InterSystems-

IRIS Data Platform

L ocking and Concurrency
Control

Version 2023.1
2023-06-01

Locking and Concurrency Control

InterSystems IRIS Data Platform Version 2023.1 2023-06-01
Copyright © 2023 InterSystems Corporation

All rights reserved.

InterSystems®, InterSystems IRIS®, IntegratedML®, InterSystems HealthShare®, InterSystems HealthShare Care Community®, HealthShare
Unified Care Record®, InterSystems Caché®, and InterSystems Ensemble® are registered trademarks of InterSystems
Corporation.InterSystems IRIS for Health™ and HealthShare® CMS Solution Pack™ are trademarks of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

Locking and ConCUrreNnCy CONEIOl.....coiiuiiirieieeieieee ettt e e e e sbe b e b b e 1
N g1 oo 0Tt o o [PPSR 1
L1 LOCK NBIMES ...vveieieiieiesiee sttt sttt st stttk se et e se et e seebeseebeseesesaenentenesbaneas 1

L2 TRELOCK TADIE ..ttt bbbttt b e sr e b e 2

2 L OCKS NGO ATTAY'S ..ttt sttt sttt et et et aeebe s bt saeebesbese e st e bese e e eneeneeaeeaesbesaesbesbeseeseans 2
3 UsSING the LOCK COMMEANGviueiriierireetirieiesieiesieesiee st ss e sne s 3
3.1 Adding an INCremMENtal LOCKceiveirieirieerieiesie sttt st bbb 3

3.2 Adding an Incremental Lock With @ TIMEOULccccevvveveierine e seeeee e 4

TG = (= 1110,V o = 1 N G 4

3.4 Other Basic Variations of the LOCK COmMMENGcoereiriererrieiieeeeeenere e 5
o0 G)Y/ 0= OSSR 5
4.1 EXclusiVe and Shared LOCKSccoocriririnese ettt e 6

4.2 Non-Escalating and ESCalating LOCKSccieerieerieneneniriesesie st 6

4.3 SUMMANY Of LOCK TYPES .ouvvveieriesieieieeeeeeseseestestesaeste e ssesee e seseensenseneeeesessssssssessesssssens 6

L S o 11 T T 0o 26 7
5.1 Lock Escalation EXAMPIEcoeiiiieeeeeeeee st et e 7

5.2 RemoVing ESCAlAliNG LOCKScouiieiieieieererere sttt sttt e sbe s s s e 8

6 Locks, Globals, and NaMESPACESceverierieriirierierieneeeereeeeesrese st ste e saeste e seeseesbeseeseeeeneeneeneenens 9
6.1 Scenario 1: Multiple Namespaces with the Same Globals Databasecccccveevvrvrvrniene 9

6.2 Scenario 2: Namespace Uses a Mapped Global ... veseseseceeeeeeeee 10

6.3 Scenario 3: Namespace Uses a Mapped Global SUBSCIIPEcccvveverereneriereceeeeeeeee, 11

6.4 Scenario 4: Extended Global REFEIENCEScocivireriiiinene e e 12

7 AVOIdiNG DEAIOCKeveieieiteie ettt sttt et be b b sae b b e 12
8 PractiCal USESFOr LOCKScoiriiriiiietisie sttt sttt sttt nne e 13
8.1 Controlling Access to APPliCatioN DAccrveerueerieiriiireere et 13

8.2 Preventing SIMUItaN@OUS ACHIVILYcccvvvieirierereereeieeirese e ste e e e eneenes 13

9 For Additional INfOrMELIONciueuirieirieirieesees ettt sttt st seebe e 14

Locking and Concurrency Control

Locking and Concurrency Control

An important feature of any multi-process system is concurrency control, the ability to prevent different processes from
changing a specific element of data at the same time, resulting in corruption. Consequently, InterSystems IRIS provides a
lock management system. This page provides an overview.

InterSystems SQL also provides commands for working with locks. For details, see the Inter Systems SQL Reference.

Also, the %Persistent class provides away to control concurrent access to objects, namely, the concurrency argument to
% Openld() and other methods of this class. These methods ultimately use the ObjectScript LOCK command, whichis
discussed in thispage. All persistent objectsinherit these methods. See Object Concurrency. Similarly, the system automat-
ically performs locking on INSERT, UPDATE, and DELETE operations (unless you specify the %NOLOCK keyword).

The %Persistent class also provides the methods % GetL ock (), % Releasel ock(), % L ockld(), % UnlockId(),
% L ockExtent(), and % Unlock Extent(). For details, see the class reference for %Persistent.

1 Introduction

The basic locking mechanism isthe LOCK command. The purpose of this command isto delay activity in one process
until another process has signaled that it is OK to proceed.

InInterSystemsIRIS, alock does not, by itself, prevent activity. Locking worksonly by convention: it requiresthat mutually
competing processes all implement locking with the same lock names. For example, the following describes a common
scenario:

1. ProcessA issuesthe LOCK command, and InterSystems IRIS creates alock (by default, an exclusive lock).
Typicaly, process A then makes changes to nodes in aglobal. The details are application-specific.

2. ProcessB issuesthe LOCK command with the same lock name. Because there is an existing exclusive lock, process
B pauses. Specifically, the LOCK command does not return, and no successive lines of code can be executed.

3. When the process A releases the lock, the LOCK command in process B finally returns and process B continues.

Typically, process B then makes changes to nodes in the same global.

1.1 Lock Names

One of the arguments for the LOCK command is the lock name. Lock names are arbitrary, but by universal convention,
programmers use lock names that are identical to the names of the item to be locked. Usually the item to be locked isa
global or anode of aglobal. Thuslock names usually look like names of global names or names of nodes of globals. (This
page discusses only lock names that start with carets, because those are the most common; for details on locks with name
that do not start with carets, see LOCK.)

Formally, lock namesfollow the same naming conventionsaslocal variablesand global variables, asdescribed in Variabl es.
Like variables, lock names are case-sensitive and can have subscripts. Do not use process-private global names as lock
names (you would not need such alock anyway because by definition only one process can access such a global).

Tip: Because locking works by convention and because lock names are arbitrary, it is not necessary to define a given
variable before creating alock with the same name.

Locking and Concurrency Control 1

Locks and Arrays

Theform of thelock name has an effect on performance, because of how InterSystems|RI S allocates and manages memory.
Locking is optimized for lock names that use subscripts. An exampleis *sample.person(id).

In contrast, InterSystems IRIS is not optimized for lock names such as~“name_concatenated_identifier. Non-
subscripted lock hames can a so cause performance problems related to ECP.

1.2The Lock Table

InterSystems | RIS maintains a system-wide, in-memory tablethat recordsall current locks and the processesthat have own
them. This table — the lock table — is accessible via the Management Portal, where you can view the locks and (in rare
cases, if needed) remove them. Note that any given process can own multiple locks, with different lock names (or even
multiple locks with the same lock name).

When a process ends, the system automatically releases all locks that the process owns. Thusit is not generally necessary
to remove locks via the Management Portal, except in the case of an application error.

Thelock table cannot exceed afixed size, which you can specify using the locksiz setting. For information, see Monitoring
Locks. Consequently, it is possible for the lock table to fill up, such that no further locks are possible. If this occurs, Inter-
Systems IRIS writes the following message to the messages.log file:

LOCK TABLE FULL

Filling the lock table is not generally considered to be an application error; InterSystems IRIS also provides alock queue,
and processes wait until thereis space to add their locksto the lock table. (However, deadlock is considered an application
programming error. See Avoiding Deadlock.)

2 Locks and Arrays

When you lock an array, you can lock either the entire array or one or more nodes in the array. When you lock an array
node, other processes are blocked from locking any node that is subordinate to that node. Other processes are a so blocked
from locking the direct ancestors of the locked node.

The following figure shows an example:

2 Locking and Concurrency Control

Using the LOCK Command

“MyGlobal(“config”)

“MyGlobal

"MyGlobal(“sales™)
L -

“MyGlobal(“staff")

"MyGlobal(“sales”,“Americas™)

“MyGlobal(“sales™,“APAC")

"MyGlobal(“sal

Diagram Key

locked

cannot be |
another

can be loc
another p

Implicit locks are not included in the lock table and thus do not affect the size of the lock table.

The InterSystems IRIS lock queuing algorithm queues all locks for the same lock name in the order received, even when
there is no direct resource contention. For an example and details, see Queuing of Array Node Locks.

3 Using the LOCK Command

This section discusses how to use the LOCK command to add and remove locks.

3.1 Adding an Incremental Lock

To add alock, use the LOCK command as follows:
LOCK +lockname

Where lockname isthe literal lock name. The plus sign (+) creates an incremental lock, which isthe common scenario; see
Creating Simple Locks for aless common alternative.

This command does the following:

1. Attemptsto add the given lock to the lock table. That is, this entry is added to the lock queue.

Locking and Concurrency Control 3

Using the LOCK Command

2. Pauses execution until the lock can be acquired.

There are different types of locks, which behave differently. To add alock of a non-default lock type, use the following
variation:

LOCK +lockname#locktype

Where |ocktypeis a string of lock type codes enclosed in double quotes; see Lock Types.

Note that a given process can add multiple incremental locks with the same name; these locks can be of different types or
can al be the same type.

3.2 Adding an Incremental Lock with a Timeout

If used incorrectly, incremental locks can result in an undesirable situation known as deadlock, discussed later in Avoiding
Deadlock. One way to avoid deadlock isto specify atimeout period when you create alock. To do so, use the LOCK
command as follows:

LOCK +lockname#locktype :timeout

Where timeout is the timeout period in seconds. The space before the colon is optional. If you specify timeout as O, Inter-
Systems | RIS makes one attempt to add the lock (but see the note, below).

This command does the following:
1. Attemptsto add the given lock to the lock table. That is, this entry is added to the lock queue.
2. Pauses execution until the lock can be acquired or until the timeout period ends, whichever comes first.

3. Setsthevalueof the$TEST special variable. If thelock isacquired, InterSystems IRIS sets$TEST equd to 1. Otherwise,
InterSystems IRIS sets $TEST equad to 0.

This meansthat if you use the timeout argument, your code should next check the value of the STEST special variable and
use the value to choose whether to proceed. The following shows an example:

ObjectScript

Lock +"ROUTINE(routinename):0
IT "$TEST { Return $$SERROR(*'Cannot lock the routine: ",routinename)}

3.2.1 A Note on the Zero Timeout

As noted above, if you specify timeout as 0, I nterSystems |RIS makes one attempt to add the lock. However, if you try to
take alock on a parent node using a zero timeout, and you aready have alock on achild node, the zero timeout isignored
and thereisan interna 1 second timeout, which is used instead.

3.3 Removing a Lock

To remove alock of the default type, use the LOCK command as follows:

LOCK -lockname

If the process that executes this command owns alock (of the default type) with the given name, this command removes
that lock. Or if the process owns more than one lock (of the default type), this command removes one of them.

Or to remove alock of another type:

LOCK -lockname#locktype

4 Locking and Concurrency Control

Lock Types

Where locktype is a string of lock type codes; see Lock Types. The lock type codes do not have to be in the same order as
when the lock was created.

3.4 Other Basic Variations of the LOCK Command

For completeness, this section discusses the other basic variations of the LOCK command: using it to create simple locks
and using it to remove al locks. These variations are uncommon in practice.

3.4.1 Creating Simple Locks

For the LOCK command, if you omit the + operator, the LOCK command first removes all existing locks held by this
process and then attempts to add the new lock. In this case, the lock is called a simple lock rather than an incremental 1ock.
It ispossible for a process to own multiple ssimple locks, if that process creates them all at the same time with syntax like
the following:

LOCK (“MyVarl, MyVar2, MyVar3)

Simple locks are not common in practice, becauseit is usually necessary to hold multiple locks and to acquire them at dif-
ferent stepsin your code. Thusit is more practical to use incremental locks.

However, if simple locks are appropriate for you, note that you can specify the locktype and timeout arguments when you
create asimple lock. Also, to remove asimple lock, you can use the LOCK command with aminus sign (-).

3.4.2 Removing All Locks

To remove all locks held by the current process, use the LOCK command with no arguments. In practice, it isnot common
to use the command this way, for two reasons:

» Itishest to release specific locks as soon as possible.

e When the process ends, al itslocks are automatically released.

4 Lock Types

The locktype argument specifies the type of lock to add or remove. When adding alock, include this argument as follows:
LOCK +lockname#locktype
Or when removing alock:

LOCK -lockname#locktype

In either case, locktype is one or more lock type codes (in any order) enclosed in double quotes. Note that if you specify
the locktype argument, you must include a pound character (#) to separate the lock name from the lock type.

There are four lock type codes, as follows. Note that these are not case-sensitive.
* S—Addsashared lock. See Exclusive and Shared Locks.

e E— Addsan escalating lock. See Non-Escalating and Escalating Locks.

* 1 —Addsalock with immediate unlock.

e D — Addsalock with deferred unlock.

Locking and Concurrency Control 5

Lock Types

Thelock type codes D and 1 have special behavior in transactions. For details, see LOCK. You cannot use these two
lock type codes at the same time for the same lock name.

The next sections discuss the most common variations, and the last subsection summarizes all the lock types.

4.1 Exclusive and Shared Locks

Any lock is either exclusive (the default) or shared. These types have the following significance:

e While one process owns an exclusive lock (with agiven lock name), no other process can acquire any lock with that
lock name.

* While one process owns a shared lock (with a given lock name), other processes can acquire shared locks with that
lock name, but no other process can acquire an exclusive lock with that lock name.

The typical purpose of an exclusive lock isto indicate that you intend to modify avalue and that other processes should
not attempt to read or modify that value. The typical purpose of a shared lock isto indicate that you intend to read avalue
and that other processes should not attempt to modify that value; they can, however, read the value. Also see Practical Uses
for Locks.

4.2 Non-Escalating and Escalating Locks
Any lock is also either non-escalating (the default) or escalating. The purpose of escalating locksisto make it easier to
manage large numbers of locks, which consume memory and which increase the chance of filling the lock table.

You use escal ating locks when you lock multiple nodes of the same array. For escalating locks, if agiven process has created
more than a specific number (by default, 1000) of locks on parallel nodes of a given array, InterSystems IRIS replaces the
individual lock names and replaces them with anew lock that containsthe lock count. (In contrast, InterSystems IRIS never
does this for non-escalating locks.) For an example and additional details, see Escalating Locks.

Note: You can create escalating locks only for lock names that include subscripts. If you attempt to create an escalating
lock with alock name that has no subscript, InterSystems IRIS issues a <COMMAND> error.

4.3 Summary of Lock Types
The following table lists all the possible lock types with their descriptions:

Exclusive Locks Shared Locks (#"'S" locks)

Non-escalating | * locktype omitted — Default lock type e #"S" — Shared lock

Locks e #"I1" — Exclusive lock with immediate | « #"SI1" — Shared lock with immediate

unlock unlock

e #"D" — Exclusive lock with deferred e #"SD" — Shared lock with deferred

unlock unlock
Escalating * #"E" — Exclusive escalating lock e #'"SE" — Shared escalating lock
Locks (#"& * #"EI'" — Exclusive escalating lock with | « #"SE1'" — Shared escalating lock with
locks)

immediate unlock immediate unlock

e #"ED" — Exclusive escalating lock with | = #''SED" — Shared escalating lock with
deferred unlock deferred unlock

6 Locking and Concurrency Control

Escalating Locks

For any lock type that uses multiple lock codes, the lock codes can be in any order. For example, thelock type#''S1* is
equivalent to #* 1S™".

For details on immediate unlock and deferred unlock, see LOCK. You cannot use these two lock type codes at the same
time for the same lock name.

5 Escalating Locks

You use escalating locks to manage large numbers of locks. They are relevant when you lock nodes of an array, specifically
when you lock multiple nodes at the same subscript level.

When a given process has created more than a specific number (by default, 1000) of escalating locks at a given subscript
level in the same array, InterSystems IRIS removes al the individual lock names and replaces them with anew lock. The
new lock is at the parent level, which means that this entire branch of the array isimplicitly locked. The example (shown
next) demonstrates this.

Your application should rel ease locks for specific child nodes as soon asit is suitable to do so (exactly aswith non-escalating
locks). Asyou release locks, InterSystems IRI'S decrements the corresponding lock count. When your application removes
enough locks, InterSystems IRI'S removes the lock on the parent node. The second subsection shows an example.

For information on specifying the lock threshold (which by default is 1000), see LockThreshold.

5.1 Lock Escalation Example

Suppose that you have 1000 locks of the form ~MyGlobal ("'sales',"EU", salesdate) where salesdate represents
dates. The lock table might look like this:

Owner ModeCount Reference Directory

1284 Exclusive "%SYS("CSP","Daemon") c:lintersystemslirisimgr\

26324 Exclusive MSC.LMFMON("License Monitor") chintersystemsliris\mgr\

23400 Exclusive ASC.Monitor.System c:lintersystemslirisimgr\

23180 Exclusive "TASKMGR c:lintersystemsliris\mgr\

23948 Exclusive "%cspSession("vgMJ4iLMCL") c:lintersystemsliris\imgriirislocaldata\

19776 Exclusive_e "MyGlobal("sales","EU","2015-07-03") c:\intersystems\irisimgriusert
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-04") c:\intersystemsl\iris\imgr\user\
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-05") c:intersystems\irisimgriusert
19776 Exclusive_e “MyGlobal("sales","EU","2015-07-08") c:\intersystemsliris\mgriuser\
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-07") c:\intersystems\irisimgriusert
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-08") c:\intersystems\iris\imgriuser\
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-09") c:\intersystems\iris\imgriusert
19776 Exclusive_ e "MyGlobal("sales","EU","2015-07-10") c:\intersystems\iris\imgr\user\
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-11") c:lintersystems\iris\imgriusert
19776 Exclusive e "MyGlobal("sales","EU","2015-07-12") c:\intersystems\iris\imgriuser\

Notice the entries for owner 19776 (thisisthe process that ownsthe lock). The ModeCount column indicates that these are
shared, escalating locks.

When the same process attempts to create another lock of the same form, InterSystems IRIS escalates them. It removes
these locks and replaces them with a single lock of the name “MyGlobal (*'sales', ""EU'"). Now the lock table might
look like this:

Locking and Concurrency Control 7

Escalating Locks

Owner ModeCount Reference Directory

1284 Exclusive AeSYS("CSP","Daemon") c:\intersystemshiris\imgri

26324 Exclusive *MSC.LMFMON("License Monitor") c:\intersystemshiris\imgri

23400 Exclusive ASC.Monitor.System clintersystemshiris\imgr\

23180 Exclusive ATASKMGR c\intersystemshiris\imgri

23948 Exclusive "ocspSession("vgMJ4iLMCL") c:\intersystemshiris\mgniirislocaldata\
19776 Exclusive/1001E “MyGlobal("sales","EU") c\intersystemshiris\imgriuser\

The ModeCount column indicates that thisis a shared, escalating lock and that its count is 1001.
Note the following key points:

e All child nodes of "MyGlobal (*'sales","EU™) are now implicitly locked, following the basic rules for array
locking.

» Thelock table no longer contains information about which child nodes of ~"MyGlobal (*'sales™,"EU'™) were
specifically locked. This has important implications when you remove locks; see the next subsection.

When the same process adds more lock names of the form “MyGlobal (*'sales',""EU",salesdate), thelock table
increments the lock count for the lock name “"MyGlobal (*'sales',""EU™). The lock table might then look like this:

Owner ModeCount Reference Directory

1284 Exclusive A%SYS("CSP","Daemon") c:lintersystemsliris\imgr\

26324 Exclusive *MSC.LMFMON("License Monitor") c:lintersystemslirisimgr\

23400 Exclusive ASC.Monitor.System c:\intersystemslirisimgr\

23180 Exclusive "TASKMGR clintersystemsliris\mgr\

23948 Exclusive "Y%cspSession("vgMJ4iLMCL") clintersystemslirisimgriirislocaldata\
19776 Exclusive/1026E "“MyGlobal("sales","EU") clintersystemslirisimgriusert

The ModeCount column indicates that the lock count for thislock is now 1026.

5.2 Removing Escalating Locks

In exactly the same way aswith non-escalating locks, your application should release locks for specific child nodes as soon
as possible. Asyou do so, InterSystems IRIS decrements the lock count for the escalated lock. For example, suppose that
your code removes the locks for ~"MyGlobal (*'sales™,"EU", salesdate) where salesdate corresponds to any date
in 2011 — thus removing 365 locks. The lock table now looks like this:

Owner ModeCount Reference Directory

1284 Exclusive "%SYS("CSP","Daemon") c:intersystemshiris\mgr\

26324 Exclusive AMSC.LMFMON("License Monitor") c:intersystemstiris\imgri

23400 Exclusive *SC.Monitor.System c:\intersystemshiris\mgr\

23180 Exclusive ATASKMGR chintersystemsiiris\imgri

23948 Exclusive "%cspSession("vgMJ4iLMCL") c:\intersystemshiris\mgriirislocaldata\
19776 Exclusive/660E "MyGlobal("sales","EU") cintersystems\iris\mgriuser\

Notice that even though the number of locks is now below the threshold (1000), the lock table does not contain individual
entries for the locks for "MyGlobal (*'sales',"EU",salesdate).

The node "MyGlobal (*'sales'™) remains explicitly locked until the process removes 661 more locks of the form
“MyGlobal ("'sales","EU",salesdate).

8 Locking and Concurrency Control

Locks, Globals, and Namespaces

Important: Thereisasubtle point to consider, related to the preceding discussion. It is possible for an application to
release locks on array nodes that were never locked in the first place, thus resulting in an inaccurate lock
count for the escalated lock — and possibly releasing the escalated lock before it is desirable to do so.

For example, suppose that the process locked nodesin "MyGlobal (*'sales™,"EU",salesdate) for
theyears 2010 through the present. Thiswould create more than 1000 locks and thislock would be escal ated,
as planned. Suppose that abug in the application removeslocksfor the nodesfor theyear 1970. InterSystems
IRISwould permit this action, even though those nodes were not previously locked, and InterSystems|IRIS
would decrement the lock count by 365. The resulting lock count would not be an accurate count of the
desired locks. If the application then removed locks for other years, the escalated lock could potentially
be removed unexpectedly early.

6 Locks, Globals, and Namespaces

Locks are typically used to control access to globals. Because a global can be accessed from multiple namespaces, Inter-
Systems RIS provides automatic cross-namespace support for itslocking mechanism. The behavior isautomatic and needs
no intervention, but is described here for reference. There are several scenarios to consider:

* Any namespace has a default database which contains data for persistent classes and any additional globals; thisisthe
globals database for this namespace. When you access data (in any manner), InterSystems IRIS retrieves it from this
database unless other considerations apply. A given database can be the globals database for more than one namespace.
See Scenario 1.

* A namespace can include mappings that provide access to globals stored in other databases. See Scenario 2.

* A namespace can include subscript level global mappingsthat provide accessto globals partly stored in other databases.
See Scenario 3.

» Code running in one namespace can use an extended reference to access a global not otherwise availablein this
namespace. See Scenario 4.

Although lock names are intrinsically arbitrary, when you use alock name that starts with a caret (%), InterSystems IRIS
provides special behavior appropriate for these scenarios. The following subsections give the details. For simplicity, only
exclusive locks are discussed; the logic is similar for shared locks.

6.1 Scenario 1: Multiple Namespaces with the Same Globals Database

As noted earlier, while process A owns an exclusive lock with a given lock hame, no other process can acquire any lock
with the same lock name.

If the lock name starts with a caret, this rule applies to all namespaces that use the same globals database.

For example, suppose that the namespaces ALPHA and BETA are both configured to use database GAMMA as their globals
database. The following shows a sketch:

Locking and Concurrency Control 9

Locks, Globals, and Namespaces

ALPHA namespace BETA namespace

default database
for globals for this
namespace

default database
for globals for this
namespace

GAMMA
database

Then consider the following scenario:

1. Innamespace ALPHA, process A acquires an exclusive lock with the name “MyGlobal (15).

2. In namespace BETA, process B tries to acquire alock with the name ~"MyGlobal (15). ThisLOCK command does
not return; the process is blocked until process A rel eases the lock.

In this scenario, the lock table contains only the entry for the lock owned by ProcessA. If you examine the lock table, you
will notice that it indicates the database to which this lock applies; see the Directory column. For example:

Owner ModeCount Reference Directory

1284 Exclusive % SYS("CSP","Daemon") c:\intersystems\iris\imgr\

26324 Exclusive AMSC.LMFMON("License Monitor") c:\intersystems\iris\imgrh

23400 Exclusive *SC.Monitor.System c:\intersystems\iris\imgri

23180 Exclusive *TASKMGR clintersystemsiiris\imgr\

19776 Exclusive_ e *MyGlobal(15) c:\intersystems\iris\mgrigammadb\

23948 Exclusive MocspSession("vgMJ4iLMCL") c:\intersystems\iris\imgniirislocaldata\

6.2 Scenario 2: Namespace Uses a Mapped Global

If one or more namespaces include global mappings, the system automatically enforces the lock mechanism across the
applicable namespaces. InterSystems IRIS automatically creates additional lock table entries when locks are acquired in
the non-default namespace.

For example, suppose that namespace ALPHA is configured to use database ALPHADB asiits globals database. Suppose that
namespace BETA is configured to use a different database (BETADB) asits globals database. The namespace BETA also
includes agloba mapping that specifiesthat “MyGlobal isstored in the ALPHADB database. The following shows a sketch:

10 Locking and Concurrency Control

Locks, Globals, and Namespaces

ALPHA namespace BETA namespace
-
P -
- -
default database - - default database
for globals for this location of for globals for this
namespace - "MyGlobal namespace
-

BETADB
database

ALPHADB
database

Then consider the following scenario:
1. Innamespace ALPHA, process A acquires an exclusive lock with the name “MyGlobal (15).

Aswith the previous scenario, the lock table contains only the entry for thelock owned by ProcessA. Thislock applies
to the ALPHADB database:

19776 Exclusive_e "MyGlobal(15) c\intersystemshiris\mgr\alphadb\

2. In namespace BETA, process B tries to acquire alock with the name ~"MyGlobal (15). ThisLOCK command does
not return; the processis blocked until process A releases the lock.

6.3 Scenario 3: Namespace Uses a Mapped Global Subscript

If one or more namespaces include globa mappings that use subscript level mappings, the system automatically enforces
the lock mechanism across the applicable namespaces. In this case, InterSystems RIS al so automatically creates additional
lock table entries when locks are acquired in a non-default namespace.

For exampl e, suppose that namespace ALPHA is configured to use the database ALPHADB asits global s database. Namespace
BETA uses the BETADB database as its globals database.

Also suppose that the namespace BETA also includes a subscript-level global mapping so that ~*MyGlobal (15) is stored
in the ALPHADB database (while the rest of this global is stored in the namespace’s default location). The following shows
a sketch:

ALPHA namespace BETA namespace
-~
-~
~
P -~
default database e default database
for globals for this - for globals for this
namespace location of namespace; also
*MyGlobal(15) location of the rest
of "MyGlobal

BETADB
database

ALPHADB
database

Then consider the following scenario:

Locking and Concurrency Control 11

Avoiding Deadlock

1. Innamespace ALPHA, processA acquires an exclusive lock with the name “MyGlobal (15).

Aswith the previous scenario, the lock table contains only the entry for thelock owned by ProcessA. Thislock applies
to the ALPHADB database (c:\InterSystems\1R1S\mgr\alphadb, for example).

2. In namespace BETA, process B tries to acquire alock with the name ~"MyGlobal (15). ThisLOCK command does
not return; the process is blocked until process A releases the lock.

When a non-default namespace acquires alock, the overall behavior isthe same, but InterSystems IRIS handles the details
dlightly differently. Suppose that in namespace BETA, a process acquires alock with the name “MyGlobal (15). In this
case, the lock table contains two entries, one for the ALPHADB database and one for the BETADB database. Both locks are
owned by the process in namespace BETA.

19776 Exclusive_e “MyGlobal(15) c:\intersystemshiris\mgrialphadb'
19776 Exclusive_e “MyGlobal(15) clintersystems\iris\imgr\betadb\

When this process rel eases the lock name ~“MyGlobal (15), the system automatically removes both locks.

6.4 Scenario 4: Extended Global References

Code running in one namespace can use an extended reference to access aglobal not otherwise available in this namespace.
In this case, InterSystems IRIS adds an entry to the lock table that affects the relevant database. The lock is owned by the
process that created it. For example, consider the following scenario. For simplicity, there are no global mappingsin this
scenario.

1. ProcessA isrunning in the ALPHA namespace, and this process uses the following command to acquire alock on a
global that is available in the BETA namespace:
ObjectScript

lock "["'beta'"]MyGlobal (15)

2. Now thelock table includes the following entry:

19776 Exclusive_e “MyGlobal(15) c:\intersystemshiris\mgribetadb\

Note that this shows only the global name (rather than the reference used to accessit). Also, in this scenario, BETADB
is the default database for the BETA namespace.

3. Innamespace BETA, process B tries to acquire alock with the name ~"MyGlobal (15). ThisLOCK command does
not return; the process is blocked until process A releases the lock.

A process-private global istechnically akind of extended reference, but InterSystems RIS does not support using aprocess-
private global names as lock names; you would not need such alock anyway because by definition only one process can
access such aglobal.

7 Avoiding Deadlock

Incremental locking is potentially dangerous because it can lead to a situation known as deadlock. This situation occurs
when two processes each assert an incremental lock on avariable already locked by the other process. Because the attempted
locks areincremental, the existing locks are not released. As aresult, each process hangs whilewaiting for the other process
to release the existing lock.

Asan example:

12 Locking and Concurrency Control

Practical Uses for Locks

1. ProcessA issuesthiscommand: lock + ~MyGlobal (15)

2. Process B issuesthiscommand: lock + ~MyOtherGlobal (15)

3. ProcessA issuesthiscommand: lock + ~MyOtherGlobal (15)
This LOCK command does not return; the process is blocked until process B releases this lock.

4. Process B issuesthiscommand: lock + ~MyGlobal (15)
This LOCK command does not return; the process is blocked until process A releases thislock. Process A, however,
is blocked and cannot release the lock. Now these processes are both waiting for each other.

There are several ways to prevent deadlocks:

* Alwaysinclude the timeout argument.

» Follow astrict protocol for the order in which you issue incremental LOCK commands. Deadlocks cannot occur as
long as all processes follow the same order for lock names. A simple protocol is to add locks in collating sequence
order.

» Usesimplelocking rather than incremental locking; that is, do not use the + operator. As noted earlier, with simple
locking, theLOCK command first releases all previouslocksheld by the process. (In practice, however, simplelocking
is not often used.)

If adeadlock occurs, you can resolve it by using the Management Portal or the » LOCKTAB routine. See Monitoring Locks
in the Monitoring Guide.

8 Practical Uses for Locks

This section presents the basic ways in which locks are used in practice.

8.1 Controlling Access to Application Data

Locks are used very often to control access to application data, which is stored in globals. Your application might need to
read or modify a particular piece or pieces of this data, and your application would create one or more locks before doing
so, asfollows:

» |If your application needs to read one or more global nodes, and you do not want other processes to modify the values
during the read operation, create shared locks for those nodes.

» If your application needs to modify one or more global nodes, and you do not want other processes to read these nodes
during the modification, create exclusive locks for those nodes.
Then either read or make the modifications as planned. When you are done, remove the locks.

Remember that the locking mechanism works purely by convention. Any other code that would read or modify these nodes
must also attempt to acquire locks before performing those operations.

8.2 Preventing Simultaneous Activity

Locks are al so used to prevent multiple processes from performing the same activity. In this scenario, you also use aglobal,
but the global contains data for the internal purposes of your application, rather than pure application data. Asasimple
example, suppose that you have aroutine ("NightlyBatch) that should never be run by more than one process at any
given time. Thisroutine could do the following, at avery early stagein its processing:

Locking and Concurrency Control 13

For Additional Information

1. Create an exclusive lock on a specific global node, for example, “"AppStateData(*’'NightlyBatch'™). Specify a
timeout for this operation.

2. If thelock isacquired, set nodesin aglobal to record that the routine has been started (as well as any other relevant
information). For example:
ObjectScript

set MAppStateData(*'NightlyBatch'™)=1
set MAppStateData(‘'NightlyBatch™, "user')=$USERNAME

Or, if thelock is not acquired within the timeout period, quit with an error message that indicates that this routine has
already been started.

Then, at the end of its processing, the same routine would clear the applicable global nodes and release the lock.

Thefollowing partial example demonstrates thistechnique, which isadapted from codethat InterSystems |RISusesinternally:

ObjectScript

lock MAppStateData(*'NightlyBatch'):0

if "$TEST {
write "You cannot run this routine right now.™
write !, "This routine is currently being run by user: "_"AppStateData(’NightlyBatch","user')
quit

set MAppStateData(*'NightlyBatch'™)=1
set MAppStateData(‘'NightlyBatch', "user')=$USERNAME
set "MAppStateData('NightlyBatch”, starttime')=$h

//main routine activity omitted from example

kill ~AppStateData(*’'NightlyBatch')
lock -~AppStateData("'NightlyBatch'™)

9 For Additional Information

For additional information on locks, see the following resources:

e LOCK/

* /$LOCK ("$LOCK isastructured system variable that contains information about locks.)
e Transaction Processing

e Monitoring Locks

14 Locking and Concurrency Control

	Table of Contents
	1 Introduction
	1.1 Lock Names
	1.2 The Lock Table

	2 Locks and Arrays
	3 Using the LOCK Command
	3.1 Adding an Incremental Lock
	3.2 Adding an Incremental Lock with a Timeout
	3.3 Removing a Lock
	3.4 Other Basic Variations of the LOCK Command

	4 Lock Types
	4.1 Exclusive and Shared Locks
	4.2 Non-Escalating and Escalating Locks
	4.3 Summary of Lock Types

	5 Escalating Locks
	5.1 Lock Escalation Example
	5.2 Removing Escalating Locks

	6 Locks, Globals, and Namespaces
	6.1 Scenario 1: Multiple Namespaces with the Same Globals Database
	6.2 Scenario 2: Namespace Uses a Mapped Global
	6.3 Scenario 3: Namespace Uses a Mapped Global Subscript
	6.4 Scenario 4: Extended Global References

	7 Avoiding Deadlock
	8 Practical Uses for Locks
	8.1 Controlling Access to Application Data
	8.2 Preventing Simultaneous Activity

	9 For Additional Information
	Index

