
Using Caché SQL

Version 2018.1
2019-05-23

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Caché SQL
Caché Version 2018.1 2019-05-23
Copyright © 2019 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to Caché SQL ... 3
1.1 Architecture .. 3
1.2 Features .. 4

1.2.1 SQL-92 Compliance .. 4
1.2.2 Extensions .. 5

1.3 Interoperability ... 5
1.3.1 JDBC .. 5
1.3.2 ODBC ... 5
1.3.3 Embedded SQL .. 6
1.3.4 Dynamic SQL .. 6

1.4 Limitations ... 6

2 Caché SQL Basics ... 9
2.1 Tables .. 9

2.1.1 Schemas ... 10
2.2 Queries ... 10
2.3 Privileges .. 11
2.4 Data Display Options ... 11
2.5 Data Collation .. 12
2.6 Executing SQL ... 12

3 Language Elements .. 15
3.1 Commands and Keywords .. 15
3.2 Literals .. 16

3.2.1 String Delimiters .. 16
3.2.2 Concatenation ... 17

3.3 NULL and the Empty String .. 17
3.3.1 NULL Processing ... 17
3.3.2 NULL in Expressions ... 18
3.3.3 The Length of NULL ... 18
3.3.4 ObjectScript and SQL .. 19

3.4 Arithmetic Operators and Functions .. 19
3.4.1 Operator Precedence .. 20
3.4.2 Precision and Scale .. 21
3.4.3 Arithmetic and Trigonometric Functions ... 21

3.5 Relational Operators ... 22
3.6 Logical Operators ... 23

3.6.1 NOT Unary Operator ... 23
3.6.2 AND and OR Operators ... 23

3.7 Comments ... 24
3.7.1 Single Line Comments ... 24
3.7.2 Multiple Line Comments ... 24
3.7.3 SQL Code Retained as Comments ... 25

4 Identifiers .. 27
4.1 Simple Identifiers ... 27

4.1.1 Naming Conventions .. 27

Using Caché SQL iii

4.1.2 Case of Letters ... 28
4.1.3 Testing Valid Identifiers ... 28
4.1.4 Identifiers and Class Entities .. 29
4.1.5 Identifier Length Considerations ... 29

4.2 Delimited Identifiers .. 30
4.2.1 Disabling Delimited Identifier Support .. 30

4.3 SQL Reserved Words ... 31

5 Defining Tables .. 33
5.1 Table Names and Schema Names ... 33

5.1.1 System-wide Default Schema .. 34
5.1.2 Schema Search Path ... 35
5.1.3 Schema Naming Considerations .. 35
5.1.4 Platform-Specific Schema Names ... 36
5.1.5 Table Naming Considerations .. 36

5.2 RowID Field ... 37
5.3 RowVersion and Serial Counter Fields .. 38

5.3.1 RowVersion Field ... 38
5.3.2 Serial Field ... 39

5.4 Defining a Table by Creating a Persistent Class .. 40
5.4.1 Unique Values .. 41
5.4.2 Computed Values .. 41
5.4.3 Embedded Object (%SerialObject) .. 42
5.4.4 Class Methods .. 42

5.5 Defining a Table by Using DDL .. 43
5.5.1 Using DDL in Embedded SQL .. 43
5.5.2 Using a Class Method to Execute DDL ... 44
5.5.3 Running DDL Scripts from the Command Line .. 44

5.6 Defining a Table by Querying an Existing Table ... 45
5.7 External Tables ... 45
5.8 Listing Tables ... 46
5.9 Listing Column Names and Numbers .. 46

5.9.1 The GetColumns() Method .. 46

6 Defining and Using Views .. 47
6.1 Creating a View .. 47

6.1.1 Management Portal Create View Interface ... 48
6.2 Updateable Views ... 48

6.2.1 The WITH CHECK Option .. 49
6.3 Read-only Views ... 49
6.4 View ID: %VID .. 50
6.5 Listing View Properties .. 51
6.6 Listing View Dependencies .. 51

7 Using Foreign Keys ... 53
7.1 Defining a Foreign Key .. 53
7.2 Foreign Key Referential Integrity Checking .. 53
7.3 Identifying Parent and Child Tables ... 54

8 Modifying the Database ... 55
8.1 INSERT Statements .. 55
8.2 UPDATE Statements .. 55
8.3 DELETE Statements .. 55

iv Using Caché SQL

8.4 Transaction Processing ... 56
8.4.1 Transactions and Savepoints .. 56
8.4.2 Non-transaction Operations ... 57
8.4.3 Transaction Locks .. 57
8.4.4 Transaction Size Limitations .. 57
8.4.5 Reading Uncommitted Data ... 57
8.4.6 ObjectScript Transaction Commands ... 58

9 Querying the Database ... 59
9.1 Types of Queries ... 59
9.2 Using a SELECT Statement ... 59

9.2.1 Selecting Fields .. 60
9.2.2 The JOIN Operation ... 61
9.2.3 Queries Selecting Large Numbers of Fields .. 62

9.3 Defining and Executing Named Queries .. 62
9.3.1 CREATE QUERY and CALL .. 62
9.3.2 Class Queries .. 63

9.4 Queries Invoking User-defined Functions .. 63
9.5 Collection Properties .. 64
9.6 Queries Invoking Free-text Search ... 64

9.6.1 Full Text Indexing and Text Retrieval through SQL ... 65
9.6.2 Collection Indexing and Querying Collections through SQL .. 66
9.6.3 Usage Notes and Restrictions .. 66

9.7 Pseudo-Field Variables ... 67
9.8 Query Metadata .. 67
9.9 Queries and ECP .. 68

10 Collation .. 69
10.1 Collation Types ... 70
10.2 Namespace-wide Default Collation .. 70
10.3 Table Field/Property Definition Collation .. 71
10.4 Index Definition Collation .. 72
10.5 Query Collation .. 73

10.5.1 select-item Collation .. 73
10.5.2 DISTINCT and GROUP BY Collation .. 74

10.6 Legacy Collation Types .. 74
10.7 SQL and NLS Collations .. 75

11 Implicit Joins (Arrow Syntax) ... 77
11.1 Property Reference ... 77
11.2 Child Table Reference .. 79
11.3 Arrow Syntax Privileges ... 79

12 Using Embedded SQL .. 81
12.1 Compiling Embedded SQL and the Macro Preprocessor .. 81

12.1.1 Recompilation Required following Change to Dependent Class 83
12.2 Embedded SQL Syntax .. 83

12.2.1 The &sql Directive ... 83
12.2.2 &sql Alternative Syntax ... 84
12.2.3 &sql Marker Syntax ... 85
12.2.4 Embedded SQL and Line Offsets .. 85

12.3 Embedded SQL Code ... 85
12.3.1 Simple SQL Statements ... 86

Using Caché SQL v

12.3.2 Schema Name Resolution .. 86
12.3.3 Literal Values .. 86
12.3.4 Data Format .. 87
12.3.5 Privilege Checking ... 88

12.4 Host Variables ... 89
12.4.1 Host Variable Examples ... 90
12.4.2 Host Variable Subscripted by Column Number ... 91
12.4.3 NULL and Undefined Host Variables .. 93
12.4.4 Validity of Host Variables ... 93
12.4.5 Host Variables and Procedure Blocks .. 94

12.5 SQL Cursors ... 94
12.5.1 The DECLARE Cursor Statement ... 95
12.5.2 The OPEN Cursor Statement ... 96
12.5.3 The FETCH Cursor Statement ... 96
12.5.4 The CLOSE Cursor Statement ... 96

12.6 Embedded SQL Variables ... 97
12.6.1 %msg .. 97
12.6.2 %ok .. 98
12.6.3 %ROWCOUNT .. 98
12.6.4 %ROWID ... 99
12.6.5 SQLCODE ... 100
12.6.6 $TLEVEL ... 100
12.6.7 $USERNAME .. 100

12.7 Auditing Embedded SQL ... 101

13 Using Dynamic SQL ... 103
13.1 Introduction to Dynamic SQL .. 103

13.1.1 Dynamic SQL versus Embedded SQL ... 104
13.2 The %SQL.Statement Class ... 105
13.3 Creating an Object Instance ... 105

13.3.1 %SelectMode Property .. 106
13.3.2 %SchemaPath Property .. 107
13.3.3 %Dialect Property .. 108
13.3.4 %ObjectSelectMode Property .. 108

13.4 Preparing an SQL Statement .. 109
13.4.1 %Prepare() ... 109
13.4.2 %PrepareClassQuery() ... 111
13.4.3 Results of a Successful Prepare ... 112

13.5 Executing an SQL Statement ... 113
13.5.1 %Execute() ... 113
13.5.2 %ExecDirect() .. 115

13.6 Returning the Full Result Set ... 117
13.6.1 %Display() Method .. 117
13.6.2 %DisplayFormatted() Method ... 117
13.6.3 Paginating a Result Set ... 118

13.7 Returning Specific Values from the Result Set .. 118
13.7.1 %Print() Method .. 119
13.7.2 rset.name Property ... 120
13.7.3 %Get("fieldname") Method ... 122
13.7.4 %GetData(n) Method ... 123

13.8 Returning Multiple Result Sets .. 124

vi Using Caché SQL

13.9 SQL Metadata .. 124
13.9.1 Statement Type Metadata ... 125
13.9.2 Select-item Metadata .. 125
13.9.3 Query Arguments Metadata ... 127
13.9.4 Query Result Set Metadata .. 128

13.10 Auditing Dynamic SQL .. 129

14 Dynamic SQL Using Older Result Set Classes .. 131
14.1 Dynamic SQL Using %ResultSet.SQL .. 131
14.2 Dynamic SQL Using %Library.ResultSet .. 132

14.2.1 %Library.ResultSet Supports SQL Result Properties .. 132
14.2.2 %Library.ResultSet Does Not Support CALL ... 132

14.3 Input Parameters ... 133
14.4 Closing a Query .. 134
14.5 %Library.ResultSet Metadata ... 134
14.6 %ResultSet.SQL Metadata ... 136

15 Using the SQL Shell Interface ... 137
15.1 Other Ways of Executing SQL ... 137
15.2 Invoking the SQL Shell .. 138

15.2.1 GO Command .. 140
15.2.2 Input Parameters ... 140
15.2.3 Executing ObjectScript Commands ... 140
15.2.4 CALL Command .. 141
15.2.5 Executing an SQL Script File .. 141

15.3 Storing and Recalling SQL Statements .. 141
15.3.1 Recall by Number .. 141
15.3.2 Recall by Name .. 142

15.4 SQL Shell Parameters .. 143
15.4.1 Displaying, Setting, and Saving SQL Shell Parameters ... 143
15.4.2 Setting DISPLAYMODE and DISPLAYTRANSLATE .. 144
15.4.3 Setting EXECUTEMODE ... 146
15.4.4 Setting ECHO .. 146
15.4.5 Setting MESSAGES ... 147
15.4.6 Setting LOG ... 148
15.4.7 Setting PATH .. 148
15.4.8 Setting SELECTMODE ... 148

15.5 SQL Metadata and Performance Metrics ... 149
15.5.1 Displaying Metadata, Show Plan, and Show Statement .. 149
15.5.2 SQL Shell Performance ... 149

15.6 Transact-SQL Support .. 150
15.6.1 Setting DIALECT .. 150
15.6.2 Setting COMMANDPREFIX .. 150
15.6.3 RUN Command .. 151
15.6.4 TSQL Examples ... 152

16 Using the Management Portal SQL Interface ... 153
16.1 Management Portal SQL Facilities .. 153

16.1.1 Selecting a Namespace ... 154
16.2 Executing SQL Statements ... 154

16.2.1 Writing SQL Statements .. 154
16.2.2 Table Drag and Drop .. 154

Using Caché SQL vii

16.2.3 Execute Query Options .. 155
16.2.4 SQL Statement Results .. 155
16.2.5 Show History .. 156
16.2.6 Other SQL Interfaces ... 157

16.3 Filtering Schema Contents ... 157
16.3.1 Browse Tab ... 158
16.3.2 Catalog Details Tab .. 158
16.3.3 Open Table ... 160

16.4 Actions .. 160
16.5 Wizards ... 161

17 Importing SQL Code .. 163
17.1 Importing Caché SQL .. 163

17.1.1 Import File Format ... 164
17.1.2 Supported SQL Statements .. 164

17.2 Code Migration: Importing non-Caché SQL ... 165

18 Using Triggers ... 167
18.1 Defining Triggers ... 167
18.2 Types of Triggers .. 168

18.2.1 AFTER Triggers ... 169
18.2.2 Recursive Triggers .. 169

18.3 How Trigger Code Works ... 169
18.3.1 Macros within Trigger Code .. 170
18.3.2 {name*O}, {name*N}, and {name*C} Trigger Code Syntax 170
18.3.3 Additional Trigger Code Syntax .. 171

18.4 Triggers and Object Access .. 171
18.4.1 Not Pulling Triggers During Object Access ... 172

18.5 Triggers and Transactions ... 172
18.6 Listing Triggers .. 172

19 Defining and Using Stored Procedures ... 173
19.1 Overview .. 173
19.2 Defining Stored Procedures ... 173

19.2.1 Defining a Stored Procedure Using DDL .. 174
19.2.2 SQL to Class Name Transformations ... 174
19.2.3 Defining a Method Stored Procedure using Classes .. 175
19.2.4 Defining a Query Stored Procedure using Classes .. 176
19.2.5 Customized Class Queries ... 178

19.3 Using Stored Procedures .. 178
19.3.1 Stored Functions .. 179
19.3.2 Privileges .. 179

19.4 Listing Procedures .. 180

20 Storing and Using Stream Data (BLOBs and CLOBs) ... 181
20.1 Stream Fields and SQL .. 181

20.1.1 BLOBs and CLOBs ... 182
20.2 Defining Stream Fields Using DDL ... 183

20.2.1 Empty BLOBs .. 183
20.3 Stream Field Concurrency Locking ... 183
20.4 Using Stream Fields within Caché Methods .. 183
20.5 Using Stream Fields from ODBC .. 184
20.6 Using Stream Fields from JDBC .. 184

viii Using Caché SQL

21 Users, Roles, and Privileges ... 185
21.1 Users ... 185
21.2 Roles ... 186
21.3 Privileges .. 186

22 Using the Caché SQL Gateway ... 189
22.1 Architecture of the Caché SQL Gateway ... 189

22.1.1 Persisting External Tables in Caché ... 190
22.1.2 Restrictions on SQL Gateway Queries ... 190

22.2 Creating Gateway Connections for External Sources .. 190
22.3 The Link Table Wizard: Linking to a Table or View .. 191

22.3.1 Using the Link Table Wizard ... 191
22.3.2 Limitations When Using the Linked Table .. 193

22.4 The Link Procedure Wizard: Linking to a Stored Procedure ... 193
22.5 Controlling Gateway Connections ... 194
22.6 The Data Migration Wizard: Migrating Data from an ODBC or JDBC Source 195

22.6.1 Microsoft Access and Foreign Key Constraints ... 196

Appendix A: Importing and Exporting SQL Data ... 197
A.1 Importing Data from a Text File .. 197
A.2 Exporting Data to a Text File .. 198

Using Caché SQL ix

List of Tables

Table 5–1: Available DDL Commands in Caché SQL .. 43

x Using Caché SQL

About This Book

This book describes how to use the Caché SQL, which provides standard relational access to data stored within a Caché
database.

The book addresses the following topics:

The Caché SQL language:

• “Introduction to Caché SQL” provides an overview of Caché SQL as it relates to software standards and interoperability.

• “Caché SQL Basics” describes the fundamental features of Caché SQL (such as tables and queries), especially those
that are not covered by the SQL standard or are related to the Caché unified data architecture.

• “Language Elements” describes how Caché SQL handles the basic elements common to any programming language:
numbers, strings, operators, NULL, and comments.

• “ Identifiers” describes the conventions used for naming entities within Caché SQL.

Data Definition: creating tables and views:

• “Defining Tables” describes how to define tables in Caché SQL, by defining persistent classes or by using an SQL
DDL statement.

• “Defining Views” describes how to define views in Caché SQL by using the Management Portal or by using a DDL
statement.

• “Defining Foreign Keys” describes how to define foreign keys in Caché SQL.

• “Defining Triggers” describes how to define triggers in Caché SQL.

• “Defining and Using Stored Procedures” discusses stored procedures in Caché SQL.

• “Storing and Using BLOBs and CLOBs” describes stream data and how to store and use BLOBs and CLOBs in Caché
SQL.

• “Users, Roles, and Privileges” addresses connections between Caché SQL and Caché security features.

Data Management: querying and modifying data:

• “Querying the Database” describes how to create and use SELECT queries.

• “ Implicit Joins” describes a Caché SQL extension that provides arrow syntax for implicit joins. Caché SQL also
provides standard syntax for explicit joins.

• “Modifying the Database” describes how to use INSERT, UPDATE, and DELETE to modify data, and how to use
transactions to group multiple data modifications.

SQL execution interfaces:

• “Using Embedded SQL” describes how to write and execute SQL code embedded within ObjectScript code. This
chapter also describes SQL cursors, which enable you to access multiple rows of data.

• “Using Dynamic SQL” describes how ObjectScript can include SQL that is executed at runtime.

• “Using the SQL Shell” describes how to write and execute SQL statements from the Terminal.

• “Using the Management Portal SQL Interface” describes how to write and execute SQL statements from the Manage-
ment Portal.

Using Caché SQL 1

• “ Importing SQL Code” describes how to execute SQL statements by importing them from a text file. This interface
can be used for Caché SQL code or SQL code in other vendor formats. Import SQL code can be used to define tables
and to populate tables with data; it cannot be used to query data.

SQL interface:

• “Using the Caché SQL Gateway” describes how to obtain access to external databases via JDBC and ODBC, enabling
you to treat external tables as if they were native Caché tables.

• “ Importing and Exporting SQL Data” (an appendix) discusses tools in the Management Portal that enable you to
import or export data.

For a detailed outline, see the Table of Contents.

When using Caché SQL, you may find the following additional sources useful:

• The Caché SQL Reference provides details on individual SQL commands and functions, as well as information on the
Caché SQL data types and reserved words.

• Caché SQL Optimization Guide describes how to optimize a table definition by defining and building indices, how to
use Tune Table to optimize table metadata based on typical data, and how to optimize query execution using cached
queries, ShowPlan, frozen plans, and other optimization techniques.

• Caché Programming Orientation Guide is an orientation guide for programmers who are new to Caché or who are
familiar with only some kinds of Caché programming.

• In Using Caché Objects, the chapter “ Introduction to Persistent Objects” summarizes how Caché object technology
interoperates with SQL. Later chapters provide additional detail.

• Using Caché with JDBC describes how to access Caché tables from external applications via JDBC.

• Using Caché with ODBC describes how to access Caché tables from external applications via ODBC.

• Caché Advanced Configuration Settings Reference describes the SQL configuration settings.

• Caché Error Reference lists the SQLCODE error messages.

For general information, see Using InterSystems Documentation.

2 Using Caché SQL

About This Book

1
Introduction to Caché SQL

Caché SQL provides uncompromising, standard relational access to data stored within a Caché database.

Caché SQL offers the following benefits:

• High performance and scalability — Caché SQL offers performance and scalability superior to other relational database
products. In addition, Caché SQL runs on a wide variety of hardware and operating systems; from laptop computers
to high-end, multi-CPU systems.

• Integration with Caché objects technology — Caché SQL is tightly integrated with Caché object technology. You can
mix relational and object access to data without sacrificing the performance of either approach.

• Low maintenance — Unlike other relational databases, Caché applications do not require index rebuilding and table
compression in deployed applications.

• Support for standard SQL queries — Caché SQL supports SQL-92 standard syntax and commands. In most cases, you
can migrate existing relational applications to Caché with little difficulty and automatically take advantage of the higher
performance and object capabilities of Caché.

You can use Caché SQL for many purposes including:

• Object- and web-based applications — You can use SQL queries within Caché Object and Caché Server Page appli-
cations to perform powerful database operations such as lookups and searches.

• Online transaction processing — Caché SQL offers outstanding performance for insert and update operations as well
as the types of queries typically found within transaction processing applications.

• Business intelligence and data warehousing — The combination of the Caché multidimensional database engine and
bitmap indexing technology make it an excellent choice for data warehouse-style applications.

• Ad hoc queries and reports — You can use the full-featured ODBC and JDBC drivers included with Caché SQL to
connect to popular reporting and query tools.

• Enterprise application integration — The Caché SQL Gateway gives you seamless SQL access to data stored in
external relational databases that are ODBC- or JDBC-compliant. This makes it easy to integrate data from a variety
of sources within Caché applications.

1.1 Architecture
The core of Caché SQL consists of the following components:

Using Caché SQL 3

• The Unified Data Dictionary — a repository of all meta-information stored as a series of class definitions. Caché
automatically creates relational access (tables) for every persistent class stored within the Unified Dictionary.

• The SQL Processor and Optimizer — a set of programs that parse and analyze SQL queries, determine the best search
strategy for a given query (using a sophisticated cost-based optimizer), and generate code that executes the query.

• The Caché SQL Server — a set of Caché server processes that are responsible for all communications with the Caché
ODBC and JDBC drivers. It also manages a cache of frequently used queries; when the same query is executed multiple
times, its execution plan can be retrieved from the query cache instead of having to be processed by the Optimizer
again.

1.2 Features
Caché SQL includes a full set of standard, relational features. These include:

• The ability to define tables and views (DDL or Data Definition Language).

• The ability to execute queries against tables and views (DML or Data Manipulation Language).

• The ability to execute transactions, including INSERT, UPDATE, and DELETE operations. When performing concurrent
operations, Caché SQL uses row-level locks.

• The ability to define and use indices for more efficient queries.

• The ability to use a wide variety of data types, including user-defined types.

• The ability to define users and roles and assign privileges to them.

• The ability to define foreign keys and other integrity constraints.

• The ability to define INSERT, UPDATE, and DELETE triggers.

• The ability to define and execute stored procedures.

• The ability to return data in different formats: ODBC mode for client access; Display mode for use within server-based
applications (such as CSP pages).

Note: We continue to add support for additional features within Caché SQL. If you require a feature that is not supported
within this release, please feel free to check with the InterSystems InterSystems Worldwide Response Center
(WRC) to see if it will be included in a newer release.

1.2.1 SQL-92 Compliance

The SQL-92 standard is imprecise with regard to arithmetical operator precedence; assumptions on this matter differ amongst
SQL implementations. Caché SQL supports two system-wide alternatives for SQL arithmetic operator precedence:

• By default, Caché SQL parses arithmetic expressions in strict left-to-right order, with no operator precedence. This is
the same convention used in ObjectScript. Thus, 3+3*5=30. You can use parentheses to enforce the desired precedence.
Thus, 3+(3*5)=18.

• You can configure Caché SQL to parse arithmetic expressions using ANSI precedence, which gives higher precedence
to multiplication and division operators than addition, subtraction, and concatenation operators. Thus, 3+3*5=18.
You can use parentheses to override this precedence, where desired. Thus, (3+3)*5=30.

Caché SQL supports the complete entry-level SQL-92 standard with the following exceptions:

• There is no support for adding additional CHECK constraints to a table definition.

4 Using Caché SQL

Introduction to Caché SQL

http://www.intersystems.com/support/cache-support.html
http://www.intersystems.com/support/cache-support.html

• The SERIALIZABLE isolation level is not supported.

• Delimited identifiers are not case-sensitive; the standard says that they should be case-sensitive.

• Within a subquery contained in a HAVING clause, one is supposed to be able to refer to aggregates which are
“available” in that HAVING clause. This is not supported.

1.2.2 Extensions

Caché SQL supports a number of useful extensions. Many of these are related to the fact that Caché offers simultaneous
object and relational access to data.

Some of these extensions include:

• Support for user-definable data type and functions.

• Special syntax for following object references.

• Support for subclassing and inheritance.

• Support for queries against external tables stored within other databases.

• A number of mechanisms for controlling the storage structures used for tables to achieve maximum performance.

1.3 Interoperability
Caché SQL supports a number of ways to interoperate relationally with other applications and software tools.

1.3.1 JDBC

Caché includes a standards-compliant, level 4 (all pure Java code) JDBC client.

The Caché JDBC driver offers the following features:

• High-performance

• A pure Java implementation

• Unicode support

• Thread-safety

You can use Caché JDBC with any tool, application, or development environment that supports JDBC. If you encounter
problems or have questions about compatibility, contact the InterSystems InterSystems Worldwide Response Center (WRC).

1.3.2 ODBC

The C-language call level interface for Caché SQL is ODBC. Unlike other database products, the Caché ODBC driver is
a native driver — it is not built on top of any other proprietary interface.

The Caché ODBC driver offers the following features:

• High-performance

• Portability

• Native Unicode support

Using Caché SQL 5

Interoperability

http://www.intersystems.com/support/cache-support.html

• Thread-safety

You can use Caché ODBC with any tool, application, or development environment that supports ODBC. If you encounter
problems or have questions about compatibility, contact the InterSystems InterSystems Worldwide Response Center (WRC).

1.3.3 Embedded SQL

Within ObjectScript, Caché SQL supports Embedded SQL: the ability to place an SQL statement within the body of a
method (or other code). Using Embedded SLQ, you can query a single record, or define a cursor and use that to query
multiple records. Embedded SQL is compiled; it is either compiled at the same time as the ObjectScript routine (the default),
or you can defer Embedded SQL compilation until runtime.

Embedded SQL is quite powerful when used in conjunction with the object access capability of Caché. For example, the
following method finds the Object ID of the Product with a given SKU code and uses it to create an in-memory object
instance:

ClassMethod FindBySKU(sku As %String)
{
 &sql(SELECT %ID INTO :id FROM Product WHERE SKU = :sku)

 If (SQLCODE = 0) {
 // ask the product to display details about itself
 Set product = ##class(Product).%OpenId(id)
 Do product.DisplayDetails()
 }
}

For more details, see the chapter “Using Embedded SQL.”

1.3.4 Dynamic SQL

As part of its standard library, Caché provides an %SQL.Statement class that you can use to execute dynamic (that is,
defined at runtime) SQL statements. You can use Dynamic SQL within ObjectScript and Caché Basic methods. For
example, the following method queries for a specified number of people born in the 21st century. The query selects all
people born after December 31, 1999, orders the selected records by date of birth, then selects the top x records:

ClassMethod Born21stC(x) [language = cache]
{
 SET myquery=2
 SET myquery(1) = "SELECT TOP ? Name,%EXTERNAL(DOB) FROM Sample.Person "
 SET myquery(2) = "WHERE DOB > 58073 ORDER BY DOB"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(x)
 DO rset.%Display()
 WRITE !,"End of data"
 }

When you prepare a query, an optimized version of that query is stored as a cached query. This cached query is executed
for subsequent invocations of the query, avoiding the overhead of re-optimizing a query each time it is executed.

For more details, see the chapter “Using Dynamic SQL.”

1.4 Limitations
Note the following limitations of Caché SQL:

• NLS can be used to specify the behavior of $ORDER for a particular national locale behavior for individual globals,
as well as for local variables in the currently running process. Caché SQL can be used and works well within any

6 Using Caché SQL

Introduction to Caché SQL

http://www.intersystems.com/support/cache-support.html

National Language locale. However, a current limitation of Caché SQL is that for any particular process, all the relevant
globals it references have to be using the same national locale as the current process locale. See “SQL Collation and
NLS Collations” in the “Collation” chapter of this guide.

Using Caché SQL 7

Limitations

2
Caché SQL Basics

This chapter provides an overview of the features of Caché SQL, especially those that are not covered by the SQL standard
or are related to the Caché Unified Data Architecture. It assumes prior knowledge of SQL and is not designed to serve as
an introduction to SQL concepts or syntax.

This chapter discusses the following topics:

• Tables

• Queries

• Privileges

• Data Display Options

• Data Collation Types

• Executing SQL

2.1 Tables
Within Caché SQL, data is presented within tables. Each table is defined to contain a number of columns. A table may
contain zero or more rows of data values. The following terms are roughly equivalent:

Caché TermsRelational Database TermsData Terms

packageschemadatabase

persistent classtable

propertycolumnfield

rowrecord

For further details, refer to “ Introduction to the Default SQL Projection” in the “ Introduction to Persistent Objects”
chapter of Using Caché Objects.

There are two basic types of tables: base tables (which contain data and are usually referred to simply as tables) and views
(which present a logical view based on one or more tables).

To find out more on how to define tables, see the chapter “Defining Tables.”

To find out more on how to define views, see the chapter “Defining Views.”

Using Caché SQL 9

In order to make queries against tables more efficient, you can define indices on tables. See the chapter “Defining and
Building Indices.” in the Caché SQL Optimization Guide.

In order to enforce referential integrity you can define foreign keys and triggers on tables. See the chapters “Defining
Foreign Keys” and “Defining Triggers.”

2.1.1 Schemas

SQL schemas provides a means of grouping sets of related tables, views, stored procedures, and cached queries. The use
of schemas helps prevent naming collisions at the table level, because a table, view, or stored procedure name must only
be unique within its schema. An application can specify tables in multiple schemas.

SQL schemas correspond to persistent class packages. Commonly a schema has the same name as its corresponding package,
but these names may differ because of different schema naming conventions or because different names have been deliberately
specified. Schema-to-package mapping is further described in SQL to Class Name Transformations.

Schemas are defined within a specific namespace. A schema name must be unique within its namespace. A schema (and
its corresponding package) is automatically created when the first item is assigned to it and automatically deleted when the
last item is deleted from it.

You can specify an SQL name as qualified or unqualified. A qualified name specifies the schema: schema.name. An
unqualified name does not specify the schema: name. If you do not specify the schema, Caché supplies the schema as follows:

• For DDL operations, Caché uses the system-wide default schema name. This default is configurable. It applies to all
namespaces.

• For DML operations, Caché can use either a user-supplied schema search path or the system-wide default schema
name. Different techniques are used to supply a schema search path in Dynamic SQL, Embedded SQL, and the SQL
Shell.

To view all the existing schemas within a namespace:

1. From the Management Portal select System Explorer, then SQL. Select a namespace with the Switch option at the top
of the page; this displays the list of available namespaces. Select a namespace.

2. Select the Schema drop-down list on the left side of the screen. This displays a list of the schemas in the current
namespace. Select a schema from this list; the selected name appears in the Schema box.

3. The applies to drop-down list allows you to select Tables, Views, Procedures, or Cached Queries, or All of these that
belong to the schema. After setting this option, click the triangles to view a list of the items. If there are no items,
clicking a triangle has no effect.

2.2 Queries
Within Caché SQL, you view and modify data within tables by means of queries. Roughly speaking, queries come in two
flavors: those that retrieve data (SELECT statements), and those that modify data (INSERT, UPDATE, and DELETE
statements).

You can use SQL queries in a number of ways:

• Using Embedded SQL within ObjectScript.

• Using Dynamic SQL within ObjectScript or Caché Basic.

• Calling a stored procedure created using CREATE PROCEDURE or CREATE QUERY.

• Using a class query. For further details, refer to “Defining and Using Class Queries” in Using Caché Objects.

10 Using Caché SQL

Caché SQL Basics

• Using the ODBC or JDBC interfaces from a variety of other environments.

SELECT queries are described in the Querying the Database chapter of this guide.

Queries are part of Caché objects or ObjectScript routines.

2.3 Privileges
Caché SQL provides a way to limit access to tables, views, and so on via privileges. You can define a set of users and roles
and grant various privileges (read, write, and so on) to them. See the chapter “Users, Roles, and Privileges.”

2.4 Data Display Options
Caché SQL uses a SelectMode option to specify how data is to be displayed or stored. The available options are Logical,
Display, and ODBC. Data is stored internally in Logical mode, and can be displayed in any of these modes. Every data
type class can define transformations between internal Logical format and Display format or ODBC format by using the
LogicalToDisplay(), LogicalToODBC(), DisplayToLogical(), and ODBCToLogical() methods. When SQL SelectMode
is Display, the LogicalToDisplay transformation is applied, and returned values are formatted for display. The default SQL
SelectMode is Logical; thus by default returned values are displayed in their storage format.

SelectMode affects the format that in which query result set data is displayed, SelectMode also affects the format in which
data values should be supplied, for example in the WHERE clause. Caché applies the appropriate transformation method
based on the storage mode and the specified SelectMode. A mismatch between a supplied data value and the SelectMode
can result in an error or in erroneous results. For example, if DOB is a date stored in $HOROLOG Logical format, and a
WHERE clause specifies WHERE DOB > 2000–01–01 (ODBC format), SelectMode = ODBC returns the intended results.
SelectMode = Display generates SQLCODE -146 Unable to convert date input to a valid logical
date value. SelectMode = Logical attempts to parse 2000–01–01 as a Logical date value, and returns zero rows.

For most data types, the three SelectMode modes return the same results. The following data types are affected by the
SelectMode option:

• Date, Time, and Timestamp data types. InterSystems SQL supports numerous Date, Time, and Timestamp data types
(%Library.Date, %Library.Time, %Library.TimeStamp, %Library.FilemanDate, %Library.FilemanTimeStamp, and %MV.Date).
With the exception of %Library.TimeStamp, these data types use different representations for Logical, Display, and
ODBC modes. In several of these data types Caché stores dates in $HOROLOG format. This Logical mode internal
representation consists of an integer count of the number of days from an arbitrary starting date (December 31st, 1840),
a comma separator, and an integer count of the number of seconds since midnight of the current day. In Display mode,
dates and times commonly appear in the format specified by the data type’s FORMAT parameter or the date and time
format defaults for the current locale in %SYS.NLS.Format. The default for the American locale is DD/MM/YYYY
hh:mm:ss. In ODBC mode, dates and times are always represented as YYYY-MM-DD hh:mm:ss.fff. The
%Library.TimeStamp data type also uses this ODBC format for Logical and Display modes.

• %List data type. Caché Logical mode stores lists using two non-printing characters that appear before the first item in
the list, and appear as a separator between list items. In ODBC SelectMode, list items are displayed with a comma
separator between list items. In Display SelectMode, list items are displayed with a blank space separator between list
items.

• Data types that specify VALUELIST and DISPLAYLIST. If you are in display mode and you insert a value into a
table where the field has a DISPLAYLIST, the display value you enter must exactly match one of the items in the
DISPLAYLIST.

Using Caché SQL 11

Privileges

• Empty strings, and empty BLOBs (stream fields). In Logical mode empty strings and BLOBs are represented by the
non-display character $CHAR(0). In Display mode they are represented by an empty string ("").

The SQL SelectMode may be specified as follows:

• For the current process, using $SYSTEM.SQL.SetSelectMode().

• For a Caché SQL Shell session, using the SET SELECTMODE command.

• For a query result set from the Management Portal “Execute Query” user interface ([System] > [SQL]), using the
"Display Mode" drop-down list.

• For a Dynamic SQL %SQL.Statement instance, using the %SelectMode property.

• For a Dynamic SQL %ResultSet instance, using the %Library.ResultSet.RuntimeMode property.

• For Embedded SQL, using the ObjectScript #SQLCompile Select preprocessor directive setting. This directive allows
for a fourth value, Runtime, which sets the select mode to whatever the RuntimeMode property setting is: Logical,
Display, or ODBC. The RuntimeMode default is Logical.

• For the SQL commands CREATE QUERY, CREATE METHOD, CREATE PROCEDURE, and CREATE FUNCTION
using the SELECTMODE keyword.

• For an individual column within an SQL query by using the %EXTERNAL, %INTERNAL, and %ODBCOUT functions.

• For a Zen Report using the runtimeMode attribute of a <report> element.

2.5 Data Collation
Collation specifies how values are ordered and compared, and is part of both Caché SQL and Caché objects.

You can specify a collation type as part of field/property definition. Unless otherwise specified, a string field/property
defaults to the namespace default collation. By default, the namespace default collation for strings is SQLUPPER.
SQLUPPER collation transforms strings into uppercase for the purposes of sorting and comparing. Thus, unless otherwise
specified, string ordering and comparison is not case-sensitive.

You can specify a collation type as part of index definition, or use the collation type of the indexed field.

An SQL query can override the defined field/property collation type by applying a collation function to a field name. The
ORDER BY clause specifies the result set sequence for a query; if a specified string field is defined as SQLUPPER, query
results order is not case-sensitive.

For further details refer to the “Collation” chapter of Using Caché SQL.

2.6 Executing SQL
Caché supports numerous ways to write and execute SQL code. These include:

• Embedded SQL: SQL code embedded within ObjectScript code.

• Dynamic SQL: SQL code executed from within ObjectScript or Caché Basic, using the %SQL.Statement class.

• Execute() method: execute SQL code using the Execute() method of the %SYSTEM.SQL class.

• Stored Procedure containing SQL code, created using CREATE PROCEDURE or CREATE QUERY.

• The SQL Shell: SQL statements executed from the Terminal interface.

12 Using Caché SQL

Caché SQL Basics

• Execute Query Interface: SQL statements executed from the Management Portal.

You can use Caché objects (classes and methods) to:

• Define a persistent class (an SQL table).

• Define an index.

• Define and Use a Class Query.

Using Caché SQL 13

Executing SQL

3
Language Elements

Caché SQL supports the following language elements:

• Commands and keywords

• String and numeric literals

• NULL and the empty string

• Arithmetic operators and functions

• Relational operators

• Logical operators

• Comments

3.1 Commands and Keywords
A Caché SQL command (also known as an SQL statement) begins with a keyword followed by one or more arguments.
Some of these arguments may be clauses or functions, identified by their own keywords.

• Caché SQL commands have no whitespace restrictions. If command items are separated by a space, at least one space
is required. If command items are separated by a comma, no space is required. No space is required before or after
arithmetic operators. You may insert line breaks or multiple spaces between space-separated items, between items in
a comma-separated list of arguments, or before or after arithmetic operators.

• Caché SQL commands do not have a command terminator, except in specific cases such as SQL procedure code or
trigger code, in which case SQL commands are terminated by a single semicolon (;). Otherwise, Caché SQL commands
do not require or accept a semicolon command terminator. When importing SQL code to Caché SQL, semicolon
command terminators are stripped out.

Caché SQL keywords include command names, function names, predicate condition names, data type names, field constraints,
optimization options, and special variables. They also include the AND, OR, and NOT logical operators, the NULL column
value indicator, and ODBC function constructs such as {d dateval} and {fn CONCAT(str1,str2)}.

• Keywords are not case-sensitive. By convention, keywords are represented by capital letters in this documentation,
but Caché SQL has no letter case restriction.

• Many, but not all, keywords are SQL Reserved Words. Caché SQL only reserves those keywords that cannot be
unambiguously parsed. SQL reserved words can be used as delimited identifiers.

Using Caché SQL 15

3.2 Literals
Caché SQL literals have the following syntax:

literal ::=
number | string-literal

number ::=
 {digit}[.]digit{digit}[E[+|-]digit{digit}]

digit ::=
 0..9

string-literal ::=
std-string-literal | ObjectScript-empty-string

std-string-literal ::=
 ' {std-character-representation} '

std-character-representation ::=
nonquote-character | quote-symbol

quote-symbol ::=
 ''

ObjectScript-empty-string ::=
 ""

A literal is a series of characters that represents an actual (literal) value. It can be either a number or a character string.

• A number does not require any delimiter character. It can consist of the digits 0 through 9, the decimal point character,
the exponent symbol and the plus and minus signs. Only one decimal point character can be used in a number. This
decimal point can only be used in the base portion of a number, not in the exponent portion. The decimal point does
not need to be followed by a digit. Leading and trailing zeros are permitted. The exponent (scientific notation) symbol
is the letter E; both uppercase and lowercase E are accepted, but uppercase E is the preferred usage. A plus or minus
sign can prefix a base number or an exponent. Multiple plus and minus signs can prefix a base number; SQL treats
these signs as operators. Only a single plus or minus sign can prefix an exponent; SQL treats this sign as part of the
literal. No commas or blanks are permitted in a number.

• A character string literal consists of a pair of delimiter characters enclosing a string of characters of any type. The
preferred delimiter character is the single-quote character (see below). To specify a delimiter character as a literal
within a character string, double the character; for example: 'Mary''s office'.

The empty string is a literal string; it is represented by two single-quote characters (''). NULL is not a literal value; it represents
the absence of any value. For further details, see the NULL and the Empty String section of this chapter.

Note: In Embedded SQL, a few character sequences that begin with ## are not permitted within a string literal, as
described in Literal Values in the “Using Embedded SQL” chapter. This restriction does not apply to other
invocations of SQL, such as Dynamic SQL.

3.2.1 String Delimiters

You can use either single quote (') characters or the double quote (") characters as string delimiters. The single-quote (')
character is the preferred delimiter. The use of the double-quote character (") is supported for SQL compatibility, but this
use is discouraged because of potential conflict with the delimited identifier standard.

To specify the character used as the delimiter as a literal character within the string, specify a pair of these characters.

16 Using Caché SQL

Language Elements

3.2.2 Concatenation

The double vertical bar (||) is the preferred SQL concatenation operator. It can be used to concatenate two numbers, two
character strings, or a number and a character string.

The underscore (_) is provided as an SQL concatenation operator for ObjectScript compatibility. This concatenation oper-
ator can only be used to concatenate two character strings.

If the two operands are both character strings, and both strings have the same collation type, the resulting concatenated
string has that collation type. In all other cases, the result of concatenation is of collation type EXACT.

3.3 NULL and the Empty String
Use the NULL keyword to indicate that a value is not specified. NULL is always the preferred way in SQL to indicate that
a data value is unspecified or nonexistent for any reason.

The SQL zero-length string (empty string) is specified by two single quote characters. The empty string ('') is not the same
thing as NULL. An empty string is a defined value, a string that contains no characters, a string of length 0. A zero-length
string is represented internally by the non-display character $CHAR(0).

Note: The SQL zero-length string is not recommended for use as a field input value or a field default value. Use NULL
to represent the absence of a data value.

The SQL zero-length string should be avoided in SQL coding. However, because many SQL operations delete trailing
blank spaces, a data value that contains only whitespace characters (spaces and tabs) may result in an SQL zero-length
string.

Note that different SQL length functions return different values: LENGTH, CHAR_LENGTH, and DATALENGTH return
SQL lengths. $LENGTH returns ObjectScript representation length. See “The Length of NULL” below. LENGTH does
not count trailing blank spaces; all other length functions count trailing blank spaces.

The SQL zero-length string, like all SQL strings, can also be represented using double quote characters (""); this usage
should be avoided because of potential conflict with SQL delimited identifiers.

3.3.1 NULL Processing

The NOT NULL data constraint requires that a field must receive a data value; specifying NULL rather than a value is not
permitted. This constraint does not prevent the use of an empty string value. For further details, refer to the CREATE
TABLE command.

The IS NULL predicate in the WHERE or HAVING clause of a SELECT statement selects NULL values; it does not
select empty string values.

The IFNULL function evaluates a field value and returns the value specified in its second argument if the field evaluates
to NULL. It does not treat an empty string value as a non-NULL value.

The COALESCE function selects the first non-NULL value from supplied data. It treats empty string values as non-NULL.

When the CONCAT function or the concatenate operator (||) concatenate a string and a NULL, the result is NULL. This
is shown in the following example:

SELECT {fn CONCAT('fred',NULL)} AS FuncCat, -- returns <null>
 'fred'||NULL AS OpCat -- returns <null>

Using Caché SQL 17

NULL and the Empty String

The AVG, COUNT, MAX, MIN, and SUM aggregate functions ignore NULL values when performing their operations.
(COUNT * counts all rows, because there cannot be a record with NULL values for all fields.) The DISTINCT keyword
of the SELECT statement includes NULL in its operation; if there are NULL values for the specified field, DISTINCT
returns one NULL row.

The AVG, COUNT, and MIN, aggregate functions are affected by empty string values. The MIN function considers an
empty string to be the minimum value, even when there are rows that have a value of zero. The MAX and SUM aggregate
functions are not affected by empty string values.

3.3.2 NULL in Expressions

Supplying NULL as an operand to most SQL functions returns NULL.

Any SQL arithmetic operation that has NULL as an operand returns a value of NULL. Thus, 7+NULL=NULL. This includes
the binary operations addition (+), subtraction (-), multiplication (*), division (/), integer division (\), and modulo (#), and
the unary sign operators plus (+) and minus (-).

An empty string specified in an arithmetic operation is treated as a value of 0 (zero). Division (/), integer division (\), or
modulo (#) by empty string (6/'') results in a <DIVIDE> error.

3.3.3 The Length of NULL

Within SQL, the length of a NULL is undefined (it returns <null>). The length of an empty string, however, is defined as
length zero. This is shown in the following example:

SELECT LENGTH(NULL) AS NullLen, -- returns <null>
 LENGTH('') AS EmpStrLen -- returns 0

As shown in this example, the SQL LENGTH function returns the SQL lengths.

You can convert an SQL zero-length string to a NULL by using the ASCII function, as shown in the following example:

SELECT LENGTH(NULL) AS NullLen, -- returns <null>
 LENGTH({fn ASCII('')}) AS AsciiEmpStrLen, -- returns <null>
 LENGTH('') AS EmpStrLen -- returns 0

However, certain Caché extensions to standard SQL treat the length of NULL and the empty string differently. The
$LENGTH function returns the Caché internal representation of these values: NULL is represented as a defined value with
length 0, the SQL empty string is represented as a string of length 0. This functionality is compatible with ObjectScript.

SELECT $LENGTH(NULL) AS NullLen, -- returns 0
$LENGTH('') AS EmpStrLen, -- returns 0
$LENGTH('a') AS OneCharStrLen, -- returns 1
$LENGTH(CHAR(0)) AS CharZero -- returns 0

Another place where the internal representation of these values is significant is in the %STRING, %SQLSTRING and
%SQLUPPER functions, which append a blank space to a value. Since a NULL truly has no value, appending a blank to
it creates a string of length 1. But an empty string does have a character value, so appending a blank to it creates a string
of length 2. This is shown in the following example:

SELECT CHAR_LENGTH(%STRING(NULL)) AS NullLen, -- returns 1
CHAR_LENGTH(%STRING('')) AS EmpStrLen -- returns 2

Note that this example uses CHAR_LENGTH, not LENGTH. Because the LENGTH function removes trailing blanks,
LENGTH(%STRING(NULL)) returns a length of 0; LENGTH(%STRING('')) returns a length of 2, because %STRING
appends a leading blank, not a trailing blank.

18 Using Caché SQL

Language Elements

3.3.4 ObjectScript and SQL

When an SQL NULL is output to ObjectScript, it is represented by an ObjectScript empty string (""), a string of length
zero.

When an SQL zero-length string data is output to ObjectScript, it is represented by a string containing $CHAR(0), a string
of length 1.

 &sql(SELECT NULL,''
 INTO :a,:b)
 WRITE !,"NULL length: ",$LENGTH(a) // returns 0
 WRITE !,"empty string length: ",$LENGTH(b) // returns 1

In ObjectScript, the absence of a value is usually indicated by an empty string (""). When this value is passed into embedded
SQL, it is treated as a NULL value, as shown in the following example:

 SET x=""
 SET myquery="SELECT NULL As NoVal,:x As EmpStr"
 SET tStatement=##class(%SQL.Statement).%New()
 SET qStatus=tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset=tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "NoVal:",rset.%Get("NoVal")," length ",$LENGTH(rset.%Get("NoVal")),! // length 0
 WRITE "EmpStr:",rset.%Get("EmpStr")," length ",$LENGTH(rset.%Get("EmpStr")),! // length 0
 }
 WRITE "End of data"

If you specify an input host variable that is not defined, embedded SQL treats its value as NULL.

When passing a NULL or empty string value out from embedded SQL to ObjectScript, the NULL is translated to a string
of length 0, and the empty string is translated to a string of length 1. This is shown in the following example:

 &sql(SELECT
 NULL,
 ''
 INTO :a,:b)
 WRITE !,"The length of NULL is: ",$LENGTH(a) // length 0
 WRITE !,"The length of empty string is: ",$LENGTH(b) // length 1

In the following example, the SQL empty string with an appended blank is passed out as string of length 2:

 &sql(SELECT %SQLUPPER('')
 INTO :y
 FROM Sample.Person)
 WRITE !,"SQL empty string length: ",$LENGTH(y)

3.4 Arithmetic Operators and Functions
Caché SQL supports the following arithmetic operators:

Using Caché SQL 19

Arithmetic Operators and Functions

Addition operator. For example, 17+7 equals 24.+

Subtraction operator. For example, 17-7 equals 10. Note that a pair of these characters is the
Caché SQL comment indicator.Therefore, to specify two or more subtraction operators or negative
signs you must use either spaces or parentheses. For example, 17- -7 or 17-(-7) equals 24.

–

Multiplication operator. For example, 17*7 equals 119.*

Division operator. For example, 17/7 equals 2.428571428571428571./

Integer division operator. For example, 17\7 equals 2.\

Modulo operator. For example, 17 # 7 equals 3. Note that because the # character is also a valid
identifier character, to use it as a modulo operator you should specify it separated from its operands
by spaces before and after.

#

Exponentiation (scientific notation) operator. Can be uppercase or lowercase. For example, 7E3
equals 7000. A too-large exponent results in an SQLCODE -7 “Exponent out of range” error. For
example, 1E309 or 7E308.

E

Grouping operators. Used to nest arithmetic operations. Unless parentheses are used, the execution
sequence of arithmetic operations in Caché SQL is strict left-to-right order. For example, 17+7*2
equals 48, but 17+(7*2) equals 31.

()

Concatenate operator. For example, 17||7 equals 177.||

Arithmetic operations are performed on numbers in their canonical form.

For numbers of any data type, the data type for the result of an addition (+), subtraction (-), multiplication (*), or division
(/, \, or #) operation is NUMERIC, unless one or both of the arguments is of data type DOUBLE; in that case, the data type
of the result is DOUBLE. For example, adding two fields of data type INTEGER results in a value of data type NUMERIC.
Concatenating two numbers of any data type results in a VARCHAR string.

In Dynamic SQL you can use SQL column metadata to determine the data type of a result set field. For further details on
numeric data types refer to SQL Data Types.

3.4.1 Operator Precedence

The SQL-92 standard is imprecise with regard to operator precedence; assumptions on this matter differ amongst SQL
implementations.

• Caché SQL, by default, does not provide precedence of arithmetic operators. By default, Caché SQL executes arithmetic
expressions in strict left-to-right order, with no operator precedence. This is the same convention used in ObjectScript.
Thus, 3+3*5 equals 30. You can use parentheses to enforce the desired precedence. Thus, 3+(3*5) equals 18.
Careful developers should use parentheses to explicitly state their intentions.

• Caché SQL can be configured to support ANSI precedence of arithmetic operators. This is a system-wide configuration
setting. When ANSI precedence is configured, the "*", "\", "/", and "#" operators have a higher precedence than the
"+", "-", and "||" operators. Operators with a higher precedence are executed before operators with a lower precedence.
Thus, 3+3*5 equals 18. You can use parentheses to override precedence when desired. Thus, (3+3)*5 equals 30.

You can configure precedence using the Management Portal. In the General SQL Settings, you select the Apply ANSI

Operator Precedence check box, then press the Save button. Changing this SQL option takes effect immediately system-
wide. Changing this option causes all cached queries to be purged system-wide.

You can also configure precedence using the $SYSTEM.SQL.SetANSIPrecedence() method.

Changing SQL precedence has no effect on ObjectScript. ObjectScript always follows strict left-to-right execution of
arithmetic operators.

20 Using Caché SQL

Language Elements

3.4.2 Precision and Scale

The precision (maximum number of digits present in the number) for a NUMERIC result for:

• addition or subtraction is determined using the following algorithm: resultprecision=max(scale1, scale2) + max(preci-
sion1–scale1, precision2–scale2)+1. If the calculated resultprecision is greater than 36, the precision value is set to 36.

• multiplication is determined using the following algorithm: resultprecision=min(36, precision1+precision2+1).

• division (value1 / value2) is determined using the following algorithm: resultprecision=min(36, preci-
sion1–scale1+scale2+max(6, scale1+precision2+1)).

The scale (maximum number of fractional digits) for a NUMERIC result for:

• addition or subtraction is determined using the following algorithm: resultscale=max(scale1, scale2).

• multiplication is determined using the following algorithm: resultscale=min(17, scale1+scale2).

• division (value1 / value2) is determined using the following algorithm: resultscale=min(17, max(6, scale1+precision2+1)).

For further details on data types, precision, and scale, refer to SQL Data Types.

3.4.3 Arithmetic and Trigonometric Functions

Caché SQL supports the following arithmetic functions:

Returns the absolute value of a numeric expression.ABS

Returns the smallest integer greater than or equal to a numeric expression.CEILING

Returns the log exponential (base e) value of a numeric expression.EXP

Returns the largest integer less than or equal to a numeric expression.FLOOR

Returns the largest number from a comma-separated list of numbers.GREATEST

Returns a boolean code specifying whether an expression is a valid number.ISNUMERIC

Returns the smallest number from a comma-separated list of numbers.LEAST

Returns the natural log (base e) value of a numeric expression.LOG

Returns the base–10 log value of a numeric expression.LOG10

Returns the modulus value (remainder) of a division operation. Same as the #
operator.

MOD

Returns the numeric constant pi.PI

Returns the value of a numeric expression raised to a specified power.POWER

Returns a numeric expression rounded (or truncated) to a specified number of
digits.

ROUND

Returns a numeric code specifying whether a numeric expression evaluates to
positive, zero, or negative.

SIGN

Returns the square root of a numeric expression.SQRT

Returns the square of a numeric expression.SQUARE

Returns a numeric expression truncated to a specified number of digits.TRUNCATE

Using Caché SQL 21

Arithmetic Operators and Functions

Caché SQL supports the following trigonometric functions.

Returns the arc-cosine of a numeric expression.ACOS

Returns the arc-sine of a numeric expression.ASIN

Returns the arc-tangent of a numeric expression.ATAN

Returns the cosine of a numeric expression.COS

Returns the cotangent of a numeric expression.COT

Returns the sine of a numeric expression.SIN

Returns the tangent of a numeric expression.TAN

Converts radians to degrees.DEGREES

Converts degrees to radians.RADIANS

3.5 Relational Operators
A conditional expression evaluates to a boolean value. A conditional expression can use the following relational operators:

Equals operator.=

Does not equal operator. The two syntactical forms are functionally identical.!=

<>

Less than operator.<

Greater than operator.>

Less than or equal to operator.<=

Greater than or equal to operator.>=

When comparing a table field value, these equality operators use the field’s default collation. The Caché default is not case-
sensitive. When comparing two literals, the comparison is case-sensitive.

Equality operators (equals, does not equal) should be avoided when comparing floating point numbers. Floating point
numbers (data types classes %Library.Decimal and %Library.Double) are stored as binary values, not as fixed-precision
numbers. During conversion, rounding operations may result in two floating point numbers that are intended to represent
the same number not being precisely equal. Use less-than / greater-than tests to determine if two floating point numbers
are “the same” to the desired degree of precision.

Caché SQL also supports the Contains and Follows comparison operators:

Contains operator. Returns all values that contain the operand, including values equal to the operator.
This operator uses EXACT (case-sensitive) collation. The inverse is NOT[.

[

Follows operator. Returns all values that follow the operator in collation sequence. Excludes the
operand value itself. This operator uses the field’s default collation. The Caché default is not
case-sensitive. The inverse is NOT].

]

22 Using Caché SQL

Language Elements

3.6 Logical Operators
SQL logical operators are used in condition expressions that are evaluated as being True or False. These conditional
expressions are used in the SELECT statement WHERE and HAVING clauses, in the CASE statement WHEN clauses,
in the JOIN statement ON clause, and the CREATE TRIGGER statement WHEN clause.

3.6.1 NOT Unary Operator

You can use the NOT unary logical operator to specify the logical inverse of a condition, as shown in the following examples:

SELECT Name,Age FROM Sample.Person
WHERE NOT Age>21
ORDER BY Age

SELECT Name,Age FROM Sample.Person
WHERE NOT Name %STARTSWITH('A')
ORDER BY Name

You can place the NOT operator before the condition (as shown above). Or you can place NOT immediately before a single-
character operator; for example, NOT<, NOT[, and so forth. Note that there must be no space between NOT and the single-
character operator it inverts.

3.6.2 AND and OR Operators

You can use the AND and OR logical operators between two operands in a series of two or more conditions. These logical
operators can be specified by keyword or symbol:

&AND

!OR

Spaces are not required (though recommended for readability) between a symbol operator and its operand. Spaces are
required before and after a keyword operator.

These logical operators can be used with the NOT unary logical operator, such as the following: WHERE Age<65 & NOT
Age=21.

The following two examples use logical operators to schedule an assessment based on age. People between the ages of 20
and 40 are assessed every three years, people from 40 to 64 are assessed every two years, and those 65 and over are assessed
every year. The examples give identical results; the first example uses keywords, the second uses symbols:

SELECT Name,Age FROM Sample.Person
WHERE Age>20
 AND Age<40 AND (Age # 3)=0
 OR Age>=40 AND (Age # 2)=0
 OR Age>=65
ORDER BY Age

SELECT Name,Age FROM Sample.Person
WHERE Age>20
 & Age<40 & (Age # 3)=0
 ! Age>=40 & (Age # 2)=0
 ! Age>=65
ORDER BY Age

Logical operators can be grouped using parentheses. This establishes a grouping level; evaluation proceeds from the lowest
grouping level to the highest. In the first of the following examples, the AND condition is applied only to the second OR
condition. It returns persons of any age from MA, and persons with age less than 25 from NY:

Using Caché SQL 23

Logical Operators

SELECT Name,Age,Home_State FROM Sample.Person
WHERE Home_State='MA' OR Home_State='NY' AND Age < 25
ORDER BY Age

Using parentheses to group conditions gives a different result. The following example returns persons from MA or NY
whose age is less than 25:

SELECT Name,Age,Home_State FROM Sample.Person
WHERE (Home_State='MA' OR Home_State='NY') AND Age < 25
ORDER BY Age

• SQL execution uses short-circuit logic. If a condition fails, the remaining AND conditions will not be tested. If a con-
dition succeeds, the remaining OR conditions will not be tested.

• However, because SQL optimizes WHERE clause execution, the order of execution of multiple conditions (at the same
grouping level) cannot be predicted and should not be relied upon.

3.7 Comments
Caché SQL supports both single-line comments and multi-line comments. Comment text can contain any characters or
strings, except, of course, the character(s) that indicate the end of the comment.

Note: Using Embedded SQL marker syntax (&sql<marker>(...)<reversemarker>) imposes a restriction on the
contents of SQL comments. If you are using marker syntax, the comments within the SQL code may not contain
the character sequence “)<reversemarker>” . For further details, refer to The &sql Directive in the “Using
Embedded SQL” chapter of this manual.

3.7.1 Single Line Comments

A single-line comment is specified by a two-hyphen prefix. A comment can be on a separate line, or can appear on the
same line as SQL code. When a comment follows SQL code on the same line, at least one blank space must separate the
code from the double-hyphen comment operator. A comment can contain any characters, including hyphens, asterisks, and
slashes. The comment continues to the end of the line.

The following example contains multiple single-line comments:

-- This is a simple SQL query
-- containing -- (double hyphen) comments
SELECT TOP 10 Name,Age, -- Two columns selected
Home_State -- A third column
FROM Sample.Person -- Table name
-- Other clauses follow
WHERE Age > 20 AND -- Comment within a clause
Age < 40
ORDER BY Age, -- Comment within a clause
Home_State
-- End of query

3.7.2 Multiple Line Comments

A multiple-line comment is specified by a /* opening delimiter and a */ closing delimiter. A comment can appear on one
or more separate lines, or can begin or end on the same line as SQL code. A comment delimiter should be separated from
SQL code by at least one blank space. A comment can contain any characters, including hyphens, asterisks and slashes,
with the obvious exception of the */ character pair.

The following example contains several multiple-line comments:

24 Using Caché SQL

Language Elements

/* This is
 a simple
 SQL query. */
SELECT TOP 10 Name,Age /* Two fields selected */
FROM Sample.Person /* Other clauses
could appear here */ ORDER BY Age
/* End of query */

When commenting out Embedded SQL code, always begin the comment before the &sql directive or within the parentheses.
The following example correctly comments out two the Embedded SQL code blocks:

 SET a="default name",b="default age"
 WRITE "(not) Invoking Embedded SQL",!
 /*&sql(SELECT Name INTO :a FROM Sample.Person) */
 WRITE "The name is ",a,!
 WRITE "Invoking Embedded SQL (as a no-op)",!
 &sql(/* SELECT Name INTO :b FROM Sample.Person */)
 WRITE "The age is ",b

3.7.3 SQL Code Retained as Comments

Embedded SQL statements can be retained as comments in the .INT code version of routines. This is done by setting a
configuration option as follows:

• Invoke the $SYSTEM.SQL.SetRetainSQL() method. To determine the current setting, call
$SYSTEM.SQL.CurrentSettings(), which displays the Retain SQL as Comments setting.

• Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
General SQL Settings ([System] > [Configuration] > [General SQL Settings]). On this screen you can view the current
setting of Retains SQL Statements as Comments in .INT Code. The default is “Yes” .

Set this option to “Yes” to retain SQL statements as comments in the .INT code version of a routine. Setting this option
to “Yes” also lists all non-% variables used by the SQL statements in the comment text. These listed variables should also
be listed in the ObjectScript procedure’s PUBLIC variable list and re-initialized using the NEW command. For further
details, refer to Host Variables in the “Embedded SQL” chapter of this manual.

Using Caché SQL 25

Comments

4
Identifiers

An identifier is the name of an SQL entity, such as a table, a view, a column (field), a schema, a table alias, a column alias,
an index, a stored procedure, a trigger, or some other SQL entity. An identifier name must be unique within its context; for
example, two tables in the same schema, or two fields within the same table cannot have the same name. However, two
tables in different schemas, or two fields in different tables can have the same name. In most cases, the same identifier
name can be used for SQL entities of different types; for example, a schema, a table in that schema, and a field in that table
can all have the same name without conflict. However, a table and a view in the same schema cannot have the same name.

Identifiers follow a set of naming conventions, which may be further restricted according to the use of the identifier. Iden-
tifiers are not case-sensitive.

An identifier may be either a simple identifier or a delimited identifier. The Caché SQL default is to support both simple
identifiers and delimited identifiers.

4.1 Simple Identifiers
A simple identifier has the following syntax:

simple-identifier ::= identifier-start { identifier-part }
identifier-start ::= letter | % | _
identifier-part ::= letter | number | _ | @ | # | $

4.1.1 Naming Conventions

The identifier-start is the first character of an SQL identifier. It must be one of the following:

• An uppercase or lowercase letter. A letter is defined as any character that passes validation by the ObjectScript $ZNAME
function; by default these are the uppercase letters A through Z (ASCII 65–90), the lowercase letters a through z (ASCII
97–122), and the letters with accent marks (ASCII 192–255, exclusive of ASCII 215 and 247). If you have installed
the Unicode version of Caché, you can use any valid Unicode (16-bit) letter character within an SQL identifier. Simple
identifiers are not case-sensitive (however, see below). By convention they are represented with initial capital letters.

The Japanese locale does not support accented Latin letter characters in identifiers. Japanese identifiers may contain
(in addition to Japanese characters) the Latin letter characters A-Z and a-z (65–90 and 97–122), and the Greek capital
letter characters (913–929 and 931–937).

• An underscore (_).

Using Caché SQL 27

• A percent sign (%). Caché names beginning with a % character (except those beginning with %Z or %z) are reserved
as system elements and should not be used as identifiers. For further details, refer to the chapter “Rules and Guidelines
for Identifiers” in the Caché Programming Orientation Guide.

The identifier-part is any of the subsequent characters of an SQL identifier. These remaining characters may consist of
zero or more:

• Letters (including Unicode characters).

• Numbers. A number is defined as the digits 0 through 9.

• Underscores (_).

• At signs (@).

• Pound signs (#).

• Dollar signs ($).

Some symbol characters are also used as operators. In SQL, the # sign is used as the modulo operator. In SQL, the underscore
character can be used to concatenate two strings; this usage is provided for compatibility with ObjectScript, the preferred
SQL concatenation operator is ||. The interpretation of a symbol as an identifier character always take precedence over its
interpretation as an operator. Any ambiguity concerning the correct parsing of a symbol character as an operator can be
resolved by adding spaces before and after the operator.

A simple identifier cannot contain blank spaces or non-alphanumeric characters (other than those symbol characters specified
above). The InterSystems SQL import tool removes blank spaces from imported table names.

Note: SQL cursor names do not follow identifier naming conventions. For details on cursor naming conventions, refer
to the DECLARE statement.

Caché SQL includes reserved words that cannot be used as simple identifiers. For a list of these reserved words, see the
“Reserved Words” section in the Caché SQL Reference; to test if a word is a reserved word use the
$SYSTEM.SQL.IsReservedWord() method. However, a delimited identifier can be the same as an SQL reserved word.

Any identifier that does not follow these naming conventions must be represented as a delimited identifier within an SQL
statement.

4.1.2 Case of Letters

Caché SQL identifiers by default are not case-sensitive. Caché SQL implements this by comparing identifiers after converting
them to all uppercase letters. This has no effect on the actual case of the names being used. (Note that other implementations
of SQL may handle case sensitivity of identifiers differently. For this reason, it is recommended that you avoid case-based
identifiers.)

Note that cursor names and passwords in Caché SQL are case-sensitive.

4.1.3 Testing Valid Identifiers

Caché provides the IsValidRegularIdentifier() method of the %SYSTEM.SQL class, which tests whether a string is a valid
identifier. It tests both for character usage and for reserved words. It also performs a maximum length test of 200 characters
(this is an arbitrary length used to avoid erroneous input; it is not an identifier validation). The following ObjectScript
example shows the use of this method:

28 Using Caché SQL

Identifiers

 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("Fred")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("%Fred#123")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("%#$@_Fred")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("_1Fred")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("%#$")

 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("1Fred")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("Fr ed")
 WRITE !,$SYSTEM.SQL.IsValidRegularIdentifier("%alphaup")

The first three method calls return 1, indicating a valid identifier. The fourth and fifth method calls also return 1; these are
valid identifiers, although they are not valid for use as table or field names. The last three method calls return 0, indicating
an invalid identifier. Two of these are invalid because they violate the character rules — in these cases by beginning with
a number or containing a blank. The final method call returns 0 because the specified string is a reserved word. Note that
these rule tests are a minimum requirement; they do not certify an identifier as valid for all SQL uses.

This method can also be called as a stored procedure from ODBC or JDBC: %SYSTEM.SQL_IsValidRegularIdenti-
fier("nnnn").

4.1.4 Identifiers and Class Entities

Table names, view names, field names, and index names are used to generate corresponding classes, properties, and indices
by stripping out non-alphanumeric symbol characters. This imposes additional restrictions on the use of symbol characters
in the names of these SQL entities:

• Identifiers that differ only in their inclusion of symbol characters are valid. Caché generates corresponding unique
names by replacing the last alphanumeric character with an integer suffix. For example, myname and my_name generate
myname and mynam0, adding my#nam0@ generates mynam1. If you have already defined a name that ends in an integer,
Caché handles unique name generation by incrementing to the next unused integer. Refer to the Field Name section
of the CREATE TABLE statement for further details.

• Identifiers that have a punctuation character as the first character and a number as the second character are not valid
for schema, table, view, and field names. They are valid for index names; see CREATE INDEX for details.

• Identifiers that consist entirely of punctuation characters, or begin with two underscore characters (__name), or contains
two pound signs together (nn##nn) are generally invalid as SQL entity names and should be avoided in all contexts.

• Uses of symbol characters in schema and table names are subject to additional considerations and restrictions. Refer
to Table Names and Schema Names in the “Defining Tables” chapter of this manual.

By default, the name of an SQL entity (when stripped of its non-alphanumeric symbol characters) is the same as the name
of its corresponding entity within a class definition. To make the SQL name different, specify an SQL alias within your
class definition. For example:

Property Insert As %String [SqlFieldName = "X_Insert"];

You can configure translation of specific characters in SQL identifiers to other characters in corresponding object identifiers.
This facilitates the use of identifiers across environments where the rules for permitted identifier characters differ.

Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then General

SQL Settings ([System] > [Configuration] > [General SQL Settings]). On this screen you can view and edit the current settings
of Identifier Translation — From and Identifier Translation — To. When converting an SQL identifier to an Objects identifier
at DDL runtime, the characters in the “From” string are converted to the characters in the “To” string.

You can also use the SetDDLIdentifierTranslations() method of the %SYSTEM.SQL class.

4.1.5 Identifier Length Considerations

The maximum length for SQL identifiers is 128 characters. When Caché maps an SQL identifier to the corresponding
object entity, it creates the corresponding property, method, query, or index name with a maximum of 96 characters. If two

Using Caché SQL 29

Simple Identifiers

SQL identifiers are identical for the first 96 characters, Caché replaces the 96th character of the corresponding object name
with an integer (beginning with 0) to create a unique name.

The maximum length for schema and table names is subject to additional considerations and restrictions. Refer to Table
Names and Schema Names in the “Defining Tables” chapter of this manual.

4.2 Delimited Identifiers
A delimited identifier has the following syntax:

delimited-identifier ::= " delimited-identifier-part { delimited-identifier-part }
"

delimited-identifier-part ::= non-double-quote-character | double-quote-symbol
double-quote-symbol ::= ""

A delimited identifier is a unique identifier enclosed by delimiter characters. Caché SQL supports double quote characters
(") as delimiter characters. Delimited identifiers are generally used to avoid the naming restrictions of simple identifiers.

Note that Caché SQL uses single quote characters (') to delimit literals. For this reason, delimited identifiers must be spec-
ified using double quote characters ("), and literals must be specified using single quote characters ('). For example, '7' is
the numeric literal 7, but "7" is a delimited identifier.

A delimited identifier must be a unique name. Delimited identifiers are not case-sensitive; by convention, identifiers are
represented with initial capital letters.

A delimited identifier can be the same as an SQL reserved word. Delimited identifiers are commonly used to avoid concerns
about naming conflicts with SQL reserved words.

A delimited identifier may contain almost any printable character, including blank spaces. The following characters should
be avoided in delimited identifier names: comma (,), period (.), caret (^), and the two-character arrow sequence (->). It may
begin with any valid character, except the asterisk (*). The following term should not be used as a delimited identifier:
%vid.

The following example shows a query that makes use of delimited identifiers for both column and table names:

SELECT "My Field" FROM "My Table" WHERE "My Field" LIKE 'A%'

Note that the delimited identifiers are delimited with double quotes, and the string literal A% is delimited with single quotes.

When specifying a delimited identifier for a table name, you must separately delimit the table name and the schema name.
Thus, "schema"."tablename" or schema."tablename" are valid identifiers, but "schema.tablename" is not
a valid identifier.

4.2.1 Disabling Delimited Identifier Support

By default, support is enabled for delimited identifiers.

When delimited identifier support is disabled, characters within double quotes are treated as string literals.

You can set delimited identifier support system-wide using the following:

• The SetDelimitedIdentifiers() method of the %SYSTEM.SQL class. This method changes both the current system-
wide value and the configuration file setting.

• The Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then General

SQL Settings. On this screen you can view and edit the current setting of Support Delimited Identifiers.

• The SET OPTION command with the SUPPORT_DELIMITED_IDENTIFIERS keyword.

30 Using Caché SQL

Identifiers

To determine the current setting, call $SYSTEM.SQL.CurrentSettings().

4.3 SQL Reserved Words
SQL includes a long list of reserved words that cannot be used as simple identifiers, but can be used as delimited identifiers.
For a list of these reserved words, see the “Reserved Words” section in the Caché SQL Reference.

Using Caché SQL 31

SQL Reserved Words

5
Defining Tables

This chapter describes how you create tables in Caché SQL. It discusses the following topics:

• Table names and schema names

• RowID (ID) field

• RowVersion and Serial counter fields

• Defining a table by creating a persistent class definition

• Defining a table by using SQL DDL commands

• Defining a Table by Querying an Existing Table

• Defining an external table by using the Caché SQL Gateway

• Listing tables and their properties

• Listing a table’s column names and column numbers

5.1 Table Names and Schema Names
You can create a table either by defining the table (using CREATE TABLE) or by defining a persistent class that is projected
to a table:

• DDL: Caché uses the table name specified in CREATE TABLE to generate a corresponding persistent class name,
and uses the specified schema name to generate a corresponding package name.

• Class Definition: Caché uses the persistent class name to generate a corresponding table name, and uses the package
name to generate a corresponding schema name.

The correspondence between these two names may not be identical for the following reasons:

• Persistent classes and SQL tables follow different naming conventions. Different valid character and length requirements
apply. Schema and table names are not case-sensitive; package and class names are case-sensitive. The system auto-
matically converts a valid supplied name to a valid corresponding name, insuring that the generated name is unique.

• The match between a persistent class name and the corresponding SQL table name is a default. You can use the
SqlTableName class keyword to supply a different SQL table name.

Using Caché SQL 33

• The default schema name may not match the default package name. If you specify an unqualified SQL table name or
persistent class name, the system supplies a default schema name or package name. The initial default schema name
is SQLUser; the initial default package name is User.

5.1.1 System-wide Default Schema

A table name is either qualified (schema.tablename) or unqualified (tablename).

• When performing a DDL operation, such as creating or deleting a table, view, trigger, or stored procedure, an unqual-
ified name is supplied the system-wide default schema name. Schema search path values are ignored.

• When performing a DML operation, such as a SELECT, CALL, INSERT, UPDATE, or DELETE to access an existing
table, view, or stored procedure, an unqualified name is supplied the schema name from the schema search path (if
provided). If there is no schema search path, or the named item is not located using the schema search path, the system-
wide default schema name is supplied.

If you create a table or other item with an unqualified name, Caché assigns it the system-wide default schema name, and
the corresponding persistent class package name. If a named or default schema does not exist, Caché creates the schema
(and package) and assigns the created item to the schema. If you delete the last item in a schema, Caché deletes the schema
(and package). The following description of schema name resolution applies to table names, view names, and stored procedure
names.

The initial system-wide default schema name is SQLUser. The corresponding persistent class package name is User.
Therefore, either the unqualified table name Employee or the qualified table name SQLUser.Employee would generate the
class User.Employee. For this reason, attempting to specify a schema name of User results in an SQLCODE error.

To return the current system-wide default schema name, invoke the $SYSTEM.SQL.DefaultSchema() method:

 WRITE $SYSTEM.SQL.DefaultSchema()

You can change the schema default using either of the following:

• The $SYSTEM.SQL.SetDefaultSchema() method.

• Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
General SQL Settings. On this screen you can view and edit the current setting of Default SQL Schema Name.

CAUTION: When you change the default SQL schema name, the system automatically purges all cached queries in
all namespaces on the system. By changing the default schema name, you change the meaning of all queries
that contain unqualified table, view, or stored procedure names. It is strongly recommended that the default
SQL schema name be established at Caché installation and not subsequently modified.

The schema name is used to generate the corresponding class package name. Because these names have different naming
conventions, they may not be identical.

5.1.1.1 _CURRENT_USER Keyword

• As System-wide Default Schema Name: If you specify _CURRENT_USER as the default schema name, Caché assigns
the user name of the currently logged-in process as the default schema name. The _CURRENT_USER value is the
first part of the $USERNAME ObjectScript special variable value. If $USERNAME consists of a name and a system
address (Deborah@TestSys), _CURRENT_USER contains only the name piece; this means that _CURRENT_USER
can assign the same default schema name to more than one user. If the process has not logged in, _CURRENT_USER
specifies SQLUser as the default schema name.

If you specify _CURRENT_USER/name as the default schema name, where name is any string of your choice, then
Caché assigns the user name of the currently logged-in process as the default schema name. If the process has not

34 Using Caché SQL

Defining Tables

logged in, name is used as the default schema name. For example, _CURRENT_USER/HMO uses HMO as the default
schema name if the process has not logged in.

• As Schema Name in DDL Command: If you specify _CURRENT_USER as the explicit schema name in a DDL
statement, Caché replaces it with the current system-wide default schema. For example, if the system-wide default
schema is SQLUser, the command DROP TABLE _CURRENT_USER.OldTable drops SQLUser.OldTable. This is
a convenient way to qualify a name to explicitly indicate that the system-wide default schema should be used. It is
functionally identical to specifying an unqualified name. This keyword cannot be used in DML statements.

5.1.2 Schema Search Path

When accessing an existing table (or view, or stored procedure) for a DML operation, an unqualified name is supplied the
schema name from the schema search path. Schemas are searched in the order specified and the first match is returned. If
no match is found in the schemas specified in the search path, or no search path exists, the system-wide default schema is
used. (Note that the #Import macro directive uses a different search strategy and does not “fall through” to the system-wide
default schema.)

• In Embedded SQL you can use the #SQLCompile Path macro directive or the #Import macro directive to supply a
schema search path that Caché uses to resolve unqualified names. #SQLCompile Path resolves an unqualified name
with the first match encountered. #Import resolves an unqualified name if there is exactly one match for all the schemas
listed in the search path.

• The following example provides a search path containing two schema names:

#SQLCompile Path=Customers,Employees

For further details, refer to “ObjectScript Macros and the Macro Preprocessor” in Using Caché ObjectScript.

• In Dynamic SQL you can use the %SchemaPath property to supply a schema search path that Caché uses to resolve
unqualified table names. You can specify the %SchemaPath property directly or specify it as the second parameter of
the %SQL.Statement %New() method. The following example provides a search path containing two schema names:

 SET tStatement = ##class(%SQL.Statement).%New(0,"Customers,Employees")

For further details, refer to “Using Dynamic SQL” in Using Caché SQL.

• In SQL Shell you can set the PATH SQL Shell configuration parameter to supply a schema search path that Caché
uses to resolve unqualified names.

If the unqualified name does not match any of the schemas specified in the schema search path or the system-wide schema
default, an SQLCODE -30 error is issued, such as the following: SQLCODE: -30 Message: Table 'PEOPLE' not
found within schemas: CUSTOMERS,EMPLOYEES,SQLUSER.

5.1.3 Schema Naming Considerations

Schema names follow identifier conventions, with significant considerations concerning the use of non-alphanumeric
characters. A schema name cannot be specified as a delimited identifier. Attempting to specify “USER” or any other SQL
reserved word as a schema name results in an SQLCODE -312 error. The INFORMATION_SCHEMA schema name and
the corresponding INFORMATION.SCHEMA package name are reserved in all namespaces. Users should not create
tables/classes within this schema/package.

When you issue a create operation, such as CREATE TABLE, that specifies a schema that does not yet exist, Caché creates
the new schema. Caché uses the schema name to generate a corresponding package name. Because the naming conventions
for schemas and their corresponding packages differ, the user should be aware of name conversion considerations for non-
alphanumeric characters. These name conversion considerations are not the same as for tables:

• Initial character:

Using Caché SQL 35

Table Names and Schema Names

– % (percent): Specify % as the first character of a schema name denotes the corresponding package as a system
package, and all of its classes as system classes. This usage requires appropriate privileges; otherwise, this usage
issues an SQLCODE -400 error with the %msg indicating a <PROTECT> error.

– _ (underscore): If the first character of a schema name is the underscore character, this character is replaced by a
lowercase “u” in the corresponding package name. For example, the schema name _MySchema generates the
package name uMySchema.

• Subsequent characters:

– _ (underscore): If any character other than the first character of a schema name is the underscore character, this
character is replaced by a period (.) in the corresponding package name. Because a period is the class delimiter,
an underscore divides a schema into a package and a sub-package. Thus My_Schema generates the package My
containing the package Schema (My.Schema).

– @, #, $ characters: If a schema name contains any of these characters, these characters are stripped from the cor-
responding package name. If stripping these characters would produce a duplicate package name, the stripped
package name is further modified: the final character of the stripped schema name is replaced by a sequential
integer (beginning with 0) to produce a unique package name. Thus My@#$Schema generates package MySchema,
and subsequently creating My#$Schema generates package MySchem0. The same rules apply to table name cor-
responding class names.

5.1.4 Platform-Specific Schema Names

When creating an ODBC-based query to run from Microsoft Excel via Microsoft Query on the Mac, if you choose a table
from the list of those available, the generated query does not include the table’s schema (equivalent to the package for a
class). For example, if you choose to return all the rows of the Person table from the Sample schema (in the Samples
namespace), the generated query is:

SELECT * FROM Person

Because Caché interprets an unqualified table name as being in the SQLUser schema, this statement either fails or returns
data from the wrong table. To correct this, edit the query (on the SQL View tab) to explicitly refer to the desired schema.
The query should then be:

SELECT * FROM Sample.Person

5.1.5 Table Naming Considerations

Table names follow identifier conventions, with significant considerations concerning the use of non-alphanumeric characters.

When you use the CREATE TABLE command to create a table, Caché uses the table name to generate a corresponding
class name. Because the naming conventions for tables and their corresponding classes differ, the user should be aware of
name conversion considerations for non-alphanumeric characters:

• Initial character:

– % (percent): Specify % as the first character of a table name denotes the corresponding package as a system class.
This usage requires appropriate privileges; otherwise, this usage issues an SQLCODE -400 error with the %msg
indicating a <PROTECT> error.

– _ (underscore): If the first character of a table name is the underscore character, this character is stripped from the
corresponding package name. For example, the table name _MyTable generates the class name MyTable.

– Numbers: The first character of a table name cannot be a number. If the first character of the table name is a
punctuation character, the second character cannot be a number. This results in an SQLCODE -400 error, with a

36 Using Caché SQL

Defining Tables

%msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without the punctuation character). For
example, specifying the table name _7A generates the %msg “ERROR #5053: Class name 'User.7A' is invalid” .

• Subsequent characters:

– Letters: A table name must include at least one letter. Either the first character of the table name or the first char-
acter after initial punctuation characters must be a letter. A character is a valid letter if it passes the $ZNAME test;
$ZNAME letter validation differs for different locales. (Note that $ZNAME cannot be used validate SQL table
and field names because SQL identifiers can contain the underscore character (_), which $ZNAME does not
consider a valid name character.)

– _ (underscore), @, #, $ characters: If a table name contains any of these characters, these characters are stripped
from the corresponding class name. If stripping these characters would produce a duplicate class name, the stripped
class name is further modified: the final character of the stripped table name is replaced by a sequential integer
(beginning with 0) to produce a class name that is unique within that package. Thus My@#$_Table generates
class MyTable, and subsequently creating My_#$Table generates package MyTabl0. Because generated class
names do not include punctuation characters, it is not advisable to create table names that differ only in their
punctuation characters.

• A table name must be unique within its schema. Attempting to create a table with a name that differs only in letter case
from an existing table generates an SQLCODE -201 error.

A view and a table in the same schema cannot have the same name.

You can determine if a table name already exists using the $SYSTEM.SQL.TableExists() method. This method also
returns the class name corresponding to the table name.

Attempting to specify “USER” or any other SQL reserved word as a table name or schema name results in an SQLCODE
-312 error. To specify an SQL reserved word as a table name or schema name, you can specify the name as a delimited
identifier. If you use a delimited identifier to specify a table or schema name that contains non-alphanumeric characters,
Caché strips out these non-alphanumeric characters when generating the corresponding class or package name.

The following table name length limits apply:

• Uniqueness: Caché performs uniqueness checking on the first 59 alphanumeric characters of the table class name. The
corresponding SQL table name may be more than 59 characters long, but, when stripped of non-alphanumeric characters,
it must be unique within this 59 character limit. Caché performs uniqueness checking on the first 189 characters of a
package name.

• Recommended maximum length: a table name should not exceed 128 characters. A table name may be much longer
than 96 characters, but table names that differ in their first 96 alphanumeric characters are much easier to work with.

• Combined maximum length: a table name and its schema name (when added together) cannot exceed 220 characters,
including the dot character separating the schema name and the table name.

For further details on table names, refer to the CREATE TABLE command in the Caché SQL Reference. For further
details, on classes refer to “Caché Classes” in the Using Caché Objects manual.

5.2 RowID Field
The RowID field is a system-generated field that uniquely identifies each record with a sequential integer. When you define
a table, Caché SQL automatically defines this field. When a table is populated with data, Caché assigns sequential positive
integers to this field, starting with 1. RowID data values are defined as required, unique, non-null, and non-modifible.

Using Caché SQL 37

RowID Field

By default, Caché names this field “ ID” . However this field name is not reserved. If the user defines a field named “ ID” ,
Caché names the RowID as “ ID1” . If, for example, the user then uses ALTER TABLE to define a field named “ ID1” ,
Caché renames the RowID as “ ID2” , and so forth. In a persistent class definition you can use the SqlRowIdName class
keyword to directly specify the RowID field name for the table to which this class is projected. For this reason, Caché
provides the %ID pseudo-column name (alias) which always returns the RowID value, regardless of the field name assigned
to the RowID.

By default, Caché defines this field as column number 1.

ALTER TABLE cannot modify or delete the RowID field definition.

RowID values always increment. They are not reused. Therefore, if the table data has been modified by delete and insert
operations, the RowID values will be in ascending numeric sequence (the order of insert), but will not be numerically
contiguous. To determine if a specific RowID value exists, invoke the table’s %ExistsId() method.

The RowID counter is reset to 1 by the TRUNCATE TABLE command. It is not reset by a DELETE command, even
when the DELETE command deletes all rows in the table.

By default, the RowID is hidden (not displayed by SELECT *) and PRIVATE. When you create a table you can specify
the %PUBLICROWID keyword to make the RowID not hidden and public. Because this keyword specifies that the table’s
RowID is PUBLIC, the RowID can therefore be used as a foreign key reference. If you specify the %PUBLICROWID
keyword, the persistent class corresponding to the table is defined with the class keyword Not SqlRowIdPrivate. This
optional %PUBLICROWID keyword can be specified anywhere in the CREATE TABLE comma-separated list of table
elements. It cannot be specified in ALTER TABLE.

Note: Most of the example tables supplied in the Samples namespace are defined with %PUBLICROWID.

To list the field names (hidden and non-hidden) in a table , refer to “Column Names and Numbers” .

By default, RowID values are not user-modifiable. Modifying RowID values can have serious consequences and should
only be done in very specific cases and with extreme caution. The Config.SQL.AllowRowIDUpdate property allows RowID
values to be user-modifiable.

For further details, refer to The RowID Field and %PUBLICROWID in the CREATE TABLE reference page.

5.3 RowVersion and Serial Counter Fields
InterSystems SQL supports two special-purpose data types for automatically-incrementing counter values:

• A field of data type ROWVERSION counts inserts and updates to all RowVersion tables namespace-wide. Only inserts
and updates in tables that contain a ROWVERSION field increment this counter. ROWVERSION values are unique
and non-modifiable. This namespace-wide counter never resets.

• A field of data type SERIAL (%Library.Counter) counts inserts to the table. By default, this field receives an automatically
incremented integer. However, a user can specify a value to this field.

5.3.1 RowVersion Field

The RowVersion field is an optional user-defined field that provides row-level version control, allowing you to determine
the order in which changes were made to the data in each row namespace-wide. Caché maintains a namespace-wide counter,
and assigns a unique incremental positive integer to this field each time the row data is modified (insert, update, or %Save).
Because this counter is namespace-wide, an operation on one table with a ROWVERSION field sets the increment point
for the ROWVERSION counter that is used for all other tables with a ROWVERSION field in the same namespace.

38 Using Caché SQL

Defining Tables

You create a RowVersion field by specifying a field of data type ROWVERSION. You can only specify one ROWVERSION
data type field per table. Attempting to create a table with more than one ROWVERSION field results in a 5320 compilation
error.

This field can have any name and can appear in any column position. The ROWVERSION (%Library.RowVersion) data
type maps to BIGINT (%Library.BigInt).

This field receives a positive integer from an automatically incremented counter, starting with 1. This counter increments
whenever data in any ROWVERSION-enabled table is modified by an insert, update, or %Save operation. The incremented
value is recorded in the ROWVERSION field of the row that has been inserted or updated.

A namespace can contain tables with a RowVersion field and tables without this field. Only data changes to tables that
have a RowVersion field increment the namespace-wide counter.

When a table is populated with data, Caché assigns sequential integers to this field for each inserted row. If you use ALTER
TABLE to add a ROWVERSION field to a table that already contains data, this field is created as NULL for pre-existing
fields. Any subsequent insert or update to the table assigns a sequential integer to the RowVersion field for that row. This
field is read-only; attempting to modify a RowVersion value generates an SQLCODE -138 error: Cannot INSERT/UPDATE
a value for a read only field. Therefore, a RowVersion field is defined as unique and non-modifible, but not
required or non-null.

RowVersion values always increment. They are not reused. Therefore, inserts and updates assign unique RowVersion values
in temporal sequence. Delete operations remove numbers from this sequence. Therefore, RowVersion values may not be
numerically contiguous.

This counter is never reset. Deleting all table data does not reset the RowVersion counter. Even dropping all tables in the
namespace that contain a ROWVERSION field does not reset this counter.

The RowVersion field should not be included in a unique key or primary key. The RowVersion field cannot be part of an
IDKey index.

The RowVersion field is not hidden (it is displayed by SELECT *).

This is shown in the following example of three tables in the same namespace.

1. Create Table1 and Table3, each of which has a ROWVERSION field, and Table2 that does not have a ROWVERSION
field.

2. Insert ten rows into Table1. The ROWVERSION values of these rows are the next ten counter increments. Since the
counter has not previously been used, they are 1 through 10.

3. Insert ten rows into Table2. Because Table2 does not have a ROWVERSION field, the counter is not incremented.

4. Update a row of Table1. The ROWVERSION values for this row is changed to the next counter increment (11 in this
case).

5. Insert ten rows into Table3. The ROWVERSION values of these rows are the next ten counter increments (12 through
21).

6. Update a row of Table1. The ROWVERSION values for this row is changed to the next counter increment (22 in this
case).

7. Delete a row of Table1. The ROWVERSION counter is unchanged.

8. Update a row of Table3. The ROWVERSION values for this row is changed to the next counter increment (23 in this
case).

5.3.2 Serial Field

You can use the SERIAL data type (%Library.Counter in a persistent class table definition) to specify one or more optional
integer counter fields to record the order of inserts of records into a table. By default, this field receives a positive integer

Using Caché SQL 39

RowVersion and Serial Counter Fields

from an automatically incremented table counter whenever a row is inserted into the table. However, a user can specify an
integer value for this field during an insert, overriding the table counter default.

• If an INSERT does not specify a value for the counter field, it automatically receives a positive integer counter value.
Counting starts from 1. Each successive value is an increment of 1 from the highest allocated counter value for this
field.

• If an INSERT specifies an integer value for the counter field, the field receives that value. It can be a positive or negative
integer value, can be lower or higher than the current counter value, and can be an integer already assigned to this field.
If this value is higher than any assigned counter value, it sets the increment starting point for the next automatically
assigned counter to that value.

Attempting to UPDATE a counter field value results in an SQLCODE -105 error.

This counter is reset to 1 by the TRUNCATE TABLE command. It is not reset by a DELETE command, even when the
DELETE command deletes all rows in the table.

5.4 Defining a Table by Creating a Persistent Class
The primary way to define tables within Caché is to use Studio to create persistent class definitions. When these classes
are saved and compiled within the Caché database, they automatically projects to a relational table that corresponds to the
class definition: each class represents a table; each property represents a column, and so on. The maximum number of
properties (columns) definable for a class (table) is 1000.

For example, the following defines the persistent class MyApp.Person:

Class MyApp.Person Extends %Persistent
{
Property Name As %String(MAXLEN=50) [Required];
Property SSN As %String(MAXLEN=15) [InitialExpression = "Unknown"];
Property DateOfBirth As %Date;
Property Sex As %String(MAXLEN=1);
}

When compiled, this creates the MyApp.Person persistent class and the corresponding SQL table, Person within the MyApp
schema. For details on how to perform these operations, refer to “Defining and Compiling Classes” in the Defining and
Using Classes manual.

In this example, the package name MyApp is specified. When defining a persistent class, an unspecified package name
defaults to User; this corresponds to the default SQL schema name SQLUser. For example, defining a table named Students
as a persistent class creates the class User.Students, and the corresponding SQL schema.table name SQLUser.Students.

In this example, the persistent class name Person is the default SQL table name. You can use the SqlTableName class
keyword to supply a different SQL table name.

The same MyApp.Person table could have been defined using the DDL CREATE TABLE statement, specifying the SQL
schema.table name. Successful execution of this SQL statement generates a corresponding persistent class with package
name MyApp and class name Person:

CREATE TABLE MyApp.Person (
 Name VARCHAR(50) NOT NULL,
 SSN VARCHAR(15) DEFAULT 'Unknown',
 DateOfBirth DATE,
 Sex VARCHAR(1)
)

CREATE TABLE does not specify an explicit StorageStrategy in the corresponding class definition. It instead takes the
defined default storage strategy.

40 Using Caché SQL

Defining Tables

By default, CREATE TABLE specifies the Final class keyword in the corresponding class definition, indicating that it
cannot have subclasses.

For an introduction to how the object view of the database corresponds to the relational view, see “ Introduction to the
Default SQL Projection” in the chapter “ Introduction to Persistent Objects” of Using Caché Objects.

Note that a persistent class definition such as the one shown above creates the corresponding table when it is compiled, but
this table definition cannot be modified or deleted using SQL DDL commands (or by using the Management Portal Drop
action), which give you the message “DDL not enabled for class 'schema.name'...”). You must specify
[DdlAllowed] in the table class definition to permit these operations:

Class MyApp.Person Extends %Persistent [DdlAllowed]

You can specify %Populate in the class definition to enable automatic populating of the table with test data.

Class MyApp.Person Extends (%Persistent,%Populate) [DdlAllowed]

This provides a Populate() method for the class. Running this method populates the table with ten rows of test data.

5.4.1 Unique Values

CREATE TABLE allows you to define a field as UNIQUE. This means that every field value is a unique (non-duplicate)
value.

Defining at table as a persistent class does not support a corresponding property keyword. Instead, you must define both
the property and a unique index on that property. The following example provides for a unique Num value for each record.

 Class Sample.CaveDwellers Extends %Persistent [DdlAllowed]
 {
 Property Num As %Integer;
 Property Troglodyte As %String(MAXLEN=50);
 Index UniqueNumIdx On Num [Type=index,Unique];
 }

Having a unique value field is necessary for using the INSERT OR UPDATE statement.

For reference material on class property keywords, refer to the “Property Keywords” chapter of Caché Class Definition
Reference.

5.4.2 Computed Values

The following class definition example defines a table that includes a field (Birthday) that uses SqlComputed to compute
its value when you initially set the DateOfBirth field value and SqlComputeOnChange to recompute its value when you
update the DateOfBirth field value. The Birthday field value includes the current timestamp to record when this field value
was computed/recomputed:

Class Sample.MyStudents Extends %Persistent [DdlAllowed]
{
 Property Name As %String(MAXLEN=50) [Required];
 Property DateOfBirth As %Date;
 Property Birthday As %String
 [SqlComputeCode = {SET {Birthday}=$PIECE($ZDATE({DateOfBirth},9),",")_
 " changed: "_$ZTIMESTAMP},
 SqlComputed, SqlComputeOnChange = DateOfBirth];
}

Note that an UPDATE to DateOfBirth that specifies the existing DateOfBirth value does not recompute the Birthday field
value. For the corresponding SQL code, refer to the COMPUTECODE section of the CREATE TABLE reference page.

For reference material on class property keywords, refer to the “Property Keywords” chapter of Caché Class Definition
Reference.

Using Caché SQL 41

Defining a Table by Creating a Persistent Class

5.4.3 Embedded Object (%SerialObject)

You can simplify the structure of a persistent table by referencing an embedded object class that defines properties. For
example, you want the User.Person table to contain address information, consisting of street, city, state, and postal code.
Rather than specifying these properties in User.Person, you can define an embedded object (%SerialObject) class that
defines these properties, and then in User.Person specify a single Home property that references that embedded object. This
is shown in the following class definitions:

Class User.Person Extends (%Persistent) [DdlAllowed]
{ Property Name As %String(MAXLEN=50);
 Property Home As User.Address;
}

Class User.Address Extends (%SerialObject)
{ Property Street As %String;
 Property City As %String;
 Property State As %String;
 Property PostalCode As %String;
 }

You cannot access the data in a serial object property directly. You use an underscore to refer to a serial object property
from the persistent table. For example, SELECT Name, Home_State FROM User.Person. A SELECT * for a per-
sistent class returns all of the serial object properties, including nested serial objects.

Defining embedded objects can simplify persistent table definitions:

• A persistent table can contain multiple properties that reference different records in the same embedded object. For
example, the User.Person table can contain a Home and an Office property, both of which reference the User.Address
embedded object class.

• Multiple persistent tables can reference instances of the same embedded object. For example, the User.Person table
Home property and the User.Employee WorkPlace property can both reference the User.Address embedded object
class.

• An embedded object can reference another embedded object. For example, the User.Address embedded object contains
the Phone property that references the User.Telephone embedded object, containing CountryCode, AreaCode, and
PhoneNum properties. From the persistent class you use multiple underscores to refer to a nested serial object property,
for example Home_Phone_AreaCode.

For further details, refer to Introduction to Serial Objects in Defining and Using Classes.

For information on creating an index for a serial object property, refer to Indexing an Embedded Object (%SerialObject)
Property.

5.4.4 Class Methods

You can specify class methods as part of a table definition, as shown in the following example:

Class MyApp.Person Extends %Persistent
{
Property Name As %String(MAXLEN=50) [Required];
Property SSN As %String(MAXLEN=15) [InitialExpression = "Unknown"];
Property DateOfBirth As %Date;
Property Sex As %String(MAXLEN=1);
ClassMethod Numbers() As %Integer [SqlName = Numbers, SqlProc]
 {
 QUIT 123
 }
}

In a SELECT query you can invoke this method as follows:

SELECT Name,SSN,MyApp.Numbers() FROM MyApp.Person

42 Using Caché SQL

Defining Tables

5.5 Defining a Table by Using DDL
You can define tables in Caché SQL using standard DDL commands:

Table 5–1: Available DDL Commands in Caché SQL

DROP CommandsCREATE CommandsALTER Commands

DROP TABLE

DROP VIEW

DROP INDEX

DROP TRIGGER

CREATE TABLE

CREATE VIEW

CREATE INDEX

CREATE TRIGGER

ALTER TABLE

ALTER VIEW

These are described in the Caché SQL Reference.

You can execute DDL commands in a variety of ways, including:

• Using Dynamic SQL.

• Using Embedded SQL.

• Using a DDL script file.

• Using ODBC calls.

• Using JDBC calls.

5.5.1 Using DDL in Embedded SQL

Within an ObjectScript method or routine, you can use embedded SQL to invoke DDL commands.

For example, the following method creates a TEST.EMPLOYEE table:

ClassMethod CreateTable() As %Integer
{
 &sql(CREATE TABLE TEST.EMPLOYEE (
 EMPNUM INT NOT NULL,
 NAMELAST CHAR (30) NOT NULL,
 NAMEFIRST CHAR (30) NOT NULL,
 STARTDATE TIMESTAMP,
 SALARY MONEY,
 ACCRUEDVACATION INT,
 ACCRUEDSICKLEAVE INT,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM)))

 Write "SQL: ",SQLCODE,!
 QUIT SQLCODE
}

When this method is invoked it attempts to create a TEST.EMPLOYEE table (as well as the corresponding TEST.EMPLOYEE

class). If successful, the SQLCODE variable is set to 0. If unsuccessful, SQLCODE contains an SQL Error Code indicating
the reason for the failure.

The most common reasons that a DDL command such as this one will fail are:

• SQLCODE -99 (Privilege Violation): This error indicates that you do not have permission to execute the desired DDL
command. Typically this is because an application has not established who the current user is. You can do this program-
matically using the $SYSTEM.Security.Login() method:

 DO $SYSTEM.Security.Login(username,password)

Using Caché SQL 43

Defining a Table by Using DDL

• SQLCODE -201 (Table or view name not unique): This error indicates that you are attempting to create a new table
using the name of a table that already exists.

5.5.2 Using a Class Method to Execute DDL

Within ObjectScript or Caché Basic, you can use the Dynamic SQL %SQL.Statement object to prepare and execute DDL
commands using Dynamic SQL.

The following example defines a class method to create a table using Dynamic SQL:

 Class Sample.NewT
 {
 ClassMethod DefTable(user As %String,pwd As %String) As %Status [Language=cache]
 {
 DO ##class(%SYSTEM.Security).Login(user,pwd)
 SET myddl=2
 SET myddl(1)="CREATE TABLE Sample.MyTest "
 SET myddl(2)="(NAME VARCHAR(30) NOT NULL,SSN VARCHAR(15) NOT NULL)"
 SET tStatement=##class(%SQL.Statement).%New()
 SET tStatus=tStatement.%Prepare(.myddl)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset=tStatement.%Execute()
 IF rset.%SQLCODE=0 {WRITE "Created a table"}
 ELSEIF rset.%SQLCODE=-201 {WRITE "table already exists"}
 ELSE {WRITE "Unexpected error SQLCODE=",rset.%SQLCODE}
 }
 }

This method is invoked as follows:

 DO ##class(Sample.NewT).DefTable("myname","mycachepassword")

As with the embedded SQL example, this method will fail if there is no current user logged in.

5.5.3 Running DDL Scripts from the Command Line

You can import Caché SQL DDL script files using either the Cache() method interactively from a Terminal session, or the
DDLImport("CACHE") method as a background job. For further details, refer to the Importing SQL Code chapter of
this guide.

If you are migrating tables from a relational database to Caché, you may have one or more DDL scripts within text files.
Caché provides methods to help load such tables into Caché. Refer to the %SYSTEM.SQL class for details (particularly the
Oracle(), Sybase(), and MSSQLServer() methods).

For example, to load an Oracle DDL file from the Caché command line:

1. Start a Terminal session using the Terminal command in the “Caché Cube” menu.

2. Switch to the namespace in which you wish to load the table definitions:

 ZN "MYNAMESPACE"

3. Invoke the desired DDL import method:

 DO $SYSTEM.SQL.Oracle()

and follow the directions displayed at the terminal.

44 Using Caché SQL

Defining Tables

5.6 Defining a Table by Querying an Existing Table
You can use the $SYSTEM.SQL.QueryToTable() method to define and populate a new table based on an existing table.
You specify a query and a new table name. The existing table name and/or the new table name can be qualified or unqual-
ified. The query can contain JOIN syntax. The query can supply column name aliases that become the column names in
the new table.

1. QueryToTable() copies the DDL definition of a existing table and assigns it the specified new table name. It copies
the definitions of the fields specified in the query, including the data type, maxlength, and minval/maxval. It does not
copy field data constraints, such as default value, required value, or unique value.

If the query specifies SELECT * or SELECT %ID, the RowID field of the original table is copied as a non-required,
non-unique data field of data type integer. QueryToTable() generates a unique RowID field for the new table. If the
copied RowID is named ID, the generated RowID is named ID1.

QueryToTable() creates a corresponding persistent class for this new table. The persistent class is defined as DdlAl-
lowed. The owner of the new table is the current user.

The new table is defined with %Cache storage = YES and Supports Bitmap Indices = YES, regardless of these settings
in the source table.

The only index created for the new table is the IDKEY index. No bitmap extent index is generated. Index definitions
for the copied fields are not copied into the new table.

References from a field to another table are not copied.

2. QueryToTable() then populates the new table with data from the fields selected by the query. It sets the table’s Extent
Size to 100,000. It estimates the IDKEY Block Count. Run Tune Table to set the actual Extent Size and Block Count,
and the Selectivity and Average Field Size values for each field.

QueryToTable() both creates a table definition and populates the new table with data. If you wish to only create a table
definition, specify a condition in the query WHERE clause that selects for no data rows. For example, WHERE Age < 20
AND Age > 20.

The following example copies the Name, and Age, fields from Sample.Person and creates an AVG(Age) field. These field
definitions are used to create a new table named Sample.Youth. The method then Populates Sample.Youth with the Sam-
ple.Person data for those records where Age < 21. The AvgInit field contains the aggregate value for the selected records
at the time that the table was created.

 DO $SYSTEM.SQL.QueryToTable("SELECT Name,Age,AVG(Age) AS AvgInit FROM Sample.Person WHERE Age <
21","Sample.Youth",1,.errors)

5.7 External Tables
In Caché SQL, you can also have “external tables,” tables that are defined within the Caché dictionary but are stored within
an external relational database. External tables act as if they were native Caché tables: you can issue queries against them
and perform INSERT, UPDATE, and DELETE operations. The access to external database is provided by the Caché SQL
Gateway, which offers transparent connectivity using ODBC or JDBC. See “Using the Caché SQL Gateway” for more
details.

Using Caché SQL 45

Defining a Table by Querying an Existing Table

5.8 Listing Tables
The INFORMATION.SCHEMA.TABLES persistent class displays information about all tables (and views) in the current
namespace. It provides a number of properties including the schema and table names, the owner of the table, and whether
you can insert new records.

The following example returns the table type, schema name, table name, and owner for all tables and views in the current
namespace:

SELECT Table_Type,Table_Schema,Table_Name,Owner FROM INFORMATION_SCHEMA.TABLES

You can display much of the same information as INFORMATION.SCHEMA.TABLES for a single table using the Catalog
Details tab in the Management Portal SQL Interface.

5.9 Listing Column Names and Numbers
You can list all of the column names (field names) for a specified table in three ways:

• The GetColumns() method. This lists all column names and column numbers, including hidden columns.

• The Management Portal SQL interface ([System] > [SQL]) schema contents Catalog Details tab. This lists all column
names and column numbers (including hidden columns) and other information, including data types and a flag indi-
cating if a column is hidden.

• SELECT TOP 0 * FROM tablename. This lists all non-hidden column names in column number order. Note that
because hidden columns can appear anywhere in the column number order, you cannot determine the column number
by counting these non-hidden column names. For further details on Asterisk Syntax, refer to the SELECT command.

5.9.1 The GetColumns() Method

To list the names of the columns in a table in column number order, you can use the GetColumns() method, as follows:

 SET stat=##class(%SYSTEM.SQL).GetColumns("Sample.Person",.byname,.bynum)
 IF stat=1 {
 SET i=1
 WHILE $DATA(bynum(i)) { WRITE "name is ",bynum(i)," col num is ",i,!
 SET i=i+1 }
 }
 ELSE { WRITE "GetColumns() cannot locate specified table" }

GetColumns() lists all defined columns, including hidden columns.

You can also use this method to determine the column number for a specified column name, as follows:

 SET stat=##class(%SYSTEM.SQL).GetColumns("Sample.Person",.byname)
 IF stat=1 {
 WRITE "Home_State is column number ",byname("Home_State"),! }
 ELSE { WRITE "GetColumns() cannot locate specified table" }

46 Using Caché SQL

Defining Tables

6
Defining and Using Views

A view is a virtual table consisting of data retrieved from one or more physical tables by means of a SELECT statement
or a UNION of several SELECT statements. Thus a view is a defined way of viewing existing table data.

Caché SQL supports the ability to define and execute queries on views. All views are either updateable or read-only, as
described later in this chapter.

Note: You cannot create a view on data stored in a database that is mounted read-only.

You cannot create a view on data stored in an Informix table linked through an ODBC or JDBC gateway connection.
This is because Caché query conversion uses subqueries in the FROM clause for this type of query; Informix does
not support FROM clause subqueries. See the ISQL Migration Guide for InterSystems support for Informix SQL.

6.1 Creating a View
You can define views in several ways:

• Using the SQL CREATE VIEW command (either in a DDL script or via JDBC or ODBC).

• Using the Management Portal Create View interface.

A view name may be unqualified or qualified. An unqualified view name is a simple identifier: MyView. A qualified view
name consists of two simple identifiers, a schema name and a view name, separated by a period: MySchema.MyView.
View names and table names follow the same naming conventions and perform the same schema name resolution for
unqualified names. A view and a table in the same schema cannot have the same name.

You can determine if a view name already exists using the $SYSTEM.SQL.ViewExists() method. This method also returns
the class name that projected the view. You can determine if a table name already exists using the
$SYSTEM.SQL.TableExists() method.

A view can be used to create a restricted subset of a table. For example, the following view restricts both the rows and
columns of the original table that can be accessed thorough the view:

 &sql(CREATE VIEW VSrStaff
 AS SELECT Name AS Vname,Age AS Vage
 FROM Sample.Person WHERE Age>75)
 IF SQLCODE=0 {WRITE "Created a view",!}
 ELSEIF SQLCODE=-201 {WRITE "View already exists",!}
 ELSE {WRITE "We have a problem: ",SQLCODE,! }

SELECT * FROM VSrStaff ORDER BY Vage

Using Caché SQL 47

The following example creates a view based on all of the rows of the SalesPeople table, creating a new calculated value
column TotalPay:

CREATE VIEW VSalesPay AS
 SELECT Name,(Salary + Commission) AS TotalPay
 FROM Sample.SalesPeople

6.1.1 Management Portal Create View Interface

You can create a view from the Management Portal. Go to the Caché Management Portal. From System Explorer, select
SQL ([System] > [SQL]). Select a namespace with the Switch option at the top of the page; this displays the list of available
namespaces. Once you have selected a namespace, click the Actions drop-down list and select Create View.

This displays the Create a View window with the following fields:

• Schema: You can decide to include the view within an existing schema, or create a new schema. If you opt to select
an existing schema, a drop-down list of existing schemas is provided. If you opt to create a new schema, you enter a
schema name. In either case, if you omit the schema, Caché uses the system-wide default schema name.

• View Name: a valid view name. You cannot use the same name for a table and a view in the same schema.

• With Check Option: the options are READONLY, LOCAL, CASCADED.

• Grant all privilege on the view to _PUBLIC: if selected, this option gives all users execution privileges for this view.
The default is to not give all users access to the view.

• View Text: you can specify the View Text in any of the following three ways:

– Type a SELECT statement into the View Text area.

– Use the Query Builder to create a SELECT statement, then press OK to supply this query to the View Text area.

– If you select a Cached Query name (for example %sqlcq.SAMPLES.cls4) on the left side of the Management
Portal SQL interface, then invoke Create View, this cached query is provided to the View Text area. Note that in
the View Text area you must replace host variable references (question marks) with actual values before saving
the view text.

6.2 Updateable Views
An updateable view is one on which you can perform INSERT, UPDATE, and DELETE operations. A view is considered
updateable only if the following conditions are true:

• The FROM clause of the view’s query contains only one table reference. This table reference must identify either an
updateable base table or an updateable view.

• The value expressions within the SELECT list of the view’s query must all be column references.

• The view’s query must not specify GROUP BY, HAVING, or SELECT DISTINCT.

• The view is not a class query projected as a view.

• The view’s class does not contain the class parameter READONLY=1 (true if the view definition contains a WITH
READ ONLY clause).

48 Using Caché SQL

Defining and Using Views

6.2.1 The WITH CHECK Option

In order to prevent an INSERT or UPDATE operation on a view which would result in a row in the underlying base table
which is not part of the derived view table, Caché SQL supports the WITH CHECK OPTION clause within a View definition.
This clause can only be used with updateable views.

The WITH CHECK OPTION clause specifies that any INSERT or UPDATE operations on an updateable view must validate
the resulting row against the WHERE clause of the view definition to make sure the inserted or modified row will be part
of the derived view table.

For example, the following DDL statement defines an updateable GoodStudent view containing all Students with a high
GPA (grade point average):

CREATE VIEW GoodStudent AS
 SELECT Name, GPA
 FROM Student
 WHERE GPA > 3.0
 WITH CHECK OPTION

Because the view contains a WITH CHECK OPTION, any attempt to INSERT or UPDATE a row in the GoodStudent view
with a GPA value of 3.0 or less will fail (such a row would not represent a “good student”).

There are two flavors of WITH CHECK OPTION:

• WITH LOCAL CHECK OPTION means that only the WHERE clause of the view specified in the INSERT or UPDATE
statement is checked.

• WITH CASCADED CHECK OPTION (and WITH CASCADE CHECK OPTION) means that the WHERE clause of
the view specified in the INSERT or UPDATE statement as well as ALL views on which that view is based are checked,
regardless of the appearance or absence of other WITH LOCAL CHECK OPTION clauses in those view definitions.

The default is CASCADED if just WITH CHECK OPTION is specified.

During an UPDATE or INSERT, the WITH CHECK OPTION conditions are checked after all default values and triggered
computed fields have been calculated for the underlying table’s fields and before the regular table’s validation (required
fields, data type validation, constraints, and so on).

After the WITH CHECK OPTION validation passes, the INSERT or UPDATE operation continues as if the INSERT or
UPDATE was performed on the base table itself. All constraints are checked, triggers pulled, and so on.

If the %NOCHECK option is specified on the INSERT or UPDATE statement, the WITH CHECK OPTION validation is
not checked.

There are two SQLCODE values related to the WITH CHECK OPTION validation (the INSERT/UPDATE would have
resulted in a row not existing in the derived view table):

• SQLCODE -136—View's WITH CHECK OPTION validation failed in INSERT.

• SQLCODE -137—View's WITH CHECK OPTION validation failed in UPDATE.

6.3 Read-only Views
A read-only view is one on which you cannot perform INSERT, UPDATE, and DELETE operations. Any view that does
not meet the criteria for updateable views is a read-only view.

A view definition may specify a WITH READ ONLY clause to force it to be a read-only view.

Using Caché SQL 49

Read-only Views

If you attempt to compile/prepare an INSERT, UPDATE, or DELETE statement against a read-only view an SQLCODE
-35 error is generated.

6.4 View ID: %VID
Caché assigns an integer view ID (%VID) to each row returned by a view or by a FROM clause subquery. Like table row
ID numbers, these view row ID numbers are system-assigned, unique, non-null, non-zero, and non-modifiable. This %VID
is commonly invisible to the user, and is only returned when explicitly specified. It is returned as data type INTEGER.
Because %VID values are sequential integers, they are far more meaningful if the view returns ordered data; a view can
only use an ORDER BY clause when it is paired with a TOP clause. The following Embedded SQL example creates a view
named VSrStaff:

 &sql(CREATE VIEW VSrStaff
 AS SELECT TOP ALL Name AS Vname,Age AS Vage
 FROM Sample.Person WHERE Age>75
 ORDER BY Name)
 IF SQLCODE=0 {WRITE "Created a view",!}
 ELSEIF SQLCODE=-201 {WRITE "View already exists",!}
 ELSE {WRITE "We have a problem: ",SQLCODE,! }

The following example returns all of the data defined by the VSrStaff view (using SELECT *) and also specifies that the
view ID for each row should be returned. Unlike the table row ID, the view row ID is not displayed when using asterisk
syntax; it is only displayed when explicitly specified in the SELECT:

SELECT *,%VID AS ViewID FROM VSrStaff

The %VID can be used to further restrict the number of rows returned by a SELECT from a view, as shown in the following
example:

SELECT *,%VID AS ViewID FROM VSrStaff WHERE %VID BETWEEN 5 AND 10

Thus %VID can be used instead of TOP (or in addition to TOP) to restrict the number of rows returned by a query. Generally,
a TOP clause is used to return a small subset of the data records; %VID is used to return most or all of the data records,
returning records in small subsets. This feature may be useful, especially for porting Oracle queries (%VID maps easily to
Oracle ROWNUM). However, the user should be aware of some performance limitations in using %VID, as compared to
TOP:

• %VID does not perform time-to-first-row optimization. TOP optimizes to return the first row of data as quickly as
possible. %VID optimizes to return the full data set as quickly as possible.

• %VID does not perform a limited sort (which is a special optimization performed by TOP) if the query specifies sorted
results. The query first sorts the full data set, then restricts the return data set using %VID. TOP is applied before
sorting, so the SELECT performs a limited sort involving only a restricted subset of rows.

To preserve time to first row optimization and limited sort optimization, you can use a FROM clause subquery with a
combination of TOP and %VID. Specify the upper bound (in this case, 10) in the FROM subquery as the value of TOP,
rather than using TOP ALL. Specify the lower bound (in this case, >4) in the WHERE clause with %VID. The following
example uses this strategy to return the same results as the previous view query:

SELECT *,%VID AS SubQueryID
 FROM (SELECT TOP 10 Name,Age
 FROM Sample.Person
 WHERE Age > 75
 ORDER BY Name)
 WHERE %VID > 4

50 Using Caché SQL

Defining and Using Views

6.5 Listing View Properties
The INFORMATION.SCHEMA.VIEWS persistent class displays information about all views in the current namespace. It
provides a number of properties including the view definition, the owner of the view, and the timestamps when the view
was created and last modified. These properties also include whether the view is updateable and if so, whether it was defined
with a check option.

When specified in Embedded SQL, INFORMATION.SCHEMA.VIEWS requires the #include %occInclude macro preprocessor
directive. This directive is not required for Dynamic SQL.

The following example returns the view name (Table_Name field) and owner name for all views in the current namespace:

SELECT Table_Name,Owner FROM INFORMATION_SCHEMA.VIEWS

The following example returns all information for all non-system views in the current namespace:

SELECT * FROM INFORMATION_SCHEMA.VIEWS WHERE Owner != '_SYSTEM'

The INFORMATION.SCHEMA.VIEWCOLUMNUSAGE persistent class displays the names of the source table fields for each
of the views in the current namespace:

SELECT * FROM INFORMATION_SCHEMA.VIEW_COLUMN_USAGE WHERE View_Name='MyView'

You can display much of the same information as INFORMATION.SCHEMA.VIEWS for a single view using the Catalog
Details tab in the Management Portal SQL Interface. The Catalog Details for a view include the definition of each view
field (data type, max length, minval/maxval, etc.), details that are not provided by the INFORMATION.SCHEMA view classes.
The Catalog Details View Info display also provides an option to edit the view definition.

6.6 Listing View Dependencies
The INFORMATION.SCHEMA.VIEWTABLEUSAGE persistent class displays all views in the current namespace and the
tables they depend on. This is shown in the following example:

SELECT View_Schema,View_Name,Table_Schema,Table_Name FROM INFORMATION_SCHEMA.VIEW_TABLE_USAGE

You can invoke the %Library.SQLCatalog.SQLViewDependsOn class query to list the tables that a specified view depends
upon. You specify schema.viewname to this class query. If you specify only viewname, it uses the system-wide default
schema name. The caller must have privileges for the specified view to execute this class query. This is shown in the fol-
lowing example:

 SET statemt=##class(%SQL.Statement).%New()
 SET cqStatus=statemt.%PrepareClassQuery("%Library.SQLCatalog","SQLViewDependsOn")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}
 SET rset=statemt.%Execute("vschema.vname")
 DO rset.%Display()

This SQLViewDependsOn query lists the tables that the view depends upon, listing the table schema followed by the table
name. If the caller does not have privileges for a table that the view depends upon, that table and its schema are listed as
<NOT PRIVILEGED>. This allows a caller without table privileges to determine how many tables the view depends upon,
but not the names of the tables.

Using Caché SQL 51

Listing View Properties

7
Using Foreign Keys

To enforce referential integrity between tables you can define foreign keys. When a table containing a foreign key constraint
is modified, the foreign key constraints are checked.

7.1 Defining a Foreign Key
There are several ways to define foreign keys in Caché SQL:

• You can define a relationship between two classes. Defining a relationship automatically projects a foreign key constraint
to SQL. For more information on relationships, see Using Caché Objects.

• You can add an explicit foreign key definition to a class definition (for cases not covered by relationships). For infor-
mation, see “Foreign Key Definitions” in the Caché Class Definition Reference.

• You can add a foreign key using the CREATE TABLE or ALTER TABLE command. You can remove a foreign key
using the ALTER TABLE command. These commands are described in the Caché SQL Reference.

The maximum number of foreign keys for a table (class) is 400.

7.2 Foreign Key Referential Integrity Checking
By default, Caché performs foreign key referential integrity checking on INSERT, UPDATE and DELETE operations. If
the operation would violate referential integrity, it is not performed; the operation issues an SQLCODE -121, -122, -123,
or -124 error. A failed referential integrity check generates an error such as the following:

ERROR #5540: SQLCODE: -124 Message: At least 1 Row exists in table 'HealthLanguage.FKey2'
which references key NewIndex1 - Foreign Key Constraint 'NewForeignKey1' (Field 'Pointer1')
failed on referential action of NO ACTION [Execute+5^CacheSql16:USER]

This checking can be suppressed systemwide using either of the following:

• Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
General SQL Settings ([System] > [Configuration] > [General SQL Settings]). On this screen you can view the current
setting of Perform Referential Integrity Checks on Foreign Keys for INSERT, UPDATE, and DELETE. The default is “Yes” .

• Invoke the $SYSTEM.SQL.SetFilerRefIntegrity() method.

Using Caché SQL 53

When using a persistent class definition to define a table, you can define a foreign key with the NoCheck keyword to suppress
future checking of that foreign key. CREATE TABLE does not provide this keyword option.

You can suppress checking for a specific operation by using the %NOCHECK keyword option.

By default, Caché also performs foreign key referential integrity checking on the following operations. If the specified
action violates referential integrity, the command is not executed:

• ALTER TABLE DROP COLUMN.

• ALTER TABLE DROP CONSTRAINT. Issues SQLCODE -317. Foreign Key integrity checking can be suppressed
using SET OPTION COMPILEMODE=NOCHECK.

• DROP TABLE. Issues SQLCODE -320. Foreign Key integrity checking can be suppressed using SET OPTION
COMPILEMODE=NOCHECK.

• TRUNCATE TABLE (same considerations as DELETE).

• Trigger events, including BEFORE events. For example, a BEFORE DELETE trigger is not executed if the DELETE
operation would not be performed because it violates foreign key referential integrity.

7.3 Identifying Parent and Child Tables
In Embedded SQL, you can use a host variable array to identify parent and child tables. In a child table, Subscript 0 of the
host variable array is set to the parent reference, with the format parentref or parentref||childref. In a parent
table, Subscript 0 is undefined. This is shown in the following examples:

 &sql(SELECT *,%TABLENAME INTO :tflds(),:tname
 FROM Aviation.Event)
 IF SQLCODE=0 {
 IF $DATA(tflds(0)) {
 WRITE tname," is a child table",!,"parent ref: ",tflds(0),! }
 ELSE {WRITE tname," is a parent table",! }
 }
 ELSE {WRITE "SQLCODE error=",SQLCODE,! }

 &sql(SELECT *,%TABLENAME INTO :tflds(),:tname
 FROM Aviation.Aircraft)
 IF SQLCODE=0 {
 IF $DATA(tflds(0)) {
 WRITE tname," is a child table",!,"parent ref: ",tflds(0),! }
 ELSE {WRITE tname," is a parent table",! }
 }
 ELSE {WRITE "SQLCODE error=",SQLCODE,! }

 &sql(SELECT *,%TABLENAME INTO :tflds(),:tname
 FROM Aviation.Crew)
 IF SQLCODE=0 {
 IF $DATA(tflds(0)) {
 WRITE tname," is a child table",!,"parent ref: ",tflds(0),! }
 ELSE {WRITE tname," is a parent table",! }
 }
 ELSE {WRITE "SQLCODE error=",SQLCODE,! }

54 Using Caché SQL

Using Foreign Keys

8
Modifying the Database

You can use SQL to modify the contents of a database. If there are indices defined on the table, SQL will automatically
update them to reflect the changes. If there are any data or referential integrity constraints defined, SQL will automatically
enforce them. If there are any defined triggers, performing these actions will pull the corresponding trigger.

This chapter discusses the following topics:

• How to use the INSERT statement

• How to use the UPDATE statement

• How to use the DELETE statement

• How perform transaction processing

8.1 INSERT Statements
The INSERT statement inserts a new row into an SQL table:

 INSERT INTO MyApp.Product
 (Name,SKU,Price)
 VALUES ('Ginsu','DPV1486',22.95)

You can also issue an INSERT OR UPDATE statement. This statement inserts a new row into an SQL table if the row
does not already exist. If the row exists, this statement updates the row data with the supplied field values.

8.2 UPDATE Statements
The UPDATE statement modifies values in one or more existing rows within an SQL table:

 UPDATE MyApp.Person
 SET HairColor = 'Red'
 WHERE %ID = 435

8.3 DELETE Statements
The DELETE statement removes one or more existing rows from an SQL table:

Using Caché SQL 55

 DELETE FROM MyApp.Person
 WHERE HairColor = 'Aqua'

You can issue a TRUNCATE TABLE command to delete all rows in a table. You can also delete all rows in a table using
DELETE. DELETE (by default) pulls delete triggers; TRUNCATE TABLE does not pull delete triggers. Using DELETE
to delete all rows does not reset table counters; TRUNCATE TABLE resets these counters.

8.4 Transaction Processing
A transaction is a series of INSERT, UPDATE, DELETE, INSERT OR UPDATE, and TRUNCATE TABLE data
modification statements that comprise a single unit of work.

The SET TRANSACTION command can be used to set the transaction parameters for the current process. The same
parameters can also be set using the START TRANSACTION command. These transaction parameters continue in effect
across multiple transactions until explicitly changed.

A START TRANSACTION command explicitly starts a transaction. This command is generally optional; if transaction
%COMMITMODE is either IMPLICIT or EXPLICIT, a transaction begins automatically with the first database modification
operation. If transaction %COMMITMODE is NONE, you must explicitly specify START TRANSACTION to initiate
transaction processing.

If a transaction succeeds, committing its changes can be implicit (automatic) or explicit; the %COMMITMODE value
determines whether you need to explicitly use the COMMIT statement to permanently add the data modifications to the
database and release resources.

If a transaction fails, you can use the ROLLBACK statement to undo its data modifications so that these do not go into the
database.

Note: SQL transaction statements are not supported when running SQL through the Management Portal Execute SQL

Query interface. This interface is intended as a test environment for developing SQL code, not for modifying
actual data.

8.4.1 Transactions and Savepoints

In Caché SQL, you can perform two kinds of transaction processing: full transaction processing and transaction processing
using savepoints. With full transaction processing, a transaction begins with START TRANSACTION statement (explicit
or implicit) and continues until either a COMMIT statement (explicit or implicit) concludes the transaction and commits
all work, or a ROLLBACK statement reverses all work done during the transaction.

With savepoints, Caché SQL supports levels within a transaction. You begin a transaction with a START TRANSACTION
statement (explicit or implicit). Then during the transaction you use SAVEPOINT to specify one or more named savepoints
within the program. You can specify a maximum of 255 named savepoints in a transaction. Adding a savepoint increments
the $TLEVEL transaction level counter.

• A COMMIT commits all work performed during the transaction. Savepoints are ignored.

• A ROLLBACK rolls back all work performed during the transaction. Savepoints are ignored.

• A ROLLBACK TO SAVEPOINT pointname rolls back all work performed since the SAVEPOINT specified by
pointname and decrements an internal transaction level counter by the appropriate number of savepoint levels. For
example, if you established two savepoints, svpt1 and svpt2, and then rolled back to svpt1, the ROLLBACK TO
SAVEPOINT svpt1 reverse the work done since svpt1 and, in this case, decrements the transaction level counter by
2.

56 Using Caché SQL

Modifying the Database

8.4.2 Non-transaction Operations

While a transaction is in effect, the following operations are not included in the transaction and therefore cannot be rolled
back:

• The IDKey counter increment is not a transaction operation. The IDKey is automatically generated by $INCREMENT
(or $SEQUENCE), which maintains a count independent of the SQL transaction. For example, if you insert rows with
IDKeys of 17, 18, and 19, then rollback this insert, the next row to be inserted will have an IdKey of 20.

• Cached query creation, modification, and purging are not transaction operations. Therefore, if a cached query is purged
during a transaction, and that transaction is then rolled back, the cached query will remain purged (will not be restored)
following the rollback operation.

• A DDL operation or a Tune Table operation that occur within a transaction may create and run a temporary routine.
This temporary routine is treated the same as a Cached Query. That is, the creation, compilation, and deletion of a
temporary routine are not treated as part of the transaction. The execution of the temporary routine is considered part
of the transaction.

For non-SQL items rolled back or not rolled back, refer to the ObjectScript TROLLBACK command.

8.4.3 Transaction Locks

A transaction uses locks to safeguard unique data values. For example, if a process deletes a unique data value, this value
is locked for the duration of the transaction. Therefore, another process could not insert a row using this same unique data
value until the first transaction completed. This prevents a rollback resulting in a duplicate value for a field with a uniqueness
constraint. These locks are automatically applied by the INSERT, UPDATE, INSERT OR UPDATE, and DELETE
statements, unless the statement includes a %NOLOCK restriction argument.

8.4.4 Transaction Size Limitations

There is no limitation on the number of operations you can specify in a transaction, other than space availability for journal
files. The size of the lock table does not normally impose a limit, because Caché provides automatic lock escalation.

There is a default lock threshold of 1000 locks per table. A table can have 1000 unique data value locks for the current
transaction. The 1001st lock operation escalates the locking for that table to a table lock for the duration of the transaction.

This lock threshold value is configurable using either of the following:

• Invoke the $SYSTEM.SQL.SetLockThreshold() method. This method changes both the current system-wide value
and the configuration file setting. To determine the current lock escalation threshold, use the
$SYSTEM.SQL.GetLockThreshold() method.

• Go to the Management Portal. From System Administration, select Configuration, then SQL and Object Settings, then
General SQL Settings ([System] > [Configuration] > [General SQL Settings]). On this screen you can view and edit the
current setting of Lock Threshold.

There is no limit on the number of subnodes (child tables) that can be killed. All subnode kills are journaled, and thus can
be rolled back. This removes a numeric limit on the number of subnode kills that applied to earlier versions of Caché.

8.4.5 Reading Uncommitted Data

You can specify the read isolation level by setting SET TRANSACTION or START TRANSACTION for the process
issuing the query.

Using Caché SQL 57

Transaction Processing

• ISOLATION LEVEL READ UNCOMMITTED: Uncommitted inserts, updates, and deletes to data are visible for
query (read only) access by other users. This is the default if no transaction is specified.

• ISOLATION LEVEL READ VERIFIED: Uncommitted inserts, updates, and deletes to data are visible for query (read
only) access by other users. Provides re-checking of data used by query conditions and displayed by the query.

• ISOLATION LEVEL READ COMMITTED: Changes made to the data by uncommitted inserts and updates are not
shown in the query result set. The query result set only contains inserts and updates that have been committed. However,
changes made to the data by uncommitted deletes are shown in the query result set.

The following SELECT command clauses always return uncommitted data, regardless of the current isolation level: an
aggregate function, a DISTINCT clause, a GROUP BY clause, or a SELECT with the %NOLOCK keyword. For further
details, refer to Isolation Level.

8.4.6 ObjectScript Transaction Commands

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

58 Using Caché SQL

Modifying the Database

9
Querying the Database

This chapter discusses how to query the database. It includes information on the following topics:

• Types of Queries

• Using a SELECT Statement

• Defining and Executing Named Queries

• Queries Invoking User-defined Functions

• Collection Properties

• Queries Invoking Free-text Search

• Pseudo-Field Variables: %ID, %TABLENAME, %CLASSNAME

• Query Metadata

• Queries and Enterprise Cache Protocol (ECP)

9.1 Types of Queries
A query is a statement which performs data retrieval and generates a result set. A query can consist of any of the following:

• A simple SELECT statement that accesses the data in a specified table or view.

• A SELECT statement with JOIN syntax that accesses the data from several tables or views.

• A UNION statement that combines the results of multiple SELECT statements.

• A subquery that uses a SELECT statement to supply a single data item to an enclosing SELECT query.

• In Embedded SQL, a SELECT statement that uses an SQL cursor to access multiple rows of data using a FETCH
statement.

9.2 Using a SELECT Statement
A SELECT statement selects one or more rows of data from one or more tables or views. A simple SELECT is shown in
the following example:

Using Caché SQL 59

SELECT Name,DOB FROM Sample.Person WHERE Name %STARTSWITH 'A' ORDER BY DOB

In this example, Name and DOB are columns (data fields) in the Sample.Person table.

The order that clauses must be specified in a SELECT statement is: SELECT DISTINCT TOP ... select-items INTO ...
FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY. All of these clauses are optional, except SELECT select-items.
(The optional FROM clause is required to perform any operations on stored data, and therefore is almost always required
in a query.) Refer to the SELECT statement syntax for details on the required order for specifying SELECT clauses.

The operation of a SELECT statement can be understood by noting its semantic processing order (which is not the same
as the SELECT syntax order). The clauses of a SELECT are processed in the following order:

1. FROM clause — specifies a table, a view, multiple tables or views using JOIN syntax, or a subquery.

2. WHERE clause — restricts what data is selected using various criteria.

3. GROUP BY clause — organizes the selected data into subsets with matching values; only one record is returned for
each value.

4. HAVING clause — restricts what data is selected from groups using various criteria.

5. select-item — selects a data fields from the specified table or view. A select-item can also be an expression which may
or may not reference a specific data field.

6. ORDER BY clause — sorts the results by different values.

This semantic order shows that a table alias (which is defined in the FROM clause) can be recognized by all clauses, but
a column alias (which is defined in the SELECT select-items) can only be recognized by the ORDER BY clause.

To use a column alias in other SELECT clauses you can use a subquery, as shown in the following example:

SELECT Interns FROM
 (SELECT Name AS Interns FROM Sample.Employee WHERE Age<21)
WHERE Interns %STARTSWITH 'A'

In this example, Name and Age are columns (data fields) in the Sample.Person table, and Interns is a column alias for
Name.

9.2.1 Selecting Fields

When you issue a SELECT, Caché SQL attempts to match each specified select-item field name to a property defined in
the class corresponding to the specified table. Each class property has both a property name and a SqlFieldName. If you
defined the table using SQL, the field name specified in the CREATE TABLE command is the SqlFieldName, and Caché
generated the property name from the SqlFieldName.

Field names, class property names, and SqlFieldName names have different naming conventions:

• Field names in a SELECT statement are not case-sensitive. SqlFieldName names and property names are case-sensitive.

• Field names in a SELECT statement and SqlFieldName names can contain certain non-alphanumeric characters fol-
lowing identifier naming conventions. Property names can only contain alphanumeric characters. When generating a
property name, Caché strips out non-alphanumeric characters. Caché may have to append a character to create a unique
property name.

The translation between these three names for a field determine several aspects of query behavior. You can specify a
select-item field name using any combination of letter case and Caché SQL will identify the appropriate corresponding
property. The data column header name in the result set display is the SqlFieldName, not the field name specified in the
select-item. This is why the letter case of the data column header may differ from the select-item field name.

60 Using Caché SQL

Querying the Database

To avoid the performance cost of letter case resolution, the select-item field name should use the exact letter case of the
SqlFieldName, or you should provide a column alias. It is sometimes beneficial to specify exact column aliases, for
example, FamilyName AS FamilyName.

You can specify a column alias for a select-item field. A column alias can be in any mix of letter case, and can contain non-
alphanumeric characters, following identifier naming conventions. A column alias can be referenced using any combination
of letter case and Caché SQL resolves to the letter case specified in the select-item field. Caché always attempts to match
to the list of column aliases before attempting to match to the list of properties corresponding to defined fields. If you have
defined a column alias, the data column header name in the result set display is the column alias in the specified letter case,
nor the field name.

When a SELECT query completes successfully, Caché SQL generates a result set class for that query. The result set class
contains a property corresponding to each selected field. If a SELECT query contains duplicate field names, the system
generates unique property names for each instance of the field in the query by appending a character. For this reason, you
cannot include more than 36 instances of the same field in a query.

The generated result set class for a query also contains properties for column aliases. To avoid the performance cost of
letter case resolution, you should use the same letter case when referencing a column alias as the letter case used when
specifying the column alias in the SELECT statement.

In addition to user-specified column aliases, Caché SQL also automatically generates up to three aliases for each field
name, aliases which correspond to common letter case variants of the field name. These generated aliases are invisible to
the user. They are provided for performance reasons, because accessing a property through an alias is faster than resolving
letter case through letter case translation. For example, if SELECT specifies FAMILYNAME and the corresponding
property is familyname, Caché SQL resolves letter case using a generated alias (FAMILYNAME AS familyname). However,
if SELECT specifies fAmILyNaMe and the corresponding property is familyname, Caché SQL must resolves letter case
using the slower letter case translation process.

A select-item item can also be an expression, an aggregate function, a subquery, a user-defined function, as asterisk, or
some other value. For further details on select-item items other than field names, refer to The select-item section of the
SELECT command reference page.

9.2.2 The JOIN Operation

A JOIN provides a way to link data in one table with data in another table and are frequently used in defining reports and
queries. Within SQL, a JOIN is an operation that combines data from two tables to produce a third, subject to a restrictive
condition. Every row of the resulting table must satisfy the restrictive condition.

Caché SQL supports five types of joins (some with multiple syntactic forms): CROSS JOIN, INNER JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. Outer joins support the ON clause with a full range of conditional
expression predicates and logical operators. There is partial support for NATURAL outer joins and outer joins with a
USING clause. For definitions of these join types and further details, refer to the JOIN page in the Caché SQL Reference.

If a query contains a join, all of the field references within that query must have an appended table alias. Because Caché
does not include the table alias in the data column header name, you may wish to provide column aliases for select-item
fields to clarify which table is the source of the data.

The following example uses a join operation to match the “fake” (randomly-assigned) zip codes in Sample.Person with the
real zip codes and city names in Sample.USZipCode. A WHERE clause is provided because USZipCode does not include
all possible 5-digit zip codes:

SELECT P.Home_City,P.Home_Zip AS FakeZip,Z.ZipCode,Z.City AS ZipCity,Z.State
FROM Sample.Person AS P LEFT OUTER JOIN Sample.USZipCode AS Z
ON P.Home_Zip=Z.ZipCode
WHERE Z.ZipCode IS NOT NULL
ORDER BY P.Home_City

Using Caché SQL 61

Using a SELECT Statement

9.2.3 Queries Selecting Large Numbers of Fields

A query cannot select more than 1,000 select-item fields.

A query selecting more than 150 select-item fields may have the following performance consideration. Caché automatically
generates result set column aliases. These generated aliases are provided for field names without user-defined aliases to
enable rapid resolution of letter case variations. Letter case resolution using an alias is significantly faster than letter case
resolution by letter case translation. However, the number of generated result set column aliases is limited to 500. Because
commonly Caché generates three of these aliases (for the three most common letter case variations) for each field, the
system generates aliases for roughly the first 150 specified fields in the query. Therefore, a query referencing less than 150
fields commonly has better result set performance than a query referencing significantly more fields. This performance
issue can be avoided by specifying an exact column alias for each field select-item in a very large query (for example,
SELECT FamilyName AS FamilyName) and then making sure that you use the same letter case when referencing the
result set item by column alias.

9.3 Defining and Executing Named Queries
You can define and execute a named query as follows:

• Define the query using CREATE QUERY, and then execute it using CALL.

• Define the query in a class using the Query keyword.

– Execute the class query using the %PrepareClassQuery() and %Execute() methods of %SQL.Statement. See
“Using Dynamic SQL” .

– Execute the class query using the Execute() method of %Library.ResultSet. See “Dynamic SQL Using Older
Result Set Classes” .

9.3.1 CREATE QUERY and CALL

You can define a query using CREATE QUERY, and then execute it by name using CALL. In the following example, the
first is an SQL program that defines the query AgeQuery, the second is Dynamic SQL that executes the query:

CREATE QUERY Sample.AgeQuery(IN topnum INT DEFAULT 10,IN minage INT 20)
 PROCEDURE
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage
 ORDER BY Age ;
 END

 ZNSPACE "Samples"
 SET mycall = "CALL Sample.AgeQuery(11,65)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

DROP QUERY Sample.AgeQuery

62 Using Caché SQL

Querying the Database

9.3.2 Class Queries

You can define a query in a class. The class may be a %Persistent class, but does not have to be. The query can reference
data defined in the same class, or in another class in the same namespace. The following class definition example defines
a class query:

Class Sample.QClass Extends %Persistent [DdlAllowed]
 {
 Query MyQ(Myval As %String) As %SQLQuery [SqlProc]
 {
 SELECT Name,Home_State FROM Sample.Person
 WHERE Home_State = :Myval ORDER BY Name
 }

 }

The following example executes the MyQ query defined in the Sample.QClass in the previous example:

 SET Myval="NY"
 SET stmt=##class(%SQL.Statement).%New()
 SET status = stmt.%PrepareClassQuery("Sample.QClass","MyQ")
 IF status'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(status) QUIT}
 SET rset = stmt.%Execute(Myval)
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses %SQL.Statement to execute the ByName query defined in the Sample.Person
class, passing a string to limit the names returned to those that start with that string value:

 SET statemt=##class(%SQL.Statement).%New()
 SET cqStatus=statemt.%PrepareClassQuery("Sample.Person","ByName")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}
 SET rs=statemt.%Execute("L")
 DO rs.%Display()

For further details, refer to “Defining and Using Class Queries” in Using Caché Objects.

For information on query names automatically assigned to executed queries, refer to the Cached Queries chapter of Caché
SQL Optimization Guide.

9.4 Queries Invoking User-defined Functions
Caché SQL allows you to invoke class methods within SQL queries. This provides a powerful mechanism for extending
the syntax of SQL.

To create a user-defined function, define a class method within a persistent Caché class. The method must have a literal
(non-object) return value. This has to be a class method because there will not be an object instance within an SQL query
on which to invoke an instance method. It also has to be defined as being an SQL stored procedure.

For example, we can define a Cube() method within the class MyApp.Person:

Class MyApp.Person Extends %Persistent [DdlAllowed,language = basic]
{
/// Find the Cube of a number
ClassMethod Cube(val As %Integer) As %Integer [SqlProc]
{
 Return val * val * val
}
}

You can create SQL functions with the CREATE FUNCTION, CREATE METHOD or CREATE PROCEDURE statements.

To call an SQL function, specify the name of the SQL procedure. A SQL function may be invoked in SQL code anywhere
where a scalar expression may be specified. The function name may be qualified with its schema name, or unqualified.

Using Caché SQL 63

Queries Invoking User-defined Functions

Unqualified function names take either a user-supplied schema search path or the system-wide default schema name. A
function name may be a delimited identifier.

An SQL function must have a parameter list, enclosed in parentheses. The parameter list may be empty, but the parentheses
are mandatory. All specified parameters act as input parameters. Output parameters are not supported.

An SQL function must return a value.

For example, the following SQL query invokes a user-defined SQL function as a method, just as if it was a built-in SQL
function:

SELECT %ID, Age, MyApp.Person_Cube(Age) FROM MyApp.Person

For each value of Age, this query will invoke the Cube() method and place its return value within the results.

SQL functions may be nested.

If the specified function is not found, Caché issues an SQLCODE -359 error. If the specified function name is ambiguous,
Caché issues an SQLCODE -358 error.

9.5 Collection Properties
A collection property that is projected as a child table to SQL from a class using default storage (%Library.CacheStorage)
is also projected as a single column in the table projected by the class. The value of this column is the serilized value of
the collection. This single column property is projected as an SQL list field.

For example, the collection column Home in Sample.Person is projected as a child table containing the columns Home_Street,
Home_City, Home_State, and Home_Zip. The following example returns values from these child table columns:

SELECT TOP 4 Name,Home_Street,Home_City,Home_State,Home_Zip
FROM Sample.Person

The following example returns the same values as a single collection column with the data in list format:

SELECT TOP 4 Name,$LISTTOSTRING(Home,'^')
FROM Sample.Person

By default, this Home column is not projected as a column.

You can use the $SYSTEM.SQL configuration methods GetCollectionProjection() and SetCollectionProjection() to
determine whether to project a collection as a column if the collection is projected as a child table. Changes made to this
systemwide setting takes effect for each class when that class is compiled or recompiled.

9.6 Queries Invoking Free-text Search
Caché supports what is called “ free-text search,” which includes support for:

• Stemming

• Multiple-word searches (also called n-grams)

• Automatic classification

• Dictionary management

64 Using Caché SQL

Querying the Database

This feature enables SQL to support full text indexing, and also enables SQL to index and reference individual elements
of a collection without projecting the collection property as a child table. While the underlying mechanisms that support
collection indexing and full text indexing are closely related, text retrieval has many special properties, and therefore special
classes and SQL features have been provided for text retrieval.

For details on the underlying classes that support these features, see the %Text.Text class.

9.6.1 Full Text Indexing and Text Retrieval through SQL

The %Library.Text class and the %Text package has been provided to index text and to search textual data with SQL. To
use the feature on an existing %String property, change %String to %Text and set the LANGUAGECLASS parameter. For
English text, the declaration would be as follows:

 Property myNotes As %Text (LANGUAGECLASS="%Text.English", MAXLEN=1000);
 Index myFullTextIndex On myNotes(KEYS);

LANGUAGECLASS specifies the name of a helper class that provides the necessary interface to SQL and to the indexer so
that efficient text indexing and text search may be carried out. Specifying a MAXLEN value (in bytes) is required for %Text

properties.

The available text-aware predicates are %CONTAINS, %CONTAINSTERM, and %SIMILARITY.

Once the %Text property has been declared and optionally indexed, you can issue full text queries using the SQL %CON-
TAINS predicate, as follows:

SELECT plaintiff, legalBrief FROM transcript
 WHERE plaintiff = 'John Doe' AND
 legalBrief %CONTAINS ('neighbor', 'tree', 'roof')

The query above returns all transcripts where the plaintiff is 'John Doe' and where the terms 'neighbor' AND 'tree' AND
'roof' are in its legalBrief.

Caché includes language-specific parsers in the %Text package for English, Spanish, French, Italian, German, Japanese,
Portuguese. While easy to use, the language specific subclasses can be configured to perform many sophisticated operations,
such as word stemming to map various forms of the same word into a common root (block, blocks, blocking, and so on),
or to support multi-word phrases (n-grams), or to filter out noise words, or to perform automatic text classification (for
example, for junk-mail filtering), as well as other features.

Multi-word strings may be specified to %CONTAINS, even if the type class is not configured to support n-grams of the
full length of the query. For example, the following predicate may be specified even if the %Text class is configured to
store only individual words:

SELECT author FROM famousQuotations WHERE
 quotetext %CONTAINS('eggs in one basket')

The query above would return all authors where the documents contain exactly the specified phrases, even if the text class
represents the document only with single words (NGRAMLEN=1). When the pattern is longer than the n-gram length as
in the case above, SQL filters the rows with the "[" (contains) operator. Because the "[" operator is case-sensitive, the
%CONTAINS predicate is also case-sensitive on patterns longer than NGRAMLEN. An implication is that NGRAMLEN
can also affect which rows get returned, as in the following case:

 mission %CONTAINS('Fortune 5')

If NGRAMLEN >= 2, then only the rows containing 'Fortune 5' are returned.

If NGRAMLEN < 2, then rows containing 'Fortune 5', 'Fortune 50', 'Fortune 500', and so on may be returned, since all of
these patterns satisfy the "[" test.

See the class documentation of the %Text.Text class and its language-specific subclasses (such as %Text.English) for more
information about the capabilities of the Text interface.

Using Caché SQL 65

Queries Invoking Free-text Search

9.6.2 Collection Indexing and Querying Collections through SQL

Collections may be referenced from the SQL WHERE clause with a FOR clause. For example:

 FOR SOME %ELEMENT(collectionRef) [AS label] (predicate)

The FOR SOME %ELEMENT clause can be used for list collections and arrays that specify STORAGEDEFAULT="list".
The predicate may contain one reference to the pseudo-columns %KEY, %VALUE, or both. A few examples should help
to clarify how the FOR SOME %ELEMENT clause may be used. The following returns the name and the list of Favorite-
Colors for each person whose FavoriteColors include 'Red'.

SELECT Name,FavoriteColors FROM Sample.Person
 WHERE FOR SOME %ELEMENT(FavoriteColors) (%Value = 'Red')

Any SQL predicate may appear after the %Value (or %Key), so for example the following is also legal syntax:

SELECT Name,FavoriteColors FROM Sample.Person
 WHERE FOR SOME %ELEMENT(Sample.Person.FavoriteColors)
 (%Value IN ('Red', 'Blue', 'Green'))

A list collection is considered a special case of an array collection that has sequential numeric keys 1, 2, and so on. Array
collections may have arbitrary non-null keys:

 FOR SOME (children) (%Key = 'betty' AND %Value > 5)

In addition to the built-in list and array collection types, generalized collections may be created by providing a
BuildValueArray() class method for any property. The BuildValueArray() class method transforms the value of a property
into a local array, where each subscript of the array is a %KEY and the value is the corresponding %VALUE.

In addition to simple selections on the %KEY or %VALUE, it is also possible to logically connect two collections, as in
the following example:

 FOR SOME %ELEMENT(flavors) AS f
 (f.%VALUE IN ('Chocolate', 'Vanilla') AND
 FOR SOME %ELEMENT(toppings) AS t
 (t.%VALUE = 'Butterscotch' AND
 f.%KEY = t.%KEY))

This example has two collections: flavors and toppings, that are positionally related through their key. The query qualifies
a row that has chocolate or vanilla specified as an element of flavors, and that also has butterscotch listed as the corresponding
topping, where the correspondence is established through the %KEY.

9.6.3 Usage Notes and Restrictions

• FOR SOME %ELEMENT may only appear in the WHERE clause.

• %CONTAINS may only appear in the WHERE clause.

• %KEY and/or %VALUE may only appear in a FOR predicate.

• Any particular %KEY or %VALUE may be referenced only once.

• %KEY and %VALUE may not appear in an outer join.

• %KEY and %VALUE may not appear in a value expression (only in a predicate).

• Streams longer than the maximum length of a string require the use of the %CONTAINSTERM predicate rather than
the %CONTAINS predicate. For information on the maximum length of a string, see the section “Support for Long
String Operations” in the chapter “Server Configuration Options” in the Caché Programming Orientation Guide.

66 Using Caché SQL

Querying the Database

• Streams longer than the maximum length of a string only support the use of %SIMILARITY on indexed fields. For
information on the maximum length of a string, see the section “Support for Long String Operations” in the chapter
“Server Configuration Options” in the Caché Programming Orientation Guide.

9.7 Pseudo-Field Variables
Caché SQL queries support the following pseudo-field values:

• %ID — returns the RowId field value, regardless of the actual name of the RowId field.

• %TABLENAME — returns the qualified name of an existing table that is specified in the FROM clause. The qualified
table name is returned in the letter case used when defining the table, not the letter case specified in the FROM clause.
If the FROM clause specifies an unqualified table name, %TABLENAME returns the qualified table name (schema.table),
with the schema name supplied from either a user-supplied schema search path or the system-wide default schema
name. For example, if the FROM clause specified mytable, the %TABLENAME variable might return
SQLUser.MyTable.

• %CLASSNAME — returns the qualified class name (package.class) corresponding to an existing table specified in
the FROM clause. For example, if the FROM clause specified SQLUser.mytable, the %CLASSNAME variable
might return User.MyTable.

Note: The %CLASSNAME pseudo-field value should not be confused with the %ClassName() instance method.
They return different values.

Pseudo-field variables can only be returned for a table that contains data.

If multiple tables are specified in the FROM clause you must use table aliases, as shown in the following example:

 &sql(SELECT P.Name,P.%ID,P.%TABLENAME,E.%TABLENAME
 INTO :name,:rid,:ptname,:etname
 FROM Sample.Person AS P,Sample.Employee AS E)
 WRITE ptname," Name is: ",name,!
 WRITE ptname," RowId is: ",rid,!
 WRITE "1st TableName is: ",ptname,!
 WRITE "2nd TableName is: ",etname,!

The %TABLENAME and %CLASSNAME columns are assigned the default column name Literal_n, where n is the
select-item position of the pseudo-field variable in the SELECT statement.

9.8 Query Metadata
You can use Dynamic SQL to return metadata about the query, such as the number of columns specified in the query, the
name (or alias) of a column specified in the query, and the data type of a column specified in the query.

The following ObjectScript Dynamic SQL example returns the column name and an integer code for the column's ODBC
data type for all of the columns in Sample.Person:

 SET myquery="SELECT * FROM Sample.Person"
 SET rset = ##class(%SQL.Statement).%New()
 SET qStatus = rset.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=rset.%Metadata.columns.Count()
 WHILE x>0 {
 SET column=rset.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," ",column.ODBCType
 SET x=x-1 }
 WRITE !,"end of columns"

Using Caché SQL 67

Pseudo-Field Variables

In this example, columns are listed in reverse column order. Note that the FavoriteColors column, which contains list
structured data, returns a data type of 12 (VARCHAR) because ODBC represents a Caché list data type value as a string
of comma-separated values.

For further details, refer to the Dynamic SQL chapter of this manual, and the %SQL.Statement class in the InterSystems
Class Reference.

9.9 Queries and ECP
Caché implementations that use Enterprise Cache Protocol (ECP) can synchronize query results. ECP is a distributed data
caching architecture that manages the distribution of data and locks among a heterogeneous network of server systems.

If ECP synchronization is active, each time a SELECT statement is executed Caché forces all pending ECP requests to
the database server. On completion this guarantees that the client cache is in sync. This synchronization occurs in the Open
logic of the query. This is in the OPEN cursor execution if this is a cursor query.

You can activate ECP synchronization using the Management Portal. Go to the Management Portal. From System Admin-

istration, select Configuration, then SQL and Object Settings, then General SQL Settings. On this screen you can view and
edit the current setting of SQL SELECT Synchronizes ECP Cache The default is “No” (ECP synchronization is not performed).
This is a system-wide setting; changing this setting immediately affects all InterSystems IRIS processes on the system.

You can also activate ECP synchronization using the SetECPSync() method of the %SYSTEM.SQL class.

To determine the current setting, call $SYSTEM.SQL.CurrentSettings().

For further details, refer to the Caché Distributed Data Management Guide

68 Using Caché SQL

Querying the Database

10
Collation

Collation specifies how values are ordered and compared, and is part of both Caché SQL and Caché Objects. There are
two fundamental collations: numeric and string.

• Numeric collation orders numbers based on the complete number in the following order: null, then negative numbers
from largest to smallest, zero, then positive numbers from smallest to largest. This creates a sequence such as the fol-
lowing: –210, –185, –54, –34, -.02, 0, 1, 2, 10, 17, 100, 120.

• String collation orders strings by collating on each sequential character. This creates an order such as the following:
null, A, AA, AAA, AAB, AB, B. For numbers, this creates an order such as the following: –.02, –185, –210, –34, –54,
0, 1, 10, 100, 120, 17, 2.

The default string collation is SQLUPPER; this default is set for each namespace. SQLUPPER collation converts all letters
to uppercase (for the purpose of collation), and appends a space character to the beginning of the string. This conversion
is for the purposes of collation only; in Caché SQL strings are usually displayed in uppercase and lowercase letters,
regardless of the collation applied, and the length of a string does not include the appended space character.

A timestamp is a string, and therefore follows the current string collation. However, because a timestamp is in ODBC format,
the string collation is the same as chronological sequence, if leading zeros are specified.

• A string expression (such as those using the scalar string functions LEFT or SUBSTR) makes its result collation
EXACT.

• Any comparison of two literals uses EXACT collation.

You can use the ObjectScript Sorts After operator to determine the relative collation sequence order of two values.

You can specify collation as follows:

• Namespace default

• Table field/property definition

• Index definition

• Query SELECT item

• Query DISTINCT and GROUP BY clause

Also see “SQL Collation and NLS Collations,” later in this chapter.

Using Caché SQL 69

10.1 Collation Types
Collation can be specified as a keyword in the definition of a field/property or the definition of an index.

Collation can be specified by applying a collation function to a field name in a query clause. The % prefix is required when
specifying a collation function.

Collation is in ascending ASCII/Unicode sequence, with the following transformations:

• EXACT — Enforces case sensitivity for string data. Not recommended for use if your string data contains values in
canonical numeric format (for example 123 or -.57).

• MVR — (For compatibility with MultiValue database systems.) For a string containing both numeric and non-numeric
characters. MVR collation divides the string into substrings, each substring containing either all numeric or all non-
numeric characters. The numeric substrings are sorted in signed numeric order. The non-numeric substrings are sorted
in case-sensitive ASCII collation sequence. (Note that this collation does not appear in the Studio New Index Wizard.)

• SQLSTRING — Strips trailing whitespace (spaces, tabs, and so on), and adds one leading blank space to the beginning
of the string. It collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty string.
SQLSTRING supports an optional maxlen integer value.

• SQLUPPER — Converts all alphabetic characters to uppercase, strips trailing whitespace (spaces, tabs, and so on),
and then adds one leading space character to the beginning of the string. The reason this space character is appended
is to force numeric values to be collated as strings (because the space character is not a valid numeric character). This
transformation also causes SQL to collate the SQL empty string ('') value and any value containing only whitespace
(spaces, tabs, and so on) as a single space character. SQLUPPER supports an optional maxlen integer value. Note that
the SQLUPPER transform is not the same as the result of the SQL function UPPER.

• TRUNCATE — Enforces case sensitivity for string data and (unlike EXACT) allows you to specify a length at which
to truncate the value. This is useful when indexing exact data that is longer than what is supported for use in a subscript.
It takes a positive integer argument, in the form %TRUNCATE(string,n), to truncate the string to the first n characters,
which improves indexing and sorting on long strings. If you do not specify a length for TRUNCATE, it behaves
identically to EXACT; while this behavior is supported. your definitions and code may be easier to maintain if you
use TRUNCATE only when you have a length defined and EXACT when you do not.

• PLUS — Makes the value numeric. A non-numeric string value is returned as 0.

• MINUS — Makes the value numeric and changes its sign. A non-numeric string value is returned as 0.

Note: There are also various legacy collation types, the use of which is not recommended.

In an SQL query, you can specify a collation function without parentheses %SQLUPPER Name or with parentheses
%SQLUPPER(Name). If the collation function specifies truncation, the parentheses are required %SQLUPPER(Name,10).

Three collation types: SQLSTRING, SQLUPPER, and TRUNCATE support an optional maxlen integer value. If specified,
maxlen truncates parsing of the string to the first n characters. This can be used to improve performance when indexing
and sorting long strings. You can use maxlen in a query to sort on, group by, or return a truncated string value.

You can also perform collation type conversions using the %SYSTEM.Util.Collation() method.

10.2 Namespace-wide Default Collation
Each namespace has a current string collation setting. This string collation is defined for the data type in %Library.String.
The default is SQLUPPER. This default can be changed.

70 Using Caché SQL

Collation

You can define the collation default on a per-namespace basis. By default, namespaces have no assigned collation, which
means they use SQLUPPER collation. You can assign a different default collation to a namespace. This namespace default
collation applies to all processes, and persists across Caché restarts until explicitly reset.

 SET stat=$$GetEnvironment^%apiOBJ("collation","%Library.String",.collval)
 WRITE "initial collation for ",$NAMESPACE,!
 ZWRITE collval
SetNamespaceCollation
 DO SetEnvironment^%apiOBJ("collation","%Library.String","SQLstring")
 SET stat=$$GetEnvironment^%apiOBJ("collation","%Library.String",.collnew)
 WRITE "user-assigned collation for ",$NAMESPACE,!
 ZWRITE collnew
ResetCollationDefault
 DO SetEnvironment^%apiOBJ("collation","%Library.String",.collval)
 SET stat=$$GetEnvironment^%apiOBJ("collation","%Library.String",.collreset)
 WRITE "restored collation default for ",$NAMESPACE,!
 ZWRITE collreset

Note that if you have never set the namespace collation default, $$GetEnvironment returns an undefined collation variable,
such as .collval in this example. This undefined collation defaults to SQLUPPER.

Note: If your data contains German text, uppercase collation may not be a desirable default. This is because the German
eszett character ($CHAR(223)) has only a lowercase form. The uppercase equivalent is the two letters “SS”. SQL
collations that convert to uppercase do not convert eszett, which remains unchanged as a single lowercase letter.

10.3 Table Field/Property Definition Collation
Within SQL, collation can be assigned as part of field/property definition. The data type used by a field determines its
default collation. The default collation for string data types is SQLUPPER. Non-string data types do not support collation
assignment.

You can specify collation for a field in CREATE TABLE and ALTER TABLE:

CREATE TABLE Sample.MyNames (
 LastName CHAR(30),
 FirstName CHAR(30) COLLATE SQLstring)

Note: When specifying collation for a field using CREATE TABLE and ALTER TABLE, the % prefix is optional:
COLLATE SQLstring or COLLATE %SQLstring.

You can specify collation for a property when defining a table using a persistent class definition:

Class Sample.MyNames Extends %Persistent [DdlAllowed]
{
Property LastName As %String;
Property FirstName As %String(COLLATION = "SQLstring");
}

Note: When specifying collation for class definitions and class methods do not use the % prefix for collation type names.

In these examples, the LastName field takes default collation (SQLUPPER, which is not case-sensitive), the FirstName
field is defined with SQLSTRING collation, which is case-sensitive.

If you change the collation for a class property and you already have stored data for that class, any indices on the property
become invalid. You must rebuild all indices based on this property.

Using Caché SQL 71

Table Field/Property Definition Collation

10.4 Index Definition Collation
The CREATE INDEX command cannot specify an index collation type. The index uses the same collation as the field
being indexed.

An index defined as part of class definition can specify a collation type. By default, an index on a given property (or prop-
erties) uses the collation type of the property data. For example, suppose you have defined a property Name of type %String:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{
Property Name As %String;
Index NameIDX On Name;
}

The collation for Name is SQLUPPER (the default for %String). Suppose that the Person table contains the following data:

NameID

Jones1

JOHNSON2

Smith3

jones4

SMITH5

Then an index on Name will contain the following entries:

ID(s)Name

2JOHNSON

1, 4JONES

3, 5SMITH

The SQL Engine can use this index directly for ORDER BY or comparison operations using the Name field.

You can override the default collation used for an index by adding an As clause to the index definition:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{
Property Name As %String;
Index NameIDX On Name As SQLstring;
}

In this case the NameIDX index will now store values in SQLSTRING (case-sensitive) form. Using the data from the above
example:

ID(s)Name

2JOHNSON

1Jones

4jones

5SMITH

3Smith

72 Using Caché SQL

Collation

In this case, the SQL Engine can take advantage of this index for any queries requiring case-sensitive collation.

In general, you should not have to change the collations of indices. If you want to use a different collation, it is better to
define it at the property level and let any indices on the property pick up the correct collation.

If you are performing a property comparison using an indexed property, the property as specified in the comparison should
have the same collation type as the corresponding index. For example, the Name property in the WHERE clause of a
SELECT or in the ON clause of a JOIN should have the same collation as the index defined for the Name property. If there
is a mismatch between the property collation and the index collation, the index may be less effective or may not be used
at all. For further details, refer to Index Collation in the “Defining and Building Indices” chapter of the Caché SQL Opti-
mization Guide.

If your index is defined to use multiple properties, you can specify the collation of each individually:

Index MyIDX On (Name As SQLstring, Code As Exact);

10.5 Query Collation
Caché SQL provides collation functions that can be used to change the collation or display of a field.

10.5.1 select-item Collation

Applying a collation function to a query select-item changes the display of that item.

• Letter Case: By default, a query displays strings with uppercase and lowercase letters. The exceptions to this are the
DISTINCT or GROUP BY operations on a field of collation type SQLUPPER. These operations display that field in
all uppercase letters. You can use the %EXACT collation function to reverse this letter case transformation and display
the field in uppercase and lowercase letters. You should not use an %SQLUPPER collation function in the select-item
list to display a field in all uppercase letters. This is because %SQLUPPER adds a space character to the length of the
string. Use the UPPER function instead:

SELECT TOP 5 Name,$LENGTH(Name) AS NLen,
 %SQLUPPER(Name) AS UpCollN,$LENGTH(%SQLUPPER(Name)) AS UpCollLen,
 UPPER(Name) AS UpN,$LENGTH(UPPER(Name)) AS UpLen
FROM Sample.Person

• String Truncation: You can use the %TRUNCATE collation function to limit the length of the string data you wish to
display. %TRUNCATE is preferable to %SQLUPPER, which adds a space character to the length of the string.

SELECT TOP 5 Name,$LENGTH(Name) AS NLen,
 %TRUNCATE(Name,8) AS TruncN,$LENGTH(%TRUNCATE(Name,8)) AS TruncLen
FROM Sample.Person

Note that you cannot nest collation functions or case-transformation functions.

• WHERE clause comparisons: Most WHERE clause predicate condition comparisons use the collation type of the
field/property. Because string fields default to SQLUPPER, these comparisons are commonly not case-sensitive. You
can use the %EXACT collation function to make them case-sensitive:

The following example returns Home_City string matches regardless of letter case:

SELECT Home_City FROM Sample.Person WHERE Home_City = 'albany'

The following example returns Home_City string matches that are case-sensitive:

SELECT Home_City FROM Sample.Person WHERE %EXACT(Home_City) = 'albany'

The SQL Follows operator (]) uses the field/property collation type.

Using Caché SQL 73

Query Collation

However, the SQL Contains operator ([) uses EXACT collation, regardless of the collation type of the field/property:

SELECT Home_City FROM Sample.Person WHERE Home_City ['c'
ORDER BY Home_City

The %MATCHES and %PATTERN predicate conditions use EXACT collation, regardless of the collation type of the
field/property. The %PATTERN predicate provides both case-sensitive wildcards and a wildcard (‘A’) which is not
case-sensitive.

• ORDER BY clause: The ORDER BY clause uses the namespace default collation to order string values. Therefore,
ORDER BY does not order based on lettercase. You can use %EXACT collation to order strings based on lettercase.

10.5.2 DISTINCT and GROUP BY Collation

By default, these operation use the current namespace collation. The default namespace collation is SQLUPPER.

• DISTINCT: The DISTINCT keyword uses the namespace default collation to eliminate duplicate values. Therefore,
DISTINCT Name returns values in all uppercase letters. You can use EXACT collation to return values in mixed
uppercase and lowercase. DISTINCT eliminates duplicates that differ only in letter case. To preserve duplicates that
differ in case, but eliminate exact duplicates, use EXACT collation. The following example eliminates exact duplicates
(but not lettercase variants) and returns all values in mixed uppercase and lowercase:

SELECT DISTINCT %EXACT(Name) FROM Sample.Person

A UNION involves an implicit DISTINCT operation.

• GROUP BY: The GROUP BY clause uses the namespace default collation to eliminate duplicate values. Therefore,
GROUP BY Name returns values in all uppercase letters. You can use EXACT collation to return values in mixed
uppercase and lowercase. GROUP BY eliminates duplicates that differ only in letter case. To preserve duplicates that
differ in case, but eliminate exact duplicates, you must specify the %EXACT collation function on the GROUP BY
clause, not the select-item.

The following example returns values in mixed uppercase and lowercase; the GROUP BY eliminates duplicates,
including those that differ in lettercase:

SELECT %EXACT(Name) FROM Sample.Person GROUP BY Name

The following example returns values in mixed uppercase and lowercase; the GROUP BY eliminates exact duplicates
(but not lettercase variants):

SELECT Name FROM Sample.Person GROUP BY %EXACT(Name)

10.6 Legacy Collation Types
Caché SQL supports several legacy collation types. These are deprecated and not recommended for use with new code, as
their purpose is to provide continued support for legacy systems. They are:

• ALPHAUP — Removes all punctuation characters except question marks (“?”) and commas (“ ,”), and translates all
the lowercase letters to uppercase. Used mostly for mapping legacy globals. Replaced by SQLUPPER.

• STRING — Converts a logical value to uppercase, strips all punctuation and white space (except for commas), and
adds one leading blank space to the beginning of the string. It collates any value containing only whitespace (spaces,
tabs, and so on) as the SQL empty string. Replaced by SQLUPPER.

74 Using Caché SQL

Collation

• UPPER — Translates all lowercase letters into uppercase letters. Used mostly for mapping legacy globals. Replaced
by SQLUPPER.

• SPACE — SPACE collation appends a single leading space to a value, forcing it to be evaluated as a string. To
establish SPACE collation, CREATE TABLE provides a SPACE collation keyword, and ObjectScript provides a
SPACE option in the Collation() method of the %SYSTEM.Util class. There is no corresponding SQL collation function.

Note: If a string data type field is defined with EXACT, UPPER, or ALPHAUP collation, and a query applies a
%STARTSWITH condition on this field, inconsistent behavior may result. If the substring you specify to
%STARTSWITH is a canonical number (especially a negative and/or fractional number), %STARTSWITH
may give different results depending on whether the field is indexed. The %STARTSWITH should perform as
expected if the column is not indexed. If the column is indexed, unexpected results may occur.

10.7 SQL and NLS Collations
The SQL collations described above should not be confused with the Caché NLS collation feature, which provides subscript-
level encoding that adhere to particular national language collation requirements. These are two separate systems of providing
collations, and they work at different levels of the product.

Caché NLS collations can have a process-level collation for the current process, and different collations for specific globals.

To ensure proper functioning when using Caché SQL, it is a requirement that the process-level NLS collation matches
exactly the NLS collation of all globals involved, including globals used by the tables and globals used for temporary files
such as process private globals and for CACHETEMP globals; otherwise, different processing plans devised by the Query
Processor might give different results. In situations where sorting occurs, such as an ORDER BY clause or a range condition,
the Query Processor selects the most efficient sorting strategy. It may use an index, use a temporary file in a process-private
global, sort within a local array, or use a "]]" (Sorts After) comparison. All these are subscript-type comparisons that adhere
to the Caché NLS collation that is in effect, which is why it is necessary that all these types of globals use the exact same
NLS collation.

The system creates a global with the data base default collation. You can use the Create() method of the %Library.GlobalEdit

class to create a global with a different collation. The only requirement is that the specified collation be either built-in (such
as the Caché standard) or one of the national collations available in the current locale. See “Using %Library.GlobalEdit
to Set Collation For A Global” in Caché Specialized System Tools and Utilities.

Using Caché SQL 75

SQL and NLS Collations

11
Implicit Joins (Arrow Syntax)

Caché SQL provides a special –> operator as a shorthand for getting values from a related table without the complexity of
specifying explicit JOINs in certain common cases. This arrow syntax can be used instead of explicit join syntax, or in
combination with explicit join syntax. Arrow syntax performs a left outer join.

Note: Certain combinations of implicit join syntax (arrow syntax) with explicit join syntax are not permitted. You cannot
use arrow syntax (–>) in an ON clause. You cannot combine arrow syntax (–>) with symbolic join syntax (*=
and =*) as follows: you cannot use arrow syntax on the right side of a left outer join (=*) or on the left side of a
right outer join (*=). For further information, refer to the JOIN page of the Caché SQL Reference.

Arrow syntax can be used for a reference of a property of a class, or a relationship property of a parent table. Other types
of relationships and foreign keys do not support arrow syntax.

11.1 Property Reference
You can use the –> operator as a shorthand for getting values from a “ referenced table.”

For example, suppose you define two classes: Company:

Class Sample.Company Extends %Persistent [DdlAllowed]
{
/// The Company name
Property Name As %String;
}

and Employee:

Class Sample.Employee Extends %Persistent [DdlAllowed]
{
/// The Employee name
Property Name As %String;

/// The Company this Employee works for
Property Company As Company;
}

The Employee class contains a property that is a reference to a Company object. Within an object-based application, you
can follow this reference using dot syntax. For example, to find the name of a company that an employee works for:

name = employee.Company.Name

You can perform the same task using an SQL statement that uses an OUTER JOIN to join the Employee and Company

tables:

Using Caché SQL 77

SELECT Sample.Employee.Name, Sample.Company.Name AS CompName
FROM Sample.Employee LEFT OUTER JOIN Sample.Company
ON Sample.Employee.Company = Sample.Company.ID

Using the –> operator, you can perform the same OUTER JOIN operation more succinctly:

SELECT Name, Company->Name AS CompName
FROM Sample.Employee

You can use the –> operator any time you have a reference column within a table; that is, a column whose value is the ID
of a referenced table (essentially a special case of foreign key). In this case, the Company field of Sample.Employee contains
IDs of records in the Sample.Company table. You can use the –> operator anywhere you can use a column expression
within a query. For example, in a WHERE clause:

SELECT Name,Company AS CompID,Company->Name AS CompName
FROM Sample.Employee
WHERE Company->Name %STARTSWITH 'G'

This is equivalent to:

SELECT E.Name,E.Company AS CompID,C.Name AS CompName
FROM Sample.Employee AS E, Sample.Company AS C
WHERE E.Company = C.ID AND C.Name %STARTSWITH 'G'

Note that in this case, this equivalent query uses an INNER JOIN.

The following example uses arrow syntax to access the Spouse field in Sample.Person. As the example shows, the Spouse
field in Sample.Employee contains the ID of a record in Sample.Person. This example returns those records where the
employee has the same Home_State or Office_State as the Home_State of their spouse:

SELECT Name,Spouse,Home_State,Office_State,Spouse->Home_State AS SpouseState
FROM Sample.Employee
WHERE Home_State=Spouse->Home_State OR Office_State=Spouse->Home_State

You can use the –> operator in a GROUP BY clause:

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
GROUP BY Company->Name

You can use the –> operator in an ORDER BY clause:

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
ORDER BY Company->Name

or refer to a column alias for a –> operator column in an ORDER BY clause:

SELECT Name,Company->Name AS CompName
FROM Sample.Employee
ORDER BY CompName

Compound arrow syntax is supported, as shown in the following example. In this example, the Cinema.Review table
includes the Film field, which contains Row IDs for the Cinema.Film table. The Cinema.Film table includes the Category
field, which contains Row IDs for the Cinema.Category table. Thus Film->Category->CategoryName accesses these
three tables to return the CategoryName of each film that has a ReviewScore:

SELECT ReviewScore,Film,Film->Title,Film->Category,Film->Category->CategoryName
FROM Cinema.Review
ORDER BY ReviewScore

78 Using Caché SQL

Implicit Joins (Arrow Syntax)

11.2 Child Table Reference
You can use –> operator to reference a child table. For example, if LineItems is a child table of the Orders table, you can
specify:

SELECT LineItems->amount
FROM Orders

Note that there is no property called LineItems in Orders; LineItems is the name of a child table that contains the amount
field. This query produces multiple rows in the result set for each Order row. It is equivalent to:

SELECT L.amount
FROM Orders O LEFT JOIN LineItems L ON O.id=L.custorder

Where custorder is the parent reference field of the LineItems table.

11.3 Arrow Syntax Privileges
When using arrow syntax, you must have SELECT privileges on the referenced data in both tables. Either you must have
a table-level SELECT privilege or a column-level SELECT privilege on the referenced column. With column-level privileges,
you need SELECT privilege on the ID of the referenced table, as well as the referenced column.

The following example demonstrates the required column-level privileges:

SELECT Name,Company->Name AS CompanyName
FROM Sample.Employee
GROUP BY Company->Name
ORDER BY Company->Name

In the above example, you must have column-level SELECT privilege for Sample.Employee.Name, Sample.Company.Name,
and Sample.Company.ID:

 ZNSPACE "SAMPLES"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET privchk1="%CHECKPRIV SELECT (Name,ID) ON Sample.Company"
 SET privchk2="%CHECKPRIV SELECT (Name) ON Sample.Employee"
CompanyPrivTest
 SET qStatus = tStatement.%Prepare(privchk1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 {WRITE !,"have Company privileges",! }
 ELSE { WRITE !,"No privilege: SQLCODE=",rset.%SQLCODE,! }
EmployeePrivTest
 SET qStatus = tStatement.%Prepare(privchk2)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 {WRITE !,"have Employee privilege",! }
 ELSE { WRITE !,"No privilege: SQLCODE=",rset.%SQLCODE }

Using Caché SQL 79

Child Table Reference

12
Using Embedded SQL

You can embed SQL statements within ObjectScript code. These Embedded SQL statements are converted to optimized,
executable code at compilation time.

There are two kinds of Embedded SQL:

• A simple Embedded SQL query can only return values from a single row. Simple Embedded SQL can also be used
for single-row insert, update, and delete, and for other SQL operations.

• A cursor-based Embedded SQL query can iterate through a query result set, returning values from multiple rows.
Cursor-based Embedded SQL can also be used for multiple row update and delete SQL operations.

This chapter discusses the following topics:

• Compiling Embedded SQL and the Macro Preprocessor

• How to embed SQL within ObjectScript

• SQL coding considerations for Embedded SQL

• Using host variables to pass values between Embedded SQL and ObjectScript

• Using an SQL cursor to fetch multiple records in Embedded SQL

• Returning SQLCODE and other Embedded SQL variables

• Auditing Embedded SQL

Note: Embedded SQL cannot be input to the Terminal command line, or specified in an XECUTE statement. To execute
SQL from the command line, either use the $SYSTEM.SQL.Execute() method or the SQL Shell interface.

Embedded SQL is not supported within Caché Basic. To execute SQL within Basic code, you can do either of
the following: use Dynamic SQL, or use Embedded SQL within ObjectScript methods and then call these
ObjectScript methods from Basic.

12.1 Compiling Embedded SQL and the Macro
Preprocessor
You can use Embedded SQL within methods (provided that they are defined to use ObjectScript) or within ObjectScript
.MAC routines. A .MAC routine (or a method using ObjectScript) is processed by the Caché Macro Preprocessor and

Using Caché SQL 81

converted to .INT (intermediate) code which is subsequently compiled to executable code. The Macro Preprocessor replaces
Embedded SQL statements with the code that actually executes the SQL statement.

If an Embedded SQL statement itself contains Caché Macro Preprocessor statements (# commands, ## functions, or
$$$macro references) these statements are compiled before the SQL code. The may affect CREATE PROCEDURE,
CREATE FUNCTION, CREATE METHOD, CREATE QUERY, or CREATE TRIGGER statements that contain
an ObjectScript code body.

An Embedded SQL statement must be able to access all resources necessary for its compilation. If an Embedded SQL
statement references a class external to its compilation unit, and that class references data items defined by an #include
file, the compilation unit that contains the Embedded SQL statement must also reference the same #include file. For further
details, refer to the ObjectScript Macros and the Macro Preprocessor chapter of Using Caché ObjectScript.

The Macro Preprocessor provides four preprocessor directives for use with Embedded SQL:

• #SQLCompile Mode specifies the compilation mode for any subsequent Embedded SQL statements. It supports the
following two options: Embedded (the default) — compiles ObjectScript code and Embedded SQL code at compile
time. Deferred — compiles ObjectScript code, but defers compiling Embedded SQL code until runtime. This enables
you to compile a routine containing SQL that references a table that does not yet exist at compile time.

Note: #SQLCompile Mode=Deferred should not be confused with the similarly-name
%SYSTEM.SQL.SetCompileModeDeferred() method and the %SYSTEM.SQL.GetCompileMode()
method, which are used for a completely different purpose.

• #SQLCompile Select specifies the format for data display when returned from a SELECT statement, or the required
format for data input when specified to an INSERT or UPDATE statement, or a SELECT input host variable. It
supports the following six options: Logical (the default), Display, ODBC, Runtime, Text (synonym for Display),
and FDBMS (see below). If #SQLCompile Select=Runtime, you can use the $SYSTEM.SQL.SetSelectMode()
method to change how the data is displayed.

Regardless of the #SQLCompile Select option specified, an INSERT or UPDATE automatically converts the
specified data value to its corresponding Logical format for storage.

Regardless of the #SQLCompile Select option specified, a SELECT automatically converts an input host variable
value its corresponding Logical format for predicate matching.

Using#SQLCompile Select for query display is shown in the following examples. These examples display the
DOB (date of birth) value, then change the SelectMode to ODBC format, then display the DOB again. In the first
example, changing the SelectMode has no effect on the display; in the second example, because #SQLCompile
Select=Runtime, changing the SelectMode changes the display:

 #SQLCompile Select=Display
 &sql(SELECT DOB INTO :a FROM Sample.Person)
 WRITE "1st date of birth is ",a,!
 DO $SYSTEM.SQL.SetSelectMode(1)
 WRITE "changed select mode to: ",$SYSTEM.SQL.GetSelectMode(),!
 &sql(SELECT DOB INTO :b FROM Sample.Person)
 WRITE "2nd date of birth is ",b

 #SQLCompile Select=Runtime
 &sql(SELECT DOB INTO :a FROM Sample.Person)
 WRITE "1st date of birth is ",a,!
 DO $SYSTEM.SQL.SetSelectMode(1)
 WRITE "changed select mode to: ",$SYSTEM.SQL.GetSelectMode(),!
 &sql(SELECT DOB INTO :b FROM Sample.Person)
 WRITE "2nd date of birth is ",b

For further details on SelectMode options, refer to “Data Display Options” in the “Caché SQL Basics” chapter of
this book.

– #SQLCompile Select=FDBMS is provided to enable Embedded SQL to format data in the same way as FDBMS.
If a query has a constant value in the WHERE clause, FDBMS mode assumes it to be a Display value and converts
it using DisplayToLogical conversion. If a query has a variable in the WHERE clause, FDBMS mode converts it

82 Using Caché SQL

Using Embedded SQL

using FDBMSToLogical conversion. The FDBMSToLogical conversion method should be designed to handle
the three FDBMS variable formats: Internal, Internal_$c(1)_External, and $c(1)_External. If a query selects into
a variable, it invokes the LogicalToFDBMS conversion method. This method returns Internal_$c(1)_External.

• #SQLCompile Path (or #Import) specifies the schema search path used to resolves unqualified table, view, and stored
procedure names in data management commands such as SELECT, CALL, INSERT, UPDATE, DELETE, and
TRUNCATE TABLE. If no schema search path is specified, or if the table is not found in the specified schemas,
Caché uses the system-wide default schema. #SQLCompile Path and #Import are ignored by data definition
statements such as ALTER TABLE, DROP VIEW, CREATE INDEX, or CREATE TRIGGER. Data definition
statements use the system-wide default schema to resolve unqualified names.

• #SQLCompile Audit is a boolean switch specifying whether or not the execution of Embedded SQL statements should
be recorded in the system events audit log. For further details, refer to Auditing Embedded SQL.

For further details on these preprocessor directives, refer to the Preprocessor Directives Reference section of Using Caché
ObjectScript.

12.1.1 Recompilation Required following Change to Dependent Class

In Embedded SQL, you must recompile a class or routine that references a persistent class if that persistent class is changed.

For example, Class A contains a method with an Embedded SQL query, and that query references persistent Class B. After
Class A has been compiled, Class B gets modified (for example, a new property is added to Class B). Class A now needs
to be recompiled. The same is true for Routine A that references persistent Class B.

• Class references class: if you are changing Class B using Studio, when you recompile Class B the Studio compile

dependent classes setting should also recompile Class A. How to set the compile dependent classes option is described
in Using Studio.

• Routine references class: if A is a routine that references Class B, you need to recompile Routine A manually.

12.2 Embedded SQL Syntax
The syntax of the Embedded SQL directive is described below.

12.2.1 The &sql Directive

Embedded SQL statements are set off from the rest of the code by the &sql() directive, as shown in the following example:

 NEW SQLCODE,a
 WRITE "Invoking Embedded SQL",!
 &sql(SELECT Name INTO :a FROM Sample.Person)
 WRITE "The SQL error code is ",SQLCODE,!
 IF $DATA(a) {WRITE "The name is ",a}

Results are returned using the INTO clause specifying one or more host variables. In this case, the host variable is named
:a. For further details, see the “Host Variables” section of this chapter, which includes information on interactions between
SQLCODE and host variables.

The following example shows Embedded SQL within a method:

Using Caché SQL 83

Embedded SQL Syntax

Method CountStudents() As %Integer
{
 &sql(SELECT COUNT(*) INTO :count
 FROM MyApp.Student)

 Quit count
}

The &sql directive is not case-sensitive; you can use &sql, &SQL, &Sql, and so on. The &sql directive must be followed
by an open parenthesis, with no intervening spaces, line breaks, or comments. The &sql directive can be used on the same
line as a label, as shown in the following example:

Mylabel &sql(
 SELECT Name INTO :a
 FROM Sample.Person
)

The body of an &sql directive should contain a valid SQL statement, enclosed in parentheses. You can format your SQL
statements in any way you like: white space and new lines are ignored by SQL. Studio recognizes the &sql directive and
uses an SQL-aware colorizer to syntax color the SQL code statements.

When the Macro Preprocessor encounters an &sql directive, it hands the enclosed SQL statement to the SQL Query Pro-
cessor. The Query Processor returns the code needed (in ObjectScript INT format) to execute the query. The Macro Prepro-
cessor then replaces the &sql directive with this code (or a call to a label containing the code). From within Studio, you
can view the generated code, if you like, by looking at the INT code generated for a class or routine (using the View Other

Code option from the View menu).

If an &sql directive contains an invalid SQL statement, the Macro Preprocessor generates a compilation error. An invalid
SQL statement may have syntax errors, or refer to tables or columns that do not exist at compile time.

An &sql directive can contain SQL-style comments anywhere within its parentheses, can contain no SQL code, or contain
only comment text. If an &sql directive contains no SQL code or only commented text, the directive is parsed as a no-op
and the SQLCODE variable is not defined.

 NEW SQLCODE
 WRITE !,"Entering Embedded SQL"
 &sql()
 WRITE !,"Leaving Embedded SQL"

 NEW SQLCODE
 WRITE !,"Entering Embedded SQL"
 &sql(/* SELECT Name INTO :a FROM Sample.Person */)
 WRITE !,"Leaving Embedded SQL"

12.2.2 &sql Alternative Syntax

Because complex Embedded SQL programs may contain multiple &sql directives — including nested &sql directives —
the following alternative syntax formats are provided:

• ##sql(...): this directive is functionally equivalent to &sql. It provides an alternative syntax for clarity of code.
However, it cannot include marker syntax.

• &sql<marker>(...)<reversemarker>: this directive allows you to specify multiple &sql directives, identifying
each with a user-selected marker character or string. This marker syntax is described in the following section.

84 Using Caché SQL

Using Embedded SQL

12.2.3 &sql Marker Syntax

You can identify a specific &sql directive using user-defined marker syntax. This syntax consists of a character or string
specified between “&sql” and the open parenthesis character. The reverse of this marker must appear immediately after
the closing parenthesis at the end of the Embedded SQL. The syntax is as follows:

 &sql<marker>(SQL statement)<reverse-marker>

Note that no white space (space, tab, or line return) is permitted between &sql, marker, and the open parenthesis, and no
white space is permitted between the closing parenthesis and reverse-marker.

A marker can be a single character or a series of characters. A marker cannot contain the following punctuation characters:

(+ - / \ | *)

A marker cannot contain a whitespace character (space, tab, or line return). It may contain all other printable characters
and combinations of characters, including Unicode characters. The marker and reverse-marker are case-sensitive.

The corresponding reverse-marker must contain the same characters as marker in the reverse order. For example: &sqlABC(
...)CBA. If marker contains a [or { character, reverse-marker must contain the corresponding] or } character. The
following are examples of valid &sql marker and reverse-marker pairs:

 &sql@@(...)@@
 &sql[(...)]
 &sqltest(...)tset
 &sql[Aa{(...)}aA]

When selecting a marker character or string, note the following important SQL restriction: the SQL code cannot contain
the character sequence “)<reversemarker>” anywhere in the code, including in literal strings and comments. For
example, if the marker is “ABC”, the character string “)CBA” cannot appear anywhere in the Embedded SQL code. If this
occurs, the combination of a valid marker and valid SQL code will fail compilation. Thus it is important to use care in
selecting a marker character or string to prevent this collision.

12.2.4 Embedded SQL and Line Offsets

The presence of Embedded SQL affects ObjectScript line offsets, as follows:

• Embedded SQL adds 2 to the total number of Embedded SQL code lines. Therefore a single line of Embedded SQL
counts as 3 lines, two lines of Embedded SQL count as 4 lines, and so forth. A dummy Embedded SQL statement,
containing only a comment counts as 2 lines, as in the following example: &sql(/* for future use */).

• All lines within Embedded SQL count as line offsets, including comments and blank lines.

12.3 Embedded SQL Code
Considerations for writing SQL code in Embedded SQL include the following:

• Simple (non-cursor) Embedded SQL statements

• Schema name resolution

• Literal data values

• Data formatting for %List and date/time data values

Using Caché SQL 85

Embedded SQL Code

• Privilege Checking

Host variables, which are used to export data values from Embedded SQL are described later in this chapter.

12.3.1 Simple SQL Statements

You can use a simple SQL statement (a single Embedded SQL statement) for a variety of operations including:

• INSERT, UPDATE, INSERT OR UPDATE, and DELETE statements.

• DDL statements.

• GRANT and REVOKE statements.

• SELECT statements that return only a single row (or if you are only interested in the first returned row).

Simple SQL statements are also referred to as non-cursor–based SQL statements. Cursor-based Embedded SQL is described
later in this chapter.

For example, the following statement finds the name of the (one and only) Patient with ID of 43:

 &sql(SELECT Name INTO :name
 FROM Patient
 WHERE %ID = 43)

If you use a simple statement for a query that can return multiple rows, then only the first row is returned:

 &sql(SELECT Name INTO :name
 FROM Patient
 WHERE Age = 43)

Depending on the query, there is no guarantee which row will actually be returned first. Also, if a query includes an INTO
statement and no data is returned (SQLCODE=100), executing the query may either result in an undefined host variable,
or the host variable containing a prior value.

12.3.2 Schema Name Resolution

A table name, view name, or stored procedure name is either qualified (specifies a schema name) or unqualified (does not
specify a schema name). If the name does not specify a schema name, Caché resolves the schema name as follows:

• Data Definition: Caché uses the system-wide default schema to resolve an unqualified name. If the default schema
does not exist, Caché creates the schema and the corresponding class package. All data definition statements use the
system-wide default schema; data definition statements ignore the #Import and #SQLCompile Path macro preprocessor
directives.

• Data Management: Caché uses the schema search path specified by the #SQLCompile Path and/or the #Import macro
preprocessor directive(s) in effect for the class or routine that contains the Embedded SQL statement. The #Import
and #SQLCompile Path directives are mutually independent lists of possible schema names with different function-
ality. Either or both may be used to supply a schema name for an unqualified table, view, or stored procedure name.
If no schema search path is specified, Caché uses the system-wide default schema name.

See the chapter “Packages” in Using Caché Objects for more details on schemas.

12.3.3 Literal Values

Embedded SQL queries may contain literal values (strings, numbers, or dates). Strings should be enclosed within single (')
quotes. (In Caché SQL, double quotes indicate a delimited identifier):

86 Using Caché SQL

Using Embedded SQL

 &sql(SELECT 'Employee (' || Name || ')' INTO :name
 FROM Sample.Employee)
 WRITE name

Numeric values can be used directly. Literal numbers and timestamp values are “lightly normalized” before Caché compares
these literal values to field values, as shown in the following example where +0050.000 is normalized to 50:

 &sql(SELECT Name,Age INTO :name,:age
 FROM Sample.Person
 WHERE Age = +0050.000)
 WRITE name," age=",age

Arithmetic, function, and special variable expressions can be specified:

 &sql(DECLARE C1 CURSOR FOR
 SELECT Name,Age-65,$HOROLOG INTO :name,:retire,:today
 FROM Sample.Person
 WHERE Age > 60
 ORDER BY Age,Name)
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE $ZDATE(today)," ",name," has ",retire," eligibility years",!
 &sql(FETCH C1) }
 &sql(CLOSE C1)

You can also input a literal value using an input host variable. Input host numeric values are also “lightly normalized.” For
further details, see the “Host Variables” section of this chapter.

In Embedded SQL, a few character sequences that begin with ## are not permitted within a string literal and must be
specified using ##lit. These character sequences are: ##;, ##beginlit, ##expression(, ##function(, ##quote(,
##stripq(, and ##unique(. For example, the following example fails:

 WRITE "Embedded SQL test",!
 &sql(SELECT 'the sequence ##unique(is restricted' INTO :x)
 WRITE x

The following workaround succeeds:

 WRITE "Embedded SQL test",!
 &sql(SELECT 'the sequence ##lit(##unique() is restricted' INTO :x)
 WRITE x

12.3.4 Data Format

Within Embedded SQL, data values are in “Logical mode” ; that is, values are in the native format used by the SQL Query
Processor. For string, integers, and other data types that do not define a LogicalToODBC or LogicalToDisplay conversion,
this has no effect. Data format affects %List data, and the %Date and %Time data types.

The %List data type displays in Logical mode as element values prefaced with non-printing list encoding characters. The
WRITE command displays these values as concatenated elements. For example, the FavoriteColors field of Sample.Person
stores data in %List data type, such as the following: $LISTBUILD('Red','Black'). In Embedded SQL this displays
in Logical mode as RedBlack, with a length of 12 characters. In Display mode it displays as Red Black; in ODBC mode
it displays as Red,Black. This is shown in the following example:

 &sql(DECLARE C1 CURSOR FOR
 SELECT TOP 10 FavoriteColors INTO :colors
 FROM Sample.Person WHERE FavoriteColors IS NOT NULL)
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE $LENGTH(colors),": ",colors,!
 &sql(FETCH C1) }
 &sql(CLOSE C1)

Using Caché SQL 87

Embedded SQL Code

The %Date and %Time data types provided by Caché use the Caché internal date representation ($HOROLOG format) as
their Logical format. A %Date data type returns INTEGER data type values in Logical mode; VARCHAR data type values
in Display mode, and DATE data type values in ODBC mode. The %TimeStamp data type uses ODBC date-time format
(YYYY-MM-DD HH:MM:SS) for its Logical, Display, and ODBC format.

For example, consider the following class definition:

Class MyApp.Patient Extends %Persistent
{
/// Patient name
Property Name As %String(MAXLEN = 50);

/// Date of birth
Property DOB As %Date;

/// Date and time of last visit
Property LastVisit As %TimeStamp;
}

A simple Embedded SQL query against this table will return values in logical mode. For example, consider the following
query:

 &sql(SELECT Name, DOB, LastVisit
 INTO :name, :dob, :visit
 FROM Patient
 WHERE %ID = :id)

This query returns logical value for the three properties into the host variables name, dob, and visit:

ValueHost Variable

"Weiss,Blanche"name

44051dob

"2001-03-15 11:11:00"visit

Note that dob is in $HOROLOG format. You can convert this to a display format using the $ZDATETIME function:

 Set dob = 44051
 Write $ZDT(dob,3),!

The same consideration as true within a WHERE clause. For example, to find a Patient with a given birthday, you must
use a logical value in the WHERE clause:

 &sql(SELECT Name INTO :name
 FROM Patient
 WHERE DOB = 43023)

or, alternatively, using a host variable:

 Set dob = $ZDH("01/02/1999",1)

 &sql(SELECT Name INTO :name
 FROM Patient
 WHERE DOB = :dob)

In this case, we use the $ZDATEH function to convert a display format date into its logical, $HOROLOG equivalent.

12.3.5 Privilege Checking

Embedded SQL does not perform SQL privilege checking. You can access all tables, views, and columns and perform any
operation, regardless of the privileges assignments. It is assumed that applications using Embedded SQL will check for
privileges before using Embedded SQL statements.

You can use the Caché SQL %CHECKPRIV statement in Embedded SQL to determine the current privileges.

88 Using Caché SQL

Using Embedded SQL

For further details, refer to the Users, Roles, and Privileges chapter of this manual.

12.4 Host Variables
A host variable is a local variable that passes a literal value into or out of Embedded SQL. Most commonly, host variables
are used to either pass a value set as a local variable in ObjectScript into Embedded SQL code, or (using the INTO clause)
pass a query value from Embedded SQL to ObjectScript as a local variable. A host variable cannot be used to pass a field
name or keyword into an SQL statement.

Note: Output host variables are only used in Embedded SQL. Input host variables can be used in either Embedded SQL
or Dynamic SQL. In Dynamic SQL, you can also input a literal to an SQL statement using the “?” input parameter.

Caché Basic does not support Embedded SQL. Either use Dynamic SQL to perform SQL operations from Caché
Basic, or have Caché Basic call an ObjectScript routine that contains Embedded SQL.

Within Embedded SQL, input host variables can be used in any place that a literal value can be used. Output host variables
are specified using an INTO clause of a SELECT or FETCH statement.

To use a variable or a property reference as a host variable, precede it with a colon (:). A host variable in embedded Caché
SQL can be one of the following:

• One or more ObjectScript local variables, such as :myvar, specified as a comma-separated list. A local variable can
be fully formed and can include subscripts. Like all local variables, it is case-sensitive and can contain Unicode letter
characters.

• A single ObjectScript local variable array, such as :myvars(). A local variable array can receive only field values from
a single table (not joined tables or a view). For details, refer to “Host Variable Subscripted by Column Number” ,
below.

• An object reference, such as :oref.Prop, where Prop is a property name, with or without a leading % character. This
can be a simple property or a multidimensional array property, such as :oref.Prop(1). It can be an instance variable,
such as :i%Prop or :i%%Data. The property name may be delimited; for example :Person."Home City". Delimited
property names can be used even when the Support Delimited Identifiers configuration option is not set. Multidimensional
properties may include :i%Prop() and :m%Prop() host variable references. An object reference host variable can include
any number of dot syntax levels; for example, :Person.Address.City.

When an oref.Prop is used as a host variable inside a procedure block method, the system automatically adds the oref
variable (not the entire oref.Prop reference) to the PublicList and NEWs it.

Host variables should be listed in the ObjectScript procedure’s PublicList variables list and reinitialized using the NEW
command. You can configure Caché to also list all host variables used in Embedded SQL in comment text; this is described
in the Comment section of Using Caché SQL.

Host variable values have the following behavior:

• Input host variables are never modified by the SQL statement code. They retain their original values even after
Embedded SQL has run. However, input host variable values are “lightly normalized” before being supplied to the
SQL statement code: Valid numeric values are stripped of leading and trailing zeros, a single leading plus sign, and a
trailing decimal point. Timestamp values are stripped of trailing spaces, trailing zeros in fractional seconds, and (if
there are no fractional seconds) a trailing decimal point.

• In FETCH ... INTO statements, the output host variables in the INTO clause are only modified if SQLCODE equals
0, that is, when a valid row is returned; otherwise, they are not modified.

Using Caché SQL 89

Host Variables

• In SELECT ... INTO and DECLARE ... SELECT ... INTO statements, the output host variables in the INTO clause
are modified if SQLCODE equals 0 (when a valid row is returned), and may have been modified even when SQLCODE
is not 0, that is, when no new row was returned.

• In DECLARE ... SELECT ... INTO statements, do not modify the output host variables in the INTO clause between
two FETCH calls, since that might cause unpredictable query results.

You must check the SQLCODE value before processing output host variables.

When using a comma-separated list of host variables in the INTO clause, you must specify the same number of host variables
as the number of select-items (fields, aggregate functions, scalar functions, arithmetic expressions, literals). Too many or
too few host variables results in an SQLCODE -76 cardinality error upon compilation.

This is often a concern when using SELECT * in Embedded SQL. For example, SELECT * FROM Sample.Person is
only valid with a comma-separated list of 15 host variables (the exact number of non-hidden columns, which, depending
on the table definition, may or may not include the system-generated ID (RowId) column). Note that this number of columns
may not be a simple correspondence to the number of properties listed in the InterSystems Class Reference.

Because the number of columns can change, it is usually not a good idea to specify SELECT * with an INTO clause list
of individual host variables. When using SELECT *, it is usually preferable to use a host variable subscripted array, such
as the following:

 NEW SQLCODE
 &sql(SELECT * INTO :tflds() FROM Sample.Person)
 IF SQLCODE=0 {
 FOR i=0:1:25 {
 IF $DATA(tflds(i)) {
 WRITE "field ",i," = ",tflds(i),! }
 } }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

Note that in this example the field number subscripts are not a continuous sequence; some fields in Sample.Person are
hidden and return no data in this example. Using a host variable array is described in “Host Variable Subscripted by Column
Number” , below.

It is good programming practice to check the SQLCODE value immediately after exiting Embedded SQL. Output host
variable values should only be used when SQLCODE=0.

12.4.1 Host Variable Examples

In the following ObjectScript example, an Embedded SQL statement uses output host variables to return a name and home
state address from an SQL query to ObjectScript:

 &sql(SELECT Name,Home_State
 INTO :CName,:CAddr
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !,"Name is: ",CName
 WRITE !,"State is: ",CAddr
 }
 ELSE {
 WRITE !,"SQLCODE=",SQLCODE
 }

The Embedded SQL uses an INTO clause that specifies the host variables :CName and :CAddr to return the selected
customer’s name in the local variable CName, and home state in the local variable CAddr.

The following example performs the same operation, using subscripted local variables:

90 Using Caché SQL

Using Embedded SQL

 &sql(SELECT Name,Home_State
 INTO :CInfo(1),:CInfo(2)
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !,"Name is: ",CInfo(1)
 WRITE !,"State is: ",CInfo(2)
 }
 ELSE {
 WRITE !,"SQLCODE=",SQLCODE
 }

These host variables are simple local variables with user-supplied subscripts (:CInfo(1)). However, if you omit the
subscript (:CInfo()), Caché populates the host variable subscripted array using SqlColumnNumber, as described below.

In the following ObjectScript example, an Embedded SQL statement uses both input host variables (in the WHERE clause)
and output host variables (in the INTO clause):

 SET minval = 10000
 SET maxval = 50000
 &sql(SELECT Name,Salary INTO :outname, :outsalary
 FROM MyApp.Employee
 WHERE Salary > :minval AND Salary < :maxval)
 IF SQLCODE=0 {
 WRITE !,"Name is: ",outname
 WRITE !,"Salary is: ",outsalary
 }
 ELSE {
 WRITE !,"SQLCODE=",SQLCODE
 }

The following example performs “light normalization” on an input host variable. Note that Caché treats the input variable
value as a string and does not normalize it, but Embedded SQL normalizes this number to 65 to perform the equality
comparison in the WHERE clause:

 SET x="+065.000"
 &sql(SELECT Name,Age
 INTO :a,:b
 FROM Sample.Person
 WHERE Age=:x)
 WRITE !,"Input value is: ",x
 IF SQLCODE = 0 {
 WRITE !,"Name value is: ",a
 WRITE !,"Age value is: ",b }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

In the following ObjectScript example, an Embedded SQL statement uses object properties as host variables:

 &sql(SELECT Name, Title INTO :obj.Name, :obj.Title
 FROM MyApp.Employee
 WHERE %ID = :id)

In this case, obj must be a valid reference to an object that has mutable (that is, they can be modified) properties Name and
Title. Note that if a query includes an INTO statement and no data is returned (that is, that SQLCODE is 100), then executing
the query may result in the value of the host variable being modified.

12.4.2 Host Variable Subscripted by Column Number

If the FROM clause contains a single table, you can specify a subscripted host variable for fields selected from that table;
for example, the local array :myvar(). The local array is populated by Caché, using each field’s SqlColumnNumber as
the numeric subscript. Note that SqlColumnNumber is the column number in the table definition, not the select-list sequence.
(You cannot use a subscripted host variable for fields of a view.)

A host variable array must be a local array that has its lowest level subscript omitted. Therefore, :myvar(), :myvar(5,),
and :myvar(5,2,) are all valid host variable subscripted arrays.

• A host variable subscripted array may be used for input in an INSERT, UPDATE, or INSERT OR UPDATE statement
VALUES clause. When used in an INSERT or UPDATE statement, a host variable array allows you to define which

Using Caché SQL 91

Host Variables

columns are being updated at runtime, rather than at compile time. For INSERT and UPDATE usage, refer to those
commands in the Caché SQL Reference.

• A host variable subscripted array may be used for output in a SELECT or DECLARE statement INTO clause. Sub-
scripted array usage in SELECT is shown in the examples that follow.

In the following example, the SELECT populates the Cdata array with the values of the specified fields. The elements of
Cdata() correspond to the table column definition, not the SELECT elements. Therefore, the Name field is column 6, the
Age field is column 2, and the date of birth (DOB) field is column 3 in Sample.Person:

 &sql(SELECT Name,Age,DOB
 INTO :Cdata()
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !,"Name is: ",Cdata(6)
 WRITE !,"Age is: ",Cdata(2)
 WRITE !,"DOB is: ",$ZDATE(Cdata(3),1)
 }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

The following example uses a subscripted array host variable to return all of the field values of a row:

 &sql(SELECT * INTO :Allfields()
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET x=1
 WHILE x '="" {
 WRITE !,x," field is ",Allfields(x)
 SET x=$ORDER(Allfields(x)) }
 }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

Note that this WHILE loop is incremented using $ORDER rather than a simple x=x+1. This is because in many tables
(such as Sample.Person) there may be hidden columns. These cause the column number sequence to be discontinuous.

If the SELECT list contains items that are not fields from that table, such as expressions or arrow-syntax fields, the INTO
clause must also contain comma-separated non-array host variables. The following example combines a subscripted array
host variable to return values that correspond to defined table columns, and host variables to return values that do not cor-
respond to defined table columns:

 &sql(SELECT Name,Home_City,{fn NOW},Age,($HOROLOG-DOB)/365.25,Home_State
 INTO :Allfields(),:timestmp('now'),:exactage
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET x=$ORDER(Allfields(""))
 WHILE x '="" {
 WRITE !,x," field is ",Allfields(x)
 SET x=$ORDER(Allfields(x)) }
 WRITE !,"date & time now is ",timestmp("now")
 WRITE !,"exact age is ",exactage
 }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

Note that the non-array host variables must match the non-column SELECT items in number and sequence.

The use of a host variable as a subscripted array is subject to the following restrictions:

• A subscripted list can only be used when selecting fields from a single table in the FROM clause. This is because when
selecting fields from multiple tables, the SqlColumnNumber values may conflict.

• A subscripted list can only be used when selecting table fields. It cannot be used for expressions or aggregate fields.
This is because these select-list items do not have an SqlColumnNumber value.

For further details on using a host variable array, refer to the INTO clause in the Caché SQL Reference.

92 Using Caché SQL

Using Embedded SQL

12.4.3 NULL and Undefined Host Variables

If you specify an input host variable that is not defined, Embedded SQL treats its value as NULL.

 NEW x
 &sql(SELECT Home_State,:x
 INTO :a,:b
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !,"The length of Home_State is: ",$LENGTH(a)
 WRITE !,"The length of x is: ",$LENGTH(b) }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

The SQL NULL is equivalent to the ObjectScript "" string (a zero-length string).

If you output a NULL to a host variable, Embedded SQL treats its value as the ObjectScript "" string (a zero-length string).
For example, some records in Sample.Person have a NULL Spouse field. After executing this query:

 &sql(SELECT Name,Spouse
 INTO :name, :spouse
 FROM Sample.Person
 WHERE Spouse IS NULL)
 IF SQLCODE=0 {
 WRITE !,"Name: ",name," of length ",$LENGTH(name)," defined: ",$DATA(name)
 WRITE !,"Spouse: ",spouse," of length ",$LENGTH(spouse)," defined: ",$DATA(spouse) }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

The host variable, spouse, will be set to "" (a zero-length string) to indicate a NULL value.

In the rare case that a table field contains an SQL zero-length string (''), such as if an application explicitly set the field to
an SQL '' string, the host variable will contain the special marker value, $CHAR(0) (a string of length 1, containing only
a single, ASCII 0 character), which is the ObjectScript representation for the SQL zero-length string. Use of SQL zero-
length strings is strongly discouraged.

The following example compares host variables output from an SQL NULL and an SQL zero-length string:

 &sql(SELECT '',Spouse
 INTO :zls, :spouse
 FROM Sample.Person
 WHERE Spouse IS NULL)
 IF SQLCODE=0 {
 WRITE "In ObjectScript"
 WRITE !,"ZLS is of length ",$LENGTH(zls)," defined: ",$DATA(zls)
 WRITE !,"NULL is of length ",$LENGTH(spouse)," defined: ",$DATA(spouse) }
 ELSE {WRITE !,"SQLCODE=",SQLCODE }

Note that this host variable NULL behavior is only true within server-based queries (Embedded SQL and Dynamic SQL).
Within ODBC and JDBC, NULL values are explicitly specified using the ODBC or JDBC interface.

12.4.4 Validity of Host Variables

• Input host variables are never modified by Embedded SQL.

• Output host variables are only reliably valid after Embedded SQL when SQLCODE = 0.

For example, the following use of OutVal is not reliably valid:

InvalidExample
 SET InVal = "1234"
 SET OutVal = "?"
 &sql(SELECT Name
 INTO :OutVal
 FROM Sample.Person
 WHERE ID=:InVal)
 IF OutVal="?" { ; Improper Use
 WRITE !,"No data returned"
 WRITE !,"SQLCODE=",SQLCODE }
 ELSE {
 WRITE !,"Name is: ",OutVal }

Using Caché SQL 93

Host Variables

The value of OutVal set before invoking Embedded SQL should not be referenced by the IF command after returning from
Embedded SQL.

Instead, you should code this example as follows, using the SQLCODE variable:

ValidExample
 SET InVal = "1234"
 &sql(SELECT Name
 INTO :OutVal
 FROM Sample.Person
 WHERE ID=:InVal)
 IF SQLCODE'=0 { SET OutVal="?"
 IF OutVal="?" {
 WRITE !,"No data returned"
 WRITE !,"SQLCODE=",SQLCODE } }
 ELSE {
 WRITE !,"Name is: ",OutVal }

The Embedded SQL sets the SQLCODE variable to 0 to indicate the successful retrieval of an output row. An SQLCODE
value of 100 indicates that no row was found that matches the SELECT criteria. An SQLCODE negative number value
indicates a SQL error condition.

12.4.5 Host Variables and Procedure Blocks

If your Embedded SQL is within a procedure block, all input and output host variables must be public. This can be done
by declaring them in the PUBLIC section at the beginning of the procedure block, or by naming them with an initial %
character (which automatically makes them public). You must also declare SQLCODE as public. For further details on the
SQLCODE variable, see below.

In the following procedure block example, the host variables zip, city, and state, as well as the SQLCODE variable are
declared as PUBLIC. The SQL system variables %ROWCOUNT, %ROWID, and %msg are already public, because their
names begin with a % character. The procedure code then performs a NEW on SQLCODE, the other SQL system variables,
and the state local variable:

UpdateTest(zip,city)
 [SQLCODE,zip,city,state] PUBLIC {
 NEW SQLCODE,%ROWCOUNT,%ROWID,%msg,state
 SET state="MA"
 &sql(UPDATE Sample.Person
 SET Home_City = :city, Home_State = :state
 WHERE Home_Zip = :zip)
 QUIT %ROWCOUNT
 }

12.5 SQL Cursors
A cursor is a pointer to data that allows an Embedded SQL program to perform an operation on the record pointed to. By
using a cursor, Embedded SQL can iterate through a result set. Embedded SQL can use a cursor to execute a query that
returns data from multiple records. Embedded SQL can also use a cursor to update or delete multiple records.

You must first DECLARE an SQL cursor, giving it a name. In the DECLARE statement you supply a SELECT statement
that identifies which records the cursor will point to. You then supply this cursor name to the OPEN cursor statement. You
then repeatedly issue the FETCH cursor statement to iterate through the SELECT result set. You then issue a CLOSE
cursor statement.

• A cursor-based query uses DECLARE cursorname CURSOR FOR SELECT to select records and (optionally) return
select column values into output host variables. The FETCH statement iterates through the result set, using these
variables to return selected column values.

• A cursor-based DELETE or UPDATE uses DECLARE cursorname CURSOR FOR SELECT to select records for the
operation. No output host variables are specified. The FETCH statement iterates through the result set. The DELETE

94 Using Caché SQL

Using Embedded SQL

or UPDATE statement contains a WHERE CURRENT OF clause to identify the current cursor position in order to
perform the operation on the selected record. For further details on cursor-based DELETE and UPDATE, refer to the
WHERE CURRENT OF page in Caché SQL Reference.

Note that a cursor cannot span methods. Therefore, you must declare, open, fetch, and close a cursor within the same class
method. It is important to consider this with all code that generates classes and methods, such as classes generated from a
.CSP file.

The following example, uses a cursor to execute a query and display the results to the principal device:

 &sql(DECLARE C1 CURSOR FOR
 SELECT %ID,Name
 INTO :id, :name
 FROM Sample.Person
 WHERE Name %STARTSWITH 'A'
 ORDER BY Name
)

 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)

 While (SQLCODE = 0) {
 Write id, ": ", name,!
 &sql(FETCH C1)
 }

 &sql(CLOSE C1)

This example does the following:

1. It declares a cursor, C1, that returns a set of Person rows ordered by Name.

2. It opens the cursor.

3. It calls FETCH on the cursor until it reaches the end of the data. After each call to FETCH, the SQLCODE variable
will be set to 0 if there is more data to fetch. After each call to FETCH, the values returned are copied into the host
variables specified by the INTO clause of the DECLARE statement.

4. It closes the cursor.

12.5.1 The DECLARE Cursor Statement

The DECLARE statement specifies both the cursor name and the SQL SELECT statement that defines the cursor. The
DECLARE statement must occur within a routine before any statements that use the cursor.

A cursor name must be unique within a class or routine. For this reason, a routine that is called recursively cannot contain
a cursor declaration. In this situation, it may be preferable to use Dynamic SQL.

The following example declares a cursor named MyCursor:

 &sql(DECLARE MyCursor CURSOR FOR
 SELECT Name, DOB
 FROM Sample.Person
 WHERE Home_State = :state
 ORDER BY Name
)

A DECLARE statement may include an optional INTO clause that specifies the names of the local host variables that will
receive data as the cursor is traversed. For example, we can add an INTO clause to the previous example:

 &sql(DECLARE MyCursor CURSOR FOR
 SELECT Name, DOB
 INTO :name, :dob
 FROM Sample.Person
 WHERE Home_State = :state
 ORDER BY Name
)

Using Caché SQL 95

SQL Cursors

The INTO clause may contain a comma-separated list of host variables, a single host variable array, or a combination of
both. If specified as a comma-separated list, the number of INTO clause host variables must exactly match the number of
columns within the cursor’s SELECT list or you will receive a “Cardinality Mismatch” error when the statement is compiled.

If the DECLARE statement does not include an INTO clause, then the INTO clause must appear within the FETCH statement.

12.5.2 The OPEN Cursor Statement

The OPEN statement prepares a cursor for subsequent execution:

 &sql(OPEN MyCursor)

Upon a successful call to OPEN, the SQLCODE variable will be set to 0.

You cannot FETCH data from a cursor without first calling OPEN.

Depending on the actual query used for the cursor, the OPEN statement may do very little actual work or it may perform
some initialization work for the query.

12.5.3 The FETCH Cursor Statement

The FETCH statement fetches the data for the next row of the cursor (as defined by the cursor query):

 &sql(FETCH MyCursor)

You must DECLARE and OPEN a cursor, before you can call FETCH on it.

A FETCH statement may contain an INTO clause that specifies the names of the local host variables that will receive data
as the cursor is traversed. For example, we can add an INTO clause to the previous example:

 &sql(FETCH MyCursor INTO :a, :b)

If both the DECLARE and FETCH statements contain an INTO clause, the host variables specified by the FETCH statement
will be used.

The INTO clause may contain a comma-separated list of host variables, a single host variable array, or a combination of
both. If specified as a comma-separated list, the number of INTO clause host variables must exactly match the number of
columns within the cursor’s SELECT list or you will receive a “Cardinality Mismatch” error when the statement is compiled.

Upon a successful call to FETCH, the SQLCODE variable will be set to 0; if there is no more data to FETCH, then SQLCODE
will be set to 100 (No more data).

Depending on the query, the first call to FETCH may perform additional tasks (such as sorting values within a temporary
data structure).

12.5.4 The CLOSE Cursor Statement

The CLOSE statement terminates the execution of a cursor:

 &sql(CLOSE MyCursor)

The CLOSE statement cleans up any temporary storage used by the execution of a query. Programs that fail to call CLOSE
will experience resource leaks (such as unneeded increase of the CACHETEMP temporary database).

Upon a successful call to CLOSE, the SQLCODE variable is set to 0. Therefore, before closing a cursor you should check
whether the final FETCH set SQLCODE to 0 or 100.

96 Using Caché SQL

Using Embedded SQL

12.6 Embedded SQL Variables
The following local variables have specialized uses in Embedded SQL. These local variable names are case-sensitive. At
process initiation, these variables are undefined. They are set by Embedded SQL operations. They can also be set directly
using the SET command, or reset to undefined using the NEW command. Like any local variable, a value persists for the
duration of the process or until set to another value or undefined using NEW. For example, some successful Embedded
SQL operations do not set %ROWID; following these operations, %ROWID remains set to its prior value.

• %msg

• %ok

• %ROWCOUNT

• %ROWID

• SQLCODE

These local variables are not set by Dynamic SQL. (Note that the SQL Shell and the Management Portal SQL interface
execute Dynamic SQL.) Instead, Dynamic SQL sets corresponding object properties.

The following ObjectScript special variables are used in Embedded SQL. These special variable names are not case-sensitive.
At process initiation, these variables are initialized to a value. They are set by Embedded SQL operations. They cannot be
set directly using the SET or NEW commands.

• $TLEVEL

• $USERNAME

As part of the defined Caché Embedded SQL interface, Caché may set any of these variables during Embedded SQL pro-
cessing.

If the Embedded SQL is in a class method (with ProcedureBlock=ON), the system automatically places all of these variables
in the PublicList and NEWs the SQLCODE, %ROWID, %ROWCOUNT, %msg, and all non-% variables used by the SQL
statement. It does not NEW the %ok variable. You can pass these variables by reference to/from the method; variables
passed by reference will not be NEWed automatically in the class method procedure block.

If the Embedded SQL is in a routine, it is the responsibility of the programmer to NEW the %msg, %ok, %ROWCOUNT,
%ROWID, and SQLCODE variables before invoking Embedded SQL. NEWing these variables prevents interference with
prior settings of these variables. To avoid a <FRAMESTACK> error, you should not perform this NEW operation within
an iteration cycle.

12.6.1 %msg

A variable that contains a system-supplied error message string. Caché SQL only sets %msg if it has set SQLCODE to a
negative integer, indicating an error. If SQLCODE is set to 0 or 100, the %msg variable is unchanged from its prior value.

This behavior differs from the corresponding Dynamic SQL %Message property, which is set to the empty string when
there is no current error.

In some cases, a specific SQLCODE error code may be associated with more than one %msg string, describing different
conditions that generated the SQLCODE. %msg can also take a user-defined message string. This is most commonly used
to issue a specific message when an SQL error or trigger code sets %ok=0, aborting the trigger.

An error message string is generated in the NLS language in effect for the process when the SQL code is executed. The
SQL code may be compiled in a different NLS language environment; the message will be generated according to the
runtime NLS environment. See $SYS.NLS.Locale.Language.

Using Caché SQL 97

Embedded SQL Variables

12.6.2 %ok

A variable used in trigger code. When %ok is set to 0 (zero), the trigger code aborts and is rolled back. %ok can be set to
zero explicitly by trigger code, or implicitly by Caché. If during trigger execution an SQLCODE error is issued, Caché sets
%ok to zero.

%ok is unchanged from its prior value upon the completion of a non-trigger code SELECT, INSERT, UPDATE, or
DELETE statement. %ok is only defined by the execution of trigger code.

12.6.3 %ROWCOUNT

An integer counter that indicates the number of rows affected by a particular statement.

• INSERT, UPDATE, INSERT OR UPDATE, DELETE, and TRUNCATE TABLE set %ROWCOUNT to the
number of rows affected. An INSERT command with explicit values can only affect one row, and thus sets %ROW-
COUNT to either 0 or 1. An INSERT query results, an UPDATE, or a DELETE can affect multiple rows, and can
thus set %ROWCOUNT to 0 or a positive integer.

• SELECT with no declared cursor can only act upon a single row, and thus execution of a simple SELECT always
sets %ROWCOUNT to either 1 (single row that matched the selection criteria retrieved) or 0 (no rows matched the
selection criteria).

• DECLARE cursorname CURSOR FOR SELECT does not initialize %ROWCOUNT; %ROWCOUNT is unchanged
following the SELECT, and remains unchanged following OPEN cursorname. The first successful FETCH sets
%ROWCOUNT. If no rows matched the query selection criteria, FETCH sets %ROWCOUNT=0; if FETCH retrieves
a row that matched the query selection criteria, it sets %ROWCOUNT=1. Each subsequent FETCH that retrieves a
row increments %ROWCOUNT. Upon CLOSE or when FETCH issues an SQLCODE 100 (No Data, or No More
Data), %ROWCOUNT contains the total number of rows retrieved.

This SELECT behavior differs from the corresponding Dynamic SQL %ROWCOUNT property, which is set to 0 upon
completion of query execution, and is only incremented when the program iterates through the result set returned by the
query.

If a SELECT query returns only aggregate functions, every FETCH sets %ROWCOUNT=1. The first FETCH always
completes with SQLCODE=0, even when there is no data in the table; any subsequent FETCH completes with SQL-
CODE=100 and sets %ROWCOUNT=1.

The following Embedded SQL example declares a cursor and uses FETCH to fetch each row in the table. When the end
of data is reached (SQLCODE=100) %ROWCOUNT contains the number of rows retrieved:

 SET name="LastName,FirstName",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M')
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"Row fetch count: ",%ROWCOUNT
 WRITE " Name=",name," State=",state
 }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)
 WRITE !,"AFTER: Name=",name," State=",state
 WRITE !,"Total rows fetched: ",%ROWCOUNT

The following Embedded SQL example performs an UPDATE and sets the number of rows affected by the change:

98 Using Caché SQL

Using Embedded SQL

 &sql(UPDATE MyApp.Employee
 Set Salary = (Salary * 1.1)
 WHERE Salary < 50000)
 Write "Employees: ", %ROWCOUNT,!

Keep in mind that all Embedded SQL statements (within a given process) modify the %ROWCOUNT variable. If you need
the value provided by %ROWCOUNT, be sure to get its value before executing additional Embedded SQL statements.
Depending on how Embedded SQL is invoked, you may have to NEW the %ROWCOUNT variable before entering
Embedded SQL.

Also note that explicitly rolling back a transaction will not affect the value of %ROWCOUNT. For example, the following
will report that changes have been made, even though they have been rolled back:

 TSTART // start an explicit transaction
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(UPDATE MyApp.Employee
 Set Salary = (Salary * 1.1)
 WHERE Salary < 50000)

 TROLLBACK // force a rollback; this will NOT modify %ROWCOUNT
 Write "Employees: ", %ROWCOUNT,!

Implicit transactions (such as if an UPDATE fails a constraint check) are reflected by %ROWCOUNT.

12.6.4 %ROWID

When you initialize a process, %ROWID is undefined. When you issue a NEW %ROWID command, %ROWID is reset
to undefined. %ROWID is set by the Embedded SQL operations described below. If the operation is not successful, or
completes successfully but does not fetch or modify any rows, the %ROWID value remains unchanged from its prior value:
either undefined, or set to a value by a previous Embedded SQL operation. For this reason, it is important to NEW %ROWID
before each Embedded SQL operation.

%ROWID is set to the RowID of the last row affected by the following operations:

• INSERT, UPDATE, INSERT OR UPDATE, DELETE, or TRUNCATE TABLE: After a single-row operation,
the %ROWID variable contains the system-assigned value of the RowID (Object ID) assigned to the inserted, updated,
or deleted record. After a multiple-row operation, the %ROWID variable contains the system-assigned value of the
RowID (Object ID) of the last record inserted, updated, or deleted. If no record is inserted, updated, or deleted, the
%ROWID variable value is unchanged.

• Cursor-based SELECT: The DECLARE cursorname CURSOR and OPEN cursorname statements do not initialize
%ROWID; the %ROWID value is unchanged from its prior value. The first successful FETCH sets %ROWID. Each
subsequent FETCH that retrieves a row resets %ROWID to the current RowID. FETCH sets %ROWID if it retrieves
a row of an updateable cursor. An updateable cursor is one in which the top FROM clause contains exactly one element,
either a single table name or an updateable view name. If the cursor is not updateable, %ROWID remains unchanged.
If no rows matched the query selection criteria, FETCH does not change the prior the %ROWID value (if any). Upon
CLOSE or when FETCH issues an SQLCODE 100 (No Data, or No More Data), %ROWID contains the RowID of
the last row retrieved.

Cursor-based SELECT with a DISTINCT keyword or a GROUP BY clause does not set %ROWID. The %ROWID
value is unchanged from its previous value (if any).

Cursor-based SELECT with an aggregate function does not set %ROWID if it returns only aggregate function values.
If it returns both field values and aggregate function values, the %ROWID value for every FETCH is set to the RowID
of the last row returned by the query.

• SELECT with no declared cursor does not set %ROWID. The %ROWID value is unchanged upon the completion of
a simple SELECT statement.

In Dynamic SQL, the corresponding %ROWID property returns the RowID of the last record inserted, updated, or deleted.
Dynamic SQL does not return a %ROWID property value when performing a SELECT query.

Using Caché SQL 99

Embedded SQL Variables

You can retrieve the current %ROWID from ObjectScript using the following method call:

 WRITE $SYSTEM.SQL.GetROWID()

Following an INSERT, UPDATE, DELETE, TRUNCATE TABLE, or Cursor-based SELECT operation, the
LAST_IDENTITY SQL function returns the value of the IDENTITY field for the most-recently modified record. If the
table does not have an IDENTITY field, this function returns the RowID for the most-recently modified record.

12.6.5 SQLCODE

After running an embedded SQL Query, you must check the SQLCODE before processing the output host variables.

If SQLCODE=0 the query completed successfully and returned data. The output host variables contain field values.

If SQLCODE=100 the query completed successfully, but output host variable values may differ. Either:

• The query returned one or more rows of data (SQLCODE=0), then reached the end of the data (SQLCODE=100), in
which case output host variables are set to the field values of the last row returned. %ROWCOUNT>0.

• The query returned no data, in which case the output host variables are undefined. %ROWCOUNT=0.

If a query returns only aggregate functions, the first FETCH always completes with SQLCODE=0 and %ROWCOUNT=1,
even when there is no data in the table. The second FETCH completes with SQLCODE=100 and %ROWCOUNT=1. If
there is no data in the table or no data matches the query conditions, the query sets output host variables to 0 or the empty
string, as appropriate.

If SQLCODE is a negative number the query failed with an error condition. For a list of these error codes and additional
information, refer to the SQLCODE Values and Error Messages chapter of the Caché Error Reference.

Depending on how Embedded SQL is invoked, you may have to NEW the SQLCODE variable before entering Embedded
SQL. With trigger code, setting SQLCODE to a nonzero value automatically sets %ok to zero.

In Dynamic SQL, the corresponding %SQLCODE property returns SQL error code values.

12.6.6 $TLEVEL

The transaction level counter. Caché SQL initializes $TLEVEL to 0. If there is no current transaction, $TLEVEL is 0.

• An initial START TRANSACTION sets $TLEVEL to 1. Additional START TRANSACTION statements have no
effect on $TLEVEL.

• Each SAVEPOINT statement increments $TLEVEL by 1.

• A ROLLBACK TO SAVEPOINT pointname statement decrements $TLEVEL. The amount of decrement depends
on the savepoint specified.

• A COMMIT resets $TLEVEL to 0.

• A ROLLBACK resets $TLEVEL to 0.

You can also use the %INTRANSACTION statement to determine if a transaction is in progress.

$TLEVEL is also set by ObjectScript transaction commands. For further details, refer to the $TLEVEL special variable
in the Caché ObjectScript Reference.

12.6.7 $USERNAME

The SQL username is the same as the Caché username, stored in the ObjectScript $USERNAME special variable. The
username can be used as the system-wide default schema or as an element in the schema search path.

100 Using Caché SQL

Using Embedded SQL

12.7 Auditing Embedded SQL
Caché supports optional auditing of Embedded SQL statements. Embedded SQL auditing is performed when the %Sys-
tem/%SQL/EmbeddedStatement system audit event is enabled system-wide. By default, this system audit event is not
enabled.

If you enable %System/%SQL/EmbeddedStatement, Caché checks each routine executed for the #SQLCompile Audit
macro preprocessor directive. If this directive is set to ON, any Embedded SQL statement following it in the compiled
routine is audited when executed. Auditing records information in the audit log. An audited Embedded SQL statement
records information in the Event Description, including the type of statement. The Event Data for the audit record includes
the SQL statement executed and the values of any host variable arguments to the statement.

Caché also supports auditing of Dynamic SQL statements, and auditing of xDBC statements (ODBC and JDBC).

Using Caché SQL 101

Auditing Embedded SQL

13
Using Dynamic SQL

This chapter discusses Dynamic SQL, queries and other SQL statements that are prepared and executed at runtime. It
includes the following topics:

• An introduction to Dynamic SQL

• Comparing Dynamic SQL and Embedded SQL

• The %SQL.Statement class

• Creating an object instance and specifying its properties

• Preparing an SQL statement

• Executing an SQL statement

• Returning the entire result set

• Returning specific values from a result set

• Returning multiple result sets

• Working with metadata

• Auditing Dynamic SQL

This chapter describes Dynamic SQL programming using the %SQL.Statement class, which is the preferred implementation
of Dynamic SQL. All statements about Dynamic SQL in this chapter, and throughout our documentation, refer specifically
to the %SQL.Statement implementation, unless otherwise indicated. You can also create Dynamic SQL programs using the
older %ResultSet.SQL class or the %Library.ResultSet class, as described in the Dynamic SQL Using the Older %Result-
Set.SQL and %Library.ResultSet Classes chapter of this manual.

13.1 Introduction to Dynamic SQL
Dynamic SQL refers to SQL statements that are prepared and executed at runtime. Dynamic SQL lets you program within
Caché in a manner similar to an ODBC or JDBC application (except that you are executing the SQL statement within the
same process context as the database engine).

Dynamic SQL can be invoked from either an ObjectScript program or a Caché Basic program.

Dynamic SQL can be used to perform an SQL query. It can also be used to issue other SQL statements. The examples in
this chapter perform a SELECT query. For Dynamic SQL program examples invoking CREATE TABLE, INSERT,
UPDATE, DELETE, or CALL, refer to these commands in the Caché SQL Reference.

Using Caché SQL 103

Dynamic SQL is used in the execution of the Caché SQL Shell, the Caché Management Portal Execute Query interface,
the SQL Code Import methods, and the Data Import and Export Utilities. The maximum size of a row in Dynamic SQL
(and applications that use it) is 32,767 characters. This limitation can be greatly expanded by configuring long string
operations.

13.1.1 Dynamic SQL versus Embedded SQL

Dynamic SQL differs from Embedded SQL in the following ways:

• Dynamic SQL queries are prepared at program execution time, not compilation time. This means that the compiler
cannot check for errors at compilation time and preprocessor macros cannot be used within Dynamic SQL. It also
means that executing programs can create specialized Dynamic SQL queries in response to user or other input.

• Dynamic SQL can issue a CREATE TABLE or CREATE VIEW and perform an INSERT or SELECT on that
table or view in the same routine. Embedded SQL, because it is compiled, cannot do this.

• Dynamic SQL executes slightly less efficiently than Embedded SQL, because it does not generate in-line code for
queries. However, re-execution of a Dynamic SQL query is substantially faster than the first execution of the query
because Dynamic SQL supports cached queries.

• Dynamic SQL can accept a literal value input to a query in two ways: input parameters specified using the “?” char-
acter, and input host variables (for example, :var). Embedded SQL uses input and output host variables (for example,
:var).

• Dynamic SQL output values are retrieved using the API of the result set object (that is, the Data property). Embedded
SQL uses host variables (for example, :var) with the INTO clause of a SELECT statement to output values.

• Dynamic SQL sets the %SQLCODE, %Message, %ROWCOUNT, and %ROWID object properties. Embedded SQL sets
the corresponding SQLCODE, %msg, %ROWCOUNT, and %ROWID local variables. Dynamic SQL does not set
%ROWID for a SELECT query; Embedded SQL sets %ROWID for a cursor-based SELECT query.

• Dynamic SQL can be invoked from either ObjectScript or Caché Basic. Embedded SQL can only be invoked from
ObjectScript.

• Dynamic SQL provides an easy way to find query metadata (such as quantity and names of columns).

• Queries prepared by Dynamic SQL are maintained within the query cache so that subsequent calls to prepare the same
query can reuse previously generated code. Embedded SQL generates in-line code at compilation time and does not
need to use the query cache. Note that Dynamic SQL does not cache most non-query SQL statements, because these
statements are commonly only used once. Refer to the “Cached Queries” chapter of the Caché SQL Optimization
Guide for further details.

• Dynamic SQL performs SQL privilege checking; you must have the appropriate privileges to access or modify a table,
field, etc. Embedded SQL does not perform SQL privilege checking.

• Dynamic SQL cannot access a private class method. To access an existing class method, the method must be made
public. This is a general SQL limitation. However, Embedded SQL gets around this limitation because the Embedded
SQL operation itself is a method of the same class.

Dynamic SQL and Embedded SQL use the same data representation (logical mode by default, but this can be changed)
and NULL handling.

104 Using Caché SQL

Using Dynamic SQL

13.2 The %SQL.Statement Class
The preferred interface for Dynamic SQL is the %SQL.Statement class. To prepare and execute Dynamic SQL statements,
use an instance of %SQL.Statement. The result of executing a Dynamic SQL statement is an SQL statement result object
that is an instance of the %SQL.StatementResult class. An SQL statement result object is either a unitary value, a result set,
or a context object. In all cases, the result object supports a standard interface. Each result object initializes the %SQLCODE,
%Message and other result object properties; The values these properties are set to depends on the SQL statement issued.
For a successfully executed SELECT statement, the object is a result set (specifically, an instance of %SQL.IResultSet)
and supports the expected result set functionality.

The following ObjectScript code prepares and executes a Dynamic SQL query:

 /* Simple %SQL.Statement example */
 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following is the same Dynamic SQL query in Caché Basic:

myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
tStatement = New %SQL.Statement()
qStatus = tStatement.%Prepare(myquery)
If qStatus<>1 Then
 PrintLn "%Prepare failed: "
 PrintLn Piece(qStatus," ",3,10)
Else
 rset = tStatement.%Execute()
 CALL rset.%Display()
 PrintLn
 PrintLn "End of data"
End If

The examples in this chapter use methods associated with the %SQL.Statement and %SQL.StatementResult classes.

13.3 Creating an Object Instance
You can create an instance of the %SQL.Statement class using the %New() class method in ObjectScript:

 SET tStatement = ##class(%SQL.Statement).%New()

Or in Caché Basic:

tStatement = New %SQL.Statement()

At this point the result set object is ready to prepare an SQL statement. Once you have created an instance of the
%SQL.Statement class, you can use that instance to issue multiple Dynamic SQL queries and/or INSERT, UPDATE, or
DELETE operations.

%New() accepts three optional comma-separated parameters in the following order:

1. %SelectMode, which specifies the data display mode.

2. %SchemaPath, which specifies the search path used to supply the schema name for an unqualified table name.

3. %Dialect, which specifies the Transact-SQL (TSQL) Sybase or MSSQL dialect. The default is Caché SQL.

Using Caché SQL 105

The %SQL.Statement Class

There is also an %ObjectSelectMode property, which cannot be set as a %New() parameter. %ObjectSelectMode specifies
the data type binding of fields to their related object properties.

In the following ObjectScript example, the %SelectMode is 2 (Display mode), and the %SchemaPath specifies “Sample”
as the default schema:

 SET tStatement = ##class(%SQL.Statement).%New(2,"Sample")

In the following ObjectScript example, a %SelectMode is not specified (note the placeholder comma), and the %Schema-
Path specifies a schema search path containing three schema names:

 SET tStatement = ##class(%SQL.Statement).%New(,"MyTests,Sample,Cinema")

13.3.1 %SelectMode Property

The %SelectMode property specifies the data display mode. 0=Logical (the default), 1=ODBC, 2=Display.

The %SelectMode property is used for SELECT query operations and for INSERT and UPDATE operations. This mode
is most commonly used for date and time values and for displaying %List data.

%SelectMode is used for data display. SQL statements run internally in Logical mode. For example, an ORDER BY clause
orders records based on their Logical values, regardless of the %SelectMode setting. SQL functions use Logical values,
regardless of the %SelectMode setting. Methods projected as SQLPROC also run in Logical mode. SQL routines called as
functions in an SQL statement need to return the function value in Logical format.

• For a SELECT query, %SelectMode specifies the format used for displaying the data. Setting %SelectMode to ODBC
or Display also affects the data format used for specifying comparison predicate values. Some predicate values must
be specified in the %SelectMode format, other predicate values must be specified in Logical format, regardless of the
%SelectMode. For details, refer to Overview of Predicates in the Caché SQL Reference.

– Time data type data in %SelectMode=1 (ODBC) can display fractional seconds, which is not the same as actual
ODBC time. The Caché Time data type supports fractional seconds. The corresponding ODBC TIME data type
(TIME_STRUCT standard header definition) does not support fractional seconds. The ODBC TIME data type
truncates a supplied time value to whole seconds. ADO DotNet and JDBC do not have this restriction.

– %List data type data in %SelectMode=0 (Logical) does not display the internal storage value, because %List data
is encoded using non-printing characters. Instead, Dynamic SQL displays a %List data value as a $LISTBUILD
statement, such as the following: $lb("White","Green"). See %Print() Method for an example. %List data
type data in %SelectMode=1 (ODBC) displays list elements separated by commas; this elements separator is
specified as the CollectionOdbcDelimiter parameter. %List data type data in %SelectMode=2 (Display) displays
list elements separated by $CHAR(10,13) (Line Feed, Carriage Return); this elements separator is specified as
the CollectionDisplayDelimiter parameter.

• For an INSERT or UPDATE operation, %SelectMode specifies whether input data will be converted from a display
format to logical storage format. For this data conversion to occur, the SQL code must have been compiled with a
select mode of RUNTIME. At execution time, %SelectMode must be set to 0 (Logical). For further details, refer to the
INSERT or UPDATE statement in the Caché SQL Reference.

You can specify %SelectMode either as the first parameter of the %New() class method, or set it directly, as shown in the
following two examples:

 SET tStatement = ##class(%SQL.Statement).%New(2)

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=2

The following example returns the current value of %SelectMode:

106 Using Caché SQL

Using Dynamic SQL

 SET tStatement = ##class(%SQL.Statement).%New()
 WRITE !,"default select mode=",tStatement.%SelectMode
 SET tStatement.%SelectMode=2
 WRITE !,"set select mode=",tStatement.%SelectMode

You can determine the SelectMode default setting for the current process using the $SYSTEM.SQL.GetSelectMode()
method. You can change the SelectMode default setting for the current process using the $SYSTEM.SQL.SetSelectMode(n)
method, when n can be 0=Logical, 1=ODBC, or 2=Display. Setting %SelectMode overrides this default for the current
object instance; it does not change the SelectMode process default.

For further details on SelectMode options, refer to “Data Display Options” in the “Caché SQL Basics” chapter of this
book.

13.3.2 %SchemaPath Property

The %SchemaPath property specifies the search path used to supply the schema name for an unqualified table name, view
name, or stored procedure name. A schema search path is used for data management operations such as SELECT, CALL,
INSERT, and TRUNCATE TABLE; it is ignored by data definition operations such as DROP TABLE.

The search path is specified as a quoted string containing a schema name or a comma-separated series of schema names.
Caché searches the listed schemas in left-to-right order. Caché searches each specified schema until it locates the first
matching table, view, or stored procedure name. Because schemas are searched in the specified order, there is no detection
of ambiguous table names. Only schema names in the current namespace are searched.

The schema search path can contain both literal schema names and the CURRENT_PATH, CURRENT_SCHEMA, and
DEFAULT_SCHEMA keywords.

• CURRENT_PATH specifies the current schema search path, as defined in a prior %SchemaPath property. This is
commonly used to add schemas to the beginning or end of an existing schema search path.

• CURRENT_SCHEMA specifies the current schema container class name if the %SQL.Statement call is made from
within a class method. If a #SQLCompile Path macro directive is defined in a class method, the CURRENT_SCHEMA
is the schema mapped to the current class package. Otherwise, CURRENT_SCHEMA is the same as
DEFAULT_SCHEMA.

• DEFAULT_SCHEMA specifies the system-wide default schema. This keyword enables you to search the system-wide
default schema as a item within the schema search path, before searching other listed schemas. The system-wide default
schema is always searched after searching the schema search path if all the schemas specified in the path have been
searched without a match.

The %SchemaPath is the first place Caché searches schemas for a matching table name. If %SchemaPath is not specified,
or does not list a schema that contains a matching table name, Caché uses the system-wide default schema.

You can specify a schema search path either by specifying the %SchemaPath property, or by specifying the second
parameter of the %New() class method, as shown in the following two examples:

 SET path="MyTests,Sample,Cinema"
 SET tStatement = ##class(%SQL.Statement).%New(,path)

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SchemaPath="MyTests,Sample,Cinema"

You can set %SchemaPath at any point prior to the %Prepare() method which uses it.

The following example returns the current value of %SchemaPath:

 SET tStatement = ##class(%SQL.Statement).%New()
 WRITE !,"default path=",tStatement.%SchemaPath
 SET tStatement.%SchemaPath="MyTests,Sample,Cinema"
 WRITE !,"set path=",tStatement.%SchemaPath

You can use the %ClassPath() method to set %SchemaPath to the search path defined for the specified class name:

Using Caché SQL 107

Creating an Object Instance

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SchemaPath=tStatement.%ClassPath("Sample.Person")
 WRITE tStatement.%SchemaPath

13.3.3 %Dialect Property

The %Dialect property specifies the SQL statement dialect. You can specify either Sybase or MSSQL. This setting causes
the SQL statement to be processed using the specified Transact-SQL dialect.

The Sybase and MSSQL dialects support a limited subset of SQL statements in these dialects. They support the SELECT,
INSERT, UPDATE, DELETE, and EXECUTE statements. They support the CREATE TABLE statement for permanent
tables, but not for temporary tables. CREATE VIEW is supported. CREATE TRIGGER and DROP TRIGGER are
supported. However, this implementation does not support transaction rollback should the CREATE TRIGGER statement
partially succeed but then fail on class compile. CREATE PROCEDURE and CREATE FUNCTION are supported.

The Sybase and MSSQL dialects support the IF flow-of-control statement. This command is not supported in the Caché
SQL dialect.

The default is Caché SQL, which can be represented either by a null or “CACHE”.

You can specify %Dialect either as the third parameter of the %New() class method, or set it directly as a property, or set
it using a method, as shown in the following three examples:

Setting %Dialect in %New() class method:

 SET tStatement = ##class(%SQL.Statement).%New(,,"Sybase")
 WRITE "language mode set to=",tStatement.%Dialect

Setting the %Dialect property directly:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET defaultdialect=tStatement.%Dialect
 WRITE "default language mode=",defaultdialect,!
 SET tStatement.%Dialect="Sybase"
 WRITE "language mode set to=",tStatement.%Dialect,!
 SET tStatement.%Dialect="Cache"
 WRITE "language mode reset to default=",tStatement.%Dialect,!

Setting the %Dialect property using the %DialectSet() instance method, which returns an error status:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatus = tStatement.%DialectSet("Sybase")
 IF tStatus'=1 {WRITE "%DialectSet failed:" DO $System.Status.DisplayError(tStatus) QUIT}
 WRITE "language mode set to=",tStatement.%Dialect

The %DialectSet() method returns a %Status value: Success returns a status of 1. Failure returns an object expression that
begins with 0, followed by encoded error information. For this reason, you cannot perform a tStatus=0 test for failure;
you can perform a $$$ISOK(tStatus)=0 macro test for failure.

13.3.4 %ObjectSelectMode Property

The %ObjectSelectMode property is a boolean value. If %ObjectSelectMode=0 (the default) all columns in the SELECT
list are bound to properties with literal types in the result set. If %ObjectSelectMode=1 then columns in the SELECT list
are bound to properties with the type defined in the associated property definition.

%ObjectSelectMode allows you to specify how columns whose type class is a swizzleable class will be defined in the result
set class generated from a SELECT statement. If %ObjectSelectMode=0 the property corresponding to the swizzleable
column will be defined in result sets as a simple literal type corresponding to the SQL table's ROWID type. If
%ObjectSelectMode=1 the property will be defined with the column’s declared type. That means that accessing the result
set property will trigger swizzling.

%ObjectSelectMode cannot be set as a parameter of %New().

108 Using Caché SQL

Using Dynamic SQL

The following example returns the %ObjectSelectMode default value, sets %ObjectSelectMode, then returns the new
%ObjectSelectMode value:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 %ID AS MyID,Name,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 WRITE !,"default ObjectSelectMode=",tStatement.%ObjectSelectMode
 SET tStatement.%ObjectSelectMode=1
 WRITE !,"set ObjectSelectMode=",tStatement.%ObjectSelectMode

%ObjectSelectMode=1 is principally used when returning values from a result set using the field name property. This is
further described with examples in Fieldname Property in the “Returning Specific Values from the Result Set” section of
this chapter.

13.4 Preparing an SQL Statement
Preparing an SQL statement validates the statement, prepares it for subsequent execution, and generates metadata about
the SQL statement.

There are three ways to prepare a statement:

• %Prepare(), which prepares an SQL statement (a query, for example) for a subsequent %Execute().

• %PrepareClassQuery(), which prepares a call statement to an existing query. Once prepared, this query can be executed
using a subsequent %Execute().

• %ExecDirect(), which both prepares and executes an SQL statement. %ExecDirect() is described in “Executing an
SQL Statement” .

Preparing an SQL statement places the statement in the query cache. This allows the same query to be executed multiple
times without the need to re-prepare the SQL statement. A cached query can be executed one or more times by any process;
it can be executed with different input parameter values.

Each time you prepare an SQL statement, Caché searches the query cache to determine if the same SQL statement has
already been prepared and cached. If not, it places the prepared statement in the query cache. If the prepared statement
already exists in the query cache, no new cached query is created. For this reason, it is important not to code a prepare
statement within a loop structure.

13.4.1 %Prepare()

You can prepare an SQL statement using the %Prepare() instance method of the %SQL.Statement class. The %Prepare()
method takes, as its first parameter, the SQL statement. This can be specified as a quoted string or a variable that resolves
to a quoted string.

For example, in ObjectScript:

 SET qStatus = tStatement.%Prepare("SELECT Name,Age FROM Sample.Person")

Or in Caché Basic:

qStatus = tStatement.%Prepare("SELECT Name,Age FROM Sample.Person")

More complex queries can be specified using a subscripted array passed by reference, as shown in the following example:

 SET myquery = 3
 SET myquery(1) = "SELECT %ID AS id, Name, DOB, Home_State"
 SET myquery(2) = "FROM Person WHERE Age > 80"
 SET myquery(3) = "ORDER BY 2"
 SET qStatus = tStatement.%Prepare(.myquery)

Using Caché SQL 109

Preparing an SQL Statement

A query can contain duplicate field names and field name aliases.

A query supplied to %Prepare() can contain input host variables, as shown in the following example:

 SET minage = 80
 SET myquery = 3
 SET myquery(1) = "SELECT %ID AS id, Name, DOB, Home_State"
 SET myquery(2) = "FROM Person WHERE Age > :minage"
 SET myquery(3) = "ORDER BY 2"
 SET qStatus = tStatement.%Prepare(.myquery)

Caché substitutes the defined literal value for each input host variable when the SQL statement is executed. Note however,
that if this code is called as a method, the minage variable must be made Public. By default, methods are ProcedureBlocks;
this means that a method (such as %Prepare()) cannot see variables defined by its caller. You can either override this
default by specifying the class as [Not ProcedureBlock], specifying the method as [ProcedureBlock = 0], or by specifying
[PublicList = minage].

Note: It is good program practice to always confirm that an input variable contains an appropriate value before inserting
it into SQL code.

You can also supply literal values to a query using ? input parameters. Caché substitutes a literal value for each ? input
parameter using the corresponding parameter value you supply to the %Execute() method. Following a %Prepare(), you
can use the %GetImplementationDetails() method to list the input host variables and the ? input parameters in the query.

The %Prepare() method returns a %Status value: Success returns a status of 1 (the query string is valid; referenced tables
exist in the current namespace). Failure returns an object expression that begins with 0, followed by encoded error information.
For this reason, you cannot perform a status=0 test for failure; you can perform a $$$ISOK(status)=0 macro test
for failure.

The %Prepare() method uses the %SchemaPath property defined earlier to resolve unqualified names.

Note: Dynamic SQL performance can be significantly improved by using fully qualified names whenever possible.

You can specify input parameters in the SQL statement by using the “? ” character:

 SET myquery="SELECT TOP ? Name,Age FROM Sample.Person WHERE Age > ?"
 SET qStatus = tStatement.%Prepare(myquery)

You specify the value for each ? input parameter in the %Execute() instance method when you execute the query. An input
parameter must take a literal value or an expression that resolves to a literal value. An input parameter cannot take a field
name value or a field name alias. An input parameter must be declared PUBLIC for a SELECT statement to reference it
directly.

A query can contain field aliases. In this case, the Data property accesses the data using the alias, not the field name.

You are not limited to SELECT statements within Dynamic SQL: you can use the %Prepare() instance method to prepare
other SQL statements, including the CALL, INSERT, UPDATE, and DELETE statements.

You can display information about the currently prepared statement using the %Display() instance method, as shown in
the following example:

 ZNSPACE "SAMPLES"
 SET tStatement = ##class(%SQL.Statement).%New(,"Sample")
 SET myquery = 3
 SET myquery(1) = "SELECT TOP ? Name,DOB,Home_State"
 SET myquery(2) = "FROM Person"
 SET myquery(3) = "WHERE Age > 60 AND Age < 65"
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 DO tStatement.%Display()
 WRITE !,"End of %Prepare display"

This information consists of the Implementation Class, the Arguments (a comma-separated list of the actual arguments,
either literal values or ? input parameters), and the Statement Text.

110 Using Caché SQL

Using Dynamic SQL

13.4.2 %PrepareClassQuery()

You can prepare an existing SQL query using the %PrepareClassQuery() instance method of the %SQL.Statement class.
The %PrepareClassQuery() method takes two parameters: the class name of the existing query, and the query name. Both
are specified as a quoted string or a variable that resolves to a quoted string.

For example, in ObjectScript:

 SET qStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")

Or in Caché Basic:

qStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")

The %PrepareClassQuery() method returns a %Status value: Success returns a status of 1. Failure returns an object
expression that begins with 0, followed by encoded error information. For this reason, you cannot perform a qStatus=0
test for failure; you can perform a $$$ISOK(qStatus)=0 macro test for failure.

The %PrepareClassQuery() method uses the %SchemaPath property defined earlier to resolve unqualified names.

%PrepareClassQuery() executes using a CALL statement. Because of this, the executed class query must have an SqlProc
parameter.

The following example shows %PrepareClassQuery() invoking the ByName query defined in the Sample.Person class,
passing a string to limit the names returned to those that start with that string value:

 SET statemt=##class(%SQL.Statement).%New()
 SET cqStatus=statemt.%PrepareClassQuery("Sample.Person","ByName")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}
 SET rset=statemt.%Execute("L")
 DO rset.%Display()

The following example shows %PrepareClassQuery() invoking an existing query:

 SET tStatement=##class(%SQL.Statement).%New()
 SET cqStatus=tStatement.%PrepareClassQuery("%SYS.GlobalQuery","Size")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

 SET install=$SYSTEM.Util.InstallDirectory()
 SET rset=tStatement.%Execute(install_"mgr\Samples")
 DO rset.%Display()

The following example shows %Prepare() preparing a CREATE QUERY statement, and then %PrepareClassQuery()
invoking this class query:

 ZNSPACE "SAMPLES"
 /* Creating the Query */
 SET myquery=4
 SET myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME PROCEDURE "
 SET myquery(2)="BEGIN "
 SET myquery(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
 SET myquery(4)="END"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Created a query",! }
 ELSEIF rset.%SQLCODE=-361 { WRITE !,"Query exists: ",rset.%Message,! }
 ELSE { WRITE !,"CREATE QUERY error: ",rset.%SQLCODE," ",rset.%Message QUIT}
 /* Calling the Query */
 WRITE !,"Calling a class query"
 SET cqStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")
 IF cqStatus'=1 {WRITE !,"%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

 SET rset = tStatement.%Execute()
 WRITE "Query data",!,!
 WHILE rset.%Next() {
 DO rset.%Print() }
 WRITE !,"End of data"

Using Caché SQL 111

Preparing an SQL Statement

 /* Deleting the Query */
 &sql(DROP QUERY DocTest)
 IF SQLCODE=0 { WRITE !,"Deleted the query" }

To display a row of data retrieved by a stored query you can use the %Print() method, as shown in this example. To display
specific column data that was retrieved by a stored query you must use either the %Get("fieldname") or the
%GetData(colnum) method. See “ Iterating through a Result Set” .

If the query is defined to accept arguments, you can specify input parameters in the SQL statement by using the “? ”
character. You specify the value for each ? input parameter in the %Execute() method when you execute the query. An
input parameter must be declared PUBLIC for a SELECT statement to reference it directly.

You can display information about the currently prepared query using the %Display() method, as shown in the following
example:

 ZNSPACE "SAMPLES"
 /* Creating the Query */
 SET myquery=4
 SET myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME PROCEDURE "
 SET myquery(2)="BEGIN "
 SET myquery(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
 SET myquery(4)="END"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Created a query",! }
 ELSEIF rset.%SQLCODE=-361 { WRITE !,"Query exists: ",rset.%Message }
 ELSE { WRITE !,"CREATE QUERY error: ",rset.%SQLCODE," ",rset.%Message QUIT}
 /* Preparing and Displying Info about the Query */
 WRITE !,"Preparing a class query"
 SET cqStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")
 IF cqStatus'=1 {WRITE !,"%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

 DO tStatement.%Display()
 WRITE !,"End of %Prepare display"
 /* Deleting the Query */
 &sql(DROP QUERY DocTest)
 IF SQLCODE=0 { WRITE !,"Deleted the query" }

This information consists of the Implementation Class, the Arguments (a comma-separated list of the actual arguments,
either literal values or ? input parameters), and the Statement Text.

For further details, refer to “Defining and Using Class Queries” in Using Caché Objects.

13.4.3 Results of a Successful Prepare

Following a successful prepare (%Prepare(), %PrepareClassQuery(), or %ExecDirect()) you can invoke the
%SQL.Statement %Display() instance method or %GetImplementationDetails() instance method to return the details of
the currently prepared statement. For example:

%Display():

 SET myquery = "SELECT TOP 5 Name,Age FROM Sample.Person WHERE Age > 21"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 DO tStatement.%Display()
 SET rset = tStatement.%Execute()

%GetImplementationDetails():

 SET myquery = "SELECT TOP 5 Name,Age FROM Sample.Person WHERE Age > 21"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET bool = tStatement.%GetImplementationDetails(.pclassname,.ptext,.pargs)
 IF bool=1 {WRITE "Implementation class= ",pclassname,!
 WRITE "Statement text= ",ptext,!
 WRITE "Arguments= ",$LISTTOSTRING(pargs),! }
 ELSE {WRITE "%GetImplementationDetails() failed",!}
 SET rset = tStatement.%Execute()

112 Using Caché SQL

Using Dynamic SQL

These methods provide the following information:

• Implementation class: the class name corresponding to the cached query. For example: %sqlcq.SAMPLES.cls49.

• Arguments: A list of the query arguments in the order specified.

%Display() displays a comma-separated list of the query arguments. Each argument can be a literal value, the name
of an input host variables (without the colon), or a question mark (?) for an input parameter. If there are no arguments,
this item displays <<none>>. A predicate that specifies multiple values, such as IN or %INLIST lists each value as
a separate argument.

%GetImplementationDetails() returns the query arguments as a %List structure. Each argument is represented by a
pair of elements, a type and a value: Type c (constant) is followed by a literal value; Type v (variable) is followed by
the name of an input host variable (without the colon): Type ? is an input parameter, and is followed by a second
question mark. If there are no arguments, the Arguments list is an empty string. A predicate that specifies multiple
values, such as IN or %INLIST lists each value as a separate type and value pair.

• Statement Text: the query text. For %Prepare() for example, SELECT TOP ? Name FROM User.Clients. For
%PrepareClassQuery() for example, call Sample.SP_Sample_By_Name(?).

For other metadata information generated for a prepared query, refer to SQL Metadata.

13.5 Executing an SQL Statement
There are two ways to execute an SQL statement using the %SQL.Statement class:

• %Execute(), which executes an SQL statement previous prepared using %Prepare() or %PrepareClassQuery().

• %ExecDirect(), which both prepares and executes an SQL statement.

You can also execute an SQL statement without creating an object instance by using the %SYSTEM.SQL.Execute()
method. This method both prepares and executes the SQL statement. It creates a cached query. The Execute() method is
shown in the following Terminal example:

USER>SET topnum=5
USER>SET rset=$SYSTEM.SQL.Execute("SELECT TOP :topnum Name,Age FROM Sample.Person")

USER>DO rset.%Display()

13.5.1 %Execute()

After preparing a query, you can execute it by calling the %Execute() instance method of the %SQL.Statement class. In
the case of a non-SELECT statement, %Execute() invokes the desired operation (such as performing an INSERT). In the
case of a SELECT query, %Execute() generates a result set for subsequent traversal and data retrieval.

For example, in ObjectScript:

 SET rset = tStatement.%Execute()

Or in Caché Basic:

rset = tStatement.%Execute()

The %Execute() method sets the %SQL.StatementResult class properties %SQLCODE and %Message for all SQL statements.
%Execute() sets other %SQL.StatementResult properties as follows:

Using Caché SQL 113

Executing an SQL Statement

• INSERT, UPDATE, INSERT OR UPDATE, DELETE, and TRUNCATE TABLE statements set %ROWCOUNT
to the number of rows affected by the operation, and %ROWID to the Id of the last record inserted, updated, or deleted.

• A SELECT statement sets the %ROWCOUNT property to 0 when it creates the result set. %ROWCOUNT is incremented
when the program iterates through the contents of the result set, for example by using the %Next() method. %Next()
returns 1 to indicate that it is positioned on a row or 0 to indicate that it is positioned after the last row (at the end of
the result set). If the cursor is positioned after the last row, the value of %ROWCOUNT indicates the number of rows
contained in the result set.

If a SELECT query returns only aggregate functions, every %Next() sets %ROWCOUNT=1. The first %Next()
always sets %SQLCODE=0, even when there is no data in the table; any subsequent %Next() sets %SQLCODE=100
and sets %ROWCOUNT=1.

A SELECT also sets the %CurrentResult and the %ResultColumnCount. SELECT does not set %ROWID.

For further details, refer to the corresponding SQL System Variables in the “Using Embedded SQL” chapter of this manual.
If you are executing TSQL code with %Dialect set to Sybase or MSSQL, errors are reported both in the standard protocols
for that SQL dialect and in the Caché %SQLCODE and %Message properties.

13.5.1.1 %Execute() with Input Parameters

The %Execute() method can take one or more parameters that correspond to the input parameters (indicated by “?”)
within the prepared SQL statement. The %Execute() parameters correspond to the sequence in which the “?” characters
appear within the SQL statement: the first parameter is used for the first “?” , the second parameter for the second “?” ,
and so on. Multiple %Execute() parameters are separated by commas. You can omit a parameter value by specifying the
placeholder comma. The number of %Execute() parameters must correspond to the “?” input parameters. If there are
fewer or more %Execute() parameters than corresponding “?” input parameters, execution fails with the %SQLCODE

property set to an SQLCODE -400 error.

There is no limit on the number of input parameters. You can use an input parameter to supply a literal value or an
expression to the SELECT list and to the other query clauses, including the TOP clause and the WHERE clause. You cannot
use an input parameter to supply a column name or a column name alias to the SELECT list or to the other query clauses.

Following a Prepare, you can use Prepare arguments metadata to return the count and required data types for ? input
parameters. You can use the %GetImplementationDetails() method to return a list of ? input parameters in a prepared query
and the query text with the ? input parameters shown in context.

The following ObjectScript example executes a query with two input parameters. It specifies the input parameter values
(21 and 26) in the %Execute() method.

 ZNSPACE "SAMPLES"
 SET tStatement = ##class(%SQL.Statement).%New(1)
 SET tStatement.%SchemaPath = "MyTests,Sample,Cinema"
 SET myquery=2
 SET myquery(1)="SELECT Name,DOB,Age FROM Person"
 SET myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(21,26)
 WRITE !,"Execute OK: SQLCODE=",rset.%SQLCODE,!!
 DO rset.%Display()
 WRITE !,"End of data: SQLCODE=",rset.%SQLCODE

The following ObjectScript example executes the same query. The %Execute() method uses dynamic dispatch (...) to
specify an indefinite number of input parameter values; in this case, the subscripts of the dynd array. The dynd variable is
set to 2 to indicate two subscript values.

114 Using Caché SQL

Using Dynamic SQL

 ZNSPACE "SAMPLES"
 SET tStatement = ##class(%SQL.Statement).%New(1)
 SET tStatement.%SchemaPath = "MyTests,Sample,Cinema"
 SET myquery=2
 SET myquery(1)="SELECT Name,DOB,Age FROM Person"
 SET myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
 SET dynd=2,dynd(1)=21,dynd(2)=26
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(dynd...)
 WRITE !,"Execute OK: SQLCODE=",rset.%SQLCODE,!!
 DO rset.%Display()
 WRITE !,"End of data: SQLCODE=",rset.%SQLCODE

You can issue multiple %Execute() operations on a prepared result set. This enables you to run a query multiple times,
supplying different input parameter values. It is not necessary to close the result set between %Execute() operations, as
shown in the following example:

 ZNSPACE "SAMPLES"
 SET myquery="SELECT Name,SSN,Age FROM Sample.Person WHERE Name %STARTSWITH ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("A")
 DO rset.%Display()
 WRITE !,"End of A data",!!
 SET rset = tStatement.%Execute("B")
 DO rset.%Display()
 WRITE !,"End of B data"

13.5.1.2 Handling %Execute Errors Using TRY/CATCH

You can execute Dynamic SQL within a TRY block structure, passing runtime errors to the associated CATCH block
exception handler. For %Execute() errors, you can use the %Exception.SQL class to create an exception instance, which
you can then THROW to the CATCH exception handler.

The following example creates an SQL exception instance when an %Execute() error occurs. In this case, the error is a
cardinality mismatch between the number of ? input parameters (1) and the number of %Execute() parameters (3). It throws
the %SQLCODE and %Message property values (as Code and Data) to the CATCH exception handler. The exception
handler uses the %IsA() instance method to test the exception type, then displays the %Execute() error:

 TRY {
 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP ? Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(7,9,4)
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)
 THROW badSQL }
 DO rset.%Display()
 WRITE !,"End of data"
 RETURN
 }
 CATCH exp { WRITE "In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SQL") {
 WRITE "SQLCODE: ",exp.Code,!
 WRITE "Message: ",exp.Data,! }
 ELSE { WRITE "Not an SQL exception",! }
 RETURN
 }

13.5.2 %ExecDirect()

The %SQL.Statement class provides the %ExecDirect() class method, that both prepares and executes a query in a single
operation. It can prepare either a specified query (like %Prepare()) or an existing class query (like %PrepareClassQuery()).

%ExecDirect() prepares and executes a specified query:

Using Caché SQL 115

Executing an SQL Statement

 SET myquery=2
 SET myquery(1)="SELECT Name,Age FROM Sample.Person"
 SET myquery(2)="WHERE Age > 21 AND Age < 30 ORDER BY Age"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,.myquery)
 IF rset.%SQLCODE=0 { WRITE !,"ExecDirect OK",!! }
 ELSE { WRITE !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 DO rset.%Display()
 WRITE !,"End of data: SQLCODE=",rset.%SQLCODE

%ExecDirect() prepares and executes an existing class query:

 SET mycallq = "?=CALL Sample.PersonSets('A','NH')"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,mycallq)
 IF rset.%SQLCODE=0 { WRITE !,"ExecDirect OK",!! }
 ELSE { WRITE !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 DO rset.%Display()
 WRITE !,"End of data: SQLCODE=",rset.%SQLCODE

You can specify input parameter values as the third and subsequent parameters of the %ExecDirect() class method, as
shown in the following example:

 SET myquery=2
 SET myquery(1)="SELECT Name,Age FROM Sample.Person"
 SET myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,.myquery,12,20)
 IF rset.%SQLCODE'=0 {WRITE !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 DO rset.%Display()
 WRITE !,"End of teen data",!!
 SET rset2 = ##class(%SQL.Statement).%ExecDirect(,.myquery,19,30)
 IF rset2.%SQLCODE'=0 {WRITE !,"2nd ExecDirect SQLCODE=",rset2.%SQLCODE,!,rset2.%Message QUIT}
 DO rset2.%Display()
 WRITE !,"End of twenties data"

The %ExecDirect() input parameters correspond to the sequence in which the “?” characters appear within the SQL
statement: the third parameter is used for the first “?” , the fourth parameter for the second “?” , and so on. You can omit
a parameter value by specifying a placeholder comma. If there are fewer %ExecDirect() input parameters than corresponding
“?” input parameters, the default value (if one exists) is used.

In the following example, the first %ExecDirect() specifies all three “?” input parameters, the second %ExecDirect()
specifies only the second ? input parameter, and omits the first and third. It takes the Sample.PersonSets() default ('MA')
for the third input parameter:

 SET mycall = "?=CALL Sample.PersonSets(?,?)"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,mycall,"","A","NH")
 IF rset.%SQLCODE'=0 {WRITE !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 DO rset.%Display()
 WRITE !,"End of A people data",!!
 SET rset2 = ##class(%SQL.Statement).%ExecDirect(,mycall,,"B")
 IF rset2.%SQLCODE'=0 {WRITE !,"2nd ExecDirect SQLCODE=",rset2.%SQLCODE,!,rset2.%Message QUIT}
 DO rset2.%Display()
 WRITE !,"End of B people data"

%ExecDirect() can invoke the %SQL.Statement %Display() instance method or %GetImplementationDetails() instance
method to return the details of the currently prepared statement. Because %ExecDirect() can prepare and execute either a
specified query or an existing class query, you can use the %GetImplementationDetails() pStatementType parameter to
determine which kind of query was prepared:

 SET mycall = "?=CALL Sample.PersonSets('A',?)"
 SET rset = ##class(%SQL.Statement).%ExecDirect(tStatement,mycall,,"NH")
 IF rset.%SQLCODE'=0 {WRITE !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 SET bool = tStatement.%GetImplementationDetails(.pclassname,.ptext,.pargs,.pStatementType)
 IF bool=1 {IF pStatementType=1 {WRITE "Type= specified query",!}
 ELSEIF pStatementType=45 {WRITE "Type= existing class query",!}
 WRITE "Implementation class= ",pclassname,!
 WRITE "Statement text= ",ptext,!
 WRITE "Arguments= ",$LISTTOSTRING(pargs),!! }
 ELSE {WRITE "%GetImplementationDetails() failed"}
 DO rset.%Display()
 WRITE !,"End of data"

For further details, see Results of a Successful Prepare.

116 Using Caché SQL

Using Dynamic SQL

13.6 Returning the Full Result Set
Executing a statement with either %Execute() or %ExecDirect() returns an object that implements the %SQL.StatementResult

interface. This object can be a unitary value, a result set, or a context object that is returned from a CALL statement.

13.6.1 %Display() Method

You can display the entire result set (the contents of the result object) by calling the %Display() instance method of the
%SQL.StatementResult class.

For example, in ObjectScript:

 DO rset.%Display()

Or in Caché Basic:

CALL rset.%Display()

Note that the %Display() method does not return a %Status value.

When displaying a query result set, %Display() concludes by displaying the row count: “5 Rows(s) Affected” . (This is
the %ROWCOUNT value after %Display has iterated through the result set.) Note that %Display() does not issue a line
return following this row count statement.

13.6.2 %DisplayFormatted() Method

You can reformat and redirect the result set contents to a generated file by calling the %DisplayFormatted() instance
method of the %SQL.StatementResult class, rather than calling %Display().

You can specify the result set format either by specifying the string option %DisplayFormatted("HTML") or the cor-
responding integer code %DisplayFormatted(1). The following formats are available: XML (integer code 0), HTML
(integer code 1), PDF (integer code 2), TXT (integer code 99), or CSV (integer code 100). (Note that CSV format is not
implemented as a true comma-separated value output; instead, it uses tabs to separate the columns.) TXT formatting (integer
code 99) concludes with the row count (for example “5 Rows(s) Affected”); the other formats do not include a row count.
Caché generates a file of the specified type, appending the appropriate file name extension.

You can specify or omit a result set file name:

• If you specify a destination file (for example, %DisplayFormatted(99,"myresults")) a file with that name
and the appropriate suffix (file name extension) is generated in the mgr directory in the subdirectory for the current
namespace. For example, C:\InterSystems\Cache\mgr\user\myresults.txt. If the specified file with that suffix already
exists, Caché overwrites it with new data.

• If you do not specify a destination file (for example, %DisplayFormatted(99)) a file with a randomly-generated
name and the appropriate suffix (file name extension) is generated in the mgr directory in the Temp subdirectory. For
example, C:\InterSystems\Cache\mgr\Temp\w4FR2gM7tX2Fjs.txt. Each time a query is run a new destination file is
generated.

These examples show Windows filenames; Caché supports equivalent locations on other operating systems.

If the specified file cannot be opened, this operation times out after 30 seconds with an error message; this commonly
occurs when the user does not have WRITE privileges to the specified directory (file folder).

You can optionally supply the name of a translate table that %DisplayFormatted() will use when performing the specified
format conversion.

Using Caché SQL 117

Returning the Full Result Set

In the case of multiple result sets in a result set sequence, the content of each result set is written to its own file. Messages
are written to a separate file.

The following Windows example creates two PDF (integer code 2) result set files in C:\InterSystems\Cache\mgr\user\:

 ZNSPACE "SAMPLES"
 SET myquery=2
 SET myquery(1)="SELECT Name,Age FROM Sample.Person"
 SET myquery(2)="WHERE Age > ? AND Age < ? ORDER BY Age"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,.myquery,12,20)
 IF rset.%SQLCODE'=0 {WRITE !,"1st ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 DO rset.%DisplayFormatted(2,"Teenagers")
 WRITE !,"End of teen data",!!
 SET rset2 = ##class(%SQL.Statement).%ExecDirect(,.myquery,19,30)
 IF rset2.%SQLCODE'=0 {WRITE !,"2nd ExecDirect SQLCODE=",rset2.%SQLCODE,!,rset2.%Message QUIT}
 DO rset2.%DisplayFormatted(2,"Twenties")
 WRITE !,"End of twenties data"

13.6.3 Paginating a Result Set

You can use a view ID (%VID) to paginate a result set. The following example returns pages from the result set, each page
containing 5 rows:

 ZNSPACE "SAMPLES"
 SET q1="SELECT %VID AS RSRow,* FROM "
 SET q2="(SELECT Name,Home_State FROM Sample.Person WHERE Home_State %STARTSWITH 'M') "
 SET q3="WHERE %VID BETWEEN ? AND ?"
 SET myquery = q1_q2_q3
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus=tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 FOR i=1:5:25 {
 WRITE !!,"Next Page",!
 SET rset=tStatement.%Execute(i,i+4)
 DO rset.%Display()
 }

13.7 Returning Specific Values from the Result Set
To return specific values from a query result set, you must iterate through the result set one row at a time. To iterate through
a result set, use the %Next() instance method. (For unitary values, there are no rows in the result object, so %Next() returns
0 — and not an error.) You can then either display the results of the whole current row using the %Print() method, or
retrieve the value of a specified column in the current row.

The %Next() method fetches the data for the next row within the query results and places this data in the Data property of
the result set object. %Next() returns 1 to indicate that it is positioned on a row in the query result. %Next() returns 0 to
indicate that it is positioned after the last row (at the end of the result set). Each invocation of %Next() that returns 1
increments %ROWCOUNT; if the cursor is positioned after the last row (%Next() returns 0), the %ROWCOUNT indicates
the number of rows in the result set.

If a SELECT query returns only aggregate functions, every %Next() sets %ROWCOUNT=1. The first %Next() returns
1 and sets %SQLCODE=0 and %ROWCOUNT=1, even when there is no data in the table; any subsequent %Next() returns
0 and sets %SQLCODE=100 and %ROWCOUNT=1.

After fetching a row from the result set, you can display data from that row using any of the following:

• rset.%Print() to return all of the data values for the current row from a query result set.

• rset.name to return a data value by property name, field name, alias property name, or alias field name from a query
result set.

• rset.%Get("fieldname") to return a data value by field name or alias field name from either a query result set or a stored
query.

118 Using Caché SQL

Using Dynamic SQL

• rset.%GetData(n) to return a data value by column number from either a query result set or a stored query.

13.7.1 %Print() Method

The %Print() instance method retrieves the current record from the result set. By default, %Print() inserts a blank space
delimiter between data field values. %Print() does not insert a blank space before the first field value or after the last field
value in a record; it issues a line return at the end of the record. If a data field value already contains a blank space, that
field value is enclosed in quotation marks to differentiate it from the delimiter. For example, if %Print() is returning city
names, it would return them as follows: Chicago "New York" Boston Atlanta "Los Angeles" "Salt Lake
City" Washington. %Print() quotes field values that contain the delimiter as part of the data value even when the
%Print() delimiter is never used; for example if there is only one field in the result set.

You can optionally specify a %Print() parameter that provides a different delimiter to be placed between the field values.
Specifying a different delimiter overrides the quoting of data strings that contain blank spaces. This %Print() delimiter
can be one or more characters. It is specified as a quoted string. It is generally preferable that the %Print() delimiter be a
character or string not found in the result set data. However, if a field value in the result set contains the %Print() delimiter
character (or string), that field value is returned enclosed in quotation marks to differentiate it from the delimiter.

If a field value in the result set contains a line feed character, that field value is returned delimited by quotation marks.

The following ObjectScript example iterates through the query result set using %Print() to display each result set record,
separating values with a "^|^" delimiter. Note how %Print() displays data from the FavoriteColors field which is an encoded
list of elements:

 ZNSPACE "SAMPLES"
 SET q1="SELECT TOP 5 Name,DOB,Home_State,FavoriteColors "
 SET q2="FROM Sample.Person WHERE FavoriteColors IS NOT NULL"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Row count ",rset.%ROWCOUNT,!
 DO rset.%Print("^|^")
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

In Caché Basic:

q1 = "SELECT TOP 5 Name,DOB,Home_State,FavoriteColors "
q2 = "FROM Sample.Person WHERE FavoriteColors IS NOT NULL"
myquery = q1 & q2
tStatement = New %SQL.Statement()
qStatus = tStatement.%Prepare(myquery)
If qStatus<>1 Then
 PrintLn "%Prepare failed:"
 PrintLn Piece(qStatus," ",3,10)
Else
 rset = tStatement.%Execute()
 While (rset.%Next())
 PrintLn "Row count ",rset.%ROWCOUNT
 rtn=rset.%Print("^|^")
 Wend
 PrintLn "End of data"
 PrintLn "Total row count=",rset.%ROWCOUNT
End If

The following example shows how field values that contain the delimiter are returned enclosed in quotation marks. In this
example, the capital letter A is used as the field delimiter; therefore, any field value (name, street address, or state abbrevi-
ation) that contains a capital A literal is returned delimited by quotation marks.

Using Caché SQL 119

Returning Specific Values from the Result Set

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 25 Name,Home_Street,Home_State,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 DO rset.%Print("A")
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

13.7.2 rset.name Property

When Caché generates a result set, it creates a result set class that contains a unique property corresponding to each field
name and field name alias in the result set.

You can use the rset.name property to return a data value by property name, field name, property name alias, or field
name alias.

• Property Name: If no field alias is defined, specify the field property name as rset.PropName. The result set field
property name is taken from the corresponding property name in the table definition class.

• Field Name: If no field alias is defined, specify the field name (or the property name) as rset."fieldname". This
is the SqlFieldName specified in the table definition. Caché uses this field name to locate the corresponding property
name. In many cases, the property name and the field name (SqlFieldName) are identical.

• Alias Property Name: If a field alias is defined, specify the alias property name as rset.AliasProp. An alias
property name is generated from the column name alias in the SELECT statement. You cannot specify a field property
name for a field with a defined alias.

• Alias Name: If a field alias is defined, specify this alias name (or the alias property name) as rset."alias". This
is the column name alias in the SELECT statement. You cannot specify a field name for a field with a defined alias.

• Aggregate, Expression, or Subquery: Caché assigns these select-items a field name of Aggregate_n, Expression_n, or
Subquery_n (where the integer n corresponds to the sequence of the select-item list specified in the query). You can
retrieve these select-item values using the field name (rset."SubQuery_7" not case-sensitive), the corresponding
property name (rset.Subquery7 case-sensitive), or by a user-defined field name alias. You can also just specify
the select-item sequence number using rset.%GetData(n).

When specifying a property name, you must use correct letter case; when specifying a field name, correct letter case is not
required.

This invocation of rset.name using the property name has the following consequences:

• Letter Case: Property names are case-sensitive. Field names are not case-sensitive. Dynamic SQL can automatically
resolve differences in letter case between a specified field or alias name and the corresponding property name. However,
letter case resolution takes time. To maximize performance, you should specify the exact letter case of the property
name or the alias.

• Non-alphanumeric Characters: A property name can only contain alphanumeric characters (except for an initial %
character). If the corresponding SQL field name or field name alias contains non-alphanumeric characters (for example,
Last_Name) you can do either of the following:

– Specify the field name delimited with quotation marks. For example, rset."Last_Name"). This use of delimiters
does not require that delimited identifiers be enabled. Letter case resolution is performed.

– Specify the corresponding property name, eliminating the non-alphanumeric characters. For example,
rset.LastName (or rset."LastName"). You must specify the correct letter case for the property name.

• % Property Names: Generally, property names beginning with a % character are reserved for system use. If a field
property name or alias begins with a % character and that name conflicts with a system-defined property, the system-

120 Using Caché SQL

Using Dynamic SQL

defined property is returned. For example, for SELECT Notes AS %Message, invoking rset.%Message will not
return the Notes field values; it returns the %Message property defined for the statement result class. You can use
rset.%Get("%Message") to return the field value.

• Column Alias: If an alias is specified, Dynamic SQL always matches the alias rather than matching the field name or
field property name. For example, for SELECT Name AS Last_Name, the data can only be retrieved using
rset.LastName or rset."Last_Name", not by using rset.Name.

• Duplicate Names: Names are duplicate if they resolve to the same property name. Duplicate names can be multiple
references to the same field in a table, alias references to different fields in a table, or references to fields in different
tables. For example SELECT p.DOB,e.DOB specifies two duplicate names, even though those names refer to fields
in different tables.

If the SELECT statement contains multiple instances of the same field name or field name alias, rset.PropName
or rset."fieldname" always return the first one specified in the SELECT statement. For example, for SELECT
c.Name,p.Name FROM Sample.Person AS p,Sample.Company AS c using rset.Name retrieves the
company name field data; SELECT c.Name,p.Name AS Name FROM Sample.Person AS p,Sample.Company
AS c using rset."name" also retrieves the company name field data. If there are duplicate Name fields in the query
the last character of the field name (Name) is replaced by a character (or characters) to create a unique property name.
Thus a duplicate Name field name in a query has a corresponding unique property name, beginning with Nam0 (for
the first duplicate) through Nam9 and continuing with capital letters NamA through NamZ.

For a user-specified query prepared using %Prepare() you can use the property name by itself. For a stored query prepared
using %PrepareClassQuery(), you must use the %Get("fieldname") method.

The following example returns the values of three fields specified by property names: two field values by property name
and the third field value by alias property name. In these cases, the specified property name is identical to the field name
or field alias:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 Name,DOB AS bdate,FavoriteColors FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(1)
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Row count ",rset.%ROWCOUNT,!
 WRITE rset.Name
 WRITE " prefers ",rset.FavoriteColors
 WRITE " birth date ",rset.bdate,!!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

In the above example, one of the fields returned is the FavoriteColors field, which contains %List data. To display this data,
the %New(1) class method sets the %SelectMode property parameter to 1 (ODBC), causing this program to display %List
data as a comma-separated string and the birth date in ODBC format:

The following example returns the Home_State field. Because a property name cannot contain an underscore character,
this example specifies the field name (the SqlFieldName) delimited with quotation marks ("Home_State"). You could also
specify the corresponding generated property name without quotation marks (HomeState). Note that the delimited field
name ("Home_State") is not case-sensitive, but the generated property name (HomeState) is case-sensitive:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 Name,Home_State FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(2)
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Row count ",rset.%ROWCOUNT,!
 WRITE rset.Name
 WRITE " lives in ",rset."Home_State",!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

Using Caché SQL 121

Returning Specific Values from the Result Set

13.7.2.1 Swizzling a Fieldname Property with %ObjectSelectMode=1

The following example is prepared with %ObjectSelectMode=1, which causes fields whose type class is a swizzleable type
(a persistent class, a serial class, or a stream class) to automatically swizzle when returning a value using the field name
property. The result of swizzling a field value is the corresponding object reference (oref). Caché does not perform this
swizzling operation when accessing a field using the %Get() or %GetData() methods. In this example, rset.Home is
swizzled, while rset.%GetData(2), which refers to the same field, is not swizzled:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 Name,Home FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(0)
 SET tStatement.%ObjectSelectMode=1
 WRITE !,"set ObjectSelectMode=",tStatement.%ObjectSelectMode,!
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Row count ",rset.%ROWCOUNT,!
 WRITE rset.Name
 WRITE " ",rset.Home,!
 WRITE rset.%GetData(1)
 WRITE " ",$LISTTOSTRING(rset.%GetData(2)),!!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

The following example uses %ObjectSelectMode=1 to derive Home_State values for the selected records from the unique
record ID (%ID). Note that the Home_State field is not selected in the original query:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 %ID AS MyID,Name,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%ObjectSelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE rset.Name
 WRITE " Home State:",rset.MyID.Home.State,!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

The system generates a <SWIZZLE FAIL> error if the swizzled property is defined but cannot be referenced. This can
occur if the referenced property has been unexpectedly deleted from disk or is locked by another process. To determine the
cause of the swizzle failure look in %objlasterror immediately after the <SWIZZLE FAIL> error and decode this %Status
value.

You can turn this behavior off globally by setting: SET ̂ %SYS("ThrowSwizzleError")=0, or by using the Caché Management
Portal. From System Administration, select Configuration, then SQL and Object Settings, then General Object Settings

([System] > [Configuration] > [General Object Settings]). On this screen you can set the <SWIZZLE FAIL> option.

13.7.3 %Get("fieldname") Method

You can use the %Get("fieldname") instance method to return a data value by field name or field name alias. Dynamic
SQL resolves letter case as needed. If the specified field name or field name alias does not exist, the system generates a
<PROPERTY DOES NOT EXIST> error.

The following example returns values for the Home_State field and the Last_Name alias from the query result set.

122 Using Caché SQL

Using Dynamic SQL

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT TOP 5 Home_State,Name AS Last_Name FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(2)
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE rset.%Get("Home_State")," : ",rset.%Get("Last_Name"),!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

You must use the %Get("fieldname") instance method to retrieve individual data items by field property name from an
existing query prepared using %PrepareClassQuery(). If the field property name does not exist, the system generates a
<PROPERTY DOES NOT EXIST> error.

The following example returns the Nsp (namespace) field values by field property name from a built-in query. Because
this query is an existing stored query, this field retrieval requires the use of the %Get("fieldname") method. Note that
because "Nsp" is a property name, it is case-sensitive:

 SET tStatement = ##class(%SQL.Statement).%New(2)
 SET qStatus = tStatement.%PrepareClassQuery("%SYS.Namespace","List")
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Namespace: ",rset.%Get("Nsp"),!
 }
 WRITE !,"End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

Duplicate Names: Names are duplicate if they resolve to the same property name. Duplicate names can be multiple references
to the same field, references to different fields in a table, or references to fields in different tables. If the SELECT statement
contains multiple instances of the same field name or field name alias, %Get("fieldname") always returns the last instance
of a duplicate name as specified in the query. This is the opposite of rset.PropName, which returns the first instance of
a duplicate name as specified in the query. This is shown in the following example:

 ZNSPACE "SAMPLES"
 SET myquery = "SELECT c.Name,p.Name FROM Sample.Person AS p,Sample.Company AS c"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Prop=",rset.Name," Get=",rset.%Get("Name"),! }
 WRITE !,rset.%ROWCOUNT," End of data"

13.7.4 %GetData(n) Method

The %GetData(n) instance method returns data for the current row indexed by the integer count column number of the
result set. You can use %GetData(n) with either a specified query prepared using %Prepare() or a stored query prepared
using %PrepareClassQuery().

The integer n corresponds to the sequence of the select-item list specified in the query. The ID field is not given an integer
n value, unless explicitly specified in the select-item list. If n is higher than the number of select-items in the query, or 0,
or a negative number, Dynamic SQL returns no value and issues no error.

%GetData(n) is the only way to return a specific duplicate field name or duplicate alias; rset.Name returns the first
duplicate, %Get("Name") returns the last duplicate.

In ObjectScript:

Using Caché SQL 123

Returning Specific Values from the Result Set

 ZNSPACE "SAMPLES"
 SET myquery="SELECT TOP 5 Name,SSN,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Years:",rset.%GetData(3)," Name:",rset.%GetData(1),!
 }
 WRITE "End of data"
 WRITE !,"Total row count=",rset.%ROWCOUNT

In Caché Basic:

myquery = "SELECT TOP 5 Name,SSN,Age FROM Sample.Person"
tStatement = New %SQL.Statement()
qStatus = tStatement.%Prepare(myquery)
If qStatus<>1 Then
 PrintLn "%Prepare failed:"
 PrintLn Piece(qStatus," ",3,10)
Else
 rset = tStatement.%Execute()
 While (rset.%Next())
 Print "Years:",rset.%GetData(3)
 PrintLn " Name:",rset.%GetData(1)
 Wend
 PrintLn "End of data"
 PrintLn "Total row count=",rset.%ROWCOUNT
End If

13.8 Returning Multiple Result Sets
A CALL statement can return multiple dynamic result sets as a collection referred to as a result set sequence (RSS).

The following example uses the %NextResult() method to return multiple result sets separately:

 ZNSPACE "SAMPLES"
 SET mycall = "CALL Sample.CustomSets()"
 SET rset = ##class(%SQL.Statement).%ExecDirect(,mycall)
 IF rset.%SQLCODE'=0 {WRITE !,"ExecDirect SQLCODE=",rset.%SQLCODE,!,rset.%Message QUIT}
 SET rset1=rset.%NextResult()
 DO rset1.%Display()
 WRITE !,"End of 1st Result Set data",!!
 SET rset2=rset.%NextResult()
 DO rset2.%Display()
 WRITE !,"End of 2nd Result Set data"

13.9 SQL Metadata
Dynamic SQL provides the following types of metadata:

• After a Prepare, metadata describing the type of query.

• After a Prepare, metadata describing the select-items in the query.

• After a Prepare, metadata describing the query arguments: ? parameters, :var parameters, and constants.

• After an Execute, metadata describing the query result set.

%SQL.StatementMetadata property values are available following a Prepare operation (%Prepare(), %PrepareClassQuery(),
or %ExecDirect()).

• You can return %SQL.StatementMetadata properties directly for the most recent %Prepare().

• You can return the %SQL.Statement %Metadata property containing the oref for the %SQL.StatementMetadata properties.
This enables you to return metadata for multiple Prepare operations.

124 Using Caché SQL

Using Dynamic SQL

13.9.1 Statement Type Metadata

Following a Prepare using the %SQL.Statement class, you can use the %SQL.StatementMetadata statementType property
to determine what type of SQL statement was prepared, as shown in the following example. This example uses the
%SQL.Statement %Metadata property to preserve and compare the metadata for two Prepare operations:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET myquery1 = "SELECT TOP ? Name,Age,AVG(Age),CURRENT_DATE FROM Sample.Person"
 SET myquery2 = "CALL Sample.SP_Sample_By_Name(?)"
 SET qStatus = tStatement.%Prepare(myquery1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET meta1 = tStatement.%Metadata
 SET qStatus = tStatement.%Prepare(myquery2)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET meta2 = tStatement.%Metadata
 WRITE "Statement type query 1: ",meta1.statementType,!
 WRITE "Statement type query 2: ",meta2.statementType,!
 WRITE "End of metadata"

The Class Reference entry for the statementType property lists the statement type integer codes. The most common codes
are 1 (a SELECT query) and 45 (a CALL to a stored query).

You can return the same information using the %GetImplementationDetails() instance method, as described in Results
of a Successful Prepare.

After executing a query, you can return the statement type name (for example, SELECT) from the result set.

13.9.2 Select-item Metadata

Following a Prepare using the %SQL.Statement class, you can return metadata about each select-item column specified in
the query, either by displaying all of the metadata or by specifying individual metadata items. This column metadata includes
ODBC data type information, as well as client type and InterSystems Objects property origins and class type information.

The following example returns the number of columns specified in the most recently prepared query:

 SET myquery = "SELECT %ID AS id,Name,DOB,Age,AVG(Age),CURRENT_DATE,Home_State FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 WRITE "Number of columns=",tStatement.%Metadata.columnCount,!
 WRITE "End of metadata"

The following example returns the column name (or column alias), ODBC data type, maximum data length (precision),
and scale for each select-item field:

 ZNSPACE "SAMPLES"
 SET myquery=2
 SET myquery(1)="SELECT Name AS VendorName,LastPayDate,MinPayment,NetDays,"
 SET myquery(2)="AVG(MinPayment),$HOROLOG,%TABLENAME FROM Sample.Vendor"
 SET rset = ##class(%SQL.Statement).%New()
 SET qStatus = rset.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=rset.%Metadata.columns.Count()
 SET x=1
 WHILE rset.%Metadata.columns.GetAt(x) {
 SET column=rset.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," is data type ",column.ODBCType
 WRITE " with a size of ",column.precision," and scale = ",column.scale
 SET x=x+1 }
 WRITE !,"End of metadata"

The following example displays all of the column metadata using the %SQL.StatementMetadata %Display() instance
method:

Using Caché SQL 125

SQL Metadata

 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare("SELECT %ID AS id,Name,DOB,Age,AVG(Age),CURRENT_DATE,Home_State
FROM Sample.Person")
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 DO tStatement.%Metadata.%Display()
 WRITE !,"End of metadata"

This returns two table listings of the selected fields. The first columns metadata table lists column definition information:

The name of the column. If the column is given an alias, the alias is listed
here. If the SELECT item is an expression or an aggregate, the assigned
“Expression_n ” or “Aggregate_n ” label is listed (with n being the SELECT
item sequence number). If you have assigned an alias to an expression or
aggregate, the alias is listed here.

Column Name

The integer code for the ODBC data type. These codes are listed in the
Integer Codes for Data Types section of the Data Types reference page in
the InterSystems SQL Reference. Note that these ODBC data type codes
are not the same as the client data type codes returned by the
%Library.ResultSet class method GetColumnType(n).

Type

The maximum data size, in characters.Precision

The maximum number of fractional decimal digits.Scale

A boolean value that indicates whether the column is defined as Non-NULL
(0), or if NULL is permitted (1). If the SELECT item is an expression or
aggregate that could result in NULL, this item is set to 1. If the SELECT item
is an expression with a system-supplied value (such as a system variable
or a function that returns the current date, or returns Pi), this item is set to
2.

Null

The column name or alias.Label

The table name. The actual table name is always listed here, even if you
have given the table an alias. If the SELECT item is an expression or an
aggregate no table name is listed.

Table

The table’s schema name. If the SELECT item is an expression or an
aggregate no schema name is listed.

Schema

CType

The second columns metadata table lists extended column information. The Extended Column Info table lists each column
with twelve boolean flags (SQLRESULTCOL), specified as Y (Yes) or N (No): 1:AutoIncrement, 2:CaseSensitive,
3:Currency, 4:ReadOnly, 5:RowVersion, 6:Unique, 7:Aliased, 8:Expression, 9:Hidden, 10:Identity, 11:KeyColumn,
12:RowId.

The Extended Column Info metadata table also lists the object class projection of the selected fields. Note in this example
that the Name and DOB fields project to the linked property Sample.Person.Name and Sample.Person.DOB. However, the
Home_State field projects to the linked property Sample.Address.State. This is because this field accesses a linked container
property. Home_State in Sample.Person is projected from the State property of the Home property’s type class of Sam-
ple.Address.

Dynamic SQL metadata includes extended metadata for each column. This extended metadata includes the ID of a property
definition in the dictionary if the column can be linked back to a column in a table. This linked property ID when the column
is projected from a container property is set to the ID of the property in the container property's type class. For example,
Home_City in Sample.Person is projected from the City property of the Home property's type class of Sample.Address.
The linked property ID is therefore "Sample.Address||City".

126 Using Caché SQL

Using Dynamic SQL

The following example returns the metadata for a called stored procedure with one formal parameter, which is also a
statement parameter:

 ZNSPACE "SAMPLES"
 SET mysql = "CALL Sample.SP_Sample_By_Name(?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.mysql)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 DO tStatement.%Metadata.%Display()
 WRITE !,"End of metadata"

It returns not only column (field) information, but also values for Statement Parameters, Formal Parameters, and Objects.

The following example returns the metadata for a with three formal parameters. One of these three parameters is designated
with a question mark (?) making it a statement parameter:

 ZNSPACE "SAMPLES"
 SET mycall = "CALL personsets(?,'MA')"
 SET tStatement = ##class(%SQL.Statement).%New(0,"sample")
 SET qStatus = tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 DO tStatement.%Metadata.%Display()
 WRITE !,"End of metadata"

Note that this metadata returns no column information, but the Statement Parameters, Formal Parameters lists contain the
column names and data types.

13.9.3 Query Arguments Metadata

Following a Prepare using the %SQL.Statement class, you can return metadata about query arguments: input parameters
(specified as a question mark (?)), input host variables (specified as :varname), and constants (literal values). The following
metadata can be returned:

• Count of ? parameters: parameterCount property

• ODBC data types of ? parameters: %SQL.StatementMetadata %Display() instance method Statement Parameters list.

• List of ?, v (:var), and c (constant) parameters: %GetImplementationDetails() instance method, as described in
Results of a Successful Prepare.

• ODBC data types of ?, v (:var), and c (constant) parameters: formalParameters property.

%SQL.StatementMetadata %Display() instance method Formal Parameters list.

• Text of query showing these arguments: %GetImplementationDetails() instance method, as described in Results of
a Successful Prepare.

The statement metadata %Display() method lists the Statement Parameters and Formal parameters. For each parameter it
lists the sequential parameter number, ODBC data type, precision, scale, whether it is nullable (2 means that a value is
always supplied), and its corresponding property name (colName), and column type.

Note that some ODBC data types are returned as negative integers. For a table of ODBC data type integer codes, see the
Data Types reference page in the InterSystems SQL Reference.

The following example returns the ODBC data types of each of the query arguments (?, :var, and constants) in order.
Note that the TOP argument is returned as data type 12 (VARCHAR) rather than 4 (INTEGER) because it is possible to
specify TOP ALL:

Using Caché SQL 127

SQL Metadata

 SET myquery = 4
 SET myquery(1) = "SELECT TOP ? Name,DOB,Age+10 "
 SET myquery(2) = "FROM Sample.Person"
 SET myquery(3) = "WHERE %ID BETWEEN :startid :endid AND DOB=?"
 SET myquery(4) = "ORDER BY $PIECE(Name,',',?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET prepmeta = tStatement.%Metadata
 WRITE "Number of ? parameters=",prepmeta.parameterCount,!
 SET formalobj = prepmeta.formalParameters
 SET i=1
 WHILE formalobj.GetAt(i) {
 SET prop=formalobj.GetAt(i)
 WRITE prop.colName," type= ",prop.ODBCType,!
 SET i=i+1 }
 WRITE "End of metadata"

Following an Execute, arguments metadata is not available from the query result set metadata. In a result set all parameters
are resolved. Therefore parameterCount = 0, and formalParameters contains no data.

13.9.4 Query Result Set Metadata

Following an Execute using the %SQL.Statement class, you can return result set metadata by invoking:

• %SQL.StatementResult class properties.

• %SQL.StatementResult %GetMetadata() method, accessing %SQL.StatementMetadata class properties.

13.9.4.1 %SQL.StatementResult Properties

Following an Execute query operation, %SQL.StatementResult returns:

• The %StatementType property, that returns an integer code that corresponds to the SQL statement most recently executed.
The following is a partial list of these integer codes: 1 = SELECT statement; 2 = INSERT statement; 3 = UPDATE
statement; 4 = DELETE statement; 9 = CREATE TABLE statement; 45 = CALL statement. For a complete list of
these values, refer to %SQL.StatementResult in the InterSystems Class Reference.

• The %StatementTypeName property returns the command name of the SQL statement most recently executed. This
name is returned in uppercase letters.

• The %ResultColumnCount property, that returns the number of columns in the result set rows.

The following example shows these properties:

 SET myquery = "SELECT TOP ? Name,DOB,Age FROM Sample.Person WHERE Age > ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(10,55)
 IF rset.%SQLCODE=0 {
 WRITE "Statement type=",rset.%StatementType,!
 WRITE "Statement name=",rset.%StatementTypeName,!
 WRITE "Column count=",rset.%ResultColumnCount,!
 WRITE "End of metadata" }
 ELSE { WRITE !,"SQLCODE=",rset.%SQLCODE," ",rset.%Message }

13.9.4.2 %SQL.StatementResult %GetMetadata()

Following an Execute, you can use the %SQL.StatementResult %GetMetadata() method to access the
%SQL.StatementMetadata class properties. These are the same properties accessed by the %SQL.Statement %Metadata

property following a Prepare.

The following example shows the properties:

128 Using Caché SQL

Using Dynamic SQL

 SET myquery=2
 SET myquery(1)="SELECT Name AS VendorName,LastPayDate,MinPayment,NetDays,"
 SET myquery(2)="AVG(MinPayment),$HOROLOG,%TABLENAME FROM Sample.Vendor"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 {
 SET rsmeta=rset.%GetMetadata()
 SET x=rsmeta.columns.Count()
 SET x=1
 WHILE rsmeta.columns.GetAt(x) {
 SET column=rsmeta.columns.GetAt(x)
 WRITE !,x," ",column.colName," is data type ",column.ODBCType
 WRITE " with a size of ",column.precision," and scale = ",column.scale
 SET x=x+1 }
 }
 ELSE { WRITE !,"SQLCODE=",rset.%SQLCODE," ",rset.%Message }
 WRITE !,"End of metadata"

Note that the result set metadata does not provide arguments metadata. This is because the Execute operation resolves all
parameters. Therefore, in a result set, parameterCount = 0, and formalParameters contains no data.

13.10 Auditing Dynamic SQL
Caché supports optional auditing of Dynamic SQL statements. Dynamic SQL auditing is performed when the %Sys-
tem/%SQL/DynamicStatement system audit event is enabled. By default, this system audit event is not enabled.

If you enable %System/%SQL/DynamicStatement, the system automatically audits every %SQL.Statement dynamic
statement that is executed system-wide. Auditing records information in the audit log.

An audited SQL statement records the following information:

• The Event Description, which includes the type of SQL statement and which implementation of Dynamic SQL was
used for the statement. For example, SQL SELECT Statement (%SQL.Statement) or SQL CREATE VIEW
Statement (%Library.ResultSet).

• The Event Data for the audit record, which includes the SQL statement executed and the values of any arguments to
the statement. For example,

SELECT Name,City,Age FROM Sample.Mytest WHERE City = ? AND Age > ? ORDER BY Name
%CallArgs(1)="New York"
%CallArgs(2)=45

The total length of Event Data, which includes the statement and parameters, is 3,632,952 characters. If the statement
and parameters are longer than 3632952, the Event Data will be truncated.

Caché also supports auditing of xDBC statements (ODBC and JDBC), and auditing of Embedded SQL statements.

Using Caché SQL 129

Auditing Dynamic SQL

14
Dynamic SQL Using Older Result Set
Classes

The %SQL.Statement class is the preferred way to perform Dynamic SQL. Dynamic SQL using this class is described in
the previous chapter Using Dynamic SQL.

You can also use the older %ResultSet.SQL class or the %Library.ResultSet class to query the database. In most cases, the
%SQL.Statement class is preferable for new Dynamic SQL code. The %ResultSet.SQL and %Library.ResultSet classes are
described here for compatibility with existing code.

14.1 Dynamic SQL Using %ResultSet.SQL
The following ObjectScript example prepares and executes a Dynamic SQL query using the %ResultSet.SQL class:

 /* %ResultSet.SQL example */
 ZNSPACE "SAMPLES"
 SET myquery="SELECT TOP 5 Name,SSN FROM Sample.Person ORDER BY Name"
 SET rset=##class(%ResultSet.SQL).%Prepare(myquery,.err,"")
 WHILE rset.%Next() {
 WRITE rset.Name,", ",rset.SSN,!
 }
 WRITE "End of data"

The following %ResultSet.SQL class example uses the %Print() instance method to print the current row data for all
selected columns in the column order specified in the query:

 ZNSPACE "SAMPLES"
 SET myquery="SELECT TOP 10 Name,SSN FROM Sample.Person ORDER BY Name"
 SET rset=##class(%ResultSet.SQL).%Prepare(myquery,.err,"")
 WHILE rset.%Next() {
 DO rset.%Print("^")
 }
 WRITE "End of data"

This example uses the ^ character as a delimiter between column values. This use of a specified delimiter character is
optional.

Using Caché SQL 131

14.2 Dynamic SQL Using %Library.ResultSet
The following ObjectScript code prepares and executes a Dynamic SQL query using the %Library.ResultSet class and its
Prepare() and Execute() methods:

 /* %Library.ResultSet example */
 ZNSPACE "SAMPLES"
 SET myquery="SELECT TOP 5 Name,SSN FROM Sample.Person ORDER BY Name"
 SET rset=##class(%ResultSet).%New()
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET sc=rset.Execute()
 WHILE rset.Next() {
 WRITE rset.Data("Name"),", ",rset.Data("SSN"),!
 }
 WRITE "End of data",!
 WRITE "Row count=",%ROWCOUNT

Note: The %ResultSet.%New() class method originally required an argument of "%DynamicQuery:SQL" to create
a new result set. You can now call it either with no argument at all, as in the previous example, or with the
"%DynamicQuery:SQL" argument, as in the following example.

The following %Library.ResultSet example shows the use of column name aliases. The column name is specified by the
SQL query. If you have two columns with the same name, you cannot retrieve them both via the Data property. You can
provide unique column names by using aliases within your SQL statement:

 ZNSPACE "SAMPLES"
 SET q1="SELECT TOP 10 P.Name AS pn,E.Name AS en"
 SET q2=" FROM Sample.Person AS P,Sample.Employee AS E"
 SET myquery=q1_q2
 SET rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET sc=rset.Execute()
 WHILE rset.Next() {
 WRITE rset.Data("pn"),", ",rset.Data("en"),!
 }
 WRITE "End of data",!
 WRITE "Row count=",%ROWCOUNT

14.2.1 %Library.ResultSet Supports SQL Result Properties

%Library.ResultSet supports the properties %SQLCODE, %ROWCOUNT, %ROWID and %Message. It sets %SQLCODE
and %Message from status values returned by the query. The Execute() method populates %ROWID and %ROWCOUNT
from the public variables %ROWID and %ROWCOUNT. Execute() initializes %ROWCOUNT to zero if the query is not
dynamic. The Next() method also populates %ROWCOUNT.

14.2.2 %Library.ResultSet Does Not Support CALL

%Library.ResultSet does not support the CALL statement for invoking a dynamic query. If the SQL statement is a CALL,
an “Invalid Statement Type” message is returned by the Prepare() method. The %SQL.Statement class supports the CALL
statement.

If the called routine is a function, %Library.ResultSet can use SELECT to invoke it, as shown in the following example:

 ZNSPACE "SAMPLES"
 SET rs=##class(%ResultSet).%New()
 DO $SYSTEM.OBJ.DisplayError(rs.Prepare("SELECT Sample.Stored_Procedure_Test(?,?)"))
 WRITE rs.%Execute("Doe,John",""),!
 DO rs.%Display()
 WRITE !,"End of display"

132 Using Caché SQL

Dynamic SQL Using Older Result Set Classes

14.3 Input Parameters
Input parameters are specified in a query using a question mark (?). Values are supplied to these input parameters by a
method.

• %ResultSet.SQL specifies the input parameter values in the %Prepare() method as the 4th and subsequent arguments.
There is no limit on the number of input parameters. You can use input parameters to supply values to the TOP clause
and the WHERE clause; you cannot use input parameters to supply values to the SELECT list.

• %Library.ResultSet specifies the input parameter values in the Execute() method as arguments. There is a limit of 16
input parameters. You can use input parameters to supply values to the TOP clause and the WHERE clause; you cannot
use input parameters to supply values to the SELECT list.

• %SQL.Statement specifies the input parameter values in the %Execute() method as arguments. There is no limit on
the number of input parameters. You can use input parameters to supply values to the TOP clause, the WHERE clause,
and to supply expressions to the SELECT list; you cannot use input parameters to supply column names to the SELECT
list.

The two following ObjectScript examples both execute the same query with two input parameters. The first uses
%ResultSet.SQL and specifies the input parameter values (21 and 26) as the 4th and 5th arguments of the Prepare() method.
The second uses %Library.ResultSet, and specifies the input parameter values (21 and 26) in the Execute() method.

 /* %ResultSet.SQL example */
 ZNSPACE "SAMPLES"
 SET myquery="SELECT Name,Age FROM Sample.Person WHERE Age > ? AND Age < ?"
 SET rset=##class(%ResultSet.SQL).%Prepare(myquery,.err,"",21,26)
 WHILE rset.%Next() {
 WRITE rset.Name,", ",rset.Age,!
 }
 WRITE "End of data"

 /* %Library.ResultSet example */
 ZNSPACE "SAMPLES"
 SET myquery="SELECT Name,Age FROM Sample.Person WHERE Age > ? AND Age < ?"
 SET rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET sc=rset.Execute(21,26)
 WHILE rset.Next() {
 WRITE rset.Data("Name"),", ",rset.Data("Age"),!
 }
 WRITE "End of data",!
 WRITE "Row count=",%ROWCOUNT

The following Caché Basic example uses %Library.ResultSet to execute a Dynamic SQL query with two input parameters:

myquery="SELECT Name,Age FROM Sample.Person WHERE Age > ? AND Age < ?"
result = New %Library.ResultSet()
' prepare the query
result.Prepare(myquery)
' find everyone with ages within the range specified below
result.Execute(21,26)
While (result.Next())
 PrintLn result.Data("Name") & ", " & result.Data("Age")
Wend
 PrintLn "End of data"
 PrintLn "Row count=",%ROWCOUNT

Note that public variables, such as SQLCODE, are not supported by Caché Basic subroutines. All variables in a Caché
Basic subroutine are private variables.

Using Caché SQL 133

Input Parameters

14.4 Closing a Query
When you are done with a Dynamic SQL query you can close it (release any resources used by the query) in two different
ways:

• By destroying the result set object (such as letting it go out of scope).

• By explicitly calling the Close() instance method of the %Library.ResultSet class. Calling the Close() method closes
the current result set cursor, This allows you to execute and fetch from the same query without having to re-prepare
it.

The following %Library.ResultSet example shows how using Close() enables you to start a new result set cursor:

 ZNSPACE "SAMPLES"
 SET myquery="SELECT Name,SSN FROM Sample.Person WHERE Name %STARTSWITH ?"
 SET rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET sc=rset.Execute("A")
 WHILE rset.Next() {
 WRITE rset.Data("Name"),", ",rset.Data("SSN"),!
 }
 WRITE "End of 'A' data",!!
 SET sc=rset.Close()
 SET sc=rset.Execute("B")
 WHILE rset.Next() {
 WRITE rset.Data("Name"),", ",rset.Data("SSN"),!
 }
 WRITE "End of 'B' data"

14.5 %Library.ResultSet Metadata
%Library.ResultSet supports static metadata; %SQL.Statement supports dynamic metadata. ZEN Reports programming
requires the use of the %Library.ResultSet class, because it requires static metadata.

After preparing a query, you can return metadata about that query. You can either return individual metadata items by using
methods of the %Library.ResultSet class, or you can return a table of metadata by using the %GetMetadata() method.

To return a table of query metadata values, use %GetMetadata() with its %Display() method, as shown in the following
example:

 ZNSPACE "SAMPLES"
 SET q1="SELECT Name,SSN AS GovtNum,Age"
 SET q2=" FROM Sample.Person WHERE Name %STARTSWITH ?"
 SET myquery=q1_q2
 SET rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 WRITE !,rset.%GetMetadata().%Display()

The resulting metadata table lists the following items:

134 Using Caché SQL

Dynamic SQL Using Older Result Set Classes

The name of the column. If the column is given an alias, the alias is listed
here. If the SELECT item is an expression or an aggregate, the assigned
“Expression_n ” or “Aggregate_n ” label is listed (with n being the SELECT
item sequence number). If you have assigned an alias to an expression or
aggregate, the alias is listed here.

Column Name

The integer code for the ODBC data type. These codes are listed in the
Integer Codes for Data Types section of the Data Types reference page in
the Caché SQL Reference. Note that these ODBC data type codes are not
the same as the client data type codes returned by %Library.ResultSet class
method GetColumnType(n).

Type

The maximum data size, in characters.Precision

The maximum number of fractional decimal digits.Scale

A boolean value that indicates whether the column is defined as Non-NULL
(0), or if NULL is permitted (1). If the SELECT item is an expression or
aggregate that could result in NULL, this item is set to 1. If the SELECT item
is an expression with a system-supplied value (such as a system variable
or a function that returns the current date, or returns Pi), this item is set to
2.

Null

The column name or alias.Label

The table name. The actual table name is always listed here, even if you
have given the table an alias. If the SELECT item is an expression or an
aggregate no table name is listed.

Table

The table’s schema name. If the SELECT item is an expression or an
aggregate no schema name is listed.

Schema

Each column is then listed with twelve Extended Column Info (SQLRESULTCOL) boolean flags, specified as Y (Yes) or
N (No): 1:AutoIncrement, 2:CaseSensitive, 3:Currency, 4:ReadOnly, 5:RowVersion, 6:Unique, 7:Aliased, 8:Expression,
9:Hidden, 10:Identity, 11:KeyColumn, 12:RowId.

You can either return individual metadata items by using methods of the %Library.ResultSet class. These metadata item
methods include:

Using Caché SQL 135

%Library.ResultSet Metadata

DescriptionMethod

Returns the number of columns selected in the query.GetColumnCount()

Returns the name (or name alias) of a column. The n integer specifies the
desired column by column sequence number in the query.

GetColumnName(n)

Returns an integer code for the client data type of a column specified in the
query. The n integer specifies the desired column by column sequence
number in the query.

A table of these client data type integer codes is found in the
%Library.ResultSet class documentation. Note that these client data type
codes are not the same as the more widely used ODBC data type integer
codes (described below). Also note that a column that contains list structured
data (such as FavoriteColors in Sample.Person) returns a column data type
of 10 (VARCHAR).

GetColumnType(n)

Returns the number of input parameters (question marks) specified in the
query.

GetParamCount()

Returns an integer code for the SQL statement type of the query. For
example, a 1=SELECT, 2=INSERT, etc. A table of these integer codes is
found in the %Library.ResultSet class documentation.

GetStatementType()

The following ObjectScript example shows the use of these query metadata methods:

 ZNSPACE "SAMPLES"
 SET q1="SELECT Name,SSN AS GovtNum,Age"
 SET q2=" FROM Sample.Person WHERE Name %STARTSWITH ?"
 SET myquery=q1_q2
 SET rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 SET qStatus=rset.Prepare(myquery)
 IF qStatus'=1 {WRITE "Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 WRITE !,rset.GetStatementType() /* returns 1 (SELECT) */
 WRITE !,rset.GetColumnCount() /* returns 3 */
 WRITE !,rset.GetColumnName(1) /* returns Name */
 WRITE !,rset.GetColumnName(2) /* returns GovtNum */
 WRITE !,rset.GetColumnType(1) /* returns 10 (VARCHAR) */
 WRITE !,rset.GetColumnType(3) /* returns 5 (INTEGER) */
 WRITE !,rset.GetParamCount() /* returns 1 */

14.6 %ResultSet.SQL Metadata
To return a table of query metadata values from %ResultSet.SQL, use the %PrepareMetaData() class method, as shown
in the following example:

 ZNSPACE "SAMPLES"
 SET q1="SELECT ID,Name,CURRENT_DATE AS Now,DOB,Age,AVG(Age) AS AvgAge,SSN"
 SET q2=" FROM Sample.Person"
 SET myquery=q1_q2
 SET rset=##class(%ResultSet.SQL).%PrepareMetaData(myquery)
 DO rset.%Display()

136 Using Caché SQL

Dynamic SQL Using Older Result Set Classes

15
Using the SQL Shell Interface

One way to test SQL statements is to execute them from the Caché Terminal using the SQL Shell. This interactive SQL
Shell allows you to execute SQL statements dynamically. The SQL Shell uses Dynamic SQL, which means that queries
are prepared and executed at runtime. It accesses resources and performs operations within the current namespace.

Unless otherwise indicated, SQL Shell commands and SQL code are not case-sensitive.

The following topics are documented in this chapter:

• Other Ways of Executing SQL from the Terminal prompt, from Management Portal, or from a program.

• Invoking the SQL Shell from the Terminal, inputting, preparing, and executing an SQL statement.

• Using the GO command to re-execute an SQL statement.

• Using input parameters to interactively supply values to an SQL statement at execution time.

• Executing ObjectScript commands from within the SQL Shell.

• Executing an SQL stored procedure using the SQL CALL statement.

• Executing an SQL script file using the Shell’s RUN command.

• Storing and recalling SQL statements by number or by assigned name.

• Setting SQL Shell configuration parameters.

• Displaying SQL statement metadata, Show Plan, and Show Statement.

• Timing SQL statement performance.

• Executing Transact-SQL statements (Sybase or MSSQL) from the SQL Shell.

15.1 Other Ways of Executing SQL
You can execute a single line of SQL code from the Terminal command line without invoking the SQL Shell by using the
$SYSTEM.SQL.Execute() method. The following examples show how this method is used from the Terminal prompt:

SAMPLES>SET result=$SYSTEM.SQL.Execute("SELECT TOP 5 name,dob,ssn FROM Sample.Person")

SAMPLES>DO result.%Display()

SAMPLES>SET result=$SYSTEM.SQL.Execute("CALL Sample.PersonSets('M','MA')")

SAMPLES>DO result.%Display()

Using Caché SQL 137

If the SQL statement contains an error, the Execute() method completes successfully; the %Display() method returns the
error information, such as the following:

SAMPLES>DO result.%Display()

[SQLCODE: <-29>:<Field not found in the applicable tables>]
[%msg: < Field 'GAME' not found in the applicable tables^ SELECT TOP ? game ,>]
0 Rows Affected
SAMPLES>

The Execute() method also provides optional SelectMode, Dialect, and ObjectSelectMode parameters.

Caché supports numerous other ways to write and execute SQL code, as described in other chapters of this manual. These
include:

• Embedded SQL: SQL code embedded within ObjectScript code.

• Dynamic SQL: using %SQL.Statement class methods to execute statements from within ObjectScript or Caché Basic
code.

• Management Portal SQL Interface: executing Dynamic SQL from the Caché Management Portal using the Execute

Query interface.

15.2 Invoking the SQL Shell
You can use the $SYSTEM.SQL.Shell() method to invoke the SQL Shell from the Terminal prompt, as follows:

 DO $SYSTEM.SQL.Shell()

Alternatively, you can invoke the SQL Shell as an instantiated instance using the %SQL.Shell class, as follows:

 DO ##class(%SQL.Shell).%Go("Cache")

or

 SET sqlsh=##class(%SQL.Shell).%New()
 DO sqlsh.%Go("Cache")

Regardless of how invoked, the SQL Shell returns the SQL Shell prompt (nsp>>), where nsp is the name of the current
namespace. At this prompt you can use either of the following Shell modes:

• Single line mode: at the prompt type a line of SQL code. To end the SQL statement, press Enter. By default, this both
prepares and executes the SQL code (this is known as Immediate execute mode). For a query, the result set is displayed
on the terminal screen. For other SQL statements, the SQLCODE and row count values are displayed on the terminal
screen.

• Multiline mode: at the prompt press Enter. This puts you in multiline mode. You can type multiple lines of SQL code,
each new line prompt indicating the line number. (A blank line does not increment the line number.) To conclude a
multiline SQL statement, type GO and press Enter. By default, this both prepares and executes the SQL code. For a
query, the result set is displayed on the terminal screen. For other SQL statements, the SQLCODE and row count values
are displayed on the terminal screen.

Multiline mode provides the following commands, which you type at the multiline prompt and then press Enter: L or
LIST to list all SQL code entered thus far. C or CLEAR to delete all SQL code entered thus far. C n or CLEAR n
(where n is a line number integer) to delete a specific line of SQL code. G or GO to prepare and execute the SQL code
and return to single line mode. Q or QUIT to delete all SQL code entered thus far and return to single line mode. These
commands are not case-sensitive. Issuing a command does not increment the line number of the next multiline prompt.
Typing ? at the multiline prompt lists these multiline commands.

138 Using Caché SQL

Using the SQL Shell Interface

To prepare an SQL statement, the SQL Shell first validates the statement, including confirming that the specified tables
exist in the current namespace and the specified fields exist in the table. If not, it displays the appropriate SQLCODE.

The SQL Shell performs SQL privilege checking; you must have the appropriate privileges to access or modify a table,
field, etc. For further details, refer to the “Users, Roles, and Privileges” chapter of this manual.

If the statement is valid and you have appropriate privileges, the SQL Shell echoes your SQL statement, assigning a
sequential number to it. These numbers are assigned sequentially for the duration of the terminal session, regardless of
whether you change namespaces and/or exit and re-enter the SQL Shell. These assigned statement numbers permit you to
recall prior SQL statements, as described below.

You can also invoke the SQL Shell from the Terminal prompt with DO Shell^%apiSQL.

To list all the available SQL Shell commands, enter ? at the SQL prompt.

To terminate an SQL Shell session and return to the Terminal prompt, enter either the Q or QUIT command or the E or
EXIT command at the SQL prompt. SQL Shell commands are not case-sensitive.

The following is a sample SQL Shell session using the default parameter settings:

USER>ZNSPACE "SAMPLES"
SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
1. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State

Name Home_State
Djokovic,Josephine W. AK
Klingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL
Roentgen,Alexandria Q. AR

5 Row(s) Affected
--
SAMPLES>>SELECT GETDATE()
2. SELECT GETDATE()

Expression_1
2009-09-29 11:41:42

1 Row(s) Affected
--
SAMPLES>>QUIT

SAMPLES>

The following is a multiline SQL Shell session using the default parameter settings:

USER>ZNSPACE "SAMPLES"
SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>> << entering multiline statement mode >>
 1>>SELECT TOP 5
 2>>Name,Home_State
 3>>FROM Sample.Person
 4>>ORDER BY Home_State
 5>>GO

1. SELECT TOP 5
 Name,Home_State
 FROM Sample.Person
 ORDER BY Home_State

Name Home_State
Djokovic,Josephine W. AK
Klingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL
Roentgen,Alexandria Q. AR

Using Caché SQL 139

Invoking the SQL Shell

5 Row(s) Affected
--
SAMPLES>>

15.2.1 GO Command

The SQL Shell GO command executes the most recent SQL statement. In single line mode, GO re-executes the SQL
statement most recently executed. When in multiline mode, the GO command is used to execute the multiline SQL statement
and exit multiline mode. A subsequent GO in single line mode re-executes the SQL statement.

15.2.2 Input Parameters

The SQL Shell supports the use of input parameters using the “?” character in the SQL statement. Each time you execute
the SQL statement, you are prompted to specify values for these input parameters. You must specified these values in the
same sequence that the “?” characters appear in the SQL statement: the first prompt supplies a value to the first “?” , the
second prompt supplies a value to the second “?” , and so on.

There is no limit on the number of input parameters. You can use input parameters to supply values to the TOP clause, the
WHERE clause, and to supply expressions to the SELECT list; you cannot use input parameters to supply column names
to the SELECT list.

You can specify a host variable as an input parameter value. At the input parameter prompt, specify a value prefaced by a
colon (:). This value may be a public variable, an ObjectScript special variable, a numeric literal, or an expression. The
SQL Shell then prompts you with “ is this a literal (Y/N)?” . Specifying N (No) at this prompt (or just pressing Enter) means
that the input value is parsed as a host variable. For example, :myval would be parsed as the value of the local variable
myval; :^myval would be parsed as the value of the global variable ^myval; :$HOROLOG would be parsed as the value
of the $HOROLOG special variable; :3 would be parsed as the number 3; :10-3 would be parsed as the number 7.
Specifying Y (Yes) at this prompt means that the input value, including the colon preface, is supplied to the input parameter
as a literal.

15.2.3 Executing ObjectScript Commands

Within the SQL Shell, you may wish to issue an ObjectScript command. For example, to change the Caché namespace by
using the ZNSPACE command to the namespace containing the SQL table or stored procedure you wish to reference. You
can use the SQL Shell COS command to issue an ObjectScript command, as shown in the following example:

>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
USER>>COS ZNSPACE "SAMPLES"

SAMPLES>>

The rest of the command line following the COS command is treated as ObjectScript code. You can specify a COS command
while in SQL Shell single-line mode or in SQL Shell multiline mode, as shown in the following example:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
USER>> << entering multiline statement mode >>
 1>>COS ZNSPACE "SAMPLES"

 1>>SELECT TOP 5 Name,Home_State
 2>>FROM Sample.Person
 3>>GO

140 Using Caché SQL

Using the SQL Shell Interface

Note that the COS statement does not advance the line count. A COS command is always issued before the SQL statement.
Thus, the following example is functionally identical to the previous example:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
USER>> << entering multiline statement mode >>
 1>>SELECT TOP 5 Name,Home_State
 2>>FROM Sample.Person
 3>>COS ZNSPACE "SAMPLES"

 3>>GO

15.2.4 CALL Command

You can use the SQL Shell to issue the SQL CALL statement to call an SQL stored procedure, as shown in the following
example:

SAMPLES>>CALL Sample.PersonSets('G','NY')

The SQL Shell issues an SQLCODE -428 error if the specified stored procedure does not exist in the current namespace.

The SQL Shell issues an SQLCODE -370 error if you specify more input parameters than are defined in the stored procedure.
You can specify parameter values to the stored procedure using any combination of literals ('string'), host variables (:var),
and input parameters (?).

• You can use host variables in a CALL statement, as shown in the following example:

SAMPLES>>COS SET a="G",b="NY"
SAMPLES>>CALL Sample.PersonSets(:a,:b)

• You can use input parameters (“?” characters) in a CALL statement, as shown in the following example:

SAMPLES>>CALL Sample.PersonSets(?,?)

The SQL Shell prompts you for a value for each of these input parameters when the CALL statement is executed.

15.2.5 Executing an SQL Script File

The SQL Shell RUN command executes an SQL script file. The type of script file is determined by the DIALECT setting.
The DIALECT default is CACHE (Caché SQL). For further details, see RUN Command later in this chapter.

15.3 Storing and Recalling SQL Statements

15.3.1 Recall by Number

The SQL Shell automatically stores each successful SQL statement issued during the terminal session in a local cache and
assigns it a sequential number. These numbers are used for recalling prior SQL statements during the current Terminal
process. SQL Shell only assigns numbers to SQL statements that are successful; if an error occurs during preparation of
an SQL statement, no number is assigned. These number assignments are not namespace-specific. The following are the
available recall by number commands:

• #: You can use # to list all of the prior cached SQL statements with their assigned numbers.

Using Caché SQL 141

Storing and Recalling SQL Statements

• #n: You can recall and execute a prior SQL statement by specifying #n at the SQL Shell prompt, where n is an integer
that SQL Shell assigned to that statement.

• #0: You can recall and execute the most recently prepared SQL statement by specifying #0 at the SQL Shell prompt.
#0 recalls the most recently prepared SQL statement, not necessarily the most recently executed SQL statement.
Therefore, recalling and executing SQL statements has no effect on which SQL statement is recalled by #0.

Recalling an SQL statement by number does not assign a new number to the statement. SQL Shell assigns numbers
sequentially for the duration of the Terminal session; exiting and re-entering the SQL Shell or changing namespaces have
no effect on number assignment or the validity of prior assigned numbers.

To delete all number assignments, use #CLEAR and confirm this action at the displayed prompt. This deletes all prior
number assignments and restarts number assignment with 1.

15.3.2 Recall by Name

You can optionally assign a name to an SQL statement, then recall the statement by name. These names are used for
recalling prior SQL statements issued from any of the current user's Terminal processes. There are two ways to save and
recall an SQL statement by name:

• Save to a global using SAVEGLOBAL; recall from a global using OPEN.

• Save to a file using SAVE; recall from a file using LOAD.

15.3.2.1 Saving to a Global

To assign a global name to the most recent SQL statement, use the SQL Shell command SAVEGLOBAL name, which
can be abbreviated as SG name. You can then use the SQL Shell command OPEN name to recall the SQL statement from
the global. If EXECUTEMODE is IMMEDIATE, the SQL Shell both recalls and executes the statement. If EXECUTEMODE
is DEFERRED, the statement will be prepared but will not be executed until you specify the GO command.

Each time you use OPEN name to recall an SQL statement by global name, the SQL Shell assigns a new number to the
statement. Both the old and new numbers remain valid for recall by number.

A name can contain any printable characters except the blank space character. Letters in a name are case-sensitive. A name
can be of any length. A name is specific to the current namespace. You can save the same SQL statement multiple times
with different names; all of the saved names remain valid. If you attempt to save an SQL statement using a name already
assigned, SQL Shell prompts you whether you wish to overwrite the existing name, reassigning it to the new SQL statement.

Global names are assigned for the current namespace. You can list all assigned global names for the current namespace
using the SQL Shell L (or LIST) command. Once assigned, a name is available to all of the current user's Terminal processes.
An assigned name persists after the Terminal process that created it has ended. If there are no name assignments, LIST
returns a “No statements saved” message.

To delete a global name assignment, use CLEAR name. To delete all global name assignments for the current namespace,
use CLEAR and confirm this action at the displayed prompt.

15.3.2.2 Saving to a File

To assign a file name to the most recent SQL statement, use the SQL Shell command SAVE name. You can then use the
SQL Shell command LOAD name to recall the SQL statement. If EXECUTEMODE is IMMEDIATE, the SQL Shell both
recalls and executes the statement. Each time you use LOAD name to recall an SQL statement by file name, the SQL Shell
assigns a new number to the statement. Both the old and new numbers remain valid for recall by number.

A name can contain any printable characters except the blank space character. Letters in a name are case-sensitive. A name
can be of any length. A name is specific to the current namespace. You can save the same SQL statement multiple times

142 Using Caché SQL

Using the SQL Shell Interface

with different names; all of the saved names remain valid. If you attempt to save an SQL statement using a name already
assigned, SQL Shell prompts you whether you wish to overwrite the existing name, reassigning it to the new SQL statement.

Names are assigned for the current namespace. Once assigned, a name is available to all of the current user's Terminal
processes. An assigned name persists after the Terminal process that created it has ended.

15.4 SQL Shell Parameters
The SQL Shell provides the following configurable parameters:

• Commandprefix: (TSQL) specifies a prefix for SQL Shell commands.

• Dialect: (TSQL) specifies the version of SQL to use.

• Displayfile

• Displaymode: specifies the format for query output.

• Displaypath

• Displaytranslate[table]

• Echo: specifies whether result set data should be echoed to the Terminal.

• Executemode: specifies whether or not to defer SQL execution.

• Log: specifies that Shell activity should be logged to a file.

• Messages: specifies whether error messages or query metrics and the cached query name should be displayed to the
Terminal.

• Path: sets the schema search path for an unqualified table name.

• Selectmode: specifies whether data should be displayed in Logical, ODBC, or Display mode. Also determines if input
data is converted from a display format to logical storage format.

The parameters labelled (TSQL) are principally used for executing Sybase or MSSQL Transact-SQL code from the SQL
Shell. They are described in the “Transact-SQL Support” section at the end of this chapter.

15.4.1 Displaying, Setting, and Saving SQL Shell Parameters

SQL Shell configuration parameters are specific to the current SQL Shell invocation on the current Terminal process. Settings
apply across namespaces. However, if you exit the SQL Shell, all SQL Shell parameters reset to default values. Caché
provides system default values; you can establish different default values using SET SAVE, as described below.

The SQL Shell SET command (with no arguments) displays the current shell configuration parameters, as shown in the
following example. In this example, the SET shows the system default values, which are the values established when you
invoke the SQL Shell:

Using Caché SQL 143

SQL Shell Parameters

USER>>SET

commandprefix = ""
dialect = CACHE
displayfile =
displaymode = currentdevice
displaypath =
displaytranslatetable =
echo = on
executemode = immediate
log = off
messages = on
path = SQLUser
selectmode = logical
USER>>

To display the current setting for a single configuration parameter, specify SET param. For example, SET SELECTMODE
returns the current selectmode setting.

You can use the SQL Shell SET command to set a shell configuration parameter. A set value persists for the duration of
the SQL Shell invocation; each time you invoke the SQL Shell, the parameters reset to default values. SET can use either
of the following syntax forms:

SET param value
SET param = value

Both param and value are not case-sensitive. Spaces are permitted, but not required, before and after the equal sign.

The SQL Shell SET SAVE command saves the current shell configuration parameter settings as the user defaults. These
defaults are applied to all subsequent SQL Shell invocations from the current process. They are also applied as SQL shell
defaults to any subsequently invoked SQL Shell on any user Terminal process. They remain in effect until specifically
reset. Using SET SAVE does not affect currently running SQL Shell invocations.

The SQL Shell SET CLEAR command clears (resets to system defaults) the current shell configuration parameter settings
for the current process. Caché applies this reset to defaults to subsequent SQL Shell invocations by the current process, or
any new Terminal process invoked by the current user. SET CLEAR does not affect currently running SQL Shell invocations.

15.4.2 Setting DISPLAYMODE and DISPLAYTRANSLATE

You can use SET DISPLAYMODE to specify the format used to display query data, as shown in the following example:

SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SET DISPLAYMODE XML

displaymode = xml
SAMPLES>>

The DISPLAYMODE default is CURRENTDEVICE, which displays the query data on the Terminal in TXT format. You
can specify SET DISPLAYMODE = CUR to restore the CURRENTDEVICE default.

The other available options are TXT, HTML, PDF, XML, and CSV. The selection of a format determines the file type.
Caché creates a file of this type, writes the query data to the file, and, when possible, launches the appropriate program to
display this query data file. For all options except TXT, a second file is created to record result set messages. By default,
SQL Shell creates these files in the Caché mgr\Temp\ directory and assigns a randomly generated file name with the
appropriate file type suffix. The generated Message file name is the same as the data file name, except for the appended
string “Messages”. For the HTML, PDF, and XML options, the Messages file has the same file type suffix as the query
data file. For the CSV option, the Messages file has the TXT file type suffix.

The following is an example of the files created when DISPLAYMODE = TXT:

C:\InterSystems\Cache\mgr\Temp\sGm7qLdVZn5VbA.txt
C:\InterSystems\Cache\mgr\Temp\sGm7qLdVZn5VbAMessages.txt

144 Using Caché SQL

Using the SQL Shell Interface

Each time you run a query, the SQL Shell creates a new pair of files with randomly generated file names.

If DISPLAYMODE is TXT or CSV, you can optionally specify the name of a translate table to apply when performing
format conversion. You can specify either SET DISPLAYTRANSLATE or SET DISPLAYTRANSLATETABLE. Translate
table name values are case-sensitive.

If DISPLAYMODE is set to a value other than CURRENTDEVICE, any query result set data containing a control character
results in a generated Warning message. Generally, control characters only appear in query result set data when it is in
Logical mode. For example, data in a List structure contains control characters when displayed in Logical mode. For this
reason, it is recommended that when you set DISPLAYMODE to a value other than CURRENTDEVICE that you also set
SELECTMODE to either DISPLAY or ODBC.

15.4.2.1 Setting DISPLAYFILE and DISPLAYPATH

If DISPLAYMODE is set to a value other than CURRENTDEVICE, you can specify the target file location using the
DISPLAYFILE and DISPLAYPATH parameters:

• DISPLAYFILE: set this parameter to a simple file name with no suffix; for example, SET DISPLAYFILE = myfile.
You can also set this parameter to a partially-qualified path, which Caché appends to the DISPLAYPATH value or
the default directory, creating subdirectories as needed; for example, SET DISPLAYFILE = mydir\myfile. If DISPLAY-
PATH is set, the system creates a file with this file name in the specified directory; if DISPLAYPATH is not set, the
system creates a file with this file name in the Caché mgr\Temp\ directory.

• DISPLAYPATH: set this parameter to an existing fully-qualified directory path structure ending in a slash (“/”) or
backslash (“\”), depending on operating system platform. If DISPLAYFILE is set, the system creates a file with the
DISPLAYFILE name in this directory; if DISPLAYFILE is not set, the system creates a file with a randomly-generated
name in this directory. If the DISPLAYPATH directory does not exist, Caché ignores DISPLAYPATH and DISPLAY-
FILE settings and instead uses the default directory and default randomly-generated file name.

When necessary, the system automatically adds a slash (or backslash) to the end of your DISPLAYPATH value and/or
removes a slash (or backslash) from the beginning of your DISPLAYFILE value to create a valid fully-qualified directory
path.

The following example sets DISPLAYMODE, DISPLAYFILE, and DISPLAYPATH:

SAMPLES>>SET DISPLAYMODE XML

displaymode = xml
SAMPLES>>SET DISPLAYFILE = myfile

displayfile = myfile
SAMPLES>>SET DISPLAYPATH = C:\temp\mydir\

displaypath = C:\temp\mydir\
SAMPLES>>

When you execute a query the SQL Shell will generate the following files. The first contains the query data. The second
contains any messages resulting from the query execution:

C:\temp\mydir\myfile.xml
C:\temp\mydir\myfileMessages.xml

If you specify neither DISPLAYFILE or DISPLAYPATH, the system creates files in the Mgr\Temp\ directory for your
Caché installation (for example, C:\InterSystems\Cache\Mgr\Temp\) with a randomly generated file name.

If DISPLAYMODE is not set to CURRENTDEVICE, each time you run a query with DISPLAYFILE set, any existing
data in the named file and the corresponding Messages file is replaced by the new query data. Each time you run a query
with DISPLAYFILE not set, the SQL Shell creates a new file with a randomly generated file name and a new corresponding
Messages file.

If DISPLAYMODE is set to CURRENTDEVICE, the DISPLAYFILE and DISPLAYPATH parameters have no effect.

Using Caché SQL 145

SQL Shell Parameters

15.4.3 Setting EXECUTEMODE

The SQL Shell supports immediate and deferred SQL statement execution. Immediate execution prepares and executes the
specified SQL statement when you press Enter. Deferred execution prepares the statement when you press Enter, but does
not execute it until you specify GO at the SQL prompt.

The available options are SET EXECUTEMODE IMMEDIATE (the default), SET EXECUTEMODE DEFERRED, and SET
EXECUTEMODE to display the current mode setting. The following example sets the execute mode:

SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SET EXECUTEMODE DEFERRED

Executemode = deferred
SAMPLES>>

Deferred execution allows you to prepare multiple SQL queries, then recall them by name or number for execution. To
execute a prepared SQL statement, recall the desired statement (from the appropriate namespace) then specify GO.

The following example shows the preparation of three queries in Deferred mode. The first two are saved and assigned a
recall name; the third is not assigned a name, but can be recalled by number:

SAMPLES>>SELECT TOP 5 Name,Home_State FROM Sample.Person
1. SELECT TOP 5 Name,Home_State FROM Sample.Person
SAMPLES>>SAVE 5sample
Query saved as: 5sample
SAMPLES>>SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
2. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
SAMPLES>>SAVE 5ordered
Query saved as: 5ordered
SAMPLES>>SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
3. SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
SAMPLES>>

The following example shows the deferred mode execution of two of the queries defined in the previous example. Note
that this example recalls one query by name (upon recall the SQL Shell gives it a new number), and one query by number:

SAMPLES>>OPEN 5ordered
SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
4. SELECT TOP 5 Name,Home_State FROM Sample.Person ORDER BY Home_State
--
SAMPLES>>GO

Name Home_State
Djokovic,Josephine W. AK
Klingman,Aviel P. AK
Quine, Sam X. AK
Xiang,Robert C. AL
Roentgen,Alexandria Q. AR

5 Row(s) Affected
--
SAMPLES>>#3
SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
3. SELECT Name,Home_State FROM Sample.Person ORDER BY Home_State
--
SAMPLES>>GO
.
.
.

15.4.4 Setting ECHO

You can use SET ECHO to specify whether to echo the query results to the SQL Shell. If you specify SET ECHO=OFF,
the query is prepared, a cached query is defined, and the query is executed. No query results are displayed to the Terminal.
This is shown in the following example:

146 Using Caché SQL

Using the SQL Shell Interface

[SQL]USER>>set echo=off

echo = off
[SQL]USER>>SELECT Name,Age FROM Sample.MyTest
4. SELECT Name,Age FROM Sample.MyTest

statement prepare time(s)/globals/lines/disk: 0.0002s/5/155/0ms
 execute time(s)/globals/lines/disk: 0.0001s/0/105/0ms
 cached query class: %sqlcq.USER.cls3

[SQL]USER>>

If you specify SET ECHO=ON (the default) the query results are displayed to the Terminal. This is shown in the following
example:

[SQL]USER>>set echo=on

echo = on
[SQL]USER>>SELECT Name,Age FROM Sample.MyTest
5. SELECT Name,Age FROM Sample.MyTest

Name Age
Fred Flintstone 41
Wilma Flintstone 38
Barney Rubble 40
Betty Rubble 42

4 Rows(s) Affected
statement prepare time(s)/globals/lines/disk: 0.0002s/5/155/0ms
 execute time(s)/globals/lines/disk: 0.0002s/5/719/0ms
 cached query class: %sqlcq.USER.cls3

[SQL]USER>>

SET ECHO is only meaningful if DISPLAYMODE=CURRENTDEVICE (the default).

SET ECHO and SET MESSAGES specify what is displayed on the Terminal; they do not affect the prepare or execution
of the query. If both SET MESSAGES=OFF and SET ECHO=OFF, the query is prepared, a cached query is created, and
query execution creates a query result set, but nothing is returned to the Terminal.

15.4.5 Setting MESSAGES

You can use SET MESSAGES to specify whether to display the query error message (if unsuccessful), or query execution
information (if successful):

• If query execution is unsuccessful: If you specify SET MESSAGES=OFF, nothing is displayed to the Terminal. If you
specify SET MESSAGES=ON (the default) the query error message is displayed, such as the following: ERROR
#5540: SQLCODE: -30 Message: Table 'SAMPLE.NOTABLE' not found.

• If query execution is successful: If you specify SET MESSAGES=OFF, only the query results and the line n Rows(s)
Affected are displayed to the Terminal. If you specify SET MESSAGES=ON (the default) the query results and the
line n Rows(s) Affected are followed by the statement prepare metrics, the statement execution metrics, and the
name of the generated cached query.

Prepare and Execute metrics are measured in elapsed time (in fractional seconds), total number of global references,
total number of lines executed, and disk read latency (in milliseconds).

The information displayed when SET MESSAGES=ON is not changed by setting DISPLAYMODE. Some DISPLAYMODE
options create both a query result set file and a messages file. This messages file contains result set messages, not the query
prepare and execute messages displayed to the Terminal when SET MESSAGES=ON.

SET MESSAGES and SET ECHO specify what is displayed on the Terminal; they do not affect the prepare or execution
of the query. If both SET MESSAGES=OFF and SET ECHO=OFF, a successful query is prepared, a cached query is created,
and query execution creates a query result set, but nothing is returned to the Terminal.

Using Caché SQL 147

SQL Shell Parameters

15.4.6 Setting LOG

You can use SET LOG to specify whether to log SQL Shell activity to a file. The available options are:

• SET LOG OFF: The default. Caché does not log activity for the current SQL Shell.

• SET LOG ON: Caché logs SQL Shell activity to the default log file.

• SET LOG pathname: Caché logs SQL Shell activity to the file specified by pathname.

SET LOG ON creates a log file in Cache\mgr\namespace, where namespace is the name of the current namespace for the
process. This default log file is named xsqlnnnn.log, where nnnn is the process ID (pid) number for the current process.

By default, a log file is specific to the current process and the current namespace. To log SQL Shell activity from multiple
processes and/or from multiple namespaces in the same log, specify SET LOG pathname for each process and/or namespace
using the same pathname.

A log file can be suspended and resumed. Once a log file has been created, SET LOG OFF suspends writing to that log
file. SET LOG ON resumes writing to the default log file. Log restarted: date time is written to the log file when
logging resumes. SET LOG ON always activates the default log file. Thus, if you suspend writing to a specified pathname
log file, you must specify SET LOG pathname when resuming.

Activating a log file creates a copy of SQL Shell activity displayed on the terminal; it does not redirect SQL Shell terminal
output. The SQL Shell log records SQL errors for failed SQL execution and the SQL code and resulting row count for
successful SQL execution. The SQL Shell log does not record result set data.

If a log is already active, specifying SET LOG ON has no effect. If a log is already active, specifying SET LOG pathname
suspends the current log and activates the log specified by pathname.

15.4.7 Setting PATH

You can use SET PATH schema to set the schema search path, which SQL uses to supply the correct schema name for
an unqualified table name. schema can be a single schema name, or a comma-separated list of schema names, as shown in
the following example:

[SQL]USER>>SET PATH cinema,sample,user

SET PATH with no argument deletes the current schema search path, reverting to the system-wide default schema name.

If SET PATH schema is not specified, or the table is not found in the specified schemas, SQL Shell uses the system-wide
default schema name. For further details on schema search paths, refer to the #SQLCompile Path macro in the “ObjectScript
Macros and the Macro Preprocessor” chapter of Using Caché ObjectScript.

15.4.8 Setting SELECTMODE

You can use SET SELECTMODE to specify the mode used to display query data.

SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SET SELECTMODE DISPLAY

selectmode = display
SAMPLES>>

The available options are DISPLAY, LOGICAL, and ODBC. LOGICAL is the default. To determine the current mode,
specify SET SELECTMODE without a value:

148 Using Caché SQL

Using the SQL Shell Interface

SAMPLES>>SET SELECTMODE

selectmode = logical
SAMPLES>>

%List data is encoded using non-printing characters. Therefore, when selectmode=logical, SQL Shell displays a %List data
value as a $LISTBUILD statement, such as the following: $lb("White","Green"). Time data type data supports
fractional seconds. Therefore, when selectmode=odbc, SQL Shell displays fractional seconds, which does not correspond
to the ODBC standard. The actual ODBC TIME data type truncates fractional seconds.

For further details on SelectMode options, refer to “Data Display Options” in the “Caché SQL Basics” chapter of this
book.

You can also use SET SELECTMODE to specify whether input data will be converted from display format to logical
storage format. For this data conversion to occur, the SQL code must have been compiled with a select mode of RUNTIME.
At execution time, SET SELECTMODE must be set to LOGICAL (the default). For further details, refer to the INSERT
or UPDATE statement in the Caché SQL Reference.

15.5 SQL Metadata and Performance Metrics

15.5.1 Displaying Metadata, Show Plan, and Show Statement

The SQL Shell supports the following additional commands:

• M or METADATA to display metadata information about the current query.

• SHOW PLAN, SHOW PL (or simply SHOW) to display show plan information about the current query. The show
plan can be used for debugging and optimizing the performance of a query. It specifies how the query executes,
including the use of indexes and a cost value for the query. A show plan can be returned for the following statements:
SELECT, DECLARE, non-cursor UPDATE or DELETE, and INSERT...SELECT.

• SHOW STATEMENT or SHOW ST to display the prepared SQL statement. This information consists of the
Implementation Class, the Arguments (a comma-separated list of the actual arguments, such as the TOP clause and
WHERE clause argument values), and the Statement Text.

For further details on Caché SQL Shell commands, enter ? at the SQL prompt, or refer to %SYSTEM.SQL.Shell() in the
InterSystems Class Reference.

For further details on interpreting a query plan, see “ Interpreting an SQL Query Plan” in the Caché SQL Optimization
Guide.

15.5.2 SQL Shell Performance

Following the successful execution of an SQL statement, the SQL Shell displays four statement prepare values
(times(s)/globals/lines/disk) and four statement execute values (times(s)/globals/lines/disk):

• The statement prepare time is the time it took to prepare the dynamic statement. This includes the time it took to gen-
erate and compile the statement. It includes the time it took to find the statement in the statement cache. Thus, if a
statement is executed, then recalled by number or recalled by name, the prepare time on the recalled statement is near
zero. If a statement is prepared and executed, then re-executed by issuing the GO command, the prepare time on the
re-execution is zero.

• The elapsed execute time is the elapsed time from the call to %Execute() until the return from %Display(). It does
not include wait time for input parameter values.

Using Caché SQL 149

SQL Metadata and Performance Metrics

The statement globals is the count of global references, lines is the count of lines of code executed, and disk is the disk
latency time in milliseconds. The SQL Shell keeps separate counts for the Prepare operation and the Execute operation.

These performance values are only displayed when DISPLAYMODE is set to currentdevice, and MESSAGES is set to
ON. These are the SQL Shell default settings.

15.6 Transact-SQL Support
By default, the SQL Shell executes Caché SQL code. However, the SQL Shell can be used to execute Sybase or MSSQL
code.

15.6.1 Setting DIALECT

By default, the SQL Shell parses code as Caché SQL. You can use SET DIALECT to configure the SQL Shell to execute
Sybase or MSSQL code. To change the current dialect, SET DIALECT to Sybase, MSSQL, or Cache. The default is
Dialect=Cache.

he following is an example of the executing a MSSQL program from the SQL Shell:

SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SET DIALECT MSSQL

dialect = MSSQL
SAMPLES>>SELECT TOP 5 name + '-' + ssn FROM Sample.Person
1. SELECT TOP 5 name + '-' + ssn FROM Sample.Person

Expression_1
Zweifelhofer,Maria H.-559-20-7648
Vonnegut,Bill A.-552-41-2071
Clinton,Terry E.-757-30-8013
Bachman,Peter U.-775-59-3756
Avery,Emily N.-833-18-9563

5 Rows(s) Affected
statement prepare time: 0.2894s, elapsed execute time: 0.0467s.

SAMPLES>>

The Sybase and MSSQL dialects support a limited subset of SQL statements in these dialects. They support the SELECT,
INSERT, UPDATE, and DELETE statements. They support the CREATE TABLE statement for permanent tables, but
not for temporary tables. CREATE VIEW is supported. CREATE TRIGGER and DROP TRIGGER are supported.
However, this implementation does not support transaction rollback should the CREATE TRIGGER statement partially
succeed but then fail on class compile. CREATE PROCEDURE and CREATE FUNCTION are supported.

15.6.2 Setting COMMANDPREFIX

You can use SET COMMANDPREFIX to specify a prefix (usually a single character) that must be appended to subsequent
SQL Shell commands. This prefix is not used on SQL statements issued from the SQL Shell prompt. The purpose of this
prefix is to prevent ambiguity between SQL Shell commands and SQL code statements. For example, SET is an SQL Shell
command; SET is also an SQL code statement in Sybase and MSSQL.

By default, there is no command prefix. To establish a command prefix, SET COMMANDPREFIX=prefix, with prefix
specified without quotation marks. To revert to having no command prefix, SET COMMANDPREFIX="". The following
example shows the command prefix / (the slash character) being set, used, and reverted:

150 Using Caché SQL

Using the SQL Shell Interface

SAMPLES>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--

The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
SAMPLES>>SET COMMANDPREFIX=/

commandprefix = /
SAMPLES>>/SET LOG=ON

log = xsql4148.log
SAMPLES>> << entering multiline statement mode >>
 1>>SELECT TOP 3 Name,Age
 2>>FROM Sample.Person
 3>>/GO
9. SELECT TOP 3 Name,Age
 FROM Sample.Person

Name Age
Frith,Jose M. 13
Finn,William D. 15
Ximines,Uma Y. 44

3 Rows(s) Affected
statement prepare time: 0.0010s, elapsed execute time: 0.0014s.

SAMPLES>>/SET COMMANDPREFIX

commandprefix = /
SAMPLES>>/SET COMMANDPREFIX=""

commandprefix = ""
SAMPLES>>SET COMMANDPREFIX

commandprefix =
SAMPLES>>

When a command prefix is set, the command prefix is required for all SQL Shell commands, except ?, #, and GO; these
three SQL Shell commands can be issued with or without the command prefix.

The SQL Shell displays the current command prefix as part of the SQL Shell initialization, when you issue a SET or a SET
COMMANDPREFIX command, and at the end of the ? commands option display.

15.6.3 RUN Command

The SQL Shell RUN command executes an SQL script file. You must SET DIALECT before issuing a RUN command to
specify either Caché SQL, Sybase TSQL, or Microsoft SQL (MSSQL); the default dialect is Caché SQL. You can either
invoke RUN scriptname or just invoke RUN and be prompted for the script file name.

RUN loads the script file, then prepares and executes each statement contained in the file. Statements in the script file must
be delimited, usually either with a GO line, or with a semicolon (;). The RUN command prompts you to specify the
delimiter.

The SQL script file results are displayed on the current device and, optionally, in a log file. Optionally, a file containing
statements that failed to prepare can be produced.

The RUN command returns prompts to specify these options, as shown in the following example:

USER>>SET DIALECT=Sybase

dialect = Sybase
USER>>RUN

Enter the name of the SQL script file to run: SybaseTest

Enter the file name that will contain a log of statements, results and errors (.log): SyTest.log
 SyTest.log

Many script files contain statements not supported by Cache' SQL.
Would you like to log the statements not supported to a file so they
can be dealt with manually, if applicable? Y=> y
Enter the file name in which to record non-supported statements (_Unsupported.log): SyTest_Unsupported.log

Using Caché SQL 151

Transact-SQL Support

Please enter the end-of-statement delimiter (Default is 'GO'): GO=>

Pause how many seconds after error? 5 => 3

Sybase Conversion Utility (v3)
Reading source from file:
Statements, results and messages will be logged to: SyTest.log
.
.
.

15.6.4 TSQL Examples

The following SQL Shell example creates a Sybase procedure AvgAge. It executes this procedure using the Sybase EXEC
command. It then changes the dialect to Caché and executes the same procedure using the Caché SQL CALL command.

SAMPLES>>SET DIALECT Sybase

dialect = Sybase
SAMPLES>> << entering multiline statement mode >>
 1>>CREATE PROCEDURE AvgAge
 2>>AS SELECT AVG(Age) FROM Sample.Person
 3>>GO
12. CREATE PROCEDURE AvgAge
 AS SELECT AVG(Age) FROM Sample.Person

statement prepare time: 0.1114s, elapsed execute time: 0.4364s.

SAMPLES>>EXEC AvgAge
13. EXEC AvgAge

Dumping result #1
Aggregate_1
44.35

1 Rows(s) Affected
statement prepare time: 0.0956s, elapsed execute time: 1.1761s.

SAMPLES>>SET DIALECT=Cache

dialect = CACHE
SAMPLES>>CALL AvgAge()
14. CALL AvgAge()

Dumping result #1
Aggregate_1
44.35

1 Rows(s) Affected
statement prepare time: 0.0418s, elapsed execute time: 0.0040s.

SAMPLES>>

152 Using Caché SQL

Using the SQL Shell Interface

16
Using the Management Portal SQL
Interface

This chapter describes how to perform SQL operations from the Caché Management Portal. The Management Portal
interface uses Dynamic SQL, which means that queries are prepared and executed at runtime. The Management Portal
interface is intended as an aid for developing and testing SQL code against small data sets. It is not intended to be used as
an interface for SQL execution in a production environment.

The Management Portal also provides various options to configure SQL. For further details, refer to SQL configuration
settings described in Caché Advanced Configuration Settings Reference.

16.1 Management Portal SQL Facilities
Caché allows you to examine and manipulate data using SQL tools from the Caché Management Portal. The starting point
for this is the Management Portal System Explorer option. From there you select the SQL option ([System] > [SQL]). This
displays the SQL interface, which allow you to:

• Execute SQL Statements — write and run SQL statements against existing table definitions and data. You can either
write the SQL code directly into a text box (including SELECT, INSERT, UPDATE, DELETE, CREATE TABLE
and other SQL statements), retrieve a statement from the SQL history into the text box, drag and drop a table into the
text box to generate a query (SELECT statement), or compose a query (SELECT statement) using the Query Builder
interface.

• Filtering Schema Contents — on the left side of the screen display the SQL schemas for the current namespace or a
filtered subset of these schemas, with each schema’s tables, views, procedures, and cached queries. You can select an
individual table, view, procedure, or cached query to display its Catalog Details.

• Wizards — execute a wizard to perform data import, data export, or data migration. Execute a wizard to link to tables
or views or to link to stored procedures. Execute a wizard to map FileMan files to InterSystems classes.

• Actions — define a view; print out the details of a table definition; improve the performance of a query by running
Tune Table and/or rebuilding indices; or perform clean up by purging unwanted cached queries and/or dropping
unwanted table, view, or procedure definitions.

• Open Table — display the current data in the table in Display mode. This is commonly not the complete data in the
table: both the number of records and the length of data in a column are restricted to provide a manageable display.

• Documentation — Allows you to view the list of SQL error codes and the list of SQL reserved words. If you select a
table, allows you display Class Documentation (the Class Reference page for that table).

Using Caché SQL 153

16.1.1 Selecting a Namespace

All SQL operations occur within a specific namespace. Therefore, you must first specify which namespace you wish to
use by clicking the Switch option at the top of the SQL interface page. This displays the list of available namespaces, from
which you can make your selection.

You can set your Management Portal default namespace. From the Management Portal select System Administration,
Security, Users ([System] > [Security Management] > [Users]). Click the name of the desired user. This allows you to edit
the user definition. From the General tab, select a Startup Namespace from the dropdown list. Click Save.

16.2 Executing SQL Statements
From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces. To execute an SQL query, there are three options:

• Execute Query: write and execute an SQL statement. The SQL statement can be a SELECT query, or it can be a Caché
SQL DDL or DML statement; the statement is validated on the Caché server when it executes.

• Show History: recall a previously run SQL statement, and either re-run it, or modify it and then run it. All executed
statements are listed, including those that did not successfully execute.

• Query Builder: invoke the SQL Query Builder (which is exclusively for creating SELECT statements). Within the
SQL Query Builder, create an SQL SELECT query by choosing tables, columns, WHERE clause predicates, and other
query components. You can then run the query by clicking Execute Query.

16.2.1 Writing SQL Statements

The Execute Query text box allows you to write not only SELECT queries, but most SQL statements, including DDL
statements such as CREATE TABLE, and DML statements such as INSERT, UPDATE, and DELETE.

Query execution supports the execution of queries that return multiple result sets. It also support execution of the CALL
statement.

The SQL code area supports ? input parameters. If you specify input parameters, such as TOP ? or WHERE Age BETWEEN
? AND ?, the Execute button displays the Enter Parameter Value for Query window, with entry fields for each input
parameter in the order specified in the query. For further details on ? input parameters, refer to Executing an SQL Statement
in the “Using Dynamic SQL” chapter of this manual.

The SQL code area supports whitespace characters: multiple blank spaces, single and multiple line returns. The tab key is
disabled; when copying code into the SQL code area, existing tabs are converted to single blank spaces. Line returns and
multiple blank spaces are not retained.

The SQL code area supports single-line and multiline comments. Comments are retained and shown in the Show History
and Show Plan displays, but not in Cached Queries.

The SQL code area does not colorize SQL text or provide any syntax or existence validation. However, it does provide
automatic spelling verification.

16.2.2 Table Drag and Drop

You can generate a query by dragging a table (or view) from the Tables list (or Views list) on the left side of the screen
and dropping it into the Execute Query text box. This generates a SELECT with a select-item list of all of the non-hidden

154 Using Caché SQL

Using the Management Portal SQL Interface

fields in the table and a FROM clause specifying the table. You can then further modify this query and execute it using the
Execute button.

You can also drag and drop a procedure name from the Procedures list on the left side of the screen.

16.2.3 Execute Query Options

The SQL execution interface has the following options:

• The Display Mode drop-down list with a SELECT specifies the format that the query should use to supply data values
(for example, in the WHERE clause) and to display data values in the query result set. The options are Logical Mode
(the default), ODBC Mode, and Display Mode. For further details on these options, refer to “Data Display Options”
in the “Caché SQL Basics” chapter of this book.

The Display Mode drop-down list with an INSERT or UPDATE allows you to specify whether input data will be
converted from display format to logical storage format. For this data conversion to occur, the SQL code must have
been compiled with a select mode of RUNTIME. At execution time, the Display Mode drop-down list must be set to
LOGICAL (the default). For further details, refer to the INSERT or UPDATE statement in the Caché SQL Reference.

Display Mode is meaningful for data types whose Logical storage format differs from the desired display format, such
as Caché dates and times and Caché %List structured data.

• The Max field allows you to limit how many rows of data to return from a query. It can be set to any positive integer,
including 0. Once you set Max, that value is used for all queries for the duration of the session, unless explicitly changed.
The default is 1000. The maximum value is 100,000, which is the default if you enter no value (set Max to null), enter
a value greater than 100,000, or a non-numeric value. You can also limit the number of rows of data to return by using
a TOP clause. Max has no effect on other SQL statements, such as DELETE.

• The Show Plan button displays the Query Text and the Query Plan including the relative cost (overhead) of the query
that is currently in the page’s text box. You can invoke Show Plan from either the Execute Query or Show History

interface. You do not have to execute a query to show its query plan. Show Plan displays an SQLCODE when invoked
for an invalid query.

If you click the more option, the SQL execution interface displays the following additional options:

• Dialect: the dialect of SQL code. Available values are Cache, Sybase, and MSSQL. The default is Cache. Sybase and
MSSQL are described in the Caché Transact-SQL (TSQL) Migration Guide .

• Row Number: a check box specifying whether to include a row count number for each row in the result set display.
Row Number is a sequential integer assigned to each row in the result set. This is simply a numbering of the returned
rows, it does not correspond either the RowID or the %VID. The row number column header name is #. The default
is to display row numbers.

16.2.4 SQL Statement Results

After writing SQL code in the Execute Query text box, you can execute the code by clicking the Execute button. This either
successfully executes the SQL statement and displays the results below the code window, or the SQL code fails and it displays
an error message (in red) below the code window.

• If successful, it displays performance information and the name of the cached query routine. If there is resulting data
to display, this appears below the performance information. The execution information includes the Row count, the
Performance, the Cached Query showing the cached query name, and Last update specifying the timestamp
for the last execution of the query. It also provides a Print link to print the query text and/or the query results.

– Row count: For a DDL statement such as CREATE TABLE, displays Row count: 0 if the operation was
successful; displays no value for Row count if the operation failed. For a DML statement such as INSERT,
UPDATE, or DELETE, displays the number of rows affected.

Using Caché SQL 155

Executing SQL Statements

For a SELECT, displays the number of rows returned as a result set. Note that the number of rows returned is
governed by the Max setting, which may be lower than the number of rows which could have been selected. For
multiple result sets, the number of rows for each result set are listed, separated by the / character. A query that
specifies one or more aggregate functions (and no selected fields) always displays Row count: 1 and returns
the results of expressions, subqueries, and aggregate functions, even if the FROM clause table contains no rows.
A query that specifies no aggregate functions and selects no rows always displays Row count: 0 and returns
no results, even if the query specifies only expressions and subqueries that do not reference the FROM clause
table. A query with no FROM clause always displays Row count: 1 and returns the results of expressions,
subqueries, and aggregate functions.

– Performance: measured in elapsed time (in fractional seconds), total number of global references, total number
of lines executed, and disk read latency (in milliseconds).

– Cached Query: the automatically generated cached query routine name. For example, %sqlcq.SAMPLES.cls2
indicating the second cached query in the SAMPLES namespace. Each new query is assigned a new cached query
routine name with the next consecutive integer. By clicking this cached query name, you can display information
about the cached query and further links to display its Show Plan or to Execute the cached query.

Closing the Management Portal or stopping Caché does not delete cached queries or reset cached query routine
numbering. To purge cached queries from the current namespace, invoke the %SYSTEM.SQL.Purge() method.

Not all SQL statements result in a cached query. A query that is the same as an existing cached query, except for
literal substitution values (such as the TOP clause value and predicate literals) does not create a new cached query.
Some SQL statements are not cached, including DDL statements and privilege assignment statements. Non-query
SQL statements, such as CREATE TABLE, also display a Routine name. However, this cached query routine
name is created then immediately deleted; the next SQL statement (query or non-query) reuses the same routine
name.

– Last update: the date and time that the last Execute Query (or other SQL operation) was performed. This
timestamp is reset each time the query is executed, even when repeatedly executing the identical query.

• If unsuccessful, it displays an error message. You can click the Show Plan button to display the corresponding SQLCODE
error value and message.

The result set is returned as a table with a row counter displayed as the first column (#), if the Row Number box is checked.
The remaining columns are displayed in the order specified. The RowID (ID field) may be displayed or hidden. Each column
is identified by the column name (or the column alias, if specified). An aggregate, expression, subquery, host variable, or
literal SELECT item is identified by the word Aggregate_, Expression_, Subquery_, HostVar_, or Literal_
followed by the SELECT item sequence number (or by a column alias, if specified).

If a row column contains no data (NULL) the result set displays a blank table cell. Specifying an empty string literal displays
a HostVar_ field with a blank table cell. Specify NULL displays a Literal_ field with a blank table cell.

16.2.5 Show History

Click Show History to list prior SQL statements executed during the current session. Show History lists all SQL statements
invoked from this interface, both those successfully executed and those whose execution failed. By default, SQL statements
are listed by Execution Time, with the most recently executed appearing at the top of the list. You can click on any of the
column headings to order the SQL statements in ascending or descending order by column values. Executing an SQL
Statement from the Show History listing updates its Execution Time (local date and time stamp), and increments its Count
(number of times executed).

You can filter the Show History listing, as follows: in the Filter box specify a string then press the Tab key. Only those history
items that contain that string will be included in the refreshed listing. The filter string can either be a string found in the
SQL Statement column (such as a table name), or it can be a string found in the Execution Time column (such as a date).
The filter string is not case-sensitive. A filter string remains in effect until you explicitly change it.

156 Using Caché SQL

Using the Management Portal SQL Interface

You can modify and execute an SQL statement from Show History by selecting the statement, which causes it to be displayed
in the Execute Query text box. In Execute Query you can modify the SQL code and then click Execute. Making any change
to an SQL statement retrieved from Show History causes it to be stored in Show History as a new statement; this include
changes that do not affect execution, such as changing letter case, whitespace, or comments. Whitespace is not shown in
Show History, but it is preserved when an SQL statement is retrieved from Show History.

You can execute (re-run) an unmodified SQL statement directly from the Show History list by clicking the Execute button
found to the right of the SQL statement in the Show History listing.

Note that the Show History listing is not the same as the list of cached queries. Show History lists all invoked SQL statements
from the current session, including those that failed during execution.

16.2.6 Other SQL Interfaces

Caché supports numerous other ways to write and execute SQL code, as described in other chapters of this manual. These
include:

• Embedded SQL: SQL code embedded within ObjectScript code.

• Dynamic SQL: using %SQL.Statement class methods (or other result set class methods) to execute statements from
within ObjectScript or Caché Basic code.

• SQL Shell: executing Dynamic SQL from the Terminal using the SQL Shell interface.

16.3 Filtering Schema Contents
The left side of the Management Portal SQL interface allows you to view the contents of a schema (or multiple schemas
that match a filter pattern).

1. Specify which namespace you wish to use by clicking the Switch option at the top of the SQL interface page. This
displays the list of available namespaces, from which you can make your selection.

2. Apply a Filter or select a schema from the Schema drop-down list.

You can use the Filter field to filter the lists by typing a search pattern. You can filter for schemas, or for
table/view/procedure names (items) within a schema or within multiple schemas. A search pattern consists of the name
of a schema, a dot (.), and the name of an item — each name composed of some combination of literals and wildcards.
Literals are not case-sensitive. The wildcards are:

• asterisk (*) meaning 0 or more characters of any type.

• underscore (_) meaning a single character of any type.

• an apostrophe (') inversion prefix meaning “not” (everything except).

• a backslash (\) escape character: _ means a literal underscore character.

For example, S* returns all schemas that begin with S. S*.Person returns all Person items in all schemas that begin
with S. *.Person* returns all items that begin with Person in all schemas. You can use a comma-separated list of
search patterns to select all items that fulfil any one of the listed patterns (OR logic). For example,
.Person,*.Employee* selects all Person and Employee items in all schemas.

To apply a Filter search pattern, click the refresh button, or press the Tab key.

A Filter search pattern remains in effect until you explicitly change it. The “x” button to the right of the Filter field
clears the search pattern.

Using Caché SQL 157

Filtering Schema Contents

3. Selecting a schema from the Schema drop-down list overrides and resets any prior Filter search pattern, selecting for
a single schema. Specifying a Filter search pattern overrides any prior Schema.

4. Optionally, use the drop-down “applies to” list to specify which categories of item to list: Tables, Views, Procedures,
Cached Queries, or all of the above. The default is All. Any category that was specified in the “applies to” drop-down
list is limited by Filter or Schema. Those categories not specified in “applies to” continue to list all of the items of that
category type in the namespace.

5. Optionally, click the System check box to include system items (items whose names begin with %). The default is to
not include system items.

6. Expand the list for a category to list its items for the specified Schema or specified Filter search pattern. When you
expand a list, any category that contains no items does not expand.

7. Click on an item in an expanded list to display its Catalog Details on the right side of the SQL interface.

If the selected item is a Table or a Procedure, the Catalog Details Class Name information provides a link to the corre-
sponding Class Reference documentation.

16.3.1 Browse Tab

The Browse tab provides a convenient way to quickly view all the schemas in a namespace, or a filtered subset of the
schemas in the namespace. You can select Show All Schemas or Show Schemas with Filter, which applies the filter specified
on the left side of the Management Portal SQL interface. By clicking on the Schema Name heading, you can list the schemas
in ascending or descending alphabetical order.

Each listed schema provides links to lists of its associated Tables, Views, Procedures, and Queries (cached queries). If the
schema has no items of that type, a hyphen (rather than a named link) is shown in that schema list column. This enables
you to quickly get information about the contents of schemas.

Clicking a Tables, Views, Procedures, or Queries link displays a table of basic information about those items. By clicking
on a table heading, you can sort the list by that column’s values in ascending or descending order. The Procedures table
always includes Extent procedures, regardless of the Procedures setting on the left side of the Management Portal SQL
interface.

You can get more information on individual Tables, Views, Procedures, and Cached Queries using the Catalog Details tab.
Selecting a Table or View from the Browse tab does not activate the Open Table link for that table.

16.3.2 Catalog Details Tab

The Management Portal provides Catalog Details information for each Table, View, Procedure, and Cached Query. The
filtering schema contents (left side) component of the Management Portal SQL interface allows you to select an individual
item to display its Catalog Details.

The following Catalog Details options are provided for each table:

• Table Info: Table Type: either TABLE, GLOBAL TEMPORARY, or SYSTEM TABLE (system tables are only displayed
if the System check box is selected), Owner name, Last Compiled timestamp, External and Readonly boolean values,
Class Name, Extent Size, the name of the Child Table(s) and/or the Parent Table (if relevant) and one or more References
fields to other tables (if relevant), whether it uses the %CacheStorage default storage class, and whether it Supports
Bitmap Indices.

Class Name is a link to the corresponding entry in the InterSystems Class Reference documentation. References only
appears in Table Info if there is one or more references from a field in the current table to another table. These references
to other tables are listed as links to the Table Info for the referenced table.

This option also provides a modifiable value for the Number of rows to load when table is opened. This sets the maximum
number of rows to display in Open Table. The available range is from 1 to 10,000; the default is 100. The Management

158 Using Caché SQL

Using the Management Portal SQL Interface

Portal corrects a value outside the available range to a valid value: 0 corrects to 100; a fractional number rounds up to
the next higher integer; a number greater than 10,000 corrects to 10,000.

• Fields: a list of the fields in the table showing: Field Name, Datatype, Column #, Required, Unique, Collation, Hidden,
MaxLen, MaxVal, MinVal, Stream, Container, xDBC Type, Reference To, Version Column, Selectivity, Outlier
Selectivity, Outlier Value, and Average Field Size.

• Maps/Indices: a list of the indices defined for the table showing: Index Name, SQL Map Name, Columns, Type, Block
Count, Map Inherited. A generated SQL Map Name is the same as the Constraint Name, and follows the same naming
conventions (described below). The corresponding generated Index Name does not contain the underscore character.
The Block Count contains both the count and how that count was determined: set explicitly by the class author (Defined),
computed by TuneTable (Measured), or estimated by the class compiler (Estimated). If Map Inherited? is Yes, this map
was inherited from a superclass.

This option also provides a link for each index to rebuild the index.

• Triggers: a list of the triggers defined for the table showing: Trigger Name, Time Event, Order, Code.

• Constraints: a list of the constraints for fields of the table showing: Constraint Name, Constraint Type, and Constraint
Data (field name(s) listed in parentheses). Constraints include primary key, foreign key, and unique constraints. A
primary key is, by definition, unique; it is only listed once. This option list constraints by constraint name; a constraint
involving multiple fields is listed once with Constraint Data displaying a comma-separated list of the component fields.
The Constraint Type can be UNIQUE, PRIMARY KEY, Implicit PRIMARY KEY, FOREIGN KEY, or Implicit
FOREIGN KEY.

You can also list constraints by invoking INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE. This list con-
straints by field name. The following example returns the name of the field and the name of the constraint for all
UNIQUE, PRIMARY KEY, FOREIGN KEY and CHECK constraints:

SELECT Column_Name,Constraint_Name FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE WHERE
TABLE_SCHEMA='Sample' AND TABLE_NAME='Person'

If the table is defined with %PUBLICROWID and no explicit primary key is defined, the RowID field is listed with
a Constraint Type of Implicit PRIMARY KEY with the Constraint Name RowIDField_As_PKey.

For explicit constraints, the Constraint Name is generated as follows:

– Constraint specified in the field definition: For example, FullName VARCHAR(48) UNIQUE or FullName
VARCHAR(48) PRIMARY KEY. The Constraint Name value for the field is a generated value with the syntax
TABLENAME_CTYPE#, where CTYPE is UNIQUE, PKEY, or FKEY, and # is a sequential integer assigned to
unnamed constraints in the order specified in the table definition. For example, if FullName has the 2nd unnamed
unique constraint (excluding the ID field) in the MyTest table, the generated Constraint Name for FullName would
be MYTEST_UNIQUE2; if FullName is the primary key and the 3rd unnamed constraint (excluding the ID field)
specified in the MyTest table, the generated Constraint Name for FullName would be MYTEST_PKEY3.

– CONSTRAINT keyword named constraint clause: For example, CONSTRAINT UFullName
UNIQUE(FirstName,LastName) or CONSTRAINT PKName PRIMARY KEY(FullName)), the Constraint
Name is the specified unique constraint name. For example, FirstName and LastName in the MyTest table would
each have the Constraint Name UFullName; FullName would have the Constraint Name PKName.

– Unnamed constraint clause: For example, UNIQUE(FirstName,LastName) or PRIMARY KEY (FullName).
the Constraint Name value is a generated value with the syntax TABLENAMECType#, where CType is Unique,
PKey, or FKey, and # is a sequential integer assigned to unnamed constraints in the order specified in the table
definition. For example, if FirstName and LastName have the 2nd unnamed unique constraint (excluding the ID
field) in the MyTest table, the generated Constraint Name for FirstName and LastName would be MYTESTUnique2;
if FullName is the primary key and the 3rd unnamed constraint (excluding the ID field) specified in the MyTest
table, the generated Constraint Name for FullName would be MYTESTPKey3. (Note mixed uppercase/lowercase
and absence of an underscore.)

Using Caché SQL 159

Filtering Schema Contents

If a field is involved in more than one uniqueness constraint, it is listed separately for each Constraint Name.

• Cached Queries: a list of the cached queries for the table showing: Routine name, Query text, Creation Time, Source,
Query Type.

• Table’s SQL Statements: a list of the SQL Statements generated for this table.

Management Portal SQL interface also provides Catalog Details for views, procedures, and cached queries:

• View Info provides an option to edit the view definition.

• Stored Procedure Info provides a option to view the corresponding class document, and an option to interactively run
the procedure.

• Cached Query provides the full text of the query, an option to show the query execution plan, and an option to interac-
tively execute the cached query.

16.3.3 Open Table

If you select a table or view on the left side of the Management Portal SQL interface, the Catalog Details for that table or
view are displayed. The Open Table link at the top of the page also becomes active. Open Table displays the actual data in
the table (or accessed via the view). The data is shown in Display format.

By default, the first 100 rows of data are displayed; this default is modifiable by setting the Number of rows to load when

table is opened in the Catalog Details tab Table Info. If there are more rows in the table than this number of rows to load
value, the More data... indicator is shown at the bottom of the data display. If there are fewer rows in the table than
this number of rows to load value, the Complete indicator is shown at the bottom of the data display.

If the data in a column is too long to be displayed, the first 100 characters of the data for that column are displayed followed
by an ellipsis (...) indicating additional data.

A column of data type %Stream.GlobalCharacter displays the actual data (up to 100 characters) as a string. A column of
data type %Stream.GlobalBinary displays as <binary>.

16.4 Actions
• Create View — Displays a page for creating a view. Instructions for using this option are provided in the “Defining

and Using Views” chapter of this book.

• Print Catalog — Allows you to print complete information about a table definition. Clicking Print Catalog displays a
print preview. By clicking Indices, Triggers, and/or Constraints on this print preview you can include or exclude this
information from the catalog printout.

• Purge Cached Queries — Provides three options for purging cached queries: purge all cached queries for the current
namespace, purge all cached queries for the specified table, or purge only selected cached queries.

• Tune Table Information — Run the Tune Table facility against the selected table. This calculates the selectivity of each
table column against the current data. A selectivity value of 1 indicates a column that defined as unique (and therefore
has all unique data values). A selectivity value of 1.0000% indicates a column not defined as unique for which all
current data values are unique values. A percentage value greater that 1.0000% indicates the relative number of
duplicate values for that column in the current data. By using these selectivity values you can determine what indexes
to define and how to use these indexes to optimize performance.

• Tune all tables in schema — Run the Tune Table facility against all of the tables belonging to a specified schema in
the current namespace.

160 Using Caché SQL

Using the Management Portal SQL Interface

• Rebuild Table’s Indices — Rebuild all indexes for the specified table.

• Drop this item — Drop (delete) the specified table definition, view definition, procedure, or cached query. You must
have the appropriate privileges to perform this operation. Drop cannot be used on a table created by defining a persistent
class, unless the table class definition includes [DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300
error with the %msg DDL not enabled for class 'Schema.tablename'.

If a class is defined as a linked table, the Drop action drops the linked table on the local system, even if the linked table
class is not defined as DdlAllowed. Drop does not drop the actual table this link references that resides on the server.

16.5 Wizards
• Data Import Wizard — Runs a wizard to Import data from a text file into a Caché class.

• Data Export Wizard — Runs a wizard to export data from a Caché class into a text file.

• Data Migration Wizard — Runs a wizard to migrate data from an external source and create a Caché class definition to
store it.

• Link Table Wizard — Runs a wizard to link to tables or views in external sources as if it were native Caché data.

• Link Procedure Wizard — Runs a wizard to link to procedures in external sources.

• FileMan Wizard — Runs a wizard to map FileMan files to InterSystems classes.

Using Caché SQL 161

Wizards

17
Importing SQL Code

This chapter describes how to import SQL code from a text file into Caché SQL. When you import SQL code, Caché prepares
and executes each line of SQL using the %Library.ResultSet dynamic SQL class. If it encounters a line of code it cannot
parse, SQL import skips over that line of code and continues to prepare and execute subsequent lines until it reaches the
end of the file. All SQL code import operations import to the current namespace.

SQL Import is primarily used to import Data Definition Language (DDL) statements, such as CREATE TABLE, and to
populate tables using INSERT, UPDATE, and DELETE statements. SQL import does prepare and execute SELECT
statements, but does not create a result set.

SQL import can be used to import Caché SQL code. It can also be used for code migration, to import SQL code from other
vendors (FDBMS, Informix, Interbase, MSSQLServer, MySQL, Oracle, Sybase). Code from other vendors is converted
to Caché SQL code and executed. SQL import cannot import all SQL statements into Caché SQL. It imports those statements
and clauses that are compatible with the Caché implementation of the SQL standard. Incompatible features are commonly
parsed, but ignored.

Successfully executed SQL statements create a corresponding cached query, where appropriate.

You perform SQL code import by invoking the appropriate method from the %SYSTEM.SQL class. When importing SQL
code, these methods can create two other files: an Errors.log file which records errors in parsing SQL statements, and an
Unsupported.log file, which contains the literal text of lines that the method does not recognize as an SQL statement.

This chapter describes importing different types of SQL code:

• Importing Caché SQL

• Importing non-Caché SQL: FDBMS, Informix, Interbase, MSSQLServer, MySQL, Oracle, Sybase

For further details on %Library.ResultSet refer to “Dynamic SQL Using %Library.ResultSet” .

17.1 Importing Caché SQL
You can import Caché SQL code from a text file using either of the following methods:

• DDLImport() is a general-purpose SQL import method. This method runs as a background (non-interactive) process.
To import Caché SQL you specify “CACHE” as the first parameter.

• Cache() is a Caché SQL import method. This method runs interactively from the Terminal. It prompts you to specify
the location of the import text file, the location to create the Errors.log file and the Unsupported.log file, and other
information.

Using Caché SQL 163

The following example imports the Caché SQL code file mysqlcode.txt, executing its SQL statements in the current
namespace:

 DO $SYSTEM.SQL.DDLImport("CACHE","glenn","c:\temp\mysqlcode.txt",,1)

By default, DDLImport() creates an errors log file. This example creates a file named mysqlcode_Errors.log in the
same directory as the SQL code file. The fifth parameter is a boolean specifying whether or not to create a file that lists
unsupported statements. The default is 0. In this example, the fifth parameter is set to 1, creating a file named
mysqlcode_Unsupported.log in the same directory as the SQL code file. These log files are created even when there
is nothing written to them.

17.1.1 Import File Format

An SQL text file must be an unformatted file such as a .txt file. Each SQL statement must begin on its own line. An SQL
statement may be broken into multiple lines and indentation is permitted. By default, each SQL statement must be followed
by a GO statement on its own line.

The following is an example of a valid Caché SQL import file text:

CREATE TABLE Sample.MyStudents (StudentName VARCHAR(32),
StudentDOB DATE)
GO
 INSERT INTO Sample.MyStudents (StudentName,StudentDOB) SELECT Name,
 DOB FROM Sample.Person WHERE Age <= '21'
GO
INSERT INTO Sample.MyStudents (StudentName,StudentDOB)

VALUES ('Jones,Mary',60123)
GO
INSERT OR UPDATE INTO Sample.MyStudents (StudentName,StudentDOB) VALUES ('Smith-Jones,Mary',60123)
GO
DELETE FROM Sample.MyStudents WHERE StudentName %STARTSWITH 'A'
GO
SELECT TOP 5 * FROM Sample.MyStudents
GO

By setting the DDLImport("CACHE") deos seventh parameter, this method can accept (but does not require) a specified
end-of-statement delimiter, commonly a semicolon (;), at the end of each SQL statement. The default is to not support an
end-of-statement delimiter. The “GO” statement on the line following an SQL statement is always supported, but is not
required if deos specifies an end-of-statement delimiter.

17.1.2 Supported SQL Statements

Not all valid Caché SQL code statements can be imported. The following is a list of supported Caché SQL commands:

• CREATE TABLE, ALTER TABLE, DROP TABLE

• CREATE VIEW, ALTER VIEW, DROP VIEW

• CREATE INDEX all index types, except bitslice

• CREATE USER, DROP USER

• CREATE ROLE

• GRANT, REVOKE

• INSERT, UPDATE, INSERT OR UPDATE, DELETE

• SET OPTION

• SELECT for optimizer plan mode only

164 Using Caché SQL

Importing SQL Code

17.2 Code Migration: Importing non-Caché SQL
You can import SQL code that is in the SQL format used by other vendors. Code from other vendors is converted to Caché
SQL code and executed. The following methods are provided:

• DDLImport() is a general-purpose SQL import method. This method runs as a background (non-interactive) process.
To import SQL in a specific format you specify the name of that format as the first parameter: FDBMS, Informix,
Interbase, MSSQLServer, MySQL, Oracle, or Sybase.

• Individual interactive methods are provided to import the following types of SQL: FDBMS(), Informix(), Interbase(),
MSSQLServer(), Oracle(), and Sybase(). These methods runs interactively from the Terminal. It prompts you to
specify the location of the import text file, the location to create the Errors.log file and the Unsupported.log file, and
other information.

• DDLImportDir() allow you to import SQL code from multiple files in a directory. This method runs as a background
(non-interactive) process. It supports Informix, MSSQLServer, and Sybase. All files to be imported must have a .sql
extension suffix.

• ImportDir() allow you to import SQL code from multiple files in a directory. Provides more options than
DDLImportDir(). This method runs as a background (non-interactive) process. It supports MSSQLServer, and Sybase.
You can specify a list of allowed file extension suffixes.

Using Caché SQL 165

Code Migration: Importing non-Caché SQL

18
Using Triggers

This chapter describes how you can define triggers in Caché SQL. Triggers are lines of code that are executed in response
to certain SQL events. This chapter includes the following topics:

• Defining Triggers

• Types of Triggers

• How Trigger Code Works

• Triggers and Object Access

• Triggers and Transactions

18.1 Defining Triggers
There are several ways to define a trigger for a specific table:

• Use Studio to add an SQL trigger definition to the class definition that corresponds to the table. For example, this
definition of the MyApp.Person class includes a definition of the LogEvent trigger, which is invoked after each call to
INSERT:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{
 // ... Definitions of other class members

 /// This trigger updates the LogTable after every insert
 Trigger LogEvent [Event = INSERT, Time = AFTER]
 {
 // get row id of inserted row
 NEW id
 SET id = {ID}

 // INSERT value into Log table
 &sql(INSERT INTO LogTable
 (TableName, IDValue)
 VALUES ('MyApp.Person', :id))
 }
 // ... Definitions of other class members

}

• Using the DDL CREATE TRIGGER command to create a trigger.

Note: This chapter describes Caché SQL triggers. Caché MultiValue triggers are completely separate from Caché SQL
triggers. An SQL update will not fire a MultiValue trigger; a MultiValue update will not fire an SQL trigger.

Using Caché SQL 167

The maximum number of user-defined triggers for a class is 200.

Note: Caché SQL does not support triggers on tables projected by collections. A user cannot define such a trigger, and
the projection of a collection as a child table does not consider triggers involving that base collection.

18.2 Types of Triggers
A trigger is defined by the following:

• The type of event that causes it to execute. A trigger may be either a single-event trigger or a multiple-event trigger.
A single-event trigger is defined to execute when an INSERT, an UPDATE, or a DELETE event occurs on the specified
table. A multiple-event trigger is defined to execute when any one of the multiple specified events occurs on the
specified table. You can define an INSERT/UPDATE, an UPDATE/DELETE, or an INSERT/UPDATE/DELETE
multiple-event trigger. The type of event is specified in a class definition by the required Event trigger keyword.

• The time that the trigger executes: Before or After the event occurs. This is specified in a class definition by the optional
Time trigger keyword. The default is Before.

• You can associate multiple triggers with the same event and time; in this case, you can control the order in which
multiple triggers are fired using the Order trigger keyword. Triggers with a lower Order value are fired first. If multiple
triggers have the same Order value, then the order in which they are fired is not specified.

• The optional Foreach trigger keyword provides additional granularity. This keyword controls whether the trigger is
fired once per row (Foreach = row), once per row or object access (Foreach = row/object), or once per
statement (Foreach = statement). A trigger defined with no Foreach trigger keyword is fired once per row. If a
trigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access,
as described later in this chapter.

For a full list of trigger keyword, see the Class Definition Reference.

The following are the available triggers:

• BEFORE INSERT (provides equivalent functionality to the %OnBeforeSave callback; that is, equivalent to
%OnBeforeSave)

• AFTER INSERT (equivalent to %OnAfterSave)

• BEFORE UPDATE (equivalent to %OnBeforeSave)

• AFTER UPDATE (equivalent to %OnAfterSave)

• BEFORE UPDATE OF specified column(s)

• AFTER UPDATE OF specified column(s)

• BEFORE DELETE (equivalent to %OnDelete)

• AFTER DELETE

Note: When a trigger is executed, it cannot directly modify the value of a property in the table that is being processed.
This is because InterSystems IRIS executes trigger code after field (property) value validation code. For example,
a trigger cannot set a LastModified field to the current timestamp in the row being processed. However, the trigger
code can issue an UPDATE to a field value in the table. The UPDATE performs its own field value validation.

For further details, refer to CREATE TRIGGER in the InterSystems SQL Reference.

168 Using Caché SQL

Using Triggers

18.2.1 AFTER Triggers

An AFTER trigger executes after an INSERT, UPDATE, or DELETE event occurs:

• If SQLCODE=0 (event completed successfully) Caché executes the AFTER trigger.

• If SQLCODE is a negative number (event failed) Caché does not executes the AFTER trigger.

• If SQLCODE=100 (no row was found to insert, update, or delete) Caché executes the AFTER trigger.

18.2.2 Recursive Triggers

Caché prevents an AFTER trigger from being executed recursively. For example, if table T1 has a trigger that performs an
insert into table T2 and table T2 has a trigger that performs an insert into table T1. Caché will not issue an AFTER trigger
if it detects that the trigger has been called previously in the execution stack. No error is issued; the trigger is simply not
executed a second time.

Caché does not prevent a BEFORE trigger from being executed recursively. It is the programmer’s responsibility to handle
BEFORE trigger recursion. A runtime <FRAMESTACK> error may occur if the BEFORE trigger code does not handle
recursive execution.

18.3 How Trigger Code Works
Each trigger contains one or more lines of code that perform a triggered action. This code is invoked by the SQL Engine
whenever the event associated with the trigger occurs. If the trigger is defined using CREATE TRIGGER, this action code
can be written in either ObjectScript or SQL. (Caché converts code written in SQL to ObjectScript in the class definition.)
If the trigger is defined using Studio, this action code must be written in ObjectScript.

Within trigger code, you can refer to field values (for the fields belonging to the table the trigger is associated with) using
a special {field_name} syntax. For example, the following definition of the LogEvent trigger in the MyApp.Person class
includes a reference to the ID field, as {ID}:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{
 // ... Definitions of other class members

 /// This trigger updates the LogTable after every insert
 Trigger LogEvent [Event = INSERT, Time = AFTER]
 {
 // get row id of inserted row
 NEW id
 SET id = {ID}

 // INSERT value into Log table
 &sql(INSERT INTO LogTable
 (TableName, IDValue)
 VALUES ('MyApp.Person', :id))
 }
 // ... Definitions of other class members

}

If trigger code succeeds, it sets %ok=1. If trigger code fails, it sets %ok=0. If INSERT or UPDATE trigger code fails and
there is a foreign key constraint defined for the table, Caché releases the lock on the corresponding row in the foreign key
table.

Using Caché SQL 169

How Trigger Code Works

Note: Because the code for a trigger is not generated as a procedure, all local variables in a trigger are public variables.
This means all variables in triggers should be explicitly declared with a NEW statement; this protects them from
conflicting with variables in the code that invokes the trigger.

You can issue an error from trigger code by setting the %ok variable to 0. This creates a runtime error that aborts
execution of the trigger. Trigger code can also set the %msg variable to a string describing the cause of the runtime
error.

The trigger code can also refer to the variable %oper, which contains the name of the event that fired the trigger (INSERT,
UPDATE, or DELETE).

18.3.1 Macros within Trigger Code

Your trigger code can contain a macro definition that references a field name (using {field_name} syntax). However, if
your trigger code contains a #Include preprocessor directive for a macro that references a field name (using {field_name}
syntax), the field name cannot be accessed. This is because Caché translates {field_name} references in the trigger code
before the code is passed to the macro preprocessor. If a {field_name} reference is in the #Include file, it is not “seen” in
the trigger code, and is therefore not translated.

The work-around for this situation is to define the macro with an argument, then pass the {field_name} in to the macro in
the trigger. For example, the #Include file could contain a line such as the following:

#Define dtThrowTrigger(%val) SET x=$GET(%val,"?")

And then within the trigger invoke the macro supplying the {field_name} syntax as an argument:

 $$$dtThrowTrigger({%%ID})

18.3.2 {name*O}, {name*N}, and {name*C} Trigger Code Syntax

Three syntax shortcuts are available in UPDATE trigger code.

You can reference the old (pre-update) value using the following syntax:

{fieldname*O}

where fieldname is the name of the field and the character after the asterisk is the letter “O” (for Old). For an INSERT
trigger, {fieldname*O} is always the empty string ("").

You can reference the new (post-update) value using the following syntax:

{fieldname*N}

where fieldname is the name of the field and the character after the asterisk is the letter “N” (for New). This
{fieldname*N} syntax can be used only to reference a value to be stored; it cannot be used to change the value. You
cannot set {fieldname*N} in trigger code. Computing the value of a field on INSERT or UPDATE should be achieved
by other means, such as SqlComputeOnChange.

You can test whether a field value has been changed (updated) using the following syntax:

{fieldname*C}

where fieldname is the name of the field and the character after the asterisk is the letter “C” (for Changed). {fieldname*C}
evaluates to 1 if the field has been changed and 0 if it has not been changed. For an INSERT trigger, Caché sets
{fieldname*C} to 1.

For a class with stream properties, an SQL trigger reference to the stream property {Stream*N} and {Stream*O} returns
the OID for the stream, if the SQL statement (INSERT or UPDATE) did not insert/update the stream property itself.

170 Using Caché SQL

Using Triggers

However, if the SQL statement did insert/update the stream property, {Stream*O} remains the OID, but the {Stream*N}
value is set to one of the following:

• BEFORE trigger returns the value of the stream field in whatever format it was passed to the UPDATE or INSERT.
This could be the literal data value that was entered into the stream property, or the oref or oid of a temporary stream
object.

• AFTER trigger returns the Id of the stream as the {Stream*N} value. This is the Id value Caché stored in the
^classnameD global for the stream field. This value is in the appropriate Id format based on the CLASSNAME type
parameter for the stream property.

If a stream property is updated using Caché objects, the {Stream*N} value is always an oid.

Note: For a trigger for child-tables created by an array collection of serial objects, trigger logic works with object
access/save but does not work with SQL access (INSERT or UPDATE).

18.3.3 Additional Trigger Code Syntax

Trigger code written in ObjectScript can contain the pseudo-field reference variables {%%CLASSNAME},
{%%CLASSNAMEQ}, {%%OPERATION}, {%%TABLENAME}, and {%%ID}. These pseudo-fields are translated into
a specific value at class compilation time. For further details, refer to CREATE TRIGGER in the Caché SQL Reference.

You can use class methods from within trigger code, SQL computed code, and SQL map definitions since class methods
do not depend on having an open object. You must use the ##class(classname).Methodname() syntax to invoke
a method from within trigger code. You cannot use the ..Methodname() syntax, because this syntax requires a current open
object.

You can pass the value of a field of the current row as an argument of the class method, but the class method itself cannot
use field syntax.

18.4 Triggers and Object Access
If a trigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access,
depending on the Event and Time keywords of the trigger definition, as follows:

Trigger is also called at this timeTimeEvent

Just before %Save() for a new objectBEFOREINSERT

Just after %Save() for a new objectAFTERINSERT

Just before %Save() for an existing objectBEFOREUPDATE

Just after %Save() for an existing objectAFTERUPDATE

Just before %DeleteId() for an existing objectBEFOREDELETE

Just after %DeleteId() for an existing objectAFTERDELETE

As a consequence, it is not necessary to also implement callback methods in order to keep SQL and object behavior syn-
chronized,

For information on Foreach trigger keyword, see the Caché Class Definition Reference.

Using Caché SQL 171

Triggers and Object Access

18.4.1 Not Pulling Triggers During Object Access

When saving or deleting objects in a class using %CacheSQLStorage, all statement (Foreach = statement), row
(Foreach = row), and row/object (Foreach = row/object) triggers are pulled. A trigger defined with no Foreach
trigger keyword is a row trigger. Pulling all triggers is the default behavior.

However, when saving or deleting objects in a class using %CacheSQLStorage, you can specify that only triggers defined
as Foreach = row/object should be pulled. Triggers defined as Foreach = statement or Foreach = row are
not pulled. This done by specifying the class parameter OBJECTSPULLTRIGGERS = 0. The default is OBJECTSPULL-
TRIGGERS = 1.

This parameter only applies to classes defined as using %CacheSQLStorage.

18.5 Triggers and Transactions
A trigger executes trigger code within a transaction. It sets the transaction level, then executes the trigger code. Upon suc-
cessful completion of trigger code, the trigger commits the transaction.

Note: A consequence of triggers using transactions is that if a trigger invokes code that commits a transaction, completion
of the trigger fails because the transaction level has already been decremented to 0. This situation can occur when
invoking an Ensemble Business Service.

With an AFTER INSERT statement level ObjectScript trigger, if the trigger sets %ok=0 the insert of the row fails with an
SQLCODE -131 error. Transaction rollback may occur, as follows:

• If AUTO_COMMIT=ON, the transaction for the INSERT will be rolled back.

• If AUTO_COMMIT=OFF, it is up to the application to either rollback or commit the transaction for the INSERT.

• If NO_AUTO_COMMIT mode was used, no transaction was started, so the INSERT cannot be rolled back.

The AUTO_COMMIT mode is established using the SET TRANSACTION %COMMITMODE option, or the
$SYSTEM.SQL.SetAutoCommit() method.

The trigger can set an error message in the %msg variable in the trigger. This message will be returned to the caller, giving
information why the trigger failed.

The %ok and %msg system variables are described in the System Variables section of the “Using Embedded SQL”
chapter of this manual.

18.6 Listing Triggers
You can use the INFORMATION.SCHEMA.TRIGGERS class to list the currently defined triggers. This class lists for each
trigger the name of the trigger, the associated schema and table name, and the trigger creation timestamp. For each trigger
it lists various properties, including the the EVENTMANIPULATION property (INSERT, UPDATE, DELETE,
INSERT/UPDATE, INSERT/UPDATE/DELETE), the ACTIONTIMING property (BEFORE, AFTER), and the
ACTIONSTATEMENT property, which is the generated SQL trigger code.

172 Using Caché SQL

Using Triggers

19
Defining and Using Stored Procedures

This chapter describes how to define and use stored procedures in Caché SQL. It discusses the following:

• An overview of the types of stored procedures

• How to define stored procedures

• How to use stored procedures

• How to list stored procedures and their properties.

19.1 Overview
Like most relational database systems, Caché allows you to create SQL stored procedures. A Stored Procedure (SP) provides
a callable routine that is stored in the database and can be invoked within an SQL context (for example, by using the CALL
statement or via ODBC or JDBC).

Unlike relational databases, Caché lets you define stored procedures as methods of classes. In fact, a stored procedure is
nothing more than a class method that is made available to SQL. Within a stored procedure, you can use the full range of
Caché object-based features.

• You can defined a stored procedure as a query that returns a single result set of data by querying the database.

• You can define a stored procedure as a function procedure that can serve as a user-defined function, returning a single
value.

• You can define a stored procedure as a method that can modify the database data and return either a single value or
one or more result sets.

You can determine if a procedure already exists using the $SYSTEM.SQL.ProcedureExists() method. This method also
returns the procedure type: “function” or “query”.

19.2 Defining Stored Procedures
As with most aspects of Caché SQL, there are two ways of defining stored procedures: using DDL and using classes. These
are described in the following sections.

Using Caché SQL 173

19.2.1 Defining a Stored Procedure Using DDL

Caché SQL supports the following commands to create a query:

• CREATE PROCEDURE can create a query that is always projected as a stored procedure. A query can return a single
result set.

• CREATE QUERY creates a query that can optionally be projected as a stored procedure. A query can return a single
result set.

Caché SQL supports the following commands to create a method or function:

• CREATE PROCEDURE can create a method that is always projected as a stored procedure. A method can return a
single value, or one or more result sets.

• CREATE METHOD can create a method that can optionally be projected as a stored procedure. A method can return
a single value, or one or more result sets.

• CREATE FUNCTION can create a function procedure that can optionally be projected as a stored procedure. A
function can return a single value.

The block of executable code specified within these commands can be written either in Caché SQL or ObjectScript. You
can include Embedded SQL within an ObjectScript code block.

19.2.2 SQL to Class Name Transformations

When you use DDL to create a stored procedure, the name you specify is transformed into a class name. If the class does
not exist, the system creates it.

• If the name is unqualified and no FOR clause is provided: the system-wide default schema name is used as the package
name, followed by a dot, followed by a generated class name consisting of the string ‘func’, ‘meth’, ‘proc’, or ‘query’,
followed by the specified name. If necessary, the specified name is converted to a valid object name. For example, the
unqualified procedure name StoreName results in a class name such as the following: User.procStoreName. This
procedure class contains the method StoreName().

• If the name is qualified and no FOR clause is provided: the name of the schema is converted to a package name, followed
by a dot, followed by the string ‘func’, ‘meth’, ‘proc’, or ‘query’, followed by the specified name. If necessary, the
specified package name is converted to a valid package name. If necessary, the specified name is converted to a valid
object name.

• If a FOR clause is provided: a qualified class name specified in the FOR clause overrides the schema name specified
in the function, method, procedure, or query name.

The following rules govern the transformation of SQL function, method, procedure, and query names to valid object names:

• Punctuation characters are removed. Names that differ only in punctuation are valid. Caché generates corresponding
unique names by substituting an integer suffix for the final character of the name, beginning with zero. For example,
myname and my_name generate myname and mynam0. If the number of generated unique names is larger than 10
(mynam9) names are created by substituting a capital letter (mynamA) from A through G, inclusive.

• Names that have a punctuation character as the first character and a number as the second character are not valid.

• Identifiers that consist entirely of punctuation characters, or begin with two underscore characters (__name), or contains
two pound signs together (nn##nn) are generally invalid as SQL entity names and should be avoided in all contexts.

The following rules govern the transformation of a schema name to valid package name:

174 Using Caché SQL

Defining and Using Stored Procedures

• If the schema name contains an underscore, this character is converted to a dot, denoting a subpackage. For example,
the qualified name myprocs.myname creates the package myprocs. The qualified name my_procs.myname creates
the package my containing the subpackage procs.

The following example shows how the punctuation differs in a class name and its SQL invocation. It defines a method with
a class name containing two dots. When invoked from SQL, the example replace the first dot with an underscore character:

Class tmp.test.sql Extends %RegisteredObject
 { ClassMethod myfunc(dummy As %String) As %String [SqlProc]
 { /* method code */
 Quit "abc" }
 }

SELECT tmp_test.sql_myfunc(Name)
FROM Sample.Person

19.2.3 Defining a Method Stored Procedure using Classes

Class methods can be exposed as Stored Procedures. These are ideal for actions that do not return data, such as a Stored
Procedure that calculates a value and stores it in the database. Almost all classes can expose methods as Stored Procedures;
the exception is generator classes, such as a data type class ([ClassType = datatype]). Generator classes do not have a runtime
context. It is only valid to use a datatype context within the runtime of some other entity, such as a property.

To define a method stored procedure, simply define a class method and set its SqlProc keyword:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{

/// This procedure finds total sales for a territory
ClassMethod FindTotal(territory As %String) As %Integer [SqlProc]
{
 // use embedded sql to find total sales
 &sql(SELECT SUM(SalesAmount) INTO :total
 FROM Sales
 WHERE Territory = :territory
)

 Quit total
}
}

After this class is compiled, the FindTotal() method will be projected to SQL as the stored procedure
MyApp.Person_FindTotal(). You can change the name that SQL uses for the procedure using the SqlName keyword of
the method.

The method uses a procedure context handler to pass the procedure context back and forth between the procedure and its
caller (for example, the ODBC server). This procedure context handler is automatically generated by Caché (as %qHan-
dle:%SQLProcContext) using the %sqlcontext object.

%sqlcontext consists of properties for the SQLCODE error status, the SQL row count, an error message, and so forth, which
are set using the corresponding SQL variables, as follows:

 SET %sqlcontext.%SQLCode=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

There is no need to do anything with these values, but their values will be interpreted by the client. The %sqlcontext object
is reset before each execution.

The method should return no value.

The maximum number of user-defined methods for a class is 2000.

For instance, suppose there is a CalcAvgScore() method:

Using Caché SQL 175

Defining Stored Procedures

ClassMethod CalcAvgScore(firstname As %String,lastname As %String) [sqlproc]
{
 New SQLCODE,%ROWID
 &sql(UPDATE students SET avgscore =
 (SELECT AVG(sc.score)
 FROM scores sc, students st
 WHERE sc.student_id=st.student_id
 AND st.lastname=:lastname
 AND st.firstname=:firstname)
 WHERE students.lastname=:lastname
 AND students.firstname=:firstname)

 IF ($GET(%sqlcontext)'= "") {
 SET %sqlcontext.%SQLCODE = SQLCODE
 SET %sqlcontext.%ROWCOUNT = %ROWCOUNT
 }
 QUIT
}

19.2.4 Defining a Query Stored Procedure using Classes

Many Stored Procedures that return data from the database can be implemented through the standard query interface. This
approach works well as long as the procedure can be written in embedded SQL. Note the use of the Embedded SQL host
variable to supply a value to the WHERE clause in the following example:

Class MyApp.Person Extends %Persistent [DdlAllowed]
{

 /// This procedure result set is the persons in a specified Home_State, ordered by Name
 Query ListPersons(state As %String = "") As %SQLQuery [SqlProc]
 {
 SELECT ID,Name,Home_State
 FROM Sample.Person
 WHERE Home_State = :state
 ORDER BY Name
 }
}

To expose a query as a Stored Procedure, either change the value of the SQLProc field to True in the Studio Inspector’s
entry for the query or add the following “ [SqlProc]” string to the query definition:

Query QueryName() As %SQLQuery(... query definition ...)
 [SqlProc]

After this class is compiled, the ListPersons query will be projected to SQL as the stored procedure
MyApp.Person_ListPersons. You can change the name that SQL uses for the procedure using the SqlName keyword of
the query.

When MyApp.Person_ListPersons is called from SQL, it will automatically return the result set defined by the query’s
SQL statement.

The following example is a stored procedure using a result set:

Class apc.OpiLLS.SpCollectResults1 [Abstract]
{

/// This SP returns a number of rows (pNumRecs) from WebService.LLSResults, and updates a property for
 each record
Query MyQuery(pNumRecs As %Integer) As %Query(ROWSPEC = "Name:%String,DOB:%Date") [SqlProc]
{
}

/// You put initial code here in the Execute method
ClassMethod MyQueryExecute(ByRef qHandle As %Binary, pNumRecs As %Integer) As %Status
{
 SET mysql="SELECT TOP ? Name,DOB FROM Sample.Person"
 SET rset=##class(%SQL.Statement).%ExecDirect(,mysql,pNumRecs)
 IF rset.%SQLCODE'=0 {QUIT rset.%SQLCODE}
 SET qHandle=rset
 QUIT $$$OK
}

/// This code is called by the SQL framework for each row, until no more rows are returned
ClassMethod MyQueryFetch(ByRef qHandle As %Binary, ByRef Row As %List,

176 Using Caché SQL

Defining and Using Stored Procedures

 ByRef AtEnd As %Integer = 0) As %Status [PlaceAfter = NewQuery1Execute]
{
 SET rset=qHandle
 SET tSC=$$$OK

 FOR {
 ///Get next row, quit if end of result set
 IF 'rset.%Next() {
 SET Row = "", AtEnd = 1
 SET tSC=$$$OK
 QUIT
 }
 SET name=rset.Name
 SET dob=rset.DOB
 SET Row = $LISTBUILD(name,dob)
 QUIT
 }
 QUIT tSC
}

ClassMethod MyQueryClose(ByRef qHandle As %Binary) As %Status [PlaceAfter = NewQuery1Execute]
{
 KILL qHandle //probably not necesary as killed by the SQL Call framework
 QUIT $$$OK
}

}

If it is possible to write the query as a simple SQL statement and create it through the Query Wizard, it is not necessary to
know anything about the underlying methods that implement the query.

Behind the scenes, for each query the class compiler generates methods based on the name of the Stored Procedure,
including:

• stored-procedure-nameExecute()

• stored-procedure-nameFetch()

• stored-procedure-nameFetchRows()

• stored-procedure-nameGetInfo()

• stored-procedure-nameClose()

If the query is of type %SQLQuery, the class compiler automatically inserts some embedded SQL into the generated
methods. Execute() declares and opens a stored cursor for the SQL. Fetch() is called repeatedly until it returns an empty
row (SET Row=""). You can, optionally, also have Fetch() return an AtEnd=1 boolean flag to indicate that the current
Fetch constitutes the last row and the next Fetch is expected to return an empty row. However, an empty row (Row="")
should always be used as the test to determine when the result set has ended; Row="" should always be set when setting
AtEnd=1.

FetchRows() is logically equivalent to repeated calls to Fetch(). GetInfo() is called to return details of the signature for
the Stored Procedure. Close() closes the cursor.

All these methods are called automatically when a Stored Procedure is invoked from a client, but could in theory be called
directly from ObjectScript running on the server.

To pass an object from the Execute() to a Fetch(), or from a Fetch() to the next invocation of Fetch(), you can set the
query handler to the object reference (oref) of the object you wish to pass. To pass multiple objects, you can set qHandle
as an array:

 SET qHandle(1)=oref1,qHandle(2)=oref2

It is possible to create a result set stored procedure that is based on custom-written code (not an SQL statement).

The maximum number of user-defined queries for a class is 200.

Using Caché SQL 177

Defining Stored Procedures

19.2.5 Customized Class Queries

For complex queries, or for Stored Procedures that do not fit the query model, it is often necessary to customize the query
by replacing some or all of its methods. You can use %Library.Query, as described in this section.

It is often easier to implement the query if you choose type %Query (%Library.Query) instead of %SQLQuery
(%Library.SQLQuery). This generate the same five methods, but now the FetchRows() is simply a repeated invocation of
Fetch() (%SQLQuery has some optimization that causes other behavior). GetInfo() simply gets information from the sig-
nature, so it is very unlikely that the code will need to be changed. This reduces the problem to creating class methods for
each of the other three. Note that when the class is compiled, the compiler detects the presence of these methods, and does
not overwrite them.

The methods need specific signatures: They all take a Qhandle (query handler) of type %Binary. This is a pointer to a
structure holding the nature and state of the query. This is passed by reference to Execute() and Fetch() and by value to
Close():

ClassMethod SP1Close(qHandle As %Binary) As %Status
{
 // ...
}

ClassMethod SP1Execute(ByRef qHandle As %Binary,
 p1 As %String) As %Status
{
 // ...
}

ClassMethod SP1Fetch(ByRef qHandle As %Binary,
 ByRef Row As %List, ByRef AtEnd As %Integer=0) As %Status
{
 // ...
}

Query SP1(p1 As %String)
 As %Query(CONTAINID=0,ROWSPEC="lastname:%String") [sqlproc]
{
}

The code usually includes declaration and use of an SQL cursor. Cursors generated from queries of type %SQLQuery
automatically have names such as Q14. You must ensure that your queries are given distinct names.

The class compiler must find a cursor declaration, before making any attempt to use the cursor. Therefore the DECLARE
statement (usually in Execute) must be in the same MAC routine as the Close and Fetch and must come before either of
them. Editing the source directly, use the method keyword PLACEAFTER in both the Close and the Fetch definitions to
make sure this happens.

Error messages refer to the internal cursor name, which typically has an extra digit. Therefore an error message for cursor
Q140 probably refers to Q14.

19.3 Using Stored Procedures
You can use stored procedures in two distinct ways:

• You can invoke a stored procedure using the SQL CALL statement; see the CALL statement in the Caché SQL Reference
for more details.

• You can use a stored function (that is, a method-based stored procedure that returns a single value) as if it were a built-
in function within an SQL query.

178 Using Caché SQL

Defining and Using Stored Procedures

19.3.1 Stored Functions

A stored function is a method-based stored procedure that returns a single value. For example, the following class defines
a stored function, Square, that returns the square of a given value:

Class MyApp.Utils Extends %Persistent [DdlAllowed]
{
ClassMethod Square(val As %Integer) As %Integer [SqlProc]
{
 Quit val * val
}
}

A stored function is simply a class method with the SqlProc keyword specified.

Note: For a stored function, the ReturnResultsets keyword must either be not specified (the default) or prefaced by the
keyword Not.

You can use a stored function within an SQL query as if it were a built-in SQL function. The name of the function is the
SQL name of the stored function (in this case “Square”) qualified by the schema (package) name in which it was defined
(in this case “MyApp”).

The following query uses the Square function:

SELECT Cost, MyApp.Utils_Square(Cost) As SquareCost FROM Products

If you define multiple stored functions within the same package (schema), you must make sure that they have unique SQL
names.

The following example defines a table named Sample.Wages that has two defined data fields (properties) and two defined
stored functions, TimePlus and DTime:

Class Sample.Wages Extends %Persistent [DdlAllowed]
{
 Property Name As %String(MAXLEN = 50) [Required];
 Property Salary As %Integer;
 ClassMethod TimePlus(val As %Integer) As %Integer [SqlProc]
 {
 QUIT val * 1.5
 }
 ClassMethod DTime(val As %Integer) As %Integer [SqlProc]
 {
 QUIT val * 2
 }
}

The following query uses these stored procedures to return the regular salary, time-and-a-half, and double time salary rates
for each employee in the same table, Sample.Wages:

SELECT Name,Salary,
 Sample.Wages_TimePlus(Salary) AS Overtime,
 Sample.Wages_DTime(Salary) AS DoubleTime FROM Sample.Wages

The following query uses these stored procedures to return the regular salary, time-and-a-half, and double time salary rates
for each employee in a different table, Sample.Employee:

SELECT Name,Salary,
 Sample.Wages_TimePlus(Salary) AS Overtime,
 Sample.Wages_DTime(Salary) AS DoubleTime FROM Sample.Employee

19.3.2 Privileges

To execute a procedure, a user must have EXECUTE privilege for that procedure. Use the GRANT command or the
%SYSTEM.SQL GrantObjPriv() method to assign EXECUTE privilege for a specified procedure to a specified user.

Using Caché SQL 179

Using Stored Procedures

You can determine if a specified user has EXECUTE privilege for a specified procedure by invoking the
$SYSTEM.SQL.CheckPriv() method.

To list all the procedures for which a user has EXECUTE privilege, go to the Management Portal. From System Adminis-

tration select Security, then select either Users ([System] > [Security Management] > [Users]) or Roles ([System] > [Security

Management] > [Roles]). Select Edit for the desired user or role, then select the SQL Procedures tab. Select the desired
Namespace from the drop-down list.

19.4 Listing Procedures
The INFORMATION.SCHEMA.ROUTINES persistent class displays information about all routines and procedures in the
current namespace. It provides a large number of properties.

When specified in Embedded SQL, INFORMATION.SCHEMA.ROUTINES requires the #include %occInclude macro pre-
processor directive. This directive is not required for Dynamic SQL.

The following example returns the routine type (PROCEDURE or FUNCTION), schema name, and routine name for all
routines in the schema “MyApp” in the current namespace:

SELECT Routine_Type,Routine_Schema,Routine_Name FROM INFORMATION_SCHEMA.ROUTINES WHERE
Routine_Schema='MyApp'

You can display much of the same information as INFORMATION.SCHEMA.ROUTINES for a single procedure using the
Catalog Details tab in the Management Portal SQL Interface. The Catalog Details for a procedure include the procedure
type (query or function), class name, method or query name, the description, and the number of input and output parameters.
The Catalog Details Stored Procedure Info display also provides an option to run the stored procedure.

180 Using Caché SQL

Defining and Using Stored Procedures

20
Storing and Using Stream Data (BLOBs
and CLOBs)

Caché SQL supports the ability to store BLOBs (Binary Large Objects) and CLOBs (Character Large Objects) within the
database. This chapter discusses the following topics:

• An overview of Stream fields, BLOBs and CLOBs

• Defining Stream fields using DDL

• Stream field concurrency locking

• Using Stream fields within Caché methods

• Using Stream fields from ODBC

• Using Stream fields from JDBC

20.1 Stream Fields and SQL
Caché SQL supports stream fields. This type of field is used for data such as a large quantity of text, an image, video, or
audio. The following SQL operations support stream fields:

• SELECT selects a stream field and returns the fully formed OID (object ID) value of the stream object, as shown in
the following example:

SELECT Name,Picture,Notes
FROM Sample.Employee WHERE Picture IS NOT NULL

• The IS [NOT] NULL, %CONTAINS, and %CONTAINSTERM predicates can be applied to the data value of a stream
field.

The BETWEEN, EXISTS, IN, %INLIST, LIKE, %MATCHES, and %PATTERN predicates can be applied to the
OID value of the stream object, as shown in the following example:

SELECT Name,Notes
FROM Sample.Employee WHERE Notes %MATCHES '*1[0-9]*GlobalChar*'

Attempting to use any other predicate condition on a stream field results in an SQLCODE -313 error.

• SELECT cannot apply any function to a stream value field, except the COUNT, %OBJECT,
CHARACTER_LENGTH (or CHAR_LENGTH or DATALENGTH), SUBSTRING, CONVERT, %SIMILARITY,

Using Caché SQL 181

XMLCONCAT, XMLELEMENT, XMLFOREST, and %INTERNAL functions. Attempting to use a stream field
as an argument to any other SQL function results in an SQLCODE -37 error.

– The COUNT aggregate function takes a stream field and counts the rows containing non-null values for the field,
as shown in the following example:

SELECT COUNT(Picture) AS PicRows,COUNT(Notes) AS NoteRows
FROM Sample.Employee

However, COUNT(DISTINCT) is not supported for stream fields.

– The %OBJECT function opens a stream object (takes an OID) and returns the oref (object reference), as shown
in the following example:

SELECT Name,Notes,%OBJECT(Notes) AS NotesOref
FROM Sample.Employee WHERE Notes IS NOT NULL

– The CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH functions take a stream field or an oref
for a stream field (%OBJECT(streamfield)), as shown in the following example:

SELECT Name,DATALENGTH(Notes) AS NotesNumChars
FROM Sample.Employee WHERE Notes IS NOT NULL

– The SUBSTRING function takes a stream field or an oref for a stream field (%OBJECT(streamfield)) and
returns the specified substring of the stream field’s value, as shown in the following example:

SELECT Name,SUBSTRING(Notes,1,10) AS Notes1st10Chars
FROM Sample.Employee WHERE Notes IS NOT NULL

– The CONVERT function can be used to convert a stream data type to VARCHAR, as shown in the following
example:

SELECT Name,CONVERT(VARCHAR(100),Notes) AS NotesText
FROM Sample.Employee WHERE Notes IS NOT NULL

CONVERT(datatype,expression) syntax supports stream data conversion; {fn
CONVERT(expression,datatype)} syntax does not support stream data conversion.

– The %INTERNAL function can be used on a stream field, but performs no operation.

• INSERT and UPDATE accept the fully formed OID (object ID) value of the stream object as the new value for a
stream field. If a record contains a stream field, an INSERT or UPDATE operation can only modify a single row, not
multiple rows. An INSERT can insert a default value for a stream field.

• Stream fields cannot be indexed.

20.1.1 BLOBs and CLOBs

Caché SQL supports the ability to store BLOBs (Binary Large Objects) and CLOBs (Character Large Objects) within the
database. BLOBs are used to store binary information, such as images, while CLOBs are used to store character information.
BLOBs and CLOBs can store up to 4 Gigabytes of data (the limit imposed by the JDBC and ODBC specifications).

The operation of the BLOBs and CLOBs is identical in every respect except how they handle character encoding conversion
(such as Unicode to multibyte) when accessed via an ODBC or JDBC client: the data in a BLOB is treated as binary data
and is never converted to another encoding while the data in a CLOB is treated as character data and is converted as necessary.

BLOBs and CLOBs have the following restrictions:

• You cannot define indices on BLOB or CLOB fields.

• You cannot use a BLOB or CLOB field in a WHERE clause, with a few specific exceptions. For further details, refer
to the WHERE clause in the Caché SQL Reference.

182 Using Caché SQL

Storing and Using Stream Data (BLOBs and CLOBs)

• You cannot UPDATE/INSERT multiple rows containing a BLOB or CLOB field; you must do it row by row.

The same restrictions apply to stream fields. From the object point of view, BLOBs and CLOBs are represented as stream
objects. For more information, see the chapter “Working with Streams” of Using Caché Objects.

20.2 Defining Stream Fields Using DDL
Within DDL, CLOB fields are defined using the LONG VARCHAR SQL data type. BLOB fields are defined using the
LONG VARBINARY SQL data type.

CREATE TABLE MyApp.Person (
 Name VARCHAR(50) not null,
 Notes LONGVARCHAR,
 Photo LONGVARBINARY
)

For data type mappings of stream data types, refer to the Data Types reference page in Caché SQL Reference.

20.2.1 Empty BLOBs

If a binary stream file (BLOB) contains the single non-printing character $CHAR(0), it is considered to be an empty binary
stream. It is equivalent to the "" empty binary stream value: it exists (is not null), but has a length of 0.

20.3 Stream Field Concurrency Locking
Caché protects stream data values from concurrent operations by another process by taking out a lock on the stream data.

Caché takes out an exclusive lock before performing a write operation. The exclusive lock is released immediately after
the write operation completes.

Caché takes out a shared lock out when the first read operation occurs. A shared lock is only acquired if the stream is
actually read, and is released immediately after the entire stream has been read from disk into the internal temporary input
buffer.

20.4 Using Stream Fields within Caché Methods
You cannot use a BLOB or CLOB value using Embedded SQL or Dynamic SQL directly within a Caché method; instead
you use SQL to find the stream identifier for a BLOB or CLOB and then create an instance of the %AbstractStream object
to access the data.

For example, you can use Dynamic SQL to read a stream in a Basic method as follows:

/// Display the memos for all Persons with a given city
/// within an HTML table
ClassMethod DisplayMemo(city As %String = "") [language = basic]
{
 ' Define a query to find all the Stream Id values for memo
 tStatement = New %SQL.Statement()
 tStatus = tStatement.%Prepare("SELECT Name,Memo FROM MyApp.Person WHERE Home_City = ?")
 rset = tStatement.%Execute(city)

 ' iterate over the results
 PrintLn "<TABLE>"
 While (rset.%Next())

Using Caché SQL 183

Defining Stream Fields Using DDL

 PrintLn "<TR>"
 ' display the person's name
 PrintLn "<TD>" & rset.Name & "</TD>"

 ' Now open the stream object containing the memo
 stream = OpenId %Stream(rset.Memo)
 Print "<TD>"

 ' Write the contents of the stream to the current device
 stream.OutputToDevice()
 PrintLn "</TD></TR>"
 Wend
 PrintLn "</TABLE>"
}

20.5 Using Stream Fields from ODBC
The ODBC specification does not provide for any recognition or special handling for BLOB and CLOB fields. Caché SQL
represents CLOB fields within ODBC as having type LONG VARCHAR. BLOB fields are represented as having type
LONG VAR BINARY. For data type mappings of stream data types, refer to the Data Types reference page in Caché SQL
Reference.

The ODBC driver/server uses a special protocol to access BLOB and CLOB fields. Typically you have to write special
code within ODBC application to use CLOB and BLOB fields; the standard reporting tools typically do not support them.

20.6 Using Stream Fields from JDBC
Within a Java program you can retrieve or set data from a BLOB or CLOB using the standard JDBC BLOB and CLOB
interfaces. For example:

 Statement st = conn.createStatement();
 ResultSet rs = st.executeQuery("SELECT MyCLOB,MyBLOB FROM MyTable");
 rs.next(); // fetch the Blob/Clob

 java.sql.Clob clob = rs.getClob(1);
 java.sql.Blob blob = rs.getBlob(2);

 // Length
 System.out.println("Clob length = " + clob.length());
 System.out.println("Blob length = " + blob.length());

 // ...

Note: When finished with a BLOB or CLOB, you must explicitly call the free() method to close the object in Java and
send a message to the server to release stream resources (objects and locks). Just letting the Java object go out of
scope does not send a message to clean up the server resources.

184 Using Caché SQL

Storing and Using Stream Data (BLOBs and CLOBs)

21
Users, Roles, and Privileges

Caché SQL provides security through the use of users and their granted privileges. Caché SQL enforces privilege checking
for ODBC, JDBC, Dynamic SQL, and the SQL Shell interface. Embedded SQL statements do not perform privilege
checking; it is assumed that applications using Embedded SQL will check for privileges before using Embedded SQL
statements.

This chapter discusses the following topics:

• Users

• Roles

• Privileges

21.1 Users
A Caché SQL user is the same as a user defined for Caché security. You can define a user using either SQL commands or
the Management Portal.

• In SQL you use the CREATE USER statement to create a user. This simply creates a user name and user password.
You must use the GRANT statement to assign privileges and roles to the user. You can use the ALTER USER and
DROP USER statements to modify existing user definitions.

• In the Management Portal Select System Administration select Security, then select Users. Click the Create New User

button at the top of the page. This takes you to the Edit User page where you can specify the user name, user password,
and other parameters. Once you create a user, the other tabs become available, where you can specify which roles a
user holds, which general SQL privileges the user holds, which table-level privileges the user holds, which views are
available, and which stored procedures can be executed.

If a user has SQL table privileges, or general SQL privileges, then roles granted or revoked on the user’s Roles tab do not
affect a user’s access to tables through SQL-based services, such as ODBC. This is because, in the SQL-based services,
table-based privileges take precedence over resource-based privileges.

You can use %Library.SQLCatalogPriv class queries to list:

• All users SQLUsers()

• All privileges granted to a specified user SQLUserPrivs(“username”)

• All system privileges granted to a specified user SQLUserSysPrivs(“username”)

• All roles granted to a specified user SQLUserRole(“username”)

Using Caché SQL 185

The following example lists the privileges granted to the current user:

 SET statemt=##class(%SQL.Statement).%New()
 SET cqStatus=statemt.%PrepareClassQuery("%Library.SQLCatalogPriv","SQLUserPrivs")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus) QUIT}

 SET rset=statemt.%Execute($USERNAME)
 WRITE "Privileges for ",$USERNAME
 DO rset.%Display()

21.2 Roles
The Management Portal, System Administration, Security, Roles page provides a list of role definitions for a Caché instance.
To view or change details on a particular role, select the Name link for the role. On the Edit Role page that appears, there
is information regarding the roles privileges and which users or roles hold it.

The General tab lists a role’s privileges for Caché security resources. If a role only holds SQL privileges, the General tab’s
Resources table lists the role’s privileges as “None defined.”

The SQL Privileges tab lists a role’s privileges for Caché SQL resources, where a drop-down list of namespaces allows
you to view each namespace’s resources. Because privileges are listed by namespace, the listing for a role holding no
privileges in a particular namespace displays “None.”

Note: You should define privileges using roles and associate specific users with these roles. There are two reasons for
this:

1. It is much more efficient for the SQL Engine to determine privilege levels by checking a relatively small role
database than by checking individual user entries.

2. It is much easier to administer a system using a small set of roles as compared with a system with many
individual user settings.

For example, you can define a role called “ACCOUNTING” with certain access privileges. As the Accounting Department
grows, you can define new users and associate them with the ACCOUNTING role. If you need to modify the privileges
for ACCOUNTING, you can do it once and it will automatically cover all the members of the Accounting Department.

A role can hold other roles. For example, the ACCOUNTING role can hold the BILLINGCLERK role. A user granted the
ACCOUNTING role would have the privileges of both the ACCOUNTING role and the BILLINGCLERK role.

You can also define users and roles with the following SQL commands: CREATE USER, CREATE ROLE, ALTER USER,
GRANT, DROP USER, and DROP ROLE.

You can use %Library.SQLCatalogPriv class queries to list:

• All roles SQLRoles()

• All privileges granted to a specified role SQLRolePrivileges(“rolename”)

• All roles or users granted to a specified role SQLRoleUser(“rolename”)

• All roles granted to a specified user SQLUserRole(“username”)

21.3 Privileges
Privileges are assigned to a user or role. Caché SQL supports two types of privileges: administrative and object.

186 Using Caché SQL

Users, Roles, and Privileges

Administrative privileges cover the creation, altering, and deleting of types of objects, such as the permission to create
tables. They also determine whether a user can apply %NOCHECK, %NOINDEX, %NOLOCK, or %NOTRIGGER
restrictions when performing an INSERT, UPDATE, INSERT OR UPDATE, or DELETE. Assigning the %NOTRIGGER
administrative privilege is required for a user to perform a TRUNCATE TABLE.

Object privileges cover access to specific named objects (in the SQL sense of the word: a table, a view, a column, or a
stored procedure). Table-level object privileges provide access (%ALTER, DELETE, SELECT, INSERT, UPDATE,
EXECUTE, REFERENCES) to the data in all columns of a table or view, both those columns that currently exist and any
subsequently added columns. Column-level object privileges provide access to the data in only the specified columns of a
table or view. You do not need to assign column-level privileges for columns with system-defined values, such as RowID
and Identity. Stored procedure object privileges permit the assignment of EXECUTE privilege for the procedure to specified
users or roles. For further details, refer to the GRANT command.

You can grant privileges in the following ways:

• Interactively, using the Management Portal. From System Administration select Security, then select either Users or
Roles. Select the desired user or role, then select the SQL Privileges tab.

• From SQL, using the GRANT command.

• For ObjectScript, you can use the %SYSTEM.SQL.GrantObjPriv() method to grant object privileges for a table or
a view.

Privileges are namespace-specific.

Using Caché SQL 187

Privileges

22
Using the Caché SQL Gateway

The Caché SQL Gateway provides access from Caché to external databases via JDBC and ODBC. This chapter discusses
the following topics:

• Architecture of the Caché SQL Gateway — describes the internal structure and limitations of the SQL Gateway

• Creating Gateway Connections for External Sources — gives an overview of logical connection definitions, which are
used by the SQL Gateway wizards to identify the external databases.

• The Link Table Wizard: Linking to a Table or View — describes the procedure for linking to tables or views in
external sources so that you can access the data in the same way you access any Caché object.

• The Link Procedure Wizard: Linking to a Stored Procedure — describes the procedure for linking to stored procedures
in external sources.

• Controlling Gateway Connections — describes methods used to manage SQL Gateway connections.

• The Data Migration Wizard: Migrating Data from an ODBC Source — describes how to migrate data from external
ODBC sources and create an appropriate Caché class definition to store the data.

22.1 Architecture of the Caché SQL Gateway
Internally, the Caché SQL Gateway uses the following components:

• The Connection Manager maintains a list of logical connection definitions for Caché. Each definition has a logical
name used in Caché, as well as connection details for a specific external ODBC or JDBC compliant database. The
Caché SQL Gateway uses these logical names when it establishes connections (see Creating Gateway Connections for
External Sources).

• The Caché SQL Gateway API is a set of functions used by a Caché program to communicate with a third-party RDBMS.
These functions are implemented by means of a shared library, which is responsible for making the ODBC or JDBC
calls.

• The External Table Query Processor is an extension to the Caché SQL Query Processor that handles queries targeted
at external tables.

• The SQL Dictionary stores a list of all defined SQL tables. A given table is marked as "external" when its data is stored
in a third-party RDBMS. When the Caché SQL Query Processor detects that the table (or tables) referenced within an
SQL query are external, it invokes the External Table Query Processor, which generates a query execution plan by
calling the Caché SQL Gateway API instead of accessing data stored within Caché.

Using Caché SQL 189

22.1.1 Persisting External Tables in Caché

All object persistence in Caché is provided by means of a storage class (see “Storage Definitions and Storage Classes” in
Using Caché Objects), which generates the code needed to save and retrieve a persistent object within a database. The SQL
storage class (%CacheSQLStorage) provides object persistence by means of specially generated SQL queries.

A class that uses %CacheSQLStorage for persistence indicates that it is an "external" class by providing a value for its
CONNECTION and EXTERNALTABLENAME class parameters. The class compiler creates an SQL table definition for the
class, and generates the SQL queries for the object persistence code. These queries automatically make calls to the correct
external database by means of the External Table Query Processor.

22.1.2 Restrictions on SQL Gateway Queries

When you use the Caché SQL Gateway, note the following restrictions:

• All the tables listed in the FROM clause of an SQL query must come from the same data source. Queries that join data
from heterogeneous data sources are not allowed.

• SQL queries targeted at external databases cannot use the following Caché SQL extensions:

– The "->" operator.

– The %EXACT function, or the %SYSTEM.Util Collation() method with the collation flag set to EXACT.

– The inclusion of other columns within a count (*) query.

– Caché-specific operators that have % as the first character of their name.

22.2 Creating Gateway Connections for External Sources
Caché maintains a list of SQL Gateway connection definitions, which are logical names for connections to external data
sources. Each connection definition consists of a logical name (for use within Caché), information on connecting to the
data source, and a user name and password to use when establishing the connection. These connections are stored in the
table %Library.sys_SQLConnection. You can export data from this table and import it into another Caché instance.

Each gateway connection consists of the following details:

• A logical name for the gateway connection. This name would be used, for example, within any Caché SQL queries.

• Optional login credentials to access the database.

• Optional information to control the JDBC or ODBC driver.

• Driver-specific connection details:

– For JDBC: The full class name of the JDBC client driver, the driver class path (a list of JAR files to search when
locating the JDBC driver), and the JDBC connection URL.

– For ODBC: a DSN (data source name), defined in the usual way (see Using Caché as an ODBC Data Source on
Windows and Using Caché as an ODBC Data Source on UNIX® in Using Caché with ODBC).

Note: When creating an SQL gateway connection for use by the Link Table Wizard using Microsoft SQL
Server DNS configuration, do not set the Use regional settings option. This option is intended only for
applications that display data, not for applications that process data.

190 Using Caché SQL

Using the Caché SQL Gateway

BGOD_winodbc
BGOD_winodbc
BGOD_unixodbc
BGOD_preface

For detailed information on creating logical connection definitions for JDBC and ODBC, see:

• Creating JDBC SQL Gateway Connections for External Sources in Using Caché with JDBC

• Creating ODBC SQL Gateway Connections for External Sources in Using Caché with ODBC

22.3 The Link Table Wizard: Linking to a Table or View
The Management Portal provides a wizard that you can use to link to an external table in an ODBC- or JDBC-compliant
database. When you have linked to an external table, you can:

• Access data stored in third-party relational databases within Caché applications using objects and/or SQL queries.

• Store persistent Caché objects in external relational databases.

For example, suppose you have an Employee table stored within an external relational database. You can use this table
within Caché as an object by creating an Employee class that communicates (by executing SQL queries via JDBC or ODBC)
with the external database.

From the perspective of a Caché application, the Employee class behaves in much the same way as any other persistent
class: You can open instances, modify, and save them. If you issue SQL queries against the Employee class, they are auto-
matically dispatched to the external database.

The use of the Caché SQL Gateway is independent of application logic; an application can be modified to switch between
external databases and the built-in Caché database with minimal effort and no change to application logic.

Any class that uses the Caché SQL Gateway to provide object persistence is identical in usage to classes that using native
persistence and can make full use of Caché features including Java, ActiveX, SQL, and Web access.

22.3.1 Using the Link Table Wizard

When you link to an external table or view, you create a persistent Caché class that is linked to that table or view. The new
class stores and retrieves data from the external source using the SQL Gateway. You can specify information about both
the Caché class and the corresponding SQL table in Caché.

Note: This wizard generates ObjectScript code with class names and class member names that you control. When you
use this wizard, be sure to follow the rules for ObjectScript identifiers, including length limits (see the section on
Naming Conventions in Using Caché Objects).

• If you have not yet created a gateway connection to the external database, do so before you begin (see Creating Gateway
Connections for External Sources).

• From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces.

At the top of the page, click the Wizards drop-down list, and select Link Table.

• On the first page of the wizard, select one or more table or views, as follows:

– Select a destination namespace — Select the Caché namespace to which the data will be copied.

– Schema Filter — Specify a schema (class package) name that contains the table or view. You can specify a
name with wildcards to return multiple schemas, or % to return all schemas. For example, C% will return all
schemas in the namespace beginning with the letter C. Use of this filter is recommended, as it will shorten the
return list of schemas to select from, and thus improve loading speed. You can select multiple items. In this case,

Using Caché SQL 191

The Link Table Wizard: Linking to a Table or View

BGJD_gateway_connections
BGJD_preface
BGOD_gateway_connections
BGOD_preface

when you click Next, the next screen prompts you for a package name. Specify the name of the package to contain
the classes and then click Finish.

– Table Filter — Specify the table or view to link to. You can specify a name with wildcards to return multiple
tables and/or views, or % to return all tables/views.

– Table type — Select TABLE, VIEW, SYSTEM TABLE, or ALL. The default is TABLE.

– Select a SQL Gateway connection — Select the SQL Gateway connection to use.

• Click Next.

• On the second page, specify which fields should be available as object properties in Caché. Make changes as follows:

– Highlight one or more fields and click the single arrow to move it or them from one list to another; click the double
arrow to move all fields (selected or not) from one list to another.

– In the selected list, use the up and down arrows to modify the order of the fields in the table that Caché projects
for the given class. This does not affect the order of the properties in the class definition.

• Click Next.

• On the third page, specify information about the properties in the generated class. For each property, you can specify
all the available options:

– Read only — Select this check box to make the property read-only. This controls the ReadOnly keyword for
the property.

Tip: Use the select_all check box to select or clear all the check boxes in this column.

– New Property Name — Specifies the name of the object property that will contain the data from this field.

– New Column Name (SQL Field Name) — Specifies the SQL field name to use for this property. This controls
the SqlFieldName keyword for the property.

• Click Next.

• On the last page, specify the following:

– Primary Key — Select the primary key for the new Caché table from the list provided. In addition to the default
key provided, you can click the "Browse" button to select one or more columns. You may select multiple columns;
multiple columns are returned as a composite key separated by commas. You must specify a primary key.

– New class name — Specify the name of the Caché class to create, including the package. The default package
name is nullschema.

– New table name — Specify the name of the SQL table to create in Caché. This controls the SqlTableName
keyword for the class.

• Click Finish. The wizard displays the Background Jobs page with a link to the background tasks page.

• Click Close. Or click the given link to view the background tasks page. In either case, the wizard starts a background
task to do the work.

The wizard stores a new class definition in the Caché database and compiles it. If data is present, it should be immediately
visible in the external database (you can check by issuing SQL queries against the newly created Caché class/table). You
can now use the new class as you would any other persistent class within Caché.

192 Using Caché SQL

Using the Caché SQL Gateway

Note: Closing the Link Table Connection
By design, the code generated by the Link Table Wizard does not close the connections that it opens. This avoids
problems such as conflicts between SQL statements that share the same connection. See “Controlling Gateway
Connections” for more information.

22.3.2 Limitations When Using the Linked Table

As always, it is important to be aware of the particular limitations (syntactical or otherwise) and requirements of the database
to which you are connecting. The following are a few examples:

• Informix: You cannot create a view inside of Caché that is based on a linked Informix table, because the generated
SQL is not valid in Informix.

• Sybase: As part of query processing, Caché SQL can transform the expression of an outer join into an equivalent
canonicalized form. The SQL92-standard CROSS JOIN syntax may be required to reconstruct this form as SQL in
order to access a linked table. Because Sybase does not support SQL92-standard CROSS JOIN, some queries using
outer joins on linked Sybase tables will fail to execute.

Before you try to use a linked table, you might want to examine the cached query that is generated for it, to ensure that the
syntax is valid for the database you are using. To see the cached query for a given linked table:

• In the Management Portal, go to [System] > [SQL] and select Browse SQL Schemas in the SQL Operations
column.

• Click the namespace you are interested in.

• Click the Queries link next to the package that contains the table.

• The system displays a table of the cached queries for this package. The Query column displays the full query.

• Optionally click the link for the query to see more details.

22.4 The Link Procedure Wizard: Linking to a Stored
Procedure
The Management Portal provides a wizard that you can use to link to a stored procedure defined in an external ODBC- or
JDBC-compliant database. When you link to the procedure, the system generates a method and a class to contain the method.
When you link to an stored procedure, you create a class method that does the same action that the stored procedure does.
This method is marked with the SqlProc keyword. The class method is generated within a new class, and you can specify
information such as the class and package name. This method cannot accept a variable number of arguments. Default
parameters are permitted, but the signature of the stored procedure is fixed.

Note: This wizard generates ObjectScript code with class names and class member names that you control. When you
use this wizard, be sure to follow the rules for ObjectScript identifiers, including length limits (see the section on
Naming Conventions in Using Caché Objects).

• If you have not yet created a gateway connection to the external database, do so before you begin (see Creating Gateway
Connections for External Sources).

• From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces.

Using Caché SQL 193

The Link Procedure Wizard: Linking to a Stored Procedure

At the top of the page, click the Wizards drop-down list, and select Link Procedure.

• On the first page of the wizard, select one or more procedures, as follows:

– Select a destination namespace — Select the Caché namespace to which the data will be copied.

– Schema Filter — Specify a schema (class package) name that contains the procedure. You can specify a name
with wildcards to return multiple schemas, or % to return all schemas. For example, C% will return all schemas
in the namespace beginning with the letter C. Use of this filter is recommended, as it will shorten the return list
of schemas to select from, and thus improve loading speed.

– Procedure Filter — Specify a procedure to link to. You can specify a name with wildcards to return multiple
procedures, or % to return all procedures. You can select multiple procedures. In this case, when you click Next,
the next screen prompts you for a package name. Specify the name of the package to contain the classes and then
click Finish.

– Select a SQL Gateway connection — Select the SQL Gateway connection to use.

• Click Next.

• On the second page, specify details about the class to generate in Caché:

– New package name — Specify the name of the package to contain the class or classes.

– New class name — Specify the name of the class to generate.

– New procedure name — Specify the name of the procedure; specifically this controls the SqlName keyword
of the method.

– New method name — Specify the name of the method to generate.

– Description method name — Optionally provide a description of the method; this is used as a comment for
the class definition, to be displayed in the class reference.

• Click Finish. The wizard displays the Background Jobs page with a link to the background tasks page.

• Click Close. Or click the given link to view the background tasks page. In either case, the wizard starts a background
task to do the work.

The wizard stores a new class definition within the Caché database and compiles it.

Note: Closing the Link Procedure Connection
By design, the code generated by the Link Procedure Wizard does not close the connections that it opens. This
avoids problems such as conflicts between SQL statements that share the same connection. See “Controlling
Gateway Connections” for more information.

22.5 Controlling Gateway Connections
In some cases, it may be necessary to manage connections created by code that links external tables or stored procedures
(see “The Link Table Wizard” and “The Link Procedure Wizard”). SQL Gateway connections can be managed by the
%SYSTEM.SQLGateway class, which provides methods such as the following:

• DropAll() — drop all open connections and unload the SQL Gateway library.

• DropConnection() — disconnect the specified JDBC or ODBC connection.

• TestConnection() — test a previously defined SQL Gateway connection (see “Creating Gateway Connections for
External Sources”) and write diagnostic output to the current device.

194 Using Caché SQL

Using the Caché SQL Gateway

• Various methods for opening connections and controlling transactions. See the %SYSTEM.SQLGateway class docu-
mentation for full details.

These methods can be called with the special $SYSTEM object. For example, the following command would close a pre-
viously defined SQL Gateway connection named "MyConnectionName":

 do $system.SQLGateway.DropConnection("MyConnectionName")

Note that SQL Gateway connection names are case-sensitive.

22.6 The Data Migration Wizard: Migrating Data from an
ODBC or JDBC Source
The Management Portal provides a wizard that you can use to migrate data from an external table or view.

When you migrate data from a table or view in an external source, the system generates a persistent class to store data of
that table or view and then copies the data. This wizard assumes that the class should have the same name as the table or
view from which it comes; similarly, the property names are the same as in the table or view. After the class has been
generated, it does not have any connection to external data source.

• If you have not yet created an SQL Gateway connection to the external database, do so before you begin (see Creating
Gateway Connections for External Sources).

• From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces.

At the top of the page, click the Wizards drop-down list, and select Data Migration.

• On the first page of the wizard, select the table or view, as follows:

– Select a destination namespace — Select the Caché namespace to which the data will be copied.

– Schema Filter — Specify a schema (class package) name that contains the table or view. You can specify a
name with wildcards to return multiple schemas, or % to return all schemas. For example, C% will return all
schemas in the namespace beginning with the letter C. Use of this filter is recommended, as it will shorten the
return list of schemas to select from, and thus improve loading speed.

– Table Filter — Specify a table or view name. You can specify a name with wildcards to return multiple tables
and/or views, or % to return all tables/views.

– Table type — Select TABLE, VIEW, SYSTEM TABLE, or ALL. The default is TABLE.

– Select a SQL Gateway connection — Select the SQL Gateway connection to use.

• Click Next.

• On the next page, you can optionally specify the following information for each class:

– New Schema — Specify the package to contain the class or classes. Be sure to follow the rules for ObjectScript
identifiers, including length limits (see the section on Naming Conventions in Using Caché Objects).

Tip: To change the package name for all classes, type a value at the top of this column and then click Change
all.

– Copy Definition — Select this check box to generate this class, based on the table definition in the external
source. If you have already generated the class, you can clear this check box.

Using Caché SQL 195

The Data Migration Wizard: Migrating Data from an ODBC or JDBC Source

– Copy Data — Select this check box to copy the data for this class from the external source. When you copy
data, the wizard overwrites any existing data in the Caché class.

• Click Next. The wizard displays the following optional settings:

– Disable validation — If checked, data will be imported with %NOCHECK specified in the restriction
parameter of the INSERT command.

– Disable journaling for the importing process — If checked, journaling will be disabled for the
process performing the data migration (not system-wide). This can make the migration faster, at the cost of
potentially leaving the migrated data in an indeterminate state if the migration is interrupted by a system failure.
Journaling is re-enabled at the end of the run, successful or not.

– Defer indices — If checked, indices are built after the data is inserted. The wizard calls the class' %SortBegin()
method prior to inserting the data in the table. This causes the index entries to be written to a temporary location
for sorting. They are written to the actual index location when the wizard calls the %SortEnd() method after all
rows have been inserted. Do not use Defer Indices if there are Unique indices defined in the table and you want
the migration to catch any unique constraint violations. A unique constraint violation will not be caught if Defer
Indices is used.

– Disable triggers — If checked, data will be imported with %NOTRIGGER specified in the restriction
parameter of the INSERT command.

– Delete existing data from table before importing — If checked, existing data will be deleted
rather than merged with the new data.

• Click Finish. The wizard opens a new window and displays the Background Jobs page with a link to the background
tasks page. Click Close to start the import immediately, or click the given link to view the background tasks page. In
either case, the wizard starts the import as a background task.

• In the Data Migration Wizard window, click Done to go back to the home page of the Management Portal.

22.6.1 Microsoft Access and Foreign Key Constraints

When you use the Data Migration Wizard with Microsoft Access, the wizard tries to copy any foreign key constraints
defined on the Access tables. To do this, it queries the MSysRelationships table in Access. By default, this table is
hidden and does not provide read access. If the wizard can't access MSysRelationships, it migrates the data table defi-
nitions to Caché without any foreign key constraints.

If you want the utility to migrate the foreign key constraints along with the table definitions, set Microsoft Access to provide
read access for MSysRelationships, as follows:

• In Microsoft Access, make sure that system objects are displayed.

• Click Tools > Options and select the setting on the View tab.

• Click Tools > Security > User and Group Permissions. Then select the Read check box next to the
table name.

196 Using Caché SQL

Using the Caché SQL Gateway

A
Importing and Exporting SQL Data

In the Management Portal, there are tools for importing and exporting data:

• Importing Data from a Text File

• Exporting Data to a Text File

These tools use Dynamic SQL, which means that queries are prepared and executed at runtime. By default, the maximum
size of a row that can be imported or exported is 32,767 characters. This limitation can be greatly expanded by configuring
long string operations.

You can also import data using the %SQL.Import.Mgr class, and export data using the %SQL.Export.Mgr class.

A.1 Importing Data from a Text File
You can import data from a text file into a suitable Caché class. When you do so, the system creates and saves new rows
in the table for that class. The class must already exist and must be compiled. To import data into this class:

1. From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces.

2. At the top of the page, click the Wizards drop-down list, and select Data Import.

3. On the first page of the wizard, start by specifying the location of the external file. For The import file resides on, click
the name of the server to use.

4. Then enter the complete path and filename of the file.

5. For Select schema name, click the Caché package into which you want to import the data.

6. For Select table name, click the class that will contain the newly created objects.

7. Then click Next.

8. On the second page of the wizard, click the columns that will contain the imported data.

9. Then click Next.

10. On the third page of the wizard, describe the format of the external file.

• For What delimiter separates your columns?, click the option corresponding to the delimiter in this file.

• Click the First row contains column headers? check box if the first line of the file does not contain data.

Using Caché SQL 197

• For String quote, click the option that indicates the quote delimiter character this file uses to start and end string
data.

• For Date format, click the option that indicates the date format in this file.

• For Time format, click the option that indicates the time format in this file.

• For TimeStamp format, click the option that indicates the timestamp format in this file.

• Click the Disable validation? check box if you do not want the wizard to validate the data upon import.

• Click the Defer Index Building with %SortBegin/%SortEnd? check box if you do not want the wizard to rebuild
indices during import. If Defer Index Building is checked, the wizard calls the %SortBegin method for the class
before inserted the imported data into the table. When the import is done the wizard calls the %SortEnd method.
No validation is done (same as an INSERT with %NOCHECK). This is because indices cannot be checked for
uniqueness during SQL insert when %SortBegin/%SortEnd is used. If Defer Index Building is checked, the imported
data is assumed to be valid and will not be checked for validity.

• Optionally click Preview Data to see how the wizard will parse the data in this file.

11. Click Next.

12. Review your entries and click Finish. The wizard displays the Data Import Result dialog box.

13. Click Close. Or click the given link to view the background tasks page.

In either case, the wizard starts a background task to do the work.

A.2 Exporting Data to a Text File
You can export data for a given class to a text file. To do so:

1. From the Management Portal select System Explorer, then SQL ([System] > [SQL]). Select a namespace with the Switch

option at the top of the page; this displays the list of available namespaces.

2. At the top of the page, click the Wizards drop-down list, and select Data Export.

3. On the first page of the wizard, enter the complete path and filename of the file that you are going to create.

4. For Select schema name, click the Caché package from which you want to export the data.

5. For Select table name, click the class from which you want to export the data.

6. Then click Next.

7. On the second page of the wizard, click the columns to export.

8. Then click Next.

9. On the third page of the wizard, describe the format of the external file.

• For What delimiter separates your columns?, click the option corresponding to the delimiter in this file.

• Click the Export column headers? check box if you want to export column headers as the first line of the file.

• For String quote, click an option to indicate how to start and end string data in this file.

• For Date format, click an option to indicate the date format to use in this file.

• For Time format, click an option to indicate the time format to use in this file.

• Optionally click Preview Data to see what the results will look like.

198 Using Caché SQL

Importing and Exporting SQL Data

10. Click Next.

11. Review your entries and click Finish. The wizard displays the Data Export Result dialog box.

12. Click Close. Or click the given link to view the background tasks page.

In either case, the wizard starts a background task to do the work.

Using Caché SQL 199

Exporting Data to a Text File

	Table of Contents
	About This Book
	1 Introduction to Caché SQL
	1.1 Architecture
	1.2 Features
	1.2.1 SQL-92 Compliance
	1.2.2 Extensions

	1.3 Interoperability
	1.3.1 JDBC
	1.3.2 ODBC
	1.3.3 Embedded SQL
	1.3.4 Dynamic SQL

	1.4 Limitations

	2 Caché SQL Basics
	2.1 Tables
	2.1.1 Schemas

	2.2 Queries
	2.3 Privileges
	2.4 Data Display Options
	2.5 Data Collation
	2.6 Executing SQL

	3 Language Elements
	3.1 Commands and Keywords
	3.2 Literals
	3.2.1 String Delimiters
	3.2.2 Concatenation

	3.3 NULL and the Empty String
	3.3.1 NULL Processing
	3.3.2 NULL in Expressions
	3.3.3 The Length of NULL
	3.3.4 ObjectScript and SQL

	3.4 Arithmetic Operators and Functions
	3.4.1 Operator Precedence
	3.4.2 Precision and Scale
	3.4.3 Arithmetic and Trigonometric Functions

	3.5 Relational Operators
	3.6 Logical Operators
	3.6.1 NOT Unary Operator
	3.6.2 AND and OR Operators

	3.7 Comments
	3.7.1 Single Line Comments
	3.7.2 Multiple Line Comments
	3.7.3 SQL Code Retained as Comments

	4 Identifiers
	4.1 Simple Identifiers
	4.1.1 Naming Conventions
	4.1.2 Case of Letters
	4.1.3 Testing Valid Identifiers
	4.1.4 Identifiers and Class Entities
	4.1.5 Identifier Length Considerations

	4.2 Delimited Identifiers
	4.2.1 Disabling Delimited Identifier Support

	4.3 SQL Reserved Words

	5 Defining Tables
	5.1 Table Names and Schema Names
	5.1.1 System-wide Default Schema
	5.1.2 Schema Search Path
	5.1.3 Schema Naming Considerations
	5.1.4 Platform-Specific Schema Names
	5.1.5 Table Naming Considerations

	5.2 RowID Field
	5.3 RowVersion and Serial Counter Fields
	5.3.1 RowVersion Field
	5.3.2 Serial Field

	5.4 Defining a Table by Creating a Persistent Class
	5.4.1 Unique Values
	5.4.2 Computed Values
	5.4.3 Embedded Object (%SerialObject)
	5.4.4 Class Methods

	5.5 Defining a Table by Using DDL
	5.5.1 Using DDL in Embedded SQL
	5.5.2 Using a Class Method to Execute DDL
	5.5.3 Running DDL Scripts from the Command Line

	5.6 Defining a Table by Querying an Existing Table
	5.7 External Tables
	5.8 Listing Tables
	5.9 Listing Column Names and Numbers
	5.9.1 The GetColumns() Method

	6 Defining and Using Views
	6.1 Creating a View
	6.1.1 Management Portal Create View Interface

	6.2 Updateable Views
	6.2.1 The WITH CHECK Option

	6.3 Read-only Views
	6.4 View ID: %VID
	6.5 Listing View Properties
	6.6 Listing View Dependencies

	7 Using Foreign Keys
	7.1 Defining a Foreign Key
	7.2 Foreign Key Referential Integrity Checking
	7.3 Identifying Parent and Child Tables

	8 Modifying the Database
	8.1 INSERT Statements
	8.2 UPDATE Statements
	8.3 DELETE Statements
	8.4 Transaction Processing
	8.4.1 Transactions and Savepoints
	8.4.2 Non-transaction Operations
	8.4.3 Transaction Locks
	8.4.4 Transaction Size Limitations
	8.4.5 Reading Uncommitted Data
	8.4.6 ObjectScript Transaction Commands

	9 Querying the Database
	9.1 Types of Queries
	9.2 Using a SELECT Statement
	9.2.1 Selecting Fields
	9.2.2 The JOIN Operation
	9.2.3 Queries Selecting Large Numbers of Fields

	9.3 Defining and Executing Named Queries
	9.3.1 CREATE QUERY and CALL
	9.3.2 Class Queries

	9.4 Queries Invoking User-defined Functions
	9.5 Collection Properties
	9.6 Queries Invoking Free-text Search
	9.6.1 Full Text Indexing and Text Retrieval through SQL
	9.6.2 Collection Indexing and Querying Collections through SQL
	9.6.3 Usage Notes and Restrictions

	9.7 Pseudo-Field Variables
	9.8 Query Metadata
	9.9 Queries and ECP

	10 Collation
	10.1 Collation Types
	10.2 Namespace-wide Default Collation
	10.3 Table Field/Property Definition Collation
	10.4 Index Definition Collation
	10.5 Query Collation
	10.5.1 select-item Collation
	10.5.2 DISTINCT and GROUP BY Collation

	10.6 Legacy Collation Types
	10.7 SQL and NLS Collations

	11 Implicit Joins (Arrow Syntax)
	11.1 Property Reference
	11.2 Child Table Reference
	11.3 Arrow Syntax Privileges

	12 Using Embedded SQL
	12.1 Compiling Embedded SQL and the Macro Preprocessor
	12.1.1 Recompilation Required following Change to Dependent Class

	12.2 Embedded SQL Syntax
	12.2.1 The &sql Directive
	12.2.2 &sql Alternative Syntax
	12.2.3 &sql Marker Syntax
	12.2.4 Embedded SQL and Line Offsets

	12.3 Embedded SQL Code
	12.3.1 Simple SQL Statements
	12.3.2 Schema Name Resolution
	12.3.3 Literal Values
	12.3.4 Data Format
	12.3.5 Privilege Checking

	12.4 Host Variables
	12.4.1 Host Variable Examples
	12.4.2 Host Variable Subscripted by Column Number
	12.4.3 NULL and Undefined Host Variables
	12.4.4 Validity of Host Variables
	12.4.5 Host Variables and Procedure Blocks

	12.5 SQL Cursors
	12.5.1 The DECLARE Cursor Statement
	12.5.2 The OPEN Cursor Statement
	12.5.3 The FETCH Cursor Statement
	12.5.4 The CLOSE Cursor Statement

	12.6 Embedded SQL Variables
	12.6.1 %msg
	12.6.2 %ok
	12.6.3 %ROWCOUNT
	12.6.4 %ROWID
	12.6.5 SQLCODE
	12.6.6 $TLEVEL
	12.6.7 $USERNAME

	12.7 Auditing Embedded SQL

	13 Using Dynamic SQL
	13.1 Introduction to Dynamic SQL
	13.1.1 Dynamic SQL versus Embedded SQL

	13.2 The %SQL.Statement Class
	13.3 Creating an Object Instance
	13.3.1 %SelectMode Property
	13.3.2 %SchemaPath Property
	13.3.3 %Dialect Property
	13.3.4 %ObjectSelectMode Property

	13.4 Preparing an SQL Statement
	13.4.1 %Prepare()
	13.4.2 %PrepareClassQuery()
	13.4.3 Results of a Successful Prepare

	13.5 Executing an SQL Statement
	13.5.1 %Execute()
	13.5.2 %ExecDirect()

	13.6 Returning the Full Result Set
	13.6.1 %Display() Method
	13.6.2 %DisplayFormatted() Method
	13.6.3 Paginating a Result Set

	13.7 Returning Specific Values from the Result Set
	13.7.1 %Print() Method
	13.7.2 rset.name Property
	13.7.3 %Get("fieldname") Method
	13.7.4 %GetData(n) Method

	13.8 Returning Multiple Result Sets
	13.9 SQL Metadata
	13.9.1 Statement Type Metadata
	13.9.2 Select-item Metadata
	13.9.3 Query Arguments Metadata
	13.9.4 Query Result Set Metadata

	13.10 Auditing Dynamic SQL

	14 Dynamic SQL Using Older Result Set Classes
	14.1 Dynamic SQL Using %ResultSet.SQL
	14.2 Dynamic SQL Using %Library.ResultSet
	14.2.1 %Library.ResultSet Supports SQL Result Properties
	14.2.2 %Library.ResultSet Does Not Support CALL

	14.3 Input Parameters
	14.4 Closing a Query
	14.5 %Library.ResultSet Metadata
	14.6 %ResultSet.SQL Metadata

	15 Using the SQL Shell Interface
	15.1 Other Ways of Executing SQL
	15.2 Invoking the SQL Shell
	15.2.1 GO Command
	15.2.2 Input Parameters
	15.2.3 Executing ObjectScript Commands
	15.2.4 CALL Command
	15.2.5 Executing an SQL Script File

	15.3 Storing and Recalling SQL Statements
	15.3.1 Recall by Number
	15.3.2 Recall by Name

	15.4 SQL Shell Parameters
	15.4.1 Displaying, Setting, and Saving SQL Shell Parameters
	15.4.2 Setting DISPLAYMODE and DISPLAYTRANSLATE
	15.4.3 Setting EXECUTEMODE
	15.4.4 Setting ECHO
	15.4.5 Setting MESSAGES
	15.4.6 Setting LOG
	15.4.7 Setting PATH
	15.4.8 Setting SELECTMODE

	15.5 SQL Metadata and Performance Metrics
	15.5.1 Displaying Metadata, Show Plan, and Show Statement
	15.5.2 SQL Shell Performance

	15.6 Transact-SQL Support
	15.6.1 Setting DIALECT
	15.6.2 Setting COMMANDPREFIX
	15.6.3 RUN Command
	15.6.4 TSQL Examples

	16 Using the Management Portal SQL Interface
	16.1 Management Portal SQL Facilities
	16.1.1 Selecting a Namespace

	16.2 Executing SQL Statements
	16.2.1 Writing SQL Statements
	16.2.2 Table Drag and Drop
	16.2.3 Execute Query Options
	16.2.4 SQL Statement Results
	16.2.5 Show History
	16.2.6 Other SQL Interfaces

	16.3 Filtering Schema Contents
	16.3.1 Browse Tab
	16.3.2 Catalog Details Tab
	16.3.3 Open Table

	16.4 Actions
	16.5 Wizards

	17 Importing SQL Code
	17.1 Importing Caché SQL
	17.1.1 Import File Format
	17.1.2 Supported SQL Statements

	17.2 Code Migration: Importing non-Caché SQL

	18 Using Triggers
	18.1 Defining Triggers
	18.2 Types of Triggers
	18.2.1 AFTER Triggers
	18.2.2 Recursive Triggers

	18.3 How Trigger Code Works
	18.3.1 Macros within Trigger Code
	18.3.2 {name*O}, {name*N}, and {name*C} Trigger Code Syntax
	18.3.3 Additional Trigger Code Syntax

	18.4 Triggers and Object Access
	18.4.1 Not Pulling Triggers During Object Access

	18.5 Triggers and Transactions
	18.6 Listing Triggers

	19 Defining and Using Stored Procedures
	19.1 Overview
	19.2 Defining Stored Procedures
	19.2.1 Defining a Stored Procedure Using DDL
	19.2.2 SQL to Class Name Transformations
	19.2.3 Defining a Method Stored Procedure using Classes
	19.2.4 Defining a Query Stored Procedure using Classes
	19.2.5 Customized Class Queries

	19.3 Using Stored Procedures
	19.3.1 Stored Functions
	19.3.2 Privileges

	19.4 Listing Procedures

	20 Storing and Using Stream Data (BLOBs and CLOBs)
	20.1 Stream Fields and SQL
	20.1.1 BLOBs and CLOBs

	20.2 Defining Stream Fields Using DDL
	20.2.1 Empty BLOBs

	20.3 Stream Field Concurrency Locking
	20.4 Using Stream Fields within Caché Methods
	20.5 Using Stream Fields from ODBC
	20.6 Using Stream Fields from JDBC

	21 Users, Roles, and Privileges
	21.1 Users
	21.2 Roles
	21.3 Privileges

	22 Using the Caché SQL Gateway
	22.1 Architecture of the Caché SQL Gateway
	22.1.1 Persisting External Tables in Caché
	22.1.2 Restrictions on SQL Gateway Queries

	22.2 Creating Gateway Connections for External Sources
	22.3 The Link Table Wizard: Linking to a Table or View
	22.3.1 Using the Link Table Wizard
	22.3.2 Limitations When Using the Linked Table

	22.4 The Link Procedure Wizard: Linking to a Stored Procedure
	22.5 Controlling Gateway Connections
	22.6 The Data Migration Wizard: Migrating Data from an ODBC or JDBC Source
	22.6.1 Microsoft Access and Foreign Key Constraints

	Appendix A: Importing and Exporting SQL Data
	A.1 Importing Data from a Text File
	A.2 Exporting Data to a Text File

	Index

