
InterSystems Cloud Manager
Guide

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

InterSystems Cloud Manager Guide
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 ICM Overview ... 1
1.1 Benefits of InterSystems Cloud Manager .. 1
1.2 The InterSystems Cloud Manager Application Lifecycle .. 3

1.2.1 Define Goals .. 4
1.2.2 Provision .. 5
1.2.3 Deploy .. 5
1.2.4 Manage ... 6

1.3 Additional Automated Deployment Methods for InterSystems IRIS ... 6
1.3.1 Automated Deployment Using the InterSystems Kubernetes Operator (IKO) 6
1.3.2 Automated Deployment Using Configuration Merge .. 6

2 Essential ICM Elements ... 9
2.1 InterSystems Cloud Manager Image .. 9
2.2 Provisioning Platforms ... 9
2.3 Deployment Platforms .. 10
2.4 Defining Nodes in the Deployment .. 10
2.5 Field Values .. 11
2.6 Command Line ... 12
2.7 Configuration, State, and Log Files ... 13

2.7.1 The Definitions File ... 14
2.7.2 The Defaults File .. 15
2.7.3 The Instances File .. 15
2.7.4 The State Directory and State Files .. 16
2.7.5 Log Files and Other InterSystems Cloud Manager Files ... 16

2.8 Docker Repositories ... 16
2.8.1 Logging Into a Docker Repository ... 16
2.8.2 Setting Up a Docker Repository .. 17

3 Using InterSystems Cloud Manager ... 19
3.1 ICM Use Cases ... 19
3.2 Launch ICM ... 20

3.2.1 Downloading the ICM Image ... 20
3.2.2 Running the ICM Container ... 21
3.2.3 Upgrading an ICM Container .. 22

3.3 Obtain Security-Related Files .. 22
3.3.1 Cloud Provider Credentials .. 22
3.3.2 SSH and TLS Keys .. 22

3.4 Define the Deployment .. 23
3.4.1 Shared Defaults File ... 24
3.4.2 Distributed Cache Cluster Definitions File .. 28
3.4.3 Sharded Cluster Definitions File .. 30
3.4.4 Customizing InterSystems IRIS Configurations .. 32

3.5 Provision the Infrastructure .. 32
3.5.1 The icm provision Command ... 33
3.5.2 Reprovisioning the Infrastructure .. 34
3.5.3 Infrastructure Management Commands ... 36

3.6 Deploy and Manage Services ... 38
3.6.1 The icm run Command ... 38

InterSystems Cloud Manager Guide iii

3.6.2 Redeploying Services ... 43
3.6.3 Container Management Commands ... 44
3.6.4 Service Management Commands ... 46

3.7 Unprovision the Infrastructure ... 50

4 ICM Reference .. 53
4.1 ICM Commands and Options ... 53
4.2 ICM Configuration Parameters .. 57

4.2.1 General Parameters .. 57
4.2.2 Security-related Parameters ... 63
4.2.3 Port and Protocol Parameters ... 66
4.2.4 CPF Parameters .. 69
4.2.5 Provider-Specific Parameters ... 69
4.2.6 Device Name Parameters ... 81
4.2.7 Alphabetical List of User Parameters ... 82

4.3 ICM Node Types .. 88
4.3.1 Role DATA: Sharded Cluster Data Node ... 89
4.3.2 Role COMPUTE: Sharded Cluster Compute Node ... 89
4.3.3 Role DM: Distributed Cache Cluster Data Server, Standalone Instance, Shard Master Data
Server .. 89
4.3.4 Role DS: Shard Data Server ... 90
4.3.5 Role QS: Shard Query Server .. 90
4.3.6 Role AM: Distributed Cache Cluster Application Server .. 90
4.3.7 Role AR: Mirror Arbiter ... 90
4.3.8 Role WS: Web Server ... 90
4.3.9 Role SAM: System Alerting and Monitoring Node ... 91
4.3.10 Role LB: Load Balancer .. 91
4.3.11 Role VM: Virtual Machine Node ... 93
4.3.12 Role CN: Container Node .. 94
4.3.13 Role BH: Bastion Host ... 94

4.4 ICM Cluster Topology and Mirroring .. 94
4.4.1 Rules for Mirroring .. 94
4.4.2 Nonmirrored Configuration Requirements .. 95
4.4.3 Mirrored Configuration Requirements ... 98

4.5 Storage Volumes Mounted by ICM .. 101
4.6 InterSystems IRIS Licensing for ICM ... 102
4.7 ICM Security .. 103

4.7.1 Host Node Communication .. 103
4.7.2 Docker .. 103
4.7.3 Weave Net .. 104
4.7.4 InterSystems IRIS .. 104
4.7.5 Private Networks .. 105

4.8 Deploying with Customized InterSystems IRIS Configurations ... 105
4.9 Deploying Across Multiple Zones .. 106
4.10 Deploying Across Multiple Regions or Providers .. 108

4.10.1 Deploying Across Multiple Regions on GCP .. 108
4.10.2 Deploying Across Multiple Regions on Azure ... 110
4.10.3 Deploying Across Multiple Regions on AWS and Tencent .. 112

4.11 Deploying on a Private Network .. 115
4.11.1 Deploy Within an Existing Private Network .. 116
4.11.2 Deploy on a Private Network Through a Bastion Host .. 118

iv InterSystems Cloud Manager Guide

4.12 Deploying InterSystems API Manager ... 119
4.13 Monitoring in ICM ... 120

4.13.1 System Alerting and Monitoring .. 120
4.13.2 Deploying Third-party Monitoring with ICM .. 121

4.14 ICM Troubleshooting ... 121
4.14.1 Host Node Restart and Recovery ... 122
4.14.2 Correcting Time Skew .. 123
4.14.3 Timeouts Under ICM ... 123
4.14.4 Docker Bridge Network IP Address Range Conflict ... 124
4.14.5 Weave Network IP Address Range Conflict .. 124
4.14.6 Huge Pages ... 125

Appendix A: Containerless Deployment .. 127
A.1 Containerless Deployment Platforms .. 127
A.2 Enabling Containerless Mode ... 127
A.3 Installing InterSystems IRIS ... 128
A.4 Reinstalling InterSystems IRIS ... 129
A.5 Uninstalling InterSystems IRIS ... 130
A.6 Additional Containerless Mode Commands .. 130
A.7 Nonroot Installation in Containerless Mode ... 131

A.7.1 Required Configuration Fields .. 131
A.7.2 Provisioning Phase .. 132

Appendix B: Sharing ICM Deployments ... 135
B.1 Sharing Deployments in Distributed Management Mode ... 135

B.1.1 Distributed Management Mode Overview .. 135
B.1.2 Configuring Distributed Management Mode .. 136
B.1.3 Upgrading ICM Using Distributed Management Mode .. 137

B.2 Sharing Deployments Manually .. 138
B.2.1 State Files .. 138
B.2.2 Maintaining Immutability .. 138
B.2.3 Persisting State Files ... 139

Appendix C: Scripting with ICM ... 141
C.1 ICM Exit Status ... 141
C.2 ICM Logging ... 142
C.3 Remote Script Invocation .. 142
C.4 Using JSON Mode ... 142

C.4.1 Normal Output ... 143
C.4.2 Abnormal Output ... 145

Appendix D: Using ICM with Custom and Third-Party Containers ... 147
D.1 Container Naming ... 147
D.2 Overriding Default Commands ... 147
D.3 Using Docker Options ... 148

D.3.1 Restarting .. 148
D.3.2 Privileges ... 148
D.3.3 Environment Variables .. 148
D.3.4 Mount Volumes ... 149
D.3.5 Ports ... 149

Appendix E: Deploying on a Preexisting Cluster ... 151
E.1 SSH .. 151

InterSystems Cloud Manager Guide v

E.2 Ports ... 152
E.3 Storage Volumes ... 153
E.4 Definitions File for PreExisting ... 153

vi InterSystems Cloud Manager Guide

List of Figures

Figure 1–1: ICM Makes It Easy .. 2
Figure 1–2: Containers Support the DevOps Approach .. 3
Figure 1–3: Role of ICM in the Application Lifecycle ... 4
Figure 2–1: ICM Configuration Files Define Deployments .. 12
Figure 3–1: Distributed Cache Cluster to be Deployed by ICM ... 29
Figure 3–2: Sharded Cluster to be Deployed by ICM ... 31
Figure 3–3: Interactive ICM Commands ... 47
Figure 4–1: ICM Nonmirrored Topologies ... 97
Figure 4–2: ICM Mirrored Topologies .. 100
Figure 4–3: ICM Deployed within Private Subnet .. 116
Figure 4–4: ICM Deployed Outside a Private Network with a Bastion Host 118

InterSystems Cloud Manager Guide vii

List of Tables

Table 4–1: ICM Commands .. 54
Table 4–2: ICM Command-Line Options .. 55
Table 4–3: AWS Parameters .. 70
Table 4–4: GCP Parameters ... 73
Table 4–5: Azure Parameters ... 75
Table 4–6: Tencent Parameters .. 77
Table 4–7: vSphere Parameters ... 79
Table 4–8: ICM Node Types .. 88

viii InterSystems Cloud Manager Guide

1
ICM Overview

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

This document describes the use of InterSystems Cloud Manager (ICM) to deploy InterSystems IRIS® data platform con-
figurations in public and private clouds and on preexisting physical and virtual clusters.

This page explains what InterSystems Cloud Manager (ICM) does, how it works, and how it can help you deploy InterSystems
IRIS data platform configurations on cloud, virtual, and physical infrastructure. (For a brief introduction to ICM including
a hands-on exploration, see InterSystems IRIS Demo: InterSystems Cloud Manager.)

1.1 Benefits of InterSystems Cloud Manager
InterSystems Cloud Manager (ICM) provides you with a simple, intuitive way to provision cloud infrastructure and deploy
services on it. ICM is designed to bring you the benefits of infrastructure as code (IaC), immutable infrastructure, and
containerized deployment of your InterSystems IRIS-based applications, without requiring you to make major investments
in new technology and the attendant training and trial-and-error configuration and management.

ICM makes it easy to provision and deploy the desired InterSystems IRIS configuration on Infrastructure as a Service (IaaS)
public cloud platforms, including Google Cloud Platform, Amazon Web Services, Microsoft Azure, and Tencent Cloud.
Define what you want in plain text configuration files and use the simple command line interface to direct ICM; ICM does
the rest, including provisioning your cloud infrastructure and deploying your InterSystems IRIS-based applications on that
infrastructure in Docker containers.

ICM codifies APIs into declarative configuration files that can be shared among team members like code, edited, reviewed,
and versioned. By executing the specifications in these files, ICM enables you to safely and predictably create, change,
and improve production infrastructure on an ongoing basis.

InterSystems Cloud Manager Guide 1

Figure 1–1: ICM Makes It Easy

Using ICM lets you take advantage of the efficiency, agility, and repeatability provided by virtual and cloud computing
and containerized software without major development or retooling. The InterSystems IRIS configurations ICM can provision
and deploy range from a stand-alone instance, through a distributed cache cluster of application servers connected to a data
server, to a sharded cluster of data and compute nodes. ICM can deploy on existing virtual and physical clusters as well as
infrastructure it provisions.

Even if you are already using cloud infrastructure, containers, or both, ICM dramatically reduces the time and effort required
to provision and deploy your application by automating numerous manual steps based on the information you provide. And
the functionality of ICM is easily extended through the use of third-party tools and in-house scripting, increasing automation
and further reducing effort.

Each element of the ICM approach provides its own advantages, which combine with ach other:

• Configuration file templates allow you to accept default values provided by InterSystems for most settings, customizing
only those required to meet your specific needs.

• The command line interface allows you to initiate each phase of the provisioning and deployment process with a single
simple command, and to interact with deployed containers in a wide variety of ways.

• IaC brings the ability to quickly provision consistent, repeatable platforms that are easily reproduced, managed, and
disposed of.

• IaaS providers enable you to utilize infrastructure in the most efficient manner — for example, if you need a cloud
configuration for only a few hours, you pay for only a few hours — while also supporting repeatability, and providing
all the resources you need to go with your host nodes, such as networking and security, load balancers, and storage
volumes.

• Containerized application deployment means seamlessly replaceable application environments on immutable software-
provisioned infrastructure, separating code from data and avoiding the risks and costs of updating the infrastructure
itself while supporting Continuous Integration/Continuous Deployment (CI/CD) and a DevOps approach.

2 InterSystems Cloud Manager Guide

ICM Overview

Figure 1–2: Containers Support the DevOps Approach

ICM exploits these advantages to bring you the following benefits:

• Automated provisioning and deployment, and command-line management, of large-scale, cloud-based InterSystems
IRIS configurations.

• Integration of existing InterSystems IRIS and InterSystems IRIS-based applications into your enterprise’s DevOps
toolchain.

• Stability, robustness, and minimization of risk through easy versioning of both the application and the environment it
runs in.

• Elastic scaling of deployed InterSystems IRIS configurations through rapid reprovisioning and redeployment.

If you prefer not to work with Docker containers, you can use ICM to provision cloud infrastructure and install noncon-
tainerized InterSystems IRIS instances on that infrastructure, or to install InterSystems IRIS on existing infrastructure. For
more information about using ICM’s containerless mode, see Containerless Deployment.

1.2 The InterSystems Cloud Manager Application Lifecycle
The role of ICM in the application lifecycle, including its two main phases, provision and deploy, is shown in the following
illustration:

InterSystems Cloud Manager Guide 3

The InterSystems Cloud Manager Application Lifecycle

Figure 1–3: Role of ICM in the Application Lifecycle

1.2.1 Define Goals

ICM’s configuration files, as provided, contain almost all of the settings you need to provide to provision and deploy the
InterSystems IRIS configuration you want. Simply define your desired configuration in the appropriate file, as well as
specifying some details such as credentials (cloud server provider, SSH, TLS) , InterSystems IRIS licenses, types and sizes
of the host nodes you want, and so on. (See Define the Deployment for details.)

Note: In this document, the term host node is used to refer to a virtual host provisioned either in the public cloud of one
of the supported cloud service providers or in a private cloud using VMware vSphere.

4 InterSystems Cloud Manager Guide

ICM Overview

1.2.2 Provision

ICM supports four main provisioning activities: creating (provisioning), configuring, modifying, and destroying (unprovi-
sioning) host nodes and associated resources in a cloud environment.

ICM carries out provisioning tasks by making calls to HashiCorp’s Terraform. Terraform is an open source tool for building,
changing, and versioning infrastructure safely and efficiently, and is compatible with both existing cloud services providers
and custom solutions. Configuration files describe the provisioned infrastructure. (See Provision the Infrastructure for
details.)

Although all of the tasks could be issued as individual Terraform commands, executing Terraform jobs through ICM has
the following advantages over invoking Terraform directly:

Terraform Executed by ICMTerraform Executed Directly

Coordinates all phases, including in elastic
reprovisioning and redeployment (for example adding
nodes to the cluster infrastructure, then deploying and
configuring InterSystems IRIS on the nodes to
incorporate them into the cluster)

Executes provisioning tasks only, cannot integrate
provisioning with deployment and configuration

Runs multiple Terraform jobs in parallel to configure all
node types simultaneously, for faster provisioning

Configures each type of node in sequence, leading
to long provisioning times

Provides programmatic access to TerraformDoes not provide programmatic access (has no
API)

Defines the desired infrastructure in a generic JSON
format

Defines the desired infrastructure in the proprietary
HashiCorp Configuration Language (HCL)

ICM also carries out some postprovisioning configuration tasks using SSH in the same fashion, running commands in
parallel on multiple nodes for faster execution.

1.2.3 Deploy

ICM deploys InterSystems IRIS images in Docker containers on the host nodes it provisions. These containers are platform-
independent and fully portable, do not need to be installed, and are easily tunable. ICM itself is deployed in a Docker con-
tainer. A containerized application runs natively on the kernel of the host system, while the container provides it with only
the elements needed to run it and make it accessible to the required connections, services, and interfaces — a runtime
environment, the code, libraries, environment variables, and configuration files.

Deployment tasks are carried out by making calls to Docker. Although all of the tasks could be issued as individual Docker
commands, executing Docker commands through ICM has the following advantages over invoking Docker directly:

• ICM runs Docker commands across all machines in parallel threads, reducing the total amount of time to carry out
lengthy tasks, such as pulling (downloading) images.

• ICM can orchestrate tasks, such as rolling upgrades, that have application-specific requirements.

• ICM can redeploy services on infrastructure that has been modified since the initial deployment, including upgrading
or adding new containers.

InterSystems Cloud Manager Guide 5

The InterSystems Cloud Manager Application Lifecycle

Note: To learn how to quickly get started running an InterSystems IRIS container on the command line, see InterSystems
IRIS Basics: Running an InterSystems IRIS Container; for detailed information about deploying InterSystems
IRIS and InterSystems IRIS-based applications in containers using methods other than ICM, see Running Inter-
Systems IRIS in Containers.

1.2.4 Manage

ICM commands let you interact with and manage your infrastructure and containers in a number of ways. For example,
you can run commands on the cloud hosts or within the containers, copy files to the hosts or the containers, upgrade con-
tainers, and interact directly with InterSystems IRIS.

For complete information about ICM service deployment and management, see Deploy and Manage Services.

1.3 Additional Automated Deployment Methods for
InterSystems IRIS
In addition to the ICM, InterSystems IRIS data platform provides the following methods for automated deployment.

1.3.1 Automated Deployment Using the InterSystems Kubernetes Operator
(IKO)

Kubernetes is an open-source orchestration engine for automating deployment, scaling, and management of containerized
workloads and services. You define the containerized services you want to deploy and the policies you want them to be
governed by; Kubernetes transparently provides the needed resources in the most efficient way possible, repairs or restores
the deployment when it deviates from spec, and scales automatically or on demand. The InterSystems Kubernetes Operator
(IKO) extends the Kubernetes API with the IrisCluster custom resource, which can be deployed as an InterSystems IRIS
sharded cluster, distributed cache cluster, or standalone instance, all optionally mirrored, on any Kubernetes platform.

The IKO isn’t required to deploy InterSystems IRIS under Kubernetes, but it greatly simplifies the process and adds Inter-
Systems IRIS-specific cluster management capabilities to Kubernetes, enabling tasks like adding nodes to a cluster, which
you would otherwise have to do manually by interacting directly with the instances.

For more information on using the IKO, see Using the InterSystems Kubernetes Operator.

1.3.2 Automated Deployment Using Configuration Merge

The configuration merge feature, available on Linux and UNIX® systems, lets you vary the configurations of InterSystems
IRIS containers deployed from the same image, or local instances installed from the same kit, by simply applying the desired
declarative configuration merge file to each instance in the deployment.

This merge file, which can also be applied when restarting an existing instance, updates an instance’s configuration
parameter file (CPF), which contains most of its configuration settings; these settings are read from the CPF at every startup,
including the first one after an instance is deployed. When you apply configuration merge during deployment, you in effect
replace the default CPF provided with the instance with your own updated version.

Using configuration merge, you can deploy individual instances or groups of instances with exactly the configuration you
want. To deploy complex architectures, you can call separate merge files for the different types of instances involved. , For
example, to deploy a sharded cluster, you would sequentially deploy data node 1, then the remaining data nodes, then
(optionally) the compute nodes.

6 InterSystems Cloud Manager Guide

ICM Overview

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO

As described in Deploying with Customized InterSystems IRIS Configurations, you can specify a configuration merge file
to be applied during the ICM deployment phase using the UserCPF parameter. The IKO, described in the preceding section,
also incorporates the configuration merge feature.

For information about using configuration merge in general and to deploy mirrors in particular, see Automating Configuration
of InterSystems IRIS with Configuration Merge.

InterSystems Cloud Manager Guide 7

Additional Automated Deployment Methods for InterSystems IRIS

2
Essential ICM Elements

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

The page describes the essential elements involved in using ICM.

2.1 InterSystems Cloud Manager Image
ICM is provided as a Docker image, which you run to start the ICM container. Everything required by ICM to carry out
its provisioning, deployment, and management tasks — for example Terraform, the Docker client, and templates for the
configuration files — is included in this container. See Launch ICM for more information about the ICM container.

The system on which you launch ICM must be supported by Docker as a platform for hosting Docker containers, have
Docker installed, and have adequate connectivity to the provisioning platform on which you intend to provision infrastructure
and deploy containers, or the existing infrastructure on which you intend to deploy.

2.2 Provisioning Platforms
ICM can provision virtual host nodes and associated resources on the following platforms:

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• Microsoft Azure (Azure)

• Tencent Cloud (Tencent)

• VMware vSphere (vSphere)

Note: To address the needs of the many users who rely on VMware vSphere, it is supported by this release of ICM.
Depending on your particular vSphere configuration and underlying hardware platform, the use of ICM to
provision virtual machines may entail additional extensions and adjustments not covered in this guide, espe-
cially for larger and more complex deployments, and may not be suitable for production use. Full support is
expected in a later release.

InterSystems Cloud Manager Guide 9

On AWS, GCP, Azure, and Tencent, ICM can provision and deploy a single configuration across multiple zones within a
region, across multiple regions, or even across cloud provider platforms.

Before using ICM with one of these platforms, you should be generally familiar with the platform. You will also need
account credentials; see Obtain Security Credentials for more information.

ICM can also configure existing virtual or physical clusters (provider PreExisting) as needed and deploy containers on them,
just as with the nodes it provisions itself.

2.3 Deployment Platforms
Container images from InterSystems comply with the Open Container Initiative (OCI) specification, and are built using
the Docker Enterprise Edition engine, which fully supports the OCI standard and allows for the images to be certified and
featured in the Docker Hub registry.

InterSystems images are built and tested using the widely popular container Ubuntu operating system, and ICM therefore
supports their deployment on any OCI-compliant runtime engine on Linux-based operating systems, both on premises and
in public clouds.

2.4 Defining Nodes in the Deployment
ICM deploys one InterSystems IRIS instance per provisioned node, and the role that each instance plays in an InterSystems
IRIS configuration is determined by the Role field value under which the node and the instance on it are provisioned,
deployed, and configured.

In preparing to use ICM, you must define your target configuration (see Define the Deployment) by selecting the types and
numbers of nodes you want to include. If you want to deploy an InterSystems IRIS sharded cluster, for example, you must
decide beforehand how many data nodes and (optionally) compute nodes will be included in the cluster, and whether the
data nodes are to be mirrored. The specifications for the desired nodes are then entered in the definitions file (see Configu-
ration, State, and Log Files) to provide the needed input to ICM. This is shown in the following simplified example defining
four data nodes and eight compute nodes:

[
 {
 "Role": "DATA",
 "Count": "4",
 "LicenseKey": "ubuntu-sharding-iris.key"
 },
 {
 "Role": "COMPUTE",
 "Count": "8",
 "StartCount": "5",
 "LicenseKey": "ubuntu-sharding-iris.key"
 }
]

The Mirror field, which determines whether the data nodes are mirrored, appears in the defaults file. Mirror deployment is
covered at length in ICM Cluster Topology and Mirroring.

10 InterSystems Cloud Manager Guide

Essential ICM Elements

https://opencontainers.org
https://hub.docker.com/_/intersystems-iris-data-platform

2.5 Field Values
The provisioning, deployment, and configuration work done by ICM is determined by a number of field values that you
provide. For example, the Provider field specifies the provisioning platform to use; if its value is AWS, the specified nodes
are provisioned on AWS.

There are two ways to specify field values:

• Some can be specified on the command line (see Command Line).

• All can be included in the two configuration files (see Configuration, State and Log Files), although some can appear
only in the defaults.json file, and others intended for the definitions file only.

There are also defaults for most ICM fields. In descending order of precedence, these specifications are ranked as follows:

1. Command line option

2. Entry in definitions.json configuration file

3. Entry in defaults.json configuration file

4. ICM default value

This avoids repeating commonly used fields while allowing flexibility. The defaults file (defaults.json) can be used to provide
values (when a value is required or to override the defaults) for multiple deployments in a particular category, for example
those that are provisioned on the same platform. The definitions file (definitions.json) provides values for a particular
deployment, such as specifying the nodes in the cluster and the labels that identify them, but can also contain fields included
in the defaults file, in order to override the defaults.json value for a particular node type in a particular deployment. Speci-
fying a field value as a command line options let you override both configuration files in the context of a particular command
in a particular deployment.

The following illustration shows two deployments sharing a single defaults.json file, with different definitions.json files —
the first for a distributed cache cluster, the second for a sharded cluster.

InterSystems Cloud Manager Guide 11

Field Values

Figure 2–1: ICM Configuration Files Define Deployments

For comprehensive lists of the required and optional fields that can be specified in these files, see ICM Configuration
Parameters.

2.6 Command Line
The ICM command line interface allows users to specify an action in the orchestration process — for example, icm provision
to provision infrastructure, or icm run to deploy by running the specified containers — or a container or service management
command, such as upgrading a container or connecting to InterSystems IRIS. ICM executes these commands using infor-
mation from configuration files. If either of the input configuration files (see Configuration, State and Log Files) is not
specified on the command line, ICM uses the file (definitions.json or defaults.json) that exists in the current working directory;
if one or both are not specified and do not exist, the command fails.

The command line can be also used to specify options, which have several purposes, as follows:

• To override information that is in a configuration file for a single command only, for example to deploy a different
Docker image than the one provided in the configuration files, as shown in the following:

icm run –image image

12 InterSystems Cloud Manager Guide

Essential ICM Elements

• To supply information that is not in the configuration files because you do not want it persisted, for instance a password,
as follows:

icm run -iscPassword password

• To supply information relevant to a command executed on one or more nodes in the deployment, for example a query,
as shown:

icm sql -role DATA -namespace namespace -command "query"

Options can have different purposes when used with different commands. For example, with the icm run command, the
-container option provides the name for the new container being started from the specified image, whereas with the icm
ps command it specifies the name of the existing deployed containers for which you want to display state information.

For comprehensive lists of ICM commands and command-line options, see ICM Commands and Options.

2.7 Configuration, State, and Log Files
ICM uses JSON files as both input and output, as follows:

• As input, configuration files provide the information ICM needs to execute tasks, such as the provisioning platform
to use and the types and numbers of nodes to provision. These files are provided by the user; they can be adapted from
the template provided with ICM, created manually, or produced by the output of a script or UI.

• As output, files generated by ICM describe the results of ICM’s tasks.

When an ICM task results in the generation of new or changed data (for example, an IP address), that information is recorded
in JSON format for use by subsequent tasks. ICM ignores all fields which it does not recognize or that do not apply to the
current task, but passes these fields on to subsequent tasks, rather than generating an error. This behavior has the following
advantages:

• Information specified during an earlier phase (such as provisioning) to be used during a later phase (such as deployment)
without having to edit or maintain more than one configuration file.

• A degree of forward- and backward-compatibility among ICM versions is supported.

• The work required to use one configuration file with multiple providers is minimized.

• Although the JSON standard does not provide a formal means of commenting out content, fields can be “commented
out” by altering their names.

The JSON files used by ICM include the following:

• The definitions file and the defaults file, provided by the user as input to ICM’s provisioning and deployment phases.
By default these files are assumed to be in the current working directory. (For comprehensive lists of the required and
optional fields that can be specified in these files, see ICM Configuration Parameters.)

• The instances file, generated by ICM at the end of the provisioning phase and used as input to the deployment phase.
By default this file is created in the current working directory.

• The Terraform state files, generated by ICM during the provisioning phase and used as input to future infrastructure-
related operations, such as unprovisioning. By default these files are placed in a state directory generated by ICM under
the current working directory.

ICM also generates a number of other log, output, and error files, which are located in the current working directory or the
state directory.

InterSystems Cloud Manager Guide 13

Configuration, State, and Log Files

2.7.1 The Definitions File

The definitions file (definitions.json) describes a set of host nodes to be provisioned for a particular deployment. ICM uses
the definitions file found in the current working directory.

The definitions file consists of a series of JSON objects representing node definitions, each of which contains a list of
attributes as well as a count to indicate how many nodes of that type should be created. Some fields are required, others
are optional, and some are provider-specific (that is, for use with AWS, Google Cloud Platform, Microsoft Azure, Tencent,
VMware vSphere, or PreExisting).

Most fields can appear in this file, repeated as needed for each node definition. Some fields, however, must be the same
across a single deployed configuration, and therefore cannot be changed from the default, or specified if there is no default,
by entries in the definitions file. The Provider field is a good example, for obvious reasons. Other fields that cannot be
included in the definitions.json file and will cause an error if they are included are Label and Tag.

Fields that vary between node types (for example, Role) must be included in the node definitions in definitions.json. The
definitions.json is also used to override either ICM defaults or settings in the defaults.json file for specific node types. For
instance, in the following example, which shows the contents of a sample definitions.json file for provisioning a distributed
cache cluster consisting of a mirrored data server ("Role": "DM""), three application servers ("Role": "AM"), and a mirror
arbiter node ("Role": "AR") on AWS:

• The DataVolumeSize field appears only for the DM nodes because the others use the ICM default value.

• The DM node and AR node definitions include an InstanceType field overriding the default instance type specified in
defaults.json.

• The AR node definition includes a DockerImage field overriding the one in defaults.json because an arbiter container
is to be deployed on it, rather than an InterSystems IRIS container.

Some fields must be in definitions.json because they are restricted to certain node types; for example, the AM node definition
here includes "LoadBalancer": "true" to automatically provision a load balancer for the AM nodes. This setting can also be
used with WS nodes, but applying it to other node types causes errors.

[
 {
 "Role": "DM",
 "Count": "2",
 "DataVolumeSize": "50",
 "InstanceType": "m4.xlarge"
 },
 {
 "Role": "AM",
 "Count": "3",
 "StartCount": "3",
 "LoadBalancer": "true"
 },
 {
 "Role": "AR",
 "Count": "1",
 "StartCount": "6",
 "InstanceType": "t2.small",
 "DockerImage": "intersystems/arbiter:latest-em"
 }
]

By modifying the definitions.json file, then reprovisioning and/or redeploying, you can elastically scale and alter an existing
configuration by adding or removing nodes or modifying existing nodes.

Note: The image tags shown in this document are examples only. Please go to the InterSystems Container Registry
(ICR) to browse current repositories and tags.

14 InterSystems Cloud Manager Guide

Essential ICM Elements

https://containers.intersystems.com/contents

2.7.2 The Defaults File

Generally, the defaults file defines fields that are the same across all deployments of a particular type, such as those provi-
sioned on a particular cloud platform. ICM uses the defaults file found in the current working directory.

As noted in The Definitions File, while most fields can be in either input file, some must be the same across a deployment
and cannot be specified separately for each node type, for example Provider. In addition to these, there may be other fields
that you want to apply to all nodes in all deployments, overriding them when desired on the command line or in the definitions
file. Fields of both types are included in the defaults.json file. Including as many fields as you can in the defaults file keeps
definitions files smaller and more manageable.

The format of the defaults file is a single JSON object; the values it contains are applied to every field whose value is not
specified (or is null) in a command line option or the definitions file.

The following shows the contents of a sample defaults.json file to be used with the definitions.json file shown in The Defi-
nitions File, Some of the defaults specified in the former are overridden by the latter, including OSVolumeSize,
DataVolumeSize, and InstanceType.

{
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "TEST",
 "DataVolumeSize": "10",
 "SSHUser": "ubuntu",
 "SSHPublicKey": "/Samples/ssh/insecure-ssh2.pub",
 "SSHPrivateKey": "/Samples/ssh/insecure",
 "DockerRegistry": "https://containers.intersystems.com",
 "DockerImage": "containers.intersytems.com/intersystems/iris:some-tag",
 "DockerUsername": "xxxxxxxxxxxx",
 "DockerPassword": "xxxxxxxxxxxx",
 "TLSKeyDir": "/Samples/tls/",
 "LicenseDir": "/Samples/license/",
 "Region": "us-east-1",
 "Zone": "us-east-1a",
 "AMI": "ami-07267eded9a267f32",
 "DockerVersion": "5:20.10.17~3-0~ubuntu-jammy",
 "InstanceType": "m5.large",
 "Credentials": "/Samples/AWS/sample.credentials",
 "ISCPassword": "",
 "Mirror": "false",
 "UserCPF": "/Samples/cpf/iris.cpf"
}

2.7.3 The Instances File

The instances file (instances.json), generated by ICM during the provisioning phase, describes the set of host nodes that
have been successfully provisioned. This information provides input to the deployment and management phase, and the
file must therefore be available during this phase, and its path provided to ICM if it is not in the current working directory.
The instances file is created in the current working directory.

While the definitions file contains only one entry for each node type, including a Count value to specify the number of
nodes of that type, the instances file contains an entry for reach node actually provisioned. For example, the sample definitions
file provided earlier contains three entries — one for three application servers, one for two data servers, and one for an
arbiter — but the resulting instances file would contain six objects, one for each provisioned node.

All of the parameters making up each node’s definition — including those in the definitions and defaults file, those not
specified in the configuration files that have default values, and internal ICM parameters — appear in its entry, along with
the node’s machine name constructed from the Label, Role, and Tag fields), its IP address, and its DNS name. The location
of the subdirectory for that node in the deployment’s state directory is also included.

InterSystems Cloud Manager Guide 15

Configuration, State, and Log Files

2.7.4 The State Directory and State Files

ICM writes several state files, including logs and generated scripts, to the state subdirectory, for use during the lifetime of
the provisioned infrastructure. The state subdirectory is created in the current working directory. by default.

State files generated during provisioning include the Terraform overrides file and state file, terraform.tfvars and
terraform.tfstate, as well as Terraform output, error and log files. A set of these Terraform-related files is created in a separate
subdirectory for each node type definition in the definitions file, for example:

./state/Acme-DM-TEST

./state/Acme-AM-TEST

./state/Acme-AR-TEST

If you prefer to create your own state directory with a different name or in a different location, you can use the -stateDir
command line option with the icm provision command to override the default location, but you must then continue using
the -stateDir option to specify that location in all subsequent provisioning commands, for example when you unprovision
the infrastructure.

Important: ICM relies on the state files it creates for accurate, up to date information about the infrastructure it has
provisioned; without them, the provisioning state may be difficult or impossible to for ICM to reconstruct,
resulting in errors, and perhaps even the need for manual intervention. For this reason, InterSystems strongly
recommends making sure the state directory is located on storage that is reliable and reliably accessible,
with an appropriate backup mechanism in place.

2.7.5 Log Files and Other InterSystems Cloud Manager Files

ICM writes several log, output and error files to the current working directory and within the state directory tree. The icm.log

file in the current working directory records ICM’s informational, warning, and error messages. Other files within the state

directory tree record the results of commands, including errors. For example, errors during the provisioning phase are typ-
ically recorded in the terraform.err file.

Important: When an error occurs during an ICM operation, ICM displays a message directing you to the log file in
which information about the error can be found. Before beginning an ICM deployment, familiarize yourself
with the log files and their locations.

2.8 Docker Repositories
Each image deployed by ICM is pulled (downloaded) from a Docker repository. Many Docker images can be freely
downloaded from public Docker repositories; private repositories such as the InterSystems repository, however, require a
Docker login.

2.8.1 Logging Into a Docker Repository

As part of the deployment phase, ICM logs each node into the Docker respository you specify, using credentials supplied
by you, before deploying the image specified by the DockerImage field in one of the configuration files or on the command
line using the -image option. (The repository name must be included in the image specification.) You can include the fol-
lowing three fields in the defaults.json file to provide the needed information:

• DockerRegistry

16 InterSystems Cloud Manager Guide

Essential ICM Elements

The DNS name of the server hosting the Docker repository storing the image specified by DockerImage. If this field
is not included, ICM uses Docker’s public registry at docker.com.

If the repository specified by DockerImage does not exist on the server specified by DockerRegistry, deployment fails
and returns an error.

For information about using the InterSystems Container Registry (ICR), see Downloading the ICM Image.

• DockerUsername

The username to use for Docker login. Not required for public repositories. If this field is not included and the repository
specified by DockerImage is private, login fails.

• DockerPassword

The password to use for Docker login. Not required for public repositories. If this field is not included and the repository
specified by DockerImage is private. ICM prompts you (with masked input) for a password.

Note: If the value of the DockerPassword field contains special characters such as $, |, (, and), they must be escaped
with two \ characters; for example, the password abc$def must be specified as abc\\$def.

2.8.2 Setting Up a Docker Repository

You may want to set up a Docker repository so you can store InterSystems images (and your own images) locally rather
than relying on the network availability for critical applications. For information on doing this, see Deploy a registry server
in the Docker documentation.

InterSystems Cloud Manager Guide 17

Docker Repositories

https://www.docker.com/
https://docs.docker.com/registry/deploying/

3
Using InterSystems Cloud Manager

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

This page explains how to use ICM to deploy an InterSystems IRIS configuration in a public cloud, as follows. The sections
in it explain the steps involved in using ICM to deploy a sample InterSystems IRIS configuration on AWS, as follows:

• Review deployments based on two sample use cases that are used as examples on this page.

• Use the docker run command with the ICM image provided by InterSystems to start the ICM container and open a
command line.

• Obtain the cloud provider and TLS credentials needed for secure communications by ICM.

• Decide how many of each node type you want to provision and make other needed choices, then create the defaults.json

and definitions.json configuration files needed for the deployment.

• Use the icm provision command to provision the infrastructure and explore ICM’s infrastructure management commands.
You can reprovision at any time to modify existing infrastructure, including scaling out or in.

• Run the icm run command to deploy containers, and explore ICM’s container and service management commands.
You can redeploy when the infrastructure has been reprovisioned or when you want to add, remove, or upgrade con-
tainers.

• Run the icm unprovision command to destroy the deployment.

For comprehensive lists of the ICM commands and command-line options covered in detail in the following sections, see
ICM Commands and Options.

3.1 ICM Use Cases
This page is focused on two typical ICM use cases, deploying the following two InterSystems IRIS configurations:

• Distributed cache cluster — Mirrored data server, three application servers, arbiter node, and load balancer. This
deployment is illustrated in the section Distributed Cache Cluster Definitions File.

• Basic sharded cluster — Three mirrored data nodes, arbiter node, and load balancer. This deployment is illustrated in
Sharded Cluster Definitions File.

Most of the steps in the deployment process are the same for both configurations. The primary difference lies in the definitions
files; see Define the Deployment for detailed contents. Output shown for the provisioning phase (The icm provision Com-

InterSystems Cloud Manager Guide 19

mand) is for the distributed cache cluster; output shown for the deployment phase (Deploy and Manage Services) is for the
sharded cluster.

3.2 Launch ICM
ICM is provided as a Docker image. Everything required by ICM to carry out its provisioning, deployment, and management
tasks — for example Terraform, the Docker client, and templates for the configuration files — is included in the ICM
container. Therefore the only requirement for the Linux, macOS or Microsoft Windows system on which you launch ICM
is that Docker is installed.

• Downloading the ICM Image

• Running the ICM Container

• Upgrading an ICM Container

Important: ICM is supported on Docker Enterprise Edition and Community Edition version 18.09 and later; Enterprise
Edition only is supported for production environments.

Note: Multiple ICM containers can be used to manage a single deployment, for example to make it possible for different
people to execute different phases of the deployment process; for detailed information, see Sharing ICM
Deployments.

3.2.1 Downloading the ICM Image

To use ICM, you need to download the ICM image to the system you are working on; this requires you to identify the
registry from which you will download it and the credentials you need for access. Similarly, for ICM to deploy InterSystems
IRIS and other InterSystems components, it requires this information for the images involved. The registry from which
ICM downloads images must be accessible to the cloud provider you use (that is, not behind a firewall), and for security
must require ICM to authenticate using the credentials you provide to it.

Thet InterSystems Container Registry (ICR) includes repositories for all images available from InterSystems, including
ICM and InterSystems IRIS images; Using the InterSystems Container Registry provides detailed information about the
available images and how to use the ICR. In addition, your organization may already store InterSystems images in its own
private image registry; if so, obtain the location and the credentials needed to authenticate from the responsible administrator.

Once you are logged in to the ICR or your organization’s registry, you can use the docker pull command to download the
image; the following example shows a pull from the ICR.

$ docker login containers.intersystems.com
Username: pmartinez
Password: **********
$ docker pull containers.intersystems.com/intersystems/icm:latest-em
5c939e3a4d10: Pull complete
c63719cdbe7a: Pull complete
19a861ea6baf: Pull complete
651c9d2d6c4f: Pull complete
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
containers.intersystems.com/intersystems/iris 2022.2.0.221.0 15627fb5cb76 1 minute ago 1.39GB
containers.intersystems.com/intersystems/sam 1.0.0.115 15627fb5cb76 3 days ago 1.33GB
acme/centos 7.3.1611 262f7381844c 2 weeks ago 192MB
acme/hello-world latest 05a3bd381fc2 2 months ag 1.84kB

For simplicity, the instructions in this document assume you are working with the InterSystems images from an
InterSystems repository with a 2022.2.0.221.0 tag, for example intersystems/icm:latest-em.

20 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

https://containers.intersystems.com/contents
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_containerregistry

Whether the images used by ICM are in the same registry or a different one, you will need to provide the image identifier,
including registry, in the DockerImage field and the credentials needed to authenticate in the DockerUsername and
DockerPassword fields for each image, as described in Docker Repositories.

3.2.2 Running the ICM Container

To launch ICM from the command line on a system on which Docker is installed, use the docker run command, which
actually combines three separate Docker commands to do the following:

• Download the ICM image from the repository if it is not already present locally; if it is present, it is updated if necessary
(this step can be done separately with the docker pull command).

• Creates a container from the ICM image (docker create command).

• Start the ICM container (docker start command).

For example:

docker run --name icm --init -d -it --cap-add SYS_TIME intersystems/icm:latest-em

The -i option makes the command interactive and the -t option opens a pseudo-TTY, giving you command line access to
the container. From this point on, you can interact with ICM by invoking ICM commands on the pseudo-TTY command
line. The --cap-add SYS_TIME option allows the container to interact with the clock on the host system, avoiding clock
skew that may cause the cloud service provider to reject API commands.

The ICM container includes a /Samples directory that provides you with samples of the elements required by ICM for
provisioning, configuration, and deployment. The /Samples directory makes it easy for you to provision and deploy using
ICM out of the box. Eventually, you can use locations outside the container to store these elements and InterSystems IRIS
licenses, and either mount those locations as external volumes when you launch ICM (see Manage data in Docker in the
Docker documentation) or copy files into the ICM container using the docker cp command.

Of course, the ICM image can also be run by custom tools and scripts, and this can help you accomplish goals such as
making these external locations available within the container, and saving your configuration files and your state directory
(which is required to remove the infrastructure and services you provision) to persistent storage outside the container as
well. A script, for example, could do the latter by capturing the current working directory in a variable and using it to mount
that directory as a storage volume when running the ICM container, as follows:

#!/bin/bash
clear

extract the basename of the full pwd path
MOUNT=$(basename $(pwd))
docker run --name icm -d -it --volume $PWD:$MOUNT --cap-add SYS_TIME intersystems/icm:latest-em
printf "\nExited icm container\n"
printf "\nRemoving icm container...\nContainer removed: "
docker rm icm

You can mount multiple external storage volumes when running the ICM container (or any other). When deploying Inter-
Systems IRIS containers, ICM automatically formats, partitions, and mounts several storage volumes; for more information,
see Storage Volumes Mounted by ICM.

Note: On a Windows host, you must enable the local drive on which the directory you want to mount as a volume is
located using the Shared Drives option on the Docker Settings ... menu; see Using InterSystems IRIS Containers
with Docker for Windows on InterSystems Developer Community for additional requirements and general
information about Docker for Windows.

InterSystems Cloud Manager Guide 21

Launch ICM

https://docs.docker.com/storage/
https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows
https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows

Important: When an error occurs during an ICM operation, ICM displays a message directing you to the log file in
which information about the error can be found. Before beginning an ICM deployment, familiarize yourself
with the log files and their locations as described in Log Files and Other ICM Files.

3.2.3 Upgrading an ICM Container

Distributed management mode, which allows different users on different systems to use ICM to manage with the same
deployment, provides a means of upgrading an ICM container while preserving the needed state files of the deployment it
is managing (see The State Directory and State Files). Because this is the recommended way to upgrade an ICM container
that is managing a deployment, you may want to configure distributed management mode each time you use ICM, whether
you intend to use distributed management or not, so that this option is available. For information about upgrading ICM in
service discovery mode, see Upgrading ICM Using Distributed Management Mode.

3.3 Obtain Security-Related Files
ICM communicates securely with the cloud provider on which it provisions the infrastructure, with the operating system
of each provisioned node, and with Docker and several InterSystems IRIS services following container deployment. Before
defining your deployment, you must obtain the credentials and other files needed to enable secure communication.

3.3.1 Cloud Provider Credentials

To use ICM with one of the public cloud platforms, you must create an account and download administrative credentials.
To do this, follow the instructions provided by the cloud provider; you can also find information about how to download
your credentials once your account exists in the Provider-Specific Parameters. In the ICM configuration files, you identify
the location of these credentials using the parameter(s) specific to the provider; for AWS, this is the Credentials parameter.

When using ICM with a vSphere private cloud, you can use an existing account with the needed privileges, or create a new
one. You specify these using the Username and Password fields.

3.3.2 SSH and TLS Keys

ICM uses SSH to provide secure access to the operating system of provisioned nodes, and TLS to establish secure connections
to Docker, InterSystems Web Gateway, and JDBC, and between nodes in InterSystems IRIS mirrors, distributed cache
clusters, and sharded clusters. The locations of the files needed to enable this secure communication are specified using
several ICM parameters, including:

• SSHPublicKey

Public key of SSH public/private key pair used to enable secure connections to provisioned host nodes; in SSH2 format
for AWS and OpenSSH format for other providers.

• SSHPrivateKey

Private key of SSH public/private key pair.

• TLSKeyDir

Directory containing TLS keys used to establish secure connections to Docker, InterSystems Web Gateway, JDBC,
and mirrored InterSystems IRIS databases.

You can create these files, either for use with ICM, or to review them in order to understand which are needed, using two
scripts provided with ICM, located in the directory /ICM/bin in the ICM container. The keygenSSH.sh script creates the

22 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

needed SSH files and places them in the directory /Samples/ssh in the ICM container. The keygenTLS.sh script creates the
needed TLS files and places them in /Samples/tls. You can then specify these locations when defining your deployment,
or obtain your own files based on the contents of these directories.

For more information about the security files required by ICM and generated by the keygen* scripts, see ICM Security and
Security-Related Parameters.

Important: The keys generated by these scripts, as well as your cloud provider credentials, must be fully secured, as
they provide full access to any ICM deployments in which they are used.

The keys by the keygen* scripts are intended as a convenience for your use in your initial test deployments.
(Some have strings specific to InterSystems Corporation.) In production, the needed keys should be generated
or obtained in keeping with your company's security policies.

3.4 Define the Deployment
To provide the needed parameters to ICM, you must select values for a number of fields, based on your goal and circum-
stances, and then incorporate these into the defaults and definitions files to be used for your deployment. You can begin
with the template defaults.json and definitions.json files provided within in the ICM container in the /Samples directory tree,
for example /Samples/AWS.

As noted in Configuration, State and Log Files, defaults.json is often used to provide shared settings for multiple deployments
in a particular category, for example those that are provisioned on the same platform, while separate definitions.json files
define the node types that must be provisioned and configured for each deployment. For example, the separate definitions
files illustrated here define the two target deployments described at the start of this page: the distributed cache cluster
includes two DM nodes as a mirrored data server, three load-balanced AM nodes as application servers, and an arbiter (AR)
node, while the sharded cluster includes six DATA nodes configured as three load-balanced mirrored data nodes, plus an
arbiter node. At the same time, the deployments can share a defaults.json file because they have a number of characteristics
in common; for example, they are both on AWS. use the same credentials, provision in the same region and availability
zone, and deploy the same InterSystems IRIS image.

While some fields (such as Provider) must appear in defaults.json and some (such as Role) in definitions.json, others can be
used in either depending on your needs. In this case, for example, the InstanceType field appears in the shared defaults file
and both definitions files, because the DM, AM, DATA, and AR nodes all require different compute resources; for this
reason a single defaults.json setting, while establishing a default instance type, is not sufficient.

The following sections explain how you can customize the configuration of the InterSystems IRIS instances you deploy
and review the contents of both the shared defaults file and the separate definitions files. Each field/value pair is shown as
it would appear in the configuration file.

• Shared Defaults File

• Distributed Cache Cluster Definitions File

• Sharded Cluster Definitions File

• Customizing InterSystems IRIS Configurations

Bear in mind that ICM allows you to modify the definitions file of an existing deployment and then reprovision and/or
redeploy to add or remove nodes or to alter existing nodes. For more information, see Reprovisioning the Infrastructure
and Redeploying Services.

Important: Both field names and values are case-sensitive; for example, to select AWS as the cloud provider you must
include “Provider”:”AWS” in the defaults file, not “provider”:”AWS”, “Provider”:”aws”, and so on.

InterSystems Cloud Manager Guide 23

Define the Deployment

Note: The fields included here represent a subset of the potentially applicable fields; see ICM Configuration Parameters
for comprehensive lists of all required and optional fields, both general and provider-specific.

3.4.1 Shared Defaults File

The field/value pairs shown in the table in this section represent the contents of a defaults.json file that can be used for both
the distributed cache cluster deployment and the sharded cluster deployment. As described at the start of this section, this
file can be created by making a few modifications to the /Samples/AWS/default.json file, which is illustrated in the following:

{
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "TEST",
 "DataVolumeSize": "10",
 "SSHUser": "ubuntu",
 "SSHPublicKey": "/Samples/ssh/insecure-ssh2.pub",
 "SSHPrivateKey": "/Samples/ssh/insecure",
 "DockerRegistry": "https://containers.intersystems.com",
 "DockerImage": "containers.intersytems.com/intersystems/iris:some-tag",
 "DockerUsername": "xxxxxxxxxxxx",
 "DockerPassword": "xxxxxxxxxxxx",
 "TLSKeyDir": "/Samples/tls/",
 "LicenseDir": "/Samples/license/",
 "Region": "us-east-1",
 "Zone": "us-east-1a",
 "AMI": "ami-07267eded9a267f32",
 "DockerVersion": "5:20.10.17~3-0~ubuntu-jammy",
 "InstanceType": "m5.large",
 "Credentials": "/Samples/AWS/sample.credentials",
 "ISCPassword": "",
 "Mirror": "false",
 "UserCPF": "/Samples/cpf/iris.cpf"
}

The order of the fields in the table matches the order of this sample defaults file.

In the defaults file for a different provider, some of the fields have different provider-specific values, while others are
replaced by different provider-specific fields. For example, in the Tencent defaults file, the value for InstanceType is
S2.MEDIUM4, a Tencent-specific instance type that would be invalid on AWS, while the AWS AMI field is replaced by the
equivalent Tencent field, ImageId. You can review these differences by examining the varying defaults.json files in the
/Samples directory tree and referring to the General Parameters and Provider-Specific Parameters tables.

Note: The pathnames provided in the fields specifying security files in this sample defaults file assume you have placed
your AWS credentials in the /Samples/AWS directory and used the keygen*.sh scripts to generate the keys as
described in Obtain Security-Related Files. If you have generated or obtained your own keys, these may be replaced
by internal paths to external storage volumes mounted when the ICM container is run, as described in the Launch
ICM. For additional information about these files, see ICM Security and Security-Related Parameters.

Customization
explanation

Customization example/Samples/AWS/defaults.jsonShared
characteristic

If value is changed to
GCP, Azure, Tencent,
vSphere, or
PreExisting, different
fields and values from
those shown here are
required.

n/a"Provider": "AWS",

Platform to provision
infrastructure on, in
this case Amazon
Web Services; see
Provisioning
Platforms.

24 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Customization
explanation

Customization example/Samples/AWS/defaults.jsonShared
characteristic

Update to identify
owner.

"Label": "ANDY",

"Tag": "TEST",

"Label": "Sample",

"Tag": "TEST",

Naming pattern for
provisioned nodes is
Label-Role-Tag-NNNN,
where Role is the
value of the Role field
in the definitions file,
for example ANDY-
DATA-TEST-0001.
Modify these so that
node names indicate
ownership and pur-
pose.

If all deployments
using the defaults file
consist of sharded
cluster (DATA) nodes
only, enlarging the
default size of the
data volume is
recommended.

“DataVolumeSize”:”250”,“DataVolumeSize”: “10”,

Size (in GB) of the
persistent data
volume to create for
InterSystems IRIS
containers; see
Storage Volumes
Mounted by ICM. Can
be overridden for
specific node types in
the definitions file.

If value is changed to
GCP, Azure, Tencent,
vSphere, or
PreExisting, different
fields and values from
those shown here are
required.

n/a"SSHUser": "ubuntu",

Nonroot account with
sudo access, used by
ICM for SSH access
to provisioned nodes.
On AWS, the required
value depends on the
AMI, but is typically
ubuntu for Ubuntu
AMIs; see Security-
Related Parameters.

If you stage your keys
on a mounted external
volume, update the
paths to reflect this.

"SSHPublicKey":
"/mydir/keys/mykey.pub",

“SSHPrivateKey":
"/mydir/keys/mykey.ppk",

"TLSKeyDir":
"/mydir/keys/tls/",

"SSHPublicKey": "/Sam-
ples/ssh/secure-ssh2.pub",

"SSHPrivateKey": "/Sam-
ples/ssh/secure-ssh2",

"TLSKeyDir": "/Samples/tls/",

Locations of needed
security key files; see
Obtain Security-
Related Files and
Security-Related
Parameters. Because
provider is AWS, the
SSH2–format public
key in /Samples/ssh/ is
specified.

InterSystems Cloud Manager Guide 25

Define the Deployment

Customization
explanation

Customization example/Samples/AWS/defaults.jsonShared
characteristic

The version in each
/Samples/.../defaults.json

is generally correct for
the platform.
However. if your
organization uses a
different version of
Docker, you may want
that version installed
on the cloud nodes
instead.

"DockerVersion":
"18.06.1~ce~3-0~ubuntu",

"DockerVersion":
"5:20.10.5~3-0~ubuntu-
bionic",

The Docker version to
be installed on
provisioned nodes;
typically you can keep
the default value.

If you pushed the
InterSystems IRIS
image to your
organization’s registry,
update the image
spec.
Note: InterSystems
IRIS images for stan-
dard platforms are
named iris; those
for ARM platforms are
named iris-arm64.

“DockerImage”:
“acme/iris:latest-em"

"DockerImage": "intersys-
tems/iris:stable",

The Docker image to
deploy on provisioned
nodes; see Docker
Repositories, The icm
run Command, and
General Parameters.
This field can also be
included in a node
definition in
definitions.json, overrid-
ing the defaults file
value, as illustrated in
Distributed Cache
Cluster Definitions
File.

Update to use your
Docker credentials for
the specified registry.

"DockerUsername":
"AndyB",

"DockerPassword":
"password",

"DockerUsername":
"xxxxxxxxxxxx",

"DockerPassword":
"xxxxxxxxxxxx",

Credentials to log in to
the Docker registry in
which the image
specified by the
previous field is
stored; see
Downloading the ICM
Image.

If you stage your
licenses on a mounted
external volume,
update the paths to
reflect this.

“LicenseDir”:
“/mydir/licenses”,

“LicenseDir”:
“/Samples/Licenses”,

Location of
InterSystems IRIS
license keys staged in
the ICM container and
individually specified
by the LicenseKey
fields in the definitions
file; see InterSystems
IRIS Licensing for
ICM.

26 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Customization
explanation

Customization example/Samples/AWS/defaults.jsonShared
characteristic

If you want to
provision in another
valid combination of
region and availability
zone, update the
values to reflect this.

"Region": "us-east-2","Region": "us-west-1",

Geographical region
of provider’s compute
resources in which
infrastructure is to be
provisioned; see
General Parameters.

"Zone": "us-east-2a","Zone": "us-west-1c",

Availability zone within
specified region in
which to locate
provisioned nodes;
see General
Parameters.

If you want to
provision from another
valid combination of
AMI and instance
type, update the
values to reflect this.

“AMI”: “ami-e24b7d9d”,
"AMI":
"ami-0121ef35996ede438",

AMI to use as platform
and OS template for
nodes to be
provisioned; see
Amazon Web
Services (AWS)
Parameters.

"InstanceType":
"m5ad.large",

"InstanceType": "m4.large",

Instance type to use
as compute resources
template for nodes to
be provisioned; see
Amazon Web Ser-
vices (AWS) Parame-
ters.

If you stage your
credentials on a
mounted external
volume, update the
path to reflect this.

“Credentials”:
“/mydir/aws-credentials”,

"Credentials": "/Sam-
ples/AWS/sample.creden-
tials",

Credentials for AWS
account; see Amazon
Web Services (AWS)
Parameters.

Remove in favor of
specifying password
by using -password
option of icm run
command.

(delete)“ISCPassword”: "",

Password for
deployed InterSys-
tems IRIS instances.
Recommended
approach is to specify
on the deployment
command line (see
Deploy and Manage
Services) to avoid dis-
playing password in a
configuration file

InterSystems Cloud Manager Guide 27

Define the Deployment

Customization
explanation

Customization example/Samples/AWS/defaults.jsonShared
characteristic

Both deployments are
mirrored.

n/a"Mirror": "true"

Whether specific node
types (including DM
and DATA) defined in
even numbers are
deployed as mirrors
(see Rules for Mirror-
ing).

Remove unless you
are familiar with the
configuration merge
feature and CPF
settings (see
Automating
Configuration of
InterSystems IRIS
with Configuration
Merge).

"UserCPF":
"/Samples/cpf/iris.cpf"

The configuration
merge file to be used
to override initial CPF
settings for deployed
InterSystems IRIS
instances (see
Deploying with
Customized
InterSystems IRIS
Configurations) .

Important: The major versions of the image from which you launched ICM and the InterSystems IRIS image you
specify using the DockerImage field must match; for example, you cannot deploy a 2022.2 version of
InterSystems IRIS using a 2022.1 version of ICM. For information about upgrading ICM before you
upgrade your InterSystems containers, see Upgrading ICM Using Distributed Management Mode.

3.4.2 Distributed Cache Cluster Definitions File

The definitions.json file for the distributed cache cluster must define the following nodes:

• Two data servers (role DM), configured as a mirror

• Three application servers (role AM)

• Load balancer for application servers

• Arbiter node for data server mirror

This configuration is illustrated in the following:

28 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Figure 3–1: Distributed Cache Cluster to be Deployed by ICM

The table that follows lists the field/value pairs that are required for this configuration.

Important: A standalone InterSystems IRIS instance, nonmirrored or mirrored—that is, a DM node or two DM nodes
forming a mirror—can be deployed with a standard license, as can a distributed cache cluster (DM node
or mirrored DM nodes plus AM nodes). In all sharded cluster configurations, node-level or namespace-
level and nonmirrored or mirrored, all nodes on which an InterSystems IRIS container is deployed require
a sharding-enabled InterSystems IRIS license. For example, if a nonmirrored or mirrored standalone
instance with a standard license has DS nodes added to it, the license used for all of the nodes must be
upgraded to a sharding license.

InterSystems Cloud Manager Guide 29

Define the Deployment

Field: ValueDefinition

"Role": "DM",

"Count": "2",

"LicenseKey": "ubuntu-standard-iris.key,”

"InstanceType": "m4.xlarge",

"OSVolumeSize": "32",

"DataVolumeSize": "150",

Two data servers (DM) using a standard InterSystems IRIS license,
configured as a mirror because “Mirror”: “true” in shared defaults
file.

Instance type, OS volume size, data volume size override settings
in defaults file to meet data server resource requirements.

"Role": "AM",

"Count": "3",

"LicenseKey": "ubuntu-standard-iris.key”,

"StartCount": "3",

"LoadBalancer": "true",

Three application servers (AM) using a standard InterSystems
IRIS license.

Numbering in node names starts at 0003 to follow DM nodes 0001
and 0002.

Load balancer for application servers is automatically provisioned.

"Role": “AR”,

"Count": "1",

"DockerImage": "intersystems/arbiter:lat-
est-em",

"StartCount": "6",

"InstanceType": "t2.small",

One arbiter (AR) for data server mirror, no license required, use
of arbiter image overrides InterSystems IRIS image specified in
defaults file.

Node is numbered 0006.

Instance type overrides defaults file because arbiter requires only
limited resources.

A definitions.json file incorporating the settings in the preceding table would look like this:

[
 {
 "Role": "DM",
 "Count": "2",
 "LicenseKey": "ubuntu-standard-iris.key”,
 "InstanceType": "m4.xlarge",
 "OSVolumeSize": "32",
 "DataVolumeSize": "150"
 },
 {
 "Role": "AM",
 "Count": "3",
 "LicenseKey": "ubuntu-standard-iris.key”,
 "StartCount": "3",
 "LoadBalancer": "true"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em",
 "StartCount": "6",
 "InstanceType": "t2.small"
 }
]

3.4.3 Sharded Cluster Definitions File

The definitions.json file for the sharded cluster configuration must define three load-balanced mirrored DATA nodes. This
is illustrated in the following:

30 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Figure 3–2: Sharded Cluster to be Deployed by ICM

The table that follows lists the field/value pairs that are required for this configuration.

Field: ValueDefinition

"Role": "DATA"

"Count": "6"

"LicenseKey": "ubuntu-sharding-iris.key”

"InstanceType": "m4.4xlarge"

“DataVolumeSize": "250"

"LoadBalancer": "true"

• Six data nodes (DATA) using a sharding-enabled InterSys-
tems IRIS license, configured as three mirrors because “Mir-
ror”: “true” in shared defaults file

• Instance type and data volume size override settings in
defaults file to meet data node resource requirements

• Load balancer for data nodes is automatically provisioned

"Role": “AR”

"Count": "1"

"DockerImage": "intersystems/arbiter:lat-
est-em"

"StartCount": "7"

"InstanceType": "t2.small"

• One arbiter (AR) for data server mirror, no license required,
use of arbiter image overrides InterSystems IRIS image
specified in defaults file

• Node is numbered 0007

• Instance type overrides defaults file because arbiter requires
only limited resources

InterSystems Cloud Manager Guide 31

Define the Deployment

A definitions.json file incorporating the settings in the preceding table would look like this:

[
 {
 "Role": "DATA",
 "Count": "6",
 "LicenseKey": "sharding-iris.key”,
 "InstanceType": "m4.xlarge",
 "DataVolumeSize": "250",
 "LoadBalancer": "true"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em",
 "StartCount": "7",
 "InstanceType": "t2.small"
 }
]

Note: The DATA and COMPUTE node types were added to ICM in Release 2019.3 to support the node-level sharding
architecture. Previous versions of this document described the namespace-level sharding architecture, which
involves a different, larger set of node types. The namespace-level architecture remains in place as the transparent
foundation of the node-level architecture and is fully compatible with it, and the node types used to deploy it are
still available in ICM. For information about all available node types, see ICM Node Types.

For more detailed information about the specifics of deploying a sharded cluster, such as database cache size and
data volume size requirements, see Deploying the Sharded Cluster.

The recommended best practice is to load-balance application connections across all of the data nodes in a cluster.

3.4.4 Customizing InterSystems IRIS Configurations

Every InterSystems IRIS instance, including those running in the containers deployed by ICM, is installed with a predeter-
mined set of configuration settings, recorded in its configuration parameters file (CPF). You can use the UserCPF field in
your defaults file (as illustrated in the /Samples/AWS/defaults.json file in Shared Defaults File) to specify a configuration
merge file, allowing you to override one or more of these configuration settings for all of the InterSystems IRIS instances
you deploy, or in your definitions file to override different settings for different node types, such as the DM and AM nodes
in a distributed cache cluster or the DATA and COMPUTE nodes in a sharded cluster. For example, as described in Planning
an InterSystems IRIS Sharded Cluster, you might want to adjust the size of the database caches on the data nodes in a
sharded cluster, which you could do by overriding the value of the [config]/globals CPF setting for the DATA definitions
only. For information about using a merge file to override initial CPF settings, see Deploying with Customized InterSystems
IRIS Configurations.

A simple configuration merge file is provided in the /Samples/cpf directory in the ICM container, and the sample defaults
files in all of the /Samples provider subdirectories include the UserCPF field, pointing to this file. Remove UserCPF from
your defaults file unless you are sure you want to merge its contents into the default CPFs of deployed InterSystems IRIS
instances.

Information about InterSystems IRIS configuration settings, their effects, and their installed defaults is provided in the
Installation Guide, the System Administration Guide, and the Configuration Parameter File Reference.

3.5 Provision the Infrastructure
ICM provisions cloud infrastructure using the HashiCorp Terraform tool.

• The icm provision Command

• Reprovisioning the Infrastructure

32 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

• Infrastructure Management Commands

Note: ICM can deploy containers on existing cloud, virtual or physical infrastructure; see Deploying on a Preexisting
Cluster for more information.

3.5.1 The icm provision Command

The icm provision command allocates and configures host nodes, using the field values provided in the definitions.json and
defaults.json files (as well as default values for unspecified parameters where applicable). The input files in the current
working directory are used, and during provisioning, the state directory, instances.json file, and log files are created in the
same directory (for details on these files see Configuration, State and Log Files).

Because the state directory and the generated instances.json file (which serves as input to subsequent reprovisioning,
deployment, and management commands) are unique to a deployment, setting up znd working in a directory for each
deployment is generally the simplest effective approach. For example, in the scenario described here, in which two different
deployments share a defaults file, the simplest approach would be to set up one deployment in a directory such as
/Samples/AWS, as shown in Shared Defaults File, then copy that entire directory (for example to /Samples/AWS2) and
replace the first definitions.json file with the second.

While the provisioning operation is ongoing, ICM provides status messages regarding the plan phase (the Terraform phase
that validates the desired infrastructure and generates state files) and the apply phase (the Terraform phase that accesses
the cloud provider, carries out allocation of the machines, and updates state files). Because ICM runs Terraform in multiple
threads, the order in which machines are provisioned and in which additional actions applied to them is not deterministic.
This is illustrated in the sample output that follows.

At completion, ICM also provides a summary of the host nodes and associated components that have been provisioned,
and outputs a command line which can be used to unprovision (delete) the infrastructure at a later date.

The following example is excerpted from the output of provisioning of the distributed cache cluster described in Define
the Deployment.

$ icm provision
Starting init of ANDY-TEST...
...completed init of ANDY-TEST
Starting plan of ANDY-DM-TEST...
...
Starting refresh of ANDY-TEST...

...
Starting apply of ANDY-DM-TEST...
...
Copying files to ANDY-DM-TEST-0002...
...
Configuring ANDY-AM-TEST-0003...
...
Mounting volumes on ANDY-AM-TEST-0004...
...
Installing Docker on ANDY-AM-TEST-0003...
...
Installing Weave Net on ANDY-DM-TEST-0001...
...
Collecting Weave info for ANDY-AR-TEST-0006...
...
...collected Weave info for ANDY-AM-TEST-0005
...installed Weave Net on ANDY-AM-TEST-0004

Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
ANDY-DM-TEST-0001+ 00.53.183.209 ec2-00-53-183-209.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-DM-TEST-0002- 00.53.183.185 ec2-00-53-183-185.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0003 00.56.59.42 ec2-00-56-59-42.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0005 00.67.1.11 ec2-00-67-1-11.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0003 00.193.117.217 ec2-00-193-117-217.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-LB-TEST-0002 (virtual AM) ANDY-AM-TEST-1546467861.amazonaws.com us-west-1 c
ANDY-AR-TEST-0006 00.53.201.194 ec2-00-53-201-194.us-west-1.compute.amazonaws.com us-west-1 c
To destroy: icm unprovision [-cleanUp] [-force]

InterSystems Cloud Manager Guide 33

Provision the Infrastructure

Important: Unprovisioning public cloud host nodes in a timely manner avoids unnecessary expense.

Interactions with cloud providers sometimes involve high latency leading to timeouts and internal errors on the provider
side, and errors in the configuration files can also cause provisioning to fail. Because the icm provision command is fully
reentrant, it can be issued multiple times until ICM completes all the required tasks for all the specified nodes without
error. For more information, see the next section, Reprovisioning the Infrastructure.

3.5.2 Reprovisioning the Infrastructure

To make the provisioning process as flexible and resilient as possible, the icm provision command is fully reentrant — it
can be issued multiple times for the same deployment. There are two primary reasons for reprovisioning infrastructure by
executing the icm provision command more than once, as follows:

• Overcoming provisioning errors

Interactions with cloud providers sometimes involve high latency leading to timeouts and internal errors on the provider
side, If errors are encountered during provisioning, the command can be issued multiple times until ICM completes
all the required tasks for all the specified nodes without error.

• Modifying provisioned infrastructure

When your needs change, you can modify infrastructure that has already been provisioned, including configurations
on which services have been deployed, at any time by changing the characteristics of existing nodes, adding nodes, or
removing nodes.

When you repeat the icm provision command following an error, if the working directory does not contain the configuration
files, you must repeat any location override options, this file does not yet exist, so you must use the -stateDir option to
specify the incomplete infrastructure you want to continue provisioning. When you repeat the command to modify successfully
provisioned infrastructure, however, you do not need to do so; as long as you are working in the directory containing the
instances.json file, it is automatically used to identify the infrastructure you are reprovisioning. This is shown in the sections
that follow.

3.5.2.1 Overcoming Provisioning Errors

When you issue the icm provision command and errors prevent successful provisioning, the state directory is created, but
the instances.json file is not. Simply issue the icm provision command again, using the-stateDir option to specify the state

subdirectory’s location if it is not in the current working directory. This indicates that provisioning is incomplete and provides
the needed information about what has been done and what hasn’t. For example, suppose you encounter the problem in the
following:

$ icm provision
Starting plan of ANDY-DM-TEST...
...completed plan of ANDY-DM-TEST
Starting apply of ANDY-AM-TEST...
Error: Thread exited with value 1
See /Samples/AWS/state/Sample-DS-TEST/terraform.err

Review the indicated errors, fix as needed, then run icm provision again in the same directory:

$ icm provision
Starting plan of ANDY-DM-TEST...
...completed plan of ANDY-DM-TEST
Starting apply of ANDY-DM-TEST...
...completed apply of ANDY-DM-TEST
[...]
To destroy: icm unprovision [-cleanUp] [-force]

34 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

3.5.2.2 Modifying Provisioned Infrastructure

At any time following successful provisioning — including after successful services deployment using the icm run command
— you can alter the provisioned infrastructure or configuration by modifying your definitions.json file and executing the
icm provision command again. If changing a deployed configuration, you would then execute the icm run command again,
as described in Redeploying Services.

You can modify existing infrastructure or a deployed configuration in the following ways.

• To change the characteristics of one or more nodes, change settings within the node definitions in the definitions file.
You might want to do this to vertically scale the nodes; for example, in the following definition, you could change the
DataVolumeSize setting (see General Parameters) to increase the sizes of the DM nodes’ data volumes:

{
 "Role": "DM",
 "Count": "2",
 "LicenseKey": "standard-iris.key”,
 "InstanceType": "m4.xlarge",
 "OSVolumeSize": "32",
 "DataVolumeSize": "25"
 },

CAUTION: Modifying attributes of existing nodes such as changing disk sizes, adding CPUs, and so on may cause
those nodes (including their persistent storage) to be recreated. This behavior is highly specific to each
cloud provider, and caution should be used to avoid the possibility of corrupting or losing data.

Important: Changes to the Label and Tag fields in the definitions.json file are not supported when reprovisioning.

• To add nodes, modify the definitions.json file in one or more of the following ways:

– Add a new node type by adding a definition. For example, if you have deployed a sharded cluster with data nodes
only, you can add compute nodes by adding an appropriate COMPUTE node definition to the definitions file.

– Add more of an existing node type by increasing the Count specification in its definition. For example, to add two
more application servers to a distributed cache cluster that already has two, you would modify the AM definition
by changing “Count”: “2” to “Count”: “4”. When you add nodes to existing infrastructure or a deployed configuration,
existing nodes are not restarted or modified, and their persistent storage remains intact.

Note: When you add data nodes to a deployed sharded cluster after it has been loaded with data, you can
automatically redistribute the sharded data across the new servers (although this must be done with the
cluster offline); for more information, see Add Shard Data Servers and Rebalance Data.

Generally, there are many application-specific attributes that cannot be modified by ICM and must be
modified manually after adding nodes.

– Add a load balancer by adding “LoadBalancer": "true" to DATA, COMPUTE, AM, or WS node definitions.

• To remove nodes, decrease the Count specification in the node type definition. To remove all nodes of a given type,
reduce the count to 0.

CAUTION: Do not remove a definition entirely; Terraform will not detect the change and your infrastructure or
deployed configuration will include orphaned nodes that ICM is no longer tracking.

Important: When removing one or more nodes, you cannot choose which to remove; rather nodes are unprovisioned
on a last in, first out basis, so the most recently created node is the first one to be removed. This is
especially significant when you have added one or more nodes in a previous reprovisioning operation,
as these will be removed before the originally provisioned nodes.

InterSystems Cloud Manager Guide 35

Provision the Infrastructure

You can also remove load balancers by removing “LoadBalancer": "true" from a node definition, or changing the value
to false.

There are some limitations to modifying an existing configuration through reprovisioning, as follows:

• You cannot remove nodes that store data — DATA, DM, or DS.

• You cannot change a configuration from nonmirrored to mirrored, or the reverse.

• You can add DATA, DS, or DM nodes to a mirrored configuration only in numbers that match the relevant MirrorMap

setting, as described in Rules for Mirroring. For example, if the MirrorMap default value of primary,backup is in effect,
DATA and DS nodes can be added in even numbers (multiples of two) only to be configured as additional failover
pairs, and DM nodes cannot be added; if MirrorMap is primary,backup,async, DATA or DS nodes can be added in
multiples of three to be configured as additional three-member mirrors, or as a pair to be configured as an additional
mirror with no async, and a DM node can be added only if the existing DM mirror does not currently include an async.

• You can add an arbiter (AR node) to a mirrored configuration, but it must be manually configured as arbiter, using the
management portal or ^MIRROR routine, for each mirror in the configuration.

By default, when issuing the icm provision command to modify existing infrastructure, ICM prompts you to confirm; you
can avoid this, for example when using a script, by using the -force option.

Remember that after reprovisioning a deployed configuration, you must issue the icm run command again to redeploy.

3.5.3 Infrastructure Management Commands

The commands in this section are used to manage the infrastructure you have provisioned using ICM.

Many ICM command options can be used with more than one command. For example, the -role option can be used with
a number of commands to specify the of the nodes for which the command should be run — for example, icm inventory
-role AM lists only the nodes in the deployment that are of type AM — and the -image option, which specifies an image
from which to deploy containers for both the icm run and icm upgrade commands. For complete lists of ICM commands
and their options, see ICM Commands and Options.

3.5.3.1 icm inventory

The icm inventory command lists the provisioned nodes, as at the end of the provisioning output, based on the information
in the instances.json file (see The Instances File). For example:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
ANDY-DM-TEST-0001+ 00.53.183.209 ec2-00-53-183-209.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-DM-TEST-0002- 00.53.183.185 ec2-00-53-183-185.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0003 00.56.59.42 ec2-00-56-59-42.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0005 00.67.1.11 ec2-00-67-1-11.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0003 00.193.117.217 ec2-00-193-117-217.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-LB-TEST-0002 (virtual AM) ANDY-AM-TEST-1546467861.amazonaws.com us-west-1 c
ANDY-AR-TEST-0006 00.53.201.194 ec2-00-53-201-194.us-west-1.compute.amazonaws.com us-west-1 c

Note: When mirrored nodes are part of a configuration, initial mirror failover assignments are indicated by a + (plus)
following the machine name of each intended primary and a - (minus) following the machine name of each intended
backup, as shown in the preceding example. These assignments can change, however; following deployment, use
the icm ps command to display the mirror member status of the deployed nodes.

36 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

You can also use the -machine or -role options to filter by node name or role, for example, with the same cluster as in the
preceding example:

$ icm inventory -role AM
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
ANDY-AM-TEST-0003 00.56.59.42 ec2-00-56-59-42.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0005 00.67.1.11 ec2-00-67-1-11.us-west-1.compute.amazonaws.com us-west-1 c
ANDY-AM-TEST-0003 00.193.117.217 ec2-00-193-117-217.us-west-1.compute.amazonaws.com us-west-1 c

If the fully qualified DNS names from the cloud provider are too wide for a readable display, you can use the -options
option with the Docker wide argument to make the output wider, for example:

icm inventory -options wide

For more information on the -options option, see Using ICM with Custom and Third-Party Containers.

3.5.3.2 icm ssh

The icm ssh command runs an arbitrary command on the specified host nodes. Because mixing output from multiple
commands would be hard to interpret, the output is written to files and a list of output files provided, for example:

$ icm ssh -command "ping -c 5 intersystems.com" -role DM
Executing command 'ping -c 5 intersystems.com' on ANDY-DM-TEST-0001...
Executing command 'ping -c 5 intersystems.com' on ANDY-DM-TEST-0002...
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0001/ssh.out
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0002/ssh.out

However, when the -machine and/or -role options are used to specify exactly one node, as in the following, or there is
only one node, the output is also written to the console:

$ icm ssh -command "df -k" -machine ANDY-DM-TEST-0001
Executing command 'df -k' on ANDY-DM-TEST-0001...
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0001/ssh.out

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 10474496 2205468 8269028 22% /
tmpfs 3874116 0 3874116 0% /dev
tmpfs 3874116 0 3874116 0% /sys/fs/cgroup
/dev/xvda2 33542124 3766604 29775520 12% /host
/dev/xvdb 10190100 36888 9612540 1% /irissys/data
/dev/xvdc 10190100 36888 9612540 1% /irissys/wij
/dev/xvdd 10190100 36888 9612540 1% /irissys/journal1
/dev/xvde 10190100 36888 9612540 1% /irissys/journal2
shm 65536 492 65044 1% /dev/shm

The icm ssh command can also be used in interactive mode to execute long-running, blocking, or interactive commands
on a host node. Unless the command is run on a single-node deployment, the -interactive flag must be accompanied by a
-role or -machine option restricting the command to a single node. If the -command option is not used, the destination
user's default shell (for example bash) is launched.

See icm exec for an example of running a command interactively.

Note: Two commands described in Service Management Commands, icm exec (which runs an arbitrary command on
the specified containers) and icm session (which opens an interactive session for the InterSystems IRIS instance
on a specified node) can be grouped with icm ssh as a set of powerful tools for interacting with your ICM
deployment. The icm scp command, which securely copies a file or directory from the local ICM container to the
host OS of the specified node or nodes, is frequently used with icm ssh.

InterSystems Cloud Manager Guide 37

Provision the Infrastructure

3.5.3.3 icm scp

The icm scp command securely copies a file or directory from the local ICM container to the local file system of the
specified node or nodes. The command syntax is as follows:

icm scp -localPath local-path [-remotePath remote-path]

Both localPath and remotePath can be either files or directories. If remotePath is a directory, it must contain a trailing
forward slash (/), or it will be assumed to be a file. If both are directories, the contents of the local directory are recursively
copied; if you want the directory itself to be copied, remove the trailing slash (/) from localPath.

The user specified by the SSHUser field must have the needed permissions for the host file system location specified by
the optional remote-path argument. The default for remote-path is $HOME as defined in the host OS.

Note: See also the icm cp command, which copies a local file or directory on the specified node into the specified con-
tainer, or from the container onto the local file system.

3.6 Deploy and Manage Services
ICM carries out deployment of software services using Docker images, which it runs as containers by making calls to
Docker. Containerized deployment using images supports ease of use and DevOps adaptation while avoiding the risks of
manual upgrade. In addition to Docker, ICM also carries out some InterSystems IRIS-specific configuration over JDBC.

There are many container management and orchestration tools available, and these can be used to extend ICM’s deployment
and management capabilities.

• The icm run Command

• Redeploying Services

• Container Management Commands

• Service Management Commands

3.6.1 The icm run Command

The icm run command pulls, creates, and starts a container from the specified image on each of the provisioned nodes. By
default, the image specified by the DockerImage field in the configuration files is used, and the name of the deployed container
is iris. This name is reserved for and should be used only for containers created from the following InterSystems images
(or images based on them), which are available from the InterSystems Container Registry, as described in Using the Inter-
Systems Container Registry.

• iris — Contains an instance of InterSystems IRIS.

The InterSystems IRIS images distributed by InterSystems, and how to use one as a base for a custom image that
includes your InterSystems IRIS-based application, are described in detail in Running InterSystems IRIS Containers.

InterSystems IRIS images are deployed by ICM as DATA. COMPUTE, DM, AM, DS, and QS nodes. When deploying
the iris image, you can override one or more InterSystems IRIS configuration settings for all of the iris containers
you deploy, or override different settings for containers deployed on different node types; for more information, see
Deploying with Customized InterSystems IRIS Configurations.

• iris-lockeddown — Contains an instance of InterSystems IRIS installed with Locked Down security. Use this
image to support the strictest security requirements by deploying a highly secure InterSystems IRIS container. The

38 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_containerregistry
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_containerregistry

differences between containers from this image and those from the standard iris image are detailed in Locked Down
InterSystems IRIS Container.

Important: Be sure to review the documentation for the iris-lockeddown image before using it to deploy
InterSystems IRIS containers.

In InterSystems IRIS containers deployed from the iris-lockeddown image, the instance web
server is disabled, which also disables the Management Portal. To enable the Management Portal for
such containers, so you can use it to connect to the deployment as described at the end of this section,
add the webserver property with the value 1 (webserver=1) to a configuration merge file specified
by the UserCPF property, as described in Deploying with Customized InterSystems IRIS Configuration
Parameters.

Note: As an additional security measure, in containerless mode, ICM can install nonroot instances of InterSystems
IRIS, that is, instances installed and owned by a user without root privileges.

• iris-ml — Contains an instance of InterSystems IRIS with the IntergratedML feature, which allows you to use
automated machine learning functions directly from SQL to create and use predictive models.

• irishealth, irishealth-lockeddown, irishealth-ml — Contain instances of InterSystems IRIS for Health®,
a complete healthcare platform built around InterSystems IRIS that enables the rapid development and deployment of
data-rich and mission-critical healthcare applications. The Locked Down and IntegratedML options are as described
above for InterSystems IRIS. InterSystems IRIS for Health images are deployed by ICM in the same manner as Inter-
Systems IRIS images.

• webgateway, webgateway-lockeddown, webgateway-nginx — Contain an InterSystems Web Gateway
instance along with an Apache or Nginx web server; the webgateway-lockeddown image is similar to the locked
down InterSystems IRIS images. For information about these image, see Using the InterSystems Web Gateway Container.
The webgateway images are deployed by ICM as WS nodes, which are configured as a web server for DATA or
DATA and COMPUTE nodes in a node-level sharded cluster, AM or DM nodes in other configurations.

• arbiter — Contains an ISCAgent instance to act as mirror arbiter. For information about using this image, see
Mirroring with InterSystems IRIS Containers. The arbiter image is deployed on an AR node, which is configured
as the arbiter host in a mirrored deployment. For more information on mirrored deployment and topology, see ICM
Cluster Topology.

• iam — Contains the InterSystems API Manage, which ICM deploys as a CN node; for more information, see
Deploying InterSystems API Manager.

• sam — Contains the SAM Manager component of the System Alerting and Monitoring (SAM) cluster monitoring
solution, which ICM deploys as a SAM node; for more information, see Monitoring in ICM.

Note: All of the images in the preceding list except sam are available for ARM platforms, for example iris-arm64.

By including the DockerImage field in each node definition in the definitions.json file, you can run different InterSystems
IRIS images on different node types. For example, you must do this to run the arbiter image on the AR node and the
webgateway image on WS nodes while running the iris image on the other nodes. For a list of node types and corre-
sponding InterSystems images, see ICM Node Types.

InterSystems Cloud Manager Guide 39

Deploy and Manage Services

https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=AHXIHOVW

Important: If the wrong InterSystems image is specified for a node by the DockerImage field or the -image option of
the icm run command — for example, if the iris image is specified for an AR (arbiter) node, or any
InterSystems image for a CN node — deployment fails, with an appropriate message from ICM. Therefore,
when the DockerImage field specifies the iris image in the defaults.json file and you include an AR or
WS definition in the definitions.json file, you must use include the DockerImage field in the AR or WS
definition to override the default and specify the appropriate image (arbiter or webgateway, respec-
tively).

The major versions of the image from which you launched ICM and the InterSystems images you specify
using the DockerImage field must match; for example, you cannot deploy a 2022.2 InterSystems IRIS
image using a 2022.1 ICM image. For information about upgrading ICM before you upgrade your Inter-
Systems containers, see Upgrading ICM Using Distributed Management Mode.

Note: Container images from InterSystems comply with the Open Container Initiative (OCI) specification, and are built
using the Docker Enterprise Edition engine, which fully supports the OCI standard and allows for the images to
be certified and featured in the Docker Hub registry.

InterSystems images are built and tested using the widely popular container Ubuntu operating system, and are
therefore supported on any OCI-compliant runtime engine on Linux-based operating systems, both on premises
and in public clouds.

To learn how to quickly get started running an InterSystems IRIS container on the command line, see InterSystems
IRIS Basics: Running an InterSystems IRIS Container; for detailed information about deploying InterSystems
IRIS and InterSystems IRIS-based applications in containers using methods other than ICM, see Running Inter-
Systems IRIS in Containers.

You can also use the -image and -container command-line options with icm run to specify a different image and container
name. This allows you to deploy multiple containers created from multiple images on each provisioned node by using the
icm run command multiple times — the first time to run the images specified by the DockerImage fields in the node defi-
nitions and deploy the iris container (of which there can be only one) on each node, as described in the foregoing para-
graphs, and one or more subsequent times with the -image and -container options to run a custom image on all of the nodes
or some of the nodes. Each container running on a given node must have a unique name. The -machine and -role options
can also be used to restrict container deployment to a particular node, or to nodes of a particular type, for example, when
deploying your own custom container on a specific provisioned node.

Another frequently used option, -iscPassword, specifies the InterSystems IRIS password to set for all deployed InterSystems
IRIS containers; this value could be included in the configuration files, but the command line option avoids committing a
password to a plain-text record. If the InterSystems IRIS password is not provided by either method, ICM prompts for it
(with typing masked).

Note: For security, ICM does not transmit the InterSystems IRIS password (however specified) in plain text, but instead
uses a cryptographic hash function to generate a hashed password and salt locally, then sends these using SSH to
the deployed InterSystems IRIS containers on the host nodes.

Given all of the preceding, consider the following three examples of container deployment using the icm run command.
(These do not present complete procedures, but are limited to the procedural elements relating to the deployment of partic-
ular containers on particular nodes.)

• To deploy a distributed cache cluster with one DM node and several AM nodes:

1. When creating the defaults.json file, as described in Configuration, State, and Log Files and Define the Deployment,
include the following to specify the default image from which to create the iris containers:

"DockerImage": "intersystems/iris:latest-em"

40 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

https://opencontainers.org
https://hub.docker.com/_/intersystems-iris-data-platform\ohttps://hub.docker.com/_/intersystems-iris-data-platform\t_blank

2. Execute the following command on the ICM command line:

icm run -iscPassword "<password>"

A container named iris containing an InterSystems IRIS instance with its initial password set as specified is
deployed on each of the nodes; ICM performs the needed ECP configuration following container deployment.

• To deploy a basic sharded cluster with mirrored DATA nodes and an AR (arbiter) node:

1. When creating the defaults.json file, as described in Configuration, State, and Log Files and Define the Deployment,
include the following to specify the default image from which to create the iris containers and to enable mirroring
(as described in Rules for Mirroring):

"DockerImage": "intersystems/iris:latest-em",
"Mirror": "true"

2. When creating the definitions.json file, override the DockerImage field in the defaults file for the AR node only by
specifying the arbiter image in the AR node definition, for example:

 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em"
 }

3. Execute the following command on the ICM command line:

icm run -iscPassword "<password>"

A container named iris containing an InterSystems IRIS instance with its initial password set as specified is
deployed on each of the DATA nodes; a container named iris containing an ISCAgent to act as mirror arbiter
is deployed on the AR node; ICM performs the needed sharding and mirroring configuration following container
deployment.

• To deploy a DM node with a stand-alone InterSystems Iris instance in the iris container and an additional container
created from a custom image, plus several WS nodes connected to the DM:

1. When creating the definitions.json file, as described in Configuration, State, and Log Files and Define the
Deployment, specify the iris image for the DM node and the webgateway image for the WS nodes, for
example:

 {
 "Role": "DM",
 "Count": "1",
 "DockerImage": "intersystems/iris-arm64:latest-em"
 },
 {
 "Role": "WS",
 "Count": "3",
 "DockerImage": "intersystems/webgateway:latest-em"
 }

2. Execute the following command on the ICM command line:

icm run

ICM prompts for the initial InterSystems IRIS password with typing masked, and a container named iris con-
taining an InterSystems IRIS instance is deployed on the DM node, a container named iris containing an Inter-
Systems Web Gateway installation and an Apache web server is deployed on each of the WS nodes, and ICM
performs the needed web server configuration following container deployment.

InterSystems Cloud Manager Guide 41

Deploy and Manage Services

3. Execute another icm run command to deploy the custom container on the DM node, for example either of the
following:

icm run -container customsensors -image myrepo/sensors:1.0 -role DM

icm run -container customsensors -image myrepo/sensors:1.0 -machine ANDY-DM-TEST-0001

A container named customsensors created from the image sensors in your repository is deployed on the DM
node.

Bear in mind the following further considerations:

• The container name iris remains the default for all ICM container and service management commands (as described
in the following sections), so when you execute a command involving an additional container you have deployed using
another name, you must refer to that name explicitly using the -container option. For example, to remove the custom
container in the last example from the DM node, you would issue the following command:

icm rm -container customsensors -machine ANDY-DM-TEST-0001

Without -container customsensors, this command would remove the iris container by default.

• The DockerRegistry, DockerUsername, and DockerPassword fields are required to specify and log in to (if it is private)
the Docker registry in which the specified image is located; for details see Docker Repositories.

• If you use the -namespace command line option with the icm run command to override the namespace specified in
the defaults file (or the default of IRISCLUSTER if not specified in defaults), the value of the Namespace field in the
instances.json file (see The Instances File) is updated with the name you specified, and this becomes the default
namespace when using the icm session and icm sql commands.

Additional Docker options, such as --volume, can be specified on the icm run command line using the -options option,
for example:

icm run -options "--volume /shared:/host" image intersystems/iris:latest-em

For more information on the -options option, see Using ICM with Custom and Third-Party Containers.

The -command option can be used with icm run to provide arguments to (or in place of) the Docker entry point; for more
information, see Overriding Default Commands.

Because ICM issues Docker commands in multiple threads, the order in which containers are deployed on nodes is not
deterministic. This is illustrated in the example that follows, which represents output from deployment of the sharded
cluster configuration described in Define the Deployment. Repetitive lines are omitted for brevity.

$ icm run
Executing command 'docker login' on ANDY-DATA-TEST-0001...
...output in /Samples/AWS/state/ANDY-DATA-TEST/ANDY-DATA-TEST-0001/docker.out
...
Pulling image intersystems/iris:latest-em on ANDY-DATA-TEST-0001...
...pulled ANDY-DATA-TEST-0001 image intersystems/iris:latest-em
...
Creating container iris on ANDY-DATA-TEST-0002...
...
Copying license directory /Samples/license/ to ANDY-DATA-TEST-0003...
...
Starting container iris on ANDY-DATA-TEST-0004...
...
Waiting for InterSystems IRIS to start on ANDY-DATA-TEST-0002...
...
Configuring SSL on ANDY-DATA-TEST-0001...
...
Enabling ECP on ANDY-DATA-TEST-0003...
...
Setting System Mode on ANDY-DATA-TEST-0002...
...
Acquiring license on ANDY-DATA-TEST-0002...
...

42 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Enabling shard service on ANDY-DATA-TEST-0001...
...
Assigning shards on ANDY-DATA-TEST-0001...
...
Configuring application server on ANDY-DATA-TEST-0003...
...
Management Portal available at:
http://ec2-00-56-140-23.us-west-1.compute.amazonaws.com:52773/csp/sys/UtilHome.csp

At completion, ICM outputs a link to the Management Portal of the InterSystems IRIS instance running in the iris container
on the DM node or, when a sharded cluster is deployed, to the Management Portal of the instance on data node 1, which
is the lowest numbered, in this case ANDY-DATA-TEST-001. If the DM note or the sharded cluster is mirrored, the link
is to the initial primary; however, if you define a load balancer (role LB) for the mirrored DM node or DATA nodes, the
link is to the mirror-aware load balancer, and so will always be to the current primary.

3.6.2 Redeploying Services

To make the deployment process as flexible and resilient as possible, the icm run command is fully reentrant — it can be
issued multiple times for the same deployment. When an icm run command is repeated, ICM stops and removes the affected
containers (the equivalent of icm stop and icm rm), then creates and starts them from the applicable images again, while
preserving the storage volumes for InterSystems IRIS instance-specific data that it created and mounted as part of the initial
deployment pass (see Storage Volumes Mounted by ICM).

There are four primary reasons for redeploying services by executing an icm run command more than once, as follows:

• Redeploying the existing containers with their existing storage volumes.

To replace deployed containers with new versions while preserving the instance-specific storage volumes of the affected
InterSystems IRIS containers, thereby redeploying the existing instances, simply repeat the original icm run command
that first deployed the containers. You might do this if you have made a change in the definitions files that requires
redeployment, for example you have updated the licenses in the directory specified by the LicenseDir field.

• Redeploying the InterSystems IRIS containers without the existing storage volumes.

To replace the InterSystems IRIS containers in the deployment without preserving their instance-specific storage volumes,
you can delete that data for those instances before redeploying using the following command:

icm ssh -command "sudo rm -rf /<mount_dir>/*/*"

where mount_dir is the directory (or directories) under which the InterSystems IRIS data, WIJ, and journal directories
are mounted (which is /irissys/ by default, or as configured by the DataMountPoint, WIJMountPoint, Journal1MountPoint,
and Journal2MountPoint fields; for more information, see Storage Volumes Mounted by ICM). You can use the -role
or -machine options to limit this command to specific nodes, if you wish. When you then repeat the icm run command
that originally deployed the InterSystems IRIS containers, those that still have instance-specific volumes are redeployed
as the same instances, while those for which you deleted the volumes are redeployed as new instances.

• Deploying services on nodes you have added to the infrastructure, as described in Reprovisioning the Infrastructure.

When you repeat an icm run command after adding nodes to the infrastructure, containers on the existing nodes are
redeployed as described in the preceding (with their storage volumes, or without if you have deleted them) while new
containers are deployed on the new nodes. This allows the existing nodes to be reconfigured for the new deployment
topology, if necessary.

• Overcoming deployment errors.

If the icm run command fails on one or more nodes due to factors outside ICM’s control, such as network latency and
disconnects or interruptions in cloud provider service (as indicated by error log messages), you can issue the command
again; in most cases, deployment will succeed on repeated tries. If the error persists, however, and requires manual
intervention — for example, if it is caused by an error in one of the configuration files — you may need to delete the
storage volumes on the node or nodes affected, as described in the preceding, before reissuing icm run after fixing the

InterSystems Cloud Manager Guide 43

Deploy and Manage Services

problem. This is because ICM recognizes a node without instance-specific data as a new node, and marks the storage
volumes of an InterSystems IRIS container as fully deployed only when all configuration is successfully completed;
if configuration begins but fails short of success and the volumes are not marked, ICM cannot redeploy on that node.
In a new deployment, you may find it easiest to issue the command icm ssh -command "sudo rm -rf /irissys/*/*"
without -role or -machine constraints to roll back all nodes on which InterSystems IRIS is to be redeployed.

3.6.3 Container Management Commands

The commands in this section are used to manage the containers you have deployed on your provisioned infrastructure.

Many ICM command options can be used with more than one command. For example, the -role option can be used with
a number of commands to specify the type of node for which the command should be run — for example, icm inventory
-role AM lists only the nodes in the deployment that are of type AM — and the -image option, which specifies an image
from which to deploy containers for both the icm run and icm upgrade commands. For complete lists of ICM commands
and their options, see ICM Commands and Options.

3.6.3.1 icm ps

When deployment is complete, the icm ps command shows you the run state of containers running on the nodes, for
example:

$ icm ps -container iris
Machine IP Address Container Status Health Image
------- ---------- --------- ------ ------ -----
ANDY-DATA-TEST-0001 00.56.140.23 iris Up healthy intersystems/iris:latest-em
ANDY-DATA-TEST-0002 00.53.190.37 iris Up healthy intersystems/iris:latest-em
ANDY-DATA-TEST-0003 00.67.116.202 iris Up healthy intersystems/iris:latest-em
ANDY-DATA-TEST-0004 00.153.49.109 iris Up healthy intersystems/iris:latest-em

If the -container restriction is omitted, all containers running on the nodes are listed. This includes both other containers
deployed by ICM (for example, Weave network containers, or any custom or third party containers you deployed using
the icm run command) and any deployed by other means after completion of the ICM deployment..

Beyond node name, IP address, container name, and the image the container was created from, the icm ps command includes
the following columns:

• Status — One of the following status values generated by Docker: created, restarting, running, removing (or up),
paused, exited, or dead.

• Health — For iris, arbiter, and webgateway containers, one of the values starting, healthy, or unhealthy; for
other containers none (or blank). When Status is exited, Health may display the exit value (where 0 means success).

For iris containers the Health value reflects the health state of the InterSystems IRIS instance in the container. (For
information about the InterSystems IRIS health state, see System Monitor Health State). For arbiter containers it
reflects the status of the ISCAgent, and for webgateway containers the status of the InterSystems Web Gateway web
server. Bear in mind that unhealthy may be temporary, as it can result from a warning that is subsequently cleared.

• Mirror — When mirroring is enabled (see Rules for Mirroring), the mirror member status (for example PRIMARY,
BACKUP, SYNCHRONIZING) returned by the %SYSTEM.Mirror.GetMemberStatus()mirroring API call. For example:

$ icm ps -container iris
Machine IP Address Container Status Health Mirror Image
------- ---------- --------- ------ ------ ------ -----
ANDY-DATA-TEST-0001 00.56.140.23 iris Up healthy PRIMARY intersystems/iris:latest-em
ANDY-DATA-TEST-0002 00.53.190.37 iris Up healthy BACKUP intersystems/iris:latest-em
ANDY-DATA-TEST-0003 00.67.116.202 iris Up healthy PRIMARY intersystems/iris:latest-em
ANDY-DATA-TEST-0004 00.153.49.109 iris Up healthy BACKUP intersystems/iris:latest-em

For an explanation of the meaning of each status, see Mirror Member Journal Transfer and Dejournaling Status.

44 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Additional deployment and management phase commands are listed in the following. For complete information about these
commands, see ICM Reference.

3.6.3.2 icm stop

The icm stop command stops the specified containers (or iris by default) on the specified nodes, or on all nodes if no
machine or role constraints provided). For example, to stop the InterSystems IRIS containers on the application servers in
the distributed cache cluster configuration:

$ icm stop -container iris -role DS

Stopping container iris on ANDY-DATA-TEST-0001...
Stopping container iris on ANDY-DATA-TEST-0002...
Stopping container iris on ANDY-DATA-TEST-0004...
Stopping container iris on ANDY-DATA-TEST-0003...
...completed stop of container iris on ANDY-DATA-TEST-0004
...completed stop of container iris on ANDY-DATA-TEST-0001
...completed stop of container iris on ANDY-DATA-TEST-0002
...completed stop of container iris on ANDY-DATA-TEST-0003

3.6.3.3 icm start

The icm start command starts the specified containers (or iris by default) on the specified nodes, or on all nodes if no
machine or role constraints provided). For example, to restart one of the stopped application server InterSystems IRIS
containers:

$ icm start -container iris -machine ANDY-DATA-TEST-0002...
Starting container iris on ANDY-DATA-TEST-0002...
...completed start of container iris on ANDY-DATA-0002

3.6.3.4 icm pull

The icm pull command downloads the specified image to the specified machines. For example, to add an image to data
node 1 in the sharded cluster:

$ icm pull -image intersystems/webgateway:latest-em -role DATA
Pulling ANDY-DATA-TEST-0001 image intersystems/webgateway:latest-em...
...pulled ANDY-DATA-TEST-0001 image intersystems/webgateway:latest-em

Note that the -image option is not required if the image you want to pull is the one specified by the DockerImage field in
the definitions file, for example:

"DockerImage": "intersystems/iris-arm64:latest-em",

Although the icm run automatically command pulls any images not already present on the host, an explicit icm pull might
be desirable for testing, staging, or other purposes.

3.6.3.5 icm rm

The icm rm command deletes the specified container (or iris by default), but not the image from which it was started,
from the specified nodes, or from all nodes if no machine or role is specified. Only a stopped container can be deleted.

3.6.3.6 icm upgrade

The icm upgrade command replaces the specified container on the specified machines. ICM orchestrates the following
sequence of events to carry out an upgrade:

1. Pull the new image

2. Create the new container

InterSystems Cloud Manager Guide 45

Deploy and Manage Services

3. Stop the existing container

4. Remove the existing container

5. Start the new container

By staging the new image in steps 1 and 2, the downtime required between steps 3-5 is kept relatively short.

For example, to upgrade the InterSystems IRIS container on an application server:

$ icm upgrade -image intersystems/iris:latest-em -machine ANDY-AM-TEST-0003
Pulling ANDY-AM-TEST-0003 image intersystems/iris:latest-em...
...pulled ANDY-AM-TEST-0003 image intersystems/iris:latest-em
Stopping container ANDY-AM-TEST-0003...
...completed stop of container ANDY-AM-TEST-0003
Removing container ANDY-AM-TEST-0003...
...removed container ANDY-AM-TEST-0003
Running image intersystems/iris:latest-em in container ANDY-AM-TEST-0003...
...running image intersystems/iris:latest-em in container ANDY-AM-TEST-0003

The -image option is optional for the icm upgrade command. If you do not specify an image, ICM uses the value of the
DockerImage field in the instances.json file (see The Instances File). If you do specify an image, when the upgrade is
complete, that value is updated with the image you specified.

Note: The major versions of the image from which you launch ICM and the InterSystems images you deploy must
match. For example, you cannot deploy a 2022.2 version of InterSystems IRIS using a 2022.1 version of ICM.
Therefore you must upgrade ICM before upgrading your InterSystems containers.

If you are upgrading a container other than iris, you must use the -container option to specify the container
name.

For important information about upgrading InterSystems IRIS containers, see Upgrading InterSystems IRIS Containers.

As is true of ICM as a whole, the icm upgrade command is intended to be scriptable, allowing you to create varying scripted
procedures for different types of upgrades so that you don’t have to repeat them manually on each occasion. For example,
as noted in Upgrading a Mirror in the Installation Guide, upgrading the members of a mirror must be done in a specific
order using a specific procedure; scripting the icm upgrade command lends itself to this purpose. For example, you could
create a procedure incorporating some version of these basic steps:

1. Use the icm ps command identify the current primary failover members in a mirrored sharded cluster:

$ icm ps -container iris
Machine IP Address Container Status Health Mirror Image
------- ---------- --------- ------ ------ ------ -----
Andy-DATA-TEST-0001 35.229.124.197 iris Up healthy PRIMARY intersystems/iris:2022.1.0.205.0
Andy-DATA-TEST-0002 34.138.234.124 iris Up healthy BACKUP intersystems/iris:2022.1.0.205.0
Andy-DATA-TEST-0003 34.139.3.48 iris Up healthy PRIMARY intersystems/iris:2022.1.0.205.0
Andy-DATA-TEST-0004 34.73.107.58 iris Up healthy BACKUP intersystems/iris:2022.1.0.205.0

2. Use the -machine option with icm upgrade to selectively upgrade the backups first:

icm upgrade -machine ".*(2|4)" -image intersystems/iris:2022.1.0.223.0

3. Use icm upgrade -machine upgrade the primaries, causing the mirrors to fail over to the previously upgraded backups
and completing the mirror upgrade:

icm upgrade -machine ".*(1|3)" -image intersystems/iris:2022.1.0.223.0

3.6.4 Service Management Commands

These commands let you interact with the services running in your deployed containers, including InterSystems IRIS.

46 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Many ICM command options can be used with more than one command. For example, the -role option can be used with
a number of commands to specify the type of node for which the command should be run — for example, icm exec -role
AM runs the specified command on only the nodes in the deployment that are of type AM — and the -image option to
specify an image from which to deploy containers for both the icm run and icm upgrade commands. For complete lists of
ICM commands and their options, see ICM Commands and Options.

A significant feature of ICM is the ability it provides to interact with the nodes of your deployment on several levels —
with the node itself, with the container deployed on it, and with the running InterSystems IRIS instance inside the container.
The icm ssh (described in Infrastructure Management Commands), which lets you run a command on the specified host
nodes, can be grouped with the first two commands described in this section, icm exec (run a command in the specified
containers) and icm session (open an interactive session for the InterSystems IRIS instance on a specified node) as a set
of powerful tools for interacting with your ICM deployment. These multiple levels of interaction are shown in the following
illustration.

Figure 3–3: Interactive ICM Commands

InterSystems Cloud Manager Guide 47

Deploy and Manage Services

3.6.4.1 icm exec

The icm exec command runs an arbitrary command in the specified containers, for example

$ icm exec -command "df -k" -machine ANDY-DM-TEST-0001
Executing command in container iris on ANDY-DM-TEST-0001
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0001/docker.out

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 10474496 2205468 8269028 22% /
tmpfs 3874116 0 3874116 0% /dev
tmpfs 3874116 0 3874116 0% /sys/fs/cgroup
/dev/xvda2 33542124 3766604 29775520 12% /host
/dev/xvdb 10190100 36888 9612540 1% /irissys/data
/dev/xvdc 10190100 36888 9612540 1% /irissys/wij
/dev/xvdd 10190100 36888 9612540 1% /irissys/journal1
/dev/xvde 10190100 36888 9612540 1% /irissys/journal2
shm 65536 492 65044 1% /dev/shm

Because mixing output from multiple commands would be hard to interpret, when the command is executed on more than
one node, the output is written to files and a list of output files provided.

Additional Docker options, such as --env, can be specified on the icm exec command line using the -options option; for
more information, see Using ICM with Custom and Third-Party Containers.

Because executing long-running, blocking, or interactive commands within a container can cause ICM to time out waiting
for the command to complete or for user input, the icm exec command can also be used in interactive mode. Unless the
command is run on a single-node deployment, the -interactive flag must be accompanied by a -role or -machine option
restricting the command to a single node. A good example is running a shell in the container:

$ icm exec -command bash -machine ANDY-AM-TEST-0004 -interactive
Executing command 'bash' in container iris on ANDY-AM-TEST-0004...
[root@localhost /] $ whoami
root
[root@localhost /] $ hostname
iris-ANDY-AM-TEST-0004
[root@localhost /] $ exit

Another example of a command to execute interactively within a container is an InterSystems IRIS command that prompts
for user input, for example iris stop: which asks whether to broadcast a message before shutting down the InterSystems
IRIS instance.

The icm cp command, which copies a local file or directory on the specified node into the specified container, is useful
with icm exec.

3.6.4.2 icm session

When used with the -interactive option, the icm session command opens an interactive session for the InterSystems IRIS
instance on the node you specify. The -namespace option can be used to specify the namespace in which the session starts;
the default is the ICM-created namespace (IRISCLUSTER by default). For example:

$ icm session -interactive -machine ANDY-AM-TEST-0003 -namespace %SYS

Node: iris-ANDY-AM-TEST-0003, Instance: IRIS

%SYS>

You can also use the -command option to provide a routine to be run in the InterSystems IRIS session, for example:

icm session -interactive -machine ANDY-AM-TEST-0003 -namespace %SYS -command ^MIRROR

Additional Docker options, such as --env, can be specified on the icm exec command line using the -options option; for
more information, see Using ICM with Custom and Third-Party Containers.

48 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

Without the -interactive option, the icm session command runs the InterSystems IRIS ObjectScriptScript snippet specified
by the -command option on the specified node or nodes. The -namespace option can be used to specify the namespace in
which the snippet runs. Because mixing output from multiple commands would be hard to interpret, when the command
is executed on more than one node, the output is written to files and a list of output files provided. For example:

$ icm session -command 'Write ##class(%File).Exists("test.txt")' -role AM
Executing command in container iris on ANDY-AM-TEST-0003...
Executing command in container iris on ANDY-AM-TEST-0004...
Executing command in container iris on ANDY-AM-TEST-0005...
...output in ./state/ANDY-AM-TEST/ANDY-AM-TEST-0003/ssh.out
...output in ./state/ANDY-AM-TEST/ANDY-AM-TEST-0004/ssh.out
...output in ./state/ANDY-AM-TEST/ANDY-AM-TEST-0005/ssh.out

When the specified -machine or -role options limit the command to a single node, output is also written to the console,
for example

$ icm session -command 'Write ##class(%File).Exists("test.txt")' -role DM
Executing command in container iris on ANDY-DM-TEST-0001
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0001/docker.out

0

The icm sql command, which runs an arbitrary SQL command against the containerized InterSystems IRIS instance on the
specified node (or all nodes), is similar to icm session.

3.6.4.3 icm cp

The icm cp command copies a file or directory from the local file system on the specified node(s) into the specified container,
or (if -options --retrieve is included) from the container to the local file system.

By default, the container is the iris container, and the copy is executed on all nodes. You can specify a different container
using the -container option, and you can use the -role or -machine option to specify the node(s) on which the copy is
executed. For example, to execute the copy only on the data server in a distributed cache cluster, you would include -role
DM; to copy into or out of a custom container you have deployed rather than the iris containers, you would include
-container container-name.

The basic command syntax is as follows:

icm cp -localPath local-path [-remotePath remote-path] [-options --retrieve]

Including -options --retrieve copies from remote-path (the absolute path within the container) to local-path (the absolute
path on the local file system); if it is omitted, the copy is from local-path to remote-path. Both localPath and remotePath
can be either files or directories. If both are directories, the contents of the source directory are recursively copied; if you
want the directory itself to be copied, include it in the target path. The remotePath argument is optional and if omitted
defaults to /tmp; if remotePath is a directory, it must contain a trailing forward slash (/) or it will be assumed to be a file.

Note: See also the icm scp command, which securely copies a file or directory from the local ICM container to the
specified host OS.

For more information on the -options option, which lets you include Docker arguments on the ICM command
line, see Using ICM with Custom and Third-Party Containers.

InterSystems Cloud Manager Guide 49

Deploy and Manage Services

3.6.4.4 icm sql

The icm sql command runs an arbitrary SQL command against the containerized InterSystems IRIS instance on the specified
node (or all nodes), for example:

$ icm sql -command "SELECT Name,SMSGateway FROM %SYS.PhoneProviders" -role DM
Executing command in container iris on ANDY-DM-TEST-0001...
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0001/jdbc.out

Name,SMSGateway
AT&T Wireless,txt.att.net
Alltel,message.alltel.com
Cellular One,mobile.celloneusa.com
Nextel,messaging.nextel.com
Sprint PCS,messaging.sprintpcs.com
T-Mobile,tmomail.net
Verizon,vtext.com

The -namespace option can be used to specify the namespace in which the SQL command runs; the default is the ICM-
created namespace (IRISCLUSTER by default).

Because mixing output from multiple commands would be hard to interpret, when the command is executed on more than
one node, the output is written to files and a list of output files provided.

The icm sql command can also be interactively on a single node, opening an InterSystems IRIS SQL Shell (see Using the
SQL Shell Interface). Unless the command is run on a single-node deployment, the -interactive flag must be accompanied
by a -role or -machine option restricting the command to a single node. For example:

$ icm sql -interactive -machine ANDY-QS-TEST-0002
SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter <command>, 'q' to quit, '?' for help.

As with the noninteractive command, you can use the -namespace option interactively to specify the namespace in which
the SQL shell runs; the default is the ICM-created namespace (IRISCLUSTER by default).

You can use the -role option to direct a SQL call to an LB node (load balancer) if its target pool comprises InterSystems
IRIS nodes (DATA, COMPUTE, DM, or AM), for example:

$ icm sql -role LB -command "SELECT * FROM TABLE1"

3.6.4.5 icm docker

The icm docker command runs a Docker command on the specified node (or all nodes), for example:

$ icm docker -command "status --no-stream" -machine ANDY-DM-TEST-0002
Executing command 'status --no-stream' on ANDY-DM-TEST-0002...
...output in ./state/ANDY-DM-TEST/ANDY-DM-TEST-0002/docker.out

CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
3e94c3b20340 0.01% 606.9MiB/7.389GiB 8.02% 5.6B/3.5kB 464.5MB/21.79MB 0
1952342e3b6b 0.10% 22.17MiB/7.389GiB 0.29% 0B/0B 13.72MB/0B 0
d3bb3f9a756c 0.10% 40.54MiB/7.389GiB 0.54% 0B/0B 38.43MB/0B 0
46b263cb3799 0.14% 56.61MiB/7.389GiB 0.75% 0B/0B 19.32MB/231.9kB 0

The Docker command should not be long-running (or block), otherwise control will not return to ICM. For example, if the
---no-stream option in the example is removed, the call will not return until a timeout has expired.

3.7 Unprovision the Infrastructure
Because public cloud platform instances continually generate charges and unused instances in private clouds consume
resources to no purpose, it is important to unprovision infrastructure in a timely manner.

50 InterSystems Cloud Manager Guide

Using InterSystems Cloud Manager

The icm unprovision command deallocates the provisioned infrastructure based on the state files created during provisioning.
If the state subdirectory is not in the current working directory, the -stateDir option is required to specify its location. As
described in Provision the Infrastructure, destroy refers to the Terraform phase that deallocates the infrastructure. One
line is created for each entry in the definitions file, regardless of how many nodes of that type were provisioned. Because
ICM runs Terraform in multiple threads, the order in which machines are unprovisioned is not deterministic.

$ icm unprovision -cleanUp
Type "yes" to confirm: yes
Starting destroy of ANDY-DM-TEST...
Starting destroy of ANDY-AM-TEST...
Starting destroy of ANDY-AR-TEST...
...completed destroy of ANDY-AR-TEST
...completed destroy of ANDY-AM-TEST
...completed destroy of ANDY-DM-TEST
Starting destroy of ANDY-TEST...
...completed destroy of ANDY-TEST

The -cleanUp option deletes the state directory after unprovisioning; by default, the state directory is preserved. The icm
unprovision command prompts you to confirm unprovisioning by default; you can use the -force option to avoid this, for
example when using a script.

InterSystems Cloud Manager Guide 51

Unprovision the Infrastructure

4
ICM Reference

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

This page provides detailed information about various aspects of ICM and its uses.

4.1 ICM Commands and Options
The first table that follows lists the commands that can be executed on the ICM command line. Each of the commands is
covered in detail in Using ICM.

The second table lists the options that can be used with commands. Command-line options serve two purposes, as follows:

• To provide required or optional arguments to commands. For example, to list the run state of only the InterSystems
IRIS containers in your deployment, you could use this command:

icm ps -container iris

To execute a command to open a shell inside the container deployed on node ANDY-DM-TEST, you could use this
command:

icm exec -command bash -machine ANDY-DM-TEST -interactive

• To override a field’s default or configuration file value, in one of two ways:

– The -image, –namespace, and -iscpassword options can be used to override the values of the DockerImage,
Namespace, and ISCPassword fields, respectively, in any command, including icm provision.

– Following the provisioning phase, the -overrides option can be used to override the values of one or more fields
for the current command only. For example, assume your defaults file includes the following fields:

"DockerUsername": "prodriguez",
"DockerPassword": "xxxxxxx",
"DockerRegistry": "https://containers.intersystems.com",
"DockerImage": "containers.intersystems.com/intersystems/iris:2022.1.0.223.0",

When executing the icm provision command you could override the Dockermage field using the -image option,
but not to use an image from a different registry, because you could not override the registry location and credentials.

InterSystems Cloud Manager Guide 53

In the icm upgrade command, however, you could specify an image from a different registry by using the -overrides
option to override all three fields, for example:

icm upgrade -overrides '{"DockerUsername":"mwyszynska","DockerPassword":"xxxxxx",
 "DockerRegistry":"docker.io"}' -image docker.io/acme/iris:latest-em

Note: When -overrides is used with the icm run, icm install, or icm upgrade commands to specify field
values that are intended to persist, these should be updated in the instances.json file so they won't be
reverted during a subsequent reprovisioning operation. Following the icm upgrade command above,
for example, the DockerImage, DockerRegistry, DockerUsername, and DockerPassword fields should be
updated in the instances file. (The -image, –namespace, and -iscpassword options automatically do
this.)

Both tables include links to relevant text.

Note: The command table does not list every option that can be used with each command, and the option table does not
list every command that can include each option.

Table 4–1: ICM Commands

Important OptionsDescriptionCommand

n/aProvisions host nodesprovi-
sion

-machine, -role, -json, -optionsLists provisioned host nodesinven-
tory

-stateDir, -cleanup, -forceDestroys host nodesunprovi-
sion

-options, -localPathMerges infrastructure provisioned in separate
regions or provider platforms into a new
definitions file for multiregion or multiprovider
deployment

merge

-command, -machine, -roleExecutes an operating system command on one
or more host nodes

ssh

-localPath, -remotePath, -machine, -roleCopies a local file to one or more host nodesscp

-image, -container, -namespace, -options,
-iscPassword, -command, -machine, -role,
–override

Deploys a container on host nodesrun

-container, -jsonDisplays run states of containers deployed on
host nodes

ps

-container, -machine, -roleStops containers on one or more host nodesstop

-container, -machine, -roleStarts containers on one or more host nodesstart

-image, -container, -machine, -roleDownloads an image to one or more host nodespull

54 InterSystems Cloud Manager Guide

ICM Reference

Important OptionsDescriptionCommand

-container, -machine, -roleDeletes containers from one or more host nodesrm

-image, -container, -machine, -role, –overrideReplaces containers on one or more host nodesupgrade

-container, -command, -interactive, -options,
-machine, -role

Executes an operating system command in one
or more containers

exec

-namespace, -command, -interactive, -options,
-machine, -role

Opens an interactive session for an InterSys-
tems IRIS instance in a container or executes
an InterSystems IRIS ObjectScriptScript snippet
on one or more instances

session

-localPath, -remotePath, -machine, -roleCopies a local file to one or more containerscp

-namespace, -command, -machine, -roleExecutes a SQL statement on the InterSystems
IRIS instance

sql

-machine, -role, –overrideInstalls InterSystems IRIS instances from a kit
in containerless mode

install

-machine, -roleUninstalls InterSystems IRIS instances installed
from a kit in containerless mode

uninstall

-container, -machine, -roleExecutes a Docker command on one or more
host nodes

docker

Table 4–2: ICM Command-Line Options

Described inDefaultDescriptionOption

Display command usage
information and ICM
version

-help

---Display ICM version-version

(can be used with any command)falseShow execution detail-verbose

Unprovision the Infrastructure
falseDon't confirm before

unprovisioning
-force

Unprovision the InfrastructurefalseDelete state directory
after unprovisioning

-cleanUp

icm inventory, icm ssh, icm run, icm
exec, icm session

(all)Machine name pattern
match used to specify
the node or nodes for
which the command is
run

-machine regexp

icm inventory, icm ssh, icm run, icm
exec, icm session

(all)Role of the InterSystems
IRIS instance or
instances for which a
command is run, for
example DATA or AM

-role role

InterSystems Cloud Manager Guide 55

ICM Commands and Options

Described inDefaultDescriptionOption

The Definitions File, icm run, icm
session, icm sql

IRISCLUSTERNamespace to create on
deployed InterSystems
IRIS instances and set
as default execution
namespace for the
session and sql
commands

-namespace
namespace

icm run, icm upgrade
DockerImage value
in definitions file

Docker image to deploy;
must include repository
name

-image image

ICM Commands and Options
noneField value(s) to override

for this command.
-override
'{"field":"value",...}

icm inventory, icm run, icm exec, icm
session, Deploying Across Multiple
Regions or Providers, Using ICM with
Custom and Third-Party Containers

noneDocker options to
include in the command

-options options

icm run, icm ps

icm ps command:
(all)
other commands:
iris

Name of the container-container name

icm ssh, icm run, icm exec, icm
session, icm sql

noneCommand or query to
execute

-command cmd

icm ssh, icm exec, icm sql
,

falseRedirect input/output to
console for the exec and
ssh commands

-interactive

icm cp, icm scp, Containerless
Deployment, Remote Script Invocation

noneFile or directory path on
a node’s local file system
(icm cp) or within the
ICM container (icm scp)

-localPath path

icm cp, icm scp, Containerless
Deployment, Remote Script Invocation

/home/SSHUser
(value of SSHUser

field)

File or directory path
within a container (icm
cp) or on a node’s local
file system (icm scp)

-remotePath path

icm run
iscPassword value
in configuration
file

Password for deployed
InterSystems IRIS
instances

-iscPassword
password

Using JSON Mode
falseEnable JSON response

mode
-json

Important: Use of the -verbose option, which is intended for debugging purposes only, may expose the value of
iscPassword and other sensitive information, such as DockerPassword. When you use this option, you must
either use the -force option as well or confirm that you want to use verbose mode before continuing.

56 InterSystems Cloud Manager Guide

ICM Reference

4.2 ICM Configuration Parameters
These tables describe the fields you can include in the configuration files (see Configuration, State and Log Files and Define
the Deployment) to provide ICM with the information it needs to execute provisioning and deployment tasks and management
commands. To look up a parameter by name, use the alphabetical list, which includes links to the tables containing the
parameter definitions.

• General Parameters

• Security-Related Parameters

• Port and Protocol Parameters

• CPF Parameters

• Provider-Specific Parameters

• Device Name Parameters

• Alphabetical List of User Parameters

4.2.1 General Parameters

The fields in the following table are all used with all cloud providers, and some are used with vSphere and Preexisting as
well.

The two rightmost columns indicate whether each parameter is required in every deployment or optional, and whether it
must be included (when used) in either defaults.json or definitions.json, is recommended for one file or the other, or can be
used in either. For example,

• A single deployment is always on a single selected provisioning platform (even if subsequently merged with another
to create a multiprovider deployment), therefore the Provider parameter is required and must be in the defaults file.

• Each node type must be specified but a deployment can include multiple node types, thus the Role parameter is required
in each definition in the definitions file.

• Because each node that runs InterSystems IRIS must have a license, but other nodes don’t need one, the LicenseKey

setting is required and generally appears in the appropriate definitions in the definitions file.

• At least one container must be deployed on each node in the deployment, but a single container may be deployed on
all the nodes (for instance iris/iris-arm64 across a sharded cluster consisting of DATA nodes only) or different
containers on different node types (iris/iris-arm64 on DM and AM, webgateway on WS, arbiter on AR in
a distributed cache cluster). For this reason the DockerImage parameter is required and can appear in the defaults file,
the definitions file, or both (to specify a default image but override it for one or more node types).

• Like the image to be deployed, the size of the OS volume can be specified for all nodes in the defaults file, for one or
more node types in the definitions file, or in both, but because it has a default it is optional.

Note: If no default is listed for a parameter, it does not have one.

Config fileUse is ...DefinitionParameter

defaultsrequired
Platform to provision infrastructure on; see Provisioning
Platforms.

Provider

InterSystems Cloud Manager Guide 57

ICM Configuration Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired

Fields in naming scheme for provisioned cloud nodes:
Label-Role-Tag-NNNN, for example ANDY-DATA-TEST-0001;
should indicate ownership and purpose, to avoid conflicting
with others. Multiple deployments should not share the same
Label and Tag. Cannot contain dashes.

Label

Tag

defaultsrequired
Location of InterSystems IRIS license keys staged in the
ICM container and individually specified by the LicenseKey
field (below); see InterSystems IRIS Licensing for ICM.

LicenseDir

definitions
recommended

required

License key for the InterSystems IRIS instance on one or
more provisioned DATA, COMPUTE, DM, AM, DS, or QS
nodes, staged within the ICM container in the location
specified by the LicenseDir field (above). In a configuration
containing only DM and AM nodes, a standard license can
be used; for all others (that is, sharded clusters), a
sharding-enabled license is required.

LicenseKey

defaultsrequired

Geographical region of provider’s compute resources in
which infrastructure is provisioned. For information on
deploying a single configuration in more than one region,
see Deploying Across Multiple Regions or Providers.
Provider-specific information, including provider
documentation:

• AWS — Example: us-west-1; see About AWS Regions
and Availability Zones.

• GCP — Example: us-east1; see Regions and Zones.
Can be a comma-separated list for mutliregion deploy-
ment.

• Azure — Example: Central US; see Azure geographies.
(Use Location instead of Region.)

• Tencent — Example: na-siliconvalley (West US/Silicon
Valley); see Regions and Availability Zones.

Region
(Azure equivalent:
Location)

58 InterSystems Cloud Manager Guide

ICM Reference

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://cloud.google.com/compute/docs/regions-zones/
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://intl.cloud.tencent.com/document/product/213/6091

Config fileUse is ...DefinitionParameter

defaultsrequired

Availability zone within the specified region (see above) in
which to locate a node or nodes to be provisioned. For
information on deploying a single configuration in more than
one zone, see Deploying Across Multiple Zones.
Provider-specific information:

• AWS — Example: us-west-1c in region us-west-1; see
Regions and Zones.

• GCP — Example: us-east1-b in region us-east1; see
Regions and Zones.

• Azure — Example: 1 in region Central US; see What
are Availability Zones in Azure?.

Note: Some Azure regions do not support availability
zones. To deploy to such a regionset Zone to
the empty string or omit it altogether:

• Tencent — Example: na-siliconvalley-1 in region na-sil-
iconvalley; see Regions and Availability Zones.

Zone

definitionsoptional

When deploying across multiple zones (see Deploying
Across Multiple Zones), specifies which nodes are deployed
in which zones. Default: 0,1,2,...,255.

ZoneMap

defaultsoptional
If true, InterSystems IRIS instances on DATA, DM, and DS
nodes are deployed as mirrors; see Mirrored Configuration
Requirements. Default: false.

Mirror

definitionsoptional

Determines mirror member types of mirrored DATA, DS,
and DM nodes, enabling deployment of DR async mirror
members; see Rules for Mirroring. Default: primary,backup;
the term async can be added one or more times to this, for
example primary,backup,async,async.

MirrorMap

defaultsoptional

Password that will be set for the predefined user accounts
on the InterSystems IRIS instances on one or more
provisioned nodes. Corresponding command-line option:
-iscPassword. If both parameter and option are omitted,
ICM prompts for the password. For more information see
The icm run Command.

ISCPassword

defaultsoptional

Namespace to be created on deployed InterSystems IRIS
instances. This namespace is the default namespace for
the icm session and icm sql commands, and can also be
specified or overridden by the command-line option
-namespace. Default: IRISCLUSTER.

Namespace

InterSystems Cloud Manager Guide 59

ICM Configuration Parameters

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://cloud.google.com/compute/docs/regions-zones/
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://intl.cloud.tencent.com/document/product/213/6091

Config fileUse is ...DefinitionParameter

required

Docker image to be used for in deployment by icm run
command. Must include the repository name (see
Repositories in the Docker documentation). Can be specified
for all nodes in defaults.json and optionally overridden for
specific node definitions in definitions.json. Can also be
specified or overridden using the command-line option
-image.

DockerImage

defaultsrequired

DNS name of the server hosting the Docker repository
storing the image specified by DockerImage (see About
Registry in the Docker documentation). If not included, ICM
uses Docker’s public registry at docker.com. For information
about the InterSystems Container Registry (ICR), see
Downloading the ICM Image.

DockerRegistry

defaultsrequired

Username to use along with DockerPassword (below) for
logging in to the Docker repository specified in DockerImage
(above) on the registry specified by DockerRegistry (above).
Not required for public repositories. If not included and the
repository specified by DockerImage is private, login fails.

DockerUsername

defaultsrequired

Password to use along with DockerUsername (above) for
logging in to the Docker registry. Not required for public
repositories. If this field is not included and the repository
specified by DockerImage is private. ICM prompts you (with
masked input) for a password. (If the value of this field
contains special characters such as $, |, (, and), they must
be escaped with two \ characters; for example, the password
abc$def must be specified as abc\\$def.)

DockerPassword

defaultsoptional

Version of Docker installed on provisioned nodes. The
version in each /Samples/.../defaults.json is generally correct
for the platform; however, if your organization uses a
different version of Docker, you may want that version
installed on the nodes instead.

Important: Container images from InterSystems comply
with the Open Container Initiative (OCI)
specification, and are built using the Docker
Enterprise Edition engine, which fully sup-
ports the OCI standard and allows for the
images to be certified and featured in the
Docker Hub registry.

InterSystems images are built and tested
using the widely popular container Ubuntu
operating system, and are therefore sup-
ported on any OCI-compliant runtime engine
on Linux-based operating systems, both on
premises and in public clouds.

DockerVersion

60 InterSystems Cloud Manager Guide

ICM Reference

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/registry/introduction/
https://docs.docker.com/registry/introduction/
https://www.docker.com/
https://opencontainers.org
https://hub.docker.com/_/intersystems-iris-data-platform\ohttps://hub.docker.com/_/intersystems-iris-data-platform\t_blank

Config fileUse is ...DefinitionParameter

defaultsoptional

URL of the Docker Enterprise Edition repository associated
with your subscription or trial; when provided, triggers
installation of Docker Enterprise Edition on provisioned
nodes, instead of Docker Community Edition. For more
information about Docker EE see Docker Enterprise in the
Docker documentation.

DockerURL

defaultsoptional

If set to False, the Docker --init option is not passed to all
containers other than InterSystems IRIS containers, as it is
by default. Default: true. (The --init option is never passed
to InterSystems IRIS containers.)

DockerInit

defaultsoptional

Determines the Docker overlay network type; normally
"weave", but may be set to "host" for development,
performance, or debug purposes, or when deploying on a
preexisting cluster. Default: weave (host when deploying on
a preexisting cluster). For more information see Use overlay
networks in the Docker documentation and How the Weave
Net Docker Network Plugins Work in the Weave
documentation.

Overlay

defaultsoptional

Determines the storage driver used by Docker (see Docker
storage drivers in the Docker documentation).Values include
overlay2 (the default) and btrfs. If set to overlay2, FileSystem
(see below) must be set to xfs; if set to btrfs, FileSystem
must be set to btrfs..

DockerStorageDriver

defaults
recommended

optional

Type of file system to use for persistent volumes on provi-
sioned nodes. Valid values are xfs and btrfs. Default: xfs. If
DockerStorageDriver (above) is set to overlay2, FileSystem
must be set to xfs; if DockerStorageDriver is btrfs, FileSys-
tem must be btrfs.

FileSystem

optional

Size (in GB) of the OS volume for a node or nodes in the
deployment. Default: 32. May be limited by or ignored in
favor of settings specific to the applicable parameters
specifying machine image or template, instance type, or OS
volume type parameters (see Provider-Specific Parameters).

OSVolumeSize

optional

Size (in GB) of the corresponding persistent storage volume
to create for iris containers. For example, DataVolumeSize
determines the size of the data volume. Default: 10, although
DataVolumeSize must be at least 60 for Tencent
deployments. May be limited by the applicable volume type
parameter (see Provider-Specific Parameters). Each volume
also has a corresponding device name parameter (for
example, DataDeviceName; see Device Name Parameters)
and mount point parameter (for example, DataMountPoint;
see immediately below and Storage Volumes Mounted by
ICM).

DataVolumeSize

WIJVolumeSize

Journal1Volume-
Size

Journal2Volume-
Size

InterSystems Cloud Manager Guide 61

ICM Configuration Parameters

https://docs.docker.com/ee/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://www.weave.works/docs/net/latest/install/plugin/plugin-how-it-works/
https://www.weave.works/docs/net/latest/install/plugin/plugin-how-it-works/
https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://docs.docker.com/storage/storagedriver/select-storage-driver/

Config fileUse is ...DefinitionParameter

optional

The location within iris containers at which the correspond-
ing persistent volume is mounted. For example, DataMount-
Point determines the location for the data volume. For more
information, see Storage Volumes Mounted by ICM.
Defaults: /irissys/{ data | wij | journal1j | journal2j }. Each
volume also has a corresponding device name parameter
(for example, DataDeviceName; see Device Name Param-
eters) and size parameter (for example, DataVolumeSize;
see above).

DataMountPoint

WIJMountPoint

Journal1Mount-
Point

Journal2Mount-
Point

defaultsoptional
If true, enables containerless mode, in which InterSystems
IRIS is deployed from an installation kit rather than a
container; see Containerless Deployment. Default: false.

Containerless

definitionsrequired
Role of the node or nodes to be provisioned by a given entry
in the definitions file, for example DM or DATA; see ICM
Node Types.

Role

definitionsrequired
Number of nodes to provision from a given entry in the
definitions file. Default: 1.

Count

definitionsoptional

Numbering start for a particular node definition in the
definitions file. For example, if the DS node definition
includes "StartCount": "3", the first DS node provisioned is
named Label-DS-Tag-0003.

StartCount

definitionsoptional

If true in definitions of node type DATA, COMPUTE, AM, or
WS, a predefined load balancer is automatically provisioned
on providers AWS, GCP, Azure, and Tencent (see
Predefined Load Balancer). If true in definitions of node type
CN or VM, a generic load balancer is added if other
parameters are included in the definition (see Generic Load
Balancer). Default: false.

LoadBalancer

definitionsoptional

Remote server selection algorithm for definitions of type WS
(see Node Type:Web Server).Valid values are LoadBalanc-
ing and FailOver. Default: LoadBalancing.

AlternativeServers

definitionsoptional
Application path to create for definitions of type WS. Do not
include a trailing slash.

ApplicationPath

definitionsoptionalInterSystems API Manager (IAM) image; no default.IAMImage

definitionsoptional
Postgres image (optional IAM component); default: post-
gres:11.6.

PostgresImage

definitionsoptional
Prometheus image (System Alerting and Monitoring [SAM]
component); default: prom/prometheus:v2.17.1.

PrometheusImage

definitionsoptional
Alertmanager image (SAM component); default:
prom/alertmanager:v0.20.0.

AlertmanagerIm-
age

62 InterSystems Cloud Manager Guide

ICM Reference

Config fileUse is ...DefinitionParameter

definitionsoptional
Grafana image (SAM component); default:
grafana/grafana:6.7.1.

GrafanaImage

definitionsoptionalNginx image (SAM component); default: nginx:1.17.9-alpine.NginxImage

optional

Configuration merge file to be used to customize the CPFs
InterSystems IRIS instances during deployment (see
Deploying with Customized InterSystems IRIS
Configurations).

UserCPF

optional

String to be shown in the masthead of the Management
Portal of the InterSystems IRIS instances on one or more
provisioned nodes. Certain values (LIVE, TEST, FAILOVER,
DEVELOPMENT) trigger additional changes in appearance.
Default: blank. This setting can also be specified by adding
[Startup]/SystemMode to the configuration merge file (see
previous entry).

SystemMode

4.2.2 Security-related Parameters

The parameters in the following table are used to provide access and identify required files and information so that ICM
can communicate securely with the provisioned nodes and deployed containers. They are all required, in the defaults file
only.

• For information about using scripts provided with ICM to generate these files, see Obtain Security-Related Files.

• For information about how ICM uses the security files you provide to communicate securely with provisioned nodes
and services on them, see ICM Security

• For general information about using the SSH protocol, see SSH PROTOCOL from SSH Communications Security.

• For information about Docker security. including the use of TLS certificates with Docker, see Docker security in the
Docker documentation.

• For general information about using TLS with InterSystems IRIS, see InterSystems TLS Guide and The InterSystems
Public Key Infrastructure. For information about the contents of the file identified by the SSLConfig parameter, see
Create a Client Configuration.

• For information about the use of TLS to secure connections between mirror members, see Securing Mirror Communi-
cation with TLS Security.

InterSystems Cloud Manager Guide 63

ICM Configuration Parameters

https://www.ssh.com/ssh/protocol/
https://docs.docker.com/engine/security/

DefinitionParameter

• Provider-Specific – AWS

Credentials: Path to a file containing the public/private keypair for an AWS account.

• Provider-Specific – GCP

Credentials: Path to a JSON file containing the service account key for a GCP account.

Project: GCP project ID.

• Provider-Specific – Azure

SubscriptionId: A unique alphanumeric string that identifies a Microsoft Azure sub-
scription.

TenantId: A unique alphanumeric string that identifies the Azure Active Directory
directory in which an application was created.

UseMSI: If true, authenticates using a Managed Service Identity in place of ClientId
and ClientSecret; default is false.

ClientId, ClientSecret: Credentials identifying and providing access to an Azure
application (if UseMSI is false).

• Provider-Specific – Tencent

SecretID, SecretKey: Unique alphanumeric strings that identify and provide access
to a Tencent Cloud account.

• Provider-Specific – vSphere

VSphereUser, VSpherePassword: Credentials for vSphere operations.

Provider-specific
credentials and
account
parameters; to
see detailed
instructions for
obtaining the files
and values, click
the provider link

Nonroot account with sudo access used by ICM for access to provisioned nodes. Root
of SSHUser’s home directory can be specified using the Home field. Required value is
provider-specific, as follows:

• AWS — As per AMI (see AMI parameter in AWS Parameters); usually ubuntu for
Ubuntu images

• GCP — At user's discretion

• Azure — At user's discretion

• Tencent — As per image (see ImageId parameter in Tencent Parameters)

• vSphere — As per VM template (see Template parameter in vSphere Parameters)

• Preexisting — See SSH

SSHUser

Initial password for the user specified by SSHUser. Required for marketplace Docker
images and deployments of type vSphere, Azure, and PreExisting. This password is
used only during provisioning, at the conclusion of which password logins are disabled.

SSHPassword

If true, ICM does not attempt SSH password logins during provisioning, for providers
vSphere and PreExisting only. Because this prevents ICM from logging in using a
password, it requires that you stage your public SSH key (as specified by the
SSHPublicKey field, below) on each node. Default: false.

SSHOnly

64 InterSystems Cloud Manager Guide

ICM Reference

DefinitionParameter

Path within the ICM container of the public key of the SSH public/private key pair; required
for all deployments. For provider AWS, must be in SSH2 format, for example:

---- BEGIN SSH2 PUBLIC KEY ---
AAAAB3NzaC1yc2EAAAABJQAAAQEAoa0
---- BEGIN SSH2 PUBLIC KEY ---

For other providers, must be in OpenSSH format, for example:

ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAQEAoa0

SSHPublicKey

Path within the ICM container of the private key of the SSH public private key pair; required
for all deployments in RSA format, for example:

-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEAoa0ex+JKzC2Nka1
-----END RSA PRIVATE KEY-----

SSHPrivateKey

Directory within the ICM container containing TLS keys used to establish secure
connections to Docker, InterSystems Web Gateway, JDBC, and mirrored InterSystems
IRIS databases, as follows:

• ca.pem

• cert.pem

• key.pem

• keycert.pem

• server-cert.pem

• server-key.pem

• keystore.p12

• truststore.jks

• SSLConfig.properties

TLSKeyDir

Path within the ICM container to an TLS configuration file used to establish secure JDBC
connections. Default: If this parameter is not provided, ICM looks for a configuration file
in /TLSKeyDir/SSLConfig.Properties (see previous entry).

SSLConfig

If true, ICM deploys on an existing private subnet, or creates and deploys on a new private
subnet, for use with a bastion host; see Deploying on a Private Network.

PrivateSubnet

Password used to encrypt traffic over Weave Net; enable encryption by setting to a value
other than null in the defaults file. Default: null.

WeavePassword

CIDR of the existing private network to deploy on; see Deploy Within an Existing Private
Network.

net_vpc_cidr

CIDR of an ICM node’s subnet within an existing private network.net_subnet_cidr

InterSystems Cloud Manager Guide 65

ICM Configuration Parameters

4.2.3 Port and Protocol Parameters

Typically, the defaults for these parameters are sufficient. For information about two use cases in which you may need to
specify some of these parameters, see Ports (Custom and Third Party) and Ports (Preexisting Cluster).

66 InterSystems Cloud Manager Guide

ICM Reference

DefinitionParameter

InterSystems Cloud Manager Guide 67

ICM Configuration Parameters

DefinitionParameter

Port to be forwarded by a given load balancer (both 'from' and 'to'). Defaults:ForwardPort

• AM, DM, DATA, COMPUTE: SuperServerPort,WebServerPort (below)

• WS: WebGatewayPort (below)

• VM/CN: user-defined; must be included for a generic load balancer to be deployed

The value can be a comma-separated list of ports, as long as all use the same For-
wardProtocol (below).

Protocol to be forwarded by a given load balancer.Value TCP is valid for all providers;
additional protocols available on a per-provider basis.

ForwardProtocol

• DATA, COMPUTE, DM, AM: TCP

• WS: TCP

• VM/CN: user-defined; parameter must be included to deploy a generic load bal-
ancer

Port used to verify health of instances in the target pool. Defaults:HealthCheckPort

• AM, DM, DATA, COMPUTE: WebServerPort (below)

• WS: 80

• VM/CN: user-defined; parameter must be included to deploy a generic load bal-
ancer

Protocol used to verify health of instances in the target pool. Defaults:HealthCheckProtocol

• AM, DM, DATA, COMPUTE: HTTP

• WS: TCP

• VM/CN: user-defined; parameter must be included to deploy a generic load bal-
ancer

Path used to verify health of instances in the target pool. Defaults:HealthCheckPath

• Nonmirrored DM/DATA, AM, COMPUTE: /csp/user/cache_status.cxw

• Mirrored DM, DATA: /csp/user/mirror_status.cxw

• WS: N/A (path not used for TCP health checks)

• VM/CN: user-defined for HTTP health checks; parameter must be included to
deploy a generic load balancer

Port used by InterSystems IRIS ISC Agent. Default: 2188. If Containerless is false or
absent and Overlay is set to weave (see General Parameters), this port is closed in
the firewall.

ISCAgentPort *

Port used by InterSystems IRIS Superserver. Default: 1972.SuperServerPort

68 InterSystems Cloud Manager Guide

ICM Reference

DefinitionParameter

Port used by InterSystems IRIS Web Server/Management Portal. Default: 52773.
Also used by the InterSystems Web Gateway instance on a WS node deployed in
nonroot containerless mode.

WebServerPort

Port used by InterSystems IRIS Web Gateway. Default: 80 (webgateway,
webgateway-nginx), 52773 (webgateway-lockeddown).

WebGatewayPort

Port used by InterSystems IRIS License Server. Default: 4002.. If Containerless is
false or absent and Overlay is set to weave (see General Parameters), this port is
closed in the firewall.

LicenseServerPort *

* If ICM is in container mode (Containerless is false or absent) and Overlay is set to weave (see General Parameters), this
port is closed in the node’s firewall.

4.2.4 CPF Parameters

When using a configuration merge file specified by the UserCPF property to customize the CPF of one or more InterSystems
IRIS instances during deployment, as described in Deploying with Customized InterSystems IRIS Configuration Parameters,
you cannot include certain CPF settings, because ICM needs to read their values before it adds them to the CPF at a later
stage. You should therefore customize these settings by specifying the following parameters (described in General Param-
eters and Port and Protocol Parameters) in your configuration files:

CPF SettingParameter

[config]/wijdirWIJMountPoint

[Journal]/CurrentDirectoryJournal1MountPoint

[Journal]/AlternateDirectoryJournal2MountPoint

[Startup]/DefaultPortSuperServerPort

[Startup]/WebServerPortWebServerPort

Note: The value of the ICM LicenseServerPort field is taken from the [LicenseServers] block of the CPF, bound to the
name of the configured license server (see InterSystems IRIS Licensing for ICM).

4.2.5 Provider-Specific Parameters

The tables in this section list parameters used by ICM that are specific to the various cloud providers. Some of these
parameters are used with more than one provider; for example, the InstanceType, ElasticIP, and VPCId parameters can be
used in both AWS and Tencent deployments. Some provider-specific parameters have different names but the same purpose,
for example AMI and InstanceType for AWS, Image and MachineType for GCP, and ImageId and InstanceType for Tencent,
whereas there are four Azure parameters corresponding to each of these.

Like the General Parameters table, the tables in this section indicate whether each parameter is required in every deployment
or optional, and whether it must be included (when used) in either defaults.json or definitions.json, is recommended for one
file or the other, or can be used in either. For examples of each type, see General Parameters.

InterSystems Cloud Manager Guide 69

ICM Configuration Parameters

Note: For information about parameters used only for PreExisting deployments, see Definitions File for PreExisting.

4.2.5.1 Selecting Machine Images

Cloud providers operate data centers in various regions of the world, so one of the important things to customize for your
deployment is the region in which your cluster will be deployed (see the Region parameter in General Parameters). Another
choice is which virtual machine images to use for the host nodes in your cluster (parameters vary by provider). Although
the sample configuration files define valid regions and machine images for all cloud providers, you will generally want to
change the region to match your own location. Because machine images are often specific to a region, both must be selected.

Container images from InterSystems comply with the Open Container Initiative (OCI) specification, and are built using
the Docker Enterprise Edition engine, which fully supports the OCI standard and allows for the images to be certified and
featured in the Docker Hub registry. InterSystems images are built and tested using the widely popular container Ubuntu
operating system, and ICM therefore supports their deployment on any OCI-compliant runtime engine on Linux-based
operating systems, both on premises and in public clouds.

4.2.5.2 Provider-Specific Parameter Tables

Table 4–3: AWS Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired

Path to a file containing the public/private keypair for an
AWS account. To download, after logging in to the AWS
management console, open Managing Access Keys for
IAM Users in the AWS documentation and follow the pro-
cedure for managing access keys in the AWS console.

Credentials

required

AMI (machine image) to use as platform and OS template
for nodes to be provisioned; see Amazon Machine Images
(AMI) in the AWS documentation. Example: ami-a540a5e1.
To list public AMIs available, in the EC2 Console, select
AMIs in the navigation pane and filter for Public AMIs.

AMI

required

Instance type to use as compute resources template for
nodes to be provisioned on AWS and Tencent; see
Amazon EC2 Instance Types in the AWS documentation.
Example: m4.large. (Some instance types may not be
compatible with some AMIs.)

InstanceType

defaultsoptional

Enables the Elastic IP feature on AWS and Tencent to
preserve IP address and domain name across host node
restart (see Host Node Restart and Recovery). Default:
false.

ElasticIP

70 InterSystems Cloud Manager Guide

ICM Reference

https://opencontainers.org/
https://hub.docker.com/_/intersystems-iris-data-platform\ohttps://hub.docker.com/_/intersystems-iris-data-platform\t_blank
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/ec2/instance-types/

Config fileUse is ...DefinitionParameter

defaultsoptional

Existing Virtual Private Cloud (VPC) to be used in the
deployment on AWS and Tencent, instead of allocating a
new one; the specified VPC is not deallocated during
unprovision. If not specified when PrivateSubnet (see
Security-related Parameters) is true, a new VPC is allo-
cated for the deployment and deallocated during unprovi-
sion. For more information, see Deploying Within an
Existing Private Network.

Note: Internal parameter net_subnet_cidr must be pro-
vided if the VPC is not created in the default
address space 10.0.%d.0/24; for example, for a
VPC in the range 172.17.0.0/24, you would need
to specify net_subnet_cidr as 172.17.%d.0/24.

VPCId

defaultsoptional

When deploying on an existing private subnet on AWS or
Tencent, comma-separated list of subnet IDs, one for each
element specified by the Zone parameter (see General
Parameters).

SubnetIds

defaultsoptional

When deploying on an existing private subnet, the route
table to use for access to the ICM host; if provided, ICM
uses this instead of allocating its own (and does not
deallocate during unprovision). No default.

RouteTableId

defaultsoptional

When deploying on an existing private subnet, the Internet
gateway to use for access to the ICM host; if provided,
ICM uses this instead of allocating its own (and does not
deallocate during unprovision). No default.

InternetGatewayId

optional

Determines disk type of the OS volume for a node or
nodes in the deployment, which in turn determines the
maximum value for the OSVolumeSize parameter (see
General Parameters), which sets the size of the OS
volume. See Amazon EBS Volume Types in the AWS
documentation. Tencent uses the same parameter name.
Default: standard.

OSVolumeType

optional

Determines disk type of the corresponding persistent
storage volume for iris containers (see Storage Volumes
Mounted by ICM), which in turn determines the maximum
size of the volume. For example, DataVolumeType
determines the maximum value for the DataVolumeSize
parameter (see General Parameters), which detemines
the size of the data volume. See Amazon EBS Volume
Types in the AWS documentation.Tencent uses the same
parameter name. Default: standard.

DataVolumeType

WIJVolumeType

Journal1VolumeType

Journal2VolumeType

optional
Determines IOPS count for the OS volume for a node or
nodes in the deployment; see I/O Characteristics and
Monitoring in the AWS documentation. Default: 0.

OSVolumeIOPS

InterSystems Cloud Manager Guide 71

ICM Configuration Parameters

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html

Config fileUse is ...DefinitionParameter

optional

A comma-separated list of placement groups to create
(see Placement groups in the AWS documentation). If
blank or omitted, no placement groups are created.
Default: none.

PlacementGroups

optional

Strategy for placing instances in the groups specified by
PlacementGroups. Valid values are cluster, partition, and
spread. Default: cluster.

PlacementStrategy

optional

Specifies the mapping between the values of
PlacementGroups and the nodes within a given definition.
Instances will be assigned in the order in which they occur
in PlacementGroups (with wraparound). Default:
0,1,2,3,...,256.

PlacementMap

optional
The number of partitions to create in the placement group.
Has no effect unless PlacementStrategy is set to partition.
Default: 2

PlacementPartitionCount

optional
Places a group of instances on distinct hardware. Has no
effect unless PlacementStrategy is set to spread. Valid
values are rack and host. Default: none

PlacementSpreadLevel

optional

Determines IOPS count for the corresponding persistent
storage volume for iris containers (see Storage Volumes
Mounted by ICM). For example, DataVolumeIOPS deter-
mines the IOPS count for the data volume. See I/O Char-
acteristics and Monitoring in the AWS documentation.
Must be nonzero when the corresponding volume type
(see the immediately preceding) is io1. Default: 0.

DataVolumeIOPS

WIJVolumeIOPS

Journal1VolumeIOPS

Journal2VolumeIOPS

definitionsoptional

When set to True, creates a load balancer of type "inter-
nal", otherwise the load balancer type is "external". Default:
False.

LoadBalancerInternal

72 InterSystems Cloud Manager Guide

ICM Reference

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html

Table 4–4: GCP Parameters

Config fileUse is ...DefinitionParameter

InterSystems Cloud Manager Guide 73

ICM Configuration Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired

Path to a JSON file containing the service account key for
a GCP account. To download, after logging in to the GCP

Credentials

console and selecting a project, open Creating and managing
service account keys in the GCP documentation and follow
the procedure for creating service account keys in the GCP
console.

defaultsrequired
GCP project ID; see Creating and Managing Projects in the
GCP documentation.

Project

required

Source machine image to use as platform and OS template
for provisioned nodes; see Images in the GCP

Image

documentation. Example:
ubuntu-os-cloud/ubuntu-1804-bionic-v20190911.

required
Machine type to use as compute resources template for
nodes to be provisioned; see Machine types in the GCP
documentation. Example: n1-standard-1.

MachineType

definitionsoptional

When deploying across multiple regions (see Deploying
Across Multiple Regions on GCP), specifies which nodes
are deployed in which regions. Default: 0,1,2,...,255.

RegionMap

defaultsoptional

Existing Virtual Private Cloud (VPC) to be used in the
deployment, instead of allocating a new one; the specified

Network

VPC is not deallocated during unprovision. If not specified
when PrivateSubnet (see Security-related Parameters) is
true, a new VPC is allocated for the deployment and deallo-
cated during unprovision. For more information, see
Deploying Within an Existing Private Network.

defaultsoptional

Existing private subnet to be used in the deployment, instead
of allocating a new one; not deallocated during unprovision.

Subnet

For multiregion deployments (see Deploying Across Multiple
Regions on GCP), value must be a comma-separated list,
one for each region specified. If not specified when
PrivateSubnet (see Security-related Parameters) is true, a
new VPC is allocated for the deployment and deallocated
during unprovision. For more information, see Deploying
Within an Existing Private Network.

optional
Determines disk type for the OS volume for a node or nodes
in the deployment; see Storage Options in the GCP
documentation. Default: pd-standard.

OSVolumeType

optional

Determines disk type for the block storage device used for
the Docker thin pool on a node or nodes in the deployment;

DockerVolume-
Type

see Storage Options in the GCP documentation. Default:
pd-standard.

74 InterSystems Cloud Manager Guide

ICM Reference

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/compute/docs/images
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/

Config fileUse is ...DefinitionParameter

optional

Determines disk type for the corresponding persistent
storage volume for iris containers (see Storage Volumes
Mounted by ICM). For example, DataVolumeType
determines the disk type for the data volume. See Storage
Options in the GCP documentation. Default: pd-standard.

DataVolumeType

WIJVolumeType

Journal1Volume-
Type

Journal2Volume-
Type

Table 4–5: Azure Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired

A unique alphanumeric string that identifies a Microsoft
Azure subscription; to display, on the Azure portal select
Subscriptions or type “subscriptions” into the search box,
and use the Subscription ID displayed for SubscriptionId.

SubscriptionId

defaultsrequired

A unique alphanumeric string that identifies the Azure
Active Directory directory in which an application was
created; to display, on the Azure portal select Azure Active

Directory in the nav pane and then Properties on the nav
pane for that page, and use the Directory ID displayed for
TenantId.

TenantId

defaultsrequired

If true, authenticates using a Managed Service Identity in
place of ClientId and ClientSecret; see What is managed
identities for Azure resources? in the Azure documentation.
Requires that ICM be run from a machine in Azure.

UseMSI

defaultsrequired

Credentials identifying and providing access to an Azure
application (if UseMSI is false); to create them:

• Follow the procedure in Quickstart: Register an appli-
cation with the Microsoft identity platform to create a
new application registration.

• Use the Application ID displayed on the App Registration
tab for ClientId.

• Select Settings > Keys to generate a key and use the
key value displayed for ClientSecret.

ClientId

ClientSecret

defaultsrequired
Region in which to provision a node or nodes; see the
Region parameter in General Parameters.

Location

definitionsoptional

When deploying across multiple regions (see Deploying
Across Multiple Regions on Azure), specifies which nodes
are deployed in which regions. Default: 0,1,2,...,255.

LocationMap

requiredEntity providing a given Azure machine image to use as
platform and OS template for provisioned nodes. Example:
OpenLogic.

PublisherName

InterSystems Cloud Manager Guide 75

ICM Configuration Parameters

https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Config fileUse is ...DefinitionParameter

requiredOperating system of a given Azure machine image.
Example: UbuntuServer.

Offer

requiredMajor version of the operating system of a given Azure
machine image. Example: 7.2.

Sku

requiredBuild version of a given Azure machine image. Example:
7.2.20170105.

Version

optionalImage to be used to create the OS disk, in place of the
Azure machine image described by the PublisherName,
Offer, Sku, and Version fields. Value is an Azure URI of the
form:

/subscriptions/subscription/resource-
Groups/resource_group/providers /Microsoft.Com-
pute/images/image_name

CustomImage

requiredMachine size to use as compute resources template for
nodes to be provisioned; see Sizes for virtual machines in
Azure in the Azure documentation. Example:
Standard_DS1.

Size

defaultsoptional

Existing resource group to be used in the deployment,
instead of allocating a new one; the specified group is not
deallocated during unprovision. If not specified when Pri-
vateSubnet (see Security-related Parameters) is true, a
new resource group is allocated for the deployment and
deallocated during unprovision. For more information, see
Deploying Within an Existing Private Network.

ResourceGroup-
Name

defaultsoptional

Existing private subnet to be used in the deployment,
instead of allocating a new one; not deallocated during
unprovision. For multiregion deployments (see Deploying
Across Multiple Regions on Azure), value must be a
comma-separated list, one for each region specified. If not
specified when PrivateSubnet (see Security-related
Parameters) is true, a new VPC is allocated for the
deployment and deallocated during unprovision. For more
information, see Deploying Within an Existing Private
Network.

Note: The net_subnet_cidr parameter (see Security-
related Parameters) must be provided if the net-
work is not created in the default address space
10.0.%d.0/24.

VirtualNetworkName

76 InterSystems Cloud Manager Guide

ICM Reference

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes

Config fileUse is ...DefinitionParameter

definitionsoptional

Name of an existing subnet to be used in the deployment,
instead of allocating a new one; not deallocated during
unprovision. For multiregion deployments (see Deploying
Across Multiple Regions on Azure), value must be a
comma-separated list, one for each region specified. If not
specified when PrivateSubnet (see Security-related
Parameters) is true, a new subnet is allocated for the
deployment and deallocated during unprovision.

Note: When provisioning on a private network, unique
SubnetName and net_subnet_cidr parameters
must be provided for each entry in the definitions
file (but ResourceGroupName and VirtualNetwork-
Name remain in the defaults file). This includes
the bastion host definition when deploying a bas-
tion host (see Deploy on a Private Network
Through a Bastion Host).

SubnetName

optional

Storage account performance tier (see Azure storage
account overview in the Azure documentation); either HDD
(Standard) or SSD (Premium).

AccountTier

optional

Storage account replication type: locally-redundant storage
(LRS), geo-redundant storage (GRS), zone-redundant
storage (ZRS), or read access geo-redundant storage
(RAGRS).

AccountReplication-
Type

Table 4–6:Tencent Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired

Unique alphanumeric strings that identify and provide
access to a Tencent Cloud account. To download, open
Signature in the Tencent Cloud documentation and follow
the procedure in “Applying for Security Credentials” .

SecretID

SecretKey

required
(see
below)

Machine image to use as platform and OS template for
provisioned nodes; see Image Overview in the Tencent
documentation. Example: img-pi0ii46r.

ImageId

required
(see
above)

If ImageId (above) is not provided, ICM searches for an
image matching this field. Note that this field supports
regexp. Default: ubuntu.

OSName

required
(see
below)

Instance family from which to select instance type; if
InstanceType (below) is not provided, ICM searches for
an instance type matching InstanceFamily, CPUCoreCount,
and MemorySize (below). Default: S3.

InstanceFamily

InterSystems Cloud Manager Guide 77

ICM Configuration Parameters

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://intl.cloud.tencent.com/document/product/651/33008
https://intl.cloud.tencent.com/document/product/213/4940

Config fileUse is ...DefinitionParameter

required
(see
above)

Instance type to use as compute resources template for
nodes to be provisioned on AWS and Tencent; see
Instance Types in the Tencent documentation. Example:
S2.MEDIUM4.

InstanceType

defaultsoptional

Enables the Elastic IP feature on AWS and Tencent to
preserve IP address and domain name across host node
restart (see Host Node Restart and Recovery). Default:
false.

ElasticIP

defaultsoptional

Existing Virtual Private Cloud (VPC) to be used in the
deployment on AWS and Tencent, instead of allocating a
new one; the specified VPC is not deallocated during
unprovision. If not specified when PrivateSubnet (see
Security-related Parameters) is true, a new VPC is allo-
cated for the deployment and deallocated during unprovi-
sion. For more information, see Deploying Within an
Existing Private Network.

Note: Internal parameter net_subnet_cidr must be pro-
vided if the VPC is not created in the default
address space 10.0.%d.0/24; for example, for a
VPC in the range 172.17.0.0/24, you would need
to specify net_subnet_cidr as 172.17.%d.0/24.

VPCId

defaultsoptional

When deploying on an existing private subnet on AWS or
Tencent, comma-separated list of subnet IDs, one for each
element specified by the Zone parameter (see General
Parameters).

SubnetIds

optional

CPU core to match when selecting instance type; if
InstanceType (above) is not provided, ICM searches for
an instance type matching InstanceFamily, CPUCoreCount,
and MemorySize (above). Default: 2.

CPUCoreCount

optional

Memory size to match when selecting instance type; if
InstanceType (above) is not provided, ICM searches for
an instance type matching InstanceFamily, CPUCoreCount,
and MemorySize (above). Default: 4 GB.

MemorySize

optional

Determines disk type for the OS volume for a node or
nodes in the deployment; see Data Types: DataDisk in the
Tencent documentation. AWS uses the same parameter
name. Default: CLOUD_BASIC.

OSVolumeType

optional

Determines disk type for the block storage device used for
the Docker thin pool on a node or nodes in the deployment;
see Data Types: DataDisk in the Tencent documentation.
AWS uses the same parameter name. Default:
CLOUD_BASIC.

DockerVolumeType

78 InterSystems Cloud Manager Guide

ICM Reference

https://intl.cloud.tencent.com/document/product/213/11518
https://intl.cloud.tencent.com/document/product/213/15753#DataDisk
https://intl.cloud.tencent.com/document/product/213/15753#DataDisk

Config fileUse is ...DefinitionParameter

optional

Determines disk type for the corresponding persistent
storage volume for iris containers (see Storage Volumes
Mounted by ICM). For example, DataVolumeType
determines the disk type for the data volume. AWS uses
the same parameter names. See Data Types: DataDisk in
the Tencent documentation. Default: CLOUD BASIC.

DataVolumeType

WIJVolumeType

Journal1VolumeType

Journal2VolumeType

Table 4–7: vSphere Parameters

Config fileUse is ...DefinitionParameter

defaultsrequired
Name of the vCenter server. Example:
tbdvcenter.internal.acme.com.

Server

defaultsrequiredName of the datacenter.Datacenter

defaultsrequired

Collection of datastores where virtual machine files
will be stored; see Creating a Datastore Cluster in
the VMware documentation. Example: DatastoreClus-
ter1.

DatastoreCluster

defaultsoptional
If provided, specifies one datastore in the datastore
cluster in which to store virtual machine files.
Example: Datastore1

DataStore

defaultsrequired
Cluster of hosts used to manage compute resources,
DRS, and HA. Example: ComputeCluster1

ComputeCluster

defaultsrequired
Credentials for vSphere operations; see About
vSphere Authentication in the VMware
documentation.

VSphereUser

VSpherePassword

defaultsrequired
List of DNS servers for the virtual network. Example:
172.16.96.1,172.17.15.53

DNSServers

defaultsrequired
List of name resolution suffixes for the virtual network
adapter. Example: internal.acme.com

DNSSuffixes

defaultsrequired
FQDN for a node or nodes to be provisioned.
Example: internal.acme.com

Domain

defaultsoptional
Label to assign to a network interface. Example: VM
Network

NetworkInterface

defaultsoptional

Name of a vSphere resource pool; see Managing
Resource Pools in the VMware documentation.
Example: ResourcePool1.

ResourcePool

required
Virtual machine master copy (machine image) to use
as platform and OS template for nodes to be
provisioned. Example: ubuntu1804lts

Template

optional
Number of CPUs in a node or nodes to be
provisioned. Example: 2.

VCPU

optional
Amount of memory (in MB) in a node or nodes to be
provisioned. Example: 4096.

Memory

InterSystems Cloud Manager Guide 79

ICM Configuration Parameters

https://intl.cloud.tencent.com/document/product/213/15753#DataDisk
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-598DF695-107E-406B-9C95-0AF961FC227A.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.authentication.doc/GUID-31D0128A-8772-4355-839D-40F8453640AB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.authentication.doc/GUID-31D0128A-8772-4355-839D-40F8453640AB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-60077B40-66FF-4625-934A-641703ED7601.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-60077B40-66FF-4625-934A-641703ED7601.html

Config fileUse is ...DefinitionParameter

optional

Guest ID for the operating system type. See Enum -
VirtualMachineGuestOsIdentifier on the VMware
support website. Default: other3xLinux64Guest.

GuestID

optional
Time (in minutes) to wait for an available IP address
on a virtual machine. Default: 5.

WaitForGuestNetTimeout

optional

Time (in minutes) to wait for graceful guest shutdown
when making necessary updates to a virtual machine.
Default: 3.

ShutdownWaitTimeout

optional
Time (in minutes) to wait for virtual machine migration
to complete. Default: 10.

MigrateWaitTimeout

optional
Time (in minutes) to wait for virtual machine cloning
to complete. Default: 30.

CloneTimeout

optional
Time (in minutes) that Terraform waits for customiza-
tion to complete. Default: 10.

CustomizeTimeout

optional

Disk provisioning policy for the deployment (see
About Virtual Disk Provisioning Policies in the
VMware documentation). Values are:

• thin — Thin Provision

• lazy — Thick Provision Lazy Zeroed

• eagerZeroedThick — Thick Provision Eager
Zeroed

Default: lazy.

DiskPolicy

optional

If specified, determines whether Storage DRS (see
Enable and Disable Storage DRS in the VMware
documentation) is enabled for a virtual machine;
otherwise, use current datastore cluster settings.
Default: Current datastore cluster settings.

SDRSEnabled

optional

If specified, determines Storage DRS automation
level for a virtual machine; otherwise, use current
datastore cluster settings. Values are automated or
manual. Default: Current datastore cluster settings.

SDRSAutomationLevel

80 InterSystems Cloud Manager Guide

ICM Reference

https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.vm.GuestOsDescriptor.GuestOsIdentifier.html
https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.vm.GuestOsDescriptor.GuestOsIdentifier.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.vm_admin.doc/GUID-4C0F4D73-82F2-4B81-8AA7-1DD752A8A5AC.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-827DBD6D-08B7-4411-9214-9E126671457F.html

Config fileUse is ...DefinitionParameter

optional

If provided, determines Intra-VM affinity setting for a
virtual machine (see Override VMDK Affinity Rules
in the VMware documentation); otherwise, use cur-
rent datastore cluster settings. Values include:

• true — All disks for this virtual machine will be
kept on the same datastore.

• false — Storage DRS may locate individual disks
on different datastores if it helps satisfy cluster
requirements.

Default: Current datastore cluster settings.

SDRSIntraVMAffinity

optional

Number of SCSI controllers for a given host node;
must be between 1 and 4. The OS volume is always
be placed on the first SCSI controller. vSphere may
not be able to create more SCSI controllers than were
present in the template specified by the Template
field.

Default: 1

SCSIControllerCount

optional

SCSI controller on which to place the Docker volume.
Must be between 1 and 4 and may not exceed
SCSIControllerCount.

Default: 1

DockerVolumeSCSICon-
troller

optional

SCSI controller on which to place the corresponding
volume in iris containers; for example, DataVol-
umeSCSIController determines the controller for data
volume. Must be between 1 and 4 and may not
exceed SCSIControllerCount.

Default: 1

DataVolumeSCSICon-
troller

WIJVolumeSCSICon-
troller

Journal1VolumeSCSICon-
troller

Journal2VolumeSCSICon-
troller

Note: The requirements for the VMware vSphere template specified by the Template property are similar to those
described in Host Node Requirements (for example, passwordless sudo access).

To address the needs of the many users who rely on VMware vSphere, it is supported by this release of ICM.
Depending on your particular vSphere configuration and underlying hardware platform, the use of ICM to provision
virtual machines may entail additional extensions and adjustments not covered in this guide, especially for larger
and more complex deployments, and may not be suitable for production use. Full support is expected in a later
release.

4.2.6 Device Name Parameters

The parameters listed in the following specify the device files under /dev that represent the persistent volumes created by
ICM for use by InterSystems IRIS. For information about these persistent volumes and a table of provider and OS-specific

InterSystems Cloud Manager Guide 81

ICM Configuration Parameters

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-CCBBD582-198F-44C1-8698-E0ADC3070475.html

default values for these parameters, see Storage Volumes Mounted by ICM. For PreExisting deployments, see Storage
Volumes.

Persistent Volume ForParameter

DatabasesDataDeviceName

WIJ directoryWIJDeviceName

Primary journal directoryJournal1DeviceName

Alternate journal directoryJournal2DeviceName

4.2.7 Alphabetical List of User Parameters

The following table lists all of the parameters discussed in the preceding tables in this section in alphabetical order, with
links to the table(s) containing their definition.

Table(s) for definitionParameter

Provider-Specific – AzureAccountReplicationType

Provider-Specific – AzureAccountTier

GeneralAlternativeServers

Provider-Specific – AWSAMI

GeneralApplicationPath

Provider-Specific – Azure, SecurityClientId

Provider-Specific – Azure, SecurityClientSecret

Provider-Specific – vSphereCloneTimeout

Provider-Specific – vSphereComputeCluster

GeneralCount

Provider-Specific – TencentCPUCoreCount

Provider-Specific – AWS, Provider-Specific – GCP, SecurityCredentials

Provider-Specific – vSphereCustomizeTimeout

Provider-Specific – vSphereDatacenter

Device NameDataDeviceName

GeneralDataMountPoint

82 InterSystems Cloud Manager Guide

ICM Reference

Table(s) for definitionParameter

Provider-Specific – vSphereDatastore

Provider-Specific – vSphereDatastoreCluster

Provider-Specific – AWSDataVolumeIOPS

Provider-Specific – vSphereDataVolumeSCSICon-
troller

GeneralDataVolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentDataVolumeType

Provider-Specific – vSphereDiskPolicy

PreExistingDNSName

Provider-Specific – vSphereDNSServers

Provider-Specific – vSphereDNSSuffixes

GeneralDockerImage

GeneralDockerInit

GeneralDockerPassword

GeneralDockerRegistry

GeneralDockerStorageDriver

GeneralDockerURL

GeneralDockerUsername

GeneralDockerVersion

Provider-Specific – AWSDockerVolumeIOPS

Provider-Specific – vSphereDockerVolumeSCSICon-
troller

GeneralDockerVolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentDockerVolumeType

Provider-Specific – vSphereDomain

Provider-Specific – AWS, Provider-Specific – TencentElasticIP

GeneralFileSystem

InterSystems Cloud Manager Guide 83

ICM Configuration Parameters

Table(s) for definitionParameter

Provider-Specific – vSphereGuestID

Provider-Specific – GCPImage

Provider-Specific – TencentImageId

Provider-Specific – TencentInstanceFamily

Provider-Specific – AWS, Provider-Specific – TencentInstanceType

Provider-Specific – AWSInternetGatewayId

PreExistingIPAdress

GeneralISCPassword

Device NameJournal1DeviceName

General, CPFJournal1MountPoint

Provider-Specific – AWSJournal1VolumeIOPS

Provider-Specific – vSphereJournal1VolumeSCSICon-
troller

GeneralJournal1VolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentJournal1VolumeType

Device NameJournal2DeviceName

General, CPFJournal2MountPoint

Provider-Specific – AWSJournal2VolumeIOPS

Provider-Specific – vSphereJournal2VolumeSCSICon-
troller

GeneralJournal2VolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentJournal2VolumeType

GeneralLabel

GeneralLicenseDir

GeneralLicenseKey

Port, CPFLicenseServerPort

GeneralLoadBalancer

84 InterSystems Cloud Manager Guide

ICM Reference

Table(s) for definitionParameter

Provider-Specific – AWSLoadBalancerInternal

Provider-Specific – AzureLocation

Provider-Specific – AzureLocationMap

Provider-Specific – GCPMachineType

Provider-Specific – vSphereMemory

Provider-Specific – TencentMemorySize

Provider-Specific – vSphereMigrateWaitTimeout

GeneralMirror

GeneralMirrorMap

GeneralNamespace

Provider-Specific – vSphereNetworkInterface

Provider-Specific – TencentOSName

Provider-Specific – AWSOSVolumeIOPS

GeneralOSVolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentOSVolumeType

GeneralOverlay

Provider-Specific – AWSPlacementGroups

Provider-Specific – AWSPlacementStrategy

Provider-Specific – AWSPlacementMap

Provider-Specific – AWSPlacementPartitionCount

Provider-Specific – AWSPlacementSpreadLevel

Provider-Specific – GCPProject

GeneralProvider

GeneralProxyImage

GeneralRegion

Provider-Specific – GCPRegionMap

InterSystems Cloud Manager Guide 85

ICM Configuration Parameters

Table(s) for definitionParameter

Provider-Specific – AzureResourceGroupName

Provider-Specific – vSphereResourcePool

GeneralRole

Provider-Specific – AWSRouteTableId

Provider-Specific – vSphereSCSIControllerCount

Provider-Specific – vSphereSDRSAutomationLevel

Provider-Specific – vSphereSDRSEnabled

Provider-Specific – vSphereSDRSIntraVMAffinity

Provider-Specific – Tencent, SecuritySecretID

Provider-Specific – Tencent, SecuritySecretKey

Provider-Specific – vSphereServer

Provider-Specific – vSphereShutdownWaitTimeout

Provider-Specific – AzureSize

SecuritySSHOnly

SecuritySSHPassword

SecuritySSHPrivateKey

SecuritySSHPublicKey

SecuritySSHUser

SecuritySSLConfig

GeneralStartCount

Provider-Specific – AzureSubnetName

Provider-Specific – AWS, Provider-Specific – TencentSubnetIds

SecuritySubscriptionId

Port, CPFSuperServerPort

GeneralSystemMode

GeneralTag

86 InterSystems Cloud Manager Guide

ICM Reference

Table(s) for definitionParameter

Provider-Specific – vSphereTemplate

SecurityTenantId

SecurityTLSKeyDir

Provider-Specific – Azure, SecurityUseMSI

GeneralUserCPF

Provider-Specific – vSphereVCPU

Provider-Specific – AzureVirtualNetworkName

Provider-Specific – AWS, Provider-Specific – TencentVPCId

Provider-Specific – vSphere, SecurityVspherePassword

Provider-Specific – vSphere, SecurityVsphereUser

Provider-Specific – vSphereWaitForGuestNetTimeout

SecurityWeavePassword

PortWebGatewayPort

Port, CPFWebServerPort

Device NameWIJDeviceName

General, CPFWIJMountPoint

Provider-Specific – AWSWIJVolumeIOPS

Provider-Specific – vSphereWIJVolumeSCSICon-
troller

GeneralWIJVolumeSize

Provider-Specific – AWS, Provider-Specific – GCP, Provider-Specific – TencentWIJVolumeType

GeneralZone

GeneralZoneMap

InterSystems Cloud Manager Guide 87

ICM Configuration Parameters

4.3 ICM Node Types
This section described the types of nodes that can be provisioned and deployed by ICM and their possible roles in the
deployed InterSystems IRIS configuration. A provisioned node’s type is determined by the Role field.

The following table summarizes the detailed node type descriptions that follow.

Table 4–8: ICM Node Types

InterSystems Image to Deploy
Configuration Role(s)Node

Type

iris (InterSystems IRIS instance)Sharded cluster data nodeDATA

iris (InterSystems IRIS instance)Sharded cluster compute nodeCOMPUTE

iris (InterSystems IRIS instance)

Distributed cache cluster data server

Stand-alone InterSystems IRIS instance

[namespace-level architecture: shard master
data server]

DM

iris (InterSystems IRIS instance)
[namespace-level architecture: shard data
server]

DS

iris (InterSystems IRIS instance)
[namespace-level architecture: shard query
server]

QS

iris (InterSystems IRIS instance)Distributed cache cluster application serverAM

arbiter (InterSystems IRIS mirror arbiter)Mirror arbiterAR

webgateway (InterSystems Web Gateway)Web serverWS

sam (InterSystems System Alerting and
Monitoring application)

System Alerting and Monitoring (SAM) node
SAM

—Load balancerLB

—Virtual machineVM

—Custom and third-party container nodeCN

—Bastion hostBH

Important: The InterSystems images shown in the preceding table are required on the corresponding node types, and
cannot be deployed on nodes to which they do not correspond. If the wrong InterSystems image is specified
for a node by the DockerImage field or the -image option of the icm run command — for example, if the
iris image is specified for an AR (arbiter) node, or any InterSystems image for a CN node — deployment
fails, with an appropriate message from ICM. For a detailed discussion of the deployment of InterSystems
images, see The icm run Command.

88 InterSystems Cloud Manager Guide

ICM Reference

Note: The above table includes sharded cluster roles for the namespace-level sharding architecture, as documented in
previous versions of this guide. These roles (DM, DS, QS) remain available for use in ICM but cannot be combined
with DATA or COMPUTE nodes in the same deployment.

4.3.1 Role DATA: Sharded Cluster Data Node

As described in Overview of InterSystems IRIS Sharding, a typical sharded cluster consists only of data nodes, across
which the sharded data is partitioned, and therefore requires only a DATA node definition in the definitions.json file. If
DATA nodes are defined, the deployment must be a sharded cluster, and the only other node type that can be defined with
them is COMPUTE.

DATA nodes can be mirrored if provisioned in a number matching the MirrorMap setting in their definition, as described
in Rules for Mirroring. The DATA nodes in a cluster must be either all mirrored or all nonmirrored.

The only distinction between data nodes in a sharded cluster is that the first node configured (known as node 1) stores all
of the nonsharded data, metadata, and code for the cluster in addition to its share of the sharded data. The difference in
storage requirements, however, is typically very small. Because all data, metadata, and code is visible on any node in the
cluster, application connections can be load balanced across all of the nodes to take greatest advantage of parallel query
processing and partitioned caching. A load balancer may be assigned to DATA nodes; see Role LB: Load Balancer.

4.3.2 Role COMPUTE: Sharded Cluster Compute Node

For advanced use cases in which extremely low query latencies are required, potentially at odds with a constant influx of
data, compute nodes can be added to a sharded cluster to provide a transparent caching layer for servicing queries, separating
the query and data ingestion workloads and improving the performance of both. (For more information see Deploy Compute
Nodes for Workload Separation and Increased Query Throughput.)

Adding compute nodes yields significant performance improvement only when there is at least one compute node per data
node, so you should define at least as many COMPUTE nodes as DATA nodes; if the number of DATA nodes in the defi-
nitions file is greater than the number of COMPUTE nodes, ICM issues a warning. Configuring multiple compute nodes
per data node can further improve the cluster’s query throughput, and the recommended best practice when doing so is to
configure the same number of compute nodes for each data node, so ICM distributes the defined COMPUTE nodes as
evenly as possible across the DATA nodes.

Because COMPUTE nodes support query execution only and do not store any data, their instance type and other settings
can be tailored to suit those needs, for example by emphasizing memory and CPU and keeping storage to the bare minimum.
Because they do not store data, COMPUTE nodes cannot be mirrored.

A load balancer may be assigned to COMPUTE nodes; see Role LB: Load Balancer.

4.3.3 Role DM: Distributed Cache Cluster Data Server, Standalone Instance,
Shard Master Data Server

If multiple nodes of role AM and a DM node (nonmirrored or mirrored) are specified, they are deployed as an InterSystems
IRIS distributed cache cluster, with the former serving as application servers and the latter as an data server.

A node of role DM (nonmirrored or mirrored) deployed by itself becomes a standalone InterSystems IRIS instance.

If a DM node (mirrored or nonmirrored), DS nodes (mirrored or nonmirrored), and (optionally) QS nodes are specified,
they are deployed as a namespace-level sharded cluster.

InterSystems Cloud Manager Guide 89

ICM Node Types

4.3.4 Role DS: Shard Data Server

Under the namespace-level architecture, a data shard stores one horizontal partition of each sharded table loaded into a
sharded cluster. A node hosting a data shard is called a shard data server. A cluster can have two or more shard data servers
up to over 200. Shard data servers can be mirrored by deploying an even number and specifying mirroring.

4.3.5 Role QS: Shard Query Server

Under the namespace-level architecture, shard query servers provides query access to the data shards to which they are
assigned, minimizing interference between query and data ingestion workloads and increasing the bandwidth of a sharded
cluster for high volume multiuser query workloads. If shard query servers are deployed they are assigned round-robin to
the deployed shard data servers. Shard query servers automatically redirect application connections when a mirrored shard
data server fails over.

If QS nodes are defined but DS nodes are not, ICM responds with an arror like the following:

Shard Query Server (role 'QS') requires at least one Shard Data Server (role 'DS')

4.3.6 Role AM: Distributed Cache Cluster Application Server

If multiple nodes of role AM and a DM node are specified, they are deployed as an InterSystems IRIS distributed cache
cluster, with the former serving as application servers and the latter as a data server. When the data server is mirrored,
application connection redirection following failover is automatic.

A load balancer may be assigned to AM nodes; see Role LB: Load Balancer.

4.3.7 Role AR: Mirror Arbiter

When DATA nodes (sharded cluster DATA nodes), a DM node (distributed cache cluster data server, stand-alone InterSys-
tems IRIS instance, or namespace-level shard master data server), or DS nodes (namespace-level shard data servers) are
mirrored, deployment of an arbiter node to facilitate automatic failover is highly recommended. One arbiter node is sufficient
for all of the mirrors in a cluster; multiple arbiters are not supported and are ignored by ICM, as are arbiter nodes in a
nonmirrored cluster.

The AR node does not contain an InterSystems IRIS instance, using a different image to run an ISCAgent container. This
arbiter image must be specified using the DockerImage field in the definitions file entry for the AR node; for more
information, see The icm run Command.

For more information about the arbiter, see Mirroring.

4.3.8 Role WS:Web Server

A deployment may contain any number of web servers. Each web server node contains an InterSystems Web Gateway
installation along with an Apache web server. ICM populates the remote server list in the InterSystems Web Gateway as
follows:

• If DATA and COMPUTE nodes are deployed (node-level sharded cluster), all of the DATA and COMPUTE nodes,
or all of the DATA nodes if no COMPUTE nodes are deployed.

• If AM nodes are deployed (distributed cache cluster), all of the AM nodes.

• Otherwise, the DM node (standalone instance or namespace-level sharded cluster).

90 InterSystems Cloud Manager Guide

ICM Reference

Note: If deploying a namespace-level sharded cluster with a web server tier, you can manually deploy a custom or
third-party load balancer to distribute connections across the DS and (if they exist) QS nodes of the cluster
(as recommended in Deploying the Namespace-level Architecture) and manually edit the Web Gateway
configurations to populate the remote server lists with the load balancer address (for more information, see
Mirrored Configurations, Failover, and Load Balancing).

For mirrored DATA and DM nodes, a mirror-aware connection is created, and application connection redirection following
failover is automatic. Communication between the web server and the remote servers is configured to run in TLS mode.

A load balancer may be assigned to WS nodes; see Role LB: Load Balancer.

The WS node does not contain an InterSystems IRIS instance, using a different image to run a Web Gateway container.
As described in The icm run Command, the webgateway image can be specified by including the DockerImage field in
the WS node definition in the definitions.json file, for example:

{
 "Role": "WS",
 "Count": "3",
 "DockerImage": "intersystems/webgateway:latest-em",
 "ApplicationPath": "/acme",
 "AlternativeServers": "LoadBalancing"
}

If the ApplicationPath field is provided, its value is used to create an application path for each instance of the Web Gateway.
The default server for this application path is assigned round-robin across Web Gateway instances, with the remaining
remote servers making up the alternative server pool. For example, if the preceding sample WS node definition were part
of a distributed cache cluster with three AM nodes, the assignments would be like the following:

Alternative ServersDefault ServerInstance

Acme-AM-TEST-0002, Acme-AM-TEST-0003Acme-AM-TEST-0001Acme-WS-TEST-0001

Acme-AM-TEST-0001, Acme-AM-TEST-0003Acme-AM-TEST-0002Acme-WS-TEST-0002

Acme-AM-TEST-0001, Acme-AM-TEST-0002Acme-AM-TEST-0003Acme-WS-TEST-0003

The AlternativeServers field determines how the Web Gateway distributes requests to its target server pool. Valid values
are LoadBalancing (the default) and FailOver. This field has no effect if the ApplicationPath field is not specified.

For information about using the InterSystems Web Gateway, see the Web Gateway Guide.

4.3.9 Role SAM: System Alerting and Monitoring Node

Defining a SAM node adds the System Alerting and Monitoring (SAM) cluster monitoring solution to a deployment. For
information about adding SAM, see Monitoring in ICM; for complete information about SAM, see the System Alerting
and Monitoring Guide.

4.3.10 Role LB: Load Balancer

ICM automatically provisions a predefined load balancer node when the provisioning platform is AWS, GCP, Azure, or
Tencent, and the definition of nodes of type DATA, COMPUTE, DM, AM, or WS in the definitions file sets LoadBalancer

to true. For a generic load balancer for VM or CN nodes, additional parameters must be provided.

InterSystems Cloud Manager Guide 91

ICM Node Types

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM

4.3.10.1 Predefined Load Balancer

For nodes of role LB, ICM configures the ports and protocols to be forwarded as well as the corresponding health checks.
Queries can be executed against the deployed load balancer the same way one would against a data node in a sharded
cluster or a distributed cache cluster application server.

To add a load balancer to the definition of DATA, COMPUTE, DM, AM, or WS nodes, add the LoadBalancer field, for
example:

{
 "Role": "AM",
 "Count": "2",
 "LoadBalancer": "true"
}

The following example illustrates the nodes that would be created and deployed given this definition:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
ANDY-AM-TEST-0001 54.214.230.24 ec2-54-214-230-24.amazonaws.com us-west1 c
ANDY-AM-TEST-0002 54.214.230.25 ec2-54-214-230-25.amazonaws.com us-west1 c
ANDY-LB-TEST-0000 (virtual AM) ANDY-AM-TEST-1546467861.amazonaws.com us-west1 c

Queries against this cluster can be executed against the load balancer the same way they would be against the AM nodes.

Predefined load balancers for mirrored DATA and DM nodes are mirror-aware and always direct traffic to the current primary.

The LoadBalancer field can be added to more than one definition in a deployment; for example a distributed cache cluster
can contain AM nodes receiving load-balanced connections from a WS tier that receives load-balanced application connec-
tions.

Currently, a single automatically provisioned load balancer cannot serve multiple node types (for example, both DATA
and COMPUTE nodes), so each requires its own load balancer. This does not preclude the user from manually deploying
a custom or third-party load balancer to serve the desired roles. Another useful approach is to provision a load balancer for
WS nodes, which can then distribute application connections across multiple node types as described in Role WS: Web
Server.

Note: When provisioning on AWS, you can specify a load balancer of type “internal” by setting LoadBalancerInternal

to True in the definition in which LoadBalancer is set to True.

4.3.10.2 Generic Load Balancer

A load balancer can be added to VM (virtual machine) and CN (container) nodes by providing the following additional
keys:

• ForwardProtocol

• ForwardPort

• HealthCheckProtocol

• HealthCheckPath

• HealthCheckPort

92 InterSystems Cloud Manager Guide

ICM Reference

The following is an example:

{
 "Role": "VM",
 "Count": "2",
 "LoadBalancer": "true",
 "ForwardProtocol": "tcp",
 "ForwardPort": "443",
 "HealthCheckProtocol": "http",
 "HealthCheckPath": "/csp/status.cxw",
 "HealthCheckPort": "8080"
}

ForwardPort can be a comma-separated list of ports to forward, with the condition that all of the forwarded ports share the
same ForwardProtocol.

More information about these keys can be found in the Ports and Protocol Parameters table in “ICM Configuration
Parameters” .

4.3.10.3 Load Balancer Notes

Load balancers on different cloud providers may behave differently; be sure to acquaint yourself with load balancer details
on the platforms you provision on. In particular:

• Some cloud providers create a DNS name for the load balancer that resolves to multiple IP addresses; for this reason,
the value in the DNS Name column should be used. If a numeric IP address appears in the DNS Name column, it simply
means that the given cloud provider assigns a unique IP address to their load balancer, but doesn't give it a DNS name.

• Because the DNS name may not indicate to which resources a given load balancer applies, the IP Address column is
used for this purpose.

• Respective cloud providers may differ in how they respond to the case in which all members of the target pool fail
their health check: On GCP, we observed the request being forwarded to a random target (whose underlying service
may or may not be available), whereas on AWS we observed the load balancer reject the request.

For providers Vmware vSphere and PreExisting, you may wish to deploy a custom or third-party load balancer.

Avoid provisioning a load balancer for mirrored DATA nodes on Tencent; load balancers provisioned on Tencent are not
currently able to determine which side of a mirrored DATA node is primary, which could result in errors performing
read/write operations through the load balancer.

4.3.11 Role VM:Virtual Machine Node

A cluster may contain any number of virtual machine nodes. A virtual machine node provides a means of allocating host
nodes which do not have a predefined role within an InterSystems IRIS cluster. Docker is not installed on these nodes,
though users are free to deploy whatever custom or third-party software (including Docker) they wish.

The following commands are supported on the virtual machine node:

• icm provision

• icm unprovision

• icm inventory

• icm ssh

• icm scp

A load balancer may be assigned to VM nodes; see Role LB: Load Balancer.

InterSystems Cloud Manager Guide 93

ICM Node Types

4.3.12 Role CN: Container Node

A cluster may contain any number of container nodes. A container node is a general purpose node with Docker installed.

You can add InterSystems API Manager (IAM) to any deployment by defining a CN node and including the IAM and
IAMImage fields; for more information, see Deploying InterSystems API Manager (IAM). You can also deploy any custom
and third-party containers you wish on a CN node; iris (InterSystems IRIS) containers will not be deployed if specified.
All ICM commands are supported for container nodes, but most will be filtered out unless they use the -container option
to specify a container other than iris, or either the -role or -machine option to limit the command to CN nodes (see ICM
Commands and Options).

A load balancer may be assigned to CN nodes; see Role LB: Load Balancer. CN nodes cannot be deployed in containerless
mode.

4.3.13 Role BH: Bastion Host

You may want to deploy a configuration that offers no public network access. If you have an existing private network, you
can launch ICM on a node on that network and deploy within it. If you do not have such a network, you can have ICM
configure a private subnet and deploy your configuration on it. Since ICM is not running within that private subnet, however,
it needs a means of access to provision, deploy, and manage the configuration. The BH node serves this purpose.

A bastion host is a host node that belongs to both the private subnet configured by ICM and the public network, and can
broker communication between them. To use one, you define a single BH node in your definitions file and set PrivateSubnet

to true in your defaults file. For more information, see Deploying on a Private Network.

4.4 ICM Cluster Topology and Mirroring
ICM validates the node definitions in the definitions file to ensure they meet certain requirements; there are additional rules
for mirrored configurations. Bear in mind that this validation does not include preventing configurations that are not func-
tionally optimal, for example a single AM node, a single WS node, five DATA nodes with just one COMPUTE node or
vice-versa, and so on.

In both nonmirrored and mirrored configurations,

• In a sharded cluster, COMPUTE nodes are assigned to DATA nodes (and QS nodes to DS nodes) in round-robin
fashion.

• If both AM and WS nodes are included, AM nodes are bound to the DM and WS nodes to the AM nodes; if just AM
nodes or just WS nodes are included, they are all bound to the DM.

This section contains the following subsections:

• Rules for Mirroring

• Nonmirrored Configuration Requirements

• Mirrored Configuration Requirements

4.4.1 Rules for Mirroring

All data nodes in a sharded cluster must be mirrored, or all unmirrored. This requirement is reflected in the following ICM
topology validation rules.

94 InterSystems Cloud Manager Guide

ICM Reference

When the Mirror field is set to false in the defaults file (the default), mirroring is never configured, and provisioning fails
if more than one DM node is specified in the definitions file.

When the Mirror field is set to true, mirroring is configured where possible, and the mirror roles of the DATA, DS, or DM
nodes (primary, backup, or DR async) are determined by the value of the MirrorMap field (see General Parameters) in the
node definition, as follows:

• If MirrorMap is not included in the relevant node definition, the nodes are configured as mirror failover pairs using the
default MirrorMap value, primary,backup:

– If an even number of DATA or DS nodes is defined, they are all configured as failover pairs; for example, speci-
fying six DATA nodes deploys three data node mirrors containing failover pairs and no DR asyncs. If an odd
number of DATA or DS nodes is defined, provisioning fails.

– If two DM nodes are defined, they are configured as a failover pair; if any other number is defined, provisioning
fails.

• If MirrorMap is included in the node definition, the nodes are configured according to its value, as follows:

– The number of DATA or DS nodes must be a multiple of the number of roles specified in the MirrorMap value or
fewer. For example, suppose the MirrorMap value, is primary,backup,async, as shown:

"Role": "DATA",
"Count": "",
"MirrorMap": "primary,backup,async"

In this case, DATA or DS nodes would be configured as follows:

ResultValue of Count

One or more mirrors containing a failover pair and a DR async3 or multiples of 3

A single mirror containing a failover pair2

Provisioning fails1, 4 or more but not multiples
of 3

– The number of DM nodes must be the same as the number of roles specified in the MirrorMap value or fewer; if a
single DM node is specified, provisioning fails.

• If more than one AR (arbiter) node is specified, provisioning fails. (While a best practice, use of an arbiter is optional,
so an AR node need not be included in a mirrored configuration.)

All asyncs deployed by ICM are DR asyncs; reporting asyncs are not supported. Up to 14 asyncs can be included in a
mirror. For information on mirror members and possible configurations, see Mirror Components.

There is no relationship between the order in which DATA, DS, or DM nodes are provisioned or configured and their roles
in a mirror. Following provisioning, you can determine which member of each pair is the intended primary failover member
and which the backup using the icm inventory command. To see the mirror member status of each node in a deployed
configuration when mirroring is enabled, use the icm ps command.

4.4.2 Nonmirrored Configuration Requirements

A nonmirrored cluster consists of the following:

• One or more DATA (data nodes in a sharded cluster).

• If DATA nodes are included, zero or more COMPUTE (compute nodes in a sharded cluster); best practices are at least
as many COMPUTE nodes as DATA nodes and the same number of COMPUTE nodes for each DATA node.

InterSystems Cloud Manager Guide 95

ICM Cluster Topology and Mirroring

• If no DATA nodes are included:

– Exactly one DM (distributed cache cluster data server, standalone InterSystems IRIS instance, shard master data
server in namespace-level sharded cluster).

– Zero or more AM (distributed cache cluster application server).

– Zero or more DS (shard data servers in namespace-level sharded cluster).

– Zero or more QS (shard query servers in namespace-level sharded cluster, cannot be deployed without corresponding
DS nodes)

• Zero or more WS (web servers).

• Zero or more LB (load balancers).

• Zero or more VM (virtual machine nodes).

• Zero or more CN (container nodes).

• Zero or one BH (bastion host).

• Zero AR (arbiter node is for mirrored configurations only).

The relationships between some of these nodes types are pictured in the following examples.

96 InterSystems Cloud Manager Guide

ICM Reference

Figure 4–1: ICM Nonmirrored Topologies

InterSystems Cloud Manager Guide 97

ICM Cluster Topology and Mirroring

4.4.3 Mirrored Configuration Requirements

A mirrored cluster consists of:

• If DATA nodes (data nodes in a node-level sharded cluster) are included:

– A number of DATA matching the MirrorMap value, default or explicit, as described in Rules for Mirroring.

– Zero or more COMPUTE (compute nodes in a node-level sharded cluster); best practices are at least one COMPUTE
node per DATA node mirror, and the same number of COMPUTE nodes for each DATA node mirror.

• If no DATA nodes are included:

– Two DM as a mirrored shard master data server in a namespace-level sharded cluster, data server in a distributed
cache cluster, or standalone InterSystems IRIS instance, or more than two if DR asyncs are specified by the
MirrorMap field, as described in Rules for Mirroring.

– If a namespace-level sharded cluster:

• A number of DS (shard data servers) matching the MirrorMap value, default or explicit, as described in Rules
for Mirroring.

• Zero or more QS (shard query servers), as described in the foregoing for COMPUTE nodes.

– Zero or more AM as application servers in a distributed cache cluster.

• Zero or one AR (arbiter node is optional but recommended for mirrored configurations).

• Zero or more WS (web servers).

• Zero or more LB (load balancers).

• Zero or more VM (virtual machine nodes).

98 InterSystems Cloud Manager Guide

ICM Reference

• Zero or more CN (container nodes).

• Zero or one BH (bastion host).

The following fields are required for mirroring:

• Mirroring is enabled by setting key Mirror in your defaults.json file to true.

"Mirror": "true"

• To include DR asyncs in DATA, DS, or DM mirrors, you must include the MirrorMap field in your definitions file to
specify that those beyond the first two are DR async members. The value of MirrorMap must always begin with pri-

mary,backup, for example:

"Role": "DM",
"Count": "5”,
"MirrorMap": "primary,backup,async,async,async",
...

For information on the relationship between the MirrorMap value and the number of DATA, DS, or DM nodes defined,
see Rules for Mirroring. MirrorMap can be used in conjunction with the Zone and ZoneMap fields to deploy async
instances across zones; see Deploying Across Multiple Zones.

Automatic LB deployment (see Role LB: Load Balancer) is supported for providers AWS, GCP, Azure, and Tencent; when
creating your own load balancer, the pool of IP addresses to include are those of DATA, COMPUTE, AM, or WS nodes,
as called for by your configuration and application.

Note: A mirrored DM node that is deployed without AM or WS nodes or a load balancer (LB node) must have some
appropriate mechanism for redirecting application connections following failover; see Redirecting Application
Connections Following Failover or Disaster Recovery.

The relationships between some of these nodes types are pictured in the following examples.

InterSystems Cloud Manager Guide 99

ICM Cluster Topology and Mirroring

Figure 4–2: ICM Mirrored Topologies

100 InterSystems Cloud Manager Guide

ICM Reference

4.5 Storage Volumes Mounted by ICM
On each node on which it deploys an InterSystems IRIS container, ICM formats, partitions, and mounts four volumes for
persistent data storage by InterSystems IRIS using the durable %SYS feature (see Durable %SYS for Persistent Instance
Data). The volumes are mounted as separate device files under /dev/ on the host node, with the filenames determined by
the fields DataDeviceName (for the data volume), WIJDeviceName (for the volume containing the WIJ directory), and
Journal1DeviceName and Journal2DeviceName (for the primary and alternate journal directories). The sizes of these volumes
can be specified using the DataVolumeSize, WIJVolumeSize, Journal1VolumeSize, and Journal2VolumeSize parameters (see
General Parameters).

For all providers other than type PreExisting, ICM attempts to assign reasonable defaults for the device names, as shown
in the following table. The values are highly platform and OS-specific, however, and may need to be overridden in your
defaults.json file. (For PreExisting deployments, see Storage Volumes.)

InterSystems Cloud Manager Guide 101

Storage Volumes Mounted by ICM

vSphereTencentAzureGCPAWS
Device Name of
Persistent Volume forParameter

sdcvdcsddsdcxvddDatabasesDataDeviceName

sddvddsdesddxvdeWIJ directoryWIJDeviceName

sdevdesdfsdexvdf
Primary journal directoryJournal1Device-

Name

sdfvdfsdgsdfxvdg
Alternate journal
directory

Journal2Device-
Name

ICM mounts the devices within the InterSystems IRIS container according to the fields shown in the following table:

DefaultParameter

/irissys/dataDataMountPoint

/irissys/wijWIJMountPoint

/irissys/journal1Journal1MountPoint

/irissys/journal2Journal2MountPoint

This arrangement allows you to easily follow the recommended best practice of supporting performance and recoverability
by using separate file systems for storage by InterSystems IRIS, as described in Separating File Systems for Containerized
InterSystems IRIS, simply by accepting the defaults.

If your machine image already has mount points ready for use, you can provide the special device name existing as the
value of a device name parameter to direct ICM to skip volume allocation and use the directory you specify in the corre-
sponding mountpoint parameter. For example, if the value of DataDeviceName is existing and the value of DataMountPoint

is /mnt/data, ICM mounts /mnt/data as the data volume for InterSystems IRIS instances. If the directory specified in the
mount point parameter does not exist, no data volume is mounted and an error is displayed during provisioning. Existing
directories must be writable by user irisowner (UID 51773); see Security for InterSystems IRIS Containers. (Note that
this is the default device name and behavior for provider PreExisting.)

4.6 InterSystems IRIS Licensing for ICM
InterSystems IRIS instances deployed in containers require licenses just as do noncontainerized instances. General Inter-
Systems IRIS license elements and procedures are discussed in Licensing.

License keys cannot be included in InterSystems IRIS container images, but must be added after the container is created
and started. ICM addresses this as follows:

• The needed license keys are staged in a directory within the ICM container, or on a mounted volume, that is specified
by the LicenseDir field in the defaults.json file, for example /Samples/License.

102 InterSystems Cloud Manager Guide

ICM Reference

• One of the license keys in the staging directory is specified by the LicenseKey field in each definition of node types
DATA, COMPUTE, DM, AM, DS, and QS in the definitions.json file, for example:

"Role": "DM",
"LicenseKey": "ubuntu-sharding-iris.key”,
"InstanceType": "m4.xlarge",

• ICM configures a license server on DATA node 1 or the DM node, which serves the specified licenses to the InterSystems
IRIS nodes (including itself) during deployment.

Important: All files staged in the directory indicated by the LicenseDir field and specified by the LicenseKey field must
be valid InterSystems IRIS license key files with the .key suffix.

All nodes on which an InterSystems IRIS container is deployed require a sharding-enabled InterSystems
IRIS license, regardless of the particular configuration involved.

No license is required for AR, LB, WS, VM, and CN nodes; if included in the definition for one of these,
the LicenseKey field is ignored.

A license is optional for SAM nodes, but if one is provided, it will be used.

4.7 ICM Security
The security measures included in ICM are described in the following sections:

• Host Node Communication

• Docker

• Weave Net

• InterSystems IRIS

• Private Networks

For information about the ICM fields used to specify the files needed for the security described here, see Security-Related
Parameters.

4.7.1 Host Node Communication

A host node is the host machine on which containers are deployed. It may be virtual or physical, running in the cloud or
on-premises.

ICM uses SSH to log in to host nodes and remotely execute commands on them, and SCP to copy files between the ICM
container and a host node. To enable this secure communication, you must provide an SSH public/private key pair and
specify these keys in the defaults.json file as SSHPublicKey and SSHPrivateKey. During the configuration phase, ICM disables
password login on each host node, copies the private key to the node, and opens port 22, enabling clients with the corre-
sponding public key to use SSH and SCP to connect to the node.

Other ports opened on the host machine are covered in the sections that follow.

4.7.2 Docker

During provisioning, ICM downloads and installs a specific version of Docker from the official Docker web site using a
GPG fingerprint. ICM then copies the TLS certificates you provide (located in the directory specified by the TLSKeyDir

InterSystems Cloud Manager Guide 103

ICM Security

field in the defaults file) to the host machine, starts the Docker daemon with TLS enabled, and opens port 2376. At this
point clients with the corresponding certificates can issue Docker commands to the host machine.

4.7.3 Weave Net

During provisioning, ICM launches Weave Net with options to encrypt traffic and require a password (provided by the
user) from each machine joining the Weave network. To enable these options, set WeavePassword to the any value other
than null in the defaults.json file.

4.7.4 InterSystems IRIS

For a comprehensive overview of InterSystems IRIS security, see About InterSystems Security.

4.7.4.1 Security Level

ICM expects that the InterSystems IRIS image was installed with Normal security (as opposed to Minimal or Locked
Down).

4.7.4.2 Predefined Account Password

To secure the InterSystems IRIS instance, the default password for predefined accounts must be changed by ICM. The first
time ICM runs the InterSystems IRIS container, passwords on all enabled accounts with non-null roles are changed to a
password provided by the user. If you don’t want the InterSystems IRIS password to appear in the definitions files, or in
your command-line history using the -iscPassword option, you can omit both; ICM interactively prompts for the password,
masking your typing. Because passwords are persisted, they are not changed when the InterSystems IRIS container is
restarted or upgraded.

4.7.4.3 JDBC

ICM opens JDBC connections to InterSystems IRIS in TLS mode (as required by InterSystems IRIS), using the files located
in the directory specified by the TLSKeyDir field in the defaults file.

4.7.4.4 Mirroring

ICM creates mirrors with TLS enabled (see Mirroring), using the files located in the directory specified by the TLSKeyDir

field in the defaults file. Failover members can join a mirror only if TLS enabled.

4.7.4.5 InterSystems Web Gateway

ICM configures WS nodes to communicate with DM and AM nodes using TLS, using the files located in the directory
specified by the TLSKeyDir field in the defaults file.

4.7.4.6 InterSystems ECP

ICM configures all InterSystems IRIS nodes to use TLS for ECP connections, which includes connections between distributed
cache cluster nodes and sharded cluster nodes.

4.7.4.7 Centralized Security

InterSystems recommends the use of an LDAP server to implement centralized security across the nodes of a sharded
cluster or other ICM deployment. For information about using LDAP with InterSystems IRIS, see LDAP Guide.

104 InterSystems Cloud Manager Guide

ICM Reference

4.7.5 Private Networks

ICM can deploy on an existing private network (not accessible from the Internet) if you configure the access it requires.
ICM can also create a private network on which to deploy and configure its own access through a bastion host. For more
information on using private networks, see Deploying on a Private Network.

4.8 Deploying with Customized InterSystems IRIS
Configurations
Every InterSystems IRIS instance, including the one running within an InterSystems IRIS container, is installed with a file
in the installation directory named iris.cpf, which contains most of its configuration settings. The instance reads this config-
uration parameter file, or CPF, at startup to obtain the values for these settings. When a setting is modified, the CPF is
automatically updated. The use and contents of the CPF are described in detail in the Configuration Parameter File Reference.

However, you may want to deploy multiple instances from the same image but with different configuration settings. You
can do this using the ISC_CPF_MERGE_FILE environment variable, which lets you specify a separate file containing one
or more settings to be merged into the CPF of an instance. The configuration merge feature can be used to deploy multiple
instances with differing CPFs from the same source. For more information on the configuration merge feature, see
Automating Configuration of InterSystems IRIS with Configuration Merge.

You can take advantage of this feature when deploying InterSystems IRIS with ICM by using the UserCPF property, which
specifies the configuration merge file to be applied to iris containers or containerless installations. For example, the
[config] section of the CPF included in InterSystems IRIS images from InterSystems contains the default shared memory
heap configuration (see Configuring Shared Memory Heap (gmheap)), which looks like this:

[config]
LibPath=
MaxServerConn=1
MaxServers=2
...
gmheap=37568
...

To double the size of the shared memory heap for all InterSystems IRIS instances in your deployment, you could create a
file called merge.cpf in the ICM container with the following contents:

[config]
gmheap=75136

You would then specify this merge file in your defaults.json using the UserCPF field, as follows:

"UserCPF": "/Samples/mergefiles/merge.cpf"

This would cause the CPF of each InterSystems IRIS instance deployed to be updated with the new shared memory heap
size before the instance is started.

You can also use this field in your definitions file to apply merge files only to specific node types. For example, to double
the size of the shared memory heap only on the DM node in a distributed cache cluster, while at the same time changing
the ECP Time to wait for recovery setting on the AM nodes from the default 1200 seconds to 1800, you would create another
file called merge2.cpf with the following contents:

[ECP]
ClientReconnectDuration=1800

InterSystems Cloud Manager Guide 105

Deploying with Customized InterSystems IRIS Configurations

You would then use a definitions.json file like the following:

[
 {
 "Role": "DM",
 "Count": "1",
 "UserCPF": "/Samples/mergefiles/merge.cpf"
 },
 {
 "Role": "AM",
 "Count": "3",
 "StartCount": "2",
 "UserCPF": "/Samples/mergefiles/merge2.cpf",
 "LoadBalancer": "true"
 }
]

This would double the shared memory heap size on the DM node but not on the AM nodes, and change the ECP setting
on the AM nodes but not on the DM node.

4.9 Deploying Across Multiple Zones
Cloud providers generally allow their virtual networks to span multiple zones within a given region. For some deployments,
you may want to take advantage of this to deploy different nodes in different zones. For example, if you deploy a mirrored
sharded cluster in which each data node includes a failover pair and a DR async (see Mirrored Configuration Requirements),
you can accomplish the cloud equivalent of putting physical DR asyncs in remote data centers by deploying the failover
pair and the DR async in two different zones.

To specify multiple zones when deploying on AWS, GCP, Azure, and Tencent, populate the Zone field in the defaults file
with a comma-separated list of zones. Here is an example for AWS:

{
 "Provider": "AWS",
 ...
 "Region": "us-west-1",
 "Zone": "us-west-1b,us-west-1c"
}

For GCP:

 "Provider": "GCP",
 ...
 "Region": "us-east1",
 "Zone": "us-east1-b,us-east1-c"
}

For Azure:

 "Provider": "Azure",
 ...
 "Region": "Central US",
 "Zone": "1,2"

For Tencent:

 "Provider": "Tencent",
 ...
 "Region": "na-siliconvalley",
 "Zone": "na-siliconvalley-1,na-siliconvalley-2"

The specified zones are assigned to nodes in round-robin fashion. For example, if you use the AWS example and provision
four nonmirrored DATA nodes, the first and third will be provisioned in us-west-1b, the second and fourth in us-west-1c.

106 InterSystems Cloud Manager Guide

ICM Reference

For mirrored configuration, round-robin distribution may lead to undesirable results, however; for example, the preceding
Zone specifications would place the primary and backup members of mirrored DATA, DM, or DS nodes in different zones,
which might not be appropriate for your application due to higher latency between the members (see Network Latency
Considerations). To choose which nodes go in which zones, you can add the ZoneMaps field to a node definition in the
definitions.json file to specify a particular zone specified by the Zone field for a single node or a pattern for zone placement
for multiple nodes. This is shown in the following specifications for a distributed cache cluster with a mirrored data server:

defaults.json

"Mirror": "True"
"Region": "us-west-1",
"Zone": "us-west-1a,us-west-1b,us-west-1c"

definitions.json

"Role": "DM",
"Count": "4”,
"MirrorMap": "primary,backup,async,async",
"ZoneMap": "0,0,1,2",
...
"Role": "AM",
"Count": "3”,
"MirrorMap": "primary,backup,async,async",
"ZoneMap": "0,1,2",
...
"Role": "AR",
...

This places the primary and backup mirror members in us-west-1a and one application server in each zone, while the asyncs
are in different zones from the failover pair to maximize their availability if needed — the first in us-west-1b and the second
in us-west-1c. The arbiter node does not need a ZoneMap field to be placed in us-west-1a with the failover pair; round-robin
distribution will take care of that.

You could also use this approach with a mirrored sharded cluster in which each data node mirror contains a failover pair
and a DR async, as follows:

defaults.json

"Mirror": "True"
"Region": "us-west-1",
"Zone": "us-west-1a,us-west-1b,us-west-1c"

definitions.json:

"Role": "DATA",
"Count": "12”,
"MirrorMap": "primary,backup,async",
"ZoneMap": "0,0,1",
...
"Role": "COMPUTE",
"Count": "8”,
"ZoneMap": "0",
...
"Role": "AR",
"ZoneMap": "2",
...

This would place the failover pair of each of the four data node mirrors and the eight compute nodes in us-west-1a, the DR
async of each data node mirror in us-west-1b, and the arbiter in us-west-1c.

InterSystems Cloud Manager Guide 107

Deploying Across Multiple Zones

4.10 Deploying Across Multiple Regions or Providers
ICM can deploy across multiple cloud provider regions. For example, you may want to place DR async mirror members
in a different region from their failover members. The procedures for multiregion deployment vary between providers, and
are described in the following sections. The procedure described in the third section can also be used to deploy across
multiple providers.

• Deploying Across Multiple Regions on GCP

• Deploying Across Multiple Regions on Azure

• Deploying Across Multiple Regions on AWS and Tencent

Important: Although the failover members of a mirror can be deployed in different regions or on different platforms,
this is not recommended due to the problems in mirror operation caused by the typically high network
latency between regions and platforms. For more information on latency considerations for mirrors, see
Network Latency Considerations.

Note: Deployment across regions and deployment on a private network, as described in Deploying on a Private Network,
are not compatible in this release.

4.10.1 Deploying Across Multiple Regions on GCP

To deploy across multiple regions on GCP, specify the desired regions as a comma-separated list in the Region field in the
defaults file, as shown:

{
 "Provider": "GCP",
 "Label": "Sample",
 "Tag": "multi",
 "Region": "us-east1,us-west1",
 "Zone": "us-east1-b,us-west1-a",
 ...
}

By default, nodes within each definition are assigned a region in round-robin fashion. For example, suppose you are
deploying with the fields shown above in defaults.json and the following definitions.json:

[
 {
 "Role": "DATA",
 "Count": "2"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em"
 }
]

In this case, the output of the icm inventory command might look like this:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-AR-multi-0001 35.179.173.90 acmear1.google.com us-east1 b
Acme-DATA-multi-0001- 35.237.131.39 acmedata1.google.com us-east1 b
Acme-DATA-multi-0002+ 35.233.223.64 acmedata2.google.com us-west1 a

For control over the regions that nodes are deployed in, you can use the RegionMap field to map the defined nodes to the
specified regions. When RegionMap is included in a node definition, ZoneMap (described in the preceding section,

108 InterSystems Cloud Manager Guide

ICM Reference

Deploying Across Multiple Zones) must also be included to map the node or nodes to the desired zone or zones. For
example, suppose you are deploying a mirror containing a failover pair and a DR async with an arbiter, and you want the
failover pair in one region but in different zones, and the async and arbiter in a different region and also in different zones.
The files you might use and the output you might see from the icm inventory and icm ps commands are shown in the fol-
lowing:

defaults.json

{
 "Provider": "GCP",
 "Label": "Sample",
 "Tag": "multi",
 "Region": "us-east1,us-west1",
 "Zone": "us-east1-a,us-east1-b,us-west1-a,us-west1-b",
 ...
}

definitions.json

[
 {
 "Role": "DATA",
 "Count": "3",
 "MirrorMap": "primary,backup,async",
 "RegionMap": "1,1,2",
 "ZoneMap": "1,2,3",
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em",
 "RegionMap": "2",
 "ZoneMap": "4"
 }
]

icm inventory

Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-AR-multi-0001 35.179.173.90 acmear1.google.com us-west1 b
Acme-DATA-multi-0001+ 35.237.131.39 acmedata1.google.com us-east1 b
Acme-DATA-multi-0002- 35.233.223.64 acmedata2.google.com us-east1 a
Acme-DATA-multi-0003 35.166.127.82 acmedata3.google.com us-west1 a

icm ps

Machine IP Address Container Status Health Mirror Image
------- ---------- --------- ------ ------ ------ -----
Acme-AR-multi-0001 35.179.173.90 arbiter Up healthy intersystems/arbiter:latest-em
Acme-DATA-multi-0001 35.237.131.39 iris Up healthy PRIMARY intersystems/iris:latest-em
Acme-DATA-multi-0002 35.233.223.64 iris Up healthy BACKUP intersystems/iris:latest-em
Acme-DATA-multi-0003 35.166.127.82 iris Up healthy CONNECTED intersystems/iris:latest-em

To use the Network field (see Google Cloud Platform (GCP) Parameters) to specify an existing network to use in a multiregion
deployment, you must also use the GCP Subnet field to specify a unique subnet for each region specified by the Region

field. For example, for a deployment on regions us-west1 and us-east1, as illustrated here, you might include the following
in your defaults file:

"Network": "acme-network",
"Subnet": "acme-subnet-data-east,acme-subnet-data-west"

Note: A GCP multiregion deployment cannot include load balancers (LB nodes) because load balancers are restricted
to a single region on GCP.

InterSystems Cloud Manager Guide 109

Deploying Across Multiple Regions or Providers

4.10.2 Deploying Across Multiple Regions on Azure

To deploy across multiple regions on Azure, specify the desired regions as a comma-separated list in the Location field in
the defaults file, as shown:

{
 "Provider": "Azure",
 "Label": "Sample",
 "Tag": "multi",
 "Location": "East US,Central US",
 ...
}

By default, nodes within each definition are assigned a location in round-robin fashion. For example, suppose you are
deploying with the fields shown above in defaults.json and the following definitions.json:

[
 {
 "Role": "DATA",
 "Count": "2"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em"
 }
]

In this case, the output of the icm inventory command might look like this:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-AR-multi-0001 35.179.173.90 acmear1.azure.com East US 1
Acme-DATA-multi-0001- 35.237.131.39 acmedata1.azure.com East US 1
Acme-DATA-multi-0001+ 35.233.223.64 acmedata2.azure.com Central US 1

For control over the regions that nodes are deployed in, you can use the LocationMap field to map the defined nodes to the
specified regions. When LocationMap is included in a node definition, ZoneMap (described in the preceding section,
Deploying Across Multiple Zones) must also be included to map the node or nodes to the desired zone or zones. For
example, suppose you are deploying a mirror containing a failover pair and a DR async with an arbiter, and you want the
failover pair in one region but in different zones, and the async and arbiter in a different region and also in different zones.
The files you might use and the output you might see from the icm inventory and icm ps commands are shown in the fol-
lowing. (Note that Azure zones are identified by the same integers in every region, so ZoneMap identifies only the desired
zone within whatever region is specified by LocationMap.)

defaults.json

{
 "Provider": "Azure",
 "Label": "Sample",
 "Tag": "multi",
 "Location": "East US,Central US",
 "Zone": "1,2",
 ...
}

110 InterSystems Cloud Manager Guide

ICM Reference

definitions.json

[
 {
 "Role": "DATA",
 "Count": "3",
 "MirrorMap": "primary,backup,async",
 "LocationMap": "1,1,2",
 "ZoneMap": "1,2,1"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em",
 "RegionMap": "2",
 "ZoneMap": "2"
 }
]

icm inventory

Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-AR-multi-0001 35.179.173.90 acmear1.azure.com Central US 2
Acme-DATA-multi-0001+ 35.237.131.39 acmedata1.azure.com East US 1
Acme-DATA-multi-0002- 35.233.223.64 acmedata2.azure.com East US 2
Acme-DATA-multi-0003 35.166.127.82 acmedata3.google.com Central US 1

icm ps

Machine IP Address Container Status Health Mirror Image
------- ---------- --------- ------ ------ ------ -----
Acme-AR-multi-0001 35.179.173.90 arbiter Up healthy intersystems/arbiter:latest-em
Acme-DATA-multi-0001 35.237.131.39 iris Up healthy PRIMARY intersystems/iris:latest-em
Acme-DATA-multi-0002 35.233.223.64 iris Up healthy BACKUP intersystems/iris:latest-em
Acme-DATA-multi-0003 35.166.127.82 iris Up healthy CONNECTED intersystems/iris:latest-em

If you want to use an existing virtual network in a multiregion Azure deployment, you must include the ResourceGroupName

and VirtualNetwork fields (see Microsoft Azure (Azure) Parameters) in the defaults file to specify a network for each region
specified in the Location field, for example:

{
 "Provider": "Azure",
 "Label": "Sample",
 "Tag": "multi",
 "Location": "East US,Central US",
 "Zone": "1,2",
 "ResourceGroupName": "sample-resource-group",
 "VirtualNetworkName": "sample-vnet-east,sample-vnet-central"
 ...
}

The specified networks must have nonoverlapping address spaces. In the accompanying definitions file, each definition
must include the Subnetname field specifying a unique subnet for each region specified by the Location field. For example,
for the mirrored deployment illustrated in this section, if the defaults file included the ResourceGroupName and VirtualNetwork

InterSystems Cloud Manager Guide 111

Deploying Across Multiple Regions or Providers

fields, the definitions file might look like the following. Because the AR definition deploys in the Central US region only,
just one subnet is required in that definition.

[
 {
 "Role": "DATA",
 "Count": "3",
 "MirrorMap": "primary,backup,async",
 "RegionMap": "1,1,2",
 "ZoneMap": "1,2,1",
 "SubnetName": "acme-subnet-data-east,acme-subnet-data-central"
 },
 {
 "Role": "AR",
 "Count": "1",
 "DockerImage": "intersystems/arbiter:latest-em",
 "RegionMap": "2",
 "ZoneMap": "2",
 "SubnetName": "acme-subnet-arbiter-central"
 }
]

Note: An Azure multiregion deployment cannot include load balancers (LB nodes) because load balancers are restricted
to a single region on Azure.

4.10.3 Deploying Across Multiple Regions on AWS and Tencent

To deploy across multiple regions on AWS and Tencent, ICM first provisions the needed infrastructure in the separate
regions, then merges that infrastructure and deploys services on it as if it were preexisting infrastructure.

This procedure can also be used to deploy across multiple providers. In this discussion, “region” is used to indicate “region
or provider”, with differences between multiprovider and AWS/Tencent multiregion noted as needed.

The procedure for creating merged multiregion deployments involves the following steps:

1. Provision the infrastructure in each region in separate ICM sessions.

2. Merge the multiregion infrastructure using the icm merge command.

3. Review the merged definitions.json file to reorder and update as needed.

4. Reprovision the merged infrastructure using the icm provision command.

5. Deploy services on the merged infrastructure as a Preexisting deployment using the icm run command.

6. When unprovisioning the infrastructure, issue the icm unprovision command separately in the original session direc-
tories.

4.10.3.1 Provision the Infrastructure

The separate sessions for provisioning infrastructure in each region (specified by the Region field) should be conducted in
separate working directories within the same ICM container. For example, you could begin by copying the provided
/Samples/AWS directory (see Define the Deployment) to /Samples/AWS/us-east-1 and /Samples/AWS/us-west–1. Specify
the desired region, node definitions, and features to match the eventual multiregion deployment in the default and definitions
file for each. For example, if you want to deploy a mirror failover pair in one region and a DR async member of the mirror
in another, include the appropriate region and zones and "Mirror": "true" in the defaults files, and define two DMs (for the
failover pair) in one region in its definitions file, a third DM (for the async) in the other, and a single AR (arbiter) node in
one or the other. Each defaults file in a multiregion deployment should have a unique Label and/or Tag to prevent resource
conflicts; this is not necessary for multiprovider deployments. This example is shown in the following.

Note: If a given definition doesn't satisfy topology requirements for a single-region deployment, for example a single
DM node defined when Mirror is set to true, disable topology validation by including "SkipTopologyValidation":

"true" in the defaults file, as shown in the /Samples/AWS/us-west-1/defaults.json.

112 InterSystems Cloud Manager Guide

ICM Reference

/Samples/AWS/us-east-1

defaults.json

{
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "east1",
 "Region": "us-east-1",
 "Zone": "us-east1-a,us-east1-b",
 "Mirror": "true",
 ...
}

definitions.json

[
 {
 "Role": "DM",
 "Count": "2",
 "ZoneMap": "1,2"
 }
]

/Samples/AWS/us-west-1/

defaults.json

{
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "west1",
 "Region": "us-west-1",
 "Zone": "us-west1-a,us-west1-b",
 "Mirror": "true",
 "SkipTopologyValidation": "true"},
 ...
}

definitions.json

[
 {
 "Role": "DM",
 "Count": "1",
 "ZoneMap": "1"
 }
 {
 "Role": "AR",
 "Count": "1",
 "ZoneMap": "2"
 }
]

Use the icm provision command in each working directory to provision the infrastructure in each region. The output of
the icm inventory command, executed in each directory, shows you the infrastructure you are working with, for example:

/Samples/AWS/us-east-1

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DM-east1-0001+ 54.214.230.24 ec2-54-214-230-24.amazonaws.com us-east-1 a
Acme-DM-east1-0002- 54.129.103.67 ec2-54-129-103-67.amazonaws.com us-east-1 b

/Samples/AWS/us-west-1

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-AR-west1-0001 54.181.212.79 ec2-54-181-212-79.amazonaws.com us-west-1 b
Acme-DM-west1-0002 54.253.103.21 ec2-54-253-103-21.amazonaws.com us-west-1 a

InterSystems Cloud Manager Guide 113

Deploying Across Multiple Regions or Providers

4.10.3.2 Merge the Provisioned Infrastructure

The icm merge command scans the configuration files in the current working directory and those in the additional directory
or directories specified to create merged configuration files that can be used for a Preexisting deployment in a specified
new directory. For example, to merge the definitions and defaults files in /Samples/AWS/us-east–1 and
/Samples/AWS/us-west–1 into a new set in /Samples/AWS/merge, you would issue the following commands:

$ cd /Samples/AWS/us-east-1
$ mkdir ../merge
$ icm merge -options ../us-west1 -localPath /Samples/AWS/merge

In the icm merge command, -options specifies a comma-separated list of the provisioning directories to be merged with
the local one, and --localPath specifies the destination directory for the merged definitions. (For more information on the
-options option, which lets you include Docker arguments on the ICM command line, see Using ICM with Custom and
Third-Party Containers.)

4.10.3.3 Review the Merged Definitions File

When you examine the new configuration files, you will see that Provider has been changed to PreExisting in the merged
defaults file. (The previous Provider field and others have been moved into the definitions file; they are displayed by the
icm inventory command, but otherwise have no effect.) The Label and/or Tag can be modified if desired.

The definitions in the merged definitions file have been converted for use with provider PreExisting. As described in Def-
initions File for Preexisting, the definitions.json file for a Preexisting deployment contains exactly one entry per node (rather
than one entry per role with a Count field to specify the number of nodes of that role). Each node is identified by its IP
address or fully-qualified domain name. Either the IPAddress or DNSName field must be included in each definition, as
well as the SSHUser field. (The latter specifies a nonroot user with passwordless sudo access, as described in SSH) In the
merged file, the definitions have been grouped by region, or by provider in multiprovider deployments; they should be
reordered to reflect desired placement of mirror members, if necessary, and a suitable mirror map defined (see Mirrored
Configuration Requirements and Deploying Across Multiple Zones). After review, the definitions file for our example
would look like this:

[
 {
 "Role":"DM",
 "IPAddress":"54.214.230.24",
 "LicenseKey": "ubuntu-sharding-iris.key",
 "SSHUser": "icmuser",
 "MirrorMap": "primary,backup,async"
 },
 {
 "Role":"DM",
 "IPAddress":"54.129.103.67",
 "LicenseKey": "ubuntu-sharding-iris.key",
 "SSHUser": "icmuser",
 "MirrorMap": "primary,backup,async"
 },
 {
 "Role":"DM",
 "IPAddress":"54.253.103.21",
 "LicenseKey": "ubuntu-sharding-iris.key",
 "SSHUser": "icmuser",
 "MirrorMap": "primary,backup,async"
 },
 {
 "Role":"AR",
 "IPAddress":"54.181.212.79",
 "SSHUser": "icmuser",
 "StartCount": "4"
 }
]

114 InterSystems Cloud Manager Guide

ICM Reference

4.10.3.4 Reprovision the Merged Infrastructure

Reprovision the merged infrastructure by issuing the icm provision command in the new directory (/Samples/AWS/merge

in the example). The output of the icm inventory command shows the merged infrastructure in one list:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DM-east1-0001+ 54.214.230.24 ec2-54-214-230-24.amazonaws.com us-east-1 a
Acme-DM-east1-0002- 54.129.103.67 ec2-54-129-103-67.amazonaws.com us-east-1 b
Acme-AR-west1-0001 54.181.212.79 ec2-54-181-212-79.amazonaws.com us-west-1 b
Acme-DM-west1-0002 54.253.103.21 ec2-54-253-103-21.amazonaws.com us-west-1 a

4.10.3.5 Deploy Services on the Merged Infrastructure

Use the icm run command to deploy services on your merged infrastructure, as you would for any deployment, for example

$ icm run
...
-> Management Portal available at: http://112.97.196.104.google.com:52773/csp/sys/UtilHome.csp
$ icm ps
Machine IP Address Container Status Health Mirror Image
------- ---------- --------- ------ ------ ------ -----
Acme-AR-multi-0001 35.179.173.90 arbiter Up healthy intersystems/arbiter:latest-em
Acme-DM-multi-0001 35.237.131.39 iris Up healthy PRIMARY intersystems/iris:latest-em
Acme-DM-multi-0002 35.233.223.64 iris Up healthy BACKUP intersystems/iris:latest-em
Acme-DM-multi-0003 35.166.127.82 iris Up healthy CONNECTED intersystems/iris:latest-em

4.10.3.6 Unprovision the Merged Infrastructure

When the time comes to unprovision the multiregion deployment, return to the original working directories to issue the
icm unprovision command, and then delete the merged working directory. In our example, you would do the following:

$ cd /Samples/AWS/us-east-1
$ icm unprovision -force -cleanUp
...
...completed destroy of Acme-east1
$ cd /Samples/AWS/us-west-1
$ icm unprovision -force -cleanUp
...
...completed destroy of Acme-west1
$ rm -rf /Samples/AWS/merge

4.11 Deploying on a Private Network
ICM configures the firewall on each host node to expose the only the ports and protocols required for its intended role. For
example, the ISCAgent port is exposed only if mirroring is enabled and the role is one of AR, DATA, DM, or DS.

However, you may not want your configuration accessible from the public Internet at all. When this is the case, you can
use ICM to deploy a configuration on a private network, so that it offers no direct public access. If ICM itself is deployed
on that network, it is able to provision and deploy in the normal manner, but if it is not, you must provision a node outside
the public network that gives ICM access to that network, called a bastion host. Given these factors, there are three approaches
to using a private network:

• Install and run ICM within an existing private network, which you describe to ICM using several fields, some of which
vary by provider.

• Have ICM provision a bastion host to give it access to the private network, and provision and deploy the configuration
on either:

– A private network created by ICM.

– An existing private network, which you describe using the appropriate fields.

InterSystems Cloud Manager Guide 115

Deploying on a Private Network

4.11.1 Deploy Within an Existing Private Network

If you deploy ICM on an existing private network and want to provision and deploy on that network, as shown in the fol-
lowing illustration, you need to add fields to the defaults and definitions files for the configuration you want to deploy.

Figure 4–3: ICM Deployed within Private Subnet

To deploy on an existing private network, follow these steps:

1. Obtain access to a node that resides within the private network. This may require use of a VPN or intermediate host.

2. Install Docker and ICM on the node as described in Launch ICM.

3. Add the following fields to the defaults.json file:

"PrivateSubnet": "true",
"net_vpc_cidr": "10.0.0.0/16",
"net_subnet_cidr": "10.0.2.0/24"

The net_vpc_cidr and net_subnet_cidr fields (shown with sample values) specify the CIDRs of the private network and
the node’s subnet within that network, respectively.

4. Add the appropriate common and provider-specific fields to the defaults.json file, as follows:

DescriptionKeyProvider

Must be set to truePrivateSubnetall

CIDR of the private networknet_vpc_cidr

CIDR of the ICM node’s subnet within the private network (see
Note)

net_subnet_cidr

116 InterSystems Cloud Manager Guide

ICM Reference

DescriptionKeyProvider

Google VPCNetworkGCP

Google subnetworkSubnet

AzureRM resource groupResourceGroupNameAzure

AzureRM virtual networkVirtualNetworkName

AzureRM subnet (see Note)SubnetName

AWS VPC IDVPCIdAWS (see
Note)

Comma-separated list of AWS subnet IDs, one for each ele-
ment specified by the Zone field.

SubnetIds

Tencent VPC IDVPCIdTencent

Comma-separated list of Tencent subnet IDs, one for each
element specified by the Zone field.

SubnetIds

Note: On Azure, ICM assigns a security group to the subnet specified by SubnetName, which could affect the
behavior of unrelated machines on the subnet. For this reason, a dedicated subnet (as specified by a unique
SubnetName and corresponding net_subnet_cidr) must be provided for every entry in the definitions file (but
ResourceGroupName and VirtualNetworkName remain in the defaults file). This includes the BH definition
when deploying a bastion host, as described in the following section.

To deploy InterSystems IRIS within an existing private VPC on AWS, you must create a node within that
VPC on which you can deploy and use ICM. If you want to reach this ICM host from outside the VPC, you
can specify a route table and Internet gateway for ICM to use instead of creating its own. To do this, add the
RouteTableId and InternetGatewayId fields to your defaults.json file, for example:

"RouteTableID": "rtb-00bef388a03747469",
"InternetGatewayId": "igw-027ad2d2b769344a3"

When provisioning on GCP, the net_subnet_cidr field is descriptive, not proscriptive; it should be an address
space which includes the node’s subnet, as well as any others within the network should have access to the
deployed configuration.

5. Use icm provision and icm run to provision and deploy your configuration.

Bear the following in mind when deploying on a private network.

• Viewing web pages on any node within the private network, for example the Management Portal, requires a browser
that also resides within the private network, or for which a proxy or VPN has been configured.

• Any DNS name shown in the output of ICM commands is just a copy of the local IP address.

• Private network deployment across regions or providers is currently not supported.

InterSystems Cloud Manager Guide 117

Deploying on a Private Network

4.11.2 Deploy on a Private Network Through a Bastion Host

If you set the PrivateSubnet field to true in the defaults file but don't include the fields required to use an existing network,
ICM creates a private network for you. You cannot complete the provisioning phase in this situation, however, because
ICM is unable to configure or otherwise interact with the machines it just allocated. To enable its interaction with nodes
on the private network it creates, ICM can optionally create a bastion host, a host node that belongs to both the private
subnet and the public network and can broker communication between them.

Figure 4–4: ICM Deployed Outside a Private Network with a Bastion Host

To create a private network and a bastion host providing ICM with access to that network, add a definition for a single
node of type BH to the definitions.json file, for example:

 {
 "Role": "DATA",
 "Count": "3"
 },
 {
 "Role": "BH",
 "Count": "1",
 "StartCount: 4"
 }

To deploy and use a bastion host with an existing private network, add a BH definition to the definitions file, as above, and
include the fields necessary to specify the network in the defaults file (as describe in the previous section). ICM automatically
sets the "PrivateSubnet" option to "true" when a BH node definition is included in definitions.json

118 InterSystems Cloud Manager Guide

ICM Reference

The bastion host can be accessed using SSH, allowing users to tunnel SSH commands to the private network. Using this
technique, ICM is able to allocate and configure compute instances within the private network from outside, allowing
provisioning to succeed, for example:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-BH-TEST-0004 35.237.125.218 218.125.237.35.bc.google.com us-east1 b
Acme-DATA-TEST-0001 10.0.0.2 10.0.0.2 us-east1 b
Acme-DATA-TEST-0002 10.0.0.3 10.0.0.3 us-east1 b
Acme-DATA-TEST-0003 10.0.0.4 10.0.0.4 us-east1 b

Once the configuration is deployed, it is possible to run the ssh command against any node, for example:

icm ssh -role DATA -interactive
ubuntu@ip-10.0.0.2:~$

If you examine the command being run, however, you can see that it is routed through the bastion host:

$ icm ssh -role DATA -interactive -verbose
ssh -A -t -i /Samples/ssh/insecure -p 3022 ubuntu@35.237.125.218
ubuntu@ip-10.0.0.2:~$

On the other hand, for other commands to succeed, ICM needs access to ports and protocols besides SSH. To do this, ICM
configures tunnels between the bastion host and nodes within the cluster for Docker, JDBC, and HTTP. This allows commands
such as icm run, icm exec, and icm sql to succeed.

Bear the following in mind when deploying a bastion host:

• The address of the configuration’s Management Portal is that of the bastion host.

• For security reasons, no private keys are stored on the bastion host.

• Any DNS name shown in the output of ICM commands is just a copy of the local IP address.

• Provisioning of load balancers in a deployment that includes a bastion host is not supported.

• Use of a bastion host with multiregion deployments (see Deploying Across Multiple Regions or Providers) and in
distributed management mode (see Sharing ICM Deployments) are currently not supported.

Note: When you create a custom VPC in the Google portal, you are required to create a default subnet. If you are
provisioning with a bastion host and will use the subnet created by ICM, you should delete this default subnet
before provisioning (or give it an address space that won't collide with the default address space 10.0.0.0/16).

4.12 Deploying InterSystems API Manager
The InterSystems API Manager (IAM) enables you to monitor and control traffic to and from your web-based APIs by
routing it through a centralized gateway and forwarding API requests to appropriate target nodes. For complete information
about IAM, see IAM Guide.

InterSystems Cloud Manager Guide 119

Deploying InterSystems API Manager

https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=CIAM

IAM is included in your ICM deployment when you define a CN node in your definitions file, include the IAM field with
the value true, and specify the InterSystems iam image using the IAMImage field, for example:

[
 {
 "Role": "DATA",
 "Count": "1",
 "LicenseKey": "ubuntu-sharding-iris-with-iam.key"
 },
 {
 "Role": "CN",
 "Count": "1",
 "IAM": "true",
 "IAMImage": "intersystems/iam:2.0"
 }
]

The IAM container is deployed during the deployment phase (see The icm run Command). You can optionally also deploy
a Postgres container by specifying a Postgres image using the PostgresImage field; its default value is shown in General
Parameters.

Following successful deployment, a message like the example below is displayed:

$ icm run
...
-> IAM Portal available at: http://112.97.196.104.google.com:8080/overview#

IAM attaches to the InterSystems IRIS instance in the first (or only) iris container — for example, node 1 in a sharded
cluster — to obtain an IAM-enabled license; if mirroring is enabled, this will be the primary of the first (or only) failover
pair.

Note: IAM cannot be deployed in containerless mode.

4.13 Monitoring in ICM
To monitor the InterSystems IRIS instances in any ICM deployment, you can include the System Alerting and Monitoring
cluster monitoring solution.

You can also deploy third-party monitoring packages as part of your ICM configuration.

4.13.1 System Alerting and Monitoring

System Alerting and Monitoring, or SAM, is a cluster monitoring solution for InterSystems IRIS® data platform. Whatever
configuration and platform your InterSystems IRIS-based application runs on, you can monitor with SAM. For complete
information about SAM, see the System Alerting and Monitoring Guide.

SAM is included in your ICM deployment when you include a SAM node in your definitions file; the DockerImage field
is required and must specify the InterSystems sam image, as shown in the following:

[
 {
 "Role": "DM",
 "Count": "4",
 "LicenseKey": "ubuntu-sharding-iris.key"
 },
 {
 "Role": "SAM",
 "Count": "1",
 "DockerImage": "intersystems/sam:2.0"
 }
]

120 InterSystems Cloud Manager Guide

ICM Reference

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM

The SAM application comprises five containers. The SAM Manager container is deployed during the deployment phase
(see The icm run Command).

The other four containers — Prometheus, Alertmanager, Grafana, and Nginx — are deployed during the provisioning phase
(see The icm provision Command). The images from which these containers are deployed can be specified using the
PrometheusImage, AlertmanagerImage, GrafanaImage, and NginxImage fields; their default values are shown in General
Parameters.

Following successful deployment, a message like the example below is displayed:

$ icm run
...
-> SAM Portal available at: http://112.97.196.104.google.com:8080/api/sam/app/index.csp#

Note: SAM cannot be deployed in containerless mode.

4.13.2 Deploying Third-party Monitoring with ICM

You can deploy the third-party monitoring package of your choice (or any other third-party package) as part of your ICM
configuration. The following example shows how to use the icm ssh command to add Weave Scope monitoring to all of
the hosts in a deployment:

icm ssh -command "sudo curl -L git.io/scope -o /usr/local/bin/scope 2>&1"
icm ssh -command "sudo chmod +x /usr/local/bin/scope"
icm ssh -command "sudo /usr/local/bin/scope launch 2>&1"

Following these commands, you can access Weave Scope through port 4040 on any of the hosts displayed by the icm
inventory command, that is, at http://hostname:4040.

Important: This simple example is provided for illustration only. Weave Scope does not require authentication and is
therefore inherently insecure; if port 4040 is open in your firewall, anybody who knows the URL can access
your containers. Do not deploy third-party packages outside of a private network unless you are certain
they are fully secured.

4.14 ICM Troubleshooting
When an error occurs during an ICM operation, ICM displays a message directing you to the log file in which information
about the error can be found. Before beginning an ICM deployment, familiarize yourself with the log files and their locations
as described in Log Files and Other ICM Files.

In addition to the topics that follow, please see Additional Docker/InterSystems IRIS Considerations for information about
important considerations when creating and running InterSystems IRIS images container images.

• Host Node Restart and Recovery

• Correcting Time Skew

• Timeouts Under ICM

• Docker Bridge Network IP Address Range Conflict

• Weave Network IP Address Range Conflict

• Huge Pages

InterSystems Cloud Manager Guide 121

ICM Troubleshooting

4.14.1 Host Node Restart and Recovery

When a cloud host node is shut down and restarted due to an unplanned outage or to planned action by the cloud provider
(for example, for preventive maintenance) or user (for example, to reduce costs), its IP address and domain name may
change, causing problems for both ICM and deployed applications (including InterSystems IRIS).

This behavior differs by cloud provider. GCP and Azure preserve IP address and domain name across host node restart by
default, whereas this feature is optional on AWS and Tencent (see Elastic IP Feature).

Reasons a host node might be shut down include the following:

• Unplanned outage

– Power outage

– Kernel panic

• Preventive maintenance initiated by provider

• Cost reduction strategy initiated by user

Methods for intentionally shutting down host nodes include:

• Using the cloud provider user interface

• Using ICM:

icm ssh -command 'sudo shutdown'

4.14.1.1 Elastic IP Feature

The Elastic IP feature on AWS preserves IP addresses and domain names across host node restarts. ICM disables this feature
by default, in part because it incurs additional charges on stopped machines (but not running ones). To enable this feature,
set the ElasticIP field to true in your defaults.json file; be sure to review the feature for your provider (see Elastic IP Addresses
in the AWS documentation or Elastic Public IP in the Tencent documentation).

4.14.1.2 Recovery and Restart Procedure

If the IP address and domain name of a host node change, ICM can no longer communicate with the node and a manual
update is therefore required, followed by an update to the cluster. The Weave network deployed by ICM includes a
decentralized discovery service, which means that if at least one host node has kept its original IP address, the other host
nodes will be able to reach it and reestablish all of their connections with one another. However, if the IP address of every
host node in the cluster has changed, an additional step is needed to connect all the nodes in the Weave network to a valid
IP address.

The manual update procedure is as follows:

1. Go to the web console of the cloud provider and locate your instances there. Record the IP address and domain name
of each, for example:

Domain NameIP AddressNode

ec2-54-191-233-2.amazonaws.com54.191.233.2ANDY-DATA-TEST-0001

ec2-54-202-223-57.amazonaws.com54.202.223.57ANDY-DATA-TEST-0002

ec2-54-202-223-58.amazonaws.com54.202.223.58ANDY-DATA-TEST-0003

122 InterSystems Cloud Manager Guide

ICM Reference

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://intl.cloud.tencent.com/document/product/215/34109

2. Edit the instances.json file (see The Instances File) and update the IPAddress and DNSName fields for each instance,
for example:

"Label" : "SHARDING",
"Role" : "DATA",
"Tag" : "TEST",
"MachineName" : "ANDY-DATA-TEST-0001",
"IPAddress" : "54.191.233.2",
"DNSName" : "ec2-54-191-233-2.amazonaws.com",

3. Verify that the values are correct using the icm inventory command:

$ icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
ANDY-DATA-TEST-0001 54.191.233.2 ec2-54-191-233-2.amazonaws.com us-east1 b
ANDY-DATA-TEST-0002 54.202.223.57 ec2-54-202-223-57.amazonaws.com us-east1 b
ANDY-DATA-TEST-0003 54.202.223.58 ec2-54-202-223-58.amazonaws.com us-east1 b

4. Use the icm ps command to verify that the host nodes are reachable:

$ icm ps -container weave
Machine IP Address Container Status Health Image
------- ---------- --------- ------ ------ -----
ANDY-DATA-TEST-0001 54.191.233.2 weave Up weaveworks/weave:2.0.4
ANDY-DATA-TEST-0002 54.202.223.57 weave Up weaveworks/weave:2.0.4
ANDY-DATA-TEST-0003 54.202.223.58 weave Up weaveworks/weave:2.0.4

5. If all of the IP addresses have changed, select one of the new addresses, such as 54.191.233.2 in our example. Then
connect each node to this IP address using the icm ssh command, as follows:

$ icm ssh -command "weave connect --replace 54.191.233.2"
Executing command 'weave connect 54.191.233.2' on host ANDY-DATA-TEST-0001...
Executing command 'weave connect 54.191.233.2' on host ANDY-DATA-TEST-0002...
Executing command 'weave connect 54.191.233.2' on host ANDY-DATA-TEST-0003...
...executed on ANDY-DATA-TEST-0001
...executed on ANDY-DATA-TEST-0002
...executed on ANDY-DATA-TEST-0003

4.14.2 Correcting Time Skew

If the system time within the ICM containers differs from Standard Time by more than a few minutes, the various cloud
providers may reject requests from ICM. This can happen if the container is unable to reach an NTP server on startup (initial
or after being stopped or paused). The error appears in the terraform.err file as some variation on the following:

Error refreshing state: 1 error(s) occurred:

 # icm provision
 Error: Thread exited with value 1
 Signature expired: 20170504T170025Z is now earlier than 20170504T171441Z (20170504T172941Z 15
min.)
 status code: 403, request id: 41f1c4c3-30ef-11e7-afcb-3d4015da6526 doesn’t run for a period of time

The solution is to manually run NTP, for example:

ntpd -nqp pool.ntp.org

and verify that the time is now correct. (See also the discussion of the --cap-add option in Launch ICM.)

4.14.3 Timeouts Under ICM

When the target system is under extreme load, various operations in ICM may time out. Many of these timeouts are not
under direct ICM control (for example, from cloud providers); other operations are retried several times, for example SSH
and JDBC connections.

InterSystems Cloud Manager Guide 123

ICM Troubleshooting

SSH timeouts are sometimes not identified as such. For instance, in the following example, an SSH timeout manifests as
a generic exception from the underlying library:

icm cp -localPath foo.txt -remotePath /tmp/
2017-03-28 18:40:19 ERROR Docker:324 - Error:
java.io.IOException: com.jcraft.jsch.JSchException: channel is not opened.
2017-03-28 18:40:19 ERROR Docker:24 - java.lang.Exception: Errors occurred during execution; aborting
 operation
 at com.intersystems.tbd.provision.SSH.sshCommand(SSH.java:419)
 at com.intersystems.tbd.provision.Provision.execute(Provision.java:173)
 at com.intersystems.tbd.provision.Main.main(Main.java:22)

In this case the recommended course of action is to retry the operation (after identifying and resolving its proximate cause).

Note that for security reasons ICM sets the default SSH timeout for idle sessions at ten minutes (60 seconds x 10 retries).
These values can be changed by modifying the following fields in the/etc/ssh/sshd_config file:

ClientAliveInterval 60
ClientAliveCountMax 10

4.14.4 Docker Bridge Network IP Address Range Conflict

For container networking, Docker uses a bridge network (see Use bridge networks in the Docker documentation) on subnet
172.17.0.0/16 by default. If this subnet is already in use on your network, collisions may occur that prevent Docker from
starting up or prevent you from being able to reach your deployed host nodes. This problem can arise on the machine
hosting your ICM container, your InterSystems IRIS cluster nodes, or both.

To resolve this, you can edit the bridge network’s IP configuration in the Docker configuration file to reassign the subnet
to a range that is not in conflict with your own IP addresses (your IT department can help you determine this value). To
make this change, add a line like the following to the Docker daemon configuration file:

"bip": "192.168.0.1/24"

If the problem arises with the ICM container, edit the file /etc/docker/daemon.json on the container’s host. If the problem
arises with the host nodes in a deployed configuration, edit the file /ICM/etc/toHost/daemon.json in the ICM container; by
default this file contains the value in the preceding example, which is likely to avoid problems with any deployment type
except PreExisting.

Detailed information about the contents of the daemon.json file can be found in Daemon configuration file in the Docker
documentation; see also Configure and troubleshoot the Docker daemon.

4.14.5 Weave Network IP Address Range Conflict

By default, the Weave network uses IP address range 10.32.0.0/12. If this conflicts with an existing network, you may see
an error such as the following in log file installWeave.log:

Network 10.32.0.0/12 overlaps with existing route 10.0.0.0/8 on host
ERROR: Default --ipalloc-range 10.32.0.0/12 overlaps with existing route on host.
You must pick another range and set it on all hosts.

This is most likely to occur with provider PreExisting if the machines provided have undergone custom network configu-
ration to support other software or local policies. If disabling or moving the other network is not an option, you can change
the Weave configuration instead, using the following procedure:

1. Edit the following file local to the ICM container:

/ICM/etc/toHost/installWeave.sh

124 InterSystems Cloud Manager Guide

ICM Reference

https://docs.docker.com/network/bridge/
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/admin/

2. Find the line containing the string weave launch. If you're confident there is no danger of overlap between Weave and
the existing network, you can force Weave to continue use the default range by adding the underscored text in the
following:

sudo /usr/local/bin/weave launch --ipalloc-range 10.32.0.0/12 --password $2

You can also simply move Weave to another private network, as follows:

sudo /usr/local/bin/weave launch --ipalloc-range 172.30.0.0/16 --password $2

3. Save the file.

4. Reprovision the cluster.

4.14.6 Huge Pages

On certain architectures you may see an error similar to the following in the InterSystems IRIS messages log:

0 Automatically configuring buffers
1 Insufficient privileges to allocate Huge Pages; nonroot instance requires CAP_IPC_LOCK capability
for Huge Pages.
2 Failed to allocate 1316MB shared memory using Huge Pages. Startup will retry with standard pages. If
 huge pages
 are needed for performance, check the OS settings and consider marking them as required with the
InterSystems IRIS
 'memlock' configuration parameter.

This can be remedied by providing the following option to the icm run command:

-options "--cap-add IPC_LOCK"

InterSystems Cloud Manager Guide 125

ICM Troubleshooting

A
Containerless Deployment

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

If you want to use ICM to provision cloud infrastructure and install noncontainerized InterSystems IRIS instances on that
infrastructure, or to install InterSystems IRIS on a PreExisting cluster, you can do so using containerless mode.

In essence, containerless mode replaces the containerized deployment of InterSystems IRIS by ICM with direct installation
from traditional kits, while retaining all the other steps in the ICM provisioning and deployment process. This is accomplished
by adding commands to ICM and adapting several others. In containerless mode, Docker is not installed on the provisioned
nodes and the icm run command cannot be used to deploy containers on those nodes.

ICM can execute nonroot installation of InterSystems IRIS in containerless mode; for more information see Nonroot
Installation in Containerless Mode

A.1 Containerless Deployment Platforms
Operating systems supported for containerless deployment include:

• Ubuntu 20.04 or later

• Red Hat Enterprise Linux 8.3 and later version 8 releases, 9.0 and later version 9 releases

A.2 Enabling Containerless Mode
Enable containerless mode by adding the Containerless field to the defaults.json file with a value of true, for example:

{
 "Containerless": "true",
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "TEST"
 "LicenseDir": "/Samples/license/",
 "Credentials": "/Samples/AWS/sample.credentials",
 ...
}

InterSystems Cloud Manager Guide 127

A.3 Installing InterSystems IRIS
To install InterSystems IRIS on your provisioned nodes using the installation kit you have selected, use the icm install
command, which does not exist in container mode. The kit is identified by the KitURL field, which specifies the path to the
installation kit and can be added to either defaults.json or definitions.json. The specified kit must be all of the following:

• Accessible by the node on which InterSystems IRIS is to be installed (though not necessarily by the ICM container
itself)

• A 64-bit Linux kit

• A gzipped tar file

For example, in the definitions file:

[
 {
 "Role": "DM",
 "Count": "1",
 "DataVolumeSize": "50",
 "InstanceType": "m4.xlarge",
 "KitURL": "http://kits.acme.com/iris/2022.2.0/unix/IRIS-2022.2.0.792.0-lnxrhx64.tar.gz"
 },
 {
 "Role": "AM",
 "Count": "2",
 "StartCount": "2",
 "LoadBalancer": "true",
 "KitURL": "http://kits.acme.com/iris/2022.2.0/unix/IRIS-2022.2.0.792.0-lnxrhx64.tar.gz"
 }
]

In the defaults file:

{
 "Containerless": "true",
 "KitURL": "http://kits.acme.com/iris/2022.2.0/unix/IRIS-2022.2.0.792.0-lnxrhx64.tar.gz"
 "Provider": "AWS",
 "Label": "Sample",
 "Tag": "TEST"
 "LicenseDir": "/Samples/license/",
 "Credentials": "/Samples/AWS/sample.credentials",
 ...
}

Note: The KitURL can be a reference to a local file copied to the provisioned nodes, which may be convenient under
some circumstances. For example, you can include this KitURL in the defaults file:

"KitURL": "file://tmp/IRIS-2022.2.0.792.0-lnxrhx64.tar.gz"

and use the icm scp command to copy the kit to the provisioned nodes before executing the icm install command,
for example:

icm scp -localFile IRIS-2022.2.0.792.0-lnxrhx64.tar.gz -remoteFile /tmp

128 InterSystems Cloud Manager Guide

Containerless Deployment

When you execute the icm install command, ICM installs InterSystems IRIS from the specified kit on each applicable
node, resulting in output like the following:

Downloading kit on Acme-DM-TEST-0001...
Downloading kit on Acme-AM-TEST-0002...
Downloading kit on Acme-AM-TEST-0003...
...downloaded kit on Acme-AM-TEST-0002
...downloaded kit on Acme-AM-TEST-0003
...downloaded kit on Acme-DM-TEST-0001
Installing kit on Acme-AM-TEST-0003...
Installing kit on Acme-DM-TEST-0001...
Installing kit on Acme-AM-TEST-0002...
...installed kit on Acme-AM-TEST-0002
...installed kit on Acme-DM-TEST-0001
...installed kit on Acme-AM-TEST-0003
Starting InterSystems IRIS on Acme-DM-TEST-0001...
Starting InterSystems IRIS on Acme-AM-TEST-0002...
Starting InterSystems IRIS on Acme-AM-TEST-0003...
...started InterSystems IRIS on Acme-AM-TEST-0002
...started InterSystems IRIS on Acme-AM-TEST-0003
...started InterSystems IRIS on Acme-DM-TEST-0001
Management Portal available at: http://172.16.110.14:52773/csp/sys/UtilHome.csp

Note: You can use the UserCPF field and a configuration merge file to install multiple instances with different configu-
ration settings from the same kit; for more information, see Deploying with Customized InterSystems IRIS Con-
figurations.

A.4 Reinstalling InterSystems IRIS
To make the containerless deployment process as flexible and resilient as possible, the icm install command is fully reentrant
— it can be issued multiple times for the same deployment. In this regard it is similar to the icm run command, as described
in Redeploying Services.

When an icm install command is repeated, ICM stops and uninstalls the installed instances, then installs InterSystems IRIS
from the specified kit again. You might want to repeat the command for one of the following reasons:

• Reinstalling the existing instances.

To replace the installed InterSystems IRIS instances with new ones from the same kit, simply repeat the original icm
run command that first deployed the containers. You might do this if you have made a change in the definitions files
that requires reinstallation, for example you have updated the licenses in the directory specified by the LicenseDir field.

• Installing InterSystems IRIS on nodes you have added to the infrastructure, as described in Reprovisioning the Infras-
tructure.

When you repeat an icm install command after adding nodes to the infrastructure, instances on the existing nodes are
reinstalled as described in the preceding, while new instances are installed on the new nodes. This allows the existing
nodes to be reconfigured for the new deployment topology, if necessary.

• Overcoming deployment errors.

If the icm install command fails on one or more nodes due to factors outside ICM’s control, such as network latency
or interruptions, you can issue the command again; in most cases, deployment will succeed on repeated tries. If the
error persists, however, it may require manual intervention — for example, if it is caused by an error in one of the
configuration files — before you issue the command again.

InterSystems Cloud Manager Guide 129

Reinstalling InterSystems IRIS

A.5 Uninstalling InterSystems IRIS
The icm uninstall command, which does not exist in container mode, is used in containerless mode to stop and uninstall
all InterSystems IRIS instances in the deployment (without options). You can use the -role and -machine options, as usual,
to limit the command to a specific role or node. For example,

icm uninstall

uninstalls InterSystems IRIS on all nodes in the deployment, while

icm uninstall -role AM

uninstalls InterSystems IRIS on the AM nodes only.

A.6 Additional Containerless Mode Commands
Several container mode commands work in the same way, or an analagous way, in containerless mode, including use of
the -machine and -role options, as follows:

• icm ssh, icm scp, icm session, icm sql

The behavior of these commands is identical in container mode and containerless mode.

• icm ps

The columns included in icm ps output in containerless mode are shown in the following example:

icm ps -json
Machine IP Address Instance Kit Status Health
------- ---------- -------- --- ------ ------
Acme-DM-TEST-0001 54.67.2.117 IRIS 2022.2.0.792.0 running ok
Acme-AM-TEST-0002 54.153.96.236 IRIS 2022.2.0.792.0 running ok
Acme-AM-TEST-0003 54.103.9.388 IRIS 2022.2.0.792.0 running ok

The Instance field provides the name of each instance (in a container provided by InterSystems this is always IRIS)
and the Kit field the kit from which it was installed. Values for Status include running, down, and sign-on inhibited;
values for Health include ok, warn, and alert.

Note: When the icm ps command is used prior to the icm install command in a containerless mode deployment,
the Status field displays the value not installed.

• icm stop, icm start

The icm stop and icm start commands execute the iris stop and iris start commands (see Controlling InterSystems
IRIS Instances) on all InterSystems IRIS instances or the specified instance(s).

• icm upgrade

In containerless mode, icm upgrade does the following:

– Downloads the InterSystems IRIS kit specified by the KitURL field.

– Stops the current InterSystems IRIS instance using iris stop.

– Uninstalls the current InterSystems IRIS instance.

– Installs the InterSystems IRIS kit specified by KitURL.

130 InterSystems Cloud Manager Guide

Containerless Deployment

– Starts the newly-installed InterSystems IRIS instance using iris start.

The following shows output from the icm upgrade command in containerless mode:

icm ps
Machine IP Address Instance Kit Status Health
------- ---------- -------- --- ------ ------
Acme-DM-TEST-0001 54.67.2.117 IRIS 2022.2.0.792.0 running ok
Acme-AM-TEST-0002 54.153.96.236 IRIS 2022.2.0.792.0 running ok
Acme-AM-TEST-0003 54.103.9.388 IRIS 2022.2.0.792.0 running ok

icm upgrade
Downloading kit on Acme-DM-TEST-0001...
Downloading kit on Acme-AM-TEST-0002...
Downloading kit on Acme-AM-TEST-0003...
...downloaded kit on Acme-AM-TEST-0002
...downloaded kit on Acme-AM-TEST-0003
...downloaded kit on Acme-DM-TEST-0001
Stopping InterSystems IRIS on Acme-DM-TEST-0001...
Stopping InterSystems IRIS on Acme-AM-TEST-0003...
Stopping InterSystems IRIS on Acme-AM-TEST-0002...
...stopped InterSystems IRIS on Acme-DM-TEST-0001
...stopped InterSystems IRIS on Acme-AM-TEST-0002
...stopped InterSystems IRIS on Acme-AM-TEST-0003
Uninstalling InterSystems IRIS on Acme-AM-TEST-0003...
Uninstalling InterSystems IRIS on Acme-DM-TEST-0001...
Uninstalling InterSystems IRIS on Acme-AM-TEST-0002...
...uninstalled InterSystems IRIS on Acme-DM-TEST-0001
...uninstalled InterSystems IRIS on Acme-AM-TEST-0002
...uninstalled InterSystems IRIS on Acme-AM-TEST-0003
Installing kit on Acme-AM-TEST-0002...
Installing kit on Acme-DM-TEST-0001...
Installing kit on Acme-AM-TEST-0003...
...installed kit on Acme-AM-TEST-0002
...installed kit on Acme-DM-TEST-0001
...installed kit on Acme-AM-TEST-0003
Starting InterSystems IRIS on Acme-DM-TEST-0001...
Starting InterSystems IRIS on Acme-AM-TEST-0002...
Starting InterSystems IRIS on Acme-AM-TEST-0003...
...started InterSystems IRIS on Acme-AM-TEST-0002
...started InterSystems IRIS on Acme-AM-TEST-0003
...started InterSystems IRIS on Acme-DM-TEST-0001

icm ps
Machine IP Address Instance Kit Status Health
------- ---------- -------- --- ------ ------
Acme-DM-TEST-0001 54.67.2.117 IRIS 2022.2.1.417.0 running ok
Acme-AM-TEST-0002 54.153.96.236 IRIS 2022.2.1.417.0 running ok
Acme-AM-TEST-0003 54.103.9.388 IRIS 2022.2.1.417.0 running ok

After upgrade, you may want to update the value of KitURL in your defaults or definitions file to reflect the upgrade.

A.7 Nonroot Installation in Containerless Mode
At some sites, security policies prohibit applications having root access to systems. A nonroot InterSystems IRIS instance
is installed by a user without root access. If you plan to use containerless mode to install nonroot instances, please carefully
review the differences between root and nonroot installation and instances in Installing as a Nonroot User before proceeding.

A.7.1 Required Configuration Fields

For nonroot installation, the defaults.json file must contain the following fields (in addition to containerless: true):

• The nonroot field must be set to true.

InterSystems Cloud Manager Guide 131

Nonroot Installation in Containerless Mode

• The ISCInstalldir field must specify a file system location to which the installing user — that is, the user specified by
the SSHUser field — has write access (which is not the case with the default installation directory, /usr/irissys). For
example, if SSHUser is irisowner, you could include the following:

"ISCInstallDir": "/home/irisowner/irissys"

(Bear in mind some providers require specific usernames in the SSHUser field; for more information, see Security-
related Parameters.)

• If the installing user does not have write access to /irissys, the default location for durable %SYS volumes, the fields
used to override the mount points for the storage volumes mounted by ICM must be changed to mount points on per-
sistent storage to which the user does have write access, for example:

"DataMountPoint": "/home/irisowner/data",
"WIJMountPoint": "/home/irisowner/wij",
"Journal1MountPoint": "/home/irisowner/journal1",
"Journal2MountPoint": "/home/irisowner/journal2"

Important: In nonroot installation, ICM does not allocate, format, or mount external volumes; it is the user's
responsibility to make sure the directories specified using the mount point fields represent accessible
persistent storage.

In addition, if WS nodes are included in a containerless mode nonroot deployment, the WS definition in the definitions.json

file must specify an InterSystems IRIS kit in the KitURL field and InterSystems IRIS license in the LicenseKey field, for
example:

{
 "Role": "WS",
 "Count": "1",
 "KitURL": "file://tmp/IRIS-2022.2.0.221.0-lnxubuntux64.tar.gz",
 "LicenseKey": "heterogenous-sharding-iris.key"
}

Note: Because nonroot users may not bind to ports below 1024, the Web Gateway port has been moved from 80 to
52773 in containerless nonroot mode. For example, the URL for the Web Gateway on a WS node would be like
the following:

http://133.98.229.35.google.com:52773/csp/bin/Systems/Module.cxw

The WebServerPort parameter, which specifies the web server port for InterSystems IRIS in all deployments, also
specifies the Web Gateway port in nonroot containerless mode; the default is 52773.

A.7.2 Provisioning Phase

ICM assumes that all needed configuration requiring root access on the hosts of infrastructure to be provisioned by ICM
(or identified by the user in a Preexisting deployment) has been completed before the icm provision command is used to
provision the infrastructure. During the provisioning phase, ICM attempts to ascertain whether its requirements have been
met, and if not displays messages identifying issues found along with suggestions on how to mitigate them. The following
example has been edited for brevity::

icm provision
Configuring Acme-DATA-TEST-0001...
provision on Acme-DATA-TEST-0001 failed (attempt 1 of 1)...
Acme-DATA-TEST-0001 - Error: Thread exited with value 1
SSH operation failed
See /Samples/GCP/state/Acme-DATA-TEST/Acme-DATA-TEST-0001/ssh.err
 and /Samples/GCP/state/Acme-DATA-TEST/Acme-DATA-TEST-0001/ssh.out
Errors occurred during execution; aborting operation
To reprovision, specify -stateDir state

cat /Samples/GCP/state/Acme-DATA-TEST/Acme-DATA-TEST-0001/ssh.err

132 InterSystems Cloud Manager Guide

Containerless Deployment

20201203-21:19:16:320888393 Error: 2 nonroot issues found;
 please examine configNode.log, address the issues, and re-provision

cat /Samples/GCP/state/Acme-DATA-TEST/Acme-DATA-TEST-0001/ssh.out
--
Potential issue found: Cannot determine if requirement met for
 nonroot deployment: Configure iptables
/sbin/iptables --delete INPUT --jump REJECT --reject-with icmp-host-prohibited
/sbin/iptables --delete FORWARD --jump REJECT --reject-with icmp-host-prohibited
/sbin/iptables-save
--
Issue found: Requirement not met for nonroot deployment: IP forwarding
echo "net.ipv4.ip_forward=1" | tee -a /etc/sysctl.conf
sysctl -w net.ipv4.ip_forward=1
--
Potential issue found: Cannot determine if requirement met for
 nonroot deployment on ubuntu: Retrieve apt-get updates
apt-get update
--
Issue found: Requirement not met for nonroot deployment on ubuntu:
 Install net-tools
apt-get --allow-unauthenticated -y install net-tools
--
Potential issue found: Cannot determine if requirement met for
 nonroot deployment on ubuntu: Clean apt-get cache
apt-get -y clean all
--
Potential issue found: Cannot determine if requirement met for
 nonroot deployment on GCP: Configure core dump
systemctl disable apport; systemctl stop apport; sysctl -p;
 sysctl -w kernel.core_pattern='%e.%p.%h.%t.core'
echo "%e.%p.%h.%t.core" > /proc/sys/kernel/core_pattern

You can then carry out these changes directly on the systems involved as root (or as an update to their VM templates).

Note: • The commands do not need to be run individually; they can all be executed together in a single operation

• These commands are formulated to be run as root; some will need reformatting to work with sudo.

• Some of the commands suggested for a “potential issue” may not succeed because they were not required;
this is normal.

Once you have made the needed changes, reprovision with the command icm provision -force. You are now ready to
deploy using the icm install command, as described earlier on this page.

InterSystems Cloud Manager Guide 133

Nonroot Installation in Containerless Mode

B
Sharing ICM Deployments

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

There are a number of situations in which different users on different systems might want to use ICM to manage or interact
with the same deployment. For example, one user may be responsible for provisioning the infrastructure, while another in
a different location is responsible for application deployment and upgrades.

However, ICM deployment is defined by its input files and results in the generation of several output files. Without access
to these state files in the ICM container from which the deployment was made, it is difficult for anyone to manage or
monitor the deployment (including the original deployer, should those files be lost).

To aid in this task, ICM can be run in distributed management mode, in which it stores the deployment’s state files on a
Consul cluster for access by other additional ICM containers. If distributed management mode is not used, state files can
also be shared manually.

B.1 Sharing Deployments in Distributed Management
Mode
ICM’s distributed management mode uses the Consul service discovery tool from Hashicorp to give multiple users in any
networked locations management access to a single ICM deployment. This is done through the use of multiple ICM con-
tainers, each of which includes a Consul client clustered with one or more Consul servers storing the needed state files.

• Distributed Management Mode Overview

• Configuring Distributed Management Mode

• Upgrading ICM Using Distributed Management Mode

B.1.1 Distributed Management Mode Overview

The initial ICM container, used to provision the infrastructure, is called the primary ICM container (or just the “primary
ICM”). During the provisioning phase, the primary ICM does the following:

• Deploys 1, 3, or 5 Consul servers on CN nodes, which are clustered together with its Consul client.

• At the conclusion of the icm provision command,

– Pushes the deployment’s state files (see State Files for specifics) to the Consul cluster.

InterSystems Cloud Manager Guide 135

– Outputs a docker run command for creating subsequent ICM containers for the deployment.

When a user executes the provided docker run command, a secondary ICM container (or “secondary ICM”) is created,
and an interactive container session is started in the provider-appropriate directory (for example, /Samples/GCP). The sec-
ondary ICM automatically pulls the deployment’s state files from the Consul cluster at the start of every ICM command,
so it always has the latest information. This creates a container that for all intents and purposes is a duplicate of the primary
ICM container, with the one exception that it cannot provision or unprovision infrastructure. All other ICM commands are
valid.

B.1.2 Configuring Distributed Management Mode

To create the primary ICM container and the Consul cluster, do the following:

1. Add the ConsulServers field to the defaults.json file to specify the number of Consul servers:

“ConsulServers”: “3”

Possible values are 1, 3, and 5. A single Consul server represents a single point of failure and thus is not recommended.
A five-server cluster is more reliable than a three-server cluster, but incurs greater cost.

2. Include a CN node definition in the definitions.json file specifying at least as many CN nodes as the value of the
ConsulServers field, for example:

{
 "Role": "CN",
 "Count": "3",
 "StartCount": "7",
 "InstanceType": "t2.small"
}

3. Add the consul.sh script in the ICM container to the docker run command for the primary ICM, as follows:

docker run --name primary-icm --init -d -it --cap-add SYS_TIME
 intersystems/icm:latest-em consul.sh

When you issue the icm provision command on the primary ICM command line, a Consul server is deployed on each CN
node as it is provisioned until the specified number of servers is reached. When the command concludes successfully, the
primary ICM pushes the state files to the Consul cluster, and its output includes the secondary ICM creation command.
When you subsequently issue any command in the primary ICM that might alter the instances file, such as icm run or icm
upgrade, the primary ICM pushes the new file to the Consul cluster. When you use the icm unprovision command in the
primary ICM to unprovision the deployment, its state files are removed from the Consul cluster.

The icm run command for the secondary ICM provided in output by icm provision includes an encryption key (16-bytes,
Base64 encoded) allowing the new ICM container to join the Consul cluster, for example:

docker run --name icm --init -d -it --cap-add SYS_TIME intersystems/icm:latest-em
 consul.sh qQ6MPKCH1YzTb0j9Yst33w==

You can use the secondary ICM creation command as many times as you wish, in any location that has network access to
the deployment.

In both primary and secondary ICM containers, the consul members command can be used to display information about
the Consul cluster, for example:

/Samples/GCP # consul members
Node Address Status Type Build Protocol DC Segment
consul-Acme-CN-TEST-0002.weave.local 104.196.151.243:8301 failed server 1.1.0 2 dc1 <all>
consul-Acme-CN-TEST-0003.weave.local 35.196.254.13:8301 alive server 1.1.0 2 dc1 <all>
consul-Acme-CN-TEST-0004.weave.local 35.196.128.118:8301 alive server 1.1.0 2 dc1 <all>
3be7366b4495 172.17.0.4:8301 alive client 1.1.0 2 dc1 <default>
e0e87449a610 172.17.0.3:8301 alive client 1.1.0 2 dc1 <default>

136 InterSystems Cloud Manager Guide

Sharing ICM Deployments

Consul containers are also included in the output of the icm ps command, as shown in the following:

Samples/GCP # icm ps
Pulling from consul cluster...
CurrentWorkingDirectory: /Samples/GCP
...pulled from consul cluster
Machine IP Address Container Status Health Image
------- ---------- --------- ------ ------ -----
Acme-DM-TEST-0001 35.227.32.29 weave Up weaveworks/weave:2.3.0
Acme-DM-TEST-0001 35.227.32.29 weavevolumes-2.3.0 Created weaveworks/weaveexec:2.3.0
Acme-DM-TEST-0001 35.227.32.29 weavedb Created weaveworks/weavedb:2.3.0
Acme-CN-TEST-0004 35.196.128.118 consul Up consul:1.1.0
Acme-CN-TEST-0004 35.196.128.118 weave Up weaveworks/weave:2.3.0
Acme-CN-TEST-0004 35.196.128.118 weavevolumes-2.3.0 Created weaveworks/weaveexec:2.3.0
Acme-CN-TEST-0004 35.196.128.118 weavedb Created weaveworks/weavedb:2.3.0
Acme-CN-TEST-0002 104.196.151.243 consul Up consul:1.1.0
Acme-CN-TEST-0002 104.196.151.243 weave Up weaveworks/weave:2.3.0
Acme-CN-TEST-0002 104.196.151.243 weavevolumes-2.3.0 Created weaveworks/weaveexec:2.3.0
Acme-CN-TEST-0002 104.196.151.243 weavedb Created weaveworks/weavedb:2.3.0
Acme-CN-TEST-0003 35.196.254.13 consul Up consul:1.1.0
Acme-CN-TEST-0003 35.196.254.13 weave Up weaveworks/weave:2.3.0
Acme-CN-TEST-0003 35.196.254.13 weavevolumes-2.3.0 Created weaveworks/weaveexec:2.3.0
Acme-CN-TEST-0003 35.196.254.13 weavedb Created weaveworks/weavedb:2.3.0

Note: Because no concurrency control is applied to ICM commands, simultaneous conflicting commands issued in dif-
ferent ICM containers cannot all succeed; the results are based on timing and may include errors. For example,
suppose two users in different containers simultaneously issue the command icm rm -machine
Acme-DM-TEST-0001. One user will see this:

Removing container iris on Acme-DM-TEST-0001...
...removed container iris on Acme-DM-TEST-0001

while the other will see the following:

Removing container iris on Acme-DM-TEST-0001...
Error: No such container: iris

However, when no conflict exists, the same command can be run simultaneously without errors, for example icm
rm -machine Acme-DM-TEST-0001 and icm rm -container customsensors -machine Acme-DM-TEST-0001.

B.1.3 Upgrading ICM Using Distributed Management Mode

Because distributed management mode stores a deployment’s state files on the Consul cluster, as described in Distributed
Management Mode Overview, it provides an easy way to upgrade an ICM container without losing these files.

Beyond the benefits of having the latest version, upgrading ICM is necessary when you upgrade your InterSystems containers,
because the major versions of the image from which you launch ICM and the InterSystems images you deploy must match.
For example, you cannot deploy a 2022.2 version of InterSystems IRIS using a 2022.1 version of ICM. Therefore you must
upgrade ICM before upgrading your InterSystems containers.

To upgrade an ICM container in distributed management mode, use these steps:

1. Use the secondary ICM icm run command provided at the end of provisioning by the primary ICM container, as
described in Configuring Distributed Management Mode, to create a secondary ICM container from the ICM image
you want to upgrade to. (Primary and secondary ICM containers created from different ICM images are compatible.)

2. In the primary ICM container, issue the command consul.sh show-master-token to get the value of the Consul token.

3. In the upgraded secondary ICM container, issue the command consul.sh convert-to-thick Consul_token to convert it
to the primary ICM container.

4. Use docker stop and docker rm to stop and remove the old primary ICM container.

InterSystems Cloud Manager Guide 137

Sharing Deployments in Distributed Management Mode

Because this is the recommended way to upgrade an ICM container that is managing a current deployment, you may want
to create a primary ICM container every time you use ICM, whether you intend to use distributed management or not, so
that this option is available.

B.2 Sharing Deployments Manually
This section explains how to share ICM deployments manually, describing which state files are required to share a
deployment, methods for accessing them from outside the container, and how to persist those files so an ICM-driven
deployment can be shared with other users or accessed from another location.

• State Files

• Maintaining Immutability

• Persisting State Files

B.2.1 State Files

The state files are read from and written to the current working directory, though all of them can be overridden to use a
custom name and location. Input files are as follows:

• defaults.json

• definitions.json

Any security keys, InterSystems IRIS licenses, or other files referenced from within these configuration files should be
considered input as well.

Output files are as follows:

• instances.json

• state/ directory (can be overriden with -stateDir path)

The layout of the files under state/ is as follows:

definition 0/
definition 1/
...
definition N/

Under each definition directory are the following files:

• terraform.tfvars — Terraform inputs

• terraform.tfstate — Terraform state

A variety of log files, temporary files, and other files appear in this hierarchy as well, but they are not required for sharing
a deployment.

Note: For provider PreExisting, no Terraform files are generated.

B.2.2 Maintaining Immutability

InterSystems recommends that you avoid generating state files local to the ICM container, for the following reasons:

138 InterSystems Cloud Manager Guide

Sharing ICM Deployments

• Immutability is violated.

• Data can be lost if container removed/updated/replaced.

• Ability to edit configuration files within the ICM container is limited.

• Tedious and error-prone copying of state files out of the container is required.

A better practice is to mount a directory from the host within the ICM container to use as your working directory; that way
all changes within the container are always available on the host. This can be accomplished using the Docker --volume
option when the ICM container is first created, as follows:

$ docker run --name icm --init -d -it -cap-add SYS_TIME --volume <host_path>:<container_path> <image>

Overall, you would take these steps:

1. Stage input files on the host in host_path.

2. Create, start, and attach to ICM container.

3. Navigate to container_path.

4. Issue ICM commands.

5. Exit or detach from ICM container.

The state files (both input and output) are then present in host_path. See the sample script in Launch ICM for an example
of this approach.

B.2.3 Persisting State Files

Methods of preserving and sharing state files with others include:

• Make a tar/gzip

The resulting archive can be emailed, put on an FTP site, a USB stick, and so on.

• Make backups to a location from which others can restore

Register the path to the state files on the host with a backup service.

• Mount a disk volume accessible by others in your organization

The path to the state files could be a Samba mount, for example.

• Specify a disk location backed up to the cloud

You might use services such as Dropbox, Google Drive, OneDrive, and so on.

• Store in a document database

This could be cloud-based or on-premises.

The advantage of the latter three methods is that they allow others to modify the deployment. Note however that ICM does
not support simultaneous operations issued from more than one ICM container at a time, so a policy ensuring exclusive
read-write access would need to be enforced.

InterSystems Cloud Manager Guide 139

Sharing Deployments Manually

C
Scripting with ICM

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

This page describes how to issue a series of ICM commands from a script and how to identify and coordinate containers
and services across a deployment.

C.1 ICM Exit Status
ICM sets the UNIX exit status after each command, providing a simple way to determine whether a given ICM command
succeeded. The following examples examine the special variable $? after each command:

icm inventory
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DATA-TEST-0001 54.191.233.2 ec2-54-191-233-2.amazonaws.com us-east1 b
Acme-DATA-TEST-0002 54.202.223.57 ec2-54-202-223-57.amazonaws.com us-east1 b
Acme-DATA-TEST-0003 54.202.223.58 ec2-54-202-223-58.amazonaws.com us-east1 b
echo $?
0

icm publish
Unrecognized goal: 'publish' (try "icm -help")
echo $?
1

icm ps -role QM
Unrecognized role 'QM'
echo $?
1

icm session
Error: Interactive commands cannot match more than one instance
echo $?
1

InterSystems Cloud Manager Guide 141

C.2 ICM Logging
ICM logs its output to a file (default icm.log) and to the console. Whereas all output is sent to the log file, its console output
can be captured and split into stdout and stderr. The following example completes without error:

icm inventory > std.out 2> std.err
cat std.out
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DATA-TEST-0001 54.191.233.2 ec2-54-191-233-2.amazonaws.com us-east1 b
Acme-DATA-TEST-0002 54.202.223.57 ec2-54-202-223-57.amazonaws.com us-east1 b
Acme-DATA-TEST-0003 54.202.223.58 ec2-54-202-223-58.amazonaws.com us-east1 b
cat std.err

The following example contains error output:

icm publish > std.out 2> std.err
cat std.out
cat std.err
Unrecognized goal: 'publish' (try "icm -help")

C.3 Remote Script Invocation
Commands can be used in combination to copy scripts to a host or container and remotely invoke them. The following
example copies an exported InterSystems IRIS routine into an InterSystems IRIS cluster, then compiles and runs it:

icm scp -localPath Routine1.xml -remotePath /tmp/
icm session -command 'Do ##class(%SYSTEM.OBJ).Load("/tmp/Routine1.xml", "c-d")'
icm session -command 'Do ^Routine1'

This example copies a shell script to the host, changes its permissions, and executes it:

icm scp -localPath script1.sh -remotePath /tmp/
icm ssh -command 'sudo chmod a+x /tmp/script1.sh'
icm ssh -command '/tmp/script1.sh abc 123'

This example does the same thing, but within a custom or third-party container:

icm cp -localPath script2.sh -remotePath /tmp/ -container gracie
icm exec -command 'chmod a+x /tmp/script2.sh' -container gracie
icm exec -command '/tmp/script2.sh abc 123' -container gracie

C.4 Using JSON Mode
Your script may need to gather information from ICM about the state of the cluster. Examples would be:

• What is the IP address of the InterSystems IRIS data server?

• What is the status of my custom/third-party container?

Parsing the human-readable output of ICM is difficult and prone to breakage. A more reliable solution is to have ICM
generate its output in JSON format using the json option. The output is written to a file named response.json in the current
working directory.

• Normal Output

142 InterSystems Cloud Manager Guide

Scripting with ICM

• Abnormal Output

C.4.1 Normal Output

Most ICM commands do not result in any output upon success, in which case the exit value will be 0, no output will be
written to stderr, and the JSON will be the empty array:

icm exec -command "ls /" -json
cat response.json
[]

ICM commands that produce useful output on success are detailed in the following. Note that the order of fields is not
guaranteed.

C.4.1.1 icm provision

The format of the icm provision output is an object containing name-value pairs which describe the input (that is, config-
uration) and output (that is, state) files used during provisioning. The names, which match their corresponding command-
line argument, are defaults, definitions, instances, and stateDir, as shown in this example:

icm provision -json
...
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DATA-TEST-0001 54.191.233.2 ec2-54-191-233-2.amazonaws.com us-east1 b
Acme-DATA-TEST-0002 54.202.223.57 ec2-54-202-223-57.amazonaws.com us-east1 b
Acme-DATA-TEST-0003 54.202.223.58 ec2-54-202-223-58.amazonaws.com us-east1 b
To destroy: icm unprovision [-cleanUp] [-force]

cat response.json
{
 "defaults" : "defaults.json",
 "definitions" : "definitions.json",
 "instances" : "instances.json",
 "stateDir" : "/Samples/AWS/state/"
}

C.4.1.2 icm inventory

The format of the icm inventory command is an array whose elements correspond to each provisioned instance; each element
in turn contains a list of the name-value pairs MachineName, Role, IPAddress, and DNSName, as shown in the following:

icm inventory -json
Machine IP Address DNS Name Region Zone
------- ---------- -------- ------ ----
Acme-DATA-TEST-0001 54.191.233.2 ec2-54-191-233-2.amazonaws.com us-east1 b
Acme-DATA-TEST-0002 54.202.223.57 ec2-54-202-223-57.amazonaws.com us-east1 b
Acme-DATA-TEST-0003 54.202.223.58 ec2-54-202-223-58.amazonaws.com us-east1 b

cat response.json
[
 {
 “Provider”: “AWS”,
 "MachineName":"Acme-DATA-TEST-0001",
 "Role":"DATA",
 "IPAddress":"54.191.233.2",
 "DNSName":"54_191_233_2.amazonaws.com",
 “Region”: “us-east-1”,
 “Zone”: “us-east-1b”
 },
 {
 “Provider”: “AWS”,
 "MachineName ":"Acme-DATA-TEST-0002",
 "Role":"DATA",
 "IPAddress":"54.202.223.57",
 "DNSName":"54_202_223_57.amazonaws.com,
 “Region”: “us-east-1”,
 “Zone”: “us-east-1b”"
 },
 {
 “Provider”: “AWS”,

InterSystems Cloud Manager Guide 143

Using JSON Mode

 "MachineName":"Acme-DATA-TEST-0003",
 "Role":"DATA",
 "IPAddress":"54202.223.58",
 "DNSName":"54_202_223_58.amazonaws.com,
 “Region”: “us-east-1”,
 “Zone”: “us-east-1b”"
 }
]

C.4.1.3 icm ps

In container mode, the output of the icm ps command is an array whose elements correspond to each container; each element
in turn is a list of the name-value pairs MachineName, Role, IPAddress, DNSName, Container, DockerImage, Status, and
MirrorStatus (if applicable):

icm ps -container iris -json
Machine IP Address Container Status Health Image
------- ---------- --------- ------ ----- -----
Acme-DATA-TEST-0001 54.191.233.2 iris Up healthy isc/iris:latest-em
Acme-DATA-TEST-0002 54.202.223.57 iris Up healthy isc/iris:latest-em
Acme-DATA-TEST-0003 54.202.223.58 iris Up healthy isc/iris:latest-em
cat response.json
[
 {
 "MachineName":"Acme-DATA-TEST-0001",
 "Role":"DATA",
 "IPAddress":"54.191.233.2",
 "DNSName":"54_191_233_2.amazonaws.com"
 "Container":"iris",
 "DockerImage":"isc/iris:latest-em",
 "Status":"Up",
 "Health":"healthy"
 },
 {
 "MachineName ":"Acme-DATA-TEST-0002",
 "Role":"DATA",
 "IPAddress":"54.202.223.57",
 "DNSName":"54_202_223_57.amazonaws.com"
 "Container":"iris",
 "DockerImage":"isc/iris:latest-em",
 "Status":"Up"",
 "Health":"healthy"
 },
 {
 "MachineName ":"Acme-DATA-TEST-0003",
 "Role":"DATA",
 "IPAddress":"54.202.223.57",
 "DNSName":"54_202_223_57.amazonaws.com"
 "Container":"iris",
 "DockerImage":"isc/iris:latest-em",
 "Status":"Up",
 "Health":"healthy"
 },
]

The icm ps output fields in containerless mode are MachineName, Role, IPAddress, DNSName, ISCInstance (always IRIS
in a container provided by InterSystems), Kit, Status, and MirrorStatus (if applicable):

icm ps -json
Machine IP Address Instance Kit Status Health
------- ---------- -------- --- ------ ------
Acme-DATA-TEST-0001 54.67.2.117 IRIS 2017.3.0.392.0 running ok
Acme-DATA-TEST-0002 54.153.96.236 IRIS 2017.3.0.392.0 running ok
Acme-DATA-TEST-0002 54.153.90.66 IRIS 2017.3.0.392.0 running ok

cat response.json
[
 {
 "MachineName":"Acme-DATA-TEST-0001",
 "Role":"DATA",
 "IPAddress":"54.191.233.2",
 "DNSName":"54_191_233_2.amazonaws.com"
 "ISCInstance":"IRIS",
 "Kit":"2017.3.0.392.0",
 "Status":"running",
 "Health":"ok"
 },
 {
 "MachineName ":"Acme-DATA-TEST-0002",

144 InterSystems Cloud Manager Guide

Scripting with ICM

 "Role":"DATA",
 "IPAddress":"54.202.223.57",
 "DNSName":"54_202_223_57.amazonaws.com"
 "ISCInstance":"IRIS",
 "Kit":"2017.3.0.392.0",
 "Status":"running"",
 "Health":"ok"
 },
 {
 "MachineName ":"Acme-DATA-TEST-0003",
 "Role":"DATA",
 "IPAddress":"54.202.223.57",
 "DNSName":"54_202_223_57.amazonaws.com"
 "ISCInstance":"IRIS",
 "Kit":"2017.3.0.392.0",
 "Status":"running"",
 "Health":"ok"
 }
]

C.4.2 Abnormal Output

When an error occurs, the format of the JSON output depends on whether the error occurred local to the ICM application
or was from a target application on the host or instance.

C.4.2.1 Local Errors

When an ICM command results in an error, the JSON will contain an object and a name-value pair describing the error, as
follows:

icm ps -role QM -json
Unrecognized role 'QM'

cat response.json
{
 "error": "Unrecognized role 'QM'"
}

C.4.2.2 Remote Errors

A remote error is considered to have occurred when one or more of the following is true:

• Non-zero exit status

• Output to stderr

When a remote error occurs, the JSON will be an array of objects containing name-value pairs; the name corresponds to
that of the target machine, and the value is another object containing a list of name-value pairs including one or more of
the following:

• error: A description of the problem that occurred; most of the text of an exception

• file: A file containing more detail about the problem

• exitValue: The (non-zero) exit value of an underlying process

InterSystems Cloud Manager Guide 145

Using JSON Mode

Here is an example:

icm ssh -command "ls file.txt" -json
Executing command 'ls file.txt' on host Acme-DATA-TEST-0001...
ls: cannot access file.txt: No such file or directory
Error: See tmp/DATA-TEST/DATA-TEST-0001/ssh.err
Errors occurred during execution; aborting operation

cat response.json
[
 {
 "Acme-DATA-TEST-0001": {
 "file": "tmp/DATA-TEST/DATA-TEST-0001/ssh.err"
 }
 }
]

cat tmp/DATA-TEST/DATA-TEST-0001/ssh.err
ls: cannot access file.txt: No such file or directory

146 InterSystems Cloud Manager Guide

Scripting with ICM

D
Using ICM with Custom and Third-Party
Containers

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

This page describes using ICM to deploy customer and third-party containers. Instructions assume that your Docker image
resides in a repository accessible by ICM. For information on how to configure your container to communicate with other
containers and services (including InterSystems IRIS), see Scripting with ICM.

D.1 Container Naming
Each container running on a given host must have a unique name. When deploying a container using icm run, the container
can be named using the -container option:

icm run -container gracie -image docker/whalesay

You can see the name reflected in the output of icm ps:

icm ps
Machine IP Address Container Status Health Image
------- --------- -------- ----- ------ ----
Acme-DM-TEST-0001 172.16.110.9 gracie Restarting docker/whalesay

Note: If the -container option is not provided, the default container name iris is used. This name is reserved and
should be used only for containers derived from InterSystems IRIS images provided by InterSystems.

D.2 Overriding Default Commands
If you want to override a container's default command, you can do so with -command. For example, suppose the
docker/whalesay image runs command /bin/bash by default:

icm docker -command "ps -a"

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
17f4ece54c2f docker/whalesay "/bin/bash" 4 days ago Restarting gracie

InterSystems Cloud Manager Guide 147

To have the container run a different command, such as pwd, you could deploy it as follows:

icm run -container gracie -image docker/whalesay command pwd

You can verify that the command succeeded by examining the Docker logs:

icm docker -command "logs gracie"
/cowsay

D.3 Using Docker Options
Your container may require Docker options or overrides not explicitly provided by ICM; these can be included using the
-options option. This section provides examples a few of the more common use cases. For complete information about
Docker options see https://docs.docker.com/engine/reference/run/.

• Restarting

• Privileges

• Environment Variables

• Mount Volumes

• Ports

D.3.1 Restarting

By default, ICM deploys containers with the option --restart unless-stopped. This means that if the container crosses an
execution boundary for any reason other than an icm stop command (container exit, Docker restart, and so on), Docker
keeps attempting to run it. In certain cases however, we want the container to run once and remain terminated. In this case,
we can suppress restart as follows:

icm run -container gracie -image docker/whalesay -options "--restart no"
icm ps
Machine IP Address Container Status Health Image
------- --------- -------- ----- ------ -----
Acme-DM-TEST-0001 172.16.110.9 gracie Exited (0) docker/whalesay

D.3.2 Privileges

Some containers require additional privileges to run, or you may want to remove default privileges. Examples:

icm run -container sensors -image hello-world -options "--privileged"
icm run -container fred -image hello-world -options "--cap-add SYS_TIME"
icm run -container fred -image hello-world -options "--cap-drop MKNOD"

D.3.3 Environment Variables

Environment variables can be passed to your container using the Docker option --env. These variables are be set within
your container in a manner similar to the bash export command:

icm run container fred image hello-world options "--env TERM=vt100"

148 InterSystems Cloud Manager Guide

Using ICM with Custom and Third-Party Containers

https://docs.docker.com/engine/reference/run/

D.3.4 Mount Volumes

If your container needs to access files on the host machine, a mount point can be created within your container using the
Docker --volume option. For example:

icm run container fred image hello-world options "--volume /dev2:/dev2"

This makes the contents of directory /dev2 on the host available at mount point /dev2 within the container:

icm ssh -command "touch /dev2/example.txt" // on the host
icm exec -command "ls /dev2" // in the container
example.txt

D.3.5 Ports

Ports within your container can be mapped to the host using the Docker option --publish:

icm run -container fred -image hello-world -options "--publish 80:8080"
icm run -container fred -image hello-world -options "--publish-all"

You must open the corresponding port on the host if you wish to access the port from outside. This can be achieved in a
number of ways, including:

• By editing the Terraform template file infrastructure.tf directly.

• By issuing commands to the host using the icm ssh command.

• By modifying the security settings in the console of the cloud provider.

You also have to ensure that you are not colliding with a port mapped to another container or service on the same host.
Finally, keep in mind that --publish has no effect on containers when the overlay network is of type host.

The following example modifies the Terraform template for AWS to allow incoming TCP communication over port 563
(NNTP over TLS):

• File: /ICM/etc/Terraform/AWS/VPC/infrastructure.tf

• Resource: aws_security_group

• Rule:

ingress {
 from_port = 563
 to_port = 563
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
}

InterSystems Cloud Manager Guide 149

Using Docker Options

E
Deploying on a Preexisting Cluster

Important: As of release 2023.3 of InterSystems IRIS, InterSystems Cloud Manager (ICM) is deprecated; it will be
removed from future versions.

ICM provides you with the option of allocating your own cloud or virtual host nodes or physical servers to deploy containers
on. The provisioning phase usually includes allocation and configuration subphases, but when the Provider field is set to
PreExisting, ICM bypasses the allocation phase and moves directly to configuration. There is no unprovisioning phase for
a preexisting cluster.

The sections that follow describe the requirements for deploying on existing infrastructure using the provider PreExisting.

Important: ICM cannot deploy containers on the host on which it is running. Because ICM has no way to determine
the IP address of its host, it is the user’s responsibility to avoid specifying the ICM host as a host node for
Preexisting deployment.

E.1 SSH
ICM requires that SSH be installed and the SSH daemon running.

Additionally, a nonroot account must be specified in the SSHUser field in the defaults file. This account should have the
following properties:

• It must provide sudo access without requiring a password. You can enable this by creating or modifying a file in
/etc/sudoers.d/ to contain the following line:

<accountname> ALL=(ALL) NOPASSWD:ALL

To prohibit password logins altogether, you can use set the SSHOnly parameter to true. Because this prevents ICM
from logging in using a password, it requires that you stage your public SSH key (as specified by the SSHPublicKey

field) on each node.

• If the home directory is located anywhere other than /home, it should be specified in the Home field in the defaults file,
for example:

"Home": "/users/"

Note that the home directory must not be a network directory shared among nodes (for example /nethome), because
this would cause configuration files to overwrite one another.

InterSystems Cloud Manager Guide 151

ICM can log in as SSHUser using SSH keys or password login. Even if password logins are enabled, ICM will always try
to log in using SSH first.

If you've configured your machines with SSH keys, you must specify the SSH public/private key pair your configuration
file using the SSHPublicKey and SSHPrivateKey fields.

During the configuration phase, ICM configures SSH login and disables password login by default. If you don't wish
password login to be disabled, you can touch the following sentinel file in the home directory of the SSHUser account:

mkdir -p ICM
touch ICM/disable_password_login.done

If you've configured your machines with a password, specify it using the SSHPassword field in your configuration file.
ICM assumes these credentials are not secure.

Enabling password login and specifying the SSHPassword field does not remove the requirement that ICM be able to carry
out all postconfiguration operations via SSH.

E.2 Ports
To avoid conflicting with local security policies and because of variations among operating systems, ICM does not attempt
to open any ports. The following table contains the default ports that must be opened to make use of various ICM features.
As described in Port and Protocol Parameters, the ports are configurable, for example:

"SuperServerPort": "51777"

If you change one or more of these fields from the defaults as illustrated, you must ensure that the ports you specify are
open.

NotesServiceProtocolPort

Required.SSHtcp22

Required.Docker (TLS mode)tcp2376

Required to access the public Apache web server on nodes of
role WS (web server).

Webtcp80

Required for Weave DNS.DNS
tcp
udp53

Required for Overlay=Weave (default for all providers).Weave Net
tcp
udp

6783
6783

6784

Required. A different port may be specified using the
SuperServerPort field.

InterSystems IRIS
Superserver

tcp1972

Required. A different port may be specified using the WebServerPort

field.
InterSystems IRIS
Webserver

tcp52773

Required for mirroring. A different port may be specified using the
ISCAgentPort field.

InterSystems IRIS
ISCAgent

tcp2188

Required. Note: A different port may be specified using the
LicenseServerPort field.

InterSystems IRIS
License Server

tcp4002

152 InterSystems Cloud Manager Guide

Deploying on a Preexisting Cluster

E.3 Storage Volumes
As described in Storage Volumes Mounted by ICM, ICM mounts the storage volumes it provides to be used by InterSystems
IRIS and Docker under /dev, using names specified by the fields listed in Device Name Parameters; the default mount point
of any of these devices can be changed by specifying another location in the corresponding mount point parameter.

To have ICM mount a volume you have prepared on your preexisting infrastructure for use by InterSystems IRIS, you can
specify a directory in a mount point parameter and use one of two values for the corresponding device name parameter, as
follows:

• existing (the default) — If the directory specified in the mount point parameter exists, ICM uses it as the storage volume
in question; for example, if the value of DataDeviceName is existing or no value is provided, and the value of
DataMountPoint is /mnt/data, ICM mounts /mnt/data as the data volume for InterSystems IRIS instances. If the directory
specified in the mount point parameter does not exist, no data volume is mounted.

• create — The same as existing, except that if the directory specified in the mount point parameter does not exist, ICM
attempts to create it, and if successful mounts it as the storage volume in question. If ICM cannot create the directory,
no storage volume is mounted.

E.4 Definitions File for PreExisting
The primary difference between PreExisting and the other providers is the contents of the definitions file, which contains
exactly one entry per node, rather than one entry per role with a Count field to specify the number of nodes of that role.
Each node is identified by its IP address, using the IPAddress field.

InterSystems Cloud Manager Guide 153

Storage Volumes

	Table of Contents
	1 ICM Overview
	1.1 Benefits of InterSystems Cloud Manager
	1.2 The InterSystems Cloud Manager Application Lifecycle
	1.2.1 Define Goals
	1.2.2 Provision
	1.2.3 Deploy
	1.2.4 Manage

	1.3 Additional Automated Deployment Methods for InterSystems IRIS
	1.3.1 Automated Deployment Using the InterSystems Kubernetes Operator (IKO)
	1.3.2 Automated Deployment Using Configuration Merge

	2 Essential ICM Elements
	2.1 InterSystems Cloud Manager Image
	2.2 Provisioning Platforms
	2.3 Deployment Platforms
	2.4 Defining Nodes in the Deployment
	2.5 Field Values
	2.6 Command Line
	2.7 Configuration, State, and Log Files
	2.7.1 The Definitions File
	2.7.2 The Defaults File
	2.7.3 The Instances File
	2.7.4 The State Directory and State Files
	2.7.5 Log Files and Other InterSystems Cloud Manager Files

	2.8 Docker Repositories
	2.8.1 Logging Into a Docker Repository
	2.8.2 Setting Up a Docker Repository

	3 Using InterSystems Cloud Manager
	3.1 ICM Use Cases
	3.2 Launch ICM
	3.2.1 Downloading the ICM Image
	3.2.2 Running the ICM Container
	3.2.3 Upgrading an ICM Container

	3.3 Obtain Security-Related Files
	3.3.1 Cloud Provider Credentials
	3.3.2 SSH and TLS Keys

	3.4 Define the Deployment
	3.4.1 Shared Defaults File
	3.4.2 Distributed Cache Cluster Definitions File
	3.4.3 Sharded Cluster Definitions File
	3.4.4 Customizing InterSystems IRIS Configurations

	3.5 Provision the Infrastructure
	3.5.1 The icm provision Command
	3.5.2 Reprovisioning the Infrastructure
	3.5.3 Infrastructure Management Commands

	3.6 Deploy and Manage Services
	3.6.1 The icm run Command
	3.6.2 Redeploying Services
	3.6.3 Container Management Commands
	3.6.4 Service Management Commands

	3.7 Unprovision the Infrastructure

	4 ICM Reference
	4.1 ICM Commands and Options
	4.2 ICM Configuration Parameters
	4.2.1 General Parameters
	4.2.2 Security-related Parameters
	4.2.3 Port and Protocol Parameters
	4.2.4 CPF Parameters
	4.2.5 Provider-Specific Parameters
	4.2.6 Device Name Parameters
	4.2.7 Alphabetical List of User Parameters

	4.3 ICM Node Types
	4.3.1 Role DATA: Sharded Cluster Data Node
	4.3.2 Role COMPUTE: Sharded Cluster Compute Node
	4.3.3 Role DM: Distributed Cache Cluster Data Server, Standalone Instance, Shard Master Data Server
	4.3.4 Role DS: Shard Data Server
	4.3.5 Role QS: Shard Query Server
	4.3.6 Role AM: Distributed Cache Cluster Application Server
	4.3.7 Role AR: Mirror Arbiter
	4.3.8 Role WS: Web Server
	4.3.9 Role SAM: System Alerting and Monitoring Node
	4.3.10 Role LB: Load Balancer
	4.3.11 Role VM: Virtual Machine Node
	4.3.12 Role CN: Container Node
	4.3.13 Role BH: Bastion Host

	4.4 ICM Cluster Topology and Mirroring
	4.4.1 Rules for Mirroring
	4.4.2 Nonmirrored Configuration Requirements
	4.4.3 Mirrored Configuration Requirements

	4.5 Storage Volumes Mounted by ICM
	4.6 InterSystems IRIS Licensing for ICM
	4.7 ICM Security
	4.7.1 Host Node Communication
	4.7.2 Docker
	4.7.3 Weave Net
	4.7.4 InterSystems IRIS
	4.7.5 Private Networks

	4.8 Deploying with Customized InterSystems IRIS Configurations
	4.9 Deploying Across Multiple Zones
	4.10 Deploying Across Multiple Regions or Providers
	4.10.1 Deploying Across Multiple Regions on GCP
	4.10.2 Deploying Across Multiple Regions on Azure
	4.10.3 Deploying Across Multiple Regions on AWS and Tencent

	4.11 Deploying on a Private Network
	4.11.1 Deploy Within an Existing Private Network
	4.11.2 Deploy on a Private Network Through a Bastion Host

	4.12 Deploying InterSystems API Manager
	4.13 Monitoring in ICM
	4.13.1 System Alerting and Monitoring
	4.13.2 Deploying Third-party Monitoring with ICM

	4.14 ICM Troubleshooting
	4.14.1 Host Node Restart and Recovery
	4.14.2 Correcting Time Skew
	4.14.3 Timeouts Under ICM
	4.14.4 Docker Bridge Network IP Address Range Conflict
	4.14.5 Weave Network IP Address Range Conflict
	4.14.6 Huge Pages

	Appendix A: Containerless Deployment
	A.1 Containerless Deployment Platforms
	A.2 Enabling Containerless Mode
	A.3 Installing InterSystems IRIS
	A.4 Reinstalling InterSystems IRIS
	A.5 Uninstalling InterSystems IRIS
	A.6 Additional Containerless Mode Commands
	A.7 Nonroot Installation in Containerless Mode
	A.7.1 Required Configuration Fields
	A.7.2 Provisioning Phase

	Appendix B: Sharing ICM Deployments
	B.1 Sharing Deployments in Distributed Management Mode
	B.1.1 Distributed Management Mode Overview
	B.1.2 Configuring Distributed Management Mode
	B.1.3 Upgrading ICM Using Distributed Management Mode

	B.2 Sharing Deployments Manually
	B.2.1 State Files
	B.2.2 Maintaining Immutability
	B.2.3 Persisting State Files

	Appendix C: Scripting with ICM
	C.1 ICM Exit Status
	C.2 ICM Logging
	C.3 Remote Script Invocation
	C.4 Using JSON Mode
	C.4.1 Normal Output
	C.4.2 Abnormal Output

	Appendix D: Using ICM with Custom and Third-Party Containers
	D.1 Container Naming
	D.2 Overriding Default Commands
	D.3 Using Docker Options
	D.3.1 Restarting
	D.3.2 Privileges
	D.3.3 Environment Variables
	D.3.4 Mount Volumes
	D.3.5 Ports

	Appendix E: Deploying on a Preexisting Cluster
	E.1 SSH
	E.2 Ports
	E.3 Storage Volumes
	E.4 Definitions File for PreExisting

	Index

