InterSystems-

IRIS Data Platform

PEX: Developing Productions
with an External Language

Version 2024.1
2024-07-02

PEX: Developing Productions with an External Language
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Introduction to the PEX FrameWOI K ...ttt sae e sn 1
2 Getting Started With PEX ..ottt b e bbb seebe e 3
B G I o] - 1SR 3

2.2 Working With PEX COMPONENESceieiirieriiriiieseieeieseeeseesesesse e sseseeseessesesseessessessssssssssessenns 3

2.3 Environmental CONSIABIALIONSveviveiiieiiierisie sttt sttt 4
2.3.1 Production-enabled NAMESPACESccerviieieiiieiiniese ettt 4

2.3.2 Web Application REQUITEMENTcoiiiii ettt e 4

2.3.3 ReServed Package NAMES ..ottt bbbttt 4

3 About BUSINESS HOSES AN AGAPLENS ...cveeiieieiereeie ettt st st seene 5
3.1 Creating RUNTIME VariahIEScccvieiiiieie ittt ne e eneas 5
3.1.1 Variable MEtadatalcoviviieiieiiecieere bbb 5

3.2 PEX COMPONENt METAALAeviveeeeeieiieeeeee ettt sttt sbe b b sne 6

A PEX M ESSAQING -.everueruiatesterueseentaseeseareeesseseesessesstasessesaesaessesseseessassessassansansstaseasessessestessesssssessessessasean 7
5 Inbound Adaptersin the PEX FrameworK ..o 9
5.1 Developing & CUSLOM AGAPLETcveirieireiirieertei ettt 9
5.1.1 Implementing Abstract MEthOASccvovveviiiieiire e e 9

5.2 RegiStering the AGAPLETccvcveeeecieec et re e s 10

5.3 Adding the Adapter t0 8 BUSINESS SEIVICEc.everuiriiriiieicieiieeee ettt e 10

6 PEX OULDOUNT AGBPLEN'S ...ttt sttt ae b sae b bbb b b e s et e e e e e neeneeaeeae 11
6.1 Developing & CUSLOM ATAPLEToveirieirieiseeest ettt 11
6.1.1 Implementing ADStract Methodsccoiiiriiiiircc s 11

6.2 RegiStering the AGAPLETc.cveeeeceec et 11

6.3 Adding the Adapter t0 @ BUSINESS OPEIAtiONccovveerieerieerieiesiee sttt seeeens 12

7 Business Servicesin the PEX FrameworK ... 13
7.1 Developing @ BUSINESS SEIVICEc.eiuiiuiiuirieieiieieie ettt sttt st sbe e e e enesne e 13
7.1.1 Implementing ADSEract MethOdscccoiiiiiiinieireee s 13
7.2.USING aN INDOUNT AGAPTET ...o.veviiieiieeieeie ettt ettt ettt sb e enes 14

7.3 USING the BUSINESS SEIVICE ...ecuviuiieisiesiesiesiesiestesiesieseeteseeesssesessessessessestesnessesresaessensesessssssesennes 14

8 PEX BUSINESS PIOCESSES ...cuceteeeiereeteseetesiesestesestesesteestesestesessesestesessesessessssessesessessstessstensssenessenessensns 15
8.1 DeVveloping & BUSINESS PIOCESScceiiitireriirienienie sttt ettt sbe e sbe bt st sne e sn e 15
8.1.1 Implementing ABStract IMEthOAScccooiiiiirieiiie e s 15

8.1.2 PErSISTENT PIOPEITIES ...viviveeeeiieiieieiceiee ettt sttt ettt bt st nee e 15

8.2 USING the BUSINESS PIOCESSeveuieriereerierieiesiestesiesiestestesteseessesseseessenseseeseensesessessessessessessessessenes 16

O PEX BUSINESS OPEr @LIONS ..e.veieieiieieseeeeeeeeseesessessessessessessessessessesssssesssssessesssssssessessessessessessessensenes 17
9.1 Developing a BUSINESS OPEIAtIONcceiverieruereerieieeeieeresiesestesreseeseesse e seessessesaeseessesessessessenses 17
9.1.1 Implementing ABStract MEthOASccooviiiiiiiiie s 17

9.2 UsiNg an OUthOUNT AGAPLEToveieieiieieeiee ettt sttt st sttt et sbe b e 17
9.2.1 Invoking Adapter MEthOSccvoiriiiriieiere s 18

9.3 Using the BUSINESS OPEIALIONcveueriiiirieiiieisietsie sttt sttt 19

10 Registering @ PEX COMPONENT ..c.coiviiirieiirieie ettt sttt st st s s st st st 21
11 Connecting with External LangUage SENVEr'Scuccvcerereeesie e sesesteseessessesessessessesessessesssssesses 23
11.1 Sharing @ CONNECLION ...cvveviiiieiieiiesieete et ste et s e e ste s e e st e e e se e be et e steensesaeensesseeseesnaesrenseens 23

PEX: Developing Productions with an External Language

AppendixX Al PEX API REFEIBNCE ..ottt st se s 25

A.1 General Notes about IMELNOAScoveiiiiiiiiiee e s 25
A2 BUSINESS OPETATIONS ...veuvvireetieetirieiesteie sttt ettt ettt ettt sb bbbt bt e bbb e st e 25
A.2.1 ONMESSAGE() MELNOUooviieiiiecie e 26
A @ o 1\ (=11 o 26
A.2.3 0ONTearDOWN() METNOMccecviiiiiieie e re e 26
A.2.4 SendReqUESTASYNC() METNOMooviieiiieiiee e 26
A.2.5 SendRequestSYNC() MELNOUccviiiiiiii e 27
A.2.6 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT()
Y753 T o PSR 27
A3 BUSINESS PIOCESS ...veveretirietiriete sttt sttt ettt ettt eb bttt ettt ebeneene s 27
A.3.1 ONReqUESL() IMELNOAooueeeiciicece e 27
A.3.2 ONRESPONSE() METNOToviiiiieieieiee e 28
A.3.3 ONCoMPIEtE() MELNOU ... b 28
A.3.40NINIE() METNOU ..o 28
A.3.5 0NTearDOWN() METNOMcvcuiiiiiiiiee e 28
A.3.6 REPIY() MEINOM ..ot e ere e 29
A.3.7 SendRequestASYNC() MELNOAcccceiiieiiicee e 29
A.3.8 SendRequeStSYNC() MELNOcviiiiiiii e 29
A.3.9 SEITIMEI() METNOM ...t e e e 29
A.3.10 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT()
Y753 1 T o SO 30
AL BUSINESS SEIVICE ..evirietiietirietisteieste sttt ettt be ettt e bbb bbbttt b et na bt neneenen 30
A.4.1 OnProcessINPput() MEthOdcccoiviviieiieciee e 30
A4.2 0NINIE) MENOM ...ttt ae e nreens 30
A.4.3 0NTearDOWN() MELNOUcouiieiiiie e e 31
A.4.4 ProcessINPUE() IMELNOMoveiriiiiiiriee e 31
A.45 SendRequeSTASYNC() METNOMcviviiiiiie e 31
A.4.6 SendRequestSYNC() METNOMcoveveieicese e 31
A.4.7 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT()
IMIBENOMS ..ttt bbb bbb ettt b bbbkt nbe bbb nne 32
YN B [T (o] SO TSSO URURRURURRN 32
A.5.1 CreateBusinessService() Method ... 32
ALB INDOUNT AGAPLET ..ttt bbbt bbbt b bbb 32
N @ 4 =TS S Y/ (=11 T o SRR 33
N 7 @ L 3 Y (=11 ToT S 33
A.6.3 0ONTearDOWN() MENOMccvieeieiee et 33
A.6.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT()
Y153 { o o OSSOSO 33
A7 OUIDOUNT AGAPTETeieiiieeieiteeste ettt b et e b e et ettt se et sn et sn s anas 34
N @ T Y/ (=11 T T 34
A.7.2 0OnTearDOWN() METNOMccecviiiiiseie e re e 34
F N R 1Y o] T) I Y, 3 1 o T S 34
A.7.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT()
Y153 { o o OSSOSO PRU PPN 34
AL IMIESSAGE ..tttk r et R R R R ettt n e r e 35

PEX: Developing Productions with an External Language

Introduction to the PEX Framework

The Production EXtension (PEX) framework provides you with a choice of external languages like Java and Python that
you can use to develop interoperability productions. Interoperability productions enable you to integrate systems with dif-
ferent message formats and communication protocols. If you are not familiar with interoperability productions, see
“Introduction to Productions.”

PEX provides flexible connections between business services, processes, and operations that are implemented in external
languages. In addition, you can use PEX-supported languages to develop inbound and outbound adapters. The PEX
framework allows you to create an entire production in an external language or to create a production that has a mix of
external language components and ObjectScript components. Once integrated, the production components written in an
external language are called at runtime and use the PEX framework to send messages to other components in the production.

Some reasons to use the PEX framework include:

» Creating new adapters for protocols using available libraries written in an external language.

» Using available external language libraries to perform complex analysis or calculations.

» Implementing persistent messaging and long-running business processes without using ObjectScript in your application’s
technology stack.

You can create the following production components using a PEX-supported language:

* Inbound Adapter

* Outbound Adapter

» Business Service

» Business Process

» Business Operation

In addition to developing the code for the production components, you will typically define, configure, and monitor the

production using the Management Portal. For example, you’ll use the Management Portal to create the production, configure

the business services, processes, and operations, start and stop the production, and trace persistent messages running through
the production.

Note: PEX replaces the Java Business Hosts feature. For information on migrating existing Java Business Hosts produc-
tions to use PEX, see the community article Migrate from Java Business Host to PEX. Java Business Hosts was
deprecated in release 2019.3 and is no longer part of the product.

PEX: Developing Productions with an External Language 1

https://community.intersystems.com/post/migrate-java-business-host-pex

Getting Started with PEX

Using the PEX framework to incorporate external language components into an interoperability production consists of the
following steps:

1. Inyour favorite IDE, write the business host or adapter in an external language and compile the code.

2. In the Management Portal, register the new PEX component. An ObjectScript proxy class is created for the PEX
component automatically.

3. If your PEX component is a business service, business operation, or business process, use the standard wizard to add
a business host to your production, specifying the ObjectScript proxy class as the class of the business host. If your
PEX component is an adapter, modify your business service or business operation to reference the adapter’s proxy
class.

2.1 PEX Libraries

Each external language has a PEX library that includes superclasses for each type of production component. The available
PEX libraries are:

External Language PEX Library

Java com.intersystems._enslib_pex
NET InterSystems._EnsLib.PEX
Python iris.pex

2.2 \Working with PEX Components

A PEX component consists of a remote class written in an external language and an ObjectScript proxy class that the native
production uses to work with the remote class. Before adding a custom PEX adapter or business host to a production, it
must be registered as a PEX component. Once registered, details about the component are available to users who are
building the production. To view and register PEX components, use the Management Portal to navigate to Interoperability
> Configure > Production EXtensions Components.

PEX: Developing Productions with an External Language 3

Getting Started with PEX

2.3 Environmental Considerations

You can use InterSystems IRIS Interoperability only within an interoperability-enabled namespace that has a specific web
application. When you create classes, you should avoid using reserved package names. The following subsections give the
details.

2.3.1 Production-enabled Namespaces

An interoperability-enabled namespace is a namespace that has global mappings, routine mappings, and package mappings
that make the classes, data, and menus that support productions available to it. For general information on mappings, see
“Configuring Namespaces.” (You can use the information in that section to see the actual mappings in any interoperability-
enabled namespace; the details may vary from release to release, but no work is necessary on your part.)

The system-provided namespaces that are created when you install InterSystems IRIS are not interoperability-enabled,
except, on the community edition, the USER namespace is an interoperability-enabled namespace. Any new namespace
that you create is by default interoperability-enabled. If you clear the Enable namespace for interoperability productions
check box when creating a namespace, InterSystems IRIS creates the namespace with productions disabled.

Important: All system-provided namespaces are overwritten upon reinstallation or upgrade. For this reason, InterSystems
recommends that customers always work in a new namespace that you create. For information on creating
a new namespace, see “Configuring Data.”

2.3.2Web Application Requirement

Also, you can use a production in a namespace only if that namespace has an associated web application that is named
/csp/namespace, where namespace is the namespace name. (This is the default web application name for a namespace.)
For information on defining web applications, see Applications.

2.3.3 Reserved Package Names

In any interoperability-enabled namespace, avoid using the following package names: Ens, EnsLib, EnsPortal, or CSPX.
These packages are completely replaced during the upgrade process. If you define classes in these packages, you would
need to export the classes before upgrading and then import them after upgrading.

Also, InterSystems recommends that you avoid using any package names that start with Ens (case-sensitive). There are
two reasons for this recommendation:

* When you compile classes in packages with names that start with Ens, the compiler writes the generated routines into
the ENSLIB system database. (The compiler does this because all routines with names that start with Ens are mapped
to that database.) This means that when you upgrade the instance, thus replacing the ENSLIB database, the upgrade
removes the generated routines, leaving only the class definitions. At this point, in order to use the classes, it is necessary
to recompile them.

In contrast, when you upgrade the instance, it is not necessary to recompile classes in packages with names that do not
start with Ens.

» If you define classes in packages with names that start with Ens, they are available in all interoperability-enabled
namespaces, which may or may not be desirable. One consequence is that it is not possible to have two classes with
the same name and different contents in different interoperability-enabled namespaces, if the package name starts with
Ens.

4 PEX: Developing Productions with an External Language

About Business Hosts and Adapters

This topic discusses information that applies to all business hosts and adapters written in an external language.

3.1 Creating Runtime Variables

The PEX framework allows you to use the Management Portal to specify runtime values of variables in the remote class,
giving you the ability to re-use a PEX component in different productions. A variable that is declared in the remote class
appears in the Management Portal as a setting of the corresponding business host. For example, if a Python class of a
business service declaresMin = int(0), then the production’s business service has a Min setting. At runtime, the variable
is set to the value of the setting in the Management Portal.

If your remote class declares variables that you do not want to appear in the Management Portal, you can add metadata to
hide the variable.

3.1.1 Variable Metadata

You can add metadata to your remote class that affects the Management Portal setting that is created for a variable. The
syntax of this metadata depends on your external language: Java uses an annotation, .NET uses an attribute, and Python
uses a special method named var i abl eNanme_info. For example, the following code specifies that a setting MyVariable
is required and adds a description that appears as a tool tip for the setting:

Java

@FieldMetadata(lsRequired=true,Description="Name of the company')
public String MyVariable;

.NET

[FieldMetadata(lsRequired=true,Description="Name of the company')]
public string MyVariable;

Python

MyVariable = int(0)

@classmethod
def MyVariable_info(self) -> \

"Description”: "Maximum value",
"IsRequired”: True

pass

PEX: Developing Productions with an External Language 5

About Business Hosts and Adapters

Using this syntax, the following elements can be added to metadata to control the behavior of a Management Portal setting:

Metadata Element Description

Description A description of the setting that appears as a tool tip
in the Management Portal.

Category Groups the setting under a category heading. For
example, if Category="Basic" is added to a Java
class, then the setting is grouped under the Basic
section of settings.

DataType Overrides the variable data type, associating the
setting with a new data type, for example,
Ens.DataType.ConfigName.

IsRequired If true, a value must be provided for the setting.
Defaults to false.

ExcludeFromSettings If true, it prevents a variable from appearing in the
Management Portal as a setting. Defaults to false.

3.2 PEX Component Metadata

Just as you can add metadata to individual variables in a remote class, you can add metadata that applies to the entire PEX
component. This metadata is used to provide information about the component in the Management Portal, where it appears
on the Production EXtensions page and the Production Configuration page under Informational Settings.

Metadata Element Description
Description A description of the PEX component.
Info URL A URL associated with the PEX component, for

example, a web page providing detailed information
about the component.

The syntax to include this class metadata depends on your external language. Java uses an annotation and .NET uses an
attribute. Python uses a docstring and a special variable. The following code adds these metadata elements to the remote
class of a PEX component:

Java

@ClassMetadata(Description="Custom Java Business Service", InfoURL=""http://www.mycompany.com')
public class MyBusinessService extends com.intersystems.enslib.pex.BusinessService {

.NET

[ClassMetadata(Description ="Custom .NET Business Service", InfoURL="www.mycompany.com'™)]
public class MyBusinessService : InterSystems.EnsLib.PEX.BusinessService

Python

class MyBusinessService(iris.pex.BusinessService):
""" Custom Business Service in Python """

INFO_URL = *http://www.mycompany.com"

6 PEX: Developing Productions with an External Language

PEX Messaging

Within the PEX framework, most messages sent between business hosts are objects instantiated from one of the following
subclasses:

Language Message Class

Java com. intersystems.enslib.pex.Message
.NET InterSystems._EnsLib.PEX.Message
Python iris.pex.Message

You simply add properties to your subclass, and then pass instantiated objects of the subclass using methods like
SendRequestAsync() and SendRequestSync (). Within InterSystems IRIS, the message object written in the PEX-
supported language corresponds to an object of class EnsLib.PEX.Message, which makes the message persistent and
dynamic. By manipulating the object of type EnsLib.PEX.Message, you can reference any property in the external PEX
object. Internally, the PEX object is represented as JSON as it passes between business hosts, so viewing the messages in
the Management Portal are displayed in JSON format.

Though you can use other message objects, they must still be persistent if they are being passed between business hosts.
To pass an object to a built-in ObjectScript component, you use the type IRISObject and map it to the persistent object
expected by that component. For example, if you are sending a message to the EnsLib.PubSub.PubSubOperation, you
would map the IRISObject to EnsLib.PubSub.Request. Trying to pass a non-persistent object as a message between business
hosts results in a runtime error.

Obijects sent from an inbound adapter to a business service are arbitrary and do not need to be persistent.

Note: The messages sent are limited to the InterSystems IRIS maximum string length.

PEX: Developing Productions with an External Language 7

Inbound Adapters in the PEX Framework

Business services use inbound adapters to receive specific types of input data. You can write a custom inbound adapter
that is used by an ObjectScript business service, or it can be used by a business service that is also written in a PEX-supported
language. For general information related to all production components written in an external language, see About Business
Hosts and Adapters.

5.1 Developing a Custom Adapter

To begin the process of writing a custom inbound adapter in an external language, extend one of the following classes:

Language Class

Java com. intersystems.enslib._pex. InboundAdapter
.NET InterSystems._EnsLib.PEX. InboundAdapter
Python iris.pex. InboundAdapter

5.1.1 Implementing Abstract Methods

Typically, the inbound adapter’s OnTask () method performs the main function of the adapter. At runtime, the OnTask()
method is called at the interval specified in the settings for the business host that is using the adapter. From within OnTask(),
call BusinessHost.ProcessInput() to dispatch an object to the associated business service’s Processinput
method. For example, a simple adapter might include:

Java

public void OnTask() throws Exception {
SimpleObject request = new SimpleObject('message #'+(++runningCount));
// send object to business service"s Processlinput() method
String response = (String) BusinessHost.Processlnput(request);
return;

NET

public override void OnTask()

SimpleObject request = new SimpleObject(message #" + (++runningCount));
// send object to business service"s Processlinput() method

string response = (string)BusinessHost.Processlnput(request);

return;

PEX: Developing Productions with an External Language 9

Inbound Adapters in the PEX Framework

Python

def OnTask(self):
msg = "this is message # %d" %self.runningCount
request = demo.SimpleObject(msg)
send object to business service"s Processlnput() method
response = self.BusinessHost.Processlnput(request)
return

The object sent from the adapter’s BusinessHost.ProcessInput call to the business service’s ProcessInput
method is arbitrary and does not need to be persistent within InterSystems IRIS. The same is true for the object returned
by the business service’s Process Input method to the adapter.

By default, the object sent from the adapter to the business service is serialized into JSON and received by the service as
an IRISObject type. However, if the adapter and business service share a connection, the business service can receive and
return the same object type, which has advantages. For details, see Sharing a Connection.

At a minimum, your adapter must implement the superclass’ Onlnit, OnTearDown, and OnTask methods. For details
on these and other methods of an inbound adapter, see the PEX API Reference.

5.2 Registering the Adapter

Once you are done writing the code for the PEX adapter, you are ready to register it. Registering the adapter generates an
ObjectScript proxy class that a business service can use to identify the adapter and defines the external language server
that the production uses to connect to the adapter. For details on registering the adapter, see Registering a PEX Component.

5.3 Adding the Adapter to a Business Service

A PEX adapter can be used by a PEX business service or by a native ObjectScript business service. The process of config-
uring a business service so it uses the PEX adapter varies depending on the type of business service. Both scenarios require
the adapter to be registered as a PEX component.

When a PEX business service is using the PEX adapter, the remote class of the business service uses a method to identify
the adapter. For details, see Using an Inbound Adapter.

Like all native ObjectScript business services, a native business service using a PEX adapter identifies the adapter using
an ADAPTER parameter. In this case, the ADAPTER parameter is set to the name of the PEX adapter’s ObjectScript proxy
class. By default, this proxy class shares the name of the adapter’s remote class, but a custom proxy name might have been
defined when the adapter was registered.

10 PEX: Developing Productions with an External Language

PEX Outbound Adapters

Business operations use outbound adapters to send out specific types of data from the production. You can write a custom
outbound adapter that is used by an ObjectScript business operation, or it can be used by a business operation that is also
written in a PEX-supported language. For general information related to all production components written in an external
language, see About Business Hosts and Adapters.

6.1 Developing a Custom Adapter

To write an outbound adapter in an external language, extend one of the following classes:

Language Class

Java com. intersystems_enslib._pex.OutboundAdapter
.NET InterSystems._EnsLib.PEX.OutboundAdapter
Python iris.pex.OutboundAdapter

Within the outbound adapter, you can create all the methods you need to successfully send out data from the production.
Each of these methods can be called from the business operation associated with the adapter. The business operation can
call a method with arguments of arbitrary objects and literals. For details on how the business operation calls the adapter
methods, see Invoking Adapter Methods.

6.1.1 Implementing Abstract Methods

In addition to creating methods that send out data from the production, your remote outbound adapter class must implement
a few abstract methods. For details about these methods, see PEX APl Reference.

6.2 Registering the Adapter

Once you are done writing the code for the PEX adapter, you are ready to register it. Registering the adapter generates an
ObjectScript proxy class that a business operation can use to identify the adapter and defines the external language server
that the production uses to connect to the adapter. For details on registering the adapter, see Registering a PEX Component.

PEX: Developing Productions with an External Language 11

PEX Outbound Adapters

6.3 Adding the Adapter to a Business Operation

A PEX adapter can be used by a PEX business operation or by a native ObjectScript business operation. The process of
configuring a business operation so it uses the PEX adapter varies depending on the type of business operation. Both sce-
narios require the adapter to be registered as a PEX component.

When a PEX business operation is using the PEX adapter, the remote class of the business operation uses a method to
identify the adapter. For details, see Using an Outbound Adapter.

Like all native ObjectScript business operations, a native business operation using a PEX adapter identifies the adapter
using an ADAPTER parameter. In this case, the ADAPTER parameter is set to the name of the PEX adapter’s ObjectScript
proxy class. By default, this proxy class shares the name of the adapter’s remote class, but a custom proxy name might
have been defined when the adapter was registered.

12 PEX: Developing Productions with an External Language

Business Services in the PEX Framework

Business services connect with external systems and receive messages from them through an inbound adapter. For general
information related to all production components written in Java, see About Business Hosts and Adapters.

7.1 Developing a Business Service

To write a business service in an external language, extend one of the following classes:

Language Class

Java com. intersystems.enslib.pex.BusinessService
.NET InterSystems.EnsLib.PEX.BusinessService
Python iris.pex.BusinessService

There are three ways of implementing a business service:

1. Polling business service with an adapter — The production framework at regular intervals calls the adapter’s OnTask()
method, which sends the incoming data to the Processinput() method of the business service, which, in turn calls the
OnProcessinput method with your business service code. Your custom code must implement the OnProcessinput
method to handle data from the adapter, not ProcessInput.

2. Polling business service that uses the default adapter — In this case, the framework calls the default adapter's OnTask
method with no data. The OnProcessinput() method then performs the role of the adapter and is responsible for
accessing the external system and receiving the data.

3. Nonpolling business service — The production framework does not initiate the business service. Instead custom code
in either a long-running process or one that is started at regular intervals initiates the business service by calling the
Director.CreateBusinessService() method. For more details, see Director.

7.1.1 Implementing Abstract Methods

After extending the PEX class, you need to implement abstract methods for the business service.

When developing a polling business service with an adapter, the OnProcess Input() takes an arbitrary object from the
adapter, and returns an arbitrary object. These arbitrary objects do not need to be persistent.

For more details about the abstract methods that need to be implemented, see PEX API Reference.

PEX: Developing Productions with an External Language 13

Business Services in the PEX Framework

7.2 Using an Inbound Adapter

Within a production, a business service uses an inbound adapter to communicate with systems outside the production.
When developing a PEX business service, you can include a special method in the remote class to define which inbound
adapter the business service uses. This inbound adapter can be a PEX adapter or a native ObjectScript adapter.

The method used to specify the inbound adapter for the PEX business service is getAdapterType(). For example, if
the PEX business service uses a custom PEX inbound adapter, your remote class might include:
Java
public String getAdapterType() {
return "‘com.demo.pex.MylnboundAdapter";
.NET
public override string getAdapterType() {
return ""Demo.PEX.MylnboundAdapter';
Python

def getAdapterType():
return "demo.PEX._MylnboundAdapter"

When using a PEX adapter, the getAdapterType method should return the name of the ObjectScript proxy class that
was specified when the adapter was registered. By default, this proxy name is the same as the remote class, but a custom
name might have been defined.

If you do not include getAdapterType in the remote class, the business service uses the standard Ens . InboundAdapter
adapter. If your business service does not use an adapter, return an empty string.

7.3 Using the Business Service

Once you have finished developing the remote class of the PEX business service, you can complete the following steps to
integrate the business service into an interoperability production:

1. Register the PEX business service by navigating to Interoperability > Configure > Production EXtensions Components.
For details, see Registering a PEX Component.

2. Open the production and use the standard wizard to add a business service. In the Service Class field, select the
ObjectScript proxy class of the PEX component. By default, the name of this proxy class matches the remote class,
but a custom name might have been defined when the component was registered.

14 PEX: Developing Productions with an External Language

PEX Business Processes

Business processes allow you to define business logic, including routing and message transformation. Business processes
receive messages from other business hosts in the production for processing.

For general information related to all production components written in an external language, see About Business Hosts
and Adapters.

8.1 Developing a Business Process

To write business process in an external language, extend one of the following classes:

Language Class

Java com. intersystems._enslib._pex.BusinessProcess
.NET InterSystems._EnsLib.PEX.BusinessProcess
Python iris.pex.BusinessProcess

8.1.1 Implementing Abstract Methods

After extending the business process class, you need to implement some abstract methods. For details on these methods,
see PEX API Reference.

8.1.2 Persistent Properties

Within InterSystems IRIS, native business processes are persistent objects. For the lifespan of these business processes,
properties are stored and are accessible during each callback. By default, a PEX business process lacks this characteristic;
each method is called in a separate instance and the values of variables are not preserved. However, you can mimic the
persistence of a native business process by making the properties of the PEX business process persistent. Use the following
syntax to persist a property of a PEX business process:

Java

// Use annotation to create a persistent property
// Strings, primitive types, and their boxed types can be persisted

@Persistent
public integer runningTotal = O;

PEX: Developing Productions with an External Language 15

PEX Business Processes

.NET

// Use attribute to create a persistent property
// Strings, primitive types, and their boxed types can be persisted

[Persistent]
public int runningTotal = O;

Python

#Set class variable to create persistent property
#0Only variables of types str, int, float, bool and bytes can be persisted

PERSISTENT_PROPERTY_LIST=["myVariablel","myVariable2']

Within InterSystems IRIS, persistent properties are saved in the corresponding instance of the business process. Persistent
properties are restored before each callback and are saved after each callback.

8.2 Using the Business Process

Once you have finished developing the remote class of the PEX business process, you can complete the following steps to
integrate the business process into an interoperability production:

1. Register the PEX business process by navigating to Interoperability > Configure > Production EXtensions Components.
For details, see Registering a PEX Component.

2. Open the production and use the standard wizard to add a business process. In the Business Process Class field, select
the ObjectScript proxy class of the PEX component. By default, the name of this proxy class matches the remote class,
but a custom name might have been defined when the component was registered.

16 PEX: Developing Productions with an External Language

PEX Business Operations

Business operations connect with external systems and send messages to them via an outbound adapter.

For general information related to all production components written in a PEX-supported language, see About Business
Hosts and Adapters.

9.1 Developing a Business Operation

To write a business operation in an external language, extend one of the following classes:

Language Class

Java com. intersystems.enslib.pex.BusinessOperation
.NET InterSystems._EnsLib_PEX_BusinessOperation
Python iris.pex.BusinessOperation

9.1.1 Implementing Abstract Methods

At runtime, the OnMessage () method is called when the business operation receives a message from another business
host. From within this method, the business operation can call any of the methods defined in the outbound adapter associated
with the business operation. Parameters for calls from a business operation to an outbound adapter do not need to be persistent.

For details on other abstract methods that need to be implemented, see PEX APl Reference.

9.2 Using an Outbound Adapter

Within a production, a business operation uses an outbound adapter to communicate with systems outside the production.
When developing a PEX business operation, you can include a special method in the remote class to define which outbound
adapter the business operation uses. This outbound adapter can be a PEX adapter or a native ObjectScript adapter.

The method used to specify the outbound adapter for the PEX business operation is getAdapterType(). For example,
if the PEX business operation uses a custom PEX outbound adapter, your remote class might include:

PEX: Developing Productions with an External Language 17

PEX Business Operations

Java
public String getAdapterType() {
return '"‘com.demo.pex.MyOutboundAdapter';
NET
public override string getAdapterType() {
return "Demo.PEX._MyOutboundAdapter";
Python

def getAdapterType():
return "‘demo.PEX._MyOutboundAdapter"

When using a PEX adapter, the getAdapterType method should return the name of the ObjectScript proxy class that
was specified when the adapter was registered. By default, this proxy name is the same as the remote class, but a custom
name might have been defined.

9.2.1 Invoking Adapter Methods

A business operation uses its outbound adapter by invoking methods defined in the adapter’s code. The syntax for invoking
these methods varies depending on whether the business operation is a PEX component or a native ObjectScript class. For
details on invoking the PEX adapter methods from a native business operation, see Accessing Properties and Methods from
a Business Host.

If your business operation is a PEX component, use Adapter . invoke() to call the adapter’s method. Its signature is:
Adapter. invoke("'nmet hodNane', argunents)

Where:

* methodName specifies the name of the method in the outbound adapter to be executed.

e arguments contains the arguments of the specified method.
For example, to invoke the adapter’s printString method, add the following code to your business operation:

Java

public Object OnMessage(Object request) throws Exception {
MyRequest myReq = (MyRequest)request;
Adapter.invoke("printString', myReq.requestString);

.NET

public override object OnMessage(object request)

MyRequest myReq = (MyRequest)request;
Adapter . invoke("printString", myReq.RequestString);

Python

def OnMessage(self, messagelnput):
self_Adapter.invoke(''printString', messagelnput.requestString)
return

When the business operation passes a primitive to the adapter, the same primitive is received by the adapter. However, by
default, when the business operation passes an object to the adapter, the object is serialized into JSON and received by the
adapter as an IRISObject type. If you want to change this behavior so the adapter receives and returns the same object type,
see Sharing a Connection.

18 PEX: Developing Productions with an External Language

Using the Business Operation

9.3 Using the Business Operation

Once you have finished developing the remote class of the PEX business operation, you can complete the following steps
to integrate the business operation into an interoperability production:

1. Register the PEX business operation by navigating to Interoperability > Configure > Production EXtensions Components.
For details, see Registering a PEX Component.

2. Open the production and use the standard wizard to add a business operation. In the Operation Class field, select the
ObjectScript proxy class of the PEX component. By default, the name of this proxy class matches the remote class,
but a custom name might have been defined when the component was registered.

PEX: Developing Productions with an External Language 19

10

Registering a PEX Component

Once you have used an external language to create the remote class of your PEX component, you need to register the class
using the Management Portal. This registration defines critical information about the PEX component like the external
language server that connects the remote class and the name of the ObjectScript proxy class that is created for the component.
The registration process is the same regardless of whether the PEX component is an adapter or business host.

Tip: The external language server that connects your remote class must be fully operational before registering the PEX
component. If you are using Java, you need to add a utility jar file to the server’s classpath. For details about this
jar file, see Connecting with External Language Servers.

To register a PEX component:

1. Open the Management Portal and navigate to Interoperability > Configure > Production EXtensions Components.

2. Select Register New Component.

3. Use the Remote Classname field to specify the class written in the external language, including its package.

4

If desired, use the Proxy Name field to specify a custom name for the ObjectScript proxy class that is created for the
PEX component. The default is the name of the remote class.

5. Use the External Language Server field to select the external language server that the production will use to connect
to the remote class. The external language server has to be fully operational, even if it is not currently running.

6. Use the Gateway Extra Classpaths field to specify the executable that contains the remote class. You can also add other
binaries, files, and directories needed by the remote class.

Note: After selecting Register, the new PEX component does not appear in the list until you have selected the Refresh
icon.

PEX: Developing Productions with an External Language 21

11

Connecting with External Language
Servers

When you register the PEX component written in an external language, you specify an external language server that the
production uses to communicate with the remote class. This external language server is commonly referred to as a gateway.

In most languages, the built-in external language server for your PEX language contains all you need to run a PEX production;
you do not need to create a custom server. However, if you are using Java, the external language server must include a
special utility jar file on its classpath. So your default or custom Java server must include

instal | -dir/dev/java/lib/1.8/intersystems-utils-versi on.jar on its classpath, where install-dir is
the directory where your InterSystems product is installed. If you are manually entering the location of this file, you can
use the keyword $$ 1R 1SHOME to identify the installation directory.

11.1 Sharing a Connection

In some cases, you might want a PEX adapter to use the connection of its associated PEX business service or business
operation rather than using a separate external language server connection. When each PEX component uses a separate
connection, objects passed between the components must be serialized into JSON strings, preventing you from directly
passing an object between the components. By sharing a connection, your adapter and business host can pass an object
directly and get the same object back. To share a connection, the PEX adapter and its associated PEX business host must
be written in the same external language.

To indicate that the PEX adapter should share a connection with its business service or business operation, use the Manage-
ment Portal to select the business host’s Alternative Adapter Connection > Use Host Connection setting. Once this setting
has been enabled, the PEX framework ignores the external language server setting that was specified when the PEX adapter
was registered.

The following examples demonstrate the advantages of using a shared connection between an adapter and its associated
business host.
Business Service and Inbound Adapter

When an inbound adapter shares a connection with the business service, the business service receives the same
object that was sent by the inbound adapter. For example:

PEX: Developing Productions with an External Language 23

Connecting with External Language Servers

Java

// Code from the inbound adapter:
public void OnTask() throws Exception {
SimpleObject request = new SimpleObject(‘'message #1'");
String response = (String) BusinessHost.Processlnput(request);

// Code from the business service:

public Object OnProcesslnput(Object messagelnput) throws Exception {
SimpleObject obj = (SimpleObject)messagelnput;
System.out._print("\r\n[Java] Object received: " + obj.value);
return "...Service received " + obj.value;

In contrast, the following code shows how you would have to handle an object sent to the business service from
the inbound adapter if they do not share a connection.

Java

// Code from the inbound adapter:
public void OnTask() throws Exception {
SimpleObject request = new SimpleObject(‘'message #1'");
String response = (String) BusinessHost.Processlnput(request);

// Code from the business service:

public Object OnProcesslnput(Object messagelnput) throws Exception {
com. intersystems. jdbc. IRISObject obj = (com.intersystems.jdbc.IRISObject)messagelnput;
System.out.print("\r\n[Java] Object received: " + obj.get("value™));
return "...Service received" + obj.get(value');

Business Operation and Outbound Adapter

When an outbound adapter shares a connection with the business operation, the adapter receives the same object
that was sent by the business operation. For example:

Java

// Code from the business operation:

public Object OnMessage(Object request) throws Exception {
SimpleObject myObj = new SimpleObject("'my string");
Adapter . invoke("'passObj*, myObj);
return null;

// Code from the associated adapter:

public Object passObj(SimpleObject obj) {
System.out.print("\r\n[Java]Object received: " + obj.value);
return null;

In contrast, the following code shows how you would have to handle an object sent to the adapter from the business
operation if they do not share a connection.

Java

// Code from the business operation:

public Object OnMessage(Object request) throws Exception {
SimpleObject myObj = new SimpleObject(*'my string™);
Adapter . invoke(*"'passObj', myObj);
return null;

// Code from the associated adapter:

public Object passObj(com.intersystems.jdbc.IRISObject obj) {
System.out.print("\r\n[Java]Object received: " + obj.get(“value™));
return null;

24

PEX: Developing Productions with an External Language

PEX API Reference

This reference lists the methods for PEX components written in any of the external languages that are supported by the
PEX framework. The ObjectScript proxy classes generated for remote classes inherit from ObjectScript classes in the
EnsLib.PEX package.

A.1 General Notes about Methods

As you override methods to implement a production component, keep the following in mind:
e Each production component must override all abstract methods.

« While native interoperability methods use one input argument and one output argument and return a status, the corre-
sponding PEX methods take one input argument and return the output argument as a return value.

» All error handling for PEX methods are done with exceptions.

» For native interoperability methods that don't require persistent objects as input and output arguments, the corresponding
PEX methods can also use arbitrary objects as arguments and return values. PEX utilizes forward proxy and reverse
proxy of the external language server to map the arbitrary object appropriately.

« For native interoperability methods that require persistent objects as arguments, such as the methods that send messages
to other processes, the corresponding PEX methods can use PEX Messages as arguments and return values. Examples
of such methods are SendRequestSync, SendRequestAsync, OnRequest, OnResponse and OnMessage.

* When overriding callback methods, you should not change the formal spec of the methods even if you have customized
the message class. The argument types should remain as objects.

A.2 Business Operations

The business operation can optionally use an adapter to handle the outgoing message. If the business operation has an
adapter, it uses the adapter to send the message to the external system. The adapter can either be a PEX adapter or an
ObjectScript adapter.

PEX: Developing Productions with an External Language 25

PEX API Reference

A.2.1 OnMessage() Method

The OnM essage() message is called when the business operation receives a message from another production component.
Typically, the operation will either send the message to the external system or forwards it to a business process or another
business operation. If the operation has an adapter, it uses the Adapter.invoke() method to call the method on the adapter
that sends the message to the external system. If your operation is forwarding the message to another production component,
it uses the SendRequestAsync() or the SendRequestSync() method.

Abstract method: you must implement.

Parameters: (request)

* request—of type Object, this contains the incoming message for the business operation.

You must implement an OnMessage method with a single parameter of type Object. Within the method you can cast the
parameter to the actual type passed by the caller.

Returns: Object

A.2.2 Onlnit() Method

The Onlnit() is called when the component is started. Use Onlnit() to initialize any structures needed by the component.
Abstract method: you must implement.
Parameters: none

Returns: void

A.2.3 OnTearDown() Method

The OnTear Down() method is called before the component is terminated. Use OnTear down() to free any structures.
Abstract method: you must implement.
Parameters: none

Returns: void

A.2.4 SendRequestAsync() Method

The SendRequestAsync() method sends the specified message to the target business process or business operation asyn-
chronously.

Parameters: (target, request [, description])

» target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

» request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject
class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» description—an optional string parameter that sets a description property in the message header.

Returns: void

26 PEX: Developing Productions with an External Language

Business Process

A.2.5 SendRequestSync() Method

The SendRequestSync() method sends the specified message to the target business process or business operation syn-
chronously.

Parameters: (target, request [,timeout [, description]])

e target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

* request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject
class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» timeout—an optional integer that specifies the number of seconds to wait before treating the send request as a failure.
The default value is -1, which means wait forever.

» description—an optional string parameter that sets a description property in the message header.

A.2.6 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and
LOGASSERT() Methods

The log methods write to the production log, which can be viewed in the management portal in the component’s Log tab.
These methods have the same parameter and differ only in the type of the log message:

* LOGINFO() has an info type.
 LOGALERT() has an alert type.

e LOGWARNING() has a warning type.
* LOGERROR() has an error type.

* LOGASSERT() has an assert type.

Parameters: (message)
* message—a string that is written to the log.

A.3 Business Process

A Business Process class typically contains most of the logic in a production. A business process can receive messages
from a business service, another business process, or a business operation. It can modify the message, convert it to a different
format, or route it based on the message contents. The business process can route a message to a business operation or
another business process. For information on making properties of a business process persistent, see Persistent Properties.

A.3.1 OnRequest() Method

The OnRequest() method handles requests sent to the business process. A production calls this method whenever an initial
request for a specific business process arrives on the appropriate queue and is assigned a job in which to execute.

Abstract method: you must implement.

PEX: Developing Productions with an External Language 27

PEX API Reference

Parameters: (request)

* request—an object that contains the request message sent to the business process.

A.3.2 OnResponse() Method

The OnResponse() method handles responses sent to the business process in response to messages that it sent to the target.
A production calls this method whenever a response for a specific business process arrives on the appropriate queue and
is assigned a job in which to execute. Typically this is a response to an asynchronous request made by the business process
where the request’s responseRequired parameter has a true value.

Abstract method: you must implement.
Parameters: (request, response, callRequest, callResponse, completionKey)
* request—an object that contains the initial request message sent to business process.

* response—an object that contains the response message that this business process can return to the production component
that sent the initial message.

» callRequest—an object that contains the request that the business process sent to its target.
» callResponse—an object that contains the incoming response.

» completionKey—a string that contains the completionKey specified in the completionKey parameter of the outgoing
SendAsync() method.

A.3.3 OnComplete() Method

The OnComplete() method is called after the business process has received and handled all responses to requests it has sent
to targets.

Abstract method: you must implement.
Parameters: (request, response)
* request—an object that contains the initial request message sent to business process.

* response—an object that contains the response message that this business process can return to the production component
that sent the initial message.

A.3.4 OnlInit() Method

The OnlInit() method is called when the component is started.
Abstract method: you must implement.
Parameters: none

Returns: void

A.3.5 OnTearDown() Method

The OnTearDown() method is called before the component is terminated.
Abstract method: you must implement.
Parameters: none

Returns: void

28 PEX: Developing Productions with an External Language

Business Process

A.3.6 Reply() Method

The Reply() method sends the specified response to the production component that sent the initial request to the business
process.

Parameters: (response)

e response—an object that contains the response message.

A.3.7 SendRequestAsync() Method

The SendRequestAsync() method sends the specified message to the target business process or business operation asyn-
chronously.

Parameters: (target, request [, responseRequired [, completionKey [, description]]1)

» target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

* request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject
class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» responseRequired—a boolean value that specifies if the target must send a response message.
e completionKey—a string that will be sent with the response message.

» description—an optional string parameter that sets a description property in the message header.

A.3.8 SendRequestSync() Method

The SendRequestSync() method sends the specified message to the target business process or business operation syn-
chronously.

Parameters: (target, request [,timeout [, description]])

e target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

* request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject
class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» timeout—an optional integer that specifies the number of seconds to wait before treating the send request as a failure.
The default value is -1, which means wait forever.

» description—an optional string parameter that sets a description property in the message header.

A.3.9 SetTimer() Method

The SetTimer() method specifies the maximum time the business process will wait for all responses.

Parameters: (timeout [, completionKey |)

PEX: Developing Productions with an External Language 29

PEX API Reference

» timeout—an integer that specifies a number of seconds or a string that specifies a time period, such as “PT15S”, which
represents 15 seconds of processor time.

» completionKey—a string that will be returned with the response if the maximum time is exceeded.

A.3.10 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and
LOGASSERT() Methods

The log methods write to the production log, which can be viewed in the management portal in the component’s Log tab.
These methods have the same parameter and differ only in the type of the log message:

» LOGINFO() has an info type.

e LOGALERT() has an alert type.

* LOGWARNINGY() has a warning type.
* LOGERROR() has an error type.

» LOGASSERT() has an assert type.

Parameters: (message)

* message—a string that is written to the log.

A.4 Business Service

The Business Service class is responsible for receiving the data from the external system and sending it to business processes
or business operations in the production. The business service can use an adapter to access the external system.

A.4.1 OnProcessinput() Method

The OnProcessinput() method receives the message from the inbound adapter via the adapter’s ProcessInput() method and
is responsible for forwarding it to target business processes or operations. If the business service does not specify an adapter,
then the default adapter calls the OnProcessinput() method with no message and the business service is responsible for
receiving the data from the external system and validating it.

Abstract method: you must implement.

Parameters: (message)

* message—an object containing the data that the inbound adapter sent to the business service. The message can have
any structure agreed upon by the inbound adapter and the business service. The message does not have to be a subclass
of Message or IRISObject and is typically not persisted in the database.

A.4.2 Onlnit() Method

The OnlInit() method is called when the component is started. Use the Onlnit() method to initialize any structures needed
by the component.

Abstract method: you must implement.

Parameters: none

30 PEX: Developing Productions with an External Language

Business Service

Returns: void

A.4.3 OnTearDown() Method

The OnTearDown() method is called before the business host is terminated. Use the OnTeardown() method to free any
structures.

Abstract method: you must implement.
Parameters: none

Returns: void

A.4.4 ProcessInput() Method

The inbound adapter calls the ProcessinputO method of the business service and the Processinput() method in turn calls
the OnProcessinput() method that is your custom code.

Parameters: (input)
e input—an object with an arbitrary structure by agreement with the inbound adapter. The parameters passed to the
Processinput() method do not need to be persistent objects.

Returns: object

A.4.5 SendRequestAsync() Method

The SendRequestAsync() method sends the specified message to the target business process or business operation asyn-
chronously.

Parameters: (target, request [, description])

» target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

» request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject
class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» description—an optional string parameter that sets a description property in the message header.

A.4.6 SendRequestSync() Method

The SendRequestSync() method sends the specified message to the target business process or business operation syn-
chronously.

Parameters: (target, request [,timeout [, description]])

» target—a string that specifies the name of the business process or operation to receive the request. The target is the
name of the component as specified in the Item Name property in the production definition, not the class name of the
component.

» request—specifies the message to send to the target. The request can either have a class that is a subclass of Message
class or have the IRISObject class. If the target is a built-in ObjectScript component, you should use the IRISObject

PEX: Developing Productions with an External Language 31

PEX API Reference

class. The IRISObject class enables the PEX framework to convert the message to a class supported by the target.
Otherwise, you can use a subclass of the Message class.

» timeout—an optional integer that specifies the number of seconds to wait before treating the send request as a failure.
The default value is -1, which means wait forever.

» description—an optional string parameter that sets a description property in the message header.

A.4.7 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and
LOGASSERT() Methods

The log methods write to the production log, which can be viewed in the management portal in the component’s Log tab.
These methods have the same parameter and differ only in the type of the log message:

* LOGINFO() has an info type.

* LOGALERT() has an alert type.

» LOGWARNINGY() has a warning type.
* LOGERROR() has an error type.

* LOGASSERT() has an assert type.

Parameters: (message)

e message—a string that is written to the log.

A.5 Director

The Director class is used for nonpolling business services, that is, business services which are not automatically called by
the production framework (through the inbound adapter) at the call interval. Instead these business services are created by
a custom application by calling the Director.CreateBusinessService() method.

A.5.1 CreateBusinessService() Method

The CreateBusinessService() method initiates the specified business service.
Parameters: (connection, target)
» connection—an IRISConnection object that specifies the connection to the external language server for your language.

e target—a string that specifies the name of the business service in the production definition.

Return value: businessService—the return value contains the Business Service instance that has been created.

A.6 Inbound Adapter

The InboundAdapter is responsible for receiving the data from the external system, validating the data, and sending it to
the business service by calling the Processinput() method.

32 PEX: Developing Productions with an External Language

Inbound Adapter

A.6.1 OnTask() Method

The OnTask() method is called by the production framework at intervals determined by the business service Calllnterval
property. The OnTask() method is responsible for receiving the data from the external system, validating the data, and
sending it in a message to the business service OnProcessinput() method. The message can have any structure agreed upon
by the inbound adapter and the business service.

Abstract method: you must implement.

Parameters: none

A.6.2 Onlnit() Method

The OnlInit() method is called when the component is started. Use the Oninit() method to initialize any structures needed
by the component.

Abstract method: you must implement.
Parameters: none

Returns: void

A.6.3 OnTearDown() Method

The OnTearDown() method is called before the business host is terminated. Use the OnTeardown() method to free any
structures.

Abstract method: you must implement.
Parameters: none

Returns: void

A.6.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and
LOGASSERT() Methods

The log methods write to the production log, which can be viewed in the management portal in the component’s Log tab.
These methods have the same parameter and differ only in the type of the log message:

* LOGINFO() has an info type.
 LOGALERT() has an alert type.

« LOGWARNING() has a warning type.
 LOGERROR() has an error type.

* LOGASSERT() has an assert type.

Parameters: (message)
* message—a string that is written to the log.

PEX: Developing Productions with an External Language 33

PEX API Reference

A.7 Outbound Adapter

The Outbound Adapter class is responsible for sending the data to the external system.

A.7.1 OnlInit() Method

The OnlInit() method is called when the component is started. Use the Onlnit() method to initialize any structures needed
by the component.

Abstract method: you must implement.
Parameters: none

Returns: void

A.7.2 OnTearDown() Method

The OnTearDown() method is called before the business host is terminated. Use the OnTeardown() method to free any
structures.

Abstract method: you must implement.
Parameters: none

Returns: void

A.7.3 Invoke() Method

The Invoke() method allows the BusinessOperation to execute any public method defined in the OutboundAdapter.
Parameters: (methodname, arguments)
» methodname — specifies the name of the method in the outbound adapter to be executed.

e arguments — contains the arguments of the specified method.

A.7.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and
LOGASSERT() Methods

The log methods write to the production log, which can be viewed in the management portal in the component’s Log tab.
These methods have the same parameter and differ only in the type of the log message:

e LOGINFO() has an info type.

* LOGALERT() has an alert type.

» LOGWARNINGY() has a warning type.
* LOGERROR() has an error type.

» LOGASSERT)() has an assert type.

Parameters: (message)
e message—a string that is written to the log.

34 PEX: Developing Productions with an External Language

Message

A.8 Message

The Message class is the abstract class that is the superclass class for persistent messages sent from one component to
another. The Message class has no properties or methods. Users subclass the Message class in order to add properties. The
PEX framework provides the persistence to objects derived from the Message class.

PEX: Developing Productions with an External Language 35

	Table of Contents
	1 Introduction to the PEX Framework
	2 Getting Started with PEX
	2.1 PEX Libraries
	2.2 Working with PEX Components
	2.3 Environmental Considerations
	2.3.1 Production-enabled Namespaces
	2.3.2 Web Application Requirement
	2.3.3 Reserved Package Names

	3 About Business Hosts and Adapters
	3.1 Creating Runtime Variables
	3.1.1 Variable Metadata

	3.2 PEX Component Metadata

	4 PEX Messaging
	5 Inbound Adapters in the PEX Framework
	5.1 Developing a Custom Adapter
	5.1.1 Implementing Abstract Methods

	5.2 Registering the Adapter
	5.3 Adding the Adapter to a Business Service

	6 PEX Outbound Adapters
	6.1 Developing a Custom Adapter
	6.1.1 Implementing Abstract Methods

	6.2 Registering the Adapter
	6.3 Adding the Adapter to a Business Operation

	7 Business Services in the PEX Framework
	7.1 Developing a Business Service
	7.1.1 Implementing Abstract Methods

	7.2 Using an Inbound Adapter
	7.3 Using the Business Service

	8 PEX Business Processes
	8.1 Developing a Business Process
	8.1.1 Implementing Abstract Methods
	8.1.2 Persistent Properties

	8.2 Using the Business Process

	9 PEX Business Operations
	9.1 Developing a Business Operation
	9.1.1 Implementing Abstract Methods

	9.2 Using an Outbound Adapter
	9.2.1 Invoking Adapter Methods

	9.3 Using the Business Operation

	10 Registering a PEX Component
	11 Connecting with External Language Servers
	11.1 Sharing a Connection

	Appendix A: PEX API Reference
	A.1 General Notes about Methods
	A.2 Business Operations
	A.2.1 OnMessage() Method
	A.2.2 OnInit() Method
	A.2.3 OnTearDown() Method
	A.2.4 SendRequestAsync() Method
	A.2.5 SendRequestSync() Method
	A.2.6 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT() Methods

	A.3 Business Process
	A.3.1 OnRequest() Method
	A.3.2 OnResponse() Method
	A.3.3 OnComplete() Method
	A.3.4 OnInit() Method
	A.3.5 OnTearDown() Method
	A.3.6 Reply() Method
	A.3.7 SendRequestAsync() Method
	A.3.8 SendRequestSync() Method
	A.3.9 SetTimer() Method
	A.3.10 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT() Methods

	A.4 Business Service
	A.4.1 OnProcessInput() Method
	A.4.2 OnInit() Method
	A.4.3 OnTearDown() Method
	A.4.4 ProcessInput() Method
	A.4.5 SendRequestAsync() Method
	A.4.6 SendRequestSync() Method
	A.4.7 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT() Methods

	A.5 Director
	A.5.1 CreateBusinessService() Method

	A.6 Inbound Adapter
	A.6.1 OnTask() Method
	A.6.2 OnInit() Method
	A.6.3 OnTearDown() Method
	A.6.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT() Methods

	A.7 Outbound Adapter
	A.7.1 OnInit() Method
	A.7.2 OnTearDown() Method
	A.7.3 Invoke() Method
	A.7.4 LOGINFO(), LOGALERT(), LOGWARNING(), LOGERROR(), and LOGASSERT() Methods

	A.8 Message

	Index

