SQL Basics
	3.1 Tables
	3.1.1 Schemas

	3.2 Queries
	3.3 Privileges
	3.4 SelectMode
	3.5 Data Collation
	3.6 Executing SQL

	4 Language Elements
	4.1 Commands and Keywords
	4.2 Functions: Intrinsic and Extrinsic
	4.3 Literals
	4.3.1 String Delimiters
	4.3.2 Concatenation

	4.4 NULL and the Empty String
	4.4.1 NULL Processing
	4.4.2 NULL in Expressions
	4.4.3 The Length of NULL
	4.4.4 ObjectScript and SQL

	4.5 Arithmetic Operators and Functions
	4.5.1 Resulting Data Type
	4.5.2 Operator Precedence
	4.5.3 Precision and Scale
	4.5.4 Arithmetic and Trigonometric Functions

	4.6 Relational Operators
	4.6.1 Contains and Follows Operators

	4.7 Logical Operators
	4.7.1 NOT Unary Operator
	4.7.2 AND and OR Operators

	4.8 Comments
	4.8.1 Single Line Comments
	4.8.2 Multiple Line Comments
	4.8.3 SQL Code Retained as Comments

	5 Implicit Joins (Arrow Syntax)
	5.1 Property Reference
	5.2 Child Table Reference
	5.3 Arrow Syntax Privileges

	6 Identifiers
	6.1 Simple Identifiers
	6.1.1 Naming Conventions
	6.1.2 Case of Letters
	6.1.3 Testing Valid Identifiers
	6.1.4 Namespace Names
	6.1.5 Identifiers and Class Entity Names
	6.1.6 Identifier Length Considerations

	6.2 Delimited Identifiers
	6.2.1 Delimited Identifier Valid Names
	6.2.2 Disabling Delimited Identifier Support

	6.3 SQL Reserved Words

	7 Using Embedded SQL
	7.1 Compiling Embedded SQL
	7.1.1 Embedded SQL and the Macro Preprocessor

	7.2 Embedded SQL Syntax
	7.2.1 The &sql Directive
	7.2.2 &sql Alternative Syntax
	7.2.3 &sql Marker Syntax
	7.2.4 Embedded SQL and Line Offsets

	7.3 Embedded SQL Code
	7.3.1 Simple SQL Statements
	7.3.2 Schema Name Resolution
	7.3.3 Literal Values
	7.3.4 Data Format
	7.3.5 Privilege Checking

	7.4 Host Variables
	7.4.1 Host Variable Examples
	7.4.2 Host Variable Subscripted by Column Number
	7.4.3 NULL and Undefined Host Variables
	7.4.4 Validity of Host Variables
	7.4.5 Host Variables and Procedure Blocks

	7.5 SQL Cursors
	7.5.1 The DECLARE Cursor Statement
	7.5.2 The OPEN Cursor Statement
	7.5.3 The FETCH Cursor Statement
	7.5.4 The CLOSE Cursor Statement

	7.6 Embedded SQL Variables
	7.6.1 %msg
	7.6.2 %ROWCOUNT
	7.6.3 %ROWID
	7.6.4 SQLCODE
	7.6.5 $TLEVEL
	7.6.6 $USERNAME

	7.7 Embedded SQL in Methods of a Persistent Class
	7.8 Validating Embedded SQL Code
	7.8.1 Compile with /compileembedded Qualifier
	7.8.2 Test with Show Plan

	7.9 Auditing Embedded SQL

	8 Using Dynamic SQL
	8.1 Introduction to Dynamic SQL
	8.1.1 Dynamic SQL versus Embedded SQL

	8.2 The %SQL.Statement Class
	8.3 Creating an Object Instance
	8.3.1 %SelectMode Property
	8.3.2 %SchemaPath Property
	8.3.3 %Dialect Property
	8.3.4 %ObjectSelectMode Property

	8.4 Preparing an SQL Statement
	8.4.1 %Prepare()
	8.4.2 %PrepareClassQuery()
	8.4.3 Results of a Successful Prepare
	8.4.4 The preparse() Method

	8.5 Executing an SQL Statement
	8.5.1 %Execute()
	8.5.2 %ExecDirect()
	8.5.3 %ExecDirectNoPriv()

	8.6 Returning the Full Result Set
	8.6.1 %Display() Method
	8.6.2 %DisplayFormatted() Method
	8.6.3 Paginating a Result Set

	8.7 Returning Specific Values from the Result Set
	8.7.1 %Print() Method
	8.7.2 %GetRow() and %GetRows() Methods
	8.7.3 rset.name Property
	8.7.4 %Get("fieldname") Method
	8.7.5 %GetData(n) Method

	8.8 Returning Multiple Result Sets
	8.9 SQL Metadata
	8.9.1 Statement Type Metadata
	8.9.2 Select-item Metadata
	8.9.3 Query Arguments Metadata
	8.9.4 Query Result Set Metadata

	8.10 Auditing Dynamic SQL

	9 Using the SQL Shell Interface
	9.1 Invoking the SQL Shell
	9.1.1 GO Command
	9.1.2 Input Parameters
	9.1.3 Executing ObjectScript Commands
	9.1.4 Browsing the Namespace
	9.1.5 CALL Command
	9.1.6 Executing an SQL Script File

	9.2 Storing and Recalling SQL Statements
	9.2.1 Recall by Number
	9.2.2 Recall by Name

	9.3 Purging Cached Queries
	9.4 Configuring the SQL Shell
	9.4.1 Configuring SQL Shell System-wide Defaults
	9.4.2 Configuring Parameters for an SQL Shell
	9.4.3 Setting COLALIGN
	9.4.4 Setting DISPLAYMODE and DISPLAYTRANSLATETABLE
	9.4.5 Setting EXECUTEMODE
	9.4.6 Setting ECHO
	9.4.7 Setting MESSAGES
	9.4.8 Setting LOG
	9.4.9 Setting PATH
	9.4.10 Setting SELECTMODE

	9.5 SQL Metadata, Query Plan, and Performance Metrics
	9.5.1 Displaying Metadata
	9.5.2 SHOW STATEMENT
	9.5.3 EXPLAIN and Show Plan
	9.5.4 SQL Shell Performance

	9.6 Transact-SQL Support
	9.6.1 Setting DIALECT
	9.6.2 Setting COMMANDPREFIX
	9.6.3 RUN Command
	9.6.4 TSQL Examples

	9.7 Other Ways of Executing SQL

	10 Using the Management Portal SQL Interface
	10.1 Management Portal SQL Facilities
	10.1.1 Selecting a Namespace
	10.1.2 User Customization

	10.2 Executing SQL Query
	10.2.1 Writing SQL Statements
	10.2.2 Execute Query Options
	10.2.3 Show Plan Button
	10.2.4 SQL Statement Results
	10.2.5 Show History
	10.2.6 Other SQL Interfaces

	10.3 Filtering Schema Contents
	10.3.1 Browse Tab

	10.4 Catalog Details
	10.4.1 Catalog Details for a Table
	10.4.2 Catalog Details for a View
	10.4.3 Catalog Details for a Stored Procedure
	10.4.4 Catalog Details for a Cached Query

	10.5 Wizards
	10.6 Actions
	10.7 Open Table
	10.8 Tools
	10.9 SQL Process View
	10.10 Diagnostic Logs

	11 Defining Tables
	11.1 Table Names and Schema Names
	11.2 Schema Name
	11.2.1 Schema Naming Considerations
	11.2.2 Reserved Schema Names
	11.2.3 Default Schema Name
	11.2.4 Schema Search Path
	11.2.5 Platform-Specific Schema Name Inclusion
	11.2.6 Listing Schemas

	11.3 Table Name
	11.4 RowID Field
	11.4.1 RowID Based on Fields
	11.4.2 RowID Hidden?

	11.5 Primary Key
	11.6 RowVersion, AutoIncrement, and Serial Counter Fields
	11.6.1 RowVersion Field
	11.6.2 Serial Counter Field
	11.6.3 AutoIncrement Field

	11.7 Defining a Table by Using DDL
	11.7.1 Using DDL in Embedded SQL
	11.7.2 Using a Class Method to Execute DDL
	11.7.3 Defining Tables by Importing and Executing a DDL Script

	11.8 Defining a Table by Creating a Persistent Class
	11.8.1 Defining Property Parameters
	11.8.2 Embedded Object (%SerialObject)
	11.8.3 Class Methods
	11.8.4 Defining a Sharded Table by Creating a Persistent Class

	11.9 Defining a Sharded Table
	11.10 Defining a Table by Querying an Existing Table
	11.11 Foreign Tables
	11.11.1 Introduction to Foreign Tables
	11.11.2 Creating a Foreign Table
	11.11.3 Querying a Foreign Table
	11.11.4 Deleting a Foreign Table

	11.12 Federated Tables
	11.12.1 Requirements for Creating a Federated Table
	11.12.2 Creating a Federated Table
	11.12.3 Querying a Federated Table
	11.12.4 Dropping or Disconnecting a Federated Table

	11.13 Listing Tables
	11.14 Listing Column Names and Numbers
	11.14.1 The Get Columns Methods

	11.15 Listing Constraints

	12 Defining and Using Views
	12.1 Creating a View
	12.1.1 Management Portal Create View Interface
	12.1.2 Views and Corresponding Classes

	12.2 Altering a View
	12.3 Updateable Views
	12.3.1 The WITH CHECK Option

	12.4 Read-only Views
	12.5 View ID: %VID
	12.6 Listing View Properties
	12.7 Listing View Dependencies

	13 Relationships Between Tables
	13.1 Defining a Foreign Key
	13.2 Foreign Key Referential Integrity Checking
	13.3 Parent and Child Tables
	13.3.1 Defining Parent and Child Tables
	13.3.2 Inserting Data into Parent and Child Tables
	13.3.3 Identifying Parent and Child Tables

	14 Using Triggers
	14.1 Defining Triggers
	14.2 Types of Triggers
	14.2.1 AFTER Triggers
	14.2.2 Recursive Triggers

	14.3 ObjectScript Trigger Code
	14.3.1 %ok, %msg, and %oper System Variables
	14.3.2 {fieldname} Syntax
	14.3.3 Macros within Trigger Code
	14.3.4 {name*O}, {name*N}, and {name*C} Trigger Code Syntax
	14.3.5 Additional ObjectScript Trigger Code Syntax

	14.4 Python Trigger Code
	14.5 Pulling Triggers
	14.6 Triggers and Object Access
	14.6.1 Not Pulling Triggers During Object Access

	14.7 Triggers and Transactions
	14.8 Listing Triggers

	15 Collation
	15.1 Collation Types
	15.2 Namespace-wide Default Collation
	15.3 Table Field/Property Definition Collation
	15.4 Index Definition Collation
	15.5 Query Collation
	15.5.1 select-item Collation
	15.5.2 DISTINCT and GROUP BY Collation

	15.6 Legacy Collation Types
	15.7 SQL and NLS Collations

	16 Federated Tables
	16.1 Requirements for Creating a Federated Table
	16.2 Creating a Federated Table
	16.2.1 Defining a Federated Table
	16.2.2 Connecting Source Tables to a Federated Table

	16.3 Querying a Federated Table
	16.4 Dropping or Disconnecting a Federated Table

	17 Defining Foreign Tables
	17.1 Introduction to Foreign Tables
	17.2 Creating a Foreign Table
	17.2.1 Step 1: Define a Foreign Server
	17.2.2 Step 2: Define a Foreign Table

	17.3 Querying a Foreign Table
	17.4 Deleting a Foreign Table

	18 Modifying the Database
	18.1 Inserting Data
	18.1.1 Insert Data Using SQL
	18.1.2 Insert Data Using Object Properties

	18.2 UPDATE Statements
	18.3 Computed Field Values on INSERT or UPDATE
	18.4 Validating Data
	18.5 DELETE Statements
	18.6 Transaction Processing
	18.6.1 Transactions and Savepoints
	18.6.2 Non-transaction Operations
	18.6.3 Transaction Locks
	18.6.4 Transaction Size Limitations
	18.6.5 Reading Uncommitted Data
	18.6.6 ObjectScript Transaction Commands

	19 Querying the Database
	19.1 Types of Queries
	19.2 Using a SELECT Statement
	19.2.1 SELECT Clause Order of Execution
	19.2.2 Selecting Fields
	19.2.3 The JOIN Operation
	19.2.4 Queries Selecting Large Numbers of Fields

	19.3 Defining and Executing Named Queries
	19.3.1 CREATE QUERY and CALL
	19.3.2 Class Queries

	19.4 Queries Invoking User-defined Functions
	19.5 Querying Serial Object Properties
	19.6 Querying Collections
	19.6.1 Usage Notes and Restrictions

	19.7 Queries Invoking Free-text Search
	19.8 Pseudo-Field Variables
	19.9 Query Metadata
	19.10 Queries and Enterprise Cache Protocol (ECP)
	19.11 Cached Queries
	19.11.1 Listing Cached Queries
	19.11.2 Purge Cached Queries

	20 Defining and Using Stored Procedures
	20.1 Overview
	20.2 Defining Stored Procedures
	20.2.1 Defining a Stored Procedure Using DDL
	20.2.2 SQL to Class Name Transformations
	20.2.3 Defining a Method Stored Procedure using Classes
	20.2.4 Defining a Query Stored Procedure using Classes
	20.2.5 Customized Class Queries

	20.3 Using Stored Procedures
	20.3.1 Stored Functions
	20.3.2 Privileges

	20.4 Listing Procedures

	21 Storing and Using Stream Data (BLOBs and CLOBs)
	21.1 Stream Fields and SQL
	21.1.1 BLOBs and CLOBs
	21.1.2 Defining Stream Data Fields
	21.1.3 Inserting Data into Stream Data Fields
	21.1.4 Querying Stream Field Data
	21.1.5 DISTINCT, GROUP BY, and ORDER BY
	21.1.6 Predicate Conditions and Streams
	21.1.7 Aggregate Functions and Streams
	21.1.8 Scalar Functions and Streams

	21.2 Stream Field Concurrency Locking
	21.3 Using Stream Fields within InterSystems IRIS Methods
	21.4 Using Stream Fields from ODBC
	21.5 Using Stream Fields from JDBC

	22 SQL Users, Roles, and Privileges
	22.1 SQL Privileges and System Privileges
	22.2 %Admin_Secure Permission
	22.3 %Admin_RoleEdit Permission
	22.4 %Admin_UserEdit Permission
	22.5 Users
	22.5.1 User Name as Schema Name

	22.6 Roles
	22.7 SQL Privileges
	22.7.1 Granting SQL Privileges
	22.7.2 Listing SQL Privileges
	22.7.3 Auditing Privilege Errors

	23 Using Vector Search
	23.1 Vectors and Embeddings
	23.2 Storing Vectors
	23.2.1 Translating Text to Embeddings
	23.2.2 Inserting VECTOR-typed Data

	23.3 Perform Vector Search
	23.3.1 Example

	24 SQL Settings Reference
	24.1 How to Change Each SQL Setting
	24.2 Settings that Require Permissions

	25 Importing SQL Code
	25.1 Importing InterSystems SQL
	25.1.1 Import File Format
	25.1.2 Supported SQL Commands

	25.2 Code Migration: Importing non-InterSystems SQL

	Appendix A: Importing and Exporting SQL Data
	A.1 Importing Data with LOAD DATA
	A.2 Exporting Data to a Text File

	Index

