
Using Java with InterSystems
Software

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Java with InterSystems Software
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Java with InterSystems Overview ... 1

2 InterSystems Java Connectivity Options .. 3
2.1 Core Data Access SDKs ... 3
2.2 InterSystems External Servers .. 5
2.3 InterSystems SQL Gateway ... 5
2.4 Third Party Framework Support ... 5

3 Using the JDBC Driver .. 7
3.1 Establishing JDBC Connections .. 7

3.1.1 Defining a JDBC Connection URL ... 7
3.1.2 Using IRISDataSource to Connect .. 8
3.1.3 Using DriverManager to Connect .. 9

3.2 Using Column-wise Binding for Bulk Inserts .. 9
3.3 Connection Pooling .. 10

3.3.1 Using IRISConnectionPoolDataSource Methods .. 10
3.4 Optimization and Testing Options .. 11

3.4.1 JDBC Logging ... 12
3.4.2 Shared Memory Connections ... 12
3.4.3 Statement Pooling .. 13

4 Configuration and Requirements .. 15
4.1 The InterSystems Java Class Packages .. 15
4.2 Client-Server Configuration ... 16

4.2.1 Java Client Requirements ... 16
4.2.2 InterSystems IRIS Server Configuration ... 16
4.2.3 Enabling the Transact SQL Dialect .. 17

5 JDBC Fundamentals .. 19
5.1 A Simple JDBC Application .. 19
5.2 Query Using a Prepared Statement .. 20
5.3 Query Using Stored Procedures with CallableStatement ... 21
5.4 Query Returning Multiple Result Sets ... 22
5.5 Inserting Data and Retrieving Generated Keys .. 22
5.6 Scrolling a Result Set ... 23
5.7 Using Transactions ... 24

6 JDBC Quick Reference .. 27
6.1 Class ConnectionPoolDataSource .. 27
6.2 Class IRISDataSource .. 29
6.3 Connection Parameter Options ... 35

6.3.1 Listing Connection Properties .. 36

Using Java with InterSystems Software iii

1
Java with InterSystems Overview

See the Table of Contents for a detailed listing of the subjects covered in this document.

InterSystems IRIS® provides a wide variety of robust Java connectivity options:

• Lightweight SDKs that provide database access via JDBC, Java objects, or InterSystems multidimensional storage.

• Gateways that give InterSystems IRIS server applications direct access to Java applications and external databases.

• Implementations of third party software such as Hibernate.

All of these Java solutions are underpinned by the InterSystems JDBC driver, a powerful Type 4 (pure Java) fully compliant
implementation of JDBC, closely coupled to InterSystems IRIS for maximum speed and efficiency.

The first section of this document is a survey of all InterSystems IRIS Java technologies enabled by the JDBC driver:

• InterSystems Java Connectivity Options provides an overview of InterSystems Java solutions.

The rest of the document provides detailed information on how to use the JDBC driver itself:

• Using the JDBC Driver gives a detailed description of the various ways to establish a JDBC connection to InterSystems
IRIS or an external database.

• Configuration and Requirements provides details about client configuration and the InterSystems Java class packages.

• JDBC Fundamentals is a quick overview of JDBC, providing examples of some frequently used classes and methods.

• JDBC Quick Reference describes InterSystems-specific extension methods.

Related Documents
The following documents contain detailed information on Java solutions provided by InterSystems IRIS:

• “JDBC Driver Support” in Implementation Reference for Java Third Party Software provides detailed information
on InterSystems JDBC driver support and compliance, including the level of support for all optional features and a list
of all InterSystems IRIS-specific additional features.

• Using the Native SDK for Java describes how to use the Java Native SDK to access resources formerly available only
through ObjectScript.

• Persisting Java Objects with InterSystems XEP describes how to use the Event Persistence API (XEP) for rapid Java
object persistence.

Using Java with InterSystems Software 1

2
InterSystems Java Connectivity Options

InterSystems IRIS® provides a wide variety of robust Java connectivity options:

• Core Data Access SDKs provide lightweight data access via relational tables, objects, or globals.

• InterSystems External Servers provide an easy way access and manipulate both ObjectScript and Java objects within
the same context and connection.

• InterSystems SQL Gateway provides customized connections to external databases and Java applications through an
SQL interface.

• Third Party Framework Support includes an interface implementation for Hibernate.

The InterSystems JDBC driver is at the core of all InterSystems IRIS Java solutions. It is a powerful Type 4 (pure Java)
fully compliant implementation of JDBC, closely coupled to InterSystems IRIS for maximum speed and efficiency.

2.1 Core Data Access SDKs
The InterSystems JDBC driver supports three lightweight Java SDKs that provide direct access to InterSystems IRIS
databases via relational tables, objects, and multidimensional storage.

Important: The Core Data Access SDKs and External Server gateways form an integrated suite of utilities that can
all share the same underlying reentrant connection context. Your application can use any combination of
desired features from any part of the suite.

JDBC driver for relational table access

The InterSystems JDBC driver (described in this book) provides SQL based access to relational tables. It supports
the following features:

• relational access

– store and query tables via SQL

– stored JDBC tables can be accessed as InterSystems IRIS objects

• JDBC driver optimized for InterSystems IRIS

– fully implemented type 4 (pure Java) JDBC

– extensions for unique InterSystems IRIS property settings

Using Java with InterSystems Software 3

– high speed batch reads

– automatic connection pooling

• support for third party Java framework

– Hibernate support

Detailed information is provided in later chapters of this book, and in the “JDBC Driver Support” chapter of the
Implementation Reference for Java Third Party Software.

XEP SDK for object access

The InterSystems XEP SDK is designed for extremely fast acquisition of data objects in real time, and can also
be used as a convenient general purpose ORM interface. It supports the following features:

• optimized for speed

– ultra-high speed real-time data acquisition. It can acquire data many times faster than standard JDBC.

– batch reads

– fine control over data serialization

• object-based access

– lightweight alternative to Hibernate

– store and query objects (create/read/update/delete)

– schema import and customization

– mapping for most standard datatypes

– stored objects can also be accessed as JDBC tables

• full process control

– control indexing and fetch level

– control transactions and locking

See Persisting Java Objects with InterSystems XEP for details.

Native SDK for direct access to InterSystems IRIS resources

The InterSystems Native SDK for Java is a lightweight toolset that gives your Java applications access to resources
formerly available only through ObjectScript. It supports the following features:

• directly access and manipulate global arrays

– create and delete nodes

– iterate over nodes and create/read/update/delete values

– control transactions and locking

• call server-side ObjectScript code:

– call methods and access properties from any compiled class

– call functions or procedures from any compiled .mac file

4 Using Java with InterSystems Software

InterSystems Java Connectivity Options

• Create Java server applications that give ObjectScript clients direct access to Java objects via External Server
gateways.

See Using the Native SDK for Java for details.

2.2 InterSystems External Servers
InterSystems External Servers provide an easy way access and manipulate both ObjectScript and Java objects in the same
context, using the same connection. External server gateways are completely reentrant, allowing Java applications to
manipulate ObjectScript objects, and ObjectScript applications to manipulate Java objects, both using the same bidirectional
connection and context (database, session and transaction).

ObjectScript applications can also use ODBC as an alternate connectivity option (providing access to .NET objects and
ADO) without any major changes in your ObjectScript code.

See Using InterSystems External Servers for detailed information.

2.3 InterSystems SQL Gateway
The InterSystems SQL Gateway connects InterSystems IRIS to external databases via JDBC. Various wizards can be used
to create links to tables, views, or stored procedures in external sources. This allows you to read and store data in the
external database just as you would on InterSystems IRIS, using objects and/or SQL queries. You even can generate class
methods that perform the same actions as corresponding external stored procedures.

SQL Gateway applications are written in ObjectScript and run on the server. They can also use ODBC as an alternate
connectivity option (providing access to .NET objects and ADO) without any major changes in your ObjectScript code.

See Using the SQL Gateway for detailed information on both JDBC and ODBC options.

2.4 Third Party Framework Support
Java frameworks such as Hibernate use JDBC to interact with databases, and include interfaces that can be implemented
to take advantage of features unique to a specific database. InterSystems IRIS provides an implementation of the Hibernate
Dialect interface.

Hibernate Dialect

The InterSystems Hibernate Dialect is a fully compliant implementation of the Hibernate dialect interface, providing
a customized interface between Hibernate and InterSystems IRIS. Like most major dialect implementations, it is
included as part of the Hibernate distribution.

See the “Hibernate Support” chapter in the Implementation Reference for Java Third Party Software for details.

Using Java with InterSystems Software 5

InterSystems External Servers

3
Using the JDBC Driver

This chapter discusses how to establish a JDBC connection between your application and InterSystems IRIS, and how to
use the JDBC driver’s extension methods and properties.

• Establishing JDBC Connections — describes how to establish and control connections using DriverManager or
DataSource.

• Using Column-wise Binding for Bulk Inserts — describes extension methods that make batch inserts faster and easier
to use.

• Connection Pooling — describes options for connection pooling and monitoring.

• Optimization and Testing Options — provides information on logging, shared memory, and statement pooling.

Connecting Your Application to InterSystems IRIS also provides instructions, including sample code, for connecting to an
InterSystems IRIS server from a Java application using JDBC.

3.1 Establishing JDBC Connections
This section describes how to establish and control connections using DriverManager or DataSource.

• Defining a JDBC Connection URL — describes how to specify the parameters that define a JDBC connection.

• Using IRISDataSource to Connect — describes using IRISDataSource to load the driver and create a java.sql.Connection

object.

• Using DriverManager to Connect — describes using the DriverManager class to create a connection.

3.1.1 Defining a JDBC Connection URL

A java.sql.Connection URL supplies the connection with information about the host address, port number, and namespace
to be accessed. The InterSystems JDBC driver also allows you to use several optional URL parameters.

3.1.1.1 Required URL Parameters

The minimal required URL syntax is:

 jdbc:IRIS://<host>:<port>/<namespace>

where the required parameters are defined as follows:

Using Java with InterSystems Software 7

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ADRIVE

• host — IP address or Fully Qualified Domain Name (FQDN). For example, both 127.0.0.1 and localhost indicate
the local machine.

• port — TCP port number on which the InterSystems IRIS SuperServer is listening. The default is 1972. For more
information, see DefaultPort in the Configuration Parameter File Reference).

• namespace — InterSystems IRIS namespace to be accessed.

For example, the following URL specifies host as 127.0.0.1, port as 1972, and namespace as User:

 jdbc:IRIS://127.0.0.1:1972/User

3.1.1.2 Optional URL Parameters

In addition to host, port, and namespace, you can also specify several optional URL parameters. The full syntax is:

 jdbc:IRIS://<host>:<port>/<namespace>/<logfile>:<eventclass>:<nodelay>:<ssl>

where the optional parameters are defined as follows:

• logfile — specifies a JDBC log file (see “JDBC Logging”).

• eventclass — sets the transaction Event Class for this IRISDataSource object.

• nodelay — sets the TCP_NODELAY option if connecting via an IRISDataSource object. Toggling this flag can affect
the performance of the application. Valid values are true and false. If not set, it defaults to true.

• ssl — enables TLS for both IRISDriver and IRISDataSource (see “Configuring TLS” in the Security Administration
Guide). Valid values are true and false. If not set, it defaults to false.

Each of these optional URL parameters can be defined individually, without specifying the others. For example, the following
URL sets only the required parameters and the nodelay option:

 jdbc:IRIS://127.0.0.1:1972/User/::false

Other connection properties can be specified by passing them to DriverManager in a Properties object (see “Using Driver-
Manager to Connect”).

3.1.2 Using IRISDataSource to Connect

Use com.intersystems.jdbc.IRISDataSource to load the driver and then create the java.sql.Connection object. This is the
preferred method for connecting to a database and is fully supported by InterSystems IRIS.

Opening a connection with IRISDataSource

The following example loads the driver, and then uses IRISDataSource to create the connection and specify username
and password:

try{
 IRISDataSource ds = new IRISDataSource();
 ds .setServerName("127.0.0.1");
 ds .setPortNumber(51776);
 ds .setDatabaseName("USER");
 ds .setUser("_SYSTEM");
 ds .setPassword("SYS");
 IRISConnection connection = (IRISConnection) ds.getConnection();
}
catch (SQLException e){
 System.out.println(e.getMessage());
}
catch (ClassNotFoundException e){
 System.out.println(e.getMessage());
}

8 Using Java with InterSystems Software

Using the JDBC Driver

RACS_DefaultPort

This example deliberately uses the literal address, 127.0.0.1, rather than localhost. On any system where
the hostname resolves the same for IPv4 and IPv6, Java may attempt to connect via IPv6 if you use localhost.

Note: The IRISDataSource class provides an extended set of connection property accessors (such as setUser() and
setPassword() in this example). See “Class IRISDataSource” in the Quick Reference for a complete list of
accessors, and see “Connection Parameter Options” later in this reference for more information on all connection
properties

3.1.3 Using DriverManager to Connect

Although InterSystems recommends using IRISDataSource to connect, the DriverManager class can also be used to create
a connection. The following code demonstrates one possible way to do so:

Class.forName ("com.intersystems.jdbc.IRISDriver").newInstance();
 String url="jdbc:IRIS://127.0.0.1:1972/User";
 String username = "_SYSTEM";
 String password = "SYS";
 dbconnection = DriverManager.getConnection(url,username,password);

You can also specify connection properties for DriverManager in a Properties object, as demonstrated in the following code:

String url="jdbc:IRIS://127.0.0.1:1972/User";
 java.sql.Driver drv = java.sql.DriverManager.getDriver(url);

 java.util.Properties props = new Properties();
 props.put("user",username);
 props.put("password",password);
 java.sql.Connection dbconnection = drv.connect(url, props);

See “Connection Parameter Options” later in this reference for a detailed list of available properties.

3.2 Using Column-wise Binding for Bulk Inserts
In JDBC, bulk inserts of prepopulated data are typically done by calling addBatch() in a loop, which is not optimal if the
data is already in an array and ready to be sent to the server. InterSystems IRIS offers an extension that allows you to bypass
the loop and pass in an entire array with one setObject() call.

For example, typical code calls setObject() for each item like this:

// Typical AddBatch() loop
 for (int i=0;i<10000;i++){
 statement.setObject(1,objOne);
 statement.setObject(2,objTwo);
 statement.setObject(3,objThree);
 statement.addBatch();
 }
 statement.executeBatch();

Your code becomes faster and simpler when all items are loaded into an Object array and the entire array is added with one
call:

// Adding an ArrayList named objArray with a single call
 IRISPreparedStatement.setObject(objArray);
 statement.addBatch();
 statement.executeBatch();

Columnwise binding assumes that the first parameter that is bound as an arraylist, will use the arraylist size (if more than
one) to represents the number of rows in the batch. The other parameters bound as arraylists must be the same size or only
have one value specified (ie. a user defined default value) or we will throw an exception when addbatch() is called:

Using Java with InterSystems Software 9

Using Column-wise Binding for Bulk Inserts

"Unmatched columnwise parameter values: #rows rows expected, but found only #count in

parameter!"

For example: given 3 parameters and 10 rows to be bound, you can bind 10 values to the arraylist in parameter 1, and
parameters 2 and 3 must also have 10 values in their arraylists or only one value (if specifying a default value for all rows).
It is expected to fill in all or one, anything else will trigger an exception.

Here is an example that demonstrates the same operation with row-wise and column-wise binding:

bindRowWise()

public static void bindRowWise() throws Exception {

 int rowCount = cName.size();
 String insert = "INSERT INTO CUSTOMER VALUES(?,?,?,?)";
 try {
 PreparedStatement ps = conn.prepareStatement(insert);
 for (int i=0;i<rowCount;i++){
 ps.setObject(1,cName.get(i));
 ps.setObject(2,cAddress.get(i));
 ps.setObject(3,cPhone.get(i));
 ps.setObject(4,cAcctBal.get(i));
 ps.addBatch();
 }
 ps.executeBatch();
 }
 catch (Exception e) {
 System.out.println("\nException in RowBinding()\n"+e);
 }

} // end bindRowWise()

bindColumnWise()

public static void bindColumnWise() throws Exception {

 String insert = "INSERT INTO CUSTOMER VALUES(?,?,?,?)";
 try {
 PreparedStatement ps = conn.prepareStatement(insert);
 ps.setObject(1, new ArrayList<>(cName));
 ps.setObject(2, new ArrayList<>(cAddress));
 ps.setObject(3, new ArrayList<>(cPhone));
 ps.setObject(4, new ArrayList<>(cAcctBal));
 ps.addBatch();
 ps.executeBatch();
 catch (Exception e) {
 System.out.println("\nException in bindColumnWise()\n"+e);
 }

} // end bindColumnWise()

3.3 Connection Pooling

3.3.1 Using IRISConnectionPoolDataSource Methods

The IRISConnectionPoolDataSource class implements ConnectionPoolDataSource and extends it with a set of proprietary
extensions that can be useful for testing and monitoring pooled connections. The following extensions are available:

• getConnectionWaitTimeout() returns the number of seconds that a Connection Pool Manager will wait for any con-
nections to become available.

• getMaxPoolSize() returns the maximum number of connections allowed.

• getPoolCount() returns the current number of entries in the connection pool.

10 Using Java with InterSystems Software

Using the JDBC Driver

• restartConnectionPool() closes all physical connections and empties the connection pool.

• setMaxPoolSize() takes an int value that specifies the maximum number of connections to allow in the pool. Defaults
to 40.

• setConnectionWaitTimeout() takes an int value that specifies the connection wait timeout interval in seconds. If no
connections are available after the timout period expires, an exception is thrown. Defaults to 0, indicating that the
connection will either be immediately made available, or an exception will be thrown indicating that the pool is full.

The IRISConnectionPoolDataSource class also inherits the proprietary extensions implemented in IRISDataSource (see
“Connection Parameter Options” in the Quick Reference).

Here are the steps for using this class with InterSystems IRIS:

1. Import the needed packages:

import com.intersystems.jdbc.*;
import java.sql.*;

2. Instantiate an IRISConnectionPoolDataSource object. Use the reStart() method to close all of the physical connections
and empty the pool. Use setURL() (inherited from IRISDataSource) to set the database URL (see Defining a JDBC
Connection URL) for the pool's connections.

IRISConnectionPoolDataSource pds = new IRISConnectionPoolDataSource();
 pds.restartConnectionPool();
 pds.setURL("jdbc:IRIS://127.0.0.1:1972/User");
 pds.setUser("_system");
 pds.setPassword("SYS");

3. Initially, getPoolCount() returns 0.

System.out.println(pds.getPoolCount()); //outputs 0.

4. Use getConnection() to retrieve a database connection from the pool.

Connection dbConnection = pds.getConnection();

CAUTION: InterSystems JDBC driver connections must always be obtained by calling the getConnection()
method of IRISDataSource, which is enhanced to provide automatic, transparent connection pooling.
The ConnectionPoolDataSource.getPooledConnection() methods are implemented because they are
required by the JDBC standard, but they should never be called directly.

5. Close the connection. Now getPoolCount() returns 1.

dbConnection.close();
System.out.println(pds.getPoolCount()); //outputs 1

3.4 Optimization and Testing Options
This section contains specialized information that may be useful during development and testing.

• JDBC Logging — describes how to enable logging when testing JDBC applications.

• Shared Memory Connections — describes how a connection works when the server and client are on the same machine.

• Statement Pooling — describes how to store optimized statements in a cache the first time they are used.

Using Java with InterSystems Software 11

Optimization and Testing Options

3.4.1 JDBC Logging

If your applications encounter any problems, you can monitor by enabling logging. Run your application, ensuring that
you trigger the error condition, then check all the logs for error messages or any other unusual activity. The cause of the
error is often obvious.

Note: Enable logging only when you need to perform troubleshooting. You should not enable logging during normal
operation, because it will dramatically slow down performance.

To enable logging for JDBC when connecting to InterSystems IRIS, add a log file name to the end of your JDBC connection
string. When you connect, the driver will save a log file that will be saved to the working directory of the application.

For example, suppose your original connection string is as follows:

 jdbc:IRIS://127.0.0.1:1972/USER

To enable logging, change this to the following and then reconnect:

 jdbc:IRIS://127.0.0.1:1972/USER/myjdbc.log

This log records the interaction from the perspective of the InterSystems IRIS database.

If the specified log file already exists, new log entries will be appended to it by default. To delete the existing file and create
a new one, prefix the log file name with a plus character (+). For example, the following string would delete myjdbc.log

(if it exists) and create a new log file with the same name:

 jdbc:IRIS://127.0.0.1:1972/USER/+myjdbc.log

3.4.2 Shared Memory Connections

InterSystems IRIS uses a shared memory connection rather than TCP/IP when a Java application is running on the same
machine as an InterSystems IRIS server instance. This section explains how shared memory works, and how to disable it
for development and testing purposes.

Shared memory connections maximize performance by avoiding potentially expensive calls into the kernel network stack,
thus providing optimal low latency and high throughput for JDBC operations.

If a connection specifies server address localhost or 127.0.0.1, shared memory will be used by default. TCP/IP will
be used if the actual machine address is specified. The connection will automatically fall back to TCP/IP if the shared
memory device fails or is not available.

Shared memory can be disabled in the connection string by setting the SharedMemory property to false. The following
example creates a connection that will not use shared memory even though the server address is specified as 127.0.0.1:

 Properties props = new Properties();
 props.setProperty("SharedMemory", "false");
 props.setProperty("user", "_system");
 props.setProperty("password", "SYS");
 IRISConnection conn = (IRISConnection)DriverManager.getConnection("jdbc:IRIS://127.0.0.1:1972/USER/
 ",props);

Accessors DataSource.getSharedMemory() and DataSource.setSharedMemory() can be used to read and set the current
connection mode. The IRISConnection.isUsingSharedMemory() method can also be used to test the connection mode.

Shared memory is not used for TLS or Kerberos connections. The JDBC log will include information on whether a shared
memory connection was attempted and if it was successful (see “JDBC Logging”).

12 Using Java with InterSystems Software

Using the JDBC Driver

Note: Shared memory connections do not work across container boundaries
InterSystems does not currently support shared memory connections between two different containers. If a client
tries to connect across container boundaries using localhost or 127.0.0.1, the connection mode will default
to shared memory, causing it to fail. This applies regardless of whether the Docker --network host option is
specified. You can guarantee a TCP/IP connection between containers either by specifying the actual hostname
for the server address, or by disabling shared memory in the connection string (as demonstrated above).

Shared memory connections can be used without problems when the server and client are in the same container.

3.4.3 Statement Pooling

JDBC 4.0 adds an additional infrastructure, statement pooling, which stores optimized statements in a cache the first time
they are used. Statement pools are maintained by connection pools, allowing pooled statements to be shared between con-
nections. All the implementation details are completely transparent to the user, and it is up to the driver to provide the
required functionality.

InterSystems JDBC implemented statement pooling long before the concept became part of the JDBC specification. While
the InterSystems IRIS driver uses techniques similar to those recommended by the specification, the actual pooling imple-
mentation is highly optimized. Unlike most implementations, InterSystems JDBC has three different statement pooling
caches. One roughly corresponds to statement pooling as defined by the JDBC specification, while the other two are
InterSystems IRIS specific optimizations. As required, InterSystems JDBC statement pooling is completely transparent to
the user.

The InterSystems JDBC implementation supports Statement methods setPoolable() and isPoolable() as hints to whether
the statement in question should be pooled. InterSystems IRIS uses its own heuristics to determine appropriate sizes for all
three of its statement pools, and therefore does not support limiting the size of a statement pool by setting the maxStatements

property in IRISConnectionPoolDataSource. The optional javax.sql.StatementEventListener interface is unsupported (and
irrelevant) for the same reason.

Using Java with InterSystems Software 13

Optimization and Testing Options

4
Configuration and Requirements

To use the InterSystems JDBC driver, you should be familiar with the Java programming language and have some under-
standing of how Java is configured on your operating system. If you are performing custom configuration of the InterSystems
JDBC driver on UNIX®, you should also be familiar with compiling and linking code, writing shell scripts, and other such
tasks.

4.1 The InterSystems Java Class Packages
The main InterSystems Java class packages are contained in the following files (where <version> is a three-part package
version number such as 3.3.0):

• intersystems-jdbc-<version>.jar — the core JDBC jar file. All of the other files in this list are dependent on this file.

In addition to the core JDBC API, this file also includes the classes that implement the Native SDK (see Using the
Native SDK for Java).

• intersystems-xep-<version>.jar — required for XEP Java persistence applications (see Persisting Java Objects with
InterSystems XEP). Depends on the JDBC jar.

• intersystems-uima-<version>.jar — required for UIMA support (see Using InterSystems UIMA). Depends on the JDBC
jar.

There are separate versions of these files for each supported version of Java, located in subdirectories of
<install-dir>/dev/java/lib (for example, <install-dir>/dev/java/lib/JDK18 contains the files for Java 1.8).

You can determine the location of <install-dir> (the InterSystems IRIS root directory) for an instance of InterSystems IRIS
by opening the InterSystems terminal in that instance and issuing the following ObjectScript command:

 write $system.Util.InstallDirectory()

You can also download the latest versions of the JDBC and XEP class packages from the InterSystems IRIS Driver Packages
page.

Using Java with InterSystems Software 15

https://intersystems-community.github.io/iris-driver-distribution/

4.2 Client-Server Configuration
The Java client and InterSystems IRIS server may reside on the same physical machine or they may be located on different
machines. Only the InterSystems IRIS server machine requires a copy of InterSystems IRIS; client applications do not
require a local copy.

4.2.1 Java Client Requirements

The InterSystems IRIS Java client requires a supported version of the Java JDK. Client applications do not require a local
copy of InterSystems IRIS.

The InterSystems Supported Platforms document for this release specifies the current requirements for all Java-based client
applications. See the section on “Supported Java Technologies” for supported Java releases.

The core component of the Java binding is a file named intersystems-jdbc-3.2.0.jar, which contains the Java classes that
provide the connection and caching mechanisms for communication with the InterSystems IRIS server and JDBC connec-
tivity. Client applications do not require a local copy of InterSystems IRIS, but the intersystems-jdbc-3.2.0.jar file must be
on the class path of the application when compiling or using Java proxy classes. See “The InterSystems IRIS Java Class
Packages” for more information on these files.

4.2.2 InterSystems IRIS Server Configuration

Every Java client that wishes to connect to an InterSystems IRIS server needs a URL that provides the server IP address,
TCP port number, and InterSystems IRIS namespace, plus a username and password.

To run a Java or JDBC client application, make sure that your installation meets the following requirements:

• The client must be able to access a machine that is currently running a compatible version of the InterSystems IRIS
server (see the InterSystems Supported Platforms document for this release). The client and the server can be running
on the same machine.

• Your class path must include the version of intersystems-jdbc-3.n.n.jar that corresponds to the client version of the Java
JDK (see “The InterSystems IRIS Java Class Packages”).

• To connect to the InterSystems IRIS server, the client application must have the following information:

– The IP address of the machine on which the InterSystems IRIS Superserver is running. The Java sample programs
use the address of the server on the local machine (localhost or 127.0.0.1). If you want a sample program
to connect to a different system you will need to change its connection string and recompile it.

– The TCP port number on which the InterSystems IRIS Superserver is listening. The Java sample programs use
the default port (see “DefaultPort” in the Configuration Parameter File Reference). If you want a sample program
to use a different port you will need to change its connection string and recompile it.

– A valid SQL username and password. You can manage SQL usernames and passwords on the System Administration

> Security > Users page of the Management Portal. The Java sample programs use the administrator username,
"_SYSTEM" and the default password "SYS" or "sys". Typically, you will change the default password after
installing the server. If you want a sample program to use a different username and password you will need to
change it and recompile it.

– The server namespace containing the classes and data that your client application will use.

See “Establishing JDBC Connections” for detailed information on connecting to the InterSystems IRIS server.

16 Using Java with InterSystems Software

Configuration and Requirements

RACS_DefaultPort

4.2.3 Enabling the Transact SQL Dialect

By default, JDBC uses the InterSystems IRIS SQL dialect. You can change the dialect to support Transact SQL (TSQL)
dialects:

 connection.setSQLDialect(int);

or

 statement.setSQLDialect(int);

The available int options are 0 = InterSystems IRIS SQL (the default); 1 = MSSQL; 2 = Sybase.

You can also define the dialect in the driver properties.

When dialect > 0, the SQL statements prepared and or executed via JDBC are handled slightly differently on the server.
The statements are processed using the dialect specified, and then converted to InterSystems IRIS SQL and/or ObjectScript
statements.

Using Java with InterSystems Software 17

Client-Server Configuration

5
JDBC Fundamentals

JDBC needs no introduction for experienced Java database developers, but it can be very useful even if you only use Java
for occasional small utility applications. This section provides examples of some frequently used JDBC classes and methods
for querying databases and working with the results.

• A Simple JDBC Application is a complete but very simple application that demonstrates the basic features of JDBC.

• The following sections demonstrate how to use PreparedStatement and CallableStatement to query databases and return
a ResultSet:

– Executing a Prepared Statement — an example using implicit join syntax.

– Executing Stored Procedures with CallableStatement — an example that executes a stored procedure.

– Returning Multiple Result Sets — accessing multiple result sets returned by InterSystems IRIS stored procedures.

• The following sections demonstrate using JDBC result sets to insert and update data in a database:

– Inserting Data and Retrieving Generated Keys — using PreparedStatement and the SQL INSERT command.

– Scrolling a Result Set — randomly accessing any row of a result set.

– Using Transactions — using the JDBC transaction model to commit or roll back changes.

Note: In most cases, the examples in this section will be presented as fragments of code, rather than whole applications.
These examples demonstrate some basic features as briefly and clearly as possible, and are not intended to teach
good coding practices. The examples assume that a connection object named dbconnection has already been
opened, and that all code fragments are within an appropriate try/catch statement.

5.1 A Simple JDBC Application
This section describes a very simple JDBC application that demonstrates the use of some of the most common JDBC
classes:

• A IRISDataSource object is used to create a Connection object that links the JDBC application to the InterSystems IRIS
database.

• The Connection object is used to create a PreparedStatement object that can execute a dynamic SQL query.

• The PreparedStatement query returns a ResultSet object that contains the requested rows.

Using Java with InterSystems Software 19

• The ResultSet object has methods that can be used to move to a specific row and read or update specified columns in
the row.

All of these classes are discussed in more detail in the following sections.

The SimpleJDBC Application
To begin, import the JDBC packages and open a try block:

import java.sql.*;
import javax.sql.*;
import com.intersystems.jdbc.*;

public class SimpleJDBC{
 public static void main() {
 try {

// Use IRISDataSource to open a connection
 Class.forName ("com.intersystems.jdbc.IRISDriver").newInstance();
 IRISDataSource ds = new IRISDataSource();
 ds.setURL("jdbc:IRIS://127.0.0.1:1972/User");
 Connection dbconn = ds.getConnection("_SYSTEM","SYS");

// Execute a query and get a scrollable, updatable result set.
 String sql="Select Name from Demo.Person Order By Name";
 int scroll=ResultSet.TYPE_SCROLL_SENSITIVE;
 int update=ResultSet.CONCUR_UPDATABLE;
 PreparedStatement pstmt = dbconn.prepareStatement(sql,scroll,update);
 java.sql.ResultSet rs = pstmt.executeQuery();

// Move to the first row of the result set and change the name.
 rs.first();
 System.out.println("\n Old name = " + rs.getString("Name"));
 rs.updateString("Name", "Bill. Buffalo");
 rs.updateRow();
 System.out.println("\n New name = " + rs.getString("Name") + "\n");

// Close objects and catch any exceptions.
 pstmt.close();
 rs.close();
 dbconn.close();
 } catch (Exception ex) {
 System.out.println("SimpleJDBC caught exception: "
 + ex.getClass().getName() + ": " + ex.getMessage());
 }
 } // end main()
} // end class SimpleJDBC

5.2 Query Using a Prepared Statement
The following query uses a prepared statement to return a list of all employees with names beginning in “A” through “E”
who work for a company with a name starting in “M” through “Z”:

 Select ID, Name, Company->Name from Demo.Employee
 Where Name < ? and Company->Name > ?
 Order By Company->Name

Note: This statement uses Implicit Join syntax (the –> operator), which provides a simple way to access the Company

class referenced by Demo.Employee.

To implement the prepared statement:

20 Using Java with InterSystems Software

JDBC Fundamentals

• Create the string containing the query and use it to initialize the PreparedStatement object, then set the values of the
query parameters and execute the query:

 String sql=
 "Select ID, Name, Company->Name from Demo.Employee " +
 "Where Name < ? and Company->Name > ? " +
 "Order By Company->Name";
 PreparedStatement pstmt = dbconnection.prepareStatement(sql);

 pstmt.setString(1,"F");
 pstmt.setString(2,"L");
 java.sql.ResultSet rs = pstmt.executeQuery();

• Retrieve and display the result set:

 java.sql.ResultSet rs = pstmt.executeQuery();
 ResultSetMetaData rsmd = rs.getMetaData();
 int colnum = rsmd.getColumnCount();
 while (rs.next()) {
 for (int i=1; i<=colnum; i++) {
 System.out.print(rs.getString(i) + " ");
 }
 System.out.println();
 }

5.3 Query Using Stored Procedures with
CallableStatement
The following code executes ByName, an InterSystems IRIS stored procedure contained in Demo.Person:

• Create a java.sql.CallableStatement object and initialize it with the name of the stored procedure. The SqlName of the
procedure is SP_Demo_By_Name, which is how it must be referred to in the Java client code:

 String sql="call Demo.SP_Demo_By_Name(?)"
 CallableStatement cs = dbconnection.prepareCall(sql);

• Set the value of the query parameter and execute the query, then iterate through the result set and display the data:

 cs.setString(1,"A");
 java.sql.ResultSet rs = cs.executeQuery();

 ResultSetMetaData rsmd = rs.getMetaData();
 int colnum = rsmd.getColumnCount();
 while (rs.next()) {
 for (int i=1; i<=colnum; i++)
 System.out.print(rs.getString(i) + " ");
 }
 System.out.println();

Using Java with InterSystems Software 21

Query Using Stored Procedures with CallableStatement

5.4 Query Returning Multiple Result Sets
InterSystems IRIS allows you to define a stored procedure that returns multiple result sets. The InterSystems JDBC driver
supports the execution of such stored procedures. Here is an example of an InterSystems IRIS stored procedure that returns
two result sets (note that the two query results have different column structures):

 /// This class method produces two result sets.
 ClassMethod DRS(st) [ReturnResultsets, SqlProc]
 {
 $$$ResultSet("select Name from Demo.Person where Name %STARTSWITH :st")
 $$$ResultSet("select Name, DOB from Demo.Person where Name %STARTSWITH :st")
 Quit
 }

$$$ResultSet is a predefined InterSystems macro that prepares a SQL statement (specified as a string literal), executes it,
and returns the resultset.

The following code executes the stored procedure and iterates through both of the returned result sets:

• Create the java.sql.CallableStatement object and initialize it using the name of the stored procedure. Set the query
parameters and use execute to execute the query:

 CallableStatement cs = dbconnection.prepareCall("call Demo.Person_DRS(?)");
 cs.setString(1,"A");
 boolean success=cs.execute();

• Iterate through the pair of result sets displaying the data. After getResultSet retrieves the current result set,
getMoreResults closes it and moves to the CallableStatement object's next result set.

 if(success) do{
 java.sql.ResultSet rs = cs.getResultSet();
 ResultSetMetaData rsmd = rs.getMetaData();
 for (int j=1; j<rsmd.getColumnCount() + 1; j++)
 System.out.print(rsmd.getColumnName(j)+ "\t\t");
 System.out.println();
 int colnum = rsmd.getColumnCount();
 while (rs.next()) {
 for (int i=1; i<=colnum; i++)
 System.out.print(rs.getString(i) + " \t ");
 System.out.println();
 }
 System.out.println();
 } while (cs.getMoreResults());

5.5 Inserting Data and Retrieving Generated Keys
The following code inserts a new row into Demo.Person and retrieves the generated ID key.

• Create the PreparedStatement object, initialize it with the SQL string, and specify that generated keys are to be returned:

 String sqlIn="INSERT INTO Demo.Person (Name,SSN,DOB) " + "VALUES(?,?,?)";
 int keys=Statement.RETURN_GENERATED_KEYS;
 PreparedStatement pstmt = dbconnection.prepareStatement(sqlIn, keys);

22 Using Java with InterSystems Software

JDBC Fundamentals

• Set the values for the query parameters and execute the update:

 String SSN = Demo.util.generateSSN(); // generate a random SSN
 java.sql.Date DOB = java.sql.Date.valueOf("1984-02-01");

 pstmt.setString(1,"Smith,John"); // Name
 pstmt.setString(2,SSN); // Social Security Number
 pstmt.setDate(3,DOB); // Date of Birth
 pstmt.executeUpdate();

• Each time you insert a new row, the system automatically generates an object ID for the row. The generated ID key is
retrieved into a result set and displayed along with the SSN:

 java.sql.ResultSet rsKeys = pstmt.getGeneratedKeys();
 rsKeys.next();
 String newID=rsKeys.getString(1);
 System.out.println("new ID for SSN " + SSN + " is " + newID);

Although this code assumes that the ID will be the first and only generated key in rsKeys, this is not always a safe
assumption in real life.

• Retrieve the new row by ID and display it (Age is a calculated value based on DOB).

 String sqlOut="SELECT IName,Age,SSN FROM Demo.Person WHERE ID="+newID;
 pstmt = dbconnection.prepareStatement(sqlOut);
 java.sql.ResultSet rsPerson = pstmt.executeQuery();

 int colnum = rsPerson.getMetaData().getColumnCount();
 rsPerson.next();
 for (int i=1; i<=colnum; i++)
 System.out.print(rsPerson.getString(i) + " ");
 System.out.println();

5.6 Scrolling a Result Set
The InterSystems JDBC driver supports scrollable result sets, which allow your Java applications to move both forward
and backward through the resultset data. The prepareStatement() method uses following parameters to determine how
the result set will function:

• The resultSetType parameter determines how changes are displayed:

– ResultSet.TYPE_SCROLL_SENSITIVE creates a scrollable result set that displays changes made to the underlying
data by other processes.

– ResultSet.TYPE_SCROLL_INSENSITIVE creates a scrollable result set that only displays changes made by the
current process.

• The resultSetConcurrency parameter must be set to ResultSet.CONCUR_UPDATABLE if you intend to update the result
set.

The following code creates and uses a scrollable result set:

• Create a PreparedStatement object, set the query parameters, and execute the query:

 String sql="Select Name, SSN from Demo.Person "+
 " Where Name > ? Order By Name";
 int scroll=ResultSet.TYPE_SCROLL_SENSITIVE;
 int update=ResultSet.CONCUR_UPDATABLE;

 PreparedStatement pstmt = dbconnection.prepareStatement(sql,scroll,update);
 pstmt.setString(1,"S");
 java.sql.ResultSet rs = pstmt.executeQuery();

Using Java with InterSystems Software 23

Scrolling a Result Set

A result set that is going to have new rows inserted should not include the InterSystems IRIS ID column. ID values
are defined automatically by InterSystems IRIS.

• The application can scroll backwards as well as forwards through this result set. Use afterLast to move the result set's
cursor to after the last row. Use previous to scroll backwards.

 rs.afterLast();
 int colnum = rs.getMetaData().getColumnCount();
 while (rs.previous()) {
 for (int i=1; i<=colnum; i++)
 System.out.print(rs.getString(i) + " ");
 System.out.println();
 }

• Move to a specific row using absolute. This code displays the contents of the third row:

 rs.absolute(3);
 for (int i=1; i<=colnum; i++)
 System.out.print(rs.getString(i) + " ");
 System.out.println();

• Move to a specific row relative to the current row using relative. The following code moves to the first row, then
scrolls down two rows to display the third row again:

 rs.first();
 rs.relative(2);
 for (int i=1; i<=colnum; i++)
 System.out.print(rs.getString(i) + " ");
 System.out.println();

• To update a row, move the cursor to that row and update the desired columns, then invoke updateRow:

 rs.last();
 rs.updateString("Name", "Avery. Tara R");
 rs.updateRow();

• To insert a row, move the cursor to the “insert row” and then update that row's columns. Be sure that all non-nullable
columns are updated. Finally, invoke insertRow:

 rs.moveToInsertRow();
 rs.updateString(1, "Abelson,Alan");
 rs.updateString(2, Demo.util.generateSSN()));
 rs.insertRow();

5.7 Using Transactions
The InterSystems JDBC driver supports the standard JDBC transaction model.

• In order to group SQL statements into a transaction, you must first disable autocommit mode using setAutoCommit():

 dbconnection.setAutoCommit(false);

• Use commit() to commit to the database all SQL statements executed since the last execution of commit() or rollback:

 pstmt1.execute();
 pstmt2.execute();
 pstmt3.execute();
 dbconnection.commit();

24 Using Java with InterSystems Software

JDBC Fundamentals

• Use rollback() to roll back all of the transactions in a transactions. Here the rollback() is invoked if SQLException is
thrown by any SQL statement in the transaction:

 catch(SQLException ex) {
 if (dbconnection != null) {
 try {
 dbconnection.rollback();
 } catch (SQLException excep){
 // (handle exception)
 }
 }
 }

Here is a brief summary of the java.sql.Connection methods used in this example:

• setAutoCommit()

By default Connection objects are in autocommit mode. In this mode an SQL statement is committed as soon as it is
executed. To group multiple SQL statements into a transaction, first use setAutoCommit(false) to take the
Connection object out of autocommit mode. Use setAutoCommit(true) to reset the Connection object to autocommit
mode.

• commit()

Executing commit() commits all SQL statements executed since the last execution of either commit() or rollback().
Note that no exception will be thrown if you call commit() without first setting autocommit to false.

• rollback()

Executing rollback aborts a transaction and restores any values changed by the transaction back to their original state.

Note: The Native SDK for Java transaction model
The Native SDK for Java offers an alternative to the java.sql transaction model demonstrated here. The Native
SDK transaction model is based on ObjectScript transaction methods, and is not interchangeable with the JDBC
model. The Native SDK model must be used if your transactions include Native SDK method calls. See Using
the Native SDK for Java for details.

Using Java with InterSystems Software 25

Using Transactions

6
JDBC Quick Reference

This chapter is a quick reference for the following extended classes and options:

• Class ConnectionPoolDataSource — methods related to InterSystems connection pooling.

• Class IRISDataSource — InterSystems-specific connection properties.

• Connection Parameter Options — lists connection parameters that can be used in properties files.

Note: This reference lists only the extension methods and variants discussed elsewhere in this document. See “JDBC
Driver Support” in the Implementation Reference for Java Third Party APIs for a complete description of all
InterSystems JDBC driver features, including extensions, variants, and implementation of optional JDBC features.

6.1 Class ConnectionPoolDataSource
The com.intersystems.jdbc.ConnectionPoolDataSource class fully implements the javax.sql.ConnectionPoolDataSource

interface, and also includes the following set of extension methods to control InterSystems IRIS connection pooling. For
more information, see “Using IRISConnectionPoolDataSource Methods”.

getConnectionLifetime()

ConnectionPoolDataSource.getConnectionLifetime() returns the connection lifetime in seconds (also see
setConnectionLifetime()).

int getConnectionLifetime()

getConnectionWaitTimeout()

ConnectionPoolDataSource.getConnectionWaitTimeout() returns the number of seconds that a Connection Pool
Manager will wait for any connections to become available (also see setConnectionWaitTimeout()).

int getConnectionWaitTimeout()

getMaxPoolSize()

ConnectionPoolDataSource.getMaxPoolSize() returns an int representing the current maximum connection pool
size (also see setMaxPoolSize()).

int getMaxPoolSize()

Using Java with InterSystems Software 27

getMinPoolSize()

ConnectionPoolDataSource.getMinPoolSize() returns an int representing the current minimum connection pool
size (also see setMinPoolSize()).

int getMinPoolSize()

getPoolCount()

ConnectionPoolDataSource.getPoolCount() returns an int representing the current number of entries in the connection
pool. Throws SQLException.

int getPoolCount()

getPooledConnection()

Always use IRISDataSource.getConnection() instead of this method.

Do not call this method
ConnectionPoolDataSource.getPooledConnection() is required by the interface, but should never be invoked
directly. The InterSystems JDBC driver controls connection pooling transparently.

InterSystems JDBC driver connections must always be obtained by calling the getConnection() method of
IRISDataSource, which is enhanced to provide automatic, transparent connection pooling. The
ConnectionPoolDataSource.getPooledConnection() methods are implemented because they are required by the
JDBC standard, but they should never be called directly.

getValidateOnConnect()

ConnectionPoolDataSource.getValidateOnConnect() returns the PingOnConnect setting for the DataSource
(also see setValidateOnConnect()).

boolean getValidateOnConnect()

restartConnectionPool()

ConnectionPoolDataSource.restartConnectionPool() restarts a connection pool. Closes all physical connections,
and empties the connection pool. Throws SQLException.

void restartConnectionPool()

setMaxPoolSize()

ConnectionPoolDataSource.setMaxPoolSize() sets a maximum connection pool size. If the maximum size is not
set, it defaults to 40 (also see getMaxPoolSize()).

void setMaxPoolSize(int max)

• max — optional maximum connection pool size (default 40).

setMinPoolSize()

ConnectionPoolDataSource.setMinPoolSize() sets a minimum connection pool size (also see getMinPoolSize()).
Defaults to 0.

void setMinPoolSize(int min)

• min — optional minimum connection pool size (default 0).

28 Using Java with InterSystems Software

JDBC Quick Reference

setConnectionWaitTimeout()

ConnectionPoolDataSource.setConnectionWaitTimeout() sets the connection wait timeout interval to the specified
number of seconds (also see getConnectionWaitTimeout()). Defaults to 0.

void setConnectionWaitTimeout(int timeout)

• timeout — timeout interval in seconds (defaults to 0).

If no connections are available after the timout period expires, an exception is thrown. Defaults to 0, indicating
that the connection will either be immediately made available, or an exception will be thrown indicating that the
pool is full.

setConnectionLifetime()

ConnectionPoolDataSource.setConnectionLifetime() sets the connection lifetime value in seconds (also see
getConnectionLifetime()). Default is 0 (no limit).

void setConnectionLifetime(int conLifeTime)

• conLifeTime — lifetime in seconds

setValidateOnConnect()

ConnectionPoolDataSource.setValidateOnConnect() sets the current PingOnConnect setting for the DataSource
(also see getValidateOnConnect()). Default is true.

boolean setValidateOnConnect(boolean p)

• p — new PingOnConnect setting

6.2 Class IRISDataSource
The com.intersystems.jdbc.IRISDataSource class fully implements the javax.sql.DataSource interface, and also includes
numerous extension methods for getting or setting InterSystems IRIS connection properties (see “Connection Parameter
Options” for more information).

IRISDataSource does not inherit the methods of javax.sql.CommonDataSource, which is not supported by the InterSystems
JDBC driver.

getConnection()

Required Method with Extended Functionality
Required method IRISDataSource.getConnection() returns a java.sql.Connection. Throws SQLException.

This method must always be used to obtain InterSystems IRIS driver connections. The InterSystems IRIS driver
also provides pooling transparently through the java.sql.Connection object that getConnection() returns.

java.sql.Connection getConnection()
java.sql.Connection getConnection(String usr,String pwd)

• usr — optional username argument for this connection.

• pwd — optional password argument for this connection.

Using Java with InterSystems Software 29

Class IRISDataSource

This method provides pooling, and must always be used in place of getPooledConnection() and the methods of
the PooledConnection class (see “Class ConnectionPoolDataSource” for more information).

getConnectionSecurityLevel()

IRISDataSource.getConnectionSecurityLevel() returns an int representing the current Connection Security Level
setting. Also see setConnectionSecurityLevel().

int getConnectionSecurityLevel()

getDatabaseName()

IRISDataSource.getDatabaseName() returns a String representing the current database (InterSystems IRIS
namespace) name. Also see setDatabaseName().

String getDatabaseName()

getDataSourceName()

IRISDataSource.getDataSourceName() returns a String representing the current data source name. Also see
setDataSourceName().

String getDataSourceName()

getDefaultTransactionIsolation()

IRISDataSource.getDefaultTransactionIsolation() returns an int representing the current default transaction iso-
lation level. Also see setDefaultTransactionIsolation().

int getDefaultTransactionIsolation()

getDescription()

IRISDataSource.getDescription() returns a String representing the current description. Also see setDescription().

String getDescription()

getEventClass()

IRISDataSource.getEventClass() returns a String representing an Event Class object. Also see setEventClass().

String getEventClass()

getKeyRecoveryPassword()

IRISDataSource.getKeyRecoveryPassword() returns a String representing the current Key Recovery Password
setting. Also see setKeyRecoveryPassword().

String getKeyRecoveryPassword()

getNodelay()

IRISDataSource.getNodelay() returns a Boolean representing a current TCP_NODELAY option setting. Also see
setNodelay().

boolean getNodelay()

getPassword()

IRISDataSource.getPassword() returns a String representing the current password. Also see setPassword().

String getPassword()

30 Using Java with InterSystems Software

JDBC Quick Reference

getPortNumber()

IRISDataSource.getPortNumber() returns an int representing the current port number. Also see setPortNumber().

int getPortNumber()

getServerName()

IRISDataSource.getServerName() returns a String representing the current server name. Also see setServerName().

String getServerName()

getServicePrincipalName()

IRISDataSource.getServicePrincipalName() returns a String representing the current Service Principal Name
setting. Also see setServicePrincipalName().

String getServicePrincipalName()

getSharedMemory()

IRISDataSource.getSharedMemory() returns a Boolean indicating whether the connection is using shared memory.
Also see setSharedMemory().

Boolean getSharedMemory()

getSQLDialect()

IRISDataSource.getSQLDialect() returns an int representing the current SQL Dialect setting (also see
setSQLDialect()).

int getSQLDialect()

getSSLConfigurationName()

IRISDataSource.getSSLConfigurationName() returns a String representing the current TLS Configuration Name
setting. Also see setSSLConfigurationName().

String getSSLConfigurationName()

getTransactionIsolationLevel()

IRISDataSource.getTransactionIsolationLevel() returns the current Transaction Isolation Level (also see
setTransactionIsolationLevel()).

int getTransactionIsolationLevel()

getURL()

IRISDataSource.getURL() returns a String representing the current URL for this datasource. Also see setURL().

String getURL()

getUser()

IRISDataSource.getUser() returns a String representing the current username. Also see setUser().

String getUser()

Using Java with InterSystems Software 31

Class IRISDataSource

setConnectionSecurityLevel()

IRISDataSource.setConnectionSecurityLevel() sets the connection security level for this datasource. Also see
getConnectionSecurityLevel().

void setConnectionSecurityLevel(int level)

• level — connection security level number. See the connection security level entry in “Connection Parameter
Options” for permitted values.

setDatabaseName()

IRISDataSource.setDatabaseName() sets the database name (InterSystems IRIS namespace) for this datasource.
Also see getDatabaseName().

void setDatabaseName(String databaseName)

• databaseName — InterSystems IRIS namespace string.

setDataSourceName()

IRISDataSource.setDataSourceName() sets the data source name for this datasource. DataSourceName is an
optional setting and is not used to connect. Also see getDataSourceName().

void setDataSourceName(String dataSourceName)

• dataSourceName — data source name string.

setDefaultTransactionIsolation()

IRISDataSource.setDefaultTransactionIsolation() sets the default transaction isolation level. Also see
getDefaultTransactionIsolation().

void setDefaultTransactionIsolation(int level)

• level — default transaction isolation level number.

setDescription()

IRISDataSource.setDescription() sets the description for this datasource. Description is an optional setting
and is not used to connect. Also see getDescription().

void setDescription(String desc)

• desc — datasource description string.

setEventClass()

IRISDataSource.setEventClass() sets the Event Class for this datasource. The Event Class is a mechanism specific
to InterSystems IRIS JDBC. It is completely optional, and the vast majority of applications will not need this
feature. Also see getEventClass().

void setEventClass(String eventClassName)

• eventClassName — name of transaction event class.

32 Using Java with InterSystems Software

JDBC Quick Reference

The InterSystems JDBC server will dispatch to methods implemented in a class when a transaction is about to be
committed and when a transaction is about to be rolled back. The class in which these methods are implemented
is referred to as the “event class.” If an event class is specified during login, then the JDBC server will dispatch
to %OnTranCommit just prior to committing the current transaction and will dispatch to %OnTranRollback
just prior to rolling back (aborting) the current transaction. User event classes should extend %ServerEvent. The
methods do not return any values and cannot abort the current transaction.

setKeyRecoveryPassword()

IRISDataSource.setKeyRecoveryPassword() sets the Key Recovery Password for this datasource. Also see
getKeyRecoveryPassword().

void setKeyRecoveryPassword(String password)

• password — datasource Key Recovery Password string.

setLogFile()

IRISDataSource.setLogFile() unconditionally sets the log file name for this datasource.

void setLogFile(String logFile)

• logFile — datasource log file name string.

setNodelay()

IRISDataSource.setNodelay() sets the TCP_NODELAY option for this datasource. Toggling this flag can affect the
performance of the application. If not set, it defaults to true. Also see getNodelay().

void setNodelay(boolean noDelay)

• noDelay — optional datasource TCP_NODELAY setting (defaults to true).

setPassword()

IRISDataSource.setPassword() sets the password for this datasource. Also see getPassword().

void setPassword(String pwd)

• pwd — datasource password string.

setPortNumber()

IRISDataSource.setPortNumber() sets the port number for this datasource. Also see getPortNumber().

void setPortNumber(int portNumber)

• portNumber — datasource port number.

setServerName()

IRISDataSource.setServerName() sets the server name for this datasource. Also see getServerName().

void setServerName(String serverName)

• serverName — datasource server name string.

Using Java with InterSystems Software 33

Class IRISDataSource

setServicePrincipalName()

IRISDataSource.setServicePrincipalName() sets the Service Principal Name for this datasource. Also see
getServicePrincipalName().

void setServicePrincipalName(String name)

• name — datasource Service Principal Name string.

setSharedMemory()

IRISDataSource.setSharedMemory() sets shared memory connections for this datasource. Also see
getSharedMemory().

void setSharedMemory(Boolean sharedMemory)

• sharedMemory — on = 0, off = 1

setSQLDialect()

IRISDataSource.setSQLDialect() sets the current SQL Dialect (also see getSQLDialect()). Throws SQLException

if dialect is not 0, 1, or 2.

void setSQLDialect(int dialect) throws SQLException

• dialect — an int representing the current SQL Dialect. Permitted values are 0, 1, and 2.

setSSLConfigurationName()

IRISDataSource.setSSLConfigurationName() sets the TLS Configuration Name for this datasource. Also see
getSSLConfigurationName().

void setSSLConfigurationName(String name)

• name — TLS Configuration Name string.

setTransactionIsolationLevel()

IRISDataSource.setTransactionIsolationLevel() sets the current Transaction Isolation Level (also see
getTransactionIsolationLevel()). Throws SQLException if level is not 1, 2, or 32.

void setTransactionIsolationLevel(int level) throws SQLException

• level — int indicating the level. Permitted values are 1, 2, and 32.

setURL()

IRISDataSource.setURL() sets the URL for this datasource. Also see getURL().

void setURL(String u)

• u — URL string.

34 Using Java with InterSystems Software

JDBC Quick Reference

setUser()

IRISDataSource.setUser() sets the username for this datasource. Also see getUser().

void setUser(String username)

• username — username string.

6.3 Connection Parameter Options
This section lists and describes the connection properties provided by jdbc.IRISDataSource (the InterSystems implementation
of javax.sql.DataSource). Connection properties can be set by passing them to DriverManager (as described in “Using
DriverManager to Connect”) or calling connection property accessors (see “Class IRISDataSource” for a complete list).

The following connection properties are supported:

connection security level

Optional. Integer indicating Connection Security Level. Valid levels are 0, 1, 2, 3, or 10. Default = 0.

0 - Instance Authentication (Password)

1 - Kerberos (authentication only)

2 - Kerberos with Packet Integrity

3 - Kerberos with Encryption

10 - TLS

See IRISDataSource methods getConnectionSecurityLevel() and setConnectionSecurityLevel().

host

Optional. String specifying the SERVER IP address or host name.

Connection parameter host — IP address or Fully Qualified Domain Name (FQDN). For example, both 127.0.0.1
and localhost indicate the local machine.

See DataSource methods getServerName() and setServerName().

key recovery password

Optional. String containing current Key Recovery Password setting. Default = null. See IRISDataSource methods
getKeyRecoveryPassword() and setKeyRecoveryPassword().

password

Required. String containing password. Default = null. See IRISDataSource methods getPassword() and
setPassword()

port

Optional. Integer specifying the TCP/IP port number for the connection.

Connection parameter port— TCP port number on which the InterSystems IRIS SuperServer is listening. The
default is 1972 (or the first available number higher than that if more than one instance of InterSystems IRIS is
installed — see DefaultPort in the Parameter File Reference).

Using Java with InterSystems Software 35

Connection Parameter Options

See DataSource methods getPortNumber() and setPortNumber().

service principal name

Optional. String indicating Service Principal Name. Default = null. See IRISDataSource methods
getServicePrincipalName() and setServicePrincipalName()

SharedMemory

Optional. Boolean indicating whether or not to always use shared memory for localhost and 127.0.0.1.
Default = null. See IRISDataSource methods getSharedMemory() and setSharedMemory(). Also see “Shared
Memory Connections”.

SO_RCVBUF

Optional. Integer indicating TCP/IP SO_RCVBUF value (ReceiveBufferSize). Default = 0 (use system default
value).

SO_SNDBUF

Optional. Integer indicating TCP/IP SO_SNDBUF value (SendBufferSize). Default = 0 (use system default value).

TLS configuration name

Optional. String containing current TLS Configuration Name for this object. Default = null. See IRISDataSource

methods getSSLConfigurationName() and setSSLConfigurationName().

TCP_NODELAY

Optional. Boolean indicating TCP/IP TCP_NODELAY flag (Nodelay). Default = true.

Connection parameter nodelay — sets the TCP_NODELAY option if connecting via a IRISDataSource object.
Toggling this flag can affect the performance of the application. Valid values are true and false. If not set, it
defaults to true.

See IRISDataSource methods getNodelay() and setNodelay()

TransactionIsolationLevel

Optional. A java.sql.Connection constant indicating Transaction Isolation Level. Valid values are
TRANSACTION_READ_UNCOMMITTED or TRANSACTION_READ_COMMITTED. Default = null (use system
default value TRANSACTION_READ_UNCOMMITTED).

See IRISDataSource methods getTransactionIsolationLevel() and setTransactionIsolationLevel()

user

Required. String containing username. Default = null. See IRISDataSource methods getUser() and setUser()

6.3.1 Listing Connection Properties

Code similar to the following can be used to list the available properties for any compliant JDBC driver:

 java.sql.Driver drv = java.sql.DriverManager.getDriver(url);
 java.sql.Connection dbconnection = drv.connect(url, user, password);
 java.sql.DatabaseMetaData meta = dbconnection.getMetaData();
 System.out.println ("\n\n\nDriver Info: ==========================");
 System.out.println (meta.getDriverName());
 System.out.println ("release " + meta.getDriverVersion() + "\n");

 java.util.Properties props = new Properties();
 DriverPropertyInfo[] info = drv.getPropertyInfo(url,props);

36 Using Java with InterSystems Software

JDBC Quick Reference

 for(int i = 0; i <info.length; i++) {
 System.out.println ("\n" + info[i].name);
 if (info[i].required) {System.out.print(" Required");}
 else {System.out.print (" Optional");}
 System.out.println (", default = " + info[i].value);
 if (info[i].description != null)
 System.out.println (" Description:" + info[i].description);
 if (info[i].choices != null) {
 System.out.println (" Valid values: ");
 for(int j = 0; j < info[i].choices.length; j++)
 System.out.println(" " + info[i].choices[j]);
 }
 }

Using Java with InterSystems Software 37

Connection Parameter Options

	Table of Contents
	1 Java with InterSystems Overview
	2 InterSystems Java Connectivity Options
	2.1 Core Data Access SDKs
	2.2 InterSystems External Servers
	2.3 InterSystems SQL Gateway
	2.4 Third Party Framework Support

	3 Using the JDBC Driver
	3.1 Establishing JDBC Connections
	3.1.1 Defining a JDBC Connection URL
	3.1.2 Using IRISDataSource to Connect
	3.1.3 Using DriverManager to Connect

	3.2 Using Column-wise Binding for Bulk Inserts
	3.3 Connection Pooling
	3.3.1 Using IRISConnectionPoolDataSource Methods

	3.4 Optimization and Testing Options
	3.4.1 JDBC Logging
	3.4.2 Shared Memory Connections
	3.4.3 Statement Pooling

	4 Configuration and Requirements
	4.1 The InterSystems Java Class Packages
	4.2 Client-Server Configuration
	4.2.1 Java Client Requirements
	4.2.2 InterSystems IRIS Server Configuration
	4.2.3 Enabling the Transact SQL Dialect

	5 JDBC Fundamentals
	5.1 A Simple JDBC Application
	5.2 Query Using a Prepared Statement
	5.3 Query Using Stored Procedures with CallableStatement
	5.4 Query Returning Multiple Result Sets
	5.5 Inserting Data and Retrieving Generated Keys
	5.6 Scrolling a Result Set
	5.7 Using Transactions

	6 JDBC Quick Reference
	6.1 Class ConnectionPoolDataSource
	6.2 Class IRISDataSource
	6.3 Connection Parameter Options
	6.3.1 Listing Connection Properties

	Index

