InterSystems-

IRIS Data Platform

Using Embedded Python

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com



Using Embedded Python

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com



Table of Contents

11INtroduction and Prer@QUISITES ......c.ii ittt s e e eaesae e b b sae e 1
1.1 Recommended PYENON VEISION ......coviiiiiiiiiirietinieie ettt ettt 1

A B LT [T IS =T Vo= T 2

1.3 Flexible Python RUNIIME FEALUIE ........ccviiiiiiiiicie sttt ettt 2

2 Install and IMport PYthon PaCKageS ........ccuiererieieeieeeerese e stesie s e e seessese e seeseesss e snessessesssssesss 3
2.1 InsStall PYthon PACKAGES ....cvvcveiiiciiciiec ettt sttt e sre e s te e sae e seennaens 3
2.1.1 Install Python Packages on a UNIX-Based System (except AIX) ....ccccooeveinieniencnenienn 3

2.1.2 Install Python Packages 0N ALX ... 3

2.1.3 Install Python Packages 0n WINAOWS ........cooiiriirieineiriesese e 4

2.1.4 Install Python Packages in @ CONLAINET ........ccevveveiriesinnse e 4

2.2 IMPOrt PYthON PACKAGES ...eveiveiiieieieeeeieese e se e ste e st ste sttt e e e e s ene e e snsenessesnesnesresresnens 5
2.2.1 Import Python Packages from ODJECISCIIPL .....c.cveieieiiirecrr e 5

2.2.2 Import Python Packages from a Method Written in Python ... 5

2.2.3 Import Python Packages via an XData BIOCK ...........ccccoereireiiieiieiiesesee e 6

BT U T =g ] oo [0 1= I =V f o o P 7
3.1 From the PYthon SHell .......c.oceiiieiecceecce s e nne 7
3.1.1 Start the Python Shell from Terminal ..........ccocoveieieicicis e 7

3.1.2 Start the Python Shell from the Command LiNe .........cccccevvveieiiieiiiiene e 8

3.2 1N @ PYthon SCrIPt FIlE (LPY) «vereereieieeeeeee ettt ettt sb e b b sne 8

3.3 In a Method in an INterSystems TRIS ClIaSS ......cceoiiiriiiiiirieriecreeeeeee s 9

3.4 In SQL Functions and Stored ProCEAUIES .......c.ccvvovrrrerererineneseeieee e ese et see e s 10

4 Call Embedded Python Code from ODJECESCIiPL ....c.vvveiriierirerrereeeree s 11
4.1 USE @ PYtNON PACKAJE ....cveiveieeiieiieiiisieie e stesiee et e sttt sttt sttt e e sn et e e neeneeneeneens 11

4.2 Call a Method of an InterSystems IRIS Class Written in Python ..........ccccooeviienievvcnccinnn, 13

4.3 Run an SQL Function or Stored Procedure Written in Python ... 14

4.4 Run an Arbitrary Python COMMANG .......cooeirieiriiiieisieseeseei et 14

5 Bridge the Gap Between ObjectScript and Embedded Python ... 17
5.1 Use Python BUIltin FUNCLIONS ......cooiiiiiiiiee st 17

5.2 1AENTHTIET NAMES 1.ttt ettt sttt ettt ane s 18

5.3 Keyword or Named AFQUMENTS ......ccuviieiieeisie e seeeeseesaesee e siae e sseestesssessesssesssensessesnsessesnnes 19

5.4 Passing Arguments BY RETEIENCE ......c.oviiiieiiieee e 19

5.5 Passing Values for True, False, and NONE .......cociiiiiiiiiieneee e e 20

5.6 DICLIONAIIES ...cvveveeeieeieeste st sie st steste e st ete e e e e s s e s se st s testestesbesteseeseseeseenseneeseeneesensessesseseeseensens 21

5.7 LLISES vttt ettt b bR bR bbbttt ettt 22

5.8 GIODAIS .ttt bbbt b s 23

5.9 Changing NAMESPACES .......ccveuerueriiiieiiriese sttt sttt sttt se bt besbesbesbesbesbesbesbesbebesbeneeneaneas 25
5.10 Running an ObjectScript Routine from Embedded Python ... 26
5.11 EXCePLioN HaNGIING ...ccveiiiiiiiiiet et 26
5.12 BYLES ANG SIIINGS .vvevetirietirieieiteesie ettt ettt se bt r et b e b et b et b ettt ne et et nnebe e 26
5.13 Standard Output and Standard Error Mappings .....cceceeererererereneseeseeseeesreseeeseseseseeseeses 27

6 Use Embedded Python in Interoperability ProducCtions ..........cccoeeevenninnensiensiesese s 29
7 Use the Flexible Python RUNTIME FEALUN© ......cc.ecieeieei ettt s 31
7.1 Overview of the Flexible Python Runtime FEature ...........ccocveviiiniieniene e 31
7.1.1 Embedded Python and SYS.Path .......cccceoeiiiiiiienieneesee e 31

Using Embedded Python



7.1.2 Check Python Version INfOrmation ..........cccccveeviieieiieeie s 33

7.2 Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04 ..........ccccoevvieniinnennennne 33
7.3 Flexible Python Runtime Example: Anaconda on Ubuntu 22.04 ..........ccccccreineiincieneieneens 34
Inter Systems RIS Python Module REFErENCE ..ot s 37
InterSystems IRIS Python Module Core AP ..ot 38
GlODhal RETEIENCE AP ...ttt 44

Using Embedded Python



Introduction and Prerequisites

Embedded Python allows you to use Python as a native option for programming InterSystems IRIS applications. If you are
new to Embedded Python, read Introduction to Embedded Python, and then read this document for a deeper dive into
Embedded Python.

While this document will be helpful to anyone who is learning Embedded Python, some level of ObjectScript familiarity
will be beneficial to the reader. If you are a Python developer who is new to InterSystems IRIS and ObjectScript, also see
the Orientation Guide for Server-Side Programming.

1.1 Recommended Python Version

The version of Python recommended when using Embedded Python depends on the platform you are running. In most
cases, this is the default version of Python for your operating system. See Other Supported Features for a complete list of
operating systems and the corresponding supported version of Python.

Note:  On some operating systems, you can override the recommended version of Python using the Flexible Python
Runtime feature.

On Microsoft Windows, the InterSystems IRIS installation kit installs the correct version of Python (currently 3.9.5) for
use with Embedded Python only. If you are on a development machine and want to use Python for general purposes,
InterSystems recommends downloading and installing this same version from https://www.python.org/downloads/.

Many flavors of UNIX-based operating systems come with Python installed. If you need to install it, use the version rec-
ommended for your operating system by your package manager, for example:

e Ubuntu: apt install python3
» Red Hat Enterprise Linux or Oracle Linux: yum install python3
e SUSE: zypper install python3
*  macOS: Install Python 3.11 using Homebrew.
brew install python@3.11

You should also make sure you are using the current version of OpenSSL.:

brew unlink openssl
brew install openssl@3
brew link --force openssl@3

e AIX: Install Python 3.9.18+ using dnf (dandified yum) from the AIX Toolbox for Open Source Software

Using Embedded Python 1


https://www.python.org/downloads/
https://brew.sh/
https://www.ibm.com/support/pages/node/883796

Introduction and Prerequisites

If you get an error that says “Failed to load python,” it means that you either don’t have Python installed or an unexpected
version of Python is detected on your system. Check Other Supported Features and make sure you have the required version
of Python installed, and if necessary, install it or reinstall it using one of the above methods. Or, override the recommended
Python version by using the Flexible Python Runtime feature. (Not available on all platforms.)

If you are on a platform that does not support the Flexible Python Runtime feature, your computer has multiple versions
of Python installed, and you try to run Embedded Python from the command line, irispython will run the first python3
executable that it detects, as determined by your path environment variable. Make sure that the folders in your path are set
appropriately so that the required version of the executable is the first one found. For more information on using the
irispython command, see Start the Python Shell from the Command Line.

1.2 Required Service

Toprevent IRIS_ACCESSDENIED errors while running Embedded Python, enable %Service_Cal lin. Inthe Management
Portal, go to System Administration > Security > Services, select %Service_Callin, and check the Service Enabled box.

1.3 Flexible Python Runtime Feature

On some operating systems, you can override the version of Python recommended for Embedded Python by using the
Flexible Python Runtime feature. This is useful if you are writing code or using a package that depends on a version of
Python other than the one recommended. You must use a version of Python that is the same or greater than your operating
system's default version. For example, Red Hat Enterprise Linux 9 comes with Python 3.9, so on that operating system you
must use version 3.9 or higher.

The configuration setting PythonRuntimeLibrary specifies the location of the Python runtime library to use when
running Embedded Python. This version of the library overrides the default version of the library used when launching
Embedded Python.

To specify a Python runtime library:
1. Inthe Management Portal, go to System Administration > Configuration > Additional Settings > Advanced Memory.
2. Inthe PythonRuntimeLibrary row, click Edit.
3. Enter the location of the Python runtime library you want to use.
For example: /usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1

This location will vary based on your operating system, Python version, and other factors. The example shown here
is for Python 3.11 on Ubuntu 22.04 on the x86 architecture.

4, Click save.

For more information, see PythonRuntimeLibrary.

Note:  The Flexible Python Runtime feature is not supported on all operating systems. See Other Supported Features for
a complete list of platforms that support the feature.

If you install a new version of Python and cannot find the Python runtime library, you may need to install it sep-
arately. For example, to install the Python 3.11 runtime library on Ubuntu 22.04: apt install
libpython3.11.

For more details on how to configure this feature, see Use the Flexible Python Runtime Feature.

2 Using Embedded Python



Install and Import Python Packages

Embedded Python gives you easy access to thousands of useful libraries. Commonly called “packages,” these need to be
installed into the InterSystems IRIS file system before they can be used. Then they need to imported to load them into
memory for use by your code. There are different ways to do this, depending on how you will use Embedded Python.

2.1 Install Python Packages

Install Python packages from the command line before using them with Embedded Python. The command you use differs
depending on whether you are using InterSystems IRIS on a UNIX-based system (except AlX), on AlX, on Windows, or
in a container.

2.1.1 Install Python Packages on a UNIX-Based System (except AlX)

On UNIX-based systems, use the command python3 -m pip install --target <installdir>/mgr/python
<package>.

Note:  Ifitis notinstalled already, first install the package python3-pip with your system’s package manager.

For example, the ReportLab Toolkit is an open source package for generating PDFs and graphics. On a UNIX-based system,
use a command like the following to install it:

$ python3 -m pip install --target /InterSystems/IR1S/mgr/python reportlab

Important: If you do not install the package into the correct target directory, Embedded Python may not be able to
import it. For example, if you install a package without the --target attribute (and without using sudo),
Python will install it into the local package repository within your home directory. If any other user tries
to import the package, it will fail.

Although InterSystems recommends using the --target <installdir>/mgr/python option,
installing packages using sudo and omitting the —-target attribute installs the packages into the global
package repository. These packages can also be imported by any user.

2.1.2 Install Python Packages on AIX

On AlX, install packages from the AIX Toolbox for Open Source Software, if they are available.

Using Embedded Python 3


https://www.ibm.com/support/pages/node/883796

Install and Import Python Packages

Before installing the package, make sure the package is in the Al1X Toolbox with the command sudo dnf list | grep
<package>. Then install the package with the command sudo dnf install <package>.

Note:  Ifitis not installed already, first install the package python3.9-pip from the AIX Toolbox.

For example, confirm that the package psutil is the AlX Toolbox:

$ sudo dnf list | grep psutil

python3-psutil.ppc 5.9.0-2 AIX_Toolbox
python3-psutil-tests.ppc 5.9.0-2 AIX_Toolbox
python3.9-psutil.ppc 5.9.0-2 AIX_Toolbox
python3.9-psutil-tests._ppc 5.9.0-2 AlX_Toolbox

Then install the package:
$ sudo dnf install python3-psutil.ppc
Only if a package is not in the AlIX Toolbox, install it with the following command:

$ python3 -m pip install <package>

2.1.3 Install Python Packages on Windows

On Windows, use the built-in irispip command from the <installdir>/bin directory: irispip install --target
<instal ldir>\mgr\python <package>.

For example, you can install the ReportLab package on a Windows machine as follows:

C:\InterSystems\IRIS\bin>irispip install --target C:\InterSystems\IRIS\mgr\python reportlab

2.1.4 Install Python Packages in a Container

If you are running InterSystems IRIS in a container without using the durable %SY'S feature, use the command python3
-m pip install --target /usr/irissys/mgr/python <package>.

For example, you can install the ReportLab package in the container as follows:
$ python3 -m pip install --target /usr/irissys/mgr/python reportlab

If you are running InterSystems IRIS in a container using the durable %SYSS feature, use the command python3 -m pip
install --target <durable>/mgr/python <package>, where <durable> is the path defined in the environment
variable 1SC_DATA_DIRECTORY when running the container.

For example, if ISC_DATA DIRECTORY=/durable/iris, you can install the ReportLab package in the container as
follows:

$ python3 -m pip install --target /durable/iris/mgr/python reportlab

Note:  Note: If you are using a Dockerfile to create a custom Docker image for InterSystems IRIS, install Python packages
in /usrfirissys/mgr/python. Both /usr/irissys/mgr/python and <durable>/mgr/python are included in sys. path by
default so that the packages can be found whether or not you are using the durable %SY'S feature.

For more information on creating and running containers, see Running InterSystems Products in Containers.

4 Using Embedded Python



Import Python Packages

2.2 Import Python Packages

After installing a package, you need to import it before you can use it from InterSystems IRIS. This loads the package into
memory so that it is available for use.

2.2.1 Import Python Packages from ObjectScript

To import a Python package from ObjectScript, use the Import() method of the %SYS.Python class. For example:

set pymath = ##class(%SYS.Python). Import(‘'math')
set canvaslib = ##class(%SYS.Python). Import(‘'reportlab.pdfgen.canvas')

The first line, above, imports the built-in Python math module into ObjectScript. The second line imports just the canvas.py
file from the pdfgen subpackage of ReportLab.

2.2.2 Import Python Packages from a Method Written in Python

You can import packages in an InterSystems IRIS method written in Python, just as you would in any other Python code,
for example:

ClassMethod
Example() [ Language
= python ]

{

import math
import iris

import reportlab.pdfgen.canvas as canvaslib

# Your Python code here

Using Embedded Python 5



Install and Import Python Packages

2.2.3 Import Python Packages via an XData Block

You can also import a list of packages using an XData block in a class, as in the following example:

XData

%import [ MimeType

= application/python ]
{

import math
import iris

import reportlab.pdfgen.canvas as canvaslib

Important: The name of the XData block must be %import. The MIME type can be application/python or
text/x-python. Make sure to use correct Python syntax, including considerations of line indentation.

These packages can then be used in any method within the class that is written in Python, without needing to import them
again.

ClassMethod
Test() [ Language
= python ]

{

# Packages imported in XData block

print(*\nvValue of pi from the math module:*)
print(math.pi)
print(*\nList of classes in this namespace from the iris module:*)

iris.cls("%SYSTEM.0OBJ") .ShowClasses()

For background information on XData blocks, see Defining and Using XData Blocks

6 Using Embedded Python



Run Embedded Python

This page details several ways to run Embedded Python.

3.1 From the Python Shell

You can start the Python shell from an InterSystems Terminal session or from the command line.

3.1.1 Start the Python Shell from Terminal

Start the Python shell from an InterSystems Terminal session by calling the Shell() method of the %SYS.Python class. This
launches the Python interpreter in interactive mode. The user and namespace from the Terminal session are passed to the
Python shell.

Exit the Python shell by typing the command quit().

The following example launches the Python shell from the USER namespace in a Terminal session. It prints the first few
numbers in the Fibonacci sequence and then uses the InterSystems IRIS % SY STEM .OBJ.ShowClasses() method to print
a list of classes in the current namespace.

USER>do ##class(%SYS.Python).Shell()

Python 3.9.5 (default, Jul 6 2021, 13:03:56) [MSC v.1927 64 bit (AMD64)] on win32
Type quut() or Ctrl D to exit this shell.
>>> a, b =
>>> while a < 10
prlnt(a end = " %)
a, b=Db,a+b

0112358 >>>

>>> status = iris.cls("%SYSTEM.OBJ").ShowClasses()
User .Company

User.Person

>>> print(status)

1

>>> quit(Q)

USER>

The method % SY STEM .OBJ.ShowClasses() returns an InterSystems IRIS %Status value. In this case, a 1 means that no
errors were detected.

Using Embedded Python 7



Run Embedded Python

3.1.2 Start the Python Shell from the Command Line

Start the Python shell from the command line by using the irispython command. This works much the same as starting the
shell from Terminal, but you must pass in the InterSystems IRIS username, password, and hamespace.

The following example launches the Python shell from the Windows command line:

C:\InterSystems\IRIS\bin>set IRISUSERNAME = <username>
C:\InterSystems\IRIS\bin>set IRISPASSWORD = <password>
C:\InterSystems\IRIS\bin>set IRISNAMESPACE = USER

C:\InterSystems\IRIS\bin>irispython

Python 3.9.5 (default, Jul 6 2021, 13:03:56) [MSC v.1927 64 bit (AMD64)] on win32
Type "help', "copyright”, *"credits" or "license" for more information.

>>>

On UNIX-based systems, use export instead of set.

/InterSystems/IRIS/bin$ export IRISUSERNAME=<username>
/InterSystems/IRIS/bin$ export IRISPASSWORD=<password>
/InterSystems/IRIS/bin$ export IRISNAMESPACE=USER
/InterSystems/IRIS/bin$ _/irispython

Python 3.9.5 (default, Jul 22 2021, 23:12:58)

[GCC 9.4.0] on linux

Type "help', "copyright', '"credits" or "license" for more information.
>>>

Note:  If you see a message saying IRIS_ACCESSDENIED, enable %Service_Callin. In the Management Portal,
go to System Administration > Security > Services, select %Service_Callin, and check the Service Enabled box.

3.2 In a Python Script File (.py)

You can also use the irispython command to execute a Python script. Note that in this case, you have to include a step
(import iris) that provides access to InterSystems IRIS.

Consider a file C:\python\test.py, on a Windows system, containing the following code:

# print the members of the Fibonacci series that are less than 10
print("Fibonacci series:")
a, b=0,1
while a < 10:
print(a, end = * %)
a, b=Db,a+b

# import the iris module and show the classes in this namespace
import iris

print("\ninterSystems IRIS classes in this namespace: ")

status = iris.cls("%SYSTEM.OBJ") .ShowClasses()

print(status)

You could run test.py from the command line, as follows:

C:\InterSystems\IRIS\bin>set IRISUSERNAME = <username>
C:\InterSystems\IRIS\bin>set IRISPASSWORD = <password>
C:\InterSystems\IRIS\bin>set IRISNAMESPACE = USER

C:\InterSystems\IRIS\bin>irispython \python\test.py
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Company

User .Person

1

8 Using Embedded Python



In a Method in an InterSystems IRIS Class

On UNIX-based systems, use export instead of set.

/InterSystems/IRIS/bin$ export IRISUSERNAME=<username>
/InterSystems/IRIS/bin$ export IRISPASSWORD=<password>
/InterSystems/IRIS/bin$ export IRISNAMESPACE=USER
/InterSystems/IRIS/bin$ ./irispython /python/test.py
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Company

User.Person

1

Note:  Ifyoutrytorun import irisandseeamessage saying IRIS_ACCESSDENIED, enable %Service_Callin.
In the Management Portal, go to System Administration > Security > Services, select %Service_Callln, and check
the Service Enabled box.

3.3 In a Method in an InterSystems IRIS Class

You can write Python methods in an InterSystems IRIS class by using the Language keyword. You can then call the
method as you would call a method written in ObjectScript.

For example, take the following class with a class method written in Python:

Class User.EmbeddedPython

/// Description
ClassMethod Test() As %Status [ Language = python ]
{

# print the members of the Fibonacci series that are less than 10
print("Fibonacci series: ")
a, b=0,1
while a < 10:
print(a, end = * %)
a, b=Db,a+b

# import the iris module and show the classes in this namespace
import iris

print("\nInterSystems IRIS classes in this namespace:")

status = iris.cls("%SYSTEM.0OBJ") .ShowClasses()

return status

You can call this method from ObjectScript:

USER>set status = ##class(User.EmbeddedPython).Test()
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Compan

User .EmbeddedPython

User .Person

USER>write status
1

Using Embedded Python 9



Run Embedded Python

Or from Python:

>>> import iris

>>> status = iris.cls("User.EmbeddedPython®) _Test()
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Company

User.EmbeddedPython

User .Person

>>> print(status)

1

3.4 In SQL Functions and Stored Procedures

You can also write a SQL function or stored procedure using Embedded Python by specifying the argument LANGUAGE
PYTHON in the CREATE statement, as is shown below:

CREATE FUNCTION tzconvert(dt TIMESTAMP, tzfrom VARCHAR, tzto VARCHAR)
RETURNS TIMESTAMP
LANGUAGE PYTHON

{

from datetime import datetime
from dateutil import parser, tz
d = parser.parse(dt)
if (tzfrom is not None):
tzf = tz.gettz(tzfrom)
d = d.replace(tzinfo = tzf)
return d.astimezone(tz.gettz(tzto)) . .strftime('%Y-%m-%d %H:%M:%S"")
3

The code uses functions from the Python datetime and dateutil modules.

Note:  On some platforms, the datetime and dateuti I modules may not be installed by default. If you run this
example and get a ModuleNotFoundError, install the missing modules as described in Install Python Packages.

The following SEL ECT statement calls the SQL function, converting the current date/time from Eastern time to Coordinated
Universal Time (UTC).

SELECT tzconvert(now(), "US/Eastern®, "UTCT)
The function returns something like:

2021-10-19 15:10:05

10 Using Embedded Python



Call Embedded Python Code from
ObjectScript

The section details several ways to call Embedded Python code from ObjectScript:

»  Use a Python package

e Call amethod in an InterSystems IRIS class written in Python

* Runan SQL function or stored procedure written in Python

*  Runan arbitrary Python command

In some cases, you can call the Python code much the same way as you would call ObjectScript code, while sometimes

you need to use the %SYS.Python class to bridge the gap between the two languages. For more information, see Bridge the
Gap Between ObjectScript and Embedded Python.

4.1 Use a Python Package

Embedded Python gives you easy access to thousands of useful libraries. Commonly called “packages,” these need to be
installed from the Python Package Index (PyPl) into the <installdir>/mgr/python directory before they can be used.

For example, the ReportLab Toolkit is an open source library for generating PDFs and graphics. The following command
uses the package installer irispip to install ReportLab on a Windows system:

C:\InterSystems\IRIS\bin>irispip install --target C:\InterSystems\IRIS\mgr\python reportlab
On a UNIX-based system (except AlX), use:
$ python3 -m pip install --target /InterSystems/IR1S/mgr/python reportlab

If you are running InterSystems IRIS in a container, see Install Python Packages in a Container.
If you are running InterSystems IRIS on AlX, see Install Python Packages on AlX.

After installing a package, you can use the Import() method of the %SYS.Python class to use it in your ObjectScript code.

Using Embedded Python 11


https://pypi.org/

Call Embedded Python Code from ObjectScript

Given a file location, the following ObjectScript method, CreateSamplePDF(), creates a sample PDF file and saves it to
that location.

Class Demo.PDF

ClassMethod CreateSamplePDF(fileloc As %String) As %Status
{
set canvaslib = ##class(%SYS.Python). Import(‘'reportlab.pdfgen.canvas')
set canvas = canvaslib.Canvas(fileloc)
do canvas.drawlmage(''C:\Sample\isc.png', 150, 600)
do canvas.drawlmage(''C:\Sample\python.png"”, 150, 200)
do canvas.setFont(‘'Helvetica-Bold", 24)
do canvas.drawString(25, 450, "InterSystems IRIS & Python. Perfect Together.')
do canvas.save()

}
}

The first line of the method imports the canvas.py file from the pdfgen subpackage of ReportLab. The second line of code
instantiates a Canvas object and then proceeds to call its methods, much the way it would call the methods of any InterSystems
IRIS object.

You can then call the method in the usual way:
do ##class(Demo.PDF) .CreateSamplePDF(**C:\Sample\hello.pdf')

The following PDF is generated and saved at the specified location:

InterSystems-

Creative data technology

InterSystems IRIS & Python. Perfect Together.

@ python

If you have written your own Python packages or modules, you can put them in <installdir>/mgr/python and import them
from ObjectScript in the same way.

12 Using Embedded Python



Call a Method of an InterSystems IRIS Class Written in Python

4.2 Call a Method of an InterSystems IRIS Class Written
In Python

You can write a method in an InterSystems IRIS class using Embedded Python and then call it from ObjectScript in the
same way you would call a method written in ObjectScript.

The next example uses the usaddress-scourgi fy package, which can be installed from the command line on Windows
as follows:

C:\InterSystems\IRIS\bin>irispip install --target C:\InterSystems\IRIS\mgr\python usaddress-scourgify
On a UNIX-based system (except AlX), use:
$ python3 -m pip install --target /InterSystems/IR1S/mgr/python usaddress-scourgify

If you are running InterSystems IRIS in a container, see Install Python Packages in a Container.
If you are running InterSystems IRIS on AlX, see Install Python Packages on AlX.

The demo class below contains properties for the parts of a U.S. address and a method, written in Python, that uses
usaddress-scourgify to normalize an address according to the U.S. Postal Service standard.

Class Demo.Address Extends %Library.Persistent

Property AddressLinel As %String;

Property AddressLine2 As %String;

Property City As %String;

Property State As %String;

Property PostalCode As %String;

Method Normalize(addr As %String) [ Language = python ]

{
from scourgify import normalize_address_record
normalized = normalize_address_record(addr)
self_AddressLinel = normalized["address_line_17]
self.AddressLine2 = normalized["address_line_2"]
self.City = normalized["city"]

self_State = normalized["state"]
self_PostalCode = normalized["postal_code"]

}
}

Given a address string as input, the Nor malize() instance method of the class normalizes the address and stores each part
in the various properties of a Demo.Address object.

Using Embedded Python 13



Call Embedded Python Code from ObjectScript

You can call the method as follows:

USER>set a = ##class(Demo.Address).%New()
USER>do a.Normalize(''One Memorial Drive, 8th Floor, Cambridge, Massachusetts 02142')
USER>zwrite a

a=3@Demo.Address <OREF>
Fommm - general information ----—-—————————-

oref value: 3
class name: Demo.Address
reference count: 2
e it attribute values - -———————————————-

%Concurrency = 1 <Set>

AddressLinel = "ONE MEMORIAL DR"

AddressLine2 = "FL 8TH"
City = "CAMBRIDGE"

PostalCode = *02142"

State = ""MA™

4.3 Run an SQL Function or Stored Procedure Written in
Python

When you create a SQL function or stored procedure using Embedded Python, InterSystems IRIS projects a class with a
method that can be called from ObjectScript as you would any other method.

For example, the SQL function tzconvert() from the example earlier in this document generates a class User.functzconvert,
which has a tzconvert() method. Call it from ObjectScript as follows:

USER>zwrite ##class(User.functzconvert).tzconvert($zdatetime($h,3), "US/Eastern”, " UTC™)
''2021-10-20 15:09:26"

Here, $zdatetime($h,3) is used to convert the current date and time from $HOROL OG format to ODBC date format.

4.4 Run an Arbitrary Python Command

Sometimes, when you are developing or testing Embedded Python code, it can be helpful to run an arbitrary Python command
from ObjectScript. You can do this with the Run() method of the %SYS.Python class.

Perhaps you want to test the normalize_address_record() function from the usaddress_scourgify package used
earlier in this document, and you don’t remember how it works. You can use the % SY S.Python.Run() method to output
the help for the function from the Terminal as follows:

USER>set rslt = ##class(%SYS.Python) .Run(*'"from scourgify import normalize_address_record™)

USER>set rslt = ##class(%SYS.Python) .Run(**help(normalize_address_record)™)

Help on function normalize_address_record in module scourgify.normalize:

normalize_address_record(address, addr_map=None, addtl_funcs=None, strict=True)
Normalize an address according to USPS pub. 28 standards.

Takes an address string, or a dict-like with standard address fields
(address_line_1, address_line_2, city, state, postal_code), removes
unacceptable special characters, extra spaces, predictable abnormal
character sub-strings and phrases, abbreviates directional indicators
and street types. |If applicable, line 2 address elements (ie: Apt, Unit)
are separated from line 1 inputs.

14 Using Embedded Python



Run an Arbitrary Python Command

The % SY S.Python.Run() method returns 0 on success or -1 on failure.

Using Embedded Python 15






Bridge the Gap Between ObjectScript and
Embedded Python

Because of the differences between the ObjectScript and Python languages, you will need to know a few pieces of information
that will help you bridge the gap between the languages.

From the ObjectScript side, the %SYS.Python class allows you to use Python from ObjectScript. See the InterSystems IRIS
class reference for more information.

From the Python side, the iris module allows you to use ObjectScript from Python. From Python, type help(iris)
for a list of its methods and functions, or see InterSystems IRIS Python Module Reference for more details.

5.1 Use Python Builtin Functions

The bui I'tins package is loaded automatically when the Python interpreter starts, and it contains all of the language’s
built-in identifiers, such as the base object class and all of the built-in datatype classes, exceptions classes, functions, and
constants.

You can import this package into ObjectScript to gain access to all of these identifiers as follows:
set builtins = ##class(%SYS.Python). Import(*'builtins'™)

The Python print() function is actually a method of the bui I'tins module, so you can now use this function from
ObijectScript:

USER>do builtins.print("hello world!")
hello world!

You can then use the zwrite command to examine the bui I'tins object, and since it is a Python object, it uses the str()
method of the bui I'tins package to get a string representation of that object. For example:

USER>zwrite builtins
builtins=5@%SYS.Python ; <module “builtins® (built-in)> ; <OREF>

By the same token, you can create a Python list using the method builtins.list(). The example below creates an empty list:
USER>set list = builtins.list()

USER>zwrite list
1ist=5@%SYS.Python ; [] ; <OREF>

Using Embedded Python 17



Bridge the Gap Between ObjectScript and Embedded Python

You can use the builtins.type() method to see what Python type the variable Fist is:

USER>zwrite builtins.type(list)
3@%SYS.Python ; <class "list"> ; <OREF>

Interestingly, the list() method actually returns an instance of Python’s class object that represents a list. You can see what
methods the list class has by using the dir () method on the list object:

USER>zwrite builtins.dir(list)

3@%SYS.Python ; ["_add__ ", " class__ ", "_class _getitem__", " contains_ ", "_ delattr__ ",
" delitem__ ",

" dir_", " _doc_", "_eq_ ", " _format_", " _ge ", "_getattribute_ ", "_getitem ", " gt ",
" hash__ ", " idadd__ ", " imul__", " init_", "__init_subclass__ ", " iter_ ", " _le_ ", " len_",

e, " _mul_", "_ne , T__new , "__reduce__", "_ reduce_ex_ ","__repr__", "_ reversed ,
" rmul__", " setattr__ ", "_setitem_ ", " sizeof_ ", " str__ ", "_ subclasshook ", "append®,“clear”,

"copy", "count®, "extend", "index", "insert®, "pop", "remove®", "reverse", "sort"] ; <OREF>
Likewise, you can use the help() method to get help on the list object.

USER>do builtins._help(list)
Help on list object:

class list(object)
list(iterable=(), /)

Built-in mutable sequence.

IT no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Methods defined here:

__add__(self, value, /)
Return self+value.

__contains__(self, key, /)
Return key in self.

__delitem__(self, key, /)
Delete self[key].

Note:  Instead of importing the bui I'tins module into ObjectScript, you can call the Builtins() method of the
%SYS.Python class.

5.2 ldentifier Names

The rules for naming identifiers are different between ObjectScript and Python. For example, the underscore () is allowed
in Python method names, and in fact is widely used for the so-called “dunder” methods and attributes (“dunder” is short
for “double underscore”), suchas __getitem _or _class__.Touse such identifiers from ObjectScript, enclose them
in double quotes:

USER>set mylist = builtins._list()

USER>zwrite mylist.”_class__ "
2@%SYS.Python ; <class list> ; <OREF>

Conversely, InterSystems IRIS methods often begin with a percent sign (%). such as % New() or % Save(). To use such
identifiers from Python, replace the percent sign with an underscore. If you have a persistent class User.Person, the following
line of Python code creates a new Person object.

>>> import iris
>>> p = iris.cls("User.Person®)._New()

18 Using Embedded Python



Keyword or Named Arguments

5.3 Keyword or Named Arguments

A common practice in Python is to use keyword arguments (also called “named arguments™) when defining a method. This
makes it easy to drop arguments when not needed or to specify arguments according to their names, not their positions. As
an example, take the following simple Python method:

def mymethod(foo=1, bar=2, baz='"three'"):
print(f'foo={foo}, bar={bar}, baz={baz}'")

Since InterSystems IRIS does not have the concept of keyword arguments, you need to create a dynamic object to hold the
keyword/value pairs, for example:

USER>set args = { "bar': 123, *"foo'": "foo"}

If the method mymethod() were in a module called mymodule.py in the directory <installdir>/mgr/python, you could import
it into ObjectScript and then call it, as follows:

USER>set obj = ##class(%SYS.Python). Import(*mymodule™)
USER>set args = {"bar': 123, "foo": "foo"}

USER>do obj.-mymethod(args...)

foo=foo, bar=123, baz=three

Since baz was not passed in to the method, it is assigned the value of ""three'" by default.

5.4 Passing Arguments By Reference

Arguments in methods written in ObjectScript can be passed by value or by reference. In the method below, the ByRef
keyword in front of the second and third arguments in the signature indicates that they are intended to be passed by reference.

ClassMethod SandwichSwitch(bread As %String, ByRef fillingl As %String, ByRef filling2 As %String)

set bread = "whole wheat"
set fillingl = "almond butter"
set filling2 = "cherry preserves"

}

Assume this method is contained in a class called User.EmbeddedPython. When calling the method from ObjectScript,
place a period before an argument to pass it by reference, as shown below:

USER>set argl = "white bread"

USER>set arg2 = "peanut butter™

USER>set arg3 = '"‘grape jelly"

USER>do ##class(User .EmbeddedPython) .SandwichSwitch(argl, .arg2, .arg3)

USER>write argl
white bread
USER>write arg2
almond butter
USER>write arg3
cherry preserves

From the output, you can see that the value of the variable argl remains the same after calling SandwichSwitch(), while
the values of the variables arg2 and arg3 have changed.

Using Embedded Python 19



Bridge the Gap Between ObjectScript and Embedded Python

Since Python does not support call by reference natively, you need to use the iris.ref() method to create a reference to pass
to the method for each argument to be passed by reference:

>>> import iris

>>> argl = "white bread”
>>> arg2 = iris.ref("peanut butter”)
>>> arg3 = iris.ref("grape jelly"

>>> iris.cls("User._EmbeddedPython®).SandwichSwitch(argl, arg2, arg3)
>>> argl

“"white bread”

>>> arg2.value

“almond butter*

>>> arg3.value

“cherry preserves*®

You can use the value property to access the values of arg2 and arg3 and see that they have changed following the call
to the method.

ObjectScript also has a keyword Output, which indicates that an argument is passed by reference and it is expected that
this argument is to be used as an output, without any incoming value. From Python, use the iris.ref() method to pass the
argument the same way as you would for a ByRef argument.

Note:  While passing arguments by reference is a feature of ObjectScript methods, there is no equivalent way to pass
arguments by reference to a method written in Python. The ByRef and Output keywords in the signature of an
ObjectScript method are conventions used to indicate to the user that the method expects that an argument is to
be passed by reference. In fact, ByRe ¥ and Output have no actual function and are ignored by the compiler.
Adding ByRef or Output to the signature of a method written in Python results in a compiler error.

5.5 Passing Values for True, False, and None

The %SYS.Python class has the methods True(), False(), and None(), which represent the Python identifiers True, False,
and None, respectively.

For example:

USER>zwrite ##class(%SYS.Python).True()
2@%SYS.Python ; True ; <OREF>

These methods are useful if you need to pass True, False, and None to a Python method. The following example uses
the method shown in Keyword or Named Arguments.

USER>do obj .-mymethod(##class(%SYS.Python).True(), ##class(%SYS.Python)._False(),
##class(%SYS.Python) .None())
foo=True, bar=False, baz=None

If you pass unnamed arguments to a Python method that expects keyword arguments, Python handles them in the order
they are passed in.

Note that you do not need to use the methods True(), False(), and None() when examining the values returned by a Python
method to ObjectScript.

Say the Python module mymodule also has a method isgreaterthan(), which is defined as follows:

def isgreaterthan(a, b):
return a > b

When run in Python, you can see that the method returns True if the argument a is greater than b, and Fal se otherwise:

>>> mymodule.isgreaterthan(5, 4)
True

20 Using Embedded Python



Dictionaries

However, when called from ObjectScript, the returned value is 1, not the Python identifier True:

USER>zwrite obj.isgreaterthan(5, 4)
1

5.6 Dictionaries

In Python, dictionaries are commonly used to store data in key-value pairs, for example:

>>> mycar = {
.- "make": "Toyota“,
“model": "RAV4-,
“color®: "blue*
>>> print(mycar)
{"make": "Toyota®", "model®: "RAV4", “color®: "blue"}
>>> print(mycar[“color™])
blue

You can use the method iris.arrayref() to place the contents of the dictionary mycar into an ObjectScript array and return
a reference to that array:

>>> a = Iris.arrayref(mycar)

>>> print(a.value)

{"color®: "blue”, "make®": "Toyota®", "model®: "RAV4"}
>>> print(a.value["color™])

blue

You can then pass the array to an ObjectScript method.

For example, assume you have an InterSystems IRIS class called User.ArrayTest that has a method WriteContents() that
writes the contents of an array:

ClassMethod WriteContents(myArray) [ Language = objectscript ]

zwrite myArray

Then, you can call WriteContents() as follows:

>>> jris.cls("User.ArrayTest™) _WriteContents(a)
myArray(‘‘color')="blue"
myArray(‘'make')="Toyota"
myArray(‘'model™)="RAv4"

For more information, see iris.arrayref().

On the ObjectScript side, you can manipulate Python dictionaries using the dict() method of the Python bui Itins module:

USER>set mycar = ##class(%SYS.Python).Builtins().dict()
USER>do mycar.setdefault("'make™, "Toyota')
USER>do mycar.setdefault("'model', ""RAV4'™)
USER>do mycar.setdefault(“color™, *"blue™)

USER>zwrite mycar
mycar=2@%SYS.Python ; {"make®: "Toyota®", "model®: "RAV4", “color®: "blue"} ; <OREF>

USER>write mycar."__getitem_ "(*“'color™)
blue

The example above uses the dictionary method setdefault() to set the value of a key and __getitem__ () to get the value of
a key.

Using Embedded Python 21



Bridge the Gap Between ObjectScript and Embedded Python

5.7 Lists

In Python, lists store collections of values, but without keys. Items in a list are accessed by their index.

>>> fruits = ["apple®, "banana®, “"cherry”]
>>> print(fruits)

["apple®, "banana®, “cherry®]

>>> print(fruits[0])

apple

In ObjectScript, you can work with Python lists using the list() method of the Python bui Itins module:

USER>set I = ##class(%SYS.Python) . .Builtins(Q).list(Q)
USER>do I .append(*'apple™)
USER>do I.append(*'banana’™)
USER>do I .append(*'cherry')

USER>zwrite 1
1=13@%SYS.Python ; ["apple®, "banana®, "cherry®] ; <OREF>

USER>write 1."__getitem__ " (0)
apple

The example above uses the list method append() to append an item to the list and __getitem__ () to get the value at a
given index. (Python lists are zero based.)

If you want to convert an ObjectScript list to a Python list, you can use the ToL ist() and ToL istTyped() methods in
%SYS.Python. Given an ObjectScript list, ToL ist() returns a Python list that contains the same data. Given an ObjectScript
list containing data and a second ObjectScript list containing integer ODBC data type codes, ToListTyped() returns a
Python list that contains the same data as the first list, with each item having the data types specified in the second list.

Note:  For atable of ODBC data types, see Integer Codes for Data Types.
Some ODBC data types may translate to the same Python data type.

Some data types require the Python package numpy to be installed.

In the example below, a Python method L oop() in the class User.Listsiterates over the items in a list and prints their value
and data type.

ClassMethod
Loop(pyList) [ Language
= python ]

for x in pyList:
print(x, type(x))

22 Using Embedded Python



Globals

You can then use ToList() and ToListTyped() as follows:

USER>set clist = $listbuild(123, 456.789, "hello world™)
USER>set plist = ##class(%SYS.Python) .ToList(clist)

USER>do ##class(User.Lists).Loop(plist)
123 <class "int">

456.789 <class "float™>

hello world <class "str">

USER>set clist = $listbuild(42, 42, 42, 42)
USER>set tlist = $listbuild(-7, 2, 3, 4)
USER>set plist = ##class(%SYS.Python) .ToListTyped(clist, tlist)

USER>do ##class(User.Lists).Loop(plist)
True <class "bool ">

42 .0 <class "float">

42 <class "decimal .Decimal ">

42 <class "int">

5.8 Globals

Most of the time, you will probably access data stored in InterSystems IRIS either by using SQL or by using persistent
classes and their properties and methods. However, there may be times when you want to directly access the underlying
native persistent data structures, called globals. This is particularly true if you are accessing legacy data or if you are storing
schema-less data that doesn’t lend itself to SQL tables or persistent classes.

Though it is an oversimplification, you can think of a global as a dictionary of key-value pairs. (See Introduction to Globals
for a more accurate description.)

Consider the following class, which has two class methods written in Python:

Class User.Globals

{

ClassMethod SetSquares(x) [ Language = python ]
{

import iris
square = iris.gref("~square®)
for key in range(l, x):
value = key * key
square.set([key], value)

ClassMethod PrintSquares() [ Language = python ]
{

import iris
square = iris.gref("~square®)
key = "*
while True:

key = square.order([key])

if key == None:

break
print("The square of " + str(key) +

" is " + str(square.get([key])))
}

The method SetSquares() loops over a range of keys, storing the square of each key at each node of the global ~square.
The method PrintSquares() traverses the global and prints each key and the value stored at the key.

Using Embedded Python 23



Bridge the Gap Between ObjectScript and Embedded Python

Let’s launch the Python shell, instantiate the class, and run the code to see how it works.

USER>do ##class(%SYS.Python).Shell()
Python 3.9.5 (default, May 31 2022, 12:35:47) [MSC v.1927 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.
>>> g = iris.cls("User.Globals™)

>>> g.SetSquares(6)

>>> g.PrintSquares()

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25

Now, let’s look at how some of the methods of the built-in iris module allow us to access globals.

In method SetSquar es(), the statement square = iris.gref("~square™) returns a reference to the global *square,
also known as a gref:

>>> square = iris.gref("~square™)

The statement square .set([key], value) setsthe node of “square with key key to the value value, for example
you can set node 12 of “square to the value 144:

>>> gquare.set([12], 144)
You can also set the node of a global with the following shorter syntax:
>>> square[13] = 169

In method PrintSquares(), the statement key = square .order([key]) takes a key as input and returns the next key
in the global, similar to the SORDER function in ObjectScript. A common technique for a traversing a global is to continue
using order () until it returns None, indicating that no more keys remain. Keys do not need to be consecutive, so order ()
returns the next key even if there are gaps between keys:

>>> key = 5

>>> key = square.order([key])
>>> print(key)

12

Then, square.get([key]) takes a key as input and returns the value at that key in the global:

>>> print(square.get([key]))
144

Again, you can use the following shorter syntax:

>>> print(square[13])
169

Note that nodes in a global don’t have to have a key. The following statement stores a string at the root node of ~square:

>>> square[None] = "Table of squares”

24 Using Embedded Python



Changing Namespaces

To show that these Python commands did in fact store values in the global, exit the Python shell and then use the zwrite
command in ObjectScript to print the contents of “square:

>>> quit(Q)

USER>zwrite “‘square
~square="Table of squares"
~square(1)=1

~square(2)=4

~square(3)=9

~square(4)=16
~square(5)=25
~square(12)=144
~square(13)=169

See Global Reference API for more details on how to access and manipulate globals from Python.

5.9 Changing Namespaces

InterSystems IRIS has the concept of namespaces, each of which has its own databases for storing code and data. This
makes it easy to keep the code and data of one namespace separate from the code and data of another namespace. For
example, if one namespace has a global with a certain name, another namespace can use a global with the same name
without the danger of conflicting with the other global.

If you have two namespaces, NSONE and NSTWO, you could create a global called “myFavorite in NSONE, using
ObjectScript in Terminal, as shown below. Then you could set the $namespace special variable to change to NSTWO and
create a separate global called ~“myFavorite in that namespace. (To replicate this example, you can configure these two
namespaces on your InterSystems IRIS instance or use two namespaces you already have.)

NSONE>set "myFavorite("'fruit') = "apple”
NSONE>set $namespace = "NSTWO"

NSTWO>set “myFavorite(*fruit™) = "orange"

Here, “myFavorite(""fruit') has the value ""apple’ in NSONE and the value "*orange'* in NSTWO.

When you call Embedded Python, it inherits the current namespace. We can test this by calling the NameSpace() method
of the %SYSTEM.SYS class from Python, which displays the name of the current namespace, and by confirming that
~myFavorite("fruit') = "orange".

NSTWO>do ##class(%SYS.Python) .Shell()

Python 3.9.5 (default, Jun 2 2023, 14:12:21) [MSC v.1927 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.

>>> iris.cls("%SYSTEM.SYS") .NameSpace()

“NSTWO*"

>>> myfav = iris.gref(""myFavorite®)

>>> print(myfav["fruit"])

orange

You’ve seen how to use $namespace to change namespaces in ObjectScript. In Embedded Python, you use the
SetNamespace() method of the iris.system.Process class. For example, you can change to the namespace NSONE and confirm
that “myFavorite("fruit™) = "apple".

>>> jris.system.Process.SetNamespace("NSONE™)
“NSONE*

>>> myfav = iris.gref(""myFavorite®)

>>> print(myfav[ " fruit ])

apple

Using Embedded Python 25



Bridge the Gap Between ObjectScript and Embedded Python

Finally, when you exit from the Python shell, you remain in namespace NSONE.

>>> quit()
NSONE>

5.10 Running an ObjectScript Routine from Embedded
Python

You may encounter older ObjectScript code that uses routines instead of classes and methods and want to call a routine
from Embedded Python. In such cases, you can use the method iris.routine() from Python.

The following example, when run in the %SYS namespace, calls the routine *SECURITY::

>>> jris.routine("~SECURITY")

1) User setup
2) Role setup
3) Service setup
4) Resource setup

If you have a routine *Math that has a function Sum() that adds two numbers, the following example adds 4 and 3:

>>> sum = iris.routine("Sum™Math-,4,3)
>>> sum
7

5.11 Exception Handling

The InterSystems IRIS exception handler can handle Python exceptions and pass them seamlessly to ObjectScript. Building
on the earlier Python package example, the following example shows what happens if you try to call canvas.drawl mage()
using a non-existent file. Here, ObjectScript catches the exception in the special variable $zerror:

USER>try { do canvas.drawlmage(*'C:\Sample\bad.png', 150, 600) } catch { write “Error: *, $zerror, ! }
Error: <THROW> *%Exception.PythonException <THROW> 230 ~07DO canvas.drawlmage(''W:\Sample\isc.png",
150, 600)

<class "0OSError®>: Cannot open resource "W:\Sample\isc.png"” -

In this case, <class "0SError®>: Cannot open resource "W:\Sample\isc.png" is the exception passed
back from Python.

For more information on $zerror, see $ZERROR (ObjectScript).

For information on raising an ObjectScript status error as a Python exception, see check_status(status).

5.12 Bytes and Strings

Python draws a clear distinction between objects of the “bytes” data type, which are simply sequences of 8-bit bytes, and
strings, which are sequences of UTF-8 bytes that represent a string. In Python, bytes objects are never converted in any

26 Using Embedded Python



Standard Output and Standard Error Mappings

way, but strings might be converted depending on the character set in use by the host operating system, for example, Latin-
1.

InterSystems IRIS makes no distinction between bytes and strings. While InterSystems IRIS supports Unicode strings
(UCS-2/UTF-16), any string that contains values of less than 256 could either be a string or bytes. For this reason, the fol-
lowing rules apply when passing strings and bytes to and from Python:

» InterSystems IRIS strings are assumed to be strings and are converted to UTF-8 when passed from ObjectScript to
Python.

»  Python strings are converted from UTF-8 to InterSystems IRIS strings when passed back to ObjectScript, which may
result in wide characters.

»  Python bytes objects are returned to ObjectScript as 8-bit strings. If the length of the bytes object exceeds the maximum
string length, then a Python bytes object is returned.

e To pass bytes objects to Python from ObjectScript, use the ##class(% SY S.Python).Bytes() method, which does not
convert the underlying InterSystems IRIS string to UTF-8.

The following example turns an InterSystems IRIS string to a Python object of type bytes:

USER>set b = ##class(%SYS.Python) .Bytes(*'Hello Bytes!')

USER>zwrite b
b=8@%SYS.Python ; b"Hello Bytes!®" ; <OREF>

USER>zwrite builtins.type(b)
4@%SYS.Python ; <class "bytes®"> ; <OREF>

To construct Python bytes objects bigger than the 3.8MB maximum string length in InterSystems IRIS, you can use a
bytearray object and append smaller chunks of bytes using the extend() method. Finally, pass the bytearray object into the
builtins bytes() method to get a bytes representation:

USER>set ba = builtins.bytearray()
USER>do ba.extend(##class(%SYS.Python) .Bytes(*'chunk 1))
USER>do ba.extend(##class(%SYS.Python) .Bytes(''chunk 2'))

USER>zwrite builtins.bytes(ba)
"chunk 1chunk 2"

5.13 Standard Output and Standard Error Mappings

When using Embedded Python, standard output is mapped to the InterSystems IRIS console, which means that the output
of any print() statements is sent to the Terminal. Standard error is mapped to the InterSystems IRIS messages.log file,
located in the directory <install-dir>/mgr.

As an example, consider this Python method:

def divide(a, b):
try:
print(asb)
except ZeroDivisionError:
print(“Cannot divide by zero"®)
except TypeError:
import sys
print("Bad argument type", file=sys.stderr)
except:
print(*Something else went wrong®)

Using Embedded Python 27



Bridge the Gap Between ObjectScript and Embedded Python

Assume the method is contained in a module called mymodule.py in the directory <installdir>/mgr/python. Then, if you test
this method in Terminal, you might see the following:

USER>set obj = ##class(%SYS.Python). Import(*'mymodule™)

USER>do obj.divide(5, 0)
Cannot divide by zero
USER>do obj.divide(5, "hello™)

If you try to divide by zero, the error message is directed to the Terminal, but if you try to divide by a string, the message
is sent to messages.log:

11/19/21-15:49:33:248 (28804) O [Python] Bad argument type

Only important messages should be sent to messages.log, to avoid cluttering the file.

28 Using Embedded Python



Use Embedded Python in Interoperability
Productions

If you are writing custom business host classes or adapter classes for interoperability productions in InterSystems IRIS,
any callback methods must be written in ObjectScript because their signatures make use of ByReT and Output keywords.
A callback method is an inherited method that does nothing by default, but is designed to be implemented by the user. The
ObjectScript code in a callback method can, however, make use of Python packages or call other methods implemented in
Python.

The following example shows a business operation that takes the string value from an incoming message and uses the
Amazon Web Services (AWS) boto3 SDK for Python to send that string to a phone in a text message via the Amazon
Simple Notification Service (SNS). The details of this package is out of scope for this discussion, but you can see in the
example that the Onlnit() and OnM essage() callback methods are written in ObjectScript, while the methods Pyl nit() and
SendSM () are written in Python.

/// Send SMS via AWS SNS
Class dc.opcua.SMS Extends Ens.BusinessOperation

Parameter INVOCATION = "'Queue';

/// AWS boto3 client
Property client As %SYS.Python;

/// json._dumps reference
Property tojson As %SYS.Python;

/// Phone number to send SMS to
Property phone As %String [ Required ];

Parameter SETTINGS = "'phone:SMS";
Method OnMessage(request As Ens.StringContainer, Output response As Ens.StringContainer) As %Status

#dim sc As %Status = $$$OK

try {
set response = ##class(Ens.StringContainer).%New(. .SendSMS(request.StringValue))
set code = +{}.%FromJSON(response.StringValue).ResponseMetadata.HTTPStatusCode
set:(code™=200) sc = $$SERROR($$$GeneralError, $$$FormatText(’Error sending SMS,

code: %1 (expected 200), text: %2'", code, response.StringValue))

} catch ex
set sc = ex.AsStatus()

3

return sc

}
Method SendSMS(msg As %String) [ Language = python ]
{

response = self.client.publish(PhoneNumber=self.phone, Message=msg)
return self._tojson(response)

}

Using Embedded Python 29



Use Embedded Python in Interoperability Productions

Method Onlnit() As %Status
{

#dim sc As %Status = $$$0K
try {

do ..PyInitQ)
} catch ex {

set sc = ex.AsStatus()

quit sc

}

/// Connect to AWS
Method PylInit() [ Language = python ]
{

import boto3

from json import dumps

self._client = boto3.client(''sns™)
self.tojson = dumps

Note:  The code in the OnM essage() method, above, contains an extra line break for better formatting when printing
this document.

The following business service example is known as a poller. In this case, the business service can be set to run at intervals
and generates a request (in this case containing a random string value) that is sent to a business process for handling.

Class Debug.Service.Poller Extends Ens.BusinessService

Property Target As Ens.DataType.ConfigName;
Parameter SETTINGS = "'Target:Basic";
Parameter ADAPTER = "Ens.InboundAdapter";

Method OnProcesslinput(plnput As %RegisteredObject, Output pOutput As %RegisteredObject,
ByRef pHint As %String) As %Status [ Language = objectscript ]

{

set request = ##class(Ens.StringRequest).%New()

set request.StringValue = ..RandomMessage()

return ._SendRequestSync(..Target, request, .pOutput)
3

ClassMethod RandomMessage() As %String [ Language = python ]

import iris

import random

fruits = ["apple", "banana', "cherry']

fruit = random.choice(fruits)

return fruit + * * + iris.cls("Debug.Service.Poller®) _GetSomeText()

}
ClassMethod GetSomeText() As %String [ Language = objectscript ]

quit "is something to eat"

}

For more information on programming for interoperability productions, see Programming Business Services, Processes
and Operations.

30 Using Embedded Python



Use the Flexible Python Runtime Feature

7.1 Overview of the Flexible Python Runtime Feature

When you run Embedded Python, InterSystems IRIS expects that you are using the default version of Python for your
operating system. However, there are times when you might want to upgrade to a later version of Python or switch to an
alternate distribution like Anaconda. The Flexible Python Runtime feature enables you to use these versions of Python with
Embedded Python in InterSystems IRIS.

Note:  The Flexible Python Runtime feature is not supported on all operating systems. See Other Supported Features for
a complete list of platforms that support the feature.

Preparing to use the Flexible Python Runtime feature involves three basic steps:

1. Install the version of Python you want to use.

2. Setthe PythonRuntimeLibrary configuration setting to specify the location of the Python runtime library to use
when running Embedded Python.

For example:Zusr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1

This location will vary based on your operating system, Python version, and other factors. The example shown here
is for Python 3.11 on Ubuntu 22.04 on the x86 architecture.

See PythonRuntimeLibrary for more information.

3. Ensure that the sys . path variable in Embedded Python includes the correct directories needed to import Python
packages.

See Embedded Python and sys.path.

7.1.1 Embedded Python and sys.path

After you launch Embedded Python, it uses the directories contained in the sys. path variable to locate any Python
packages you want to import.

When you use Embedded Python with the default version of Python for your operating system, sys . path already includes
the correct directories, for example.

*  <installdir>/lib/python (Python packages reserved for InterSystems IRIS)

e <installdir>/mgr/python (Python packages installed by the user)

Using Embedded Python 31



Use the Flexible Python Runtime Feature

»  Global package repositories for the default Python version
For example: /usr/local/lib/python3.10/dist-packages.

This location will vary based on your operating system, Python version, and other factors. The example shown here
is for Python 3.10 on Ubuntu 22.04.

On Ubuntu 22.04, with the default version of Python (3.10), sys. path in Embedded Python might look something like
this:

USER>do ##class(%SYS.Python).Shell()

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/usr/1ib/python310.zip~®, “/usr/lib/python3.10", "/usr/lib/python3.10/1ib-dynload”,
*/InterSystems/IR1S/1ib/python”,

*/InterSystems/IRI1S/mgr/python®, */usr/local/lib/python3.10/dist-packages”,
"/usr/lib/python3/dist-packages”,

"/usr/l1ib/python3.10/dist-packages”]

Important: If sys. path contains a directory in that is within your home directory, such as
/home/<user>/.local/lib/python3.10/site-packages, it could indicate that you have installed packages in your
local package repository. For example, if you install a package without the --target attribute (and
without using sudo), Python will install it into the local package repository within your home directory.
If any other user tries to import the package, it will fail.

Although InterSystems recommends using the --target <installdir>/mgr/python option,
installing packages using sudo and omitting the —-target attribute installs the packages into the global
package repository. These packages can also be imported by any user.

If you switch to an alternate distribution like Anaconda, InterSystems IRIS may not know where its package repositories
are located. InterSystems IRIS provides you with a tool that can help you tailor your sys. path to include the correct
directories, namely the iris_site.py file in the directory <installdir>/lib/python.

For Ubuntu 22.04, when using Anaconda, edit your iris_site.py file to look something like the following:

import sys
from site import getsitepackages as __sitegetsitepackages

# modify EmbeddedPython to get site-packages from Anaconda python distribution.

def set_site_ path(platform_name):
sys.path = sys.path + __ sitegetsitepackages(["/opt/anaconda3/"])

With the iris_site.py above, sys.path in Embedded Python might look something like this:

USER>do ##class(%SYS.Python).Shell()

Python 3.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0] on linux
Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/opt/anaconda3/lib/python31l1l.zip®, "/opt/anaconda3/lib/python3.11",
"/opt/anaconda3/lib/python3.11/1ib-dynload”,
"/InterSystems/IRIS/1ib/python®, "/InterSystems/IR1S/mgr/python”,
"/opt/anaconda3/lib/python3.11/site-packages”]

It may take you a few iterations to get your sys. path correct for Flexible Python Runtime. It may be helpful to launch
Python outside of InterSystems IRIS and compare its sys . path with the sys. path inside Embedded Python to make
sure you have all of the expected directories.

Note:  Changes to the PythonRuntimeL ibrary configuration setting or iris_site.py take effect on starting a new session.
Restarting InterSystems IRIS is not required.

32 Using Embedded Python



Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04

7.1.2 Check Python Version Information

If you are using the Flexible Python Runtime feature, it can be useful to check the version of Python that Embedded Python
is using versus the default version that your system is using. An easy way to do this is by calling the GetPythonl nfo()
method of the %SYS.Python class.

The following example, on Ubuntu 20.04 on the x86 architecture, shows that the Python runtime library being used is
/usr/1ib/x86_64-1inux-gnu/libpython3.10.s0.1, the running version of Embedded Pythonis3.10.13, and
the system version is 3.8.10.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""CPF_PythonPath)="""
info(""CPF_PythonRuntimeLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.10.s0.1"
info(""RunningLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.10.so0.1"
info("RunningVersion')="3.10.13 (main, Aug 25 2023, 13:20:03) [GCC 9.4.0]"
info("'SystemPath')="/usr/lib/python3.8/config-3.8-x86_64-linux-gnu"
info("'SystemVersion')="3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]"
info("'SystemVersionShort')="3.8.10"

This information will vary based on your operating system, Python version, and other factors.

7.2 Flexible Python Runtime Example: Python 3.11 on
Ubuntu 22.04

Python 3.10 is the default version of Python on Ubuntu 22.04. This example shows how to use Python 3.11 with Embedded
Python.

Note:  This example is for Ubuntu 22.04 on the x86 architecture. File and directory names may vary if you are on the
ARM architecture.

1. Install Python 3.11 from the command line.
$ sudo apt install python3.11-full
2. Install the Python 3.11 libpython.so shared library.
$ sudo apt install libpython3.11

3. Setthe PythonRuntimelLibrary configuration setting to
/usr/1ib/x86_64-1inux-gnu/libpython3.11.so0.1.

See PythonRuntimeLibrary for more information.

4. From Terminal, launch Embedded Python and verify that sys - path now includes the Python 3.11 package directories.

USER>do ##class(%SYS.Python).Shell()

Python 3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/usr/1ib/python311.zip®, “/usr/lib/python3.11", */usr/lib/python3.11/1ib-dynload”,
*/InterSystems/IR1S/1ib/python”,

*/InterSystems/IR1S/mgr/python®, "/usr/local/lib/python3.11/dist-packages”,
"/usr/lib/python3/dist-packages”,

"/usr/lib/python3.11/dist-packages”]

>>>

Using Embedded Python 33



Use the Flexible Python Runtime Feature

From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""AllowNonSystemPythonForIntegratedML')=0

info("'CPF_PythonPath')="""
info("'CPF_PythonRuntimeLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.so0.1"
info("RunningLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.so0.1"
info("'RunningVersion')="3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0]"
info("'SystemPath')="/usr/lib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]"
info("'SystemVersionShort')="3.10.6"

This example shows that the Python runtime library being used is
/usr/1ib/x86_64-1inux-gnu/libpython3.11.so0.1,the running version of Embedded Pythonis 3.11.0rcl,
and the system version is 3.10.6.

7.3 Flexible Python Runtime Example: Anaconda on
Ubuntu 22.04

Anaconda is a Python-based platform commonly used for data science and artificial intelligence applications. This example
shows how to use Anaconda with Ubuntu 22.04.

Note:  This example is for Ubuntu 22.04 on the x86 architecture. File and directory names may vary if you are on the

ARM architecture.

1. Download Anaconda from https://www.anaconda.com/download.

The download will be a shell script with a name similar to Anaconda3-2024.02-1-Linux-x86_64.sh.

2. Run the Anaconda installation script from the command line, for example:
$ sudo sh Anaconda3-2024.02-1-Linux-x86_64.sh -b -p /opt/anaconda3

3. Setthe PythonRuntimelLibrary configuration setting to /opt/anaconda3/lib/libpython3.11.so.

See PythonRuntimeLibrary for more information.

4. Edit the iris_site.py file in the directory <installdir>/lib/python to add the Anaconda package repository to sys.path:
import sys
from site import getsitepackages as __sitegetsitepackages
# modify EmbeddedPython to get site-packages from Anaconda python distribution.
def set_site_ path(platform_name):

sys.path = sys.path + __ sitegetsitepackages(["/opt/anaconda3/"])

5. If you launch Embedded Python and see the error <class “ModuleNotFoundError®>: No module named
"math” - iris loader failed, edit your PATH environment variable to add the directory
/opt/anaconda3/bin to the front:
$ export PATH=/opt/anaconda3/bin:$PATH
$ env |grep PATH
PATH=/0pt/anaconds3/bin:/usr/local /sbin: /usr/local /bin: /usr/sbin: /usr/bin: /sbin:/bin:/usr/games: /usr/local /games: /sngvbin: /snep/bin

34 Using Embedded Python



Flexible Python Runtime Example: Anaconda on Ubuntu 22.04

6. From Terminal, launch Embedded Python and verify that sys . path now includes the Anaconda package repositories.

USER>do ##class(%SYS.Python).Shell()

Python 3.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0] on linux
Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/opt/anaconda3/lib/python311.zip®, "/opt/anaconda3/lib/python3.11",
"/opt/anaconda3/lib/python3.11/1ib-dynload”,
"/InterSystems/IRIS/1ib/python®, */InterSystems/IR1S/mgr/python*,
"/opt/anaconda3/lib/python3.11/site-packages”]

7. From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>zw info

info(""AllowNonSystemPythonFor IntegratedML')=0

info("'CPF_PythonPath')="""
info("'CPF_PythonRuntimelLibrary')="/opt/anaconda3/1ib/libpython3.11._so0"
info(’'RunningLibrary')="/opt/anaconda3/1ib/libpython3.11.s0"
info(""RunningVersion')="3_.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0]"
info("'SystemPath')="/usr/lib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]"
info("'SystemVersionShort')="3.10.6"

This example shows that the Python runtime library being used is Zopt/anaconda3/1ib/libpython3.11.so,
the running version of Embedded Python is 3.11 .7, and the system version is 3.10.6.

Using Embedded Python 35






InterSystems IRIS Python Module
Reference

If you are using Embedded Python and need to interact with InterSystems IRIS, you can use the i ris module to enable
InterSystems IRIS functionality.

Using Embedded Python 37



InterSystems IRIS Python Module Reference

InterSystems IRIS Python Module Core API

This section provides API documentation for the core functions of the InterSystems IRIS Python Module. These functions
allow you to access InterSystems IRIS classes and methods, use the transaction processing capabilities of InterSystems
IRIS, and perform other core InterSystem IRIS tasks.

Summary

The following table summaries the core functions of the iris module. To use this module from Embedded Python, use
import iris.

Group Functions

Code Execution check_status(), routine()
Locking and lock(), unlock()
Concurrency

Control

Reference Creation | arrayref(), cls(), gref(), ref(),

Transaction tcommit(), tlevel(), trollback(), trollbackone(), tstart(),
Processing*

“See Transaction Processing for information on using transactions to maintain the logical integrity of your InterSystems
IRIS database.

arrayref(dictionary)
Creates an ObjectScript array from a Python dictionary and returns a reference to the array.

Assume you have an InterSystems IRIS class called User.ArrayTest that has the following ObjectScript methods that expect
an array as an argument:

ClassMethod WriteContents(myArray) [ Language = objectscript ]

zwrite myArray

ClassMethod Modify(myArray) [ Language = objectscript ]
{

set myArray(‘'new') = 123
set myArray("x","y","z'") = "xyz"

ClassMethod StoreGlobal(myArray) [ Language = objectscript ]
{

kill "MyGlobal

if "$data(myArray) return "no data"
merge ~MyGlobal = myArray

return '"ok"

}

The method WriteContents() writes the contents of the array, M odify() modifies the contents of the array, and StoreGlobal()
takes the contents of the array and stores it in the global “MyGlobal.

38 Using Embedded Python



InterSystems IRIS Python Module Core API

From Python, you can create a dictionary mydict and use iris.arrayref() to place its contents in an ObjectScript array
and return a reference to that array. Then you can pass that reference to the three methods in User.ArrayTest.

>>> mydict = {2:{3:4}}

>>> mydict

{2: {3: 4}} )

>>> a = iris.arrayref(mydict)

>>> a.value

{2: {3: 4}} )

>>> iris.cls("User._ArrayTest™) Modify(a)

>>> iris.cls("User.ArrayTest") _WriteContents(a)
myArray(2,3)=4

myArray(''new')=123

myArray("'x","y","z")="xyz"

>>> jris.cls("User._ArrayTest™) _StoreGlobal(a)
“ok®

Then, from ObjectScript, you can verify that global ~MyGlobal now contains the same data as the array did:

USER>zwrite “MyGlobal
~MyGlobal (2,3)=4

~MyGlobal ("'new'")=123
~MyGlobal (*'x","y","z")=""xyz""

For information on ObjectScript arrays, see Multidimensional Arrays.

check_status(status)
Raises an exception if status contains an error. Returns None if no error condition occurs.

If you have an InterSystems IRIS class Sample.Company that has a Name property that is required, trying to save an instance
of that class without a Name property results in an error status. The following example uses iris.check_status() to check
the status returned by the _Save() method and throws an exception if it contains an error.

>>> mycompany = iris.cls("Sample.Company®)._New()
>>> mycompany.TaxID = "123456789"
>>> try:
- status = mycompany._Save()
- iris.check_status(status)
. except Exception as ex:
print(ex)

ERROR #5659+ Property "Sample.Company::Name(4@Sample.Company, ID=)" required

cls(class_name)

Returns a reference to an InterSystems IRIS class. This allows you access the properties and methods of that class in the
same way you would a with a Python class. You can use iris.cls() to access both built-in InterSystems IRIS classes or
custom InterSystems IRIS classes you write yourself.

The following example uses iris.cls() to return a reference to the built-in InterSystems IRIS class %SYS.System. It then
calls its Getl nstanceName() method.

>>> gystem = iris.cls("%SYS.System®)
>>> print(system.GetlnstanceName())
IR1S2023

gref(global_name)
Returns a reference to an InterSystems IRIS global. The global may or may not already exist.

The following example uses iris.gref() to set variable day to a reference to global ~day.

>>> day = iris.gref("~day")

Using Embedded Python 39



InterSystems IRIS Python Module Reference

The next example prints the value stored at ~day (1, ‘‘name’™), and since no value is currently stored for those keys, it
prints None. Next it stores the value "*'Sunday"* at that location and retrieves and prints the stored value.

>>> print(day[1l, “"name®])
None

>>> day[1, "name®] = "Sunday”
>>> print(day[1l, “"name®])
Sunday

For information on the methods that can be used on an InterSystems IRIS global reference, see Global Reference API.

For background information on globals, see Introduction to Globals.

lock(lock_list, timeout_value, locktype)

Sets locks, given a list of lock names, an optional timeout value (in seconds), and an optional lock type. If locktypeis **S*,
this indicates a shared lock.

In InterSystems IRIS, a lock is used to prevent more than one user or process from accessing or modifying the same resource
(usually a global) at the same time. For example, a process that writes to a resource should request an exclusive lock (the
default) so that another process does not attempt to read or write to that resource simultaneously. A process that reads a
resource can request a shared lock so that other processes can read that resource at the same time, but not write to that
resource. A process can specify a timeout value, so that it does not wait forever waiting for a resource to become available.

The following example uses iris.lock() to request exclusive locks on locks named ~one and ~two. If the request is successful,
the call returns True.

>>> iris.lock([""one*", *"~two"])
True

If another process then requests a shared lock on ~one, and the first process does not release the lock within 30 seconds,
the call below returns False.

>>> iris.lock([*"™one®],30,"S")
False

A process should use unlock() to relinquish locks when the resources they protect are no longer being used.

For more information on how locks are used in InterSystems IRIS, see Locking and Concurrency Control.

ref(value)

Creates an iris.ref object with a specified value. This is useful for situations when you need to pass an argument to an
ObjectScript method by reference.

The following example uses iris.ref() to create an iris.ref object with the value 2000.

>>> calories = iris.ref(2000)
>>> calories.value
2000

Assume an InterSystems IRIS class User.Diet has a method called Eat() that takes as arguments the name of a food you’re
about to consume and your current calorie count for the day, and that caloriesis passed in by reference and is updated with
your new calorie count. The following example shows that after the call to Eat(), the value of the variable calories has been
updated from 2000 to 2250.

>>> jiris.cls("User.Diet") _Eat("hamburger®, calories)
>>> calories.value
2250

For information on passing arguments by reference in ObjectScript, see Indicating How Arguments Are to Be Passed.

40 Using Embedded Python



InterSystems IRIS Python Module Core API

routine(routine, args)

Invokes an InterSystems IRIS routine, optionally at a given tag. Any arguments that need to be passed in the call are comma-
delimited, following the name of the routine.

The following example, when run in the %SYS namespace, uses iris.routing() to call the routine *SECURITY':

>>> jris.routine("~SECURITY")

1) User setup
2) Role setup
3) Service setup
4) Resource setup

If you have a routine *Math that has a function Sum() that adds two numbers, the following example adds 4 and 3:

>>> sum = iris.routine("Sum™Math",4,3)
>>> sum
7

For more information on how routines are used in ObjectScript, see Routines.

tcommit()
Marks the successful end of an InterSystems IRIS transaction.

Use iristcommit() to mark the successful end of a transaction and decrement the nesting level by 1:
>>> jiris.tcommit()

To ensure that transactions nest properly, every iris.tstart() should be paired with an iristcommit().
If iris.tcommit() is called when not in a transaction, an exception occurs, with the value <COMMAND>.

See also tstart(), tlevel(), trollback(), and trollbackone().

tlevel()

Detects whether a transaction is currently in progress and returns the nesting level. A call to iris.tstart() increments the
nesting level, and a call to iristcommit() decrements the nesting level. A value of zero means not in a transaction.

The following example shows the value returned by iris.level() at different transaction nesting levels.

>>> iris.tlevel ()
0
>>> iris.tstart()
>>> jris.tstart()
>>> jris.tlevel ()
2
>>> iris.tcommit()
>>> jqris.tlevel ()
1

See also tstart(), tcommit(), trollback(), and trollbackone().

trollback()

Rolls back all current transactions in progress and restores all journaled database values to their values at the start of the
initial transaction. It also resets the transaction nesting level to 0.

Using Embedded Python 41



InterSystems IRIS Python Module Reference

This simple example initializes the global ~a(1) to the value “hello.” It then starts a transaction and sets ~a(1) to the
value “goodbye.” But before the transaction is committed, it calls iris.trollback(). This resets the transaction nesting level
to 0 and restores ~a (1) to the value it had before the start of the transaction.

>>> a = iris.gref(*"a")
>>> a[1] = "hello*
>>> jris.tstart()
>>> jqris.tlevel ()

1

>>> a[1] = "goodbye*
>>> jiris.trollback()
>>> iris.tlevel()

0

>>> a[1]

“hello”

See also tstart(), tcommit(), tlevel(), and trollbackone().

trollbackone()

Rolls back the current level of nested transactions, that is, the one initiated by the most recentiris.tstart(). It also decrements
the transaction nesting level by 1.

This example initializes the global ~a(2) to the value 4 and ~b (1) to the value “lemon.” It then starts a transaction and
sets ~a(1) to 9. Next, it starts a nested transaction and sets ~b (1) to “lime.” It then calls iris.trollbackone() to roll back
the inner transaction and calls iris.commit() to commit the outer transaction. When all is said and done, ~a(1) retains its
new value, while ~b(2) is rolled back to its original value.

>>> a = iris.gref(*"a")
>>> b = iris.gref(*”b")
>>> g[1] = 4

>>> p[1] = "lemon®

>>> jris.tstart()

>>> jris.tlevel ()

1

>>> af1] = 9

>>> iris.tstart()

>>> jiris.tlevel ()

2

>>> p[1] = “lime*

>>> jiris.trollbackone()
>>> jiris.tlevel()

1

>>> jiris.tcommit()

>>> jiris.tlevel()

0

>>> a[1]

9

>>> p[1]

“lemon*

See also tstart(), tcommit(), tlevel(), and trollback().

tstart()
Marks the start of an InterSystems IRIS transaction.

A transaction is a group of commands that must all complete in order for the transaction to be considered successful. For

example, if you have a transaction that transfers a sum of money from one bank account to another, the transaction is only
successful if withdrawing the money from the first account and depositing it into the second account are both successful.

If the transaction fails, the database can be rolled back to the state it was in before the start of the transaction.

Use iris.start() to mark the start of a transaction and increment the transaction nesting level by 1:
>>> iris.tstart()

See also tcommit(), tlevel(), trollback(), and trollbackone().

For more information on how transaction processing works in InterSystems IRIS, see Transaction Processing.

42 Using Embedded Python



InterSystems IRIS Python Module Core API

unlock(lock_list, timeout_value, locktype)
Removes locks, given a list of lock names, an optional timeout value (in seconds), and an optional lock type.
If your code sets locks to control access to resources, it should unlock them when it is done using those resources.

The following example uses iris.unlock() to unlock the locks named ~one and ~two.

>>> jris.unlock([*”one®, *~two"])
True

See also lock().

Using Embedded Python 43



InterSystems IRIS Python Module Reference

Global Reference API

This section provides APl documentation for the methods of the gref class of the InterSystems IRIS Python Module. These
methods allow you to access and manipulate InterSystems IRIS globals.

Summary

The following table summaries the methods of the gref class of the InterSystems IRIS Python Module. To use this class
from Embedded Python, first do import iris, and then use the iris.gref() function to obtain a reference to a global. (See

iris.gref().)
Group Settings

Work on a Node of | data(), get(), getAsBytes(), kill(), set()
a Global

Traverse a Global | keys(), order(), orderiter(), query()

For background information on globals, see Introduction to Globals.

data(key)

Checks if a node of a global contains data and/or has descendants. The key of the node is passed as a list. Passing a key
with the value None (or an empty list) indicates the root node of the global.

You can use data() to inspect a node to see if it contains data before attempting to access that data and possibly encountering
an error. The method returns 0 if the node is undefined (contains no data), 1 if the node is defined (contains data), 10 if the
node is undefined but has descendants, or 11 if the node is defined and has descendants.

Assume you have a global ~a with the following contents:

~a(2) = "two"

~a(3,1) = "three one"
~a(4) = “four™
~a(4,1) = "four one"

Then you can use data() to test the various nodes of the global as in these examples:

>>> a = iris.gref(""a")
>>> a.data([1])

0

>>> a.data([2])

1

>>> a.data([3])

10

>>> a.data([4])

11

>>> a.data([None])
10

>>> a.data([3,1])
1

You can use modulo 2 arithmetic to check whether a node contains data, regardless of whether it has descendants or not.

>>> a.data([3]) % 2
0
>>> a.data([4]) % 2
1

get(key)
Gets the value stored at a node of a global. The key of the node is passed as a list. Passing a key with the value None (or
an empty list) indicates the root node of the global.

44 Using Embedded Python



Global Reference API

Assume you have a global ~a with the following contents:

~a(2) = "two"
~a(3,1) = "three one"
~a(4) = "four™”
~a(4,1) = "four one"

Then you can use get() to retrieve data from the various nodes of the global as in these examples:

>>> a = iris.gref(*"a")
>>> a.get([2])
“two"

>>> a.get([3,1])
“three one*

Alternatively, you can get the value of a node directly, as you would for a Python dictionary, or you can use the dunder
method __getitem__ ().

>>> a[3,1]
“three one*
>>> a._ getitem_ ([3,1])
“three one*

Using get() to get data from a node that is undefined results in an error.

>>> a.get([5])

Traceback (most recent call last):
File "<input>", line 1, in <module>

KeyError: “"Global Undefined”

You can use the data() method to test whether a node contains data before trying to retrieve it.

Getting data from an undefined node directly or by using __ getitem__ () returns None, instead of causing an error.

>>> print(a[5])
None

>>> print(a.__getitem__ ([5]))
None

See also getAsBytes().

getAsBytes(key)

Gets a string value stored at a node of a global and converts it to the Python bytes data type. The key of the node is passed
as a list. Passing a key with the value None (or an empty list) indicates the root node of the global.

Assume you have a global ~a with the following contents:

~a(2) = "two"
~a(3,1) = "three one™
~a(4) = "four™”
~a(4,1) = "four one"

Then you can use getAsBytes() to retrieve data from the various nodes of the global as in these examples:

>>> a = iris.gref(*"a")
>>> a.getAsBytes([2])
b*two*

>>> a._getAsBytes([3,1])
b*three one*

Using getAsBytes() to get data from a node that is undefined results in an error.

>>> a_getAsBytes([5])

Traceback (most recent call last):
File "<input>", line 1, in <module>

KeyError: “Global Undefined”

Using Embedded Python 45



InterSystems IRIS Python Module Reference

You can use the data() method to test whether a node contains data before trying to retrieve it.

See also get().

keys(key)
Returns the keys of a global, starting from a given key. The starting key is passed as a list. Passing an empty list indicates
the root node of the global.

Assume you have a global ~mIb with the following contents:

~mlb = "Major League Baseball"
~mIb(*'AL") = "American League"
~mIb("'AL",""Central') = "AL Central"
mlb("'AL","East') = "AL East"

~mIb("'AL","East",1) = "Baltimore"
~mIb("'AL",""East',2) = "Boston"
~mlb("'AL",""East',3) = "NY Yankees"
~mIb("'AL",""East",4) = "Tampa Bay"
mlb(""AL","East",5) = "Toronto"

mlb(""AL","West") = "AL West"

AmIb("'AL","West',1) = "Houston"
~mIb("'AL",""West',2) = "LA Angels"
mlb(""AL","West",3) = "Oakland"
mlb("'AL","West'" ,4) = "Seattle"
mlb("'AL","West",5) = "Texas"

~mIb(*'NL'") = "National League"
You can use keys() to get the keys of the global and print out their values, as follows:

>>>m = iris.gref("mlb")
>>> for key in m.keys([]):
- value = m[key]
print(f {key} = {value}")

["AL"] = American League

["AL", "Central®] = AL Central
["AL", "East"] = AL East

["AL", “East®, "1"] = Baltimore
["AL", "East", "2"] = Boston
["AL", "East”, "3"] = NY Yankees
["AL", “East®, "4"] = Tampa Bay
["AL", "East", "5"] = Toronto
["AL", "West"] = AL West

["AL", “West", "1"] = Houston
["AL", "West", "2"] = LA Angels
["AL", "West", "3"] = Oakland
["AL", “West", "4"] = Seattle
["AL", "West®, "57] = Texas
["NL"] = National League

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, keys()
begins with the key of the next node according to the sort order, for example:

>>>m = iris.gref(" mlb*
>>> for key in m.keys(["AL","North"]):
- value = m[key

print(f- {key}] {value}")
t;AL', “"West"] = AL West

["AL", "West®", "1"] = Houston
["AL", “"West", "2"] = LA Angels
["AL", “West®, "3"] = Oakland
["AL", "West", "4"] = Seattle

["AL", “"West", "5"] = Texas
[°N L'] = National League

You can also use get() to retrieve the value of each node, but you need to test each node first by using data() to make sure
it is contains data.

Use order() to traverse the nodes at one level of a global.

46 Using Embedded Python



Global Reference API

kill(key)

Deletes the node of a global, if it exists. The key of the node is passed as a list. This also deletes any descendants of the
node. Passing a key with the value None (or an empty list) indicates the root node of the global.

Assume you have a global ~a with the following contents:

~a(2) = "two™

~a(3,1) = "three one"
~a(4) = "four”
~a(4,1) = "four one™

Then you can use Kill() to kill a node of the global, and its descendants, as in this example:

>>> a = iris.gref(*"a")
>>> a.kill([4])

Now the global has the following contents:

~a(2) = "two"
~a(3,1) = "three one"

Passing None for the key kills the entire global.

>>> a_kill([None])

order(key)

Returns the next key in that level of the global, starting from a given key. The starting key is passed as a list. If no key follows
the starting key, order () returns None.

Assume you have a global ~mIb with the following contents:

“mlb = Major League Baseball™
mlb(*"AL" ) = "American League"
~mIb(*'AL",""Central’ ) = "AL Central"
mlb (" AL","East ) = "AL East"
mlb(*""AL","East',1) "Baltimore™

Amlb("AL","East",Z) = "Boston"
mlb(*"AL","East™,3) = "NY Yankees"
mlb(*"AL","East",4) = "Tampa Bay"
~mlb("'AL","East",5) = "Toronto"

mlb(""AL","West') = AL West"

Amlb(""AL","West™,1) = "Houston"
mIb("'AL",""West',2) = "LA Angels"
mlb("'AL","West",3) = "Oakland"
Amlb(""AL","West",4) = "'Seattle"

~mib(""AL" "West" 5) = "Texas"
Amlb(*"'NL" ) “National League™

You can use order () to get the next key from a given key, as in the following examples:

>>>m = iris.gref(" mlb*

>>> m.order(["AL","Central*])
"East”

>>> m.order(["AL","East™])
“West*

>>> m.order(["AL", "East”,1])
o

>>> m.order(["AL", "East",2])
-3

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, order ()
returns the key of the next node according to the sort order, for example:

>>> m.order(["AL", "West",3.5])
e

Using Embedded Python 47



InterSystems IRIS Python Module Reference

Use a while loop to traverse the nodes of a global at a certain level, breaking when the return value is None. Setting the

starting key to the empty string means “start at the beginning of that level.”

The following example traverses the top-level nodes of a global:

>>>m = iris.gref(*mlb*)
>>> key = "°
>>> while True:
key = m.order([key])
if key == None:
break
print(m[key])

American League
National League

The following example traverses the third-level nodes of a global:

>>>m = iris.gref(*mlb*)
>>> key = "*
>>> while True:
key = m.order(["AL", "East”,key])
if key == None:
break
print(m[“AL", "East”,key])
Baltimore
Boston
NY Yankees
Tampa Bay
Toronto

You can nest while loops as necessary, or use keys() or query() to traverse an entire global.

orderiter(key)

Returns the keys and values of a global, starting from a given key, down to the next leaf node. The starting key is passed

as a list. Passing an empty list indicates the root node of the global.

Assume you have a global ~mIb with the following contents:

~mlb = “Major League Baseball"
~mlb(""AL') = "American League"
~mlb(""AL","Central'™) = "AL Central™
mlb("AL","East'") = "AL East"
mlb(""AL","East',1) "Baltimore"

~mlb("'AL","East',2) = "Boston"
AmIb(*'AL","East',3) = "NY Yankees™
mlb(""AL","East",4) = "Tampa Bay"
~mlb("'AL","East",5) = "Toronto"

AmIb(**AL™,"West'™) = "AL West"

~mlb("AL","West",1) = "Houston"
mlb(""AL","West",2) = "LA Angels"
mlb(""AL","West',3) = "Oakland"
~mlb("'AL","West",4) = "Seattle"
mlb("'AL","West",5) = "Texas"

AmIb(**NL"") = "National League"

The following example uses orderiter() to traverse the global down to the next leaf node starting from the root:

>>> m = iris.gref(" mlb*")
>>> for (key, value) in m.orderiter([]):
print(f {key} = {value}")

t;AL'] = American League
["AL", "Central"] = AL Central

48

Using Embedded Python



Global Reference API

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, orderiter()
finds the next node according to the sort order, for example:

>>>m = iris.gref(* mlb*)

>>> for (key, value) in m.orderiter(["AL","North"]):
print(f {key} = {value}")

["AL", "West"] = AL West
["AL", “West®", "1"] = Houston

query(key)

Traverses a global starting at the specified key, returning each key and value. The starting key is passed as a list. Passing
an empty list indicates the root node of the global.

Assume you have a global ~mIb with the following contents:

~“mlb = "Major League Baseball"
mlb(*"AL'™) = "American League"
AmIb(**AL","Central’) = "AL Central™
~mlb("'AL","East') = "AL East"

~mlb("'AL","East',1) = "Baltimore"
AmIb(*'AL",""East',2) = "Boston"
mlb(""AL","East™,3) = "NY Yankees"
Amlb("AL","East",4) = "Tampa Bay"
~mIb(**AL",""East",5) = "Toronto"

Amlb(""AL™, "West" ) = "AL West"

Amlb("AL" "West" 1) = "Houston"
AmIb(*'AL"™,"West™,2) = "LA Angels™
Amlb("AL","West",S) = "Oakland"
mlb("'AL","West" ,4) = "Seattle"
mlb(""AL","West' ,5) = "Texas"

~mlb(*'"NL') = "National League"

The following example uses query() to traverse the global starting from the root:

>>> m = iris.gref(""mlb*")
>>> for (key, value) in m.query([1):
S print(f {key} = {value}~)

["AL"] = American League

["AL", "Central®] = AL Central
["AL", "East"] = AL East

["AL", “East”, "1"] = Baltimore
["AL", "East®, "2"] = Boston
["AL", "East”, "3"] = NY Yankees
["AL", “East", "4"] = Tampa Bay
["AL", "East", "5"] = Toronto
["AL", "West"] = AL West

["AL", “West", "1"] = Houston
["AL", "West", "2"] = LA Angels
["AL", "West", "3"] = Oakland
["AL", “West", "4"] = Seattle
["AL", “West", "5"] = Texas
["NL"] = National League

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, query()
finds the next node according to the sort order, for example:

>>> m = iris.gref(""mlb")
>>> for (key, value) in m.query(["AL","North"]):
- print(f {key} = {value}")

i:;AL', "West"] = AL West

["AL", "West®", "1"] = Houston
["AL", “West®", "2°"] = LA Angels
[AL", “West®", "3"] = Oakland
["AL", “"West", "4"] = Seattle

["AL", “West®", "5"] = Texas
['NL'] = National League

Using Embedded Python 49



InterSystems IRIS Python Module Reference

set(key, value)

Sets a node in a global to a given value. The key of the node is passed as a list, and value is the value to be stored. Passing
a key with the value None (or an empty list) indicates the root node of the global.

The following example obtains a reference to global “messages and uses set() to set the value of some nodes in the global:

>>> msg = iris.gref("“messages”)

>>> msg.set([None], "list of messages”)
>>> msg.set([“greeting”,1], “hello®)
>>> msg.set(["greeting”,2], “goodbye®)

If the global “messages did not already exist, it would look as follows:

~messages = "list of messages"
~messages('‘greeting',1) = "hello"”
~messages(‘'greeting",2) = "goodbye"

If "messages already existed, the new values would be added to the global, possibly overwriting existing data at those
nodes. You can use the data() method to test whether a node already contains data before trying to set it.

You can also set a global node directly, as you would for a Python dictionary, as in the following example:

>>> msg = iris.gref("~messages”)
>>> msg["greeting®,3] = "aloha”

Now the global “messages looks like this:

~messages = "list of messages"
~messages(‘'greeting”,1) = "hello™
~messages(''greeting',2) = "‘goodbye"

~messages(''greeting",3)="aloha"

50 Using Embedded Python



	Table of Contents
	1 Introduction and Prerequisites
	1.1 Recommended Python Version
	1.2 Required Service
	1.3 Flexible Python Runtime Feature

	2 Install and Import Python Packages
	2.1 Install Python Packages
	2.1.1 Install Python Packages on a UNIX-Based System (except AIX)
	2.1.2 Install Python Packages on AIX
	2.1.3 Install Python Packages on Windows
	2.1.4 Install Python Packages in a Container

	2.2 Import Python Packages
	2.2.1 Import Python Packages from ObjectScript
	2.2.2 Import Python Packages from a Method Written in Python
	2.2.3 Import Python Packages via an XData Block


	3 Run Embedded Python
	3.1 From the Python Shell
	3.1.1 Start the Python Shell from Terminal
	3.1.2 Start the Python Shell from the Command Line

	3.2 In a Python Script File (.py)
	3.3 In a Method in an InterSystems IRIS Class
	3.4 In SQL Functions and Stored Procedures

	4 Call Embedded Python Code from ObjectScript
	4.1 Use a Python Package
	4.2 Call a Method of an InterSystems IRIS Class Written in Python
	4.3 Run an SQL Function or Stored Procedure Written in Python
	4.4 Run an Arbitrary Python Command

	5 Bridge the Gap Between ObjectScript and Embedded Python
	5.1 Use Python Builtin Functions
	5.2 Identifier Names
	5.3 Keyword or Named Arguments
	5.4 Passing Arguments By Reference
	5.5 Passing Values for True, False, and None
	5.6 Dictionaries
	5.7 Lists
	5.8 Globals
	5.9 Changing Namespaces
	5.10 Running an ObjectScript Routine from Embedded Python
	5.11 Exception Handling
	5.12 Bytes and Strings
	5.13 Standard Output and Standard Error Mappings

	6 Use Embedded Python in Interoperability Productions
	7 Use the Flexible Python Runtime Feature
	7.1 Overview of the Flexible Python Runtime Feature
	7.1.1 Embedded Python and sys.path
	7.1.2 Check Python Version Information

	7.2 Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04
	7.3 Flexible Python Runtime Example: Anaconda on Ubuntu 22.04

	InterSystems IRIS Python Module Reference
	InterSystems IRIS Python Module Core API
	Global Reference API


