
Using Caché Globals

Version 2018.1
2018-12-07

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Caché Globals
Caché Version 2018.1 2018-12-07
Copyright © 2018 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Features .. 3
1.2 Examples .. 4
1.3 Use in Applications .. 5

2 Global Structure ... 7
2.1 Logical Structure of Globals .. 7

2.1.1 Global Naming Conventions and Limits .. 7
2.1.2 Introduction to Global Nodes and Subscripts .. 9
2.1.3 Global Subscripts ... 9
2.1.4 Global Nodes .. 10
2.1.5 Collation of Globals ... 10

2.2 Maximum Length of a Global Reference ... 10
2.3 Physical Structure of Globals ... 11

2.3.1 How Globals Are Stored .. 12
2.4 Referencing Globals ... 12

2.4.1 Setting Global Mappings ... 12
2.4.2 Extended Global References .. 14

3 Using Multidimensional Storage (Globals) .. 17
3.1 Storing Data in Globals .. 17

3.1.1 Creating Globals .. 17
3.1.2 Storing Data in Global Nodes .. 18
3.1.3 Storing Structured Data in Global Nodes .. 18

3.2 Deleting Global Nodes ... 20
3.3 Testing the Existence of a Global Node ... 20
3.4 Retrieving the Value of a Global Node ... 21

3.4.1 The $GET Function .. 21
3.4.2 The WRITE, ZWRITE, and ZZDUMP Commands .. 21

3.5 Traversing Data within a Global .. 21
3.5.1 The $ORDER (Next / Previous) Function ... 21
3.5.2 Looping Over a Global ... 22
3.5.3 The $QUERY Function .. 23

3.6 Copying Data within Globals ... 24
3.7 Maintaining Shared Counters within Globals .. 24
3.8 Using Temporary Globals .. 24
3.9 Sorting Data within Globals ... 25

3.9.1 Collation of Global Nodes ... 25
3.9.2 Numeric and String-Valued Subscripts .. 26
3.9.3 The $SORTBEGIN and $SORTEND Functions .. 26

3.10 Using Indirection with Globals .. 27
3.11 Managing Transactions .. 27

3.11.1 Locks and Transactions .. 28
3.11.2 Nested Calls to TSTART .. 29

3.12 Managing Concurrency .. 29
3.13 Checking the Most Recent Global Reference .. 29

3.13.1 Naked Global Reference .. 30

Using Caché Globals iii

4 SQL and Object Use of Multidimensional Storage ... 31
4.1 Data .. 31

4.1.1 Default Structure .. 31
4.1.2 IDKEY ... 32
4.1.3 Subclasses .. 32
4.1.4 Parent-Child Relationships ... 33
4.1.5 Embedded Objects ... 34
4.1.6 Streams ... 34

4.2 Indices .. 34
4.2.1 Storage Structure of Standard Indices .. 34

4.3 Bitmap Indices .. 35
4.3.1 Logical Operation of Bitmap Indices ... 35
4.3.2 Storage Structure of Bitmap Indices .. 36
4.3.3 Direct Access of Bitmap Indices .. 37

5 Managing Globals ... 39
5.1 General Advice ... 39
5.2 Introduction to the Globals Page .. 40
5.3 Viewing Global Data .. 40
5.4 Editing Globals ... 41
5.5 Finding Values in Globals .. 42

5.5.1 Performing Wholesale Replacements .. 42
5.6 Exporting Globals .. 43
5.7 Importing Globals .. 43
5.8 Deleting Globals ... 44
5.9 APIs for Management Tasks ... 44

iv Using Caché Globals

List of Figures

Figure 2–1: Simple Subscript-level Mapping .. 13
Figure 2–2: More Complex Subscript-level Mapping ... 13

Using Caché Globals v

List of Tables

Table 4–1: BitString Operations .. 35

vi Using Caché Globals

About This Book

This book describes how Caché stores its data in multidimensional sparse arrays, known as globals.

This book covers the following topics:

• Introduction provides an overview of the features and uses of globals.

• “Global Structure” describes how globals are stored on disk, how they are named and referenced, and their structure.

• “Using Multidimensional Storage (Globals)” describes how to work with globals programmatically.

• “SQL and Object Usage of Multidimensional Storage” describes how the object and SQL engines use globals to store
data.

• “Managing Globals” describes tools for managing globals, primarily from the Management Portal.

For a detailed outline, see the Table of Contents.

For related programming guides, see:

• Caché Programming Orientation Guide

• Using Caché ObjectScript

• Using Caché Objects

• Using Caché Basic

For general information, see Using InterSystems Documentation.

Using Caché Globals 1

1
Introduction

One of the central features of Caché is its multidimensional storage engine. This feature lets applications store data in
compact, efficient, multidimensional sparse arrays. These arrays are referred to as globals.

This document describes:

• What globals are and the operations you can perform on them.

• The logical and physical structure of globals, including the use of globals in distributed database architecture.

• How you can use globals to store and retrieve data within your applications.

• How Caché uses globals within its SQL and Object engines.

1.1 Features
Globals provide an easy-to-use way to store data in persistent, multidimensional arrays.

For example, you can associate the value “Red” with the key “Color” using a global named Settings:

 SET ^Settings("Color")="Red"
 WRITE !,^Settings("Color")

You can take advantage of the multidimensional nature of globals to define a more complex structure:

^Settings("Auto1","Properties","Color") = "Red"
^Settings("Auto1","Properties","Model") = "SUV"
^Settings("Auto2","Owner") = "Mo"
^Settings("Auto2","Properties","Color") = "Green"

Globals have the following features:

• Simple to use — Globals are as easy to use as other programming language variables. A comprehensive set of commands
in both the ObjectScript language and the Caché Basic scripting language make it extremely easy to use globals within
applications.

• Multidimensional — You can specify the address of a node within a global using any number of subscripts. For
example, in ^Settings("Auto2","Properties","Color"), the subscript Color is a third-level node within
the Settings global. Subscripts can be integer, numeric, or string values, and need not be contiguous.

• Sparse — The subscripts used to address global nodes are highly compacted and need not have contiguous values.

• Efficient — The operations on globals — inserting, updating, deleting, traversing, and retrieving — are all highly
optimized for maximum performance and concurrency. There are additional commands for specialized operations

Using Caché Globals 3

(such as bulk inserts of data). There is a special set of globals designed for temporary data structures (such as for
sorting records).

• Reliable — The Caché database provides a number of mechanisms to ensure the reliability of data stored within
globals, including both logical-level and physical-level journaling. Data stored within globals is backed up when a
database backup operation is performed.

• Distributed — Caché provides a number of ways to control the physical location of data stored within globals. You
can define a physical database used to store a global, or distribute portions of a global across several databases. Using
the distributed database features of Caché, you can share globals across a network of database and application server
systems. In addition, by means of data shadowing technology, data stored within globals on one system can be auto-
matically replicated on another system.

• Concurrent — Globals support concurrent access among multiple processes. Setting and retrieving values within
individual nodes (array elements) is always atomic: no locking is required to guarantee reliable concurrent access. In
addition, Caché supports a powerful set of locking operations that can be used to provide concurrency for more complex
cases involving multiple nodes. When using Object or SQL access, this concurrency is handled automatically.

• Transactional — Caché provides commands that define transaction boundaries; you can start, commit, or rollback a
transaction. In the event of a rollback, all modifications made to globals within the transaction are undone; the contents
of the database are restored to their pre-transaction state. By using the various Caché locking operations in conjunction
with transactions, you can perform traditional ACID transactions using globals. (An ACID transaction provides
Atomicity, Consistency, Isolation, and Durability.) When using object or SQL access, transactions are handled auto-
matically.

Note: The globals described in this document should not be confused with another type of Caché array variable: process-
private globals. Process-private globals are not persistent; they persist only for the duration of the process that
created them. Process-private globals are also not concurrent; they can only be accessed by the process that created
them. A process-private global can be easily distinguished from a global by its multi-character name prefix: either
^|| or ^|"^"|.

1.2 Examples
A simple example can demonstrate the ease and performance of globals. The following program example creates a
10,000–node array (deleting it first if present) and stores it in the database. You can try this to get a sense of the performance
of globals:

Creating a Persistent Array

 Set start = $ZH // get current time

 Kill ^Test.Global
 For i = 1:1:10000 {
 Set ^Test.Global(i) = i
 }

 Set elap = $ZH - start // get elapsed time
 Write "Time (seconds): ",elap

We can also see how long it takes to iterate over and read the values in the array (make sure to run the above example first
to build the array):

4 Using Caché Globals

Introduction

Reading a Persistent Array

 Set start = $ZH // get current time
 Set total = 0
 Set count = 0

 // get key and value for first node
 Set i = $Order(^Test.Global(""),1,data)

 While (i '= "") {
 Set count = count + 1
 Set total = total + data

 // get key and value for next node
 Set i = $Order(^Test.Global(i),1,data)
 }

 Set elap = $ZH - start // get elapsed time

 Write "Nodes: ",count,!
 Write "Total: ",total,!
 Write "Time (seconds): ",elap,!

1.3 Use in Applications
Within Caché applications, globals are used in many ways, including:

• As the underlying storage mechanism shared by the object and SQL engines.

• As the mechanism used to provide a variety of indices, including bitmap indices, for object and SQL data.

• As a work space for performing certain operations that may not fit within process memory. For example, the SQL
engine uses temporary globals for sorting data when there is no preexisting index available for this purpose.

• For performing specialized operations on persistent objects or SQL tables that are difficult or inefficient to express in
terms of object or SQL access. For example, you can define a method (or stored procedure or web method) to perform
specialized analysis on data held in a table. By using methods, such an operation is completely encapsulated; the caller
simply invokes the method.

• To implement application-specific, customized storage structures. Many applications have the need to store data that
is difficult to express relationally. Using globals you can define custom structures and make them available to outside
clients via object methods.

• For a variety of special purpose data structures used by the Caché system, such as configuration data, class definitions,
error messages, and executable code.

Globals are not constrained by the confines of the relational model. They provide the freedom to develop customized
structures optimized for specific applications. For many applications, judicious use of globals can be a secret weapon
delivering performance that relational application developers can only dream about.

Whether your application makes direct use of globals or not, it is useful to understand their operation. Understanding
globals and their capabilities will help you to design more efficient applications as well as provide help with determining
the optimal deployment configuration for your applications.

Using Caché Globals 5

Use in Applications

2
Global Structure

This chapter describes the logical (programmatic) view of globals and provides an overview of how globals are physically
stored on disk. Its sections are:

• Logical Structure of Globals

• Maximum Length of a Global Reference

• Physical Structure of Globals

• Referencing Globals

2.1 Logical Structure of Globals
A global is a named multidimensional array that is stored within a physical Caché database. Within an application, the
mapping of globals to physical databases is based on the current namespace — a namespace provides a logical, unified
view of one or more physical databases.

Topics related to the logical structure of globals are:

• Global Naming Conventions and Limits

• Introduction to Global Nodes and Subscripts

• Global Subscripts

• Global Nodes

• Collation of Globals

2.1.1 Global Naming Conventions and Limits

The name of a global specifies its purpose and use. There are two types of globals and a separate set of variables, called
“process-private globals”:

• A global — This is what might be called a standard global; typically, these are simply referred to as globals. It is a
persistent, multidimensional array that resides in the current namespace.

• An extended global reference — This is a global located in a namespace other than the current namespace.

• A process-private global — This is an array variable that is only accessible to the process that created it.

Using Caché Globals 7

The naming conventions for globals are:

• A global name begins with a caret character (^) prefix. This caret distinguishes a global from a local variable.

• The first character after the caret (^) prefix in a global name can be:

– A letter or the percent character (%) — For standard globals only. If a global’s name begins with “%” (but not
“%Z” or “%z”), then this global is for Caché system use. % globals are typically stored within either the
CACHESYS or CACHELIB databases. For more details on the % character and InterSystems naming, see “Rules
and Guidelines for Identifiers” in the Caché Programming Orientation Guide.

– The vertical bar (|) or the left bracket ([) — For extended global references or process-private globals. The use
depends on subsequent characters. See the examples that follow this list.

• The other characters of a global name may be letters, numbers, or the period (.) character. The percent (%) character
cannot be used, except as the first character of a global name. The period (.) character cannot be used as the last char-
acter of a global name.

• A global name may be up to 31 characters long (exclusive of the caret character prefix). You can specify global names
that are significantly longer, but Caché treats only the first 31 characters as significant.

• Global names are case-sensitive.

• Caché imposes a limit on the total length of a global reference, and this limit, in turn, imposes limits on the length of
any subscript values. See “Maximum Length of a Global Reference” for details.

In the CACHESYS database, InterSystems reserves to itself all global names except those starting with “z”, “Z”, “%z”,
and “%Z”. In all other databases, InterSystems reserves all global names starting with “ISC.” and “%ISC.”.

2.1.1.1 Sample Global Names and Their Uses

The following are examples of the various kinds of global names and how each is used:

• ^globalname — a standard global

• ^|"environment"|globalname — environment syntax for an extended global reference

• ^||globalname — a process-private global

• ^|"^"|globalname — a process-private global

• ^[namespace]globalname — bracket syntax for an explicit namespace in an extended global reference

• ^[directory,system]globalname — bracket syntax for an implied namespace in an extended global reference

• ^["^"]globalname — a process-private global

• ^["^",""]globalname — a process-private global

Note: Global names can contain only valid identifier characters; by default, these are as specified above. However, your
NLS (National Language Support) settings may define a different set of valid identifier characters. Global names
cannot contain Unicode characters.

Thus, the following are all valid global names:

 SET ^a="The quick "
 SET ^A="brown fox "
 SET ^A7="jumped over "
 SET ^A.7="the lazy "
 SET ^A1B2C3="dog's back."
 WRITE ^a,^A,^A7,!,^A.7,^A1B2C3
 KILL ^a,^A,^A7,^A.7,^A1B2C3 // keeps the database clean

8 Using Caché Globals

Global Structure

2.1.2 Introduction to Global Nodes and Subscripts

A global typically has multiple nodes, generally identified by a subscript or set of subscripts. For a basic example:

 set ^Demo(1)="Cleopatra"

This statement refers to the global node ^Demo(1), which is a node within the ^Demo global. This node is identified by
one subscript.

For another example:

 set ^Demo("subscript1","subscript2","subscript3")=12

This statement refers to the global node ^Demo("subscript1","subscript2","subscript3"), which is another
node within the same global. This node is identified by three subscripts.

For yet another example:

 set ^Demo="hello world"

This statement refers to the global node ^Demo, which does not use any subscripts.

The nodes of a global form a hierarchical structure. ObjectScript provides commands that take advantage of this structure.
You can, for example, remove a node or remove a node and all its children. For a full discussion, see the next chapter.

The following sections provide details on the rules for subscripts and for global nodes.

2.1.3 Global Subscripts

Subscripts have the following rules:

• Subscript values are case-sensitive.

• A subscript value can be any ObjectScript expression, provided that the expression does not evaluate to the null string
("").

The value can include characters of all types, including blank spaces, non-printing characters, and (if your installation
is a Unicode installation) Unicode characters. (Note that non-printing characters are less practical in subscript values.)

• Before resolving a global reference, Caché evaluates each subscript in the same way it evaluates any other expression.
In the following example, we set one node of the ^Demo global, and then we refer to that node in several equivalent
ways:

SAMPLES>s ^Demo(1+2+3)="a value"

SAMPLES>w ^Demo(3+3)
a value

SAMPLES>w ^Demo(03+03)
a value

SAMPLES>w ^Demo(03.0+03.0)
a value

SAMPLES>set x=6

SAMPLES>w ^Demo(x)
a value

Using Caché Globals 9

Logical Structure of Globals

• Caché imposes a limit on the total length of a global reference, and this limit, in turn, imposes limits on the length of
any subscript values. See “Maximum Length of a Global Reference” for details.

CAUTION: The preceding rules apply for all Caché supported collations. For older collations still in use for compati-
bility reasons, such as “pre-ISM-6.1”, the rules for subscripts are more restrictive. For example, character
subscripts cannot have a control character as their initial character; and there are limitations on the number
of digits that can be used in integer subscripts.

Because of restrictions such as these, there is no guarantee that subscripts used for supported collations
will be valid in pre-Caché collations.

2.1.4 Global Nodes

Unless long strings are enabled for your installation, each global node can contain approximately 32K characters of text.
If long strings are enabled, the limit is much larger. (See “General System Limits” in the Caché Programming Orientation
Guide.)

Within applications, nodes typically contain the following types of structure:

1. String or numeric data. With a Unicode version of Caché, string data may contain native Unicode characters.

2. A string with multiple fields delimited by a special character:

^Data(10) = "Smith^John^Boston"

You can use the ObjectScript $PIECE function to pull such data apart.

3. Multiple fields contained within a Caché $LIST structure. The $LIST structure is a string containing multiple length-
encoded values. It requires no special delimiter characters.

4. A null string (""). In cases where the subscripts are themselves used as the data, no data is stored in the actual node.

5. A bitstring. In cases where a global is used to store part of a bitmap index, the value stored within a node is a bitstring.
A bitstring is a string containing a logical, compressed set of 1 and 0 values. You can construct a bitstring using the
$BIT functions.

6. Part of a larger set of data. For example, the object and SQL engines store streams (BLOBs) as a sequential series of
32K nodes within a global. By means of the stream interface, users of streams are unaware that streams are stored in
this fashion.

2.1.5 Collation of Globals

Within a global, nodes are stored in a collated (sorted) order.

Applications typically control the order in which nodes are sorted by applying a conversion to values used as subscripts.
For example, the SQL engine, when creating an index on string values, converts all string values to uppercase letters and
prepends a space character to make sure that the index is both not case-sensitive and collates as text (even if numeric values
are stored as strings).

2.2 Maximum Length of a Global Reference
The total length of a global reference — that is, the reference to a specific global node or subtree — is limited to 511
encoded characters (which may be fewer than 511 typed characters).

10 Using Caché Globals

Global Structure

For a conservative determination of the size of a given global reference, use the following guidelines:

1. For the global name: add 1 for each character.

2. For a purely numeric subscript: add 1 for each digit, sign, or decimal point.

3. For a subscript that includes nonnumeric characters: add 3 for each character.

If a subscript is not purely numeric, the actual length of the subscript varies depending on the character set used to
encode the string. A multibyte character can take up to 3 bytes.

Note that an ASCII character can take up 1 or 2 bytes. If the collation does case folding, an ASCII character can take
1 byte for the character and 1 byte for the disambiguation byte. If the collation does not perform case folding, an ASCII
character takes 1 byte.

4. For each subscript, add 1.

If the sum of these numbers is greater than 511, the reference may be too long.

Because of the way that the limitation is determined, if you must have long subscript or global names, it is helpful to avoid
a large number of subscript levels. Conversely, if you are using multiple subscript levels, avoid long global names and long
subscripts. Because you may not be able to control the character set(s) you are using, it is useful to keep global names and
subscripts shorter.

When there are doubts about particular references, it is useful to create test versions of global references that are of equiv-
alent length to the longest expected global reference (or even a little longer). Data from these tests provides guidance on
possible revisions to your naming conventions prior to building your application.

2.3 Physical Structure of Globals
Globals are stored within physical files using a highly optimized structure. The code that manages this data structure is also
highly optimized for every platform that Caché runs on. These optimizations ensure that operations on globals have high
throughput (number of operations per unit of time), high concurrency (total number of concurrent users), efficient use of
cache memory, and require no ongoing performance-related maintenance (such as frequent rebuilding, re-indexing, or
compaction).

The physical structure used to store globals is completely encapsulated; applications do not worry about physical data
structure in any way.

Globals are stored on disk within a series of data blocks; the size of each block (typically 8KB) is determined when the
physical database is created. To provide efficient access to data, Caché maintains a sophisticated B-tree-like structure that
uses a set of pointer blocks to link together related data blocks. Caché maintains a buffer pool — an in-memory cache of
frequently referenced blocks — to reduce the cost of fetching blocks from disk.

While many database technologies use B-tree-like structures for data storage, Caché is unique in many ways:

• The storage mechanism is exposed via a safe, easy-to-use interface.

• Subscripts and data are compressed to save disk space as well as valuable in-memory cache space.

• The storage engine is optimized for transaction processing operations: inserts, updates, and deletes are all fast. Unlike
relational systems, Caché never requires rebuilding indices or data in order to restore performance.

• The storage engine is optimized for maximum concurrent access.

• Data is automatically clustered for efficient retrieval.

Using Caché Globals 11

Physical Structure of Globals

2.3.1 How Globals Are Stored

Within data blocks, globals are stored sequentially. Both subscripts and data are stored together. There is a special case for
large node values (long strings) which are stored within separate blocks. A pointer to this separate block is stored along
with the node subscript.

For example, suppose you have a global with the following contents:

^Data(1999) = 100
^Data(1999,1) = "January"
^Data(1999,2) = "February"
^Data(2000) = 300
^Data(2000,1) = "January"
^Data(2000,2) = "February"

Most likely, this data would be stored within a single data block with a contiguous structure similar to (the real representation
is a series of bytes):

Data(1999):100|1:January|2:February|2000:300|1:January|2:February|...

An operation on ^Data can retrieve its entire contents with a minimum number of disk operations.

There are a number of additional techniques used to ensure that inserts, updates, and deletes are performed efficiently.

2.4 Referencing Globals
A global resides within a particular Caché database. Portions of a global can reside in different databases if appropriate
mappings are used. A database can be physically located on the current system, or on a remote system accessed through
Caché networking. The term dataset refers to the system and the directory that contain a Caché database. For further details
on networking, see the “Distributed Data Management Guide”.

A namespace is a logical definition of the datasets and global mappings that together form a set of related information.

A simple global reference applies to the currently selected namespace. The namespace definition can cause this to physically
access a database on the local system or a remote system. Different globals can be mapped to different locations or datasets
(where a dataset refers to the system and the directory that contain a Caché database).

For example, to create a simple reference to the global ORDER in the namespace to which it currently has been mapped,
use the following syntax:

^ORDER

This section describes two topics:

• Setting Global Mappings

• Extended Global References

2.4.1 Setting Global Mappings

You can map globals and routines from one database to another on the same or different systems. This allows simple refer-
ences to data which can exist anywhere and is the primary feature of a namespace. You can map whole globals or pieces
of globals; mapping a piece of a global (or a subscript) is known as subscript-level mapping (SLM). Because you can map
global subscripts, data can easily span disks.

To establish this type of mapping, see the “Add Global, Routine, and Package Mapping to a Namespace” section of the
“Configuring Caché” chapter of the Caché System Administration Guide.

12 Using Caché Globals

Global Structure

Global mapping is applied hierarchically. For example, if the NSX namespace has an associated DBX database, but maps
the ^x global to the DBY database and ^x(1) to the DBZ database, then any subscripted form of the ^x global — except
those that are part of the ^x(1) hierarchy — is mapped to DBY; those globals that are part of the ^x(1) hierarchy are mapped
to DBZ. The following diagram illustrates this hierarchy:

Figure 2–1: Simple Subscript-level Mapping

In this diagram, the globals and their hierarchy appear in gray, and the databases to which they are mapped appear in black.

It is also possible to map part of a mapped, subscripted global to another database, or even back to the database to which
the initial global is mapped. Suppose that the previous example had the additional mapping of the ^x(1,2) global back to
the DBY database. This would appear as follows:

Figure 2–2: More Complex Subscript-level Mapping

Again, the globals and their hierarchy appear in gray, and the databases to which they are mapped appear in black.

Once you have mapped a global from one namespace to another, you can reference the mapped global as if it were in the
current namespace — with a simple reference, such as ^ORDER or ^X(1).

Using Caché Globals 13

Referencing Globals

Important: When establishing subscript-level mapping ranges, the behavior of string subscripts differs from that of
integer subscripts. For strings, the first character determines the range, while the range for integers uses
numeric values. For example, a subscript range of ("A"):("C") contains not only AA but also AC and
ABCDEF; by contrast, a subscript range of (1):(2) does not contain 11.

2.4.1.1 Using Distinct Ranges of Globals and Subscripts

Each of a namespace’s mappings must refer to distinct ranges of globals or subscripts. Mapping validation prevents the
establishment of any kind of overlap. For example, if you attempt to use the Management Portal to create a new mapping
that overlaps with an existing mapping, the Portal prevents this from occurring and displays an error message.

2.4.1.2 Logging Changes

Successful changes to the mappings through the Portal are also logged in cconsole.log; unsuccessful changes are not logged.
Any failed attempts to establish mappings by hand-editing the Caché parameter (CPF) file are logged in cconsole.log; for
details on editing the CPF file, see the section “Editing the Active CPF File” in the “Introduction to the Caché Parameter
File” chapter of the Caché Parameter File Reference.

2.4.2 Extended Global References

You can refer to a global located in a namespace other than the current namespace. This is known as an extended global
reference or simply an extended reference.

There are two forms of extended references:

• Explicit namespace reference — You specify the name of the namespace where the global is located as part of the
syntax of the global reference.

• Implied namespace reference — You specify the directory and, optionally, the system name as part of the syntax of
the global reference. In this case, no global mappings apply, since the physical dataset (directory and system) is given
as part of the global reference.

The use of explicit namespaces is preferred, because this allows for redefinition of logical mappings externally, as
requirements change, without altering your application code.

Caché supports two forms of extended references:

• Bracket syntax, which encloses the extended reference with square brackets ([]).

• Environment syntax, which encloses the extended reference with vertical bars (| |).

Note: The examples of extended globals references use the Windows directory structure. In practice, the form of such
references is operating-system dependent.

2.4.2.1 Bracket Syntax

You can use bracket syntax to specify an extended global reference with either an explicit namespace or an implied
namespace:

14 Using Caché Globals

Global Structure

Explicit namespace:

^[nspace]glob

Implied namespace:

^[dir,sys]glob

In an explicit namespace reference, nspace is a defined namespace that the global glob has not currently been mapped or
replicated to. In an implied namespace reference, dir is a directory (the name of which includes a trailing backslash: “ \”),
sys is a system, and glob is a global within that directory. If nspace or dir is specified as a carat (“^”), the reference is to
a process-private global.

You must include quotation marks around the directory and system names or the namespace name unless you specify them
as variables. The directory and system together comprise an implied namespace. An implied namespace can reference
either:

• The specified directory on the specified system.

• The specified directory on your local system, if you do not specify a system name in the reference. If you omit the
system name from an implied namespace reference, you must supply a double caret (^^) within the directory reference
to indicate the omitted system name.

To specify an implied namespace on a remote system:

["dir","sys"]

To specify an implied namespace on the local system:

["^^dir"]

For example, to access the global ORDER in the C:\BUSINESS\ directory on a machine called SALES:

 SET x = ^["C:\BUSINESS\","SALES"]ORDER

To access the global ORDER in the C:\BUSINESS\ directory on your local machine:

 SET x = ^["^^C:\BUSINESS\"]ORDER

To access the global ORDER in the defined namespace MARKETING:

 SET x = ^["MARKETING"]ORDER

To access the process-private global ORDER:

 SET x = ^["^"]ORDER

Note: When creating an implied namespace extended reference involving a mirrored database, you can use its mirrored
database path, in the format :mirror:mirror_name:mirror_DB_name. For example, when referring to the database
with the mirror database name mirdb1 in the mirror CORPMIR, you could form an implied reference as follows:

["^^:mirror:CORPMIR:mirdb1"]

The mirrored database path can be used for both local and remote databases.

Using Caché Globals 15

Referencing Globals

2.4.2.2 Environment Syntax

The environment syntax is defined as:

^|"env"|global

"env" can have one of five formats:

• The null string ("") — The current namespace on the local system.

• "namespace" — A defined namespace that global is not currently mapped to. Namespace names are not case-sensitive.
If namespace has the special value of "^", it is a process-private global.

• "^^dir" — An implied namespace whose default directory is the specified directory on your local system, where dir
includes a trailing backslash (“\”).

• "^system^dir" — An implied namespace whose default directory is the specified directory on the specified remote
system, where dir includes a trailing backslash (“\”).

• omitted — If there is no "env" at all, it is a process-private global.

To access the global ORDER in your current namespace on your current system, when no mapping has been defined for
ORDER, use the following syntax:

 SET x = ^|""|ORDER

This is the same as the simple global reference:

 SET x = ^ORDER

To access the global ORDER mapped to the defined namespace MARKETING:

 SET x = ^|"MARKETING"|ORDER

You can use an implied namespace to access the global ORDER in the directory C:\BUSINESS\ on your local system:

 SET x = ^|"^^C:\BUSINESS\"|ORDER

You can use an implied namespace to access the global ORDER in the directory C:\BUSINESS on a remote system named
SALES:

 SET x = ^|"^SALES^C:\BUSINESS\"|ORDER

To access the process-private global ORDER:

 SET x = ^||ORDER
 SET x=^|"^"|ORDER

16 Using Caché Globals

Global Structure

3
Using Multidimensional Storage (Globals)

This chapter describes the various operations you can perform using multidimensional storage (global variables). It includes
the following topics:

• Storing Data in Globals

• Deleting Global Nodes

• Testing the Existence of a Global Node

• Retrieving the Value of a Global Node

• Traversing Data within a Global

• Copying Data within Globals

• Maintaining Shared Counters within Globals

• Using Temporary Globals

• Sorting Data within Globals

• Using Indirection with Globals

• Managing Transactions

• Managing Concurrency

• Checking the Most Recent Global Reference

3.1 Storing Data in Globals
Storing data in global nodes is simple: you treat a global as you would any other variable. The difference is that operations
on globals are automatically written to the database.

3.1.1 Creating Globals

There is no setup work required to create a new global; simply setting data into a global implicitly creates a new global
structure. You can create a global (or a global subscript) and place data in it with a single operation, or you can create a
global (or subscript) and leave it empty by setting it to the null string. In ObjectScript, these operations are done using the
SET command.

Using Caché Globals 17

The following examples define a global named Color (if one does not already exist) and associate the value “Red” with
it. If a global already exists with the name Color, then these examples modify it to contain the new information.

In Caché Basic:

^Color = "Red"

In ObjectScript:

 SET ^Color = "Red"

Note: When using direct global access within applications, develop and adhere to a naming convention to keep different
parts of an application from “walking over” one another; this is similar to developing naming convention for
classes, method, and other variables. Also, avoid certain global names that Caché uses; for a list of these, see the
section “Global Variable Names to Avoid” in the “Rules and Guidelines for Identifiers” appendix of the Caché
Programming Orientation Guide.

3.1.2 Storing Data in Global Nodes

To store a value within a global subscript node, simply set the value of the global node as you would any other variable
array. If the specified node did not previously exist, it is created. If it did exist, its contents are replaced with the new value.

You specify a node within a global by means of an expression (referred to as a global reference). A global reference consists
of the caret character (^), the global name, and (if needed) one or more subscript values. Subscripts (if present) are enclosed
within parentheses “()” and are separated by commas. Each subscript value is itself an expression: a literal value, a variable,
a logical expression, or even a global reference.

Setting the value of a global node is an atomic operation: It is guaranteed to succeed and you do not need to use any locks
to ensure concurrency.

The following are all valid global references:

In Caché Basic:

^Data = 2
^Data("Color") = "Red"
^Data(1,1) = 100
^Data(^Data) = 10 ' The value of ^Data is the subscript
^Data(a,b) = 50 ' The values of local variables a and b are subscripts
^Data(a + 10) = 50

In ObjectScript:

 SET ^Data = 2
 SET ^Data("Color")="Red"
 SET ^Data(1,1)=100 /* The 2nd-level subscript (1,1) is set
 to the value 100. No value is stored at
 the 1st-level subscript (^Data(1)). */
 SET ^Data(^Data)=10 /* The value of global variable ^Data
 is the name of the subscript. */
 SET ^Data(a,b)=50 /* The values of local variables a and b
 are the names of the subscripts. */
 SET ^Data(a+10)=50

If you are using ObjectScript, you can construct global references at runtime using indirection.

3.1.3 Storing Structured Data in Global Nodes

Each global node can contain a single string of up to 32K characters.

Data is typically stored within nodes in one of the following ways:

• As a single string of up to 32K characters (specifically, 32K minus 1).

18 Using Caché Globals

Using Multidimensional Storage (Globals)

• As a character-delimited string containing multiple pieces of data.

To store a set of fields within a node using a character delimiter, simply concatenate the values together using the
concatenate operator (_). The following ObjectScript examples use the # character as a delimiter:

 SET ^Data(id)=field(1)_"#"_field(2)_"#"_field(3)

When the data is retrieved, you can pull the fields apart using the $PIECE function:

 SET data = $GET(^Data(id))
 FOR i=1:1:3 {
 SET field(i) = $PIECE(data,"#",i)
 }
 QUIT

• As a $LIST-encoded string containing multiple pieces of data.

The $LIST functions use a special length-encoding scheme that does not require you to reserve a delimiter character.
(This is the default structure used by Caché objects and SQL.)

To store a set of fields within a node use the $LISTBUILD function to construct a list:

 SET ^Data(id)=$LISTBUILD(field(1),field(2),field(3))

When the data is retrieved, you can pull the fields apart using the $LIST or $LISTGET functions:

 SET data = $GET(^Data(id))
 FOR i = 1:1:3 {
 SET field(i)=$LIST(data,i)
 }
 QUIT

• As one part of a larger set of data (such as a stream or “BLOB”).

As individual nodes are limited to just under 32K of data, larger structures, such as streams, are implemented by storing
data in a set of successive nodes:

 SET ^Data("Stream1",1) = "First part of stream...."
 SET ^Data("Stream1",2) = "Second part of stream...."
 SET ^Data("Stream1",3) = "Third part of stream...."

Code that fetches the stream (such as that provided by the %GlobalCharacterStream class) loops over the successive
nodes in such a structure providing the data as a continuous string.

• As a bitstring.

If you are implementing a bitmap index (an index where a bit in a bitstring corresponds to a row in a table), you would
set the node values of an index global to bit strings. Note that Caché uses a compression algorithm for encoding bit
strings; therefore, bit strings can only be handled using the Caché $BIT functions. Refer to the Bit String Functions
Overview for more details on bit strings.

• As an empty node.

If the data you are interested in is provided by the nodes themselves, then it is typical to set the actual subscript to a
null string (""). For example, an index that associates a name with an ID value typically looks like this:

 SET ^Data("APPLE",1) = ""
 SET ^Data("ORANGE",2) = ""
 SET ^Data("BANANA",3) = ""

Using Caché Globals 19

Storing Data in Globals

3.2 Deleting Global Nodes
To remove a global node, a group of subnodes, or an entire global from the database, use the ObjectScript KILL or ZKILL
commands, or the Caché Basic Erase command.

The KILL command deletes all nodes (data as well as its corresponding entry in the array) at a specific global reference,
including any descendant subnodes. That is, all nodes starting with the specified subscript are deleted.

For example, the ObjectScript statement:

 KILL ^Data

deletes the entire ^Data global. A subsequent reference to this global would return an <UNDEFINED> error.

The ObjectScript statement:

 KILL ^Data(100)

deletes contents of node 100 within the ̂ Data global. If there are descendant subnodes, such as ̂ Data(100,1), ̂ Data(100,2),
and ^Data(100,1,2,3), these are deleted as well.

The ObjectScript ZKILL command deletes a specified global or global subscript node. It does not delete descendant
subnodes.

Note: Following the kill of a large global, the space once occupied by that global may not have been completely freed,
since the blocks are marked free in the background by the Garbage Collector daemon. Thus, a call to the
ReturnUnusedSpace method of the SYS.Database class immediately after killing a large global may not return
as much space as expected, since blocks occupied by that global may not have been released as yet.

You cannot use the NEW command on global variables.

3.3 Testing the Existence of a Global Node
To test if a specific global (or its descendants) contains data, use the ObjectScript $DATA function.

$DATA returns a value indicating whether or not the specified global reference exists. The possible return values are:

MeaningStatus
Value

The global variable is undefined.0

The global variable exists and contains data, but has no descendants. Note that the null string
("") qualifies as data.

1

The global variable has descendants (contains a downward pointer to a subnode) but does
not itself contain data. Any direct reference to such a variable will result in an <UNDEFINED>
error. For example, if $DATA(^y) returns 10, SET x=^y will produce an <UNDEFINED> error.

10

The global variable both contains data and has descendants (contains a downward pointer
to a subnode).

11

20 Using Caché Globals

Using Multidimensional Storage (Globals)

3.4 Retrieving the Value of a Global Node
To get the value stored within a specific global node, simply use the global reference as an expression.

Using Caché Basic:

color = ^Data("Color") ' assign to a local variable
Print ^Data("Color") ' use as an argument to a command
MyMethod(^Data("Color")) ' use as a function argument

Using Caché ObjectScript:

 SET color = ^Data("Color") ; assign to a local variable
 WRITE ^Data("Color") ; use as a command argument
 SET x=$LENGTH(^Data("Color")) ; use as a function parameter

3.4.1 The $GET Function

Within ObjectScript, you can also get the value of a global node using the $GET function:

 SET mydata = $GET(^Data("Color"))

This retrieves the value of the specified node (if it exists) or returns the null string ("") if the node has no value. You can
use the optional second argument of $GET to return a specified default value if the node has no value.

3.4.2 The WRITE, ZWRITE, and ZZDUMP Commands

You can display the contents of a global or a global subnode by using the various ObjectScript display commands. The
WRITE command returns the value of the specified global or subnode as a string. The ZWRITE command returns the
name of the global variable and its value, and each of its descendant nodes and their values. The ZZDUMP command
returns the value of the specified global or subnode in hexadecimal dump format.

3.5 Traversing Data within a Global
There are a number of ways to traverse (iterate over) data stored within a global.

3.5.1 The $ORDER (Next / Previous) Function

The ObjectScript $ORDER function (and its Caché Basic equivalent: Traverse) allows you to sequentially visit each node
within a global.

The $ORDER function returns the value of the next subscript at a given level (subscript number). For example, suppose
you have defined the following global:

 Set ^Data(1) = ""
 Set ^Data(1,1) = ""
 Set ^Data(1,2) = ""
 Set ^Data(2) = ""
 Set ^Data(2,1) = ""
 Set ^Data(2,2) = ""
 Set ^Data(5,1,2) = ""

To find the first, first-level subscript, we can use:

 SET key = $ORDER(^Data(""))

Using Caché Globals 21

Retrieving the Value of a Global Node

This returns the first, first-level subscript following the null string (""). (The null string is used to represent the subscript
value before the first entry; as a return value it is used to indicate that there are no following subscript values.) In this
example, key will now contain the value 1.

We can find the next, first-level subscript by using 1 or key in the $ORDER expression:

 SET key = $ORDER(^Data(key))

If key has an initial value of 1, then this statement will set it to 2 (as ^Data(2) is the next first-level subscript). Executing
this statement again will set key to 5 as that is the next first-level subscript. Note that 5 is returned even though there is no
data stored directly at ^Data(5). Executing this statement one more time will set key to the null string (""), indicating that
there are no more first level subscripts.

By using additional subscripts with the $ORDER function, you can iterate over different subscript levels. $ORDER returns
the next value of the last subscript in its argument list. Using the data above, the statement:

 SET key = $ORDER(^Data(1,""))

will set key to 1 as ^Data(1,1) is the next second-level subscript. Executing this statement again will set key to 2 as that is
the next second-level subscript. Executing this statement one more time will set key to “ ” indicating that there are no more
second-level subscripts under node ^Data(1).

3.5.1.1 Looping with $ORDER

The following ObjectScript code defines a simple global and then loops over all of its first-level subscripts:

 // clear ^Data in case it has data
 Kill ^Data

 // fill in ^Data with sample data
 For i = 1:1:100 {
 // Set each node to a random person's name
 Set ^Data(i) = ##class(%PopulateUtils).Name()
 }

 // loop over every node
 // Find first node
 Set key = $Order(^Data(""))

 While (key '= "") {
 // Write out contents
 Write "#", key, " ", ^Data(key),!

 // Find next node
 Set key = $Order(^Data(key))
 }

3.5.1.2 Additional $ORDER Arguments

The ObjectScript $ORDER function takes optional second and third arguments. The second argument is a direction flag
indicating in which direction you wish to traverse a global. The default, 1, specifies forward traversal, while –1 specifies
backward traversal.

The third argument, if present, contains a local variable name. If the node found by $ORDER contains data, the data found
is written into this local variable. When you are looping over a global and you are interested in node values as well as
subscript values, this operates more efficiently.

3.5.2 Looping Over a Global

If you know that a given global is organized using contiguous numeric subscripts, you can use a simple For loop to iterate
over its values. For example, in Caché Basic:

For i = 1 To 100
 Print ^Data(i)
Next

22 Using Caché Globals

Using Multidimensional Storage (Globals)

or the equivalent in ObjectScript:

 For i = 1:1:100 {
 Write ^Data(i),!
 }

Generally, it is better to use the $ORDER function described above: it is more efficient and you do not have to worry about
gaps in the data (such as a deleted node).

3.5.3 The $QUERY Function

If you need to visit every node and subnode within a global, moving up and down over subnodes, use the ObjectScript
$QUERY function. (Alternatively you can use nested $ORDER loops).

The $QUERY function takes a global reference and returns a string containing the global reference of the next node in the
global (or "" if there are no following nodes). To use the value returned by $QUERY, you must use the ObjectScript indi-
rection operator (@).

For example, suppose you define the following global:

 Set ^Data(1) = ""
 Set ^Data(1,1) = ""
 Set ^Data(1,2) = ""
 Set ^Data(2) = ""
 Set ^Data(2,1) = ""
 Set ^Data(2,2) = ""
 Set ^Data(5,1,2) = ""

The following call to $QUERY:

 SET node = $QUERY(^Data(""))

sets node to the string “^Data(1)” , the address of the first node within the global. Then, to get the next node in the global,
call $QUERY again and use the indirection operator on node:

 SET node = $QUERY(@node)

At this point, node contains the string “^Data(1,1)” .

The following example defines a set of global nodes and then walks over them using $QUERY, writing the address of
each node as it does:

 Kill ^Data // make sure ^Data is empty

 // place some data into ^Data
 Set ^Data(1) = ""
 Set ^Data(1,1) = ""
 Set ^Data(1,2) = ""
 Set ^Data(2) = ""
 Set ^Data(2,1) = ""
 Set ^Data(2,2) = ""
 Set ^Data(5,1,2) = ""

 // now walk over ^Data
 // find first node
 Set node = $Query(^Data(""))
 While (node '= "") {
 Write node,!
 // get next node
 Set node = $Query(@node)
 }

Using Caché Globals 23

Traversing Data within a Global

3.6 Copying Data within Globals
To copy the contents of a global (entire or partial) into another global (or a local array), use the ObjectScript MERGE
command.

The following example demonstrates the use of the MERGE command to copy the entire contents of the OldData global
into the NewData global:

 Merge ^NewData = ^OldData

If the source argument of the MERGE command has subscripts then all data in that node and its descendants are copied.
If the destination argument has subscripts, then the data is copied using the destination address as the top level node. For
example, the following code:

 Merge ^NewData(1,2) = ^OldData(5,6,7)

copies all the data at and beneath ^OldData(5,6,7) into ^NewData(1,2).

3.7 Maintaining Shared Counters within Globals
A major concurrency bottleneck of large-scale transaction processing applications can be the creation of unique identifier
values. For example, consider an order processing application in which each new invoice must be given a unique identifying
number. The traditional approach is to maintain some sort of counter table. Every process creating a new invoice waits to
acquire a lock on this counter, increments its value, and unlocks it. This can lead to heavy resource contention over this
single record.

To deal with this issue, Caché provides the ObjectScript $INCREMENT function. $INCREMENT atomically increments
the value of a global node (if the node has no value, it is set to 1). The atomic nature of $INCREMENT means that no
locks are required; the function is guaranteed to return a new incremented value with no interference from any other process.

You can use $INCREMENT as follows. First, you must decide upon a global node in which to hold the counter. Next,
whenever you need a new counter value, simply invoke $INCREMENT:

 SET counter = $INCREMENT(^MyCounter)

The default storage structure used by Caché objects and SQL uses $INCREMENT to assign unique object (row) identifier
values.

3.8 Using Temporary Globals
For certain operations, you may need the power of globals without requiring persistence. For example, you may want to
use a global to sort some data which you do not need to store to disk. For these operations, Caché provides temporary
globals.

Temporary globals have the following characteristics:

• Temporary globals are stored within the CACHETEMP database, which is always defined to be a local (that is, a non-
network) database. All globals mapped to the CACHETEMP database are treated as temporary globals.

• Changes to temporary globals are not written to disk. Instead the changes are maintained within the in-memory buffer
pool. A large temporary global may be written to disk if there is not sufficient space for it within the buffer pool.

24 Using Caché Globals

Using Multidimensional Storage (Globals)

• For maximum efficiency, changes to temporary globals are not logged to a journal file.

• Temporary globals are automatically deleted whenever the Caché system is restarted. (Note: it can be a very long time
before a live system is restarted; so you should not count on this for cleaning up temporary globals.)

By default, Caché defines any global whose name starts with “CacheTemp” as being a temporary global. To avoid conflict
with any temporary globals that Caché itself may use, you should start your temporary global names with “CacheTempUser”.

Caché SQL uses temporary globals as scratch space for optimizing complex queries. It may also uses temporary globals
as temporary indices during the execution of certain queries (for sorting, grouping, calculating aggregates, etc.)

3.9 Sorting Data within Globals
Data stored within globals is automatically sorted according to the value of the subscripts. For example, the following
ObjectScript code defines a set of globals (in random order) and then iterates over them to demonstrate that the global
nodes are automatically sorted by subscript:

 // Erase any existing data
 Kill ^Data

 // Define a set of global nodes
 Set ^Data("Cambridge") = ""
 Set ^Data("New York") = ""
 Set ^Data("Boston") = ""
 Set ^Data("London") = ""
 Set ^Data("Athens") = ""

 // Now iterate and display (in order)
 Set key = $Order(^Data(""))
 While (key '= "") {
 Write key,!
 Set key = $Order(^Data(key)) // next subscript
 }

Applications can take advantage of the automatic sorting provided by globals to perform sort operations or to maintain
ordered, cross-referenced indices on certain values. Caché SQL and ObjectScript use globals to perform such tasks auto-
matically.

3.9.1 Collation of Global Nodes

The order in which the nodes of a global are sorted (referred to as collation) is controlled at two levels: within the global
itself and by the application using the global.

At the application level, you can control how global nodes are collated by performing data transformations on the values
used as subscripts (Caché SQL and objects do this via user-specified collation functions). For example, if you wish to create
a list of names that is sorted alphabetically but ignores case, then typically you use the uppercase version of the name as a
subscript:

 // Erase any existing data
 Kill ^Data

 // Define a set of global nodes for sorting
 For name = "Cobra","jackal","zebra","AARDVark" {
 // use UPPERCASE name as subscript
 Set ^Data($ZCONVERT(name,"U")) = name
 }

 // Now iterate and display (in order)
 Set key = $Order(^Data(""))
 While (key '= "") {
 Write ^Data(key),! // write untransformed name
 Set key = $Order(^Data(key)) // next subscript
 }

Using Caché Globals 25

Sorting Data within Globals

This example converts each name to uppercase (using the $ZCONVERT function) so that the subscripts are sorted without
regard to case. Each node contains the untransformed value so that the original value can be displayed.

3.9.2 Numeric and String-Valued Subscripts

Numeric values are collated before string values; that is a value of 1 comes before a value of “a”. You need to be aware
of this fact if you use both numeric and string values for a given subscript. If you are using a global for an index (that is,
to sort data based on values), it is most common to either sort values as numbers (such as salaries) or strings (such as postal
codes).

For numerically collated nodes, the typical solution is to coerce subscript values to numeric values using the unary +
operator. For example, if you are building an index that sort id values by age, you can coerce age to always be numeric:

 Set ^Data(+age,id) = ""

If you wish to sort values as strings (such as “0022”, “0342”, “1584”) then you can coerce the subscript values to always
be strings by prepending a space (“ ”) character. For example, if you are building an index that sort id values by zipcode,
you can coerce zipcode to always be a string:

 Set ^Data(" "_zipcode,id) = ""

This ensures that values with leading zeroes, such as “0022” are always treated as strings.

3.9.3 The $SORTBEGIN and $SORTEND Functions

Typically you do not have to worry about sorting data within Caché. Whether you use SQL or direct global access, sorting
is handled automatically.

There are, however, certain cases where sorting can be done more efficiently. Specifically, in cases where (1) you need to
set a large number of global nodes that are in random (that is, unsorted) order and (2) the total size of the resulting global
approaches a significant portion of the Caché buffer pool, then performance can be adversely affected — since many of
the SET operations involve disk operations (as data does not fit in the cache). This scenario usually arises in cases involving
the creation of index globals such as bulk data loads, index population, or sorting of unindexed values in temporary globals.

To handle these cases efficiently, ObjectScript provides the $SORTBEGIN and $SORTEND functions. The $SORTBEGIN
function initiates a special mode for a global (or part thereof) in which data set into the global is written to a special scratch
buffer and sorted in memory (or temporary disk storage). When the $SORTEND function is called at the end of the oper-
ation, the data is written to actual global storage sequentially. The overall operation is much more efficient as the actual
writing is done in an order requiring far fewer disk operations.

The $SORTBEGIN function is quite easy to use; simply invoke it with the name of the global you wish to sort before
beginning the sort operation and call $SORTEND when the operation is complete:

 // Erase any existing data
 Kill ^Data

 // Initiate sort mode for ^Data global
 Set ret = $SortBegin(^Data)

 // Write random data into ^Data
 For i = 1:1:10000 {
 Set ^Data($Random(1000000)) = ""
 }

 Set ret = $SortEnd(^Data)

 // ^Data is now set and sorted

 // Now iterate and display (in order)
 Set key = $Order(^Data(""))
 While (key '= "") {
 Write key,!
 Set key = $Order(^Data(key)) // next subscript
 }

26 Using Caché Globals

Using Multidimensional Storage (Globals)

The $SORTBEGIN function is designed for the special case of global creation and must be used with some care. Specifically,
you must not read from the global to which you are writing while in $SORTBEGIN mode; as the data is not written, reads
will be incorrect.

Caché SQL automatically uses these functions for creation of temporary index globals (such as for sorting on unindexed
fields).

3.10 Using Indirection with Globals
By means of indirection, ObjectScript provides a way to create global references at runtime. This can be useful in applications
where you do not know global structure or names at program compilation time.

Indirection is supported via the indirection operator, @, which de-references a string containing an expression. There are
several types of indirection, based on how the @ operator is used.

The following code provides an example of name indirection in which the @ operator is used to de-reference a string con-
taining a global reference:

 // Erase any existing data
 Kill ^Data

 // Set var to an global reference expression
 Set var = "^Data(100)"

 // Now use indirection to set ^Data(100)
 Set @var = "This data was set indirectly."

 // Now display the value directly:
 Write "Value: ",^Data(100)

You can also use subscript indirection to mix expressions (variables or literal values) within indirect statements:

 // Erase any existing data
 Kill ^Data

 // Set var to a subscript value
 Set glvn = "^Data"

 // Now use indirection to set ^Data(1) to ^Data(10)
 For i = 1:1:10 {
 Set @glvn@(i) = "This data was set indirectly."
 }

 // Now display the values directly:
 Set key = $Order(^Data(""))
 While (key '= "") {
 Write "Value ",key, ": ", ^Data(key),!
 Set key = $Order(^Data(key))
 }

Indirection is a fundamental feature of ObjectScript; it is not limited to global references. For more information, refer to
the “Indirection” section in the “Operators” chapter of Using Caché ObjectScript. Indirection is less efficient than direct
access, so you should use it judiciously.

3.11 Managing Transactions
Caché provides the primitive operations needed to implement full transaction processing using globals. Caché objects and
SQL make use of these features automatically. If you are directly writing transactional data into globals, you can make use
of these operations.

Using Caché Globals 27

Using Indirection with Globals

The transaction commands are TSTART, which defines the start of a transaction; TCOMMIT, which commits the current
transaction; and TROLLBACK, which aborts the current transaction and undoes any changes made to globals since the
start of the transaction.

For example, the following ObjectScript code defines the start of a transaction, sets a number of global nodes, and then
commits or rolls back the transaction depending on the value of ok:

 TSTART

 Set ^Data(1) = "Apple"
 Set ^Data(2) = "Berry"

 If (ok) {
 TCOMMIT
 }
 Else {
 TROLLBACK
 }

The TSTART writes a transaction start marker in the Caché journal file. This defines the starting boundary of the transaction.
If the variable ok is true (nonzero) in the above example, then the TCOMMIT command marks the successful end of the
transaction and a transaction completion marker is written to the journal file. If ok is false (0), then the TROLLBACK
command will undo every set or kill operation made since the start of the transaction. In this case, ^Data(1) and ^Data(2)
are restored to their previous values.

Note that no data is written at the successful completion of a transaction. This is because all modifications to the database
during a transaction are carried out as normal during the course of a transaction. Only in the case of a rollback is the data
in the database affected. This implies that the transaction in this example has limited isolation; that is, other processes can
see the modified global values before the transaction is committed. This is typically referred to as an uncommitted read.
Whether this is good or bad depends on application requirements; in many cases this is perfectly reasonable behavior. If
an application requires a higher degree of isolation, then this is accomplished by using locks. This is described in the fol-
lowing section.

3.11.1 Locks and Transactions

To create isolated transactions—that is, to prevent other processes from seeing modified data before a transaction is com-
mitted—requires the use of locks. Within ObjectScript, you can directly acquire and release locks by means of the LOCK
command. Locks work by convention; for a given data structure (such as used for a persistent object) all code that requires
locks uses the same logical lock reference (that is, the same address is used by the LOCK command).

Within a transaction, locks have a special behavior; any locks acquired during the course of a transaction are not released
until the end of the transaction. To see why this is, consider the actions carried out by typical transaction:

1. Start the transaction using TSTART.

2. Acquire a lock (or locks) on the node (or nodes) you wish to modify. This is usually referred to as a “write” lock.

3. Modify the node (or nodes).

4. Release the lock (or locks). Because we are in a transaction, these locks are not actually released at this time.

5. Commit the transaction using TCOMMIT. At this point, all the locks released in the previous step are actually released.

If another process wants to look at the nodes involved in this transaction and does not want to see uncommitted modifications,
then it simply tests for a lock (referred to a “read” lock) before reading the data from the nodes. Because the write locks
are held until the end of the transaction, the reading process does not see the data until the transaction is complete (committed
or rolled back).

Most database management systems use a similar mechanism to provide transaction isolation. Caché is unique in that it
makes this mechanism available to developers. This makes it possible to create custom database structure for new application

28 Using Caché Globals

Using Multidimensional Storage (Globals)

types while still supporting transactions. Of course, you can simply use Caché objects or SQL to manage your data and let
your transactions be managed automatically.

3.11.2 Nested Calls to TSTART

Caché maintains a special system variable, $TLEVEL, that tracks how many times the TSTART command has been called.
$TLEVEL starts with a value of 0; each call to TSTART increments the value of $TLEVEL by 1, while each call to
TCOMMIT decrements its value by 1. If a call to TCOMMIT results in setting $TLEVEL back to 0, the transaction ends
(with a commit).

A call to the TROLLBACK command always terminates the current transaction and sets $TLEVEL back to 0, regardless
of the value of $TLEVEL.

This behavior gives applications the ability to wrap transactions around code (such as object methods) that itself contains
a transaction. For example, the %Save method, provided by persistent objects, always performs its operation as a transaction.
By explicitly calling TSTART and TCOMMIT you can create a larger transaction that encompasses several object save
operations:

 TSTART
 Set sc = object1.%Save()
 If ($$$ISOK(sc)) {
 // first save worked, do the second
 Set sc = object2.%Save()
 }

 If ($$$ISERR(sc)) {
 // one of the saves failed, rollback
 TROLLBACK
 }
 Else {
 // everything is ok, commit
 TCOMMIT
 }

3.12 Managing Concurrency
The operation of setting or retrieving a single global node is atomic; it is guaranteed to always succeed with consistent
results. For operations on multiple nodes or for controlling transaction isolation (see the section on Lock and Transactions),
Caché provides the ability to acquire and release locks.

Locks are managed by the Caché Lock Manager. Within ObjectScript, you can directly acquire and release locks by means
of the LOCK command. (Caché objects and SQL automatically acquire and release locks as needed).

For details on the LOCK command, refer to the LOCK command reference page.

3.13 Checking the Most Recent Global Reference
The most recent global reference is recorded in the ObjectScript $ZREFERENCE special variable. $ZREFERENCE
contains the most recent global reference, including subscripts and extended global reference, if specified. Note that
$ZREFERENCE indicates neither whether the global reference succeeded, nor if the specified global exists. Caché simply
records the most recently specified global reference.

Using Caché Globals 29

Managing Concurrency

3.13.1 Naked Global Reference

Following a subscripted global reference, Caché sets a naked indicator to that global name and subscript level. You can
then make subsequent references to the same global and subscript level using a naked global reference, omitting the global
name and higher level subscripts. This streamlines repeated references to the same global at the same (or lower) subscript
level.

Specifying a lower subscript level in a naked reference resets the naked indicator to that subscript level. Therefore, when
using naked global references, you are always working at the subscript level established by the most recent global reference.

The naked indicator value is recorded in the $ZREFERENCE special variable. The naked indicator is initialized to the
null string. Attempting a naked global reference when the naked indicator is not set results in a <NAKED> error. Changing
namespaces reinitializes the naked indicator. You can reinitialize the naked indicator by setting $ZREFERENCE to the
null string ("").

In the following example, the subscripted global ^Produce(“fruit”,1) is specified in the first reference. Caché saves this
global name and subscript in the naked indicator, so that the subsequent naked global references can omit the global name
“Produce” and the higher subscript level “fruit”. When the ^(3,1) naked reference goes to a lower subscript level, this new
subscript level becomes the assumption for any subsequent naked global references.

 SET ^Produce("fruit",1)="Apples" /* Full global reference */
 SET ^(2)="Oranges" /* Naked global references */
 SET ^(3)="Pears" /* assume subscript level 2 */
 SET ^(3,1)="Bartlett pears" /* Go to subscript level 3 */
 SET ^(2)="Anjou pears" /* Assume subscript level 3 */
 WRITE "latest global reference is: ",$ZREFERENCE,!
 ZWRITE ^Produce
 KILL ^Produce

This example sets the following global variables: ^Produce("fruit",1), ^Produce("fruit",2), ^Produce("fruit",3), ^Pro-
duce("fruit",3,1), and ^Produce("fruit",3,2).

With few exceptions, every global reference (full or naked) sets the naked indicator. The $ZREFERENCE special variable
contains the full global name and subscripts of the most recent global reference, even if this was a naked global reference.
The ZWRITE command also displays the full global name and subscripts of each global, whether or not it was set using
a naked reference.

Naked global references should be used with caution, because Caché sets the naked indicator in situations that are not
always obvious, including the following:

• A full global reference initially sets the naked indicator, and subsequent full global references or naked global references
change the naked indicator, even when the global reference is not successful. For example attempting to WRITE the
value of a nonexistent global sets the naked indicator.

• A command postconditional that references a subscripted global sets the naked indicator, regardless of how Caché
evaluates the postconditional.

• An optional function argument that references a subscripted global may or may not set the naked indicator, depending
on whether Caché evaluates all arguments. For example the second argument of $GET always sets the naked indicator,
even when the default value it contains is not used. Caché evaluates arguments in left-to-right sequence, so the last
argument may reset the naked indicator set by the first argument.

• The TROLLBACK command, which rolls back a transaction, does not roll back the naked indicator to its value at
the beginning of the transaction.

If a full global reference contains an extended global reference, subsequent naked global references assume the same
extended global reference; you do not have to specify the extended reference as part of a naked global reference.

30 Using Caché Globals

Using Multidimensional Storage (Globals)

4
SQL and Object Use of Multidimensional
Storage

This chapter describes how the Caché object and SQL engines make use of multidimensional storage (globals) for storing
persistent objects, relational tables, and indices.

Though the Caché object and SQL engines automatically provide and manage data storage structures, it can be useful to
understand the details of how this works.

The storage structures used by the object and relational view of data are identical. For simplicity, this document only
describes storage from the object perspective.

4.1 Data
Every persistent class that uses the %CacheStorage storage class (the default) can store instances of itself within the Caché
database using one or more nodes of multidimensional storage (globals).

Every persistent class has a storage definition that defines how its properties are stored within global nodes. This storage
definition (referred to as “default structure”) is managed automatically by the class compiler. (You can modify this storage
definition or even provide alternate versions of it if you like. This is not discussed in this document.)

4.1.1 Default Structure

The default structure used for storing persistent objects is quite simple:

• Data is stored in a global whose name starts with the complete class name (including package name). A “D” is appended
to form the name of the data global, while an “I” is appended for the index global.

• Data for each instance is stored within a single node of the data global with all non-transient properties placed within
a $List structure.

• Each node in the data global is subscripted by object ID value. By default, object ID values are integers provided by
invoking the $Increment function on a counter node stored at the root (with no subscript) of the data global.

For example, suppose we define a simple persistent class, MyApp.Person, with two literal properties:

Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
}

Using Caché Globals 31

If we create and save two instances of this class, the resulting global will be similar to:

 ^MyApp.PersonD = 2 // counter node
 ^MyApp.PersonD(1) = $LB("",530,"Abraham")
 ^MyApp.PersonD(2) = $LB("",680,"Philip")

Note that the first piece of the $List structure stored in each node is empty; this is reserved for a class name. If we define
any subclasses of this Person class, this slot contains the subclass name. The %OpenId method (provided by the %Persistent

class) uses this information to polymorphically open the correct type of object when multiple objects are stored within the
same extent. This slot shows up in the class storage definition as a property named “%%CLASSNAME”.

For more details, refer to the section on subclasses below.

4.1.2 IDKEY

The IDKEY mechanism allows you to explicitly define the value used as an object ID. To do this, you simply add an
IDKEY index definition to your class and specify the property or properties that will provide the ID value. Note that once
you save an object, its object ID value cannot change. This means that after you save an object that uses the IDKEY
mechanism, you can no longer modify any of the properties on which the object ID is based.

For example, we can modify the Person class used in the previous example to use an IDKEY index:

Class MyApp.Person Extends %Persistent
{
Index IDKEY On Name [Idkey];

Property Name As %String;
Property Age As %Integer;
}

If we create and save two instances of the Person class, the resulting global is now similar to:

 ^MyApp.PersonD("Abraham") = $LB("",530,"Abraham")
 ^MyApp.PersonD("Philip") = $LB("",680,"Philip")

Note that there is no longer any counter node defined. Also note that by basing the object ID on the Name property, we
have implied that the value of Name must be unique for each object.

If the IDKEY index is based on multiple properties, then the main data nodes has multiple subscripts. For example:

Class MyApp.Person Extends %Persistent
{
Index IDKEY On (Name,Age) [Idkey];

Property Name As %String;
Property Age As %Integer;
}

In this case, the resulting global will now be similar to:

 ^MyApp.PersonD("Abraham",530) = $LB("",530,"Abraham")
 ^MyApp.PersonD("Philip",680) = $LB("",680,"Philip")

Important: There must not be a sequential pair of vertical bars (||) within the values of any property used by an
IDKEY index, unless that property is a valid reference to an instance of a persistent class. This restriction
is imposed by the way in which the Caché SQL mechanism works. The use of || in IDKey properties can
result in unpredictable behavior.

4.1.3 Subclasses

By default, any fields introduced by a subclass of a persistent object are stored in an additional node. The name of the
subclass is used as an additional subscript value.

32 Using Caché Globals

SQL and Object Use of Multidimensional Storage

For example, suppose we define a simple persistent MyApp.Person class with two literal properties:

Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
}

Now we define a persistent subclass, MyApp.Student, that introduces two additional literal properties:

Class MyApp.Student Extends Person
{
Property Major As %String;
Property GPA As %Float;
}

If we create and save two instances of this MyApp.Student class, the resulting global will be similar to:

^MyApp.PersonD = 2 // counter node
^MyApp.PersonD(1) = $LB("Student",19,"Jack")
^MyApp.PersonD(1,"Student") = $LB(3.2,"Physics")

^MyApp.PersonD(2) = $LB("Student",20,"Jill")
^MyApp.PersonD(2,"Student") = $LB(3.8,"Chemistry")

The properties inherited from the Person class are stored in the main node, and those introduced by the Student class are
stored in an additional subnode. This structure ensures that the Student data can be used interchangeably as Person data.
For example, an SQL query listing names of all Person objects correctly picks up both Person and Student data. This
structure also makes it easier for the Class Compiler to maintain data compatibility as properties are added to either the
super- or subclasses.

Note that the first piece of the main node contains the string “Student” — this identifies nodes containing Student data.

4.1.4 Parent-Child Relationships

Within parent-child relationships, instances of child objects are stored as subnodes of the parent object to which they belong.
This structure ensures that child instance data is physically clustered along with parent data.

For example, here is the definition for two related classes, Invoice:

/// An Invoice class
Class MyApp.Invoice Extends %Persistent
{
Property CustomerName As %String;

/// an Invoice has CHILDREN that are LineItems
Relationship Items As LineItem [inverse = TheInvoice, cardinality = CHILDREN];
}

and LineItem:

/// A LineItem class
Class MyApp.LineItem Extends %Persistent
{
Property Product As %String;
Property Quantity As %Integer;

/// a LineItem has a PARENT that is an Invoice
Relationship TheInvoice As Invoice [inverse = Items, cardinality = PARENT];
}

If we store several instances of Invoice object, each with associated LineItem objects, the resulting global will be similar to:

^MyApp.InvoiceD = 2 // invoice counter node
^MyApp.InvoiceD(1) = $LB("","Wiley Coyote")
^MyApp.InvoiceD(1,"Items",1) = $LB("","Rocket Roller Skates",2)
^MyApp.InvoiceD(1,"Items",2) = $LB("","Acme Magnet",1)

^MyApp.InvoiceD(2) = $LB("","Road Runner")
^MyApp.InvoiceD(2,"Items",1) = $LB("","Birdseed",30)

Using Caché Globals 33

Data

For more information on relationships, refer to the “Relationships” chapter in the Using Caché Objects.

4.1.5 Embedded Objects

Embedded objects are stored by first converting them to a serialized state (by default a $List structure containing the object’s
properties) and then storing this serial state in the same way as any other property.

For example, suppose we define a simple serial (embeddable) class with two literal properties:

Class MyApp.MyAddress Extends %SerialObject
{
Property City As %String;
Property State As %String;
}

We now modify our earlier example to add an embedded Home address property:

Class MyApp.MyClass Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
Property Home As MyAddress;
}

If we create and save two instances of this class, the resulting global is equivalent to:

 ^MyApp.MyClassD = 2 // counter node
 ^MyApp.MyClassD(1) = $LB(530,"Abraham",$LB("UR","Mesopotamia"))
 ^MyApp.MyClassD(2) = $LB(680,"Philip",$LB("Bethsaida","Israel"))

4.1.6 Streams

Global streams are stored within globals by splitting their data into a series of chunks, each smaller than 32K bytes, and
writing the chunks into a series of sequential nodes. File streams are stored in external files.

4.2 Indices
Persistent classes can define one or more indices; additional data structures are used to make operations (such as sorting
or conditional searches) more efficient. Caché SQL makes use of such indices when executing queries. Caché Object and
SQL automatically maintain the correct values within indices as insert, update, and delete operations are carried out.

4.2.1 Storage Structure of Standard Indices

A standard index associates an ordered set of one or more property values with the object ID values of the object containing
the properties.

For example, suppose we define a simple persistent MyApp.Person class with two literal properties and an index on its
Name property:

Class MyApp.Person Extends %Persistent
{
Index NameIdx On Name;

Property Name As %String;
Property Age As %Integer;
}

If we create and save several instances of this Person class, the resulting data and index globals is similar to:

34 Using Caché Globals

SQL and Object Use of Multidimensional Storage

 // data global
 ^MyApp.PersonD = 3 // counter node
 ^MyApp.PersonD(1) = $LB("",34,"Jones")
 ^MyApp.PersonD(2) = $LB("",22,"Smith")
 ^MyApp.PersonD(3) = $LB("",45,"Jones")

 // index global
 ^MyApp.PersonI("NameIdx"," JONES",1) = ""
 ^MyApp.PersonI("NameIdx"," JONES",3) = ""
 ^MyApp.PersonI("NameIdx"," SMITH",2) = ""

Note the following things about the index global:

1. By default, it is placed in a global whose name is the class name with an “I” (for Index) appended to it.

2. By default, the first subscript is the index name; this allows multiple indices to be stored in the same global without
conflict.

3. The second subscript contains the collated data value. In this case, the data is collated using the default SQLUPPER
collation function. This converts all characters to uppercase (to sort without regard to case) and prepends a space
character (to force all data to collate as strings).

4. The third subscript contains the Object ID value of the object that contains the indexed data value.

5. The nodes themselves are empty; all the needed data is held within the subscripts. Note that if an index definition
specifies that data should be stored along with the index, it is placed in the nodes of the index global.

This index contains enough information to satisfy a number of queries, such as listing all Person class order by Name.

4.3 Bitmap Indices
A bitmap index is similar to a standard index except that it uses a series of bitstrings to store the set of object ID values
that correspond to the indexed value.

4.3.1 Logical Operation of Bitmap Indices

A bitstring is a string containing a set of bits (0 and 1 values) in a special compressed format. Caché includes a set of
functions to efficiently create and work with bitstrings. These are listed in the following table:

Table 4–1: BitString Operations

DescriptionFunction

Set or get a bit within a bitstring.$Bit

Count the number of bits within a bitstring.$BitCount

Find the next occurrence of a bit within a bitstring.$BitFind

Perform logical (AND, OR) operations on two or more bitstrings.$BitLogic

Within a bitmap index, ordinal positions within a bitstring correspond to rows (Object ID number) within the indexed table.
For a given value, a bitmap index maintains a bitstring that contains 1 for each row in which the given value is present, and
contains 0 for every row in which it is absent. Note that bitmap indices only work for objects that use the default storage
structure with system-assigned, numeric Object ID values.

For example, suppose we have a table similar to the following:

Using Caché Globals 35

Bitmap Indices

ProductStateID

HatMA1

HatNY2

ChairNY3

ChairMA4

HatMA5

If the State and Product columns have bitmap indices, then they contain the following values:

A bitmap index on the State column contains the following bitstring values:

11001MA

00110NY

Note that for the value, “MA”, there is a 1 in the positions (1, 4, and 5) that correspond to the table rows with State equal
to “MA”.

Similarly, a bitmap index on the Product column contains the following bitstring values (note that the values are collated
to uppercase within the index):

01100CHAIR

10011HAT

The Caché SQL Engine can execute a number of operations by iterating over, counting the bits within, or performing logical
combinations (AND, OR) on the bitstrings maintained by these indices. For example, to find all rows that have State equal
to “MA” and Product equal to “HAT”, the SQL Engine can simply combine the appropriate bitstrings together with log-
ical AND.

In addition to these indices, the system maintains an additional index, called an “extent index,” that contains a 1 for every
row that exists and a 0 for rows that do not (such as deleted rows). This is used for certain operations, such as negation.

4.3.2 Storage Structure of Bitmap Indices

A bitmap index associates an ordered set of one or more property values with one or more bitstrings containing the Object
ID values corresponding to the property values.

For example, suppose we define a simple persistent MyApp.Person class with two literal properties and a bitmap index on
its Age property:

Class MyApp.Person Extends %Persistent
{
Index AgeIdx On Age [Type = bitmap];

Property Name As %String;
Property Age As %Integer;
}

If we create and save several instances of this Person class, the resulting data and index globals is similar to:

36 Using Caché Globals

SQL and Object Use of Multidimensional Storage

 // data global
 ^MyApp.PersonD = 3 // counter node
 ^MyApp.PersonD(1) = $LB("",34,"Jones")
 ^MyApp.PersonD(2) = $LB("",34,"Smith")
 ^MyApp.PersonD(3) = $LB("",45,"Jones")

 // index global
 ^MyApp.PersonI("AgeIdx",34,1) = 110...
 ^MyApp.PersonI("AgeIdx",45,1) = 001...

 // extent index global
 ^MyApp.PersonI("$Person",1) = 111...
 ^MyApp.PersonI("$Person",2) = 111...

Note the following things about the index global:

1. By default, it is placed in a global whose name is the class name with an “I” (for Index) appended to it.

2. By default, the first subscript is the index name; this allows multiple indices to be stored in the same global without
conflict.

3. The second subscript contains the collated data value. In this case, a collation function is not applied as this is an index
on numeric data.

4. The third subscript contains a chunk number; for efficiency, bitmap indices are divided into a series of bitstrings each
containing information for about 64000 rows from the table. Each of these bitstrings are referred to as a chunk.

5. The nodes contain the bitstrings.

Also note: because this table has a bitmap index, an extent index is automatically maintained. This extent index is stored
within the index global and uses the class name, with a “$” character prepended to it, as its first subscript.

4.3.3 Direct Access of Bitmap Indices

The following example uses a class extent index to compute the total number of stored object instances (rows). Note that
it uses $Order to iterate over the chunks of the extent index (each chunk contains information for about 64000 rows):

/// Return the number of objects for this class.

/// Equivalent to SELECT COUNT(*) FROM Person
ClassMethod Count() As %Integer
{
 New total,chunk,data
 Set total = 0

 Set chunk = $Order(^MyApp.PersonI("$Person",""),1,data)
 While (chunk '= "") {
 Set total = total + $bitcount(data,1)
 Set chunk = $Order(^MyApp.PersonI("$Person",chunk),1,data)
 }

 Quit total
}

Using Caché Globals 37

Bitmap Indices

5
Managing Globals

The Management Portal provides tools for managing globals, and the system classes provide methods to perform some of
the same tasks. This chapter describes how to use these tools. It includes the following topics:

• General Advice

• Introduction to the Globals Page

• Viewing Globals

• Editing Globals

• Finding Values in Globals

• Exporting Globals

• Importing Globals

• Deleting Globals

• APIs for Management Tasks

For information on defining global mappings, see the chapter “Configuring Caché” in the Caché System Administration
Guide.

5.1 General Advice
As with the ObjectScript commands SET, MERGE, KILL, and others, the tools described here provide direct access to
manipulate globals. If you delete or modify via global access, you bypass all object and SQL integrity checking and there
is no undo option. It is therefore important to be very careful when doing these tasks. (Viewing and exporting do not affect
the database and are safe activities.)

When using the tools described in this chapter, make sure of the following:

• Be sure that you know which globals Caché uses. Not all of these are treated as “system” globals — that is, some of
them are visible even when you do not select the System check box. Some of these globals store code, including your
code.

See the section “Global Variable Names to Avoid” in the “Rules and Guidelines for Identifiers” appendix of the
Caché Programming Orientation Guide.

• Be sure that you know which globals your application uses.

Using Caché Globals 39

Even if your application never performs any direct global access, your application uses globals. Remember that if you
create persistent classes, their data and any indices are stored in globals, whose names are based on the class names
(by default). See “Data,” in the previous chapter.

5.2 Introduction to the Globals Page
The Management Portal includes the Globals page, which allows you to manage globals. On this page, you can:

• Select View in the row for that global to examine it.

• Select Edit in the row for that global to modify it.

• Select Export to export globals.

• Select Import to import globals.

• Select Delete to delete globals.

• Select Find to find values in globals.

This page also includes options for viewing routines and classes; these options are not discussed here.

To access this page from the Management Portal home page:

1. Select System Explorer > Globals.

2. Select the namespace or database of interest:

• Select either Namespaces or Databases from the Lookin list.

• Select the desired namespace or database from the displayed list.

Selecting a namespace or database updates the page to display its globals.

3. If you are looking for a particular global and do not initially see its name:

• Optionally specify a search mask. To do so, enter a value into the Globals field. If you end the string with an
asterisk “*”, the asterisk is treated as a wildcard, and the page displays each global whose name begins with the
string before the asterisk.

After entering a value, press Enter.

• Optionally select System items to include all system globals in the search.

• Optionally select a value from Page size, which controls the number of globals to list on any page.

5.3 Viewing Global Data
The View Global Data page lists nodes of the given global. In the table, the first column displays the row number, the next
column lists the nodes, and the right column shows the values. This page initially shows the first hundred nodes in the
global.

To access this page, display the Globals page and select the View link next to the name of a global. Or click the View button.

On this page, you can do the following:

40 Using Caché Globals

Managing Globals

• Specify a search mask. To do so, edit the value in Global Search Mask as follows:

– To display a single node, use a complete global reference. For example: ^Sample.PersonD(9)

– To display a subtree, use a partial global reference without the right parenthesis. For example: ̂ %SYS("JOURNAL"

– To display all nodes that match a given subscript, include the desired subscript and leave other subscript fields
empty. For example: ^CacheMsg(,"en")

– To display all subtrees that match a given subscript, use a value as in the previous option but also omit the right
parenthesis. For example: ^CacheMsg(,"en"

– To display nodes that match a range of subscripts, use subscriptvalue1:subscriptvalue2 in the place of a subscript.
For example: ^Sample.PersonD(50:60)

As with the previous option, if you omit the right parenthesis, the system displays the subtrees.

Then click Display or press Enter.

• Specify a different number of nodes to display. To do so, enter an integer into Maximum Rows.

• Repeat a previous search. To do so, select the search mask in the Search History drop-down.

• Select Allow Edit to make the data editable; see the next topic.

To close this page, click Cancel.

5.4 Editing Globals

CAUTION: Before making any edits, be sure that you know which globals Caché uses and which globals your application
uses; see “General Advice.” There is no undo option. A modified global cannot be restored.

The Edit Global Data page enables you to edit globals. In the table, the first column displays the row number, the next column
lists the nodes, and the right column shows the values (with a blue underline to indicate that the value can be edited). This
page initially shows the first hundred nodes in the global.

To access and use this page:

1. Display the Globals page.

2. Select the Edit link next to the name of a global.

3. Optionally use the Global Search Mask field to refine what is displayed. See “Viewing Global Data.”

4. Optionally specify a different number of nodes to display. To do so, enter an integer into Maximum Rows.

5. If necessary, navigate to the value you want to edit by selecting the subscripts that correspond to it.

6. Select the value that you want to edit.

The page then displays two editable fields:

• The top field contains the full global reference for the node you are editing. For example:
^Sample.PersonD("18")

You can edit this to refer to a different global node. If you do so, your action affects the newly specified global
node.

• The bottom field contains the current value of this node. For example:

Using Caché Globals 41

Editing Globals

$lb("",43144,$lb("White","Orange"),$lb("8262 Elm Avenue","Islip","RI",57581),"Rogers,Emilio
L.",
$lb("7430 Washington Street","Albany","GA",66833),"650-37-4263","")

Edit the values as needed.

7. If you make edits, click Save to save your changes, or click Cancel.

Or, to delete a node:

1. Optionally select Delete global subnodes during deletion

2. Click Delete.

3. Click OK to confirm this action.

Also see “Performing Wholesale Replacements,” later in this chapter.

5.5 Finding Values in Globals
The Find Global String page enables you to find a given string in the subscripts or in the values of selected globals.

To access and use this page:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Find button.

4. For Find What, enter the string to search for.

5. Optionally clear Match Case. By default, the search is case-sensitive.

6. Click either Find First or Find All.

The page then displays either the first node or all nodes whose subscripts or values contain the given string, within the
selected globals. The table shows the node subscripts on the left and the corresponding values on the right.

7. If you used Find First, click Find Next to see the next node, as needed.

8. When you are done, click Close Window.

5.5.1 Performing Wholesale Replacements

CAUTION: Before making any edits, be sure that you know which globals Caché uses and which globals your application
uses; see “General Advice.” This option changes the data permanently. It is not recommended for use in
production systems.

For development purposes, the Find Global String page also provides an option to make wholesale changes to values in
global nodes. To use this option:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Replace button.

4. Use this page to find values as described in the previous section.

42 Using Caché Globals

Managing Globals

5. Specify a value for Replace With.

6. Click Replace All.

7. Click OK to confirm this action.

The page then displays a preview of the change.

8. If the results are acceptable, click Save.

9. Click OK to confirm this action.

5.6 Exporting Globals

CAUTION: Because of how easy it is to import globals (which is an irreversible change), it is good practice to export
only the globals you need to import. Note that if you export all globals, the export includes all the globals
that contain code. Be sure that you know which globals Caché uses and which globals your application
uses; see “General Advice.”

The Export Globals page enables you to export globals.

To access and use this page:

1. Display the Globals page.

2. Specify the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Export button.

4. Specify the file into which you wish to export the globals. To do this, either enter a file name (including its absolute
or relative pathname) in the Enter the path and name of the export on server <hostname> field or click Browse and
navigate to the file.

5. Select the export file’s character set with the Character set list.

6. In the page’s central box:

• Choose an Output format

• Choose a Record format

7. Select or clear Check here to run export in the background...

8. Click Export.

9. If the file already exists, click OK to overwrite it with a new version.

The export creates a .gof file.

5.7 Importing Globals

CAUTION: Before importing any globals, be sure that you know which globals Caché uses and which globals your
application uses; see “General Advice.” There is no undo option. After you import a global into an existing
global (thus merging the data), there is no way to restore the global to its previous state.

The Import Globals page enables you to import globals. To access and use this page:

Using Caché Globals 43

Exporting Globals

1. Display the Globals page.

2. Click the Import button.

3. Specify the import file. To do this, either enter a file (including its absolute or relative pathname) in the Enter the path

and name of the import file field or click Browse and navigate to the file.

4. Select the import file’s character set with the Character set list.

5. Select Next.

6. Choose the globals to import using the check boxes in the table.

7. Optionally select Run import in the background. If you select this, the task is run in the background.

8. Click Import.

5.8 Deleting Globals

CAUTION: Before deleting any globals, be sure that you know which globals Caché uses and which globals your
application uses; see “General Advice.” There is no undo option. A deleted global cannot be restored.

The Delete Globals page enables you to delete globals. To access and use this page:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Delete button.

4. Click OK to confirm this action.

5.9 APIs for Management Tasks
Caché also provides the following APIs to perform some of the tasks described in this chapter:

• The class %SYSTEM.OBJ provides the following methods:

– Export() enables you to export globals to an XML file.

– Load() and LoadDir() enable you to import globals contained in XML files.

These are both available via the $SYSTEM variable, for example: $SYSTEM.OBJ.Export

• The class %Library.Global provides the following methods:

– Export() enables you to export globals to .gof and other file formats (not including XML).

– Import() enables you to import globals to .gof and other file formats (not including XML).

%Library.Global also provides the Get() class query, which you can use to find globals, given search criteria.

For pointers to additional APIs, see “Globals” in the InterSystems Programming Tools Index.

44 Using Caché Globals

Managing Globals

	Table of Contents
	About This Book
	1 Introduction
	1.1 Features
	1.2 Examples
	1.3 Use in Applications

	2 Global Structure
	2.1 Logical Structure of Globals
	2.1.1 Global Naming Conventions and Limits
	2.1.2 Introduction to Global Nodes and Subscripts
	2.1.3 Global Subscripts
	2.1.4 Global Nodes
	2.1.5 Collation of Globals

	2.2 Maximum Length of a Global Reference
	2.3 Physical Structure of Globals
	2.3.1 How Globals Are Stored

	2.4 Referencing Globals
	2.4.1 Setting Global Mappings
	2.4.2 Extended Global References

	3 Using Multidimensional Storage (Globals)
	3.1 Storing Data in Globals
	3.1.1 Creating Globals
	3.1.2 Storing Data in Global Nodes
	3.1.3 Storing Structured Data in Global Nodes

	3.2 Deleting Global Nodes
	3.3 Testing the Existence of a Global Node
	3.4 Retrieving the Value of a Global Node
	3.4.1 The $GET Function
	3.4.2 The WRITE, ZWRITE, and ZZDUMP Commands

	3.5 Traversing Data within a Global
	3.5.1 The $ORDER (Next / Previous) Function
	3.5.2 Looping Over a Global
	3.5.3 The $QUERY Function

	3.6 Copying Data within Globals
	3.7 Maintaining Shared Counters within Globals
	3.8 Using Temporary Globals
	3.9 Sorting Data within Globals
	3.9.1 Collation of Global Nodes
	3.9.2 Numeric and String-Valued Subscripts
	3.9.3 The $SORTBEGIN and $SORTEND Functions

	3.10 Using Indirection with Globals
	3.11 Managing Transactions
	3.11.1 Locks and Transactions
	3.11.2 Nested Calls to TSTART

	3.12 Managing Concurrency
	3.13 Checking the Most Recent Global Reference
	3.13.1 Naked Global Reference

	4 SQL and Object Use of Multidimensional Storage
	4.1 Data
	4.1.1 Default Structure
	4.1.2 IDKEY
	4.1.3 Subclasses
	4.1.4 Parent-Child Relationships
	4.1.5 Embedded Objects
	4.1.6 Streams

	4.2 Indices
	4.2.1 Storage Structure of Standard Indices

	4.3 Bitmap Indices
	4.3.1 Logical Operation of Bitmap Indices
	4.3.2 Storage Structure of Bitmap Indices
	4.3.3 Direct Access of Bitmap Indices

	5 Managing Globals
	5.1 General Advice
	5.2 Introduction to the Globals Page
	5.3 Viewing Global Data
	5.4 Editing Globals
	5.5 Finding Values in Globals
	5.5.1 Performing Wholesale Replacements

	5.6 Exporting Globals
	5.7 Importing Globals
	5.8 Deleting Globals
	5.9 APIs for Management Tasks

