InterSystems-

IRIS Data Platform

Using the Native SDK for Java

Version 2024.1
2024-07-02

Using the Native SDK for Java

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Introduction to the Java Native SDK ...t 1
2 Calling ObjectScript Methods and FUNCLIONS frOmM JAVAccoveeereerieereeseeseese e 3
2.1 Class MEthOU CallSeviiiieieiii sttt st st sae e seenee e naeneeneenens 3

2.2 FUNCLION CaIIS ..ottt bbbt bbbtk sttt b bbb 5

2.3 Calling Class Library MethOOSccceiverieieiiiieisiese e ne s 6
2.3.1 Using Pass-by-reference ArgUMENTSccoiiveveiieeieiieseseesieseesie e sreseesreesnesreesaesseeseens 6

2.3.2 Catching %Status ErrOr COUEScciieriirierie ettt e 7

3 USINg Java | NVEr SE PrOXY ODJECLS ...oviuirietirieiirietirieerie ettt 9
3.1 Introducing EXIEMNAl SEIVELSciiiiiiiiiiiiieeet bbb 9

3.2 Creating an INVerse ProXy ODJECTviiviiierereiirieeseeseeee s sre sttt sne e seeneens 10

3.3 Controlling a Target ODJECToviicieice et 10

3.4 IRISODbject SUPPOITEd DAtatYPEScoververieiereeieiieiee ettt sttt sttt sre e sbe s 11

A WOrking With GIODAI ATTAYSoiuiieiiee ettt sbe b e e 13
4.1 Introduction t0 GIODEI AITAYSc.civeiirieiiiiiieeiese e ere e 13
4.1.1 Glossary of Native SDK TEIMScueiieirieiiirieieneesiee sttt 15

4.1.2 Global NamiNg RUIESccvieiiiireie et resne e 16

4.2 Creating, Accessing, and Deleting NOUESc.ccvevieiiiiriesese e 16
4.2.1 Creating Nodes and Setting Node ValUescccocveiiiiiie e 17

4.2.2 Getting NOGE ValUESccuoiiiiiiiitiie ittt bbb bbb e 17

4.2.3 DEIEING NOUES ..ottt bbb bbbt n e 18

4.3 Finding Nodes iN @ GIODAI ATTAYoveuiriiiieieeie s 18
4.3.1 Iterating Over a Set 0f Child NOGESccevvevieicieeee e e 19

4.3.2 Finding SUbnodes 0N All LEVEISccoceveiiiircie et 20

4.4 Class IRIS SUPPOIrted DAtatYPESecververierierieierieeeiiei ettt sr bbb s e 21
5TransactionS @Nd LOCKINGcueoueieieeieeeireeeriene sttt et s e e sbe b saesbesbesaeseesbeseeseens 23
5.1 Controlling TraNSACTIONSc..ceiveiiieiiteirieri ettt sttt eb et 23

5.2 CONCUITENCY CONIOI 1.eviieiiiiiiiete bbb bbb 24

6 Java Native SDK QUICK REFEIENCEcviiiriiiriecrtese sttt s 27
B.1 ClaSS IRIS ...ttt ettt b e bbb et et b e 27
6.1.1 IRIS MEthOd DELAIISccuiiiiriiiiiiiiiie ittt sne 27

6.2 ClaSS IRISITEIATON ...iuveeeeiieeeeeet ettt bbbttt ettt b e bbb bbb e 40
6.2.1 IRISIterator Method DEtailsc.ccociiiiiiiiiiineie et 40

6.3 ClAaSS TRISLIST ..uveuveeeieeietieeee ettt ettt et stesteseesbe st seese e e eneenenneaneanens 41
6.3.1 IRISLISt CONSIIUCTONS ..ecviietiieieseeiesieie ettt sttt et sttt s sb e 41

6.3.2 IRISList Method DetailScccveeiiiiiiirieiirice st 42

R O R T] o] T SRR 46
6.4.1 IRISODbject Method Detailscccooireririiieiieeeieee e 47

Using the Native SDK for Java

List of Figures

Figure 3-1: External Server connection

Using the Native SDK for Java

Introduction to the Java Native SDK

See the Table of Contents for a detailed listing of the subjects covered in this document. See the Java Native SDK Quick
Reference for a brief description of Native SDK classes and methods.

The InterSystems Native SDK for Java is a lightweight interface to powerful InterSystems IRIS® resources that were once
available only through ObjectScript:

» Call ObjectScript Methods and Functions — call any embedded language classmethod from your Java application as
easily as you can call native Java methods.

» Manipulate Embedded Language Objects — use Java proxy objects to control embedded language class instances.
Call instance methods and get or set property values as if the instances were native Java objects.

» Work with Global Arrays — directly access globals, the tree-based sparse arrays used to implement the InterSystems
multidimensional storage model.

» Use InterSystems Transactions and Locking — use Native SDK implementations of ObjectScript transactions and
locking methods to work with InterSystems databases.

Important: To use the Native SDK for Java, you must download the Java connection package as described in Connection
Tools.

Native SDKs for other languages
Versions of the Native SDK are also available for .NET, Python, and Node.js:

e Using the Native SDK for .NET
» Using the Native SDK for Python
e Using the Native SDK for Nodejs

More information about globals
To learn more about globals, see the following:

* InterSystems |IRISBasics: Globals and Multi-Model Data Access — Explains what globals are and how they can be
accessed using a relational model, using an object model, or directly.

» Exploring Multiple Data Models with Globals — Provides an online hands-on exercise that lets you try accessing
globals in all three ways.

» Using Globals— Describes how to use globals in ObjectScript, and provides more information about how multidimen-
sional storage is implemented on the server.

Using the Native SDK for Java 1

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_extconnex
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_extconnex
https://learning.intersystems.com/course/view.php?name=QSGlobals

Calling ObjectScript Methods and
Functions from Java

This chapter describes methods of class IRIS that allow you to call ObjectScript class methods and user-defined functions
directly from your Java application. See the following sections for details and examples:

e Class Method Calls — demonstrates how to call ObjectScript class methods.
e Function Calls — demonstrates how to call user defined ObjectScript functions and procedures.

e Calling Class Library Methods — demonstrates how to pass arguments by reference and check %Status codes.

2.1 Class Method Calls

The following methods of class IRIS call ObjectScript class methods, returning values of the type indicated by the method
name: classM ethodBoolean(), classM ethodBytes(), classM ethodDoubl (), classM ethodl RI SList(), classM ethodL ong(),
classM ethodObj ect(), classM ethodString(), and classM ethodVoid(). You can also use classM ethodStatusCode() to
retrieve error messages from class methods that return ObjectScript %Status (see “Catching %Status Error Codes™).

All of these methods take String arguments for className and methodName, plus O or more method arguments, which may
be any of the following types: Integer, Short, String, Long, Double, Float, byte[], Boolean, Time, Date, Timestamp, IRISList,
or IRISObject. If the connection is bidirectional (see *Using Java Inverse Proxy Objects”), then any Java object can be
used as an argument. See “Class IRIS Supported Datatypes” for more information about how the Native SDK handles
these datatypes.

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments, or by
passing nul 1 for trailing arguments. An exception will be thrown if a non-null argument is passed to the right of a null
argument.

Calling ObjectScript class methods

The code in this example calls class methods of each supported datatype from ObjectScript test class User.NativeTest
(listed immediately after the example). Assume that variable irigv is a previously defined instance of class IRIS
and is currently connected to the server.

String className = "User_NativeTest";
String comment = """

comment = "cmBoolean() tests whether two numbers are equal (true=1,false=0): ";
boolean boolVal = irisjv.classMethodBoolean(className, ' cmBoolean",7,7);

Using the Native SDK for Java 3

Calling ObjectScript Methods and Functions from Java

System.out.printIn(comment+boolVval);

comment = "cmBytes creates byte array [72,105,33]. String value of array: ";
byte[] byteval = irisjv.classMethodBytes(className, ' cmBytes',72,105,33);

System.out.printin(comment+(new String(byteval)));

comment = "cmString() concatenates \"Hello\" + arg: "';

String stringval = irisjv. classMethodStrlng(className ‘cmString',"World™);

System.out._printin(comment+stringval);

comment = "cmLong() returns the sum of two numbers: *';

Long longval = irisjv.classMethodLong(className, "cmLong" 7,8);
System.out.printIn(comment+longval);

comment = "cmDoubIe() multiplies a number by 1.5: *;

Double doubleval = irisjv. cIassMethodDoubIe(className ‘cmDouble™,10);

System.out.printin(comment+doubleval);

comment = "cmProcedure assigns a value to global node ~cmGlobal:
irisjv.classMethodVoid(className, "cmVoid",67);

// Read global array ~cmGlobal and then delete it
System.out.printIn(comment+irisjv.getinteger(“'~cmGlobal'));
irisjv_kill("*cmGlobal™);

comment = "cmList() returns a $LIST containing two values: ";

IRISList listVal = irisjv.classMethodList(className,"cmList","The answer is ",42);

System.out.printIn(comment+listVal.get(1)+listVal.get(2));

ObjectScript Class User.NativeTest

To run the previous example, this ObjectScript class must be compiled and available on the server:

Class Definition

Class User.NativeTest Extends %Persistent
{
ClassMethod cmBoolean(cml As %lInteger, cm2 As %lInteger) As %Boolean

Quit (cml=cm2)

ClassMethod cmBytes(cml As %Integer, cm2 As %Integer, cm3 As %Integer) As %Binary

Quit $CHAR(cml,cm2,cm3)
ClassMethod cmString(cml As %String) As %String
Quit "Hello " _cml
%IassMethod cmLong(cml As %Integer, cm2 As %Integer) As %Integer
Quit cml+cm2
%IassMethod cmDouble(cml As %Double) As %Double
Quit cml * 1.5
%IassMethod cmVoid(cml As %Integer)

Set ~cmGlobal=cml
Quit ~cmGlobal

e
ClassMethod cmList(cml As %String, cm2 As %Integer)

Set list = $LISTBUILD(cml,cm2)
Quit list

1
3
You can test these methods by calling them from the Terminal. For example:

USER>write ##class(User._NativeTest).cmString(*World™)
Hello World

Using the Native SDK for Java

Function Calls

2.2 Function Calls

Function calls are similar to method calls, but the arguments are in a different order. The function label is specified first,
followed by the name of the routine that contains it. This corresponds to the order used in ObjectScript, where function
calls have the following form :

set result = $$myFunctionLabel”~myRoutineName([arguments])

Functions are supported because they are necessary for older code bases (see “Callable User-defined Code Modules” in
Using ObjectScript), but new code should always use method calls if possible. ObjectScript also provides a special keyword
to create method wrappers around existing routines without losing efficiency; set the CodeMode keyword equal to cal .

The Native SDK methods in this section call user-defined ObjectScript functions or procedures and return a value of the
type indicated by the method name: functionBoolean(), functionBytes(), functionDouble&(), functionl RI SList(),
functionObject(), functionL ong(), functionString(), or procedure() (no return value).

They take String arguments for functionLabel and routineName, plus O or more function arguments, which may be any of
the following types: Integer, Short, String, Long, Double, Float, byte[], Boolean, Time, Date, Timestamp, IRISList, or
IRISObject. If the connection is bidirection (see “Using Java Inverse Proxy Objects”), then any Java object can be used
as an argument. See “Class IRIS Supported Datatypes™ for more information about how the Native SDK handles these
datatypes.

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments, or by
passing nul I for trailing arguments. An exception will be thrown if a non-null argument is passed to the right of a null
argument.

Note: Built-in system functions are not supported

These methods are designed to call functions in user-defined routines. ObjectScript system functions (which start
with a $ character. See “ObjectScript Functions” in the ObjectScript Reference) cannot be called directly from

your Java code. However, you can call a system function indirectly by writing an ObjectScript wrapper function
that calls the system function and returns the result. For example, the fnList() function (at the end of this section
in ObjectScript Routine NativeRoutine.mac) calls SLISTBUILD.

Calling functions of ObjectScript routines with the Native SDK

The code in this example calls functions of each supported datatype from ObjectScript routine NativeRoutine (File
NativeRoutine.mac, listed immediately after this example). Assume that irigjv is an existing instance of class IRIS,
and is currently connected to the server.

String routineName = "NativeRoutine";
String comment = """

comment = "fnBoolean() tests whether two numbers are equal (true=1,false=0): "';
boolean boolVal = irisjv.functionBool (" fnBoolean",routineName,7,7);
System.out.printIn(comment+boolVval);

comment = "fnBytes creates byte array [72,105,33]. String value of the array: ";
byte[] byteval = new String(irisjv.functionBytes("'fnBytes",routineName,72,105,33));
System.out.printin(comment+(new String(byteval)));

comment = "fnString() concatenates \"Hello\"™ + arg: *;
String stringval = irisjv.functionString('fnString", routineName,"World");
System.out.printIn(comment+stringval);

comment = "fnLong() returns the sum of two numbers: *;
Long longVal = irisjv.functionlnt("fnLong",routineName,7,8);
System.out.printIn(comment+longval);

comment = "fnDouble() multiplies a number by 1.5: ";
Double doubleval = irisjv.functionDouble(*'fnDouble", routineName,5);
System.out.printin(comment+doubleval);

Using the Native SDK for Java 5

Calling ObjectScript Methods and Functions from Java

comment = "fnProcedure assigns a value to global array ~fnGlobal: *;
irisjv.procedure(""fnProcedure", routineName,88);

// Read global array ~fnGlobal and then delete it
System.out.printin(comment+irisjv.getinteger("~fnGlobal')+"\n\n"");
irisjv_kill("fnGlobal™);

comment = "fnList() returns a $LIST containing two values: ';

IRISList listVal = irisjv.functionList("fnList",routineName,"The answer is ",42);
System.out.printIn(comment+listval.get(1)+listval.get(2));

ObjectScript Routine NativeRoutine.mac

To run the previous example, this ObjectScript routine must be compiled and available on the server:

ObjectScript

fnBoolean(fnl,fn2) public {
quit (fnl1=fn2)

fnBytes(fnl,fn2,fn3) public {
quit $CHAR(Fnl,fn2,fn3)

3
fnString(fnl) public {
quit "Hello "_fnl

3
fnLong(fnl,fn2) public {
quit fnl+fn2

fnDouble(fnl) public {
quit fn1 * 1.5

3

fnProcedure(fnl) public {
set “nGlobal=fnl
quit

fnList(fnl,fn2) public

{
set list = $LISTBUILD(fn1,fn2)
quit list

You can test these functions by calling them from the Terminal. For example:

USER>write $$fnString~NativeRoutine('World™)
Hello World

2.3 Calling Class Library Methods

Most of the classes in the InterSystems Class Library use a calling convention where methods only return a %Status value.
The actual results are returned in arguments passed by reference. This section describes how to pass by reference and read
%Status values.

» Using Pass-by-reference Arguments — demonstrates how to use the IRISReference class to pass objects by reference.

e Catching %Status Error Codes — describes how to use the classM ethod StatusCode() method to test and read %Status
values..

2.3.1 Using Pass-by-reference Arguments

The Native SDK supports pass by reference for both methods and functions. To pass an argument by reference, assign the
argument value to an instance of class jdbc.IRISReference and pass that instance as the argument:

IRISReference valueRef = new IRISReference(*'"); // set inital value to null string
irisjv.classMethodString("'%SomeClass","'SomeMethod" ,valueRef);
String myString = valueRef.value; // get the method result

6 Using the Native SDK for Java

Calling Class Library Methods

Here is a working example:

Using pass-by-reference arguments

This example calls %SYS.DatabaseQuery.GetDatabaseFreeSpace() to get the amount of free space (in MB)
available in the iristemp database.

IRISReference freeMB = new IRISReference(0); // set inital value to O
String dir = "C:/InterSystems/IRIS/mgr/iristemp"; // directory to be tested
Object status = null;

try {
System.out.print(’"\n\nCalling %SYS.DatabaseQuery. GetDatabaseFreeSpace())
status = irisjv.classMethodObject("%SYS.DatabaseQuery", GetDatabaseFreeSpace ,dir,freeMB);

System.out.printIn(""\nFree space in " + dir + " = " + freeMB.value + "MB");
catch (RuntimeException e) {

System.out.print(‘'Call to class method GetDatabaseFreeSpace() returned error:');
System.out.printin(e.getMessage());

prints:

Calling %SYS.DatabaseQuery.GetDatabaseFreeSpace()- ..
Free space in C:/InterSystems/IRIS/mgr/iristemp = 8.9MB

2.3.2 Catching %Status Error Codes

When a class method has ObjectScript %Status as the return type, you can use classM ethodStatusCode() to retrieve error
messages. When a class method call fails, the resulting RuntimeException error will contain the %Status error code and
message.

In the following example, the ValidatePasswor d() method returns a %Status object. If the password is invalid (for example,
password is too short) an exception will be thrown and the %Status message will explain why it failed. Assume that variable
irigv is a previously defined instance of class IRIS and is currently connected to the server.

Using classMethodStatusCode() to catch ObjectScript %Status values

Note:

This example passes an invalid password to % SY STEM .Security.ValidatePasswor d() and catches the error
message.

String className = "%SYSTEM.Security";
String methodName = "ValidatePassword";
String pwd = "; // an invalid password
try
// This call will throw a RuntimeException containing the %Status error message:
irisjv.classMethodStatusCode(className,methodName,pwd) ;
// This call would fail silently or throw a generic error message:
Object status = irisjv.classMethodObject(className,methodName,pwd);
System.out.printIn(‘"\nPassword validated!');

} catch (RuntimeException e) {

System.out.printin(‘'Call to "+methodName+"(\""+pwd+'"\'"") returned error:");
System.out.printin(e.getMessage());

Notice that this example deliberately calls a method that does not use any pass by reference arguments.

To experiment with a more complex example, you can try catching the status code in the previous example (Using
pass-by-reference arguments). Force an exception by passing an invalid directory.

Using IRISObject.invokeStatusCode() when calling Instance methods

The classM ethod StatusCode() method is used for class method calls. When you are invoking proxy object
instance methods (see “Using Java Inverse Proxy Objects”) the IRISObject.invokeStatusCode() method can be
used in exactly the same way.

Using the Native SDK for Java 7

Using Java Inverse Proxy Objects

The Java Native SDK is designed to take full advantage of Java External Server connections, allowing completely transparent
bidirectional communications between InterSystems IRIS and your Java application.

I nverse proxy objects are Java objects that allow you to control ObjectScript target objects over an external server gateway
connection. You can use an inverse proxy object to call target methods and get or set target property values, manipulating
the target object as easily as if it were a native Java object.

This section covers the following topics:

* Introducing External Servers — provides a brief overview of external servers.

» Creating an Inverse Proxy Object — describes methods used to create inverse proxy objects.
e Controlling a Target Object — demonstrates how inverse proxy objects are used.

* IRISObject Supported Datatypes — describes datatype-specific versions of the inverse proxy methods.

3.1 Introducing External Servers

External Server connections allow InterSystems IRIS target objects and Java objects to interact freely, using the same
connection and working together in the same context (database, session, and transaction). External server architecture is
described in detail in Using Inter Systems External Servers, but for the purposes of this discussion you can think of an
external server connection as a simple black box allowing proxy objects on one side to control target objects on the other:

Figure 3-1: External Server connection

InterSystems IRIS Host VM (Java JVM)
ObjectScript application Java application
Forward Proxy object Java

%Net.Remote Object object

ObjectScript
chject

Inverse proxy object
Jdbe.IRISObject

Using the Native SDK for Java 9

Using Java Inverse Proxy Objects

As the diagram shows, a forward proxy object is an ObjectScript proxy that controls a Java object (see “Working with
External Languages” in Using Inter Systems External Serversfor details). A Java inverse proxy works in the other direction,
allowing your Java application to control an InterSystems IRIS target object.

3.2 Creating an Inverse Proxy Object

You can create an inverse proxy object by obtaining the OREF of an ObjectScript class instance (normally by calling the
% New/() method of the class) and casting it to IRISObject. (See “Calling ObjectScript Methods and Functions™ for more
information). The following methods can be used to generate an inverse proxy object:

» jdbc.IRIS.classM ethodObject() calls an ObjectScript class method and returns the result as an instance of Object.
* jdbc.IRIS.functionObject() calls an ObjectScript function and returns the result as an instance of Object.
If the % New() method successfully creates a new target instance, an inverse proxy object will be generated for the instance.

For example, the following call creates an inverse proxy object named test that controls an instance of ObjectScript class
Demo.Test:

IRISObject test = (IRISObject)irisjv.classMethodObject(*'Demo.Test", " %New');

e classMethodObiject() calls the % New() method of an ObjectScript class named Demo.Test to create a new target
instance of that class.

» If the call to % New() returns a valid instance of the class, an inverse proxy for the new instance is generated, and
classM ethodObj ect() returns it as an Object.

* InJava, the Object is cast to IRISObject, creating inverse proxy variable test.

Variable test is a Java inverse proxy object for the new target instance of Demo.Test. In the following section, test will be
used to access methods and properties of the Demo.Test target instance.

3.3 Controlling aTarget Object

An inverse proxy object is an instance of IRISObject. It provides methods invoke() and invokeVoid() to call target instance
methods, and accessors get() and set() to read and write target properties. The example in this section uses an inverse proxy
to control a target instance of ObjectScript class Demo.Test, which includes declarations for methods initialize() and add(),
and property name:

Method and Property Declarations in ObjectScript Class Demo.Test

Class Demo.Test Extends %Persistent
Method initialize(initialval As %String)
Method add(vall As %Integer, val2 As %Integer) As %Integer
Property name As %String

In the following example, the first line creates an inverse proxy object named test for a new instance of Demo.Test (as
described in the previous section). The rest of the code uses test to control the target Demo.Test instance.

10 Using the Native SDK for Java

IRISObject Supported Datatypes

Controlling an instance of Demo.Test with an inverse proxy object

// Create an instance of Demo.Test and return a proxy object for it
IRISObject test = (IRISObject)irisjv.classMethodObject(*'Demo.Test", " %New™);

// instance method test.initialize() is called with one argument, returning nothing.
test.invokeVoid(initialize", "Test One");

// instance method test.add() is called with two arguments, returning an int value.
int sum = test.invoke('add",2,3); // adds 2 plus 3, returning 5

// The value of property test.name is set and then returned.
test.set("'name™, "Einstein, Albert"); // sets the property to "Einstein, Albert”
String name = test.get(“'name™); // returns the new property value

In the example above, inverse proxy object test is created by a call to IRIS.classM ethodObj ect(), and the following methods
are used to access methods and properties of the Demo.Test target instance:

* IRISObject.invokeVoid() invokes target instance method initialize(), which accepts a string argument but does not
return a value.

* IRISObject.invoke() invokes target instance method add(), which accepts two integer arguments and returns the sum
as an integer.

* IRISObject.set() assigns a new value to target property name.

* IRISObject.get() returns the value of target property name.

There are also datatype-specific versions of these methods, as described in the following section.

3.4 IRISObject Supported Datatypes

The example in the previous section used the generic set(), get(), and invoke() methods, but the IRISObject class also provides
datatype-specific methods for supported datatypes.

IRISObject set() and get() methods

The IRISObject.set() method accepts any Java object as a property value, including all datatypes supported by
IRIS.set() (see “Class IRIS Supported Datatypes™).

In addition to the generic get() method, IRISObject provides the following type-specific methods: getBoolean(),
getBytes(), getDouble(), getl RISList(), getL ong(), getObject(), getString(), and invokeVoid().

IRISObject invoke() methods

The IRISObject invoke methods support the same set of datatypes as the IRIS classmethod calls (see “Class Method
Calls”).

In addition to the generic invoke() method, IRISObject provides the following type-specific methods:
invokeBoolean(), invokeBytes(), invokeDouble(), invokel RI SList(), invokel ong(), invokeObject(),
invokeString(), and invokeVoid().

In addition to methods for the standard supported datatypes, IRISObject also provides invokeStatusCode(), which
gets the contents of an ObjectScript % Status return value (see “Catching %Status Error Codes™).

All of the invoke methods take a String argument for methodName plus 0 or more method arguments, which may
be any of the following types: Integer, Short, String, Long, Double, Float, byte[], Boolean, Time, Date, Timestamp,
IRISList or IRISObject. If the connection is bidirectional, any Java object can be used as an argument.

Using the Native SDK for Java 11

Using Java Inverse Proxy Objects

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments,
or by passing nul I for trailing arguments. An exception will be thrown if a non-null argument is passed to the
right of a null argument.

12 Using the Native SDK for Java

Working with Global Arrays

This chapter covers the following topics:

» Introduction to Global Arrays — introduces global array concepts and provides a simple demonstration of how the
Java Native SDK is used.

» Creating, Accessing, and Deleting Nodes — demonstrates how to create, change, or delete nodes in a global array, and
how to retrieve node values.

* Finding Nodes in a Global Array — describes the iteration methods that allow rapid access to the nodes of a global
array.

e Class IRIS Supported Datatypes — provides details on how to retrieve node values as specific datatypes.

Note: Creating a JDBC Connection

The examples in this chapter assume that an IRIS object named irigv already exists and is connected to the server.
The following code establishes a standard JDBC connection and creates an instance of IRIS:

//0pen a connection to the server and create an IRIS object
String connStr = "jdbc:IRI1S://127.0.0.1:1972/USER";
String user = "_SYSTEM";

String pwd = "SYS";
IR1SConnection conn = (IRISConnection)

Java.sql .DriverManager.getConnection(connStr,user,pwd);
IRIS irisjv = IRIS.createlRIS(conn);

For more information on how to create an instance of IRIS, see the Quick Reference entry for createl Rl S(). For
general information on creating JDBC connections, see Establishing JDBC Connections in Using Java with
Inter Systems Software. .

4.1 Introduction to Global Arrays

A global array, like all sparse arrays, is a tree structure rather than a sequential list. The basic concept behind global arrays
can be illustrated by analogy to a file structure. Each directory in the tree is uniquely identified by a path composed of a
root directory identifier followed by a series of subdirectory identifiers, and any directory may or may not contain data.

Global arrays work the same way: each node in the tree is uniquely identified by a node address composed of a global
name identifier and a series of subscript identifiers, and a node may or may not contain a value. For example, here is a
global array consisting of six nodes, two of which contain values:

root -->]--> foo --> SubFoo="A"
|--> bar --> lowbar --> UnderBar=123

Using the Native SDK for Java 13

Working with Global Arrays

Values could be stored in the other possible node addresses (for example, root or root->bar), but no resources are wasted if
those node addresses are valueless. In InterSystems ObjectScript globals notation, the two nodes with values would be:

root(*'foo",""SubFoo™)
root("'bar", " lowbar',""UnderBar'")

The global name (root) is followed by a comma-delimited subscript list in parentheses. Together, they specify the entire
path to the node.

This global array could be created by two calls to the Native SDK Set() method:

irisObject.Set("A", "root", "foo", 'SubFoo');
irisObject.Set(123, "root", "bar"™, "lowbar", "UnderBar'™);

Global array root is created when the first call assigns value "*A™ to node root("foo"," SubFoo"). Nodes can be created in
any order, and with any set of subscripts. The same global array would be created if we reversed the order of these two
calls. The valueless nodes are created automatically, and will be deleted automatically when no longer needed. For details,
see “Creating, Accessing, and Deleting Nodes™” later in this chapter.

The Native SDK code to create this array is demonstrated in the following example. An IRISConnection object establishes
a connection to the server. The connection will be used by an instance of class IRIS named irisjv. Native SDK methods are
used to create a global array, read the resulting persistent values from the database, and then delete the global array.

The NativeDemo Program

package nativedemo;
import com.intersystems. jdbc.*;

Java

public class NativeDemo {
public static void main(String[] args) throws Exception {

try {

//0pen a connection to the server and create an IRIS object
String connStr = "jdbc:IR1S://127.0.0.1:1972/USER"";
String user = "_SYSTEM";

String password = "'SYS";
IR1SConnection conn = (IRISConnection)

jJava.sql .DriverManager .getConnection(connStr,user,password);

IRIS irisjv = IRIS.createlRIS(conn);

//Create a global array in the USER namespace on the server
irisjv.set("A", "root", "foo", "SubFoo™);
irisjv.set(123, "root", "bar', "lowbar', "UnderBar');

// Read the values from the database and print them
String subfoo = irisjv.getString(‘root", "foo", "SubFoo™);
String underbar = irisjv.getString("'root”, "bar"™, "lowbar"™, "UnderBar');
System.out._printin(*"Created two values: \n"
+ " root(\"foo\",\"SubFoo\")="" + subfoo + "\n"
+ " root(\"bar\",\"lowbar\",\"UnderBar\")="" + underbar);

//Delete the global array and terminate
irisjv_kill("'root"); // delete global array root
irisjv.close();
conn.close();

}
catch (Exception e) {
System.out.println(e.Message);

3
}// end main(Q)
} 7/ end class NativeDemo

NativeDemo prints the following lines:

Created two values:
root(*'foo", "SubFoo')=A
root("'bar", " lowbar",""UnderBar')=123

14 Using the Native SDK for Java

Introduction to Global Arrays

In this example, an IRISConnection object named conn provides a connection to the database associated with the USER
namespace. Native SDK methods perform the following actions:

» IRIS.createl RI () creates a new instance of IRIS named irigv, which will access the database through conn.
* IRIS.set() creates new persistent nodes in the database.
* IRIS.getString() queries the database and returns the values of the specified nodes.

* IRISkill() deletes the specified node and all of its subnodes from the database.

The next chapter provides detailed explanations and examples for all of these methods.

4.1.1 Glossary of Native SDK Terms

See the previous section for an overview of the concepts listed here. Examples in this glossary will refer to the global array
structure listed below. The Legs global array has ten nodes and three node levels. Seven of the ten nodes contain values:

Legs // root node, valueless, 3 child nodes

fish = 0 // level 1 node, value=0

mammal // level 1 node, valueless
human = 2 // level 2 node, value=2
dog = 4 // level 2 node, value=4

bug // level 1 node, valueless, 3 child nodes
insect = 6 // level 2 node, value=6
spider = 8 // level 2 node, value=8
millipede = Diplopoda // level 2 node, value="Diplopoda™, 1 child node

centipede = 100 // level 3 node, value=100
Child node

The nodes immediately under a given parent node. The address of a child node is specified by adding exactly one
subscript to the end of the parent subscript list. For example, parent node Legs("mammal") has child nodes
Legs("mammal”,"human™) and Legs("mammal”,"dog").

Global name

The identifier for the root node is also the name of the entire global array. For example, root node identifier Legs
is the global name of global array Legs. Unlike subscripts, global names can only consist of letters, numbers, and
periods (see Global Naming Rules).

Node
An element of a global array, uniquely identified by a namespace consisting of a global name and an arbitrary
number of subscript identifiers. A node must either contain data, have child nodes, or both.

Node level

The number of subscripts in the node address. A ‘level 2 node’ is just another way of saying ‘a node with two

subscripts’. For example, Legs("mammal”,"dog") is a level 2 node. It is two levels under root node Legs and one
level under Legs(*" mammal™).

Node address

The complete namespace of a node, including the global name and all subscripts. For example, node address
Legs("fish") consists of root node identifier Legs plus a list containing one subscript, **fish'. Depending on
context, Legs (with no subscript list) can refer to either the root node address or the entire global array.

Root node

The unsubscripted node at the base of the global array tree. The identifier for a root node is its global name with
no subscripts.

Using the Native SDK for Java 15

Working with Global Arrays

Subnode
All descendants of a given node are referred to as subnodes of that node. For example, node Legs("bug") has four
different subnodes on two levels. All nine subscripted nodes are subnodes of root node Legs.

Subscript / Subscript list
All nodes under the root node are addressed by specifying the global name and a list of one or more subscript
identifiers. (The global name plus the subscript list is the node address).

Target address
Many Native SDK methods require you to specify a valid node address that does not necessarily point to an
existing node. For example, the set() method takes a value argument and a target address, and stores the value at
that address. If no node exists at the target address, a new node is created.

Value
A node can contain a value of any supported type. A node with no child nodes must contain a value; a node that
has child nodes can be valueless.

Valueless node

A node must either contain data, have child nodes, or both. A node that has child nodes but does not contain data
is called a valueless node. Valueless nodes only exist as pointers to lower level nodes.

4.1.2 Global Naming Rules

Global names and subscripts obey the following rules:

» The length of a node address (totaling the length of the global name and all subscripts) can be up to 511 characters.
(Some typed characters may count as more than one encoded character for this limit. For more information, see
“Maximum Length of a Global Reference”).

» Aglobal name can include letters, numbers, and periods (" - *), and can have a length of up to 31 significant characters.
It must begin with a letter, and must not end with a period.

e Asubscript can be a string or a number. String subscripts are case-sensitive and can use all characters (including control
and non-printing characters). Length is limited only by the 511 character maximum for the total node address.

4.2 Creating, Accessing, and Deleting Nodes

The Native SDK provides three methods that can make changes in the database: set() and increment() can create nodes or
change node values, and kill() can delete a node or set of nodes. Node values are retrieved by type-specific getter methods
such as getl nteger () and getString().

e Creating Nodes and Setting Node Values — describes how to use set() and increment().
» Getting Node Values — lists getter methods for each supported datatype.

» Deleting Nodes — describes how to use Kill().

16 Using the Native SDK for Java

Creating, Accessing, and Deleting Nodes

4.2.1 Creating Nodes and Setting Node Values

The set() and increment() methods can be used to create a persistent node with a specified value, or to change the value
of an existing node.

IRIS.set() takes a value argument of any supported datatype and stores the value at the specified address. If no node exists
at the target address, a hew one is created.

Setting and changing node values

In the following example, the first call to set() creates a new node at subnode address myGlobal ("A") and sets the
value of the node to string ""First". The second call changes the value of the subnode, replacing it with integer
1.

irisjv.set("first"”, "myGlobal", "A"); // create node myGlobal ("'A™) = "first"”
irisjv.set(l, "myGlobal", "A"); // change value of myGlobal (A"™) to 1.

set() can create and change values of any supported datatype. To read an existing value, you must use a different getter
method for each datatype, as described in the next section.

IRIS.increment() takes a number argument, increments the node value by that amount, and returns the incremented value.
The number argument can be Double, Integer, Long, or Short.

If there is no node at the target address, the method creates one and assigns the number argument as the value. This method
uses a thread-safe atomic operation to change the value of the node, so the node is never locked.
Incrementing node values

In the following example, the first call to increment() creates new subnode myGlobal ("B") with value -2. The
next two calls each increment by -2, resulting in a final value of -6:

for (int loop = 0; loop < 3; loop++) {
irisjv.increment(-2,"myGlobal™, "B™);

Note: Global naming rules

The second argument for either set() or increment() is a global array name. The name can include letters, numbers,
and periods. It must begin with a character, and may not end with a period. The arguments after the global name
are subscripts, which can be either numbers or strings (case-sensitive, not restricted to alphanumeric characters).
See “Global Naming Rules” for more information.

4.2.2 Getting Node Values

The set() method can be used with all supported datatypes, but each datatype requires a separate getter. Node values can
be any of the following datatypes: Boolean, byte[], Double, Float, Integer, Long, Short, String, Date, Time, Timestamp, plus
Object, IRISList, subclasses of java.io.InputStream and java.io.Reader, and objects that implement java.io.Serializable.

The following methods are used to retrieve node values of these datatypes:

* Numeric datatypes: getBoolean(), getShort(), getl nteger (), getL ong(), getDouble(), getFloat()
» String and Binary datatypes: getBytes(), getString()

» Object and $list datatypes: getObject(), getl RI SList()

» Temporal datatypes: getDate(), getTime(), getTimestamp()

e Other datatypes: getl nputStream(), getReader ()

Using the Native SDK for Java 17

Working with Global Arrays

For more information on datatypes, see “Class IRIS Supported Datatypes™ later in this chapter.

4.2.3 Deleting Nodes

IRIS.Kill() deletes the specified node and all of its subnodes. The entire global array will be deleted if the root node is
deleted, or if all nodes with values are deleted.

In the following example, global array myGlobal initially contains the following nodes:

myGlobal = <valueless node>
myGlobal (""'A™) = 0
myGlobal (""'A",1) = 0O
myGlobal (*'A™,2) 0
myGlobal ("'B"") = <valueless node>
myGlobal (""'B'",1) = 0O

The example will delete the entire global array by calling kill() on two of its subnodes, myGlobal (" A") and myGlobal ("B",1).

Deleting a node or group of nodes

The first call will delete node myGlobal("A") and both of its subnodes:

irisjv_kill("myGlobal™, "A™);
/7 also kills child nodes myGIobaI('A",1) and myGlobal ("'A",2)

The second call deletes myGlobal ("B",1), the last remaining subnode with a value:
irisjv_kill("myGlobal™,"B",1);
Since neither of the remaining nodes has a value, the entire global array is deleted:

» The parent node, myGlobal ("B"), is deleted because it is valueless and now has no subnodes.

* Now root node myGlobal is valueless and has no subnodes, so the entire global array is deleted from the
database.

4.3 Finding Nodes in a Global Array

The Native SDK provides ways to iterate over part or all of a global array. The following topics describe the various iteration
methods:

» lterating Over a Set of Child Nodes — describes how to iterate over all child nodes under a given parent node.

» Finding Subnodes on All Levels — describes how to test for the existence of subnodes and iterate over all subnodes
regardless of node level.

18 Using the Native SDK for Java

Finding Nodes in a Global Array

4.3.1 Iterating Over a Set of Child Nodes

Child nodes are sets of subnodes immediately under the same parent node. Any child of the current target node can be
addressed by adding only one subscript to the target address. All child nodes under the same parent are sibling nodes of
each other. For example, the following global array has six sibling nodes under parent node ~myNames(" people"):

~myNames (valueless root node)
~myNames(*'people') (valueless level 1 node)
~myNames(*'people™,"Anna') = 2 (First level 2 child node)
AmyNames(:people:,:ngia:) =4
AmyNames("people","Mlsb§) =5
~myNames(*'people™,"Ruri')
~myNames(“'people","Vlad"))))
~myNames(‘'‘people’,"Zorro') = -1 (this node will be deleted in example)

3
1

Note: Collation Order
The iterator returns nodes in collation order (alphabetical order in this case: Anna, Julia, Misha, Ruri, Vlad,

Zorro). This is not a function of the iterator. When a node is created, InterSystems IRIS automatically stores it
in the collation order specified by the storage definition. The nodes in this example would be stored in the order
shown, regardless of the order in which they were created.
This section demonstrates the following methods:
* Methods used to create an iterator and traverse a set of child nodes
— jdbc.IRIS.getl RI Slterator () returns an instance of IRISIterator for the global starting at the specified node.

— IRISIterator.next() returns the subscript for the next sibling node in collation order.

— IRISIterator.hasNext() returns true if there is another sibling node in collation order.

» Methodsthat act on the current node
— IRISIterator.getValue() returns the current node value.
— IRISIterator.get SubscriptValue() returns the current subscript (same value as the last successful call to next()).

— IRISIterator.remove() deletes the current node and all of its subnodes.

The following example iterates over each child node under “myNames("peopl€"). It prints the subscript and node value if
the value is O or more, or deletes the node if the value is negative:

Finding all sibling nodes under *myNames("people")

// Read child nodes in collation order while iter.hasNext() is true
System.out._print("lterate from first node:");
try {
IRISIterator iter = irisjv.getlRISIterator("'myNames"," people™);
while (iter.hasNext()) {
iter.next();
it ((Long)iter.getValue()>=0) {
System.out._print(\'""" + iter.getSubscriptValue() + "\"=" + iter.getValue()); }
else {
iter.remove();

}:
} catch (Exception e)
System.out._printin(e.getMessage());

» Thecall to getl RISlterator () creates iterator instance iter for the immediate children of “myNames("'peopl€e").

» Each iteration of the whi le loop performs the following actions:

Using the Native SDK for Java 19

Working with Global Arrays

— next() determines the subscript of the next valid node in collation order and positions the iterator at that
node. (In the first iteration, the subscript is **Anna’* and the node value is 2).

— If the node value returned by getValue() is negative, remove() is called to delete the node (including any
subnodes. This is equivalent to calling kill() on the current node).

Otherwise, getSubscriptValue() and getValueg() are used to print the subscript and value of the current
node.

» Thewhile loop is terminated when hasNext() returns fal se, indicating that there are no more child nodes
in this sequence.

This code prints the following line (element **Zorro™ was not printed because its value was negative):
Iterate from first node: "Anna=2 "Julia=4 "Misha"=5 "Ruri'=3 "Vlad"=1

This example is extremely simple, and would fail in several situations. What if we don’t want to start with the first or last
node? What if the code attempts to get a value from a valueless node? What if the global array has data on more than one
level? The following sections describe how to deal with these situations.

4.3.2 Finding Subnodes on All Levels

The next example will search a slightly more complex set of subnodes. We’ll add new child node "dogs" to “myNamesand
use it as the target node for this example:

~myNames (valueless root node)

~myNames(*'dogs'") (valueless level 1 node)
~myNames(*'dogs",""Balto') = 6
~myNames(*'dogs",""Hachiko') = 8
~myNames(''dogs"’,''Lassie') (valueless level 2 node)

~“myNames(*'dogs","Lassie","Timmy'") = 10 (level 3 node)

~myNames(‘'dogs'’,""Whitefang'") = 7

~myNames(*‘people') (valueless level 1 node)
[five child nodes] (as listed in previous example)

Target node “myNames("dogs") has five subnodes, but only four of them are child nodes. In addition to the four level 2
subnodes, there is also a level 3 subnode, “myNames("dogs","Lassie”," Timmy"). The search will not find " Timmy" because
this subnode is the child of "Lassie" (not "dogs"), and therefore is not a sibling of the others.

Note: Subscript Lists and Node Levels

The term node level refers to the number of subscripts in the subscript list. For example, “myGlobal ("a","b","c")
is a “level 3 node,” which is just another way of saying “a node with three subscripts.”

Although node “myNames("dogs’,"Lassi€") has a child node, it does not have a value. A call to getVValue() will return
null I in this case. The following example searches for children of “myNames("dogs") in reverse collation order:

Get nodes in reverse order from last node under *myNames("dogs")

// Read child nodes in descending order while iter.next() is true
System.out.print(‘'Descend from last node:');
try {
IRISIterator iter = irisjv.getlIRISIterator(‘'myNames","dogs");
while (iter.hasPrevious()) {
iter._previous();
System.out._print(\"" + iter.getSubscriptvalue() + "\'""");
it (iter.getvValue()!=null) System.out.print('=" + iter.getValue());

}:
} catch (Exception e) {
System.out.printIn(e.getMessage());

20 Using the Native SDK for Java

Class IRIS Supported Datatypes

This code prints the following line:

Descend from last node: "Whitefang'”=7 *Lassie" "Hachiko'=8 "'Balto'=6
In the previous example, the search misses several of the nodes in global array “myNames because the scope of the search
is restricted in various ways:
* Node “myNames("dogs’,"Lassi€"," Timmy") is not found because it is not a level 2 subnode of “myNames("dogs").
» Level 2 nodes under “myNames("people") are not found because they are not siblings of the level 2 nodes under

myNames("dogs").

The problem in both cases is that previous() and next() only find nodes that are under the same parent and on the same
level as the starting address. You must specify a different starting address for each group of sibling nodes.

In most cases, you will probably be processing a known structure, and will traverse the various levels with simple nested
calls. In the less common case where a structure has an arbitrary number of levels, the following jdbc.IRIS method can be
used to determine if a given node has subnodes:

o isDefined() — returns O if the specified node does not exist, 1 if the node exists and has a value. 10 if the node is
valueless but has subnodes, or 11 if it has both a value and subnodes.

If isDefined() returns 10 or 11, subnodes exist and can be processed by creating an iterator as described in the previous
examples. A recursive algorithm could use this test to process any number of levels.

4.4 Class IRIS Supported Datatypes

For simplicity, examples in previous sections of this chapter have always used Integer or String node values, but the IRIS
class also provides datatype-specific methods for the following supported datatypes.

IRIS.set()

The IRIS.set() method supports datatypes Boolean, byte[], Double, Integer, Long, Short, Float, String, IRISList, plus
Java classes Date, Time, Timestamp, InputStream, Reader, and classes that implement Serializable. A nul I value
is stored as """".

Class IRIS getters for numeric values

The following IRIS methods assume that the node value is numeric, and attempt to convert it to an appropriate
Java variable: getBoolean(), getShort(), getlnteger (), getL ong(), getDouble(), or getFloat(). The numeric fetch
methods will throw UndefinedException if the target node is valueless or does not exist.

Given an Integer node value, all numeric methods return meaningful values. The getlnteger () and getL ong()
methods cannot be applied to Double or Float values with reliable results, and may throw an exception for these
values.

Class IRIS getters for String, byte[], and IRISList

In the InterSystems IRIS database, String, byte[], and IRISL.ist objects are all stored as strings, and no information
about the original datatype is preserved. The IRIS getString(), getBytes(), and getl Rl SList() methods get string
data and return it in the desired format.

The string getters assume that a node value is non-numeric, and attempt to convert it appropriately. They return
null I if the target node is valueless or does not exist. These methods do not perform any type checking, and will
not usually throw an exception if the node value is of the wrong datatype.

Using the Native SDK for Java 21

Working with Global Arrays

Class IRIS getters for Java classes

The IRIS class also supports getters for Java classes Date, Time, Timestamp, InputStream, and Reader. Classes that
implement Serializable can be retrieved with getObject().

getDate(), getTime(), getTimestamp() — get java.sql datatypes Date, Time, and Timestamp.
getl nputStream() — gets objects that implement java.io.InputStream.

getReader () — gets objects that implement java.io.Reader.

getObject() — gets the value of the target node and returns it as an Object.

Objects that implement java.io.Serializable can be retrieved by casting the return value of getObject() to the
appropriate class.

Important: Getter methods do not check for incompatible datatypes
These methods are optimized for speed, and never perform type checking. Your application should never
depend on an exception being thrown if one of these methods attempts to fetch a value of the wrong
datatype. Although an exception may be thrown, it is more likely that the method will fail silently, returning
an inaccurate or meaningless value.

22 Using the Native SDK for Java

Transactions and Locking

The Native SDK for Java provides transaction and locking methods that use the InterSystems IRIS transaction model, as
described in the following sections:

e Controlling Transactions — describes how transactions are started, nested, rolled back, and committed.

e Concurrency Control — describes how to use the various lock methods.

Important: Never Mix Native SDK and JDBC Transaction Models
DO NOT mix the Native SDK transaction model with the JDBC (java.sql) transaction model.

* If you want to use only Native SDK commands within a transaction, you should always use Native
SDK transaction methods.

» If you want to use a mix of Native SDK and JDBC/SQL commands within a transaction, you should
turn autoCommit OFF and then always use Native SDK transaction methods.

e If you want to use only JDBC/SQL commands within a transaction, you can either always use SQL
transaction methods, or turn autocommit OFF and then always use Native SDK transaction methods.

» Although you can use both models in the same application, you must take care never to start a trans-
action in one model while a transaction is still running in the other model.

5.1 Controlling Transactions

The methods described here are alternatives to the standard JDBC transaction model. The Native SDK model for transaction
and concurrency control is based on ObjectScript methods, and is not interchangeable with the JDBC model. The Native
SDK model must be used if your transactions include Native SDK method calls.

For more information on the ObjectScript transaction model, see “Transaction Processing” in Using ObjectScript.
The Native SDK for Java provides the following methods to control transactions:

* IRIS.tCommit() — commits one level of transaction.

* IRIS.tStart() — starts a transaction (which may be a nested transaction).

» IRIS.getTLevel() — returns an int value indicating the current transaction level (0 if not in a transaction).

* IRIS.tRollback() — rolls back all open transactions in the session.

Using the Native SDK for Java 23

Transactions and Locking

* IRIS.tRollbackOne() — rolls back the current level transaction only. If this is a nested transaction, any higher-level
transactions will not be rolled back.

The following example starts three levels of nested transaction, setting the value of a different node in each transaction
level. All three nodes are printed to prove that they have values. The example then rolls back the second and third levels
and commits the first level. All three nodes are printed again to prove that only the first node still has a value.

Controlling Transactions: Using three levels of nested transaction

String globalName = "myGlobal®;
irisjv.tStart();

// getTLevel() is 1: create myGlobal (1) = "firstvalue”
irisjv.set("firstvalue'", globalName, irisjv.getTLevel());

irisjv_tStart();
// getTLevel) is 2: create myGlobal (2)
ir

‘secondValue"
irisjv.set("'secondvValue", globalName, j

E sjv.getTLevelQQ);

irisjv.tStart();
// getTLevel() is 3: create myGlobal(3) = "thirdvalue"”
irisjv.set("thirdvalue', globalName, irisjv.getTLevel());

System.out.printIn(’’Node values before rollback and commit:");
for (int ii=1l;ii<4;ii++) {
System.out. prlnt(globaIName + "+ A+ ") =
it (irisjv.isDefined(globalName,ii) > 1) System. out. printIn(irisjv.getString(globalName,ii));

else System.out._printIn(“<valueless>");

// prints: Node values before rollback and commit:
// myGlobal (1) = firstvalue

// myGlobal (2)
// myGlobal (3)

secondValue
thirdvalue

irisjv.tRollbackOne();
irisjv.tRollbackOne(); // roll back 2 levels to getTLevel 1
irisjv.tCommit(); 7/ getTLevel() after commit will be O
System.out. prlntln(‘Node values after the transaction is committed:");
for (int ii=l;ii<4;ii++) {
System.out. prlnt(globaIName + "+ A+ ") =
it (irisjv.isDefined(globalName,ii) > 1) System. out. printIn(irisjv.getString(globalName,ii));

else System.out._printIn(“<valueless>");

// prints: Node values after the transaction is committed:
myGlobal (1) = firstvalue

// myGlobal (2) = <valueless>

// myGlobal (3) = <valueless>

5.2 Concurrency Control

Concurrency control is a vital feature of multi-process systems such as InterSystems IRIS. It provides the ability to lock
specific elements of data, preventing the corruption that would result from different processes changing the same element
at the same time. The Native SDK transaction model provides a set of locking methods that correspond to ObjectScript
commands. These methods must not be used with the JDBC/SQL transaction model (see the warning at the beginning of
this chapter for details).

The following methods of class IRIS are used to acquire and release locks. Both methods take a lockMode argument to
specify whether the lock is shared or exclusive:

lock (String lockMode, Integer timeout, String globalName, String... subscripts)
unlock (String lockMode, String globalName, String... subscripts)

* IRIS.lock() — Takes lockMode, timeout, globalName, and subscripts arguments, and locks the node. The lockMode
argument specifies whether any previously held locks should be released. This method will time out after a predefined
interval if the lock cannot be acquired.

24 Using the Native SDK for Java

Concurrency Control

* IRIS.unlock() — Takes lockMode, globalName, and subscripts arguments, and releases the lock on a node.

The following argument values can be used:

» lockMode— combination of the following chars, S for shared lock, E for escalating lock, or SE for shared and escalating.
Default is empty string (exclusive and non-escalating).

» timeout — number of seconds to wait when attempting to acquire the lock

Note: You can use the Management Portal to examine locks. Go to System Operation > Locks to see a list of the locked
items on your system.

There are two ways to release all currently held locks:

* IRIS.releaseAllL ocks() — releases all locks currently held by this connection.

* When the close() method of the connection object is called, it releases all locks and other connection resources.

Tip: Adetailed discussion of concurrency control is beyond the scope of this book. See the following books and articles
for more information on this subject:

e “Transaction Processing” and “Lock Management” in Using ObjectScript
e “Locking and Concurrency Control” in the Orientation Guide for Server-Side Programming

e« “LOCK” inthe ObjectScript Reference

Using the Native SDK for Java 25

Java Native SDK Quick Reference

This is a quick reference for the InterSystems IRIS Native SDK for Java, providing information on the following extension
classes in com.intersystems.jdbc:

» Class IRIS provides the main functionality of the Native SDK.

e Class IRISIterator provides methods to navigate a global array.

» Class IRISList provides support for InterSystems $LIST serialization.

» Class IRISObject provides methods to work with Java inverse proxy objects.

All of these classes are part of the InterSystems JDBC driver (com.intersystems.jdbc). They access the database through a

standard JDBC connection, and can be used without any special setup or installation procedures. For complete information
on JDBC connections, see Establishing JDBC Connections in Using Java with Inter Systems Software.

Note: This chapter is intended as a convenience for readers of this book, but it is not the definitive reference for the Java
Native SDK. For the most complete and up-to-date information, see the online class documentation for InterSystems
IRIS JDBC Driver classes.

6.1 Class IRIS

Class IRIS is a member of com.intersystems.jdbc (the InterSystems JDBC driver).

IRIS has no public constructors. Instances of IRIS are created by calling static method IRIS.createl RI S().

6.1.1 IRIS Method Details

classMethodBoolean()

jdbc.IRIS.classM ethodBoolean() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of Boolean.

final Boolean classMethodBoolean(String className, String methodName, Object... args)

parameters:
» className — fully qualified name of the class to which the called method belongs.

* methodName — name of the class method.

Using the Native SDK for Java 27

https://docs.intersystems.com/components/csp/docbook/JDBC-API/v3.1.0/index.html
https://docs.intersystems.com/components/csp/docbook/JDBC-API/v3.1.0/index.html

Java Native SDK Quick Reference

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

classMethodBytes()

jdbc.IRIS.classM ethodBytes() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of byte[].

final byte[] classMethodBytes(String className, String methodName, Object... args)

parameters:

» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

classMethodDouble()

jdbc.IRIS.classM ethodDouble() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of Double.

final Double classMethodDouble(String className, String methodName, Object... args)

parameters:

» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions™ for details and examples.

classMethodIRISList()

jdbc.IRIS.classM ethodl RI SList() calls an ObjectScript class method, passing zero or more arguments and
returning an instance of IRISList.

final IRISList classMethodIRISList(String className, String methodName, Object... args)

This method is equivalent to newList=(IRISList) classMethodBytes(className, methodName,
args)

parameters:
» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

e args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

28 Using the Native SDK for Java

Class IRIS

classMethodLong()

jdbc.IRIS.classM ethodL ong() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of Long.

final Long classMethodLong(String className, String methodName, Object... args)

parameters:
e className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

classMethodObject()

jdbc.IRIS.classM ethodObj ect() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of Object. If the returned object is a valid OREF (for example, if % New() was called),

classM ethodObj ect() will generate and return an inverse proxy object (an instance of IRISObject) for the referenced
object. See “Using Java Inverse Proxy Objects” for details and examples.

final Object classMethodObject(String className, String methodName, Object... args)

parameters:
» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

« args — zero or more arguments of supported types.

classMethodStatusCode()

jdbc.IRIS.classM ethodStatusCode() tests whether a class method that returns an ObjectScript $Status object
would throw an error if called with the specified arguments. If the call would fail, this method throws a
RuntimeException error containing the ObjectScript $Status error status number and message.

final void classMethodStatusCode(String className, String methodName, Object... args)

parameters:

» className — fully qualified name of the class to which the called method belongs.

* methodName — name of the class method.

* args — zero or more arguments of supported types.

Thisis an indirect way to catch exceptions when using classMethod[type] calls. If the call would run without error,
this method returns without doing anything, meaning that you can safely make the call with the specified arguments.

See “Calling ObjectScript Methods and Functions™ for details and examples.

classMethodString()

jdbc.IRIS.classM ethodString() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of String.

final String classMethodString(String className, String methodName, Object... args)

Using the Native SDK for Java 29

Java Native SDK Quick Reference

parameters:
» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

e args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions™ for details and examples.

classMethodVoid()

close()

jdbc.IRIS.classM ethodVoid() calls an ObjectScript class method with no return value, passing zero or more
arguments.

final void classMethodVoid(String className, String methodName, Object... args)

parameters:
» className — fully qualified name of the class to which the called method belongs.
* methodName — name of the class method.

s args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions™ for details and examples.

jdbc.IRIS.close() closes the IRIS object.

final void close() throws Exception

createlRIS() [static]

jdbc.IRIS.createl R1 S() returns an instance of jdbc.IRIS that uses the specified IRISConnection.
static IRIS createlRIS(IRISConnection conn) throws SQLException

parameters:

e conn — an instance of IRISConnection.

See “Introduction to Global Arrays” for more information and examples.

functionBoolean()

jdbc.IRIS.functionBoolean() calls an ObjectScript function, passing zero or more arguments and returning an
instance of Boolean.

final Boolean functionBoolean(String functionName, String routineName, Object... args)

parameters:
» functionName — name of the function to call.
* routineName — name of the routine containing the function.

» args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions™ for details and examples.

30

Using the Native SDK for Java

Class IRIS

functionBytes()

jdbc.IRIS.functionBytes() calls an ObjectScript function, passing zero or more arguments and returning an instance
of byte[].

final byte[] functionBytes(String functionName, String routineName, Object... args)

parameters:
» functionName — name of the function to call.
e routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

functionDouble()

jdbc.IRIS.functionDouble() calls an ObjectScript function, passing zero or more arguments and returning an
instance of Double.

final Double functionDouble(String functionName, String routineName, Object... args)
parameters:
» functionName — name of the function to call.

* routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

functionIRISList()

jdbc.IRIS.functionl RISList() calls an ObjectScript function, passing zero or more arguments and returning an
instance of IRISList.

final IRISList functionlRISList(String functionName, String routineName, Object... args)

This function is equivalentto newList=(IRISList) functionBytes(functionName, routineName,
args)

parameters:
» functionName — name of the function to call.
e routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

functionLong()

jdbc.IRIS.functionL ong() calls an ObjectScript function, passing zero or more arguments and returning an instance
of Long.

final Long functionLong(String functionName, String routineName, Object... args)

parameters:

Using the Native SDK for Java 31

Java Native SDK Quick Reference

» functionName — name of the function to call.
* routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.
See “Calling ObjectScript Methods and Functions” for details and examples.

functionObject()

jdbc.IRIS.functionObject() calls an ObjectScript function, passing zero or more arguments and returning an
instance of Object. If the returned object is a valid OREF, functionObject() will generate and return an inverse
proxy object (an instance of IRISObject) for the referenced object. See “Using Java Inverse Proxy Objects™ for
details and examples.

final Object functionObject(String functionName, String routineName, Object... args)

parameters:
» functionName — name of the function to call.
* routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.
See “Class IRIS Supported Datatypes™ for related information.

functionString()

jdbe.IRIS.functionString() calls an ObjectScript function, passing zero or more arguments and returning an instance
of String.

final String functionString(String functionName, String routineName, Object... args)

parameters:
» functionName — name of the function to call.
* routineName — name of the routine containing the function.

* args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions™ for details and examples.
getAPIVersion() [static]

jdbc.IRIS.getAPI Version() returns the Native SDK version string.

static final String getAPIVersion()

getBoolean()

jdbc.IRIS.getBoolean() gets the value of the global as a Boolean (or nul I if node does not exist). Returns false
if node value is empty string.

final Boolean getBoolean(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

32 Using the Native SDK for Java

Class IRIS

See “Class IRIS Supported Datatypes” for related information.

getBytes()
jdbc.IRIS.getBytes() gets the value of the global as a byte[] (or null I if node does not exist).
final byte[] getBytes(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.
See “Class IRIS Supported Datatypes™ for related information.

getDate()
jdbc.IRIS.getDate() gets the value of the global as a java.sgl.Date (or nul 1 if node does not exist).
final java.sql.Date getDate(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.
See “Class IRIS Supported Datatypes” for related information.

getDouble()

jdbc.IRIS.getDouble() gets the value of the global as a Double (or null I if node does not exist). Returns 0.0 if
node value is empty string.

final Double getDouble(String globalName, Object... subscripts)

parameters:
e globalName — global name.

* subscripts — zero or more subscripts specifying the target node.
See “Class IRIS Supported Datatypes™ for related information.

getFloat()

jdbc.IRIS.getFloat() gets the value of the global as a Float (or null I if node does not exist). Returns 0.0 if node
value is empty string.

final Float getFloat(String globalName, Object... subscripts)

parameters:
» globalName — global name.

e subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

Using the Native SDK for Java 33

Java Native SDK Quick Reference

getinputStream()

jdbc.IRIS.getl nputStream() gets the value of the global as a java.io.InputStream (or nul I if node does not exist).
final InputStream getlnputStream(String globalName, Object... subscripts)

parameters:
» globalName — global name.

* subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes™ for related information.

getinteger()

jdbc.IRIS.getl nteger () gets the value of the global as an Integer (or nul I if node does not exist). Returns 0 if node
value is empty string.

final Integer getlnteger(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

getlRISIterator()

jdbc.IRIS.getl RISlterator () returns an IRISIterator object (see “Class IRISIterator™) for the specified node. See
“Iterating Over a Set of Child Nodes” for more information and examples.

final IRISIterator getlRISIterator(String globalName, Object... subscripts)
final IRISIterator getlRISIterator(int prefetchSizeHint, String globalName, Object... subscripts)

parameters:

» prefetchSizeHint — (optional) hints number of bytes to fetch when getting data from server.

» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes™ for related information.

getIRISList()

jdbc.IRIS.getl RISList() gets the value of the node as an IRISList (or null I if node does not exist).

IRISList getlIRISList(String globalName, Object... subscripts)

This is equivalent to calling newList=(IRISList) getBytes(globalName, subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes™ for related information.

34

Using the Native SDK for Java

Class IRIS

getLong()

jdbc.IRIS.getL ong() gets the value of the global as a Long (or null I if node does not exist). Returns 0 if node value
is empty string.

final Long getLong(String globalName, Object... subscripts)
parameters:

» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.
See “Class IRIS Supported Datatypes™ for related information.

getObject()

jdbc.IRIS.getObject() gets the value of the global as an Object (or nul I if node does not exist). See *“Using Java
Inverse Proxy Objects” for details and examples.

final Object getObject(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

Use this method to retrieve objects that implement java.io.Serializable. When the set() method accepts an instance
of Serializable, the instance is stored in serialized form, and can be deserialized by casting the return value of
getObject() to the appropriate class.

See “Class IRIS Supported Datatypes™ for related information.
getReader()
jdbc.IRIS.getReader () gets the value of the global as a java.io.Reader (or nul I if node does not exist).
final Reader getReader(String globalName, Object... subscripts)
parameters:

» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.
See “Class IRIS Supported Datatypes” for related information.

getServerVersion()

jdbc.IRIS.getServer Version() returns the server version string for the current connection. This is equivalent to
calling $system.Version.GetVersion() in ObjectScript.

final String getServerVersion()

getShort()

jdbc.IRIS.getShort() gets the value of the global as a Short (or nul I if node does not exist). Returns 0.0 if node
value is an empty string.

final Short getShort(String globalName, Object... subscripts)

Using the Native SDK for Java 35

Java Native SDK Quick Reference

parameters:
» globalName — global name.

* subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes™ for related information.

getString()

jdbc.IRIS.getString() gets the value of the global as a String (or nul 1 if node does not exist).

Empty string and null values require some translation. An empty string **** in Java is translated to the null string
character $CHAR(0) in ObjectScript. A null in Java is translated to the empty string in ObjectScript. This translation
is consistent with the way JDBC handles these values.

final String getString(String globalName, Object... subscripts)

parameters:
» globalName — global name.

e subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

getTime()

jdbc.IRIS.get Time() gets the value of the global as a java.sgl.Time (or nul I if node does not exist).
final java.sql.Time getTime(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes™ for related information.

getTimestamp()

jdbc.IRIS.get Timestamp() gets the value of the global as a java.sql.Timestamp (or nul I if node does not exist).
final java.sql.Timestamp getTimestamp(String globalName, Object... subscripts)

parameters:
* globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

getTLevel()

jdbc.IRIS.getTL evel () gets the level of the current nested Native SDK transaction. Returns 1 if there is only a
single transaction open. Returns O if there are no transactions open. This is equivalent to fetching the value of the
$TLEVEL special variable.

final Integer getTLevel()

36

Using the Native SDK for Java

Class IRIS

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

increment()

jdbc.IRIS.increment() increments the specified global with the passed value. If there is ho node at the specified
address, a new node is created with value as the value. A null value is interpreted as 0. Returns the new value
of the global node. See “Creating, Accessing, and Deleting Nodes™ for more information and examples.

final long increment(Integer value, String globalName, Object... subscripts)
parameters:

e value — Integer value to which to set this node (nul I value sets global to 0).

» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

isDefined()

kill()

lock()

jdbc.IRIS.isDefined() returns a value indicating whether the specified node exists and if it contains a value. See
“Finding Subnodes on All Levels” for more information and examples.

final int isDefined(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

return values:

» 0 — the specified node does not exist

* 1 —the node exists and has a value

* 10— the node is valueless but has subnodes

e 11 — the node has both a value and subnodes

jdbc.IRIS kill() deletes the global node including any descendants. See “Creating, Accessing, and Deleting Nodes”
for more information and examples.

final void kill(String globalName, Object... subscripts)

parameters:
» globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

jdbc.IRIS.lock() locks the global for a Native SDK transaction, and returns true on success. Note that this method
performs an incremental lock and not the implicit unlock before lock feature that is also offered in ObjectScript.

final boolean lock(String lockMode, Integer timeout, String globalName, Object... subscripts)

Using the Native SDK for Java 37

Java Native SDK Quick Reference

parameters:

» lockMode — character S for shared lock, E for escalating lock, or SE for both. Default is empty string
(exclusive and non-escalating).

* timeout — amount to wait to acquire the lock in seconds.
» globalName — global name.
e subscripts — zero or more subscripts specifying the target node.

This method uses the Native SDK transaction model, and is not compatible with JIDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

procedure()

jdbc.IRIS.procedurg() calls a procedure, passing zero or more arguments. Does not return a value.
final void procedure(String procedureName, String routineName, Object... args)

parameters:
» procedureName — name of the procedure to call.
* routineName — name of the routine containing the procedure.

» args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for more information and examples.

releaseAllLocks()

jdbc.IRIS.releaseAllL ocks() is a Native SDK transaction method that releases all locks associated with the session.
final void releaseAllLocks()

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

set()
jdbc.IRIS.set() sets the current node to a value of a supported datatype (or **** if the value is nul l). If there is no
node at the specified node address, a new node will be created with the specified value. See “Creating, Accessing,
and Deleting Nodes” for more information.
final void set(Boolean value, String globalName, Object... subscripts)
final void set(byte[] value, String globalName, Object... subscripts)
final void set(Short value, String globalName, Object... subscripts)
final void set(Integer value, String globalName, Object... subscripts)
final void set(Long value, String globalName, Object... subscripts)
final void set(Double value, String globalName, Object... subscripts)
final void set(Float value, String globalName, Object... subscripts)
final void set(String value, String globalName, Object... subscripts)
final void set(java.sql.Date value, String globalName, Object... subscripts)
final void set(Java.sql.Time value, String globalName, Object... subscripts)
final void set(Java.sql.Timestamp value, String globalName, Object... subscripts)
final void set(InputStream value, String globalName, Object... subscripts)
final void set(Reader value, String globalName, Object... subscripts)
Ffinal<T extends Serializable> void set(T value, String globalName, Object... subscripts)
final void set(IRISList value, String globalName, Object... subscripts)
final void set(Object value, String globalName, Object... subscripts)
parameters:
» value — value of a supported datatype (nul I value sets global to ***").

38 Using the Native SDK for Java

Class IRIS

e globalName — global name.

» subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

Notes on specific datatypes
The following datatypes have some extra features:

e String — empty string and null values require some translation. An empty string **** in Java is translated to
the null string character $CHAR(O) in ObjectScript. A null in Java is translated to the empty string in
ObjectScript. This translation is consistent with the way Java handles these values.

e java.io.InputStream — currently limited to the maximum size of a single global node.
* java.io.Reader — currently limited to the maximum size of a single global node.

e java.io.Serializable — if the value is an instance of an object that implements Serializable, it will be serialized
prior to being set as the global value. Use getObject() to retrieve the value.

tCommit()

jdbc.IRIS.tCommit() commits the current Native SDK transaction.

final void tCommit()

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

tRollback()
jdbc.IRIS.tRollback() rolls back all open Native SDK transactions in the session.

final void tRollback()

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

tRollbackOne()

jdbc.IRIS.tRollbackOne() rolls back the current level Native SDK transaction only. If this is a nested transaction
any higher-level transactions will not be rolled back.

final void tRollbackOne()

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

tStart()

jdbc.IRIS.tStart() starts/opens a Native SDK transaction.

final void tStart()

This method uses the Native SDK transaction model, and is not compatible with JDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

Using the Native SDK for Java 39

Java Native SDK Quick Reference

unlock()

jdbc.IRIS.unlock() unlocks the global in a Native SDK transaction. This method performs an incremental unlock,
not the implicit unlock-before-lock feature that is also offered in ObjectScript.

final void unlock(String lockMode, String globalName, Object... subscripts)

parameters:

* lockMode — Character S for shared lock, E for escalating lock, or SE for both. Default is empty string
(exclusive and non-escalating).

» globalName — global name.
e subscripts — zero or more subscripts specifying the target node.

This method uses the Native SDK transaction model, and is not compatible with JIDBC/SQL transaction methods.
Never mix the two transaction models. See “Transactions and Locking” for more information and examples.

6.2 Class IRISIterator

Class IRISIterator is @ member of com.intersystems.jdbc (the InterSystems JDBC driver) and implements java.util.lterator.

IRISIterator has no public constructors. Instances of IRISIterator are created by calling jdbc.IRIS.getl Rl Slterator (). See
“Iterating Over a Set of Child Nodes” for more information and examples.

6.2.1 IRISIterator Method Details

getSubscriptValue()

jdbc.IRISIterator.getSubscriptValue() gets the lowest level subscript for the node at the current iterator position.
For example, if the iterator points to node “myGlobal (23,"somenode"), the returned value will be **somenode™".

Throws lllegalStateException if remove() has been called on the current node with this iterator, or there is no last
element returned by this iterator (i.e. no successful next() or previous() calls).

String getSubscriptvalue() throws IllegalStateException

getValue()

jdbc.IRISIterator.getValue() gets the value of the node at the current iterator position. Throws lllegalStateException
if remove() has been called on the current node with this iterator, or there is no last element returned by this iter-
ator (i.e. no successful next() or previous() calls).

Object getvValue() throws IllegalStateException

hasNext()

jdbc.IRISIterator.hasNext() returns true if the iteration has more elements. (In other words, returns true if next()
would return an element rather than throwing an exception.)

boolean hasNext()

40 Using the Native SDK for Java

Class IRISList

hasPrevious()

jdbc.IRISIterator.hasPrevious() returns true if the iteration has a previous element. (In other words, returns true if
previous() would return an element rather than throwing an exception.)

boolean hasPrevious()

next()

jdbc.IRISIterator.next() returns the next element in the iteration. Throws NoSuchElementException if the iteration
has no more elements

String next() throws NoSuchElementException

previous()

jdbc.IRISIterator.previous() returns the previous element in the iteration. Throws NoSuchElementException if the
iteration does not have a previous element

String previous() throws NoSuchElementException

remove()

jdbc.IRISIterator.remove() removes from the underlying collection the last element returned by this iterator. This
method can be called only once per call to next() or previous(). Throws lllegalStateException if remove() has
been called on the current node with this iterator, or there is no last element returned by this iterator (i.e. no suc-
cessful next() or previous() calls).

void remove() throws IllegalStateException

startFrom()

jdbc.IRISIterator.startFrom() sets the iterator's starting position to the specified subscript. The subscript is an
arbitrary starting point, and does not have to specify an existing node.

void startFrom(Object subscript)

After calling this method, use next() or previous() to advance the iterator to the next defined sub-node in alphabetic
collating sequence. The iterator will not be positioned at a defined sub-node until one of these methods is called.
If you call getSubscriptValue() or getValue() before the iterator is advanced, an lllegalStateException will be
thrown.

6.3 Class IRISList

Class IRISList is a member of com.intersystems.jdbc (the InterSystems JDBC driver). It implements a Java interface for
InterSystems $LIST serialization. In addition to the IRISList constructors (described in the following section), it is also
returned by the following jdbc.IRIS methods: classM ethodI RISList(), functionl RISList(), getl RI SList().

6.3.1 IRISList Constructors

Constructor jdbc.IRISList.IRI SList() has the following signatures:

IRISList ()
IRISList (IRISList list)
IRISList (byte[] buffer, int length)

Using the Native SDK for Java 41

Java Native SDK Quick Reference

parameters:

» list—instance of IRISList to be copied

e buffer — buffer to be allocated

e length — initial buffer size to be allocated

Instances of IRISList can be created in the following ways:

Create an empty IRISList

IRISList list = new IRISList();

Create a copy of another IRISList

Create a copy of the IRISList instance specified by argument list.

IRISList listcopy = new IRISList(myOtherList)

Construct an IRISList instance from a byte array

Construct an instance from a $LIST formatted byte array, such as that returned by IRIS.getBytes(). The constructor
takes a buffer of size length:

byte[] listBuffer = mylris.getBytes("myGlobal",1);
IRISList listFromByte = new IRISList(listBuffer, listBuffer.length);

The returned list uses the buffer (not a copy) until changes to the list are visible in the buffer and a resize is required.

6.3.2 IRISList Method Details

add()
jdbc.IRISList.add() appends an Object, each element of an Object[], or each element of a Collection to the end of
the IRISList. Throws RuntimeException if you attempt to add an unsupported datatype.
Supported datatypes are: Boolean, Short, Integer, Long, java.math.BigInteger, java.math.BigDecimal, Float, Double,
String, Character, byte[],char[], IRISList, and nul I.
void add(Object value)
void add(Object[] array)
void add(Collection collection)
parameters:
» value — Object instance of any supported type.
* array — Object[] containing Object elements of supported types. Each Object in the array will be appended

to the list as a separate element.
e collection— Collection containing Object elements of supported types. Each Object in the collection will
be appended to the list in the order that it is returned by the collection’s iterator.

Adding an IRISList element
The add() method never concatenates two instances of IRISList. Whenever add() encounters an IRISList instance
(either as a single value or as an element of an array or collection), the instance is appended as a single IRISList
element.
However, you can use IRISList.toArray() to convert an IRISList to an Object[]. Calling add() on the resulting array
will append each element separately.

42 Using the Native SDK for Java

Class IRISList

clear()

jdbc.IRISList.clear () resets the list by removing all elements from the list.
void clear()
count()
jdbc.IRISList.count() iterates over the list and returns the number of elements encountered.
int count()

DateToHorolog() [static]

jdbc.IRISList.DateToHorolog() converts a Date to the day field (int) of a $Horolog string. Also see
HorologToDate().

static int DateToHorolog(Date value, Calendar calendar)
par ameters.

* value — Date value to convert.

» calendar — Calendar used to determine GMT and DST offsets. Can be null for default calendar

equals()

jdbc.IRISList.equals() compares the specified list with this instance of IRISList, and returns true if they are identical.
To be equal, both lists must contain the same number of elements in the same order with identical serialized values.

boolean equals (Object list)

parameters

» list —instance of IRISList to compare.

get()

jdbc.IRISList.get() returns the element at index as Object. Throws IndexOutOfBoundsException if the index is less
than 1 or past the end of the list.

Object get(int index)
parameters

* index — integer specifying the list element to be retrieved.

getList()

jdbc.IRISList.getList() gets the element at index as an IRISList. Throws IndexOutOfBoundsException if the index
is less then 1 or past the end of the list.

IRISList getList(int index)

parameters:

* Index — integer specifying the list element to return

Using the Native SDK for Java 43

Java Native SDK Quick Reference

HorologToDate() [static]

jdbe.IRISList.HorologToDate() converts the day field of a $Horolog string to a Date value. Also see
DateToHorolog().

static Date HorologToDate(int Horologvalue, Calendar calendar)
par ameters.

» HorologValue —int representing the day field of a $Horolog string. The time field will be zeroed out (i.e.,
midnight), so a Date will not round trip if its time fields are not zero to begin with.

» calendar — Calendar used to determine GMT and DST offsets. Can be null for default calendar.

HorologToTime() [static]

jdbe.IRISList.HorologToTime() converts the time field of a $Horolog string to a Time value. Also see
TimeToHorolog().

static Time HorologToTime(int Horologvalue, Calendar calendar)

parameters:

» HorologValue —int representing the time field of a $Horolog string. The date field will be zeroed out (set
to the epoch), so a Time with a milliseconds value outside the range OL to 86399999L does not round trip.

e calendar — Calendar used to determine GMT and DST offsets. Can be null for default calendar

PosixToTimestamp() [static]

jdbc.IRISList.PosixToTimestamp() converts a %Library.PosixTime value to a Timestamp. Treats the %PosixTime
as local time using the supplied Calendar (if null, uses the default time zone). To round trip, you must supply
equivalent calendars. Also see TimestampToPosix().

static Timestamp PosixToTimestamp(long PosixValue, Calendar calendar)
parameters

* PosixValue — the %PosixTime value (a 64-bit signed integer).

* calendar — Calendar, used to determine GMT and DST offsets. Can be null for default calendar

remove()

jdbc.IRISList.remove() removes the element at index from the list. Returns true if the element existed and was
removed, false otherwise. This method can be expensive, since it will usually have to reallocate the list.

boolean remove(int index)

parameters:

* index — integer specifying the list element to remove.

44

Using the Native SDK for Java

Class IRISList

set()

size()

jdbc.IRISList.set() sets or replaces the list element at index with value. If value is an array, each array element is
inserted into the list, starting at index, and any existing list elements after index are shifted to make room for the
new values. If index is beyond the end of the list, value will be stored at index and the list will be padded with
nulls up to that position.

void set(int index, Object value)
void set(int index, Object[] value)

parameters:
* Index — integer indicating the list element to be set or replaced

» value — Object value or Object array to insert at index

Objects can be any of the following types: Boolean, Short, Integer, Long, java.math.BigInteger, java.math.BigDecimal,
Float, Double, String, Character, byte[],char[], IRISList, and nul 1.

jdbc.IRISList.size() returns the byte length of the serialized value for this IRISList.

int sizeQ)

subList()

jdbc.IRISList.subL ist() returns a new IRISList containing the elements in the closed range [from, to]. Throws
IndexOutOfBoundsException if fromis greater than count() or to is less than from.

IRISList subList(int from, int to)

parameters:
 from— index of first element to add to the new list.

e to—index of last element to add to the new list.

TimestampToPosix() [static]

jdbc.IRISList. TimestampToPosix() converts a Timestamp object to a %Library.PosixTime value (a 64-bit signed
integer). Converts the Timestamp to local time using the supplied Calendar (if null, uses the default time zone).
To round trip, you must supply equivalent calendars. Also see PosixToTimestamp().

static long TimestampToPosix(Timestamp Value, Calendar calendar)

parameters:
* Value — Timestamp to be converted.

 calendar — Calendar used to determine GMT and DST offsets. Can be null for default calendar

TimeToHorolog() [static]

jdbc.IRISList. TimeToHorolog() converts a Time value to the time field of a $Horolog string. Also see
HorologToTime().

static int TimeToHorolog(Time value, Calendar calendar)

parameters:

Using the Native SDK for Java 45

Java Native SDK Quick Reference

* value — Time to be converted.

e calendar — Calendar used to determine GMT and DST offsets. Can be null for default calendar

toArray()

jdbc.IRISList.toArray() returns an array of Object containing all of the elements in this list. If the list is empty, a
zero length array will be returned.

Object[] toArray()

toList()

jdbc.IRISList.toList() returns a java.util. ArrayList<Object> containing all of the elements in this IRISList. If the list
is empty, a zero length ArrayL.ist will be returned.

ArrayList< Object> toList()

toString()

jdbc.IRISList.toString() returns a printable representation of the list.
String toString()

Some element types are represented differently than they would be in ObjectScript:
* Anempty list (""" in ObjectScript) is displayed as ""$1b()"".

o Empty elements (where $1b()=$c (1)) are displayed as ""nul '

e Strings are not quoted.

» Doubles format with sixteen significant digits

6.4 Class IRISObject

Class IRISObject is a member of com.intersystems.jdbc (the InterSystems JDBC driver). It provides methods to work with
inverse proxy objects (see “Using Java Inverse Proxy Objects™ for details and examples).

IRISObject has no public constructors. Instances of IRISObject can be created by calling one of the following IRIS methods:
* jdbc.IRIS.classM ethodObj ect()

e jdbc.IRIS.functionObject()

If the called method or function returns an object that is a valid OREF, an inverse proxy object (an instance of IRISObject)

for the referenced object will be generated and returned. For example, classM ethodObject() will return a proxy object for
an object created by % New().

See “Using Java Inverse Proxy Objects” for details and examples.

46 Using the Native SDK for Java

Class IRISObject

6.4.1 IRISObject Method Details

close()

get()

jdbc.IRISObject.close() closes the object.

void close()

jdbc.IRISObject.get() returns a property value of the proxy object as an instance of Object.
Object get(String propertyName)

parameters:

e propertyName — name of the property to be returned.

getBoolean()

jdbc.IRISObject.getBoolean() returns a property value of the proxy object as an instance of Boolean.
Boolean getBoolean(String propertyName)
parameters:

* propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes™ for related information.

getBytes()

jdbc.IRISObject.getBytes() returns a property value of the proxy object as an instance of byte][].
byte[] getBytes(String propertyName)
parameters:

e propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes™ for related information.

getDouble()

jdbc.IRISObject.getDoubl&() returns a property value of the proxy object as an instance of Double.
Double getDouble(String propertyName)
parameters:

* propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

getlIRISList()

jdbc.IRISObject.getl RISList() returns a property value of the proxy object as an instance of IRISList.

IRISList getlRISList(String propertyName)

Using the Native SDK for Java 47

Java Native SDK Quick Reference

parameters:

* propertyName — name of the property to be returned.
See “IRISObject Supported Datatypes™ for related information.
getLong()
jdbc.IRISObject.getL ong() returns a property value of the proxy object as an instance of Long.
Long getLong(String propertyName)
parameters:
e propertyName — name of the property to be returned.
See “IRISObject Supported Datatypes™ for related information.
getObject()
jdbc.IRISObject.getObject() returns a property value of the proxy object as an instance of Object.
Object getObject(String propertyName)
parameters:
» propertyName — name of the property to be returned.
See “IRISObject Supported Datatypes™ for related information.
getString()
jdbc.IRISObject.getString() returns a property value of the proxy object as an instance of String.
String getString(String propertyName)
parameters:
e propertyName — name of the property to be returned.
See “IRISObject Supported Datatypes™ for related information.
invoke()
jdbc.IRISObject.invoke() invokes an instance method of the object, returning value as Object.
Object invoke(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

* args — zero or more arguments of supported types.
See “IRISObject Supported Datatypes™ for related information.

invokeBoolean()

jdbc.IRISObject.invokeBoolean() invokes an instance method of the object, returning value as Boolean.

Boolean invokeBoolean(String methodName, Object... args)

48 Using the Native SDK for Java

Class IRISObject

parameters:
* methodName — name of the instance method to be called.

* args — zero or more arguments of supported types.
See “IRISObject Supported Datatypes™ for related information.
invokeBytes()
jdbc.IRISObject.invokeBytes() invokes an instance method of the object, returning value as byte[].
byte[] invokeBytes(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

* args — zero or more arguments of supported types.
See “IRISObject Supported Datatypes” for related information.
invokeDouble()
jdbc.IRISObject.invokeDouble() invokes an instance method of the object, returning value as Double.
Double invokeDouble(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

* args — zero or more arguments of supported types.
See “IRISObject Supported Datatypes™ for related information.

invokelRISList()
jdbc.IRISObject.invokel RI SList() invokes an instance method of the object, returning value as IRISList.

IRISList invokelRISList(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

* args — zero or more arguments of supported types.
See “IRISObject Supported Datatypes™ for related information.

invokeLong()

jdbc.IRISObject.invokel ong() invokes an instance method of the object, returning value as Long.
Long invokeLong(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

« args — zero or more arguments of supported types.

Using the Native SDK for Java 49

Java Native SDK Quick Reference

See “IRISObject Supported Datatypes™ for related information.

invokeObject()

jdbc.IRISObject.invokeObject() invokes an instance method of the object, returning value as Object
Object invokeObject(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

e args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes™ for related information.

invokeStatusCode()

jdbc.IRISObject.invokeStatusCode() tests whether an invoke method that returns an ObjectScript $Status object
would throw an error if called with the specified arguments. If the call would fail, this method throws a
RuntimeException error containing the ObjectScript $Status error number and message. See “Catching %Status
Error Codes” for details and examples.

void invokeStatusCode(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

« args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for related information.

invokeString()

jdbc.IRISObject.invokeString() invokes an instance method of the object, returning value as String.
String invokeString(String methodName, Object... args)

parameters:
 methodName — name of the instance method to be called.

« args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes™ for related information.

invokeVoid()

jdbc.IRISObject.invokeVoid() invokes an instance method of the object, but does not return a value.
void invokeVoid(String methodName, Object... args)

parameters:
* methodName — name of the instance method to be called.

e args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes™ for related information.

50

Using the Native SDK for Java

Class IRISObject

iris [attribute]
jdbc.IRISObject.irisis a public field that provides access to the instance of IRIS associated with this object.

public IRIS iris

See “IRISObject Supported Datatypes™ for related information.
set()

jdbc.IRISObject.set() sets a property of the proxy object.

void set(String propertyName, Object propertyValue)

parameters:

» propertyName — name of the property to which value will be assigned.

» value — property value to assign.

Using the Native SDK for Java 51

	Table of Contents
	1 Introduction to the Java Native SDK
	2 Calling ObjectScript Methods and Functions from Java
	2.1 Class Method Calls
	2.2 Function Calls
	2.3 Calling Class Library Methods
	2.3.1 Using Pass-by-reference Arguments
	2.3.2 Catching %Status Error Codes

	3 Using Java Inverse Proxy Objects
	3.1 Introducing External Servers
	3.2 Creating an Inverse Proxy Object
	3.3 Controlling a Target Object
	3.4 IRISObject Supported Datatypes

	4 Working with Global Arrays
	4.1 Introduction to Global Arrays
	4.1.1 Glossary of Native SDK Terms
	4.1.2 Global Naming Rules

	4.2 Creating, Accessing, and Deleting Nodes
	4.2.1 Creating Nodes and Setting Node Values
	4.2.2 Getting Node Values
	4.2.3 Deleting Nodes

	4.3 Finding Nodes in a Global Array
	4.3.1 Iterating Over a Set of Child Nodes
	4.3.2 Finding Subnodes on All Levels

	4.4 Class IRIS Supported Datatypes

	5 Transactions and Locking
	5.1 Controlling Transactions
	5.2 Concurrency Control

	6 Java Native SDK Quick Reference
	6.1 Class IRIS
	6.1.1 IRIS Method Details

	6.2 Class IRISIterator
	6.2.1 IRISIterator Method Details

	6.3 Class IRISList
	6.3.1 IRISList Constructors
	6.3.2 IRISList Method Details

	6.4 Class IRISObject
	6.4.1 IRISObject Method Details

