InterSystems-

IRIS Data Platform

Developing DTL
Transformations

Version 2024.1
2024-07-02

Developing DTL Transformations

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

11INtroducCtion tO DTL TOOIScoueieeieireeieierie ettt sttt sb st sbe b bbb e et e e e e e e e eaeeneeae 1
1.0 BACKGIOUN ...ttt bbbttt bbbttt bt 1

1.2 Introduction to the Data Transformation BUuilder Pagecccooeriiiiiieiiecneenee e 1

1.3 Introduction to the DTL DIAQIAMcccccvierererereeriereeieeeeseeesesee e e e sresee e ssenseseesesnsesenses 2

1.4 Controlling the DISPIAY ...c.vccveveeieiirsisese s st e ettt sttt sn e e e e e eneeneens 3

1.5 Introduction to the Data Transformation LiSt PAgEccccvvveviiieeii i 4

1.6 OFNEE TOOIS .ttt b bbbt bt bbb b e b et e b e e e st e b e e b e b ebeneas 4

1.7 Using Data TranSfOrMAtioNScouiveiiiiriiirieiirieiesieie sttt 4

2 Creating Data Transfor MatioNSccoveereiirenie e seseree e e et see st te st ee e seeneesesneeneesessessenns 5
2.1 Creating @ TranSfOrMAtiONcccieiiiiiirii et sb e snenes 5

2.2 Opening an EXisting TranSfOrmationc.cccieiiiriiise e 6

2.3 Specifying Transformation DetailScooiieieiiiiiieece e 6
2.3.1 Using the Create exXiSting OPLIONc.ceiiiiiiniiesese et 7

2.4 Editing Transformation ACHIONSciiiireieieeeeee e s s 8
2.4.1 AAdING 8N ACLION ..ottt bbbt ettt enas 8

2.4.2 EAItING AN ACLION 1..veeeiciece ettt sre et srena et e e e ns 8

2.5 REAINTANGING ACHIONS ...ovviuiieieieeete ettt se e s e e aeebestesaesbesbeseeseesteseesee s eneeneeneens 9

2.6 Working With Groups OF ACTIONScc.eieiiiriiieieeeeee et ene s 9

2.7 UNAOING 8 CRANGE ..eetiieitiie ettt bbbttt b ettt be st e be b s be b e 10

2.8 Saving @ TranSTOrMATIONccoieiieiiieice bbb 10

2.9 Compiling & TranSTOrMEtioNccooiiiriiincere e e 11
2.10 Deleting @ TranSfOrMatioNcccvceierereiirereree ettt st e e e eneereeneens 11
GV 1 1= L U= SR 13
3.1 References t0 MeSSage PrOPEITIEScc.oiuiiieieieieeeic sttt et 13

3.2 LITEIAI VAIUES ...ttt bbbt bbbttt be bbb et nbe e 13
3.2.1 XML ReSErVEd CharaCterScceivirueieieeeieieniese st e sttt sae e e et st e sne e 14

3.2.2 Separator Characters in Virtual DOCUMENTScccoirueirririiiniiiiesiesiesese s 14

3.2.3 When XML Reserved Characters Are AlSO SEPAratorscccevveivrvserieseseneseseeseenens 14

3.2.4 NUMETIC CharaCter COUBScueviieriiieieieriete ettt sttt et et ettt e 15

3.3 Valid EXPIrESSIONS ...ueieiuieieeiiietieie ettt sttt b et se e et b bbbt st e st bt st sbe st e bt e nneneas 15

A AAAING ASSIGN ACEIONS ..ttt sttt se e e e e e e e e e e et et ebesbesaesaesbesbeseesbenbeseeseennan 17
I 1o 0o 1 4 oo TSR 17
4.1.1 Objects and ObJECt RETEIENCEScoveiriiiriiirieire s 17

4.2 CopYing the SOUICE MESSAJEvcveireirerierieriesiesiestesteieseeseesaeresseesessessessesresreseeseesaeseeseensensesseneens 17

4.3 Copying a Value from a Source Property to a Target Propertyccccoeeveevererereeveeresiesnsnneenns 18

4.4 Copying Values of All SUD-PrOPEITIEScceiiriiiiicic e 19

4.5 Assigning a Literal Value to @ Target PrOPEITYooioeieiieieireicsiesie s 20

4.6 Using an Expression for the Value of a Target PrOPertycoecvevrerininninsinsesscsecneens 20
4.6.1 Using the Data Transform FUNCtioN WIZardcccoevvennennenneeecsec e 20

4.7 Assigning a Value t0 a ColleCtion ITEMcveveveiiece e 21

4.8 INSErtiNG @ LISE IEEM 1.veiviiiiieie ettt st sttt et e e e e e eneereene e 22

4.9 ApPENdiNg @ LISE TEEIM ..cueiiiiiiiiie ittt ettt 23
4.10 Removing & COHECTION TTEM ..ottt s en 24
4.11 Clearing @ ColIECtioN PrOPEITYccoviiiviiiiirieiiieeiereet ettt 25
Ao (o [T To @ 1 T A ox o o S 27

Developing DTL Transformations

TN (o Tl = T 1 A1 £ o SRS 27

5.2 Adding @ FOr EACh ACHION ...ttt st 28
5.2.1 Shortcuts for the FOr EQCh ACHIONcc.oiueiiiiiieeieeeeer s 29
5.2.2 Unloading Target COHECLIONSccovuiiriiiiiiieiseeeeee et 30
5.2.3 Avoiding <STORE> Errors with Large MESSAGEScccvrvrrrererrerieriereeieisresesreseeseeseenees 30

5.3 Adding a Subtransform ACHIONccciveiceieeceees e e 31

SR AN o Tl I T I = Vo A ot 1 o o SRS 31

5.5 AddING 8 COUE ACHION ...ttt ittt ettt sb e bbb b bbbt se e eneens 32
5.5.1 Guidelines for Using Custom Code iN DTLccooiiriiniiniineireeseseeeseee s 32

5.6 AddIiNg an SQL ACLION ..c.eiviiiiiiiieite ettt 33
5.6.1 Guidelines for Using SQL IN DTL ..vcovvvieieieriiesiereeeeeee s sie e sne e ensenaenas 33

I Ao (o 1T BT o X o 33

R eI a0 (o Tl - W@ T T- I AN od o] S 34

5.9 AddIng @ Default ACLIONoouiiiiiiiii et e et 34

5.10 Adding @ Break ACHIONcoiueiiiiiiieiiie ettt st snene s 34

5.11 Adding @ COMMENT ACLIONeviiiieiirieierieesie ettt ettt sbe e 34

6 Testing Data Transfor MALTONScooceireirei e e e st st 35

6.1 Using the Transformation TESHING PAgEccovieiiiiiieiiie et 35

6.2 Testing a Transformation Programmaticallyccccocevviiiiiiiii i 36

Developing DTL Transformations

Introduction to DTL Tools

This topic introduces the tools that InterSystems IRIS® provides to enable you to develop and test DTL transformations.

1.1 Background

A data transformation creates a new message that is a transformation of another message. It is common for a production
to use data transformations, to adjust outgoing messages to the requirements of the target systems.

You can create and edit a DTL transformation visually in the DTL editor, available in either the Management Portal or
your IDE. The DTL editor is meant for use by nontechnical users. The term DTL represents Data Transformation Language,
which is the XML-based language that InterSystems IRIS uses internally to represent the definition of a transformation
that you create in this editor.

You can invoke a data transformation from a business process, another data transformation, or a business rule. Note that
there is overlap among the options available in business processes, data transformations, and business rules. For a compar-
ison, see Comparison of Business Logic Tools. You can also try using these tools yourself by Creating a Data Transformation.

1.2 Introduction to the Data Transformation Builder Page

The Data Transformation Builder page enables you to create, edit, and compile DTL transformations.
To access this page in the Management Portal, select Interoperability > Build > Data Transformations.

When you display this page, it shows the last transformation you opened in this namespace, if any. This page has the fol-
lowing areas:

» Theribbon bar that the top displays options you can use to create and open DTL transformations, compile the currently
displayed transformation, change the zoom display of the diagram, and so on.

For information on these options, see Creating Data Transformations.
e The upper part of the left area displays the DTL diagram. The next section provides details on this area.

e The lower part of the left area displays a table that lists the actions defined in the DTL transformation. When InterSystems
IRIS uses this transformation, it performs these actions in order as listed here.

» The right area displays three tabs:

Developing DTL Transformations 1

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_ides
https://learning.intersystems.com/course/view.php?id=2168

Introduction to DTL Tools

— Transform—Enables you to edit information about the transformation. For details, see Specifying Transformation

Details.

— Action—Enables you to edit details of the selected action. Other topics describe the details for assign actions and

for other kinds of actions.

— Tools—Enables you to launch a wizard to test the currently displayed transformation. For details, see Testing Data
Transformations.

You can resize these three areas.

1.3 Introduction to the DTL Diagram

The following shows the DTL diagram for a DTL class:

Demo.ZenSewice.Msg.\.io'g;her()perationllesponse Demn.zenSewice.Mng.::.?;therRepnrtRespnnse
%/ source %/ target
Forecast ———_——1{3 Report
MinTemperature —————1> MinTemp
MaxTemperature —{ ¢ MaxTemp
TempScale

Note the following points:

The left area displays the source message. The header above the column displays the name of the source message class,
and the boxes in the column display properties of the source message.

The right area displays the target message in the same way.
The top area includes a scroll button for each of these areas.

The diagram shows connectors that represent actions within the transformations. The actions displayed here copy
values from source properties to target properties.

The center divider (the blue column) displays an icon on each connector line. The purpose of these icons is to enable
you to select the connectors more easily. (You can select a connector line anywhere on its length, but it is easier to
click the icons shown in this center divider.)

The following shows another example:

Developing DTL Transformations

Controlling the Display

Source Target
MyApp.MyRequestMessage MyApp.MyResponseMessage
%/ source @ [+ %/ target
FavoriteColors() @ [FawvoriteColors()
PatientID | @] [PatientID
Name | —{_— > MName
Allergies() D > Allergies()
7 Address @] 4"—:: ------------- P{[> Address |
Street ol
City o f/
ZipCode o,

In this case, the source and target classes are more complex. Note the following additional points:

The FavoriteColors property is defined as list of strings. This property is displayed here with parentheses () at the end
of its name.

In this example, Allergies is another collection property.

The Address property is defined as an object that has the Street, City, and ZipCode properties. Notice that the box for
this property contains a triangle inside it.

In the left column, this property is displayed in expanded mode, so that you can see the properties. The triangle in the
box is not solid and is pointing down.

The right column, this property is displayed in collapsed mode. The triangle in this box is solid and is pointing to the
right.

For the Address properties, the connector is shown with a dashed line on the side where the Address is collapsed. This
indicates that there are hidden sub-properties on this side of the assign action.

1.4 Controlling the Display

You can control the display of the Data Transformation Builder page in multiple ways:

You can click a View option in the ribbon bar:

View:

Use the buttons to view both the transform diagram and the action list in the left pane of the page, or instead to collapse
the section you do not want to see.

You can select a zoom option from the drop-down list in the ribbon bar. By default, this list displays 100%. Click a
value in the list to shrink or enlarge the size of the DTL diagram.

Use the scroll bars in the header area of the DTL diagram, as described in the previous section.

Collapse and expand the display of properties, as described in the previous section.

Developing DTL Transformations 3

Introduction to DTL Tools

1.5 Introduction to the Data Transformation List Page

The Interoperability > List > DataTransformations page lists the data transformation classes defined in the current namespace.

This page lists two kinds of transformations:

» DTL transformations are displayed in blue. You can double-click one to open it in the Data Transformation Builder.

» Custom transformations are displayed in black. These classes are based on Ens.DataTransform and do not use DTL.
You must edit these in your IDE.

To use this page, select a transformation class and then click one of the following commands in the ribbon bar:

» Edit—(DTL transformations only) Click to change or view the data transformation using the Data Transformation
Builder.

» Test—Click to test the selected transformation class using the Test Transform wizard.
For details, see Testing Data Transformations.

» Delete—Click to delete the selected transformation class.

» Export—Click to export the selected transformation class to an XML file.

* Import—Click to import a data transformation that was exported to an XML file.

You can also export and import these classes as you do any other class in InterSystems IRIS.

1.6 Other Tools

You can also invoke a data transformation programmatically, which can be useful for testing purposes. For details, see
Testing Data Transformations.

Also, because data transformations are classes, you can edit them and work with them in the same way that you do any
other class.

1.7 Using Data Transformations

You can invoke a data transformation from the following parts of a production:

* From another DTL data transformation. See Adding a Subtransform Action.

» From a BPL business process. See <transform>.

e From abusiness rule. See Selecting the Transformation and Target of a Send Action.

* From a custom business process or a custom DTL transformation. To do so, execute it programmatically as described
in Testing Data Transformations.

Note: This section applies to both DTL transformations and custom transformations.

4 Developing DTL Transformations

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_ides

Creating Data Transformations

This topic describes generally how to create and edit data transformations.

Other topics describe the syntax to use in data transformations, details for assign actions, and details for other kinds of
actions.

You can also visit Online Learning to try Creating a Data Tranformation yourself.

Important: After a period of inactivity, the InterSystems Management Portal may log you out and discard any unsaved
changes. Inactivity is the time between calls to the InterSystems IRIS server. Not all actions constitute a
call to the server. For example, clicking Save constitutes a call to the server, but typing in a text field does
not. Consequently, if you are editing a data transformation, but have not clicked Save for longer than
Session Timeout threshold, your session will expire and your unsaved changes will be discarded. After a
logout, the login page appears or the current page is refreshed. For more information, see Automatic Logout
Behavior in the Management Portal.

2.1 Creating aTransformation

To create a transformation:
1. Click New.

If you are currently viewing a transformation and you have made changes but have not yet saved them, InterSystems
IRIS® prompts you to confirm that you want to proceed (which will discard those changes).

InterSystems IRIS then displays a dialog box where you can specify the basic information for the transformation.
2. Specify some or all of the following information:

* Package (required)—Enter a package name or click the arrow to select a package in the current namespace.
Do not use a reserved package name; see Reserved Package Names.

* Name (required)—Enter a name for your data transformation class.

» Description—Enter an description for the data transformation; this becomes the class description.

* Source Type and Source Class—Specifies the type of messages that this transformation will receive as input.
Choose one of the following:

— Al Messages—This transformation can be used with any input message type.

Developing DTL Transformations 5

https://learning.intersystems.com/course/view.php?id=2168

Creating Data Transformations

— X12—The input messages are instances of EnsLib.EDI.X12.Document.
— EDIFACT—The input messages are instances of EnsLib.EDI.EDIFACT.Document.

— XML—The input messages are instances of EnsLib.EDI.XML.Document.

Or click the search icon for Source Class and then select the class.

* Source Document Type (applicable only if the messages are virtual documents)—Enter or choose the document
type of the source messages. You can choose any type defined in the applicable schemas loaded into this namespace.

* Target Type and Target Class—Specifies the type of messages that this transformation will generate as output. See
the choices for Source Type and Source Class.

* Target Document Type (applicable only if the messages are virtual documents)—Enter or choose the document
type of the target messages. You can choose any type defined in the applicable schemas loaded into this namespace.
Apart from Package and Name, you can edit all these details later.

3. Specify details on the Transform tab. See Specifying Transformation Details.

2.2 Opening an Existing Transformation

To open a transformation:
1. Click open.

If you are currently viewing a transformation and you have made changes but have not yet saved them, InterSystems
IRIS prompts you to confirm that you want to proceed (which will discard those changes).

2. Click the package that contains the transformation.
Then click the subpackage as needed.
3. Click the transformation class.

4. Click oK.

2.3 Specifying Transformation Details

For a transformation, the Transform tab displays details that apply to the transformation as a whole. You may or may not
have already specified some of these details. Other details can be edited only here. These details are as follows:

* Name (read-only)—Complete package and class name of the data transformation class.
» Create—Specifies how the transformation should create the target message. Choose one of the following:

— new—Create a new object of the target class (and type, if applicable), before executing the elements within the
data transformation. This is the default.

— copy—Create a copy of the source object to use as the target object, before executing the elements within the
transform.

— existing—Use an existing object, provided by the caller of the data transformation, as the target object. See the
following subsection.

6 Developing DTL Transformations

Specifying Transformation Details

Source Class—Specifies the type of messages that this transformation will receive as input. For details, see Creating
a Transformation.

Source Document Type (applicable only if the messages are virtual documents)—Specifies the document type of the
source messages.

Target Class—Specifies the type of messages that this transformation will generate as output. For details, see Creating
a Transformation.

Target Document Type (applicable only if the messages are virtual documents)—Specifies the document type of the
target messages.

Language—Specifies the language you will use in any expressions in this DTL. This should be objectscript.

Report Errors—Specifies whether InterSystems IRIS should log any errors that it encounters when executing this
transform. If you select this option, InterSystems IRIS logs the errors as Warnings in the Event Log. InterSystems IRIS
also returns a composite status code containing all errors as its return value. This option is selected by default.

Ignore missing source segments and properties—Specifies whether to ignore errors caused by attempts to get field
values out of absent source segments of virtual documents or properties of objects. If you select this option, InterSystems
IRIS suppresses these errors and does not call subtransforms where the named source is absent. This option is selected
by default.

You can precisely control the behavior by including tests and conditional logic branches to confirm that any required
elements are present.

Treat empty repeating fields as null—Specifies whether InterSystems IRIS skips the following actions for repeating
fields when the fields are empty:

— foreach actions—If you select this option, InterSystems IRIS does not execute foreach actions on repeating fields
that are empty.

— assign actions—If you select this option, InterSystems IRIS does not execute assign actions on repeating fields
if you use shortcut notation to indicate that both the source and target fields are repeating fields, and the
source field is empty. For example, if the source.{PV1:AdmittingDoctor ()} field is empty and you
select this option, then InterSystems IRIS does not execute the following action:

<assign value="source.{PV1:AdmittingDoctor()}"
property="target.{PV1:AdmittingDoctor()}" action="set".

However, InterSystems IRIS does execute the following similar action since the target field is not a repeating
field:

<assign value="source.{PV1:AdmittingDoctor()}"
property="target.{PV1:AdmittingDoctor(1)}" action="set" />

This option is cleared by default.

e Description—Description of the data transformation.

2.3.1 Using the Create existing Option

For Create, the existing option enables you to specify the target as an existing object, which results in a performance
improvement. This option applies when you invoke a series of transformations programmatically (or perform other
sequential processing). You would use this option in cases like the following scenario:

* You have three transformations that you want to perform in sequence:
1. MyApp.ADTTransform—Uses the new option for Create.

2. MyApp.MRNTransform—Uses the existing option for Create.

Developing DTL Transformations

Creating Data Transformations

3. MyApp.LabXTransform—Uses the existing option for Create.

* You invoke the transforms as follows:

do MyApp-ADTTransform.Transform(message, -target)
do MyApp.MRNTransform(target, .newtarget)
do MyApp.LabXTransform(newtarget, .outmessage)

2.4 Editing Transformation Actions

This section describes generally how to add and edit the actions in a transformation. It includes the following subsections:
e Adding an Action
» Editing an Action

Other topics describe the syntax to use in data transformations, details for assign actions, and details for other kinds of
actions.

2.4.1 Adding an Action

To add an action, you can always do the following:

1. Optionally click a source or target property, depending on the kind of action you want to add.
2. Select an action from the Add Action drop-down list in the ribbon bar.

3. Edit the details for this action on the Action tab.

If applicable, the property that you selected is shown in the Property field, for use as a starting point. Optionally, you
can disable the action with the Disabled check box. If you disable a foreach or if action, all actions within the block
are also disabled.

Other techniques are possible for assign actions, as discussed in Adding Assign Actions.

2.4.2 Editing an Action

To edit an action, first select it. To do so:
» Click the corresponding row in the table below the diagram.
« If the diagram displays the action, click the icon on the corresponding connector line, in the center divider.

When you click on an item, it changes color, the connector line turns bold, and the source and target properties are
highlighted in color. This means the connector is selected, as shown in the following figure.

Now edit the values on the Action tab. Optionally, you can disable the action with the Disabled check box. If you disable
a foreach or if action, all actions within the block are also disabled.

8 Developing DTL Transformations

Rearranging Actions

Tip: If youdouble-click a property in the diagram, InterSystems IRIS updates the currently selected action, if applicable.
If you double-click a field in the source, then the editor interprets it as your wanting to set the value for the selected
action. Similarly, if you double-click a target field, the editor interprets it as your wanting to set the target for the
selected action.

2.5 Rearranging Actions

InterSystems IRIS executes the actions in the order they are listed in the table below the diagram.
To rearrange actions, you must use the table below the DTL diagram, as follows:
1. Click the row corresponding to that action.

2. Click one of the following icons in that row, as needed:

Tool Description

1 Move the selected action up one position. If the action is the first action in a group, for
example a for each or if block, then this moves the action up and out of the group.

1 Move the selected action down one position. If the action is the last action in a group, then
this moves the action just after the group. For example, if the action is the last action in an
if block, the action is moved right after the block. If the action is the last action in an if block
just before the else, then this moves the action into the first position in the else block.

= Move the selected action out of the current group, for example a for each or if block. This
moves the action out of the current group to the position immediately before the group.

- Move the selected action into the next group of actions, for example, a for each or if block.
a Remove all the actions of the data transformation.
® Remove the action in this row.

2.6 Working with Groups of Actions

You can gather actions into a display group by using the group action. Grouping actions helps organize them in the table
below the diagram. The description that you define on the Action tab appears in the list to help you identify a group.

Developing DTL Transformations 9

Creating Data Transformations

Source Target o
EnsLib.HL7.Message EnsLib.HL7.Message
Demo.HL7.MsgRouter.Schema:ADT_A01 2.3.1:ADT_A01
Transform | Action | Tools
Y/ source @] >/ target
& MSH : (5> MSH Details for the selected action
> EVN Oo————{>EVN group) i
~ || Organize a group of actions for display purposes only.
Actions P he== ¥ v S View documentation
—or T T A ST T e —| Disabled
5 set source. {EVN} U - o §
— Control whether this action and its children should be disabled.
| [group ;
7 se argetPID source {PID} {l] 5et PID segment wvalues.
2 set target.{PID:5.1} "NEWNAME"
9 endgroup 4|
AN ent tarnat TDMAY canren TDMAT

To move an action in or out of a group, select the action in the list and click b (move into group) or 4 (move out of
group). To make the list more readable, you can collapse or expand groups as you review the list. To collapse a group and

hide the actions it contains, click ¥ next to the action name. To expand a group, click * . You can also collapse and
expand all groups at once using the ¥ and * buttons in the table’s Actions bar.

Actions () L) = = 3K _ 4 <

Action Condition Property Value Keﬂﬁ'?:fﬂrm
1 group'w
2 set target SourceConfighlam... source SourceConfigham... ™
set target AlertText source AlertText
4 endgroup
5 set target AlertDestinatio. . _Lookup("AlertTable”, ...

Note: You can also expand and collapse blocks of actions created by if , for each , switch , and case actions.

2.7 Undoing a Change

To undo the previous change, click the Undo button 9.

2.8 Saving a Transformation

To save a transformation, do one of the following:
» Click save.
» Click save As. Then specify a new package, class name, and description and click OK.

» Click compile. This option saves the transformation and then compiles it.

10 Developing DTL Transformations

Compiling a Transformation

2.9 Compiling aTransformation

To compile a transformation, click Compile. This option saves the transformation and then compiles it.

2.10 Deleting a Transformation

To delete a transformation, you must use a different page, the Interoperability > List > Data Transformations page.
To delete a transformation:

1. Click the row that displays its name.

2. Click the Delete button.

3. Click ok to confirm this action.

Developing DTL Transformations 11

Syntax Rules

This topic describes the syntax rules for referring to properties and for creating expressions within various DTL actions.

3.1 References to Message Properties

In most actions within a transformation, it is necessary to refer to properties of the source or target messages. The rules for
referring to a property are different depending on the kind of messages you are working with.

» For messages other than virtual documents, use syntax like the following:
source.propertyname
Or:
source.propertyname.subpropertyname

Where propertyname is a property in the source message, and subpropertyname is a property of that property.

If the message includes a collection property, see Special Variations for Repeating Fields. Some of the information
there applies to both virtual documents and standard messages.

e For virtual documents other than XML virtual documents, use the syntax described in Syntax Guide for Virtual Property
Paths. Also see the following subsection.

e For XML virtual documents, see Routing XML Virtual Documents in Productions.

3.2 Literal Values

When you assign a value to a target property, you often specify a literal value. Literal values are also sometimes suitable
in other places, such as the value in a trace action.

A literal value is either of the following:
e Anumeric literal is just a number. For example: 42.3

» Astring literal is a set of characters enclosed by double quotes. For example: **ABD**

Developing DTL Transformations 13

Syntax Rules

Note: This string cannot include XML reserved characters. For details, see XML Reserved Characters.

For virtual documents, this string cannot include separator characters used by that virtual document format.
See Separator Characters in Virtual Documents and When XML Reserved Characters Are Also Separators.

3.2.1 XML Reserved Characters

Because DTL transformations are saved as XML documents, you must use XML entities in the place of XML reserved
characters:

To include this character... Use this XML entity...
> >

< &It;

& &

" '

" "

For example, to assign the value Joe”s "Good Time™"™ Bar & Grill to atarget property, set value equal to the fol-
lowing:

"Joe's "Good Time" Bar & Grill™
This restriction does not apply inside codeand sl actions, because InterSystems IRIS® automatically wraps a CData block

around the text that you enter into the editor. (In the XML standard, a CData block encloses text that should not be parsed
as XML. Thus you can include reserved characters in that block.)

3.2.2 Separator Characters in Virtual Documents

In most of the virtual document formats, specific characters are used as separators between segments, between fields,
between subfields, and so on. If you need to include any of these characters as literal text when you are setting a value in
the message, you must instead use the applicable escape sequence, if any, for that document format.

See the following topics:
* EDIFACT Separators
e X12 Separators

Important: In a data transformation, the separator characters and escape sequences can be different for the source and
target messages. InterSystems IRIS automatically adjusts values as needed, after performing the transfor-
mation. This means that you should consider only the separator characters and escape sequences that apply
to the source message.

3.2.3When XML Reserved Characters Are Also Separators

» Ifthe character (for example, &) is a separator and you want to include it as a literal character, use the escape sequence
that applies to the virtual document format.

* Inall other cases, use the XML entity as shown previously in XML Reserved Characters.

14 Developing DTL Transformations

Valid Expressions

3.2.4 Numeric Character Codes

You can include decimal or hexadecimal representations of characters within literal strings.

The string &#n; represents a Unicode character when n is a decimal Unicode character number. One example is é
for the Latin e character with acute accent mark (é).

Alternatively, the string &#xh; represents a Unicode character when h is a hexadecimal Unicode character number. One
example is ¿ for the inverted question mark (¢).

3.3Valid Expressions

When you assign a value to a target property, you can specify an expression, in the language that you selected for the data
transformation. You also use expressions in other places, such as the condition for an if action, the value in a trace action,
statements in a code action, and so on.

The following are all valid expressions:
» Literal values, as described in the previous section.

» Function calls (InterSystems IRIS provides a set of utility functions for use in business rules and data transformations.
For details, see Utility Functions for Use in Productions.) InterSystems IRIS provides a wizard for these.

» References to properties, as described in References to Properties.

» References to the aux variable passed by the rule. If the data transformation is called from a rule, it supplies the fol-
lowing information in the aux variable:

— aux.BusinessRuleName—Name of the rule.

— aux.RuleReason—Reason that the rule was fired. It is the same name as used in the logging. An example value is
‘rule#1:when#1'. If the RuleReason is longer than 2000 characters, it is truncated to 2000 characters.

— aux.RuleUserData—Value that was assigned in the rule to the property 'RuleUserData’. The value of 'RuleUserData’
is always the last value that it was set to.

— aux.RuleActionUserData—Value that was assigned in the rule when or otherwise clause to the property 'RuleAc-
tionUserData’.

If the data transformation is called directly from code and not from a rule, the code can pass the auxiliary data in the
third parameter. If your data transformation may be called from code that does not set the third parameter, your DTL
code should check that the aux variable is an object in an if action using the $I SOBJECT function.

» Any expression that combines these, using the syntax of the scripting language you chose for data transformation. See
Specifying Transformation Details. Note the following:

— In ObjectScript, the concatenation operator is the _ (underscore) character, as in:

value=""prefix"_source.{MSH:ReceivingApplication}_ "suffix""
— To learn about useful ObjectScript string functions, such as $CHAR and $PIECE, see the ObjectScript Reference.

— For a general introduction, see Using ObjectScript.

Developing DTL Transformations 15

Adding Assign Actions

This topic provides details on adding different kinds of assign actions to a DTL transformation.

Important: For virtual documents, do not manually change escape sequences in the data transformation; InterSystems
IRIS® handles these automatically.

For information on adding other kinds of actions, see Adding Other Actions.

For information about working with groups of actions, see Working with Groups of Actions .

4.1 Introduction

There are five kinds of assign actions: set, clear, remove, append, and insert. After you create any kind of assign action,
you can change the type. To do so, select a different value in the Action drop-down in the Action tab.

InterSystems IRIS represents each assign action with a connector line in the DTL diagram.

4.1.1 Objects and Object References

If you assign from the top-level source object or any object property of another object as your source, the target receives
a cloned copy of the object rather than the object itself. This prevents inadvertent sharing of object references and saves
the effort of generating cloned objects yourself.

If you instead want to share object references between source and target, you must assign from the source to an intermediate
temporary variable, and then assign from that variable to the target.

4.2 Copying the Source Message

To create an assign action that copies the source message:
1. Drag the circle tab to the right of the source message. Hold down the mouse button.
2. Drag the cursor to the triangle tab to the left of the target message until its box changes color.

3. Release the left mouse button.

Developing DTL Transformations 17

Adding Assign Actions

4.3 Copying a Value from a Source Property to aTarget
Property

To create an assign action that copies a value from a source property to a target property:
1. Drag a value from a source property to a target property. To do this:

a. Click the circle tab to the right of the source property. Hold down the mouse button. The display looks similar to

this:
| ,
I;_E . >¥3> Date

-.] o

jo; >L Sect
O | D> Mes:

b. Drag the cursor to the triangle tab to the left of the target property until its box changes color. The display looks
similar to this:

}-L} Date

c. Release the left mouse button. The display looks similar to this:

The table below the diagram now shows the details of the assign action.

2. Optionally edit the details on the Action tab.

This assign action uses set.

18 Developing DTL Transformations

Copying Values of All Sub-properties

4.4 Copying Values of All Sub-properties

If parent properties in the source and target are identical and the source and target have the same type, you can assign the
values of all the sub-properties at once. In this case there is no need to expand the parent properties to reveal the sub-
properties. Simply drag the cursor from the parent property on the source side to the parent property on the target side.

In the following DTL diagram, the single connector between the EVN property on the source side and the EVN property
on the target side includes all of the following sub-properties of EVN:

» EventTypeCode

* RecordedDateTime and all of its sub-properties

» DateTimePlannedEvent and all of its sub-properties

* EventReasonCode

» OperatorID, all of its iterations, and all of its sub-properties

» EventOccurred and all of its sub-properties

target {EVN} source {EVN}
6 ¥ set target {PID} source {PID}

Source Target -
EnsLib.HL7.Message EnsLib.HL7.Message 1
Demo.HL7.MsgRouter.Schema:ADT_A01 2.3.1:ADT_AD1
(7 source o} R [/ target
> MSH ="ZZTmnn{>([> MSH
(VEVN } e O[> EVN)
1: EventTypeCode @] ——=——==={[> PID 3
> 2: RecordedDateTime o} ﬁ.im—{;s!'[:‘» PD1
> 3: DateTimePlannedEvent] # > [> NK1()
4: EventReasonCode o] PV1
I> 5: OperatorID() @] [PV2 B
[> 6: EventOccurred o DB1()
> PID - (> 0BX()
> PD1 - (> ALL()
P> NK1() o >{> DG1()
> PV1 Jo— >([> DRG
> PV2 o (> PR1grp()
> DB1() o (> GT1()
> OBX() o > IN1grp()
> ALL() o i (> ACC N
Actions b @
Action Condition Property Value Key | Transform :,
1 ¥ set target {MSH} source {MSH} =
2 X set target {MSH:9.1} "ADT" L
3 &K set target {MSH:9.2} "A01"
4 K set target {MSH:ReceivingApplication} "TEST"

This assign action uses set.

Note: If the source and target types are different, you cannot use this feature to assign subproperties, even if the structures
appear to be parallel. For such a transformation, you must assign each leaf node of a structure independently and
add a for each action to process iterations. See Adding a For Each Action for details on the for each action.

Developing DTL Transformations 19

Adding Assign Actions

4.5 Assigning a Literal Value to a Target Property

To assign a literal value to a target property:

1.
2.
3.

Select the target property.

Click set from the Add Action drop-down list. The Action tab for this operation displays.
Type a literal numeric or string value in the value field:

* A numeric literal is just a number. For example: 42.3

» Astring literal is a set of characters enclosed by double quotes. For example: **ABD**

Note: This string cannot include XML reserved characters. For virtual documents, this string cannot include
separator characters used by that virtual document format. For details, see Syntax Rules.

Click save.

4.6 Using an Expression for theValue of aTarget Property

A literal value, as described in the previous section, is a simple kind of expression. In some cases, you might want to use
a more complex expression as the value of a target property. To do so, either:

To create an expression that uses a function, click the search button “ next to the Value field. This invokes the Data
Transform Function Wizard, which is described in the following subsection.

To create a more complex expression, type the expression into the value field.

See Valid Expressions. Make sure that the expression is valid in the scripting language you chose for the data transfor-
mation; see Specifying Transformation Details.

4.6.1 Using the Data Transform Function Wizard

To use the Data Transform Function Wizard:

1. Select a Function from the drop-down list.
More fields display as needed to define the expression.
If you select Repeat Current Function from the drop-down list, a copy of the current function is inserted as a parameter
of the itself, which creates a recursive call to the function.

2. Edit the fields as needed. For instructions, see the context-sensitive help in the dialog.

3. Click ok to save your changes and exit the wizard.

20 Developing DTL Transformations

Assigning a Value to a Collection Item

Data Transform Function Wizard
o Add functions to a DTL expression

Function Replace Function Current Expression
ReplaceStr() ~ O ReplaceStr(source {PID:PatientD}.foa)

Takes string value, replaces occurrences of string find with the string replace and returns
the result.

value
source.{PID:PatientlD}
Default value: ™

find [Optional]

foo

Default value: ™

replace [Optional]
bay
Default value: ™

4.7 Assigning aValue to a Collection Item

This section applies to the following kinds of collections:
» Collection properties in standard production messages.

» Repeating fields in XML virtual documents.

To change the value of an item from a collection:

1. Select the target list property or array property.

2. Click set from the Add Action drop-down list. The Action tab for this operation displays.
3. Inthe Property field, edit the value in parentheses so that it identifies the item to change.

For array properties, use the key of the array item. For list properties, use the index of the list item. For repeating fields
in virtual documents, use the index of the segment or field.

For example, suppose that you originally see this:
target.MyArrayProp. (1)

Edit the field to contain this instead:
target.MyArrayProp(‘'key2'™)

4. Edit value to contain a literal value or other valid expression.

See Valid Expressions. Make sure that the expression is valid in the scripting language you chose for the data transfor-
mation; see Specifying Transformation Details.

5. Click save.

For example:

Developing DTL Transformations 21

Adding Assign Actions

Action
set -
Property
|target. MyListProp.(3)

Property whose value will be set. Double-clicl
diagram will place that property in this field.

Value

'new value”

Value to azsign to the property. Double-clicki
will place that property in this field.

Or, edit the Property field to remove the trailing . (1) from the displayed value. Then use key to specify identify the item
to change, as described in the next section. For example:

Action

set -
Froperty
|ta rget. MyListProp

Property whose value will be sei. Double-cl
diagram will place that property in this field.

Value

"new value"

Value to assign to the property. Double-clic
will place that property in this field.

Key

14

For collection properties, this string specifie
iz the target of this assignment.

4.8 Inserting a List Item

This section applies to list properties (but not array properties) in standard production messages. You can also use this
action with XML virtual documents; see Routing XML Virtual Documents in Productions.

To insert an item into a list:

1. Select the target list property or array property.

2. Clickinsert from the Add Action drop-down list. The Action tab for this operation displays.
3. Inthe Property field, remove the trailing . (1) from the displayed value.

For example, suppose that you originally see this:
target.MyListProp. (1)

Edit the field to contain this instead:
target.MyListProp

4. Edit value to contain a literal value or other valid expression.

See Valid Expressions. Make sure that the expression is valid in the scripting language you chose for the data transfor-
mation; see Specifying Transformation Details.

22 Developing DTL Transformations

Appending a List Item

5. For key, identify the index position for the new item.

For example:
5
6. Click save.
For example:
Action
insert "l
Property
|ta rget MyListProp

Property whose value will be set. Double-
diagram will place that property in this fiek

Value

["value to insert”

Value to assign to the property. Double-chi
will place that property in this field.

Key

[3

For collection properties, this string specifi
iz the target of this assignment.

4.9 Appending a List Item

This section applies to list properties (but not array properties) in standard production messages. You can also use this
action with XML virtual documents; see Routing XML Virtual Documents in Productions.

To insert an item into a list:

1. Select the target list property or array property.

2. Click append from the Add Action drop-down list. The Action tab for this operation displays.
3. Inthe Property field, remove the trailing . (1) from the displayed value.

For example, suppose that you originally see this:
target.MyListProp. (1)

Edit the field to contain this instead:
target.MyListProp

4. Edit value to contain a literal value or other valid expression.

See Valid Expressions. Make sure that the expression is valid in the scripting language you chose for the data transfor-
mation; see Specifying Transformation Details.

5. Click save.

For example:

Developing DTL Transformations 23

Adding Assign Actions

Action

append - |
Property
|target. MyListProp

Property whose value will be sef. Double-
diagram will place that property in this fiek

Value

|"~.falue to append”

Value to azsign to the property. Double-ch
will place that property in this field.

Key

For collection properiies, this string specifi
iz the target of thiz assignment.

4.10 Removing a Collection Item

This section applies to collection properties (lists and arrays) in standard production messages. You can also use this action

with XML virtual documents; see Routing XML Virtual Documents in Productions.

To remove an item from a collection:

1. Select the target list property or array property.

2. Click remove from the Add Action drop-down list. The Action tab for this operation displays.

3. Inthe Property field, remove the trailing - (1) from the displayed value.

For example, suppose that you originally see this:

target.MyArrayProp. (1)
Edit the field to contain this instead:
target.MyArrayProp

4. For key, identify the item to remove.

For array properties, use the key of the array item. For list properties, use the index of the list item. For repeating fields
in virtual documents, use the index of the segment or field.

For example:
"'key2"
5. Click save.
For example:

24

Developing DTL Transformations

Clearing a Collection Property

Action

remove "l

Property
|ta rget. MyArrayProp
Property whose value will be set. Dou
diagram will place that property in this
Key
|"k:e1,r2"
For collection properiies, this siring sp
iz the target of this assignment.

4.11 Clearing a Collection Property

This section applies to collection properties (lists and arrays) in standard production messages. You can also use this action
with XML virtual documents; see Routing XML Virtual Documents in Productions.

To clear the contents of a collection:

1. Select the target list property or array property.

2. Click clear from the Add Action drop-down list. The Action tab for this operation displays.
3. Inthe Property field, remove the trailing . (1) from the displayed value.

For example, suppose that you originally see this:
target.MyArrayProp. (1)
Edit the field to contain this instead:

target.MyArrayProp

4. Click save.

For example:
Action
clear -
Property
|target.M*,rLi5tProp

Property whose value will be sei. Double-clic
diagram will place that property in this field.

Key

For collection properties, this string specifies
i= the target of this assignment.

Developing DTL Transformations 25

Adding Other Actions

This topic provides details on adding other kinds of actions to a DTL transformation.

For information about working with groups of actions, see Working with Groups of Actions.

For information on adding assign actions, see Adding Assign Actions.

5.1 Adding an If Action

An if action executes other actions conditionally, depending on the value of an expression that you provide. InterSystems

IRIS® represents each if action as a connector line in the DTL diagram.

To add an if action:

1.
2.

If the condition depends upon the value of a source property, click that property.

Select if from the Add Action drop-down list.

On the Action tab, the Condition field automatically contains the name of the source property that you had selected.
The area below the diagram contains three new rows. The Actions column displays the following labels for these rows:
» if—This row marks the beginning of actions to perform if the condition is true.

» else—This row marks the beginning of actions to perform if the condition is false.

* endf—This row marks the end of the if action.

Edit the Ccondition field so that it contains an expression that evaluates to either true or false.

For example:
source.ABC = "XYZ"

Notes:

To create an expression that uses a function, click the search button “ next to the value field. This invokes the
Data Transform Function Wizard, which is described earlier.

» To create a more complex expression, type the expression into the value field. See Valid Expressions. Make sure
that the expression is valid in the scripting language you chose for the data transformation; see Specifying Trans-
formation Details.

Developing DTL Transformations 27

Adding Other Actions

4. To add actions to perform when the condition is true:
a. Click the if row.
b. Select an item from the Add Action drop-down list.
c. Edit the values in the Action tab as needed.

d. Repeat as necessary.

You can include assign actions, if actions, and for each actions.
5. To add actions to perform when the condition is false:
a. Click the elserow.

b. Continue as described in the preceding item.

The details are then shown in the block below the DTL diagram. For example:

6 X if source {PID:PatientldentifierList(k1).id...

T R set target{PID:PatientidentifierList(k1}.as... “AUSHIC®
g K set target {PID:PatientldentifierList(k1)id... “MC®

g else

10 endif

Note: Itisnot required to have any actions for the if branch or for the elsebranch. If there are no actions in either branch,
the if action has no effect.

5.2 Adding a For Each Action

The for each action enables you to define a sequence actions that is executed iteratively, once for each member of one of
the following:

» A collection property (for a standard message) .
» Arrepeating property (for a virtual document).

* Asetof subdocuments in a document (for a virtual document).

InterSystems IRIS represents each for each action as a connector line in the DTL diagram.
You can break out of a for each loop at any time by adding a break action within the loop.
To add a for each action:

1. Select a collection or repeating property in the source message.

2. Select for each from the Add Action drop-down list.

On the Action tab, the Property field automatically contains the name of the selected source property, and the Key field
automatically contains k1, as illustrated below:

28 Developing DTL Transformations

Adding a For Each Action

foreach

Loop over the contents of a collecti
View documentation

Property

source {PID:PatientidentifierList()}

Property to iterate over. Double-clicking on a prop
that property in this field.

Key
k1
MName of the iterator variable used for this loop.

For the for each action, the Key field specifies the name of an iterator variable.

The Property field should not include the iterator key within the parentheses. For example, the following is correct:
source.{PID:PatientldentifierList()}

The for each iterates through the PatientldentifierList repeating fields, starting with the first one (numbered
1) and ending with the last one.

3. On the Action tab, the Unload check box controls whether to generate code to unload open objects or segments.

If the unload is checked for a for each action, then code is generated in the Transform method to try to
unload/unswizzle open object(s) or segment(s) for the property collection at the end of each loop. Unsaved virtual
document segments are saved and finalized. If the property is the source object, the source object is usually already
saved.

You may still need to manually add actions to unload the target collection’s objects or segments. For details on some
strategies, see Unloading Target Collections.

The unload of the for each property collection may be unnecessary — for example, for HL7, code generated using
CopyValues does not instantiate the source segments.

4. To add actions to the for each block, click the for each action and then add the appropriate actions.

The details are then shown in the block below the DTL diagram. For example (partial):

Action Condition Property Value Key / Transform
1 ¥ foreach source {PID:PatientldentifierList()} k1

2 K if source {PID:PatientldentifierList(k1).id...

3 X set target {PID:PatientldentifierList(k1)id... "MR™

4 else

5 endif

6 X if source {PID:PatientldentifierList(k1).id...

If the <foreach> applies to a collection property in a message, the sequence of activities is executed iteratively, once for
every element that exists within the collection property. If the element is null, the sequence is not executed. The sequence
is executed if the element has an empty value, that is, the separators are there but there is no value between them, but is
not executed for a null value, that is, the message is terminated before the field is specified.

5.2.1 Shortcuts for the For Each Action

When you are working with virtual documents, InterSystems IRIS provides a shortcut notation that iterates through every
instance of a repeating field within a document structure. This means you do not actually need to set up multiple nested
for each loops to handle repeating fields; instead you create a single assign action using a virtual property path with empty
parentheses within the curly bracket { } syntax. For information, see Curly Bracket {} Syntax.

Developing DTL Transformations 29

Adding Other Actions

Note: If the source and target types are different, you cannot use this shortcut for the for each action. Use an explicit
for each action in these cases.

5.2.2 Unloading Target Collections

While the Unload option automatically removes objects from a source collection, you need to add custom code at the end
of a for each action to remove objects from a target collection. In a simple example in which the target is a complex record,
you could use the following code to save the current target record and then unload it:

Do target.Recordl6.GetAt(kl).%Save(0)
Do target.Recordl16.%UnSwizzleAt(kl)

In other scenarios, it might be better to avoid loading the target altogether in order to avoid issues where the target is not
unloaded. For example, suppose you have an object that has a parent/child property with many children. Within the for
each action, you have a subtransform combined with pr opSetObjectld(parentld)), where prop is the name of the

property.

In this example, the target is the batch object, the target class is
Demo.RecordMapBatch.Map.TrainDataOut.BatchOut and the record class is
Demo.RecordMapBatch.Transform.Optimized.Record

Before your for each loop, you need to create an empty target and assign its ID to a property BatchOutID:

<assign value="target.%Save()" property="tSC" action="set" />
<assign value="target.%ld()" property="BatchOutlD" action="set" />
<assign value="target”™ property="" action="set" />

Then, in the for each loop, you can use code that directly impacts the target without having the target instantiated. For
example:

<assign value="""" property="record" action="set" />
<subtransform class="Demo.RecordMapBatch.Transform.Optimized.Record" targetObj="record”
sourceObj="source.Records. (k1) />

<comment>

<annotation>Assign record to target directly. </annotation>

</comment>

<assign value="record.%ParentBatchSetObjectld(BatchOutlID)" property="tSC" action="set" />
<assign value="record.%Save()" property="tSC" action="set" />

Then, before the DTL ends, set the variable target back to the expected product of the DTL. For example:

<assign value="##class(Demo.RecordMapBatch.Map.TrainDataOut.BatchOut) .%Openld(BatchOutlID)*
property="target" action="set" />

5.2.3 Avoiding <STORE> Errors with Large Messages

As you loop over segments in messages or object collections, they are brought into memory. If these objects consume all

the memory assigned to the current process, you may get unexpected errors. You can avoid these errors in the source col-

lection by using the Unload option in the Management Portal. For some strategies for removing objects in a target collection,
see Unloading Target Collections.

As another strategy, if you are processing many segments in a for each loop, you can call the commitSegmentByPath()
method on both the source and target as the last step in the loop. Similarly, for object collections, use the % UnSwizzleAt()
method.

The method commitCollectionOpenSegments() loops through the runtimePath looking for open segments within the
specified collection path and calls commitSegmentByPath() for each open segment. This method is available from the
classes EnsLib.EDI.X12.Document, EnsLib.EDI.ASTM.Document, EnsLib.EDI.EDIFACT.Document, and EnsLib.HL7.Message.

30 Developing DTL Transformations

Adding a Subtransform Action

If you cannot make code changes, a temporary workaround is to increase the amount of memory allocated for each process.
You can change this by setting the bbsiz parameter on the Advanced Memory Settings page in the Management Portal. Note
that this action requires a system restart, and you should consult with your system administrator before performing it.

5.3 Adding a Subtransform Action

A subtransform invokes another transformation (an ordinary transformation), often within a for each loop. Subtransfor-
mations are particularly useful with virtual documents, because EDI formats are typically based on a set of segments that
are used in many message types. The ability to reuse a transformation within another transformation means that you can

create a reusable library of segment transformations that you can call as needed, without duplicating code transformation.

InterSystems IRIS does not represent a subtransform action in the DTL diagram.
To add a subtransform action:

1. Select subtransform from the Add Action drop-down list.

2. On the Action tab, specify the following details:

* Transform Class — Specifies the data transformation class to use. This can be either a DTL transformation or a
custom transformation. For information on custom transformations, see Defining Custom Transformations. You
must enter the class.

* Source Property — Identifies the property being transformed. This may be an object property or a virtual document
property path. Generally it is a property of the source message used by the transformation. You must enter the
source property.

* Target Property — ldentifies the property into which the transformed value will be written. This may be an object
property or a virtual document property path. Generally it is a property of the target message used by the transfor-
mation. You must enter the target property.

* Auxiliary Property—Optionally, specifies a value to be passed to the subtransform. The subtransform accesses the
value as the aux variable. To pass multiple values, create an array variable and pass it by reference. For example:

set MyVar(1)="first value"
set MyVar(2)="second value"

Within the subtransform, you can access these values as aux (1) and aux(2).
e Disabled—Optionally, specifies that the subtransform is disabled.

e Description—Optionally, specifies a text description of the subtransform.

Note: In the case of a subtransform with Create as new or copy, it is not necessary to have a pre-existing target
object.

5.4 Adding aTrace Action

A trace action generates a trace message, which is helpful for diagnosis. If the Log Trace Events setting is enabled for the
parent business host, this message is written to the Event Log. If the Foreground setting is enabled for the parent business
host, the trace messages are also written to the Terminal window.

InterSystems IRIS does not represent a trace action in the DTL diagram.

Developing DTL Transformations 31

Adding Other Actions

To add a trace action:
1. Select trace from the Add Action drop-down list.
2. On the Action tab, specify the following:
» Vvalue—Specify a literal value or other valid expression.

See Valid Expressions. Make sure that the expression is valid in the scripting language you chose for the data
transformation; see Specifying Transformation Details.

* Description—Specify an optional description.

The trace action generates trace message with User priority; the result is the same as using the $$$TRACE macro in
ObjectScript.

5.5 Adding a Code Action

A codeaction enables you to execute one or more lines of user-written code within a DTL data transformation. This option
enables you to perform special tasks that are difficult to express using the DTL elements. InterSystems IRIS does not rep-
resent a code action in the DTL diagram.

To add a code action:
1. Select code from the Add Action drop-down list.
2. On the Action tab, specify the following:

e Code—Specify one or more lines of code in the scripting language specified for the transformation. For rules
about expressions in this code, see Syntax Rules.

If you are using ObjectScript, make sure that each line starts with a space.

InterSystems IRIS automatically wraps your code within a CDATA block. This means that you do not have to
escape special XML characters such as the apostrophe (') or the ampersand (&),

Also see the notes below.

» Description—Specify an optional description.

Tip: To write custom code that you can debug easily, write the code within a class method or a routine so that it can be
executed in the Terminal. Debug the code there. Then call the method or routine from within the code action of the
DTL.

5.5.1 Guidelines for Using Custom Code in DTL

In order to ensure that execution of a data transformation can be suspended and restored, you should follow these guidelines
when using a code action:

» The execution time should be short; custom code should not tie up the general execution of the data transformation.

» Do not allocate any system resources (such as taking out locks or opening devices) without releasing them within the
same code action.

» Ifacode action starts a transaction, make sure that the same action ends the transactions in all possible scenarios;
otherwise, the transaction can be left open indefinitely. This could prevent other processing or can cause significant
downtime.

32 Developing DTL Transformations

Adding an SQL Action

If you are using ObjectScript, make sure that each line starts with a space.

5.6 Adding an SQL Action

An SQL action enables you to execute an SQL SELECT statement from within the DTL transformation. InterSystems IRIS
does not represent an sgl action in the DTL diagram.

To add an sgl action:
1. Select sql from the Add Action drop-down list.
2. On the Action tab, specify the following:
» sSQL—Specify a valid SQL SELECT statement.

InterSystems IRIS automatically wraps your SQL within a CDATA block. This means that you do not have to
escape special XML characters such as the apostrophe (') or the ampersand (&).

Also see the notes below.

e Description—Specify an optional description.

5.6.1 Guidelines for Using SQL in DTL

Be sure to use the following guidelines:

» Always use the fully qualified name of the table, including both the SQL schema name and table name, as in:
MyApp.PatientTable
Where MyApp is the SQL schema name and PatientTable is the table name.

e Any tables listed in the FROM clause must either be stored within the local InterSystems IRIS database or linked to
an external relational database using the SQL Gateway.

* Within the INTO and WHERE clauses of the SQL query, you can refer to a property of the source or target object. To
do so, place a colon (:) in front of the property name. For example:

SELECT Name INTO :target.Name FROM MainFrame.EmployeeRecord WHERE SSN = :source.SSN AND City =
:source.Home.City

* Only the first row returned by the query will be used. Make sure that the WHERE clause correctly specifies the desired
row.

5.7 Adding a Switch Action

A switch action contains a sequence of one or more case actions and a default action. When a switch action is executed,
it begins evaluating each case condition. When an expression evaluates to true, then the contents of the corresponding case
block are executed; otherwise, the expression for the next case action is evaluated. As soon as one of the case actions is
executed, the execution path of the transformation leaves the switch block without evaluating any other conditions. If no
case condition is true, the contents of the default action are executed and then control leaves the switch block.

Developing DTL Transformations 33

Adding Other Actions

5.8 Adding a Case Action

Use the caseaction within a switch block to execute a block of actions when a condition is matched. When a case condition
is met and the block of actions performed, the execution path of the transformation leaves the switch block without evalu-
ating any other conditions.

To add a case action:

1. Select a switch action in the list below the diagram.

2. Select case from the Add Action drop-down list.

3. Onthe Action tab, add the condition. You can click the magnifying glass to add a function as part of the condition.
4

With the case action selected in the list below the diagram, use the Add Action drop-down to add the actions that will
be executed if the condition evaluates to true.

5.9 Adding a Default Action

You cannot add a default block by using the Add Action drop-down list. Rather, the default action is automatically added
to a switch block when you add the switch action. The actions contained in the default block are executed if none of the
case conditions in the switch block are met. If you do not want anything to happen when none of the case conditions are
met, simply leave the default block empty.

5.10 Adding a Break Action

Add a break action to a for each loop to leave the loop as soon as the break action is executed. After the break action is
executed, the data transformation continues to process the action immediately following the for each loop.

If you add a break action outside of a for each loop, the data transformation terminates as soon as the break action is
executed.

5.11 Adding a Comment Action

To help annotate the actions in a data transformation, you can add a comment that appears in the list of actions. After
selecting Add Action > Comment, enter the comment in the Description text box on the Action tab.

34 Developing DTL Transformations

Testing Data Transformations

After you compile a data transformation class, you can (and should) test it. This topic describes how to do so.

Note: This topic applies to both DTL transformations and custom transformations.

6.1 Using the Transformation Testing Page

The Management Portal provides the Test Transform wizard. You can access this from the following locations in the
Management Portal:

» Click Test from the Tools tab in the Data Transformation Builder

» Select the transformation and click Test on the Data Transformation List page.

Initially the Output Message window is blank and the Input Message window contains a text skeleton in a format appropriate
to the source message. To test:

1. If your DTL code references the properties of the aux, context, or process systems objects, enter values for these
properties to see the results as if the data transformation was invoked with these objects instantiated. The table for
entering values appears only if the DTL references the internal properties of aux, process, or context systems objects.

2. Editthe Input Message so that it contains appropriate data. What displays and what you enter in the input box depends
on your source type and class:

» For EDI messages, the window displays raw text; have some saved text files ready so that you can copy and paste
text from these files into the Input Message box.

» For regular production messages, the window displays an XML skeleton with an entry for each of the properties
in the message object; type in a value for each property.

» For record maps, complex record maps, and batch record maps, you can enter raw text or XML.

3. Click Test.

4. Review the results in the Output Message box.

The following shows an example:

Developing DTL Transformations 35

Testing Data Transformations

Input Message

<Cest>
<WeatherfperationResponse>
<Forecast>»Cloudy</Forecast>
</WeatherOperationResponse>
</test>

Output Message

<WeatherReportResponse
<Report>Cloudy</Report> <TempScale>
</TempScale> </WeatherReportResponser

6.2 Testing a Transformation Programmatically

To test a transformation programmatically, do the following in the Terminal (or write a routine or class method that contains
these steps):

1. Create an instance of the source message class.
2. Set properties of that instance.

3. Invoke the Transform() class method of your transformation class. This method has the following signature:
classmethod Transform(source As %RegisteredObject, ByRef target As %RegisteredObject) as %Status

Where:
e sourceis the source message.
e target is the target message created by the transformation.
4. Examine the target message and see if it has been transformed as wanted. For an easy way to examine both messages
in XML format, do the following:
a. Create an instance of %XML.Writer.
b. Optionally set the Indent property of that instance equal to 1.
This adds line breaks to the output.
c. Call the RootObject() method of the writer instance, passing the source message as the argument.
d. Kill the writer instance.

e. Repeat with the target message.

For example:

36 Developing DTL Transformations

Testing a Transformation Programmatically

ObjectScript

//create an instance of the source message
set source=##class(DTLTest.Message) .CreateOne()
set writer=##class(%XML._Writer).%New()
set writer.Indent=1 do writer.RootObject(source)
write I1!
set sc=##class(DTLTest.Xforml).Transform(source, .target)
if $$SI1SERR(sC)
{do $system.Status.DisplayError(sc)}
set writer=##class(%XML_Writer).%New()
set writer.Indent=1
do writer.RootObject(target)

Developing DTL Transformations

37

	Table of Contents
	1 Introduction to DTL Tools
	1.1 Background
	1.2 Introduction to the Data Transformation Builder Page
	1.3 Introduction to the DTL Diagram
	1.4 Controlling the Display
	1.5 Introduction to the Data Transformation List Page
	1.6 Other Tools
	1.7 Using Data Transformations

	2 Creating Data Transformations
	2.1 Creating a Transformation
	2.2 Opening an Existing Transformation
	2.3 Specifying Transformation Details
	2.3.1 Using the Create existing Option

	2.4 Editing Transformation Actions
	2.4.1 Adding an Action
	2.4.2 Editing an Action

	2.5 Rearranging Actions
	2.6 Working with Groups of Actions
	2.7 Undoing a Change
	2.8 Saving a Transformation
	2.9 Compiling a Transformation
	2.10 Deleting a Transformation

	3 Syntax Rules
	3.1 References to Message Properties
	3.2 Literal Values
	3.2.1 XML Reserved Characters
	3.2.2 Separator Characters in Virtual Documents
	3.2.3 When XML Reserved Characters Are Also Separators
	3.2.4 Numeric Character Codes

	3.3 Valid Expressions

	4 Adding Assign Actions
	4.1 Introduction
	4.1.1 Objects and Object References

	4.2 Copying the Source Message
	4.3 Copying a Value from a Source Property to a Target Property
	4.4 Copying Values of All Sub-properties
	4.5 Assigning a Literal Value to a Target Property
	4.6 Using an Expression for the Value of a Target Property
	4.6.1 Using the Data Transform Function Wizard

	4.7 Assigning a Value to a Collection Item
	4.8 Inserting a List Item
	4.9 Appending a List Item
	4.10 Removing a Collection Item
	4.11 Clearing a Collection Property

	5 Adding Other Actions
	5.1 Adding an If Action
	5.2 Adding a For Each Action
	5.2.1 Shortcuts for the For Each Action
	5.2.2 Unloading Target Collections
	5.2.3 Avoiding <STORE> Errors with Large Messages

	5.3 Adding a Subtransform Action
	5.4 Adding a Trace Action
	5.5 Adding a Code Action
	5.5.1 Guidelines for Using Custom Code in DTL

	5.6 Adding an SQL Action
	5.6.1 Guidelines for Using SQL in DTL

	5.7 Adding a Switch Action
	5.8 Adding a Case Action
	5.9 Adding a Default Action
	5.10 Adding a Break Action
	5.11 Adding a Comment Action

	6 Testing Data Transformations
	6.1 Using the Transformation Testing Page
	6.2 Testing a Transformation Programmatically

	Index

