InterSystems-

IRIS Data Platform

Adding Compiled Code to
Customer Databases

Version 2024.1
2024-07-02

Adding Compiled Code to Customer Databases

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

Adding Compiled Code to CuStomMer DatabDaseS.........ccceieiuirierierierieniere e 1
I [V 1T =] 1]) P 1
B L= o] [0) YT T T @] q] o1 (<o [O o L= RSN 1
3 Limitations for DeployToFile() and INStallFFOMFIIE() ..ccvvveeieiieiieeceeeseee e 2
A EXAMPIE <ttt bt bbbt b e bbb e bt et ene e ne bt nbenreene 2
5 EffeCt 0N RUNNING PIOCESSESviviieieeeietieieeieetes sttt sttt saessesbesae e e s e seesessessessesneseeseesnens 2

Adding Compiled Code to Customer Databases

Adding Compiled Code to Customer
Databases

This page describes how to add compiled code to the customers’ databases, so that you can provide your customers with
new code that does not need to be recompiled.

Important: InterSystems highly recommends that you test this procedure with your specific classes in a test environment
before using it on a live system.

1 Requirements

The requirements are as follows:

» The InterSystems IRIS® version must be the same on the system where you create and compile the code as it is on
the system where you are installing it.

e The SQL delimited identifier setting must be the same on both systems.

2 Deploying Compiled Code

To deploy compiled code, do the following:

1. Create a project that contains class definitions, routines, and globals. To do so, use methods of the %Studio.Project
class.

2. Make sure that all the code in the project has been compiled.
3. Obtain an OREF to the project, by using methods of %Studio.Project.
4. Call the DeployToFile() instance method of the project. For example:

ObjectScript

set sc=projectoref.DeployToFile("c:\test\nyglobal.xm",, 1)

Because the third argument is 1, the generated file does not contain the source code and intermediate code. The following
shows the method signature and details:

met hod Depl oyToFil e(file As %String,
gspec As ¥&tring,
renmovesource As %Bool ean = 0) as %t atus

Generates a file that contains the packaged code belonging to this project. file is the name of the file, and gspec is a
string containing the standard compile qualifiers; see Flags and Qualifiers. Note in particular that you should ensure
that the / export sel ecti vi t'y qualifier is specified as you want it. You can also specify the k flag, which controls
whether the source code of generated routines is kept.

Adding Compiled Code to Customer Databases 1

Limitations for DeployToFile() and InstallFromFile()

removesource is a boolean value. If removesource is 1, the global does not contain the routine and method sources,
nor the intermediate code (regardless of the setting of the k flag).

For information on deployed mode, see Putting Classes in Deployed Mode.

5. Provide this file to your customers with instructions. Customers should use the Terminal, switch to the appropriate
namespace, and call the InstallFromFile() method of %Studio.Project, as follows:

set sc=##cl ass(¥Btudi o. Project).Install FronFile("c:\test\nyglobal.xm")

DeployToFile() automatically adds, to the list of items being deployed, any parent classes and any child classes referenced
by relationships in this class.

3 Limitations for DeployToFile() and InstallFromFile()

The DeployToFile()and I nstallFromFile() methods have the following limitations:

» The DeployToFile() and I nstallFromFile() methods do not handle any class projections, for example, classes that
project to Java files.

» These methods do not do any dependency checking and thus do not automatically include subclasses. It is your
responsibility to insert all the classes you need into the package.

For example, I nstallFromFile() does not check the location into which it installs the code. As an additional example,
you could potentially deploy a subclass to a system that does not have the superclass installed.

Important: InterSystems highly recommends that you test this procedure with your specific classes in a test environment
before using it on a live system.

4 Example

The following example shows a simple routine. Note that this routine creates a project but does not save it; there is no need
to save the project before calling DeployToFile&().

; depl oyexanpl e

set p=##cl ass(%5t udi 0. Proj ect) . 9%New()
do p. Addl t en(" Sanpl e. Cust oner. cl s")
do p. Addlten(" Sanpl e. Person. cl s")

do p. Depl oyToFil e("c:\test\nyglobal . xm",, 1)

For demonstration purposes, this simple routine does not include error checking.

5 Effect on Running Processes

This section describes the effect on any running processes when you load a new, compiled version of the code into a system
where code is currently executing:

* Routines and class methods that are currently executing will continue to use the old code. If the routine or class method
is called again from the same process after the compilation is complete, it will load the new code.

2 Adding Compiled Code to Customer Databases

Effect on Running Processes

» Ifaroutine or class method invokes another routine or class method and then returns to the caller, the process continues
to use the old version of the calling code. For example, suppose that routine A invokes routine B, after which control
returns to routine A. If you recompile routine A while routine A is running (or while routine B is running), when control
returns to routine A, the process continues to use the old code for routine A.

» Any open process continues to use the in-memory version of any OREFs.

» Instance methods are dependent on an instance of an object. Any object will use the version of the instance methods
that existed when the object was instantiated. The object will continue to use that code until the OREF is discarded
and a new object is instantiated. So if you instantiate an object and then import a new version of the class (or delete it
totally), you can still continue to call methods on the instance, which will use the version of the class that existed when
the object was instantiated.

Note that you can query an OREF to see if the instance is using the latest version of the class code:
ObjectScript
Wite oref. % assl sLat est Versi on()

The % Classl sL atestVersion() method returns 1 if the instance is using the latest version of the class code; otherwise it
returns 0.

The preceding comments also apply when you recompile code in a given instance.

Note: The comments here apply on the instance where you are compiling the class. On another instance over ECP or
an mirror member, the routine or class can briefly be inconsistent and can throw errors.

Adding Compiled Code to Customer Databases 3

	Table of Contents
	1 Requirements
	2 Deploying Compiled Code
	3 Limitations for DeployToFile() and InstallFromFile()
	4 Example
	5 Effect on Running Processes
	Index

