InterSystems-

IRIS Data Platform

InterSystems Implementation
Reference for Third Party
Software

Version 2024.1
2024-07-02

InterSystems Implementation Reference for Third Party Software
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Overview of Third Party SOfTWAI €ccieiiieieeeeeeeen ettt s sb e sen 1
2 IDBC DI IVEN SUPPOIT c.eeiteititeeeteeste sttt it see it se et b et st b et bt b e st et ese b e seebe s e e besbe st snenesbe st sre st enene 3
2.1 JDBC and the InterSystems JDBC DIIVELc.cceiiiiiiiriiirisieneeieieiesee st 3
2.1.1 Installation and ConfIQUrAtioNccccevereiereerieeeee s 3

2.2 JDBC Driver COMPIIANCEccuvcviieieiiise s sese e steste et e et e ettt be e st sr e eae e enseneas 4
2.2.1 Required java.Sql INTEITACESccoviiiiiii e 4

2.2.2 Optional java.Sql INTEITACEScoviiviriiieieeeee et 5

2.2.3 JaVA.SOl EXCEPLIONS ...viveiiieiteiiitiieteie ettt sttt 5

2.2.4 Required javaxX.SOl INTEITACEScoviviriiirieirieicre e 6

2.2.5 Optional javax.Sql INTEITACEScueiverireieecees e e 6

2.3 Variants and Unsupported Optional Methodsccceieveiinieniesirsisie e 6
2.3.1 CallableStatement: Unsupported Methodsccooeieiriniiininesesee e 7

2.3.2 Connection: Unsupported or Restricted Methodsccoceviriiiieneieieeseee e 7

2.3.3 DatabaseMetaData: Variant Methodsccoooviirineiiieneneee e 9

2.3.4 Driver: Unsupported MEtOUScoueiiiiiieieieee e 9

2.3.5 PreparedStatement: Unsupported Methodsccovevveieirieniininsn e 10

2.3.6 ResultSet: Unsupported or Restricted Methodsccccccvvevivinieienciceece e 10

2.3.7 Statement: Unsupported or Restricted Methodsccccoiiiieiiniiinieneie e 11

2.4 InterSystems Enhancements and EXIENSIONScc.coeiiiriereriiene e 12
2.4.1 CallableStatement getBinaryStream() Extension Methodc.cccvevireineincinennnnn, 12

2.4.2 ConnectionPoolDataSource Extensions and ENhancementscocooveriennenincnneenn 13

2.4.3 DataSource Extensions and ENNaNCEMENTScccvorrreerrnrirerinesreeeseseee s 14

G Vg To AT I 2 B AN o I T]] o o 19
A HIDEMNAEE SUPPOIT .ttt ettt e et ae e aeebe b e s aesbe b e beseesbebenbeneennan 21
4.1 Hibernate and the InterSystems Hibernate DIialectccocoviiiiinineieiccee e 21
4.1.1When t0 USe HIDEINALEc.viiiieiieiiiesiesese e 21

4.2 Installation and CONfIGUIALIONcoviiriiiriii i e 22
4.2.1 REQUITEMENTS ...viiveieeieesiesiestesteste e seestesseseessesessesseesessessessessessessessessessessessessessensessesessensens 22

4.2.2 DIFECLOTIES ©vvrvveeeieerrereiees ettt ettt n et n bt nnen et 22

4.2.3 SYSTEM SELLINYS .ueiiviieeiie et ettt s e e te s e e s ee s e e teereesteeraesreenee e 22

4.2.4 Hibernate CoNfIGUIALIONco.oiviiiiiiiieieeese s 23

4.3 DiIaleCt File LOCAIIONS ...oiviieiieiiieie ettt sttt st st sttt besne e e e 24

InterSystems Implementation Reference for Third Party Software

Overview of Third Party Software

See the Table of Contents for a detailed listing of the subjects covered in this document.

InterSystems provides native implementations of the following third-party drivers and interfaces:

The InterSystems JDBC Driver
The InterSystems JDBC Driver is a fully compliant type 4 implementation of the JDBC standard.

See JDBC Driver Support for detailed information on JDBC driver compliance and enhancements, including the
level of support for all optional features and a list of all InterSystems IR1S-specific additional features.

Also see the following related documentation:

» Using Java with Inter Systems Software provides a full description of features and usage.

The InterSystems Hibernate Dialect

The InterSystems Hibernate Dialect is an implementation of the Hibernate dialect interface. Since every vendor’s
implementation of SQL is slightly different, the Hibernate dialect interface allows vendors to create custom
Hibernate mappings for a specific database.

See Hibernate Support for details.

InterSystems Implementation Reference for Third Party Software 1

JDBC Driver Support

The InterSystems IRIS® JDBC Driver is a fully compliant type 4 implementation of the JDBC 4.2 standard. This section
lists all classes and interfaces of the JDBC 4.2 AP, indicates the level of support for each one, and describes all InterSystems-
specific features. The following topics are discussed:

» JDBC and the InterSystems JDBC Driver — provides an overview and resource links for the JDBC driver.

» JDBC Driver Compliance — lists all classes and interfaces specified by the JDBC standard, and indicates the current
level of support.

» Variants and Unsupported Optional Methods — provides details on classes that include permitted variances from the
standard.

e InterSystems Enhancements and Extensions — lists and discusses InterSystems extensions to the standard JDBC API.

Connecting Your Application to InterSystems IRIS provides instructions, including sample code, for connecting to an
InterSystems IRIS server from a Java application using JDBC.

2.1 JDBC and the InterSystems JDBC Driver

The Java JDBC API is the industry standard for vendor-neutral database connectivity. It provides a reliable way for Java
applications to connect to data sources on any supported platform and to query or perform operations on them with SQL.

InterSystems JDBC is implemented in a type 4 driver to deliver the highest possible performance. Type 4 means that it is
a direct-to-database pure Java driver, installed inside the client JVM and requiring no external software support. It is fully
compliant with the JDBC 4.2 API specification, supporting all required interfaces and adhering to all JDBC 4.2 guidelines
and requirements. InterSystems IRIS supports all features except SQL Exception handling enhancements, National Char-
acter Set conversions, and the XML data type.

See Using Java with Inter Systems Software for a full description of API features and usage. That book also provides an
overview of all InterSystems IRIS Java technologies enabled by the JDBC driver (see “InterSystems Java Connectivity
Options™).

2.1.1 Installation and Configuration

The InterSystems JDBC driver is included in the standard InterSystems IRIS installation package. No extra installation or
setup procedures are required. See “Client-Server Configuration” in Using Java with Inter Systems Software for information
on client requirements and usage.

InterSystems Implementation Reference for Third Party Software 3

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ADRIVE

JDBC Driver Support

For more information about how to make a connection between InterSystems IRIS and an application using the JDBC
driver, see “Connecting Your Application to InterSystems IRIS.”

If you want to use the JDBC driver on a system that does not have InterSystems IRIS installed, you can download the driver
package from the InterSystems IRIS Drivers page on GitHub.

2.2 JDBC Driver Compliance

This section provides information on the level of support for each JDBC interface.

2.2.1 Required java.sql Interfaces

The following interfaces must be implemented. Some classes contain methods that are optional if the implementation
depends on a feature that the database does not support. The standard implementation annotation indicates that the generic
implementation of the class has been used without alteration:

* java.sgl.CallableStatement — implemented with some permitted variances (see “CallableStatement: Unsupported
Methods™ and “CallableStatement getBinaryStream() Extension Method ™).

* java.sgl.ClientinfoStatus — standard implementation.

e java.sgl.Connection — implemented with some permitted variances (see Connection: Unsupported or Restricted
Methods).

* java.sgl.DatabaseMetaData — implemented with some permitted variances (see “ DatabaseMetaData: Variant Methods™).
* java.sgl.Date — standard implementation.

* java.sql.Driver — implemented with some permitted variances (see “Driver: Unsupported Methods™).

* java.sgl.DriverManager — standard implementation.

* java.sql.DriverPropertylnfo — standard implementation.

* java.sgl.ParameterMetaData — all methods fully supported.

* java.sql.PreparedStatement — implemented with some permitted variances (see “PreparedStatement: Unsupported
Methods”).

* java.sgl.ResultSet— implemented with some permitted variances (see *“ResultSet: Unsupported or Restricted Methods™)

* java.sgl.ResultSetMetaData — all methods fully supported.
* java.sgl.RowldLifeTime — standard implementation.
e java.sqgl.SQLPermission — standard implementation.

* java.sgl.Statement — implemented with some permitted variances (see “Statement: Unsupported or Restricted Meth-
0ds”).

* java.sgl.Time — standard implementation.
* java.sql.Timestamp — standard implementation.
* java.sql.Types — standard implementation.

* java.sql.Wrapper — all methods fully supported.

4 InterSystems Implementation Reference for Third Party Software

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ADRIVE
https://intersystems-community.github.io/iris-driver-distribution/

JDBC Driver Compliance

2.2.2 Optional java.sql Interfaces

All optional java.sql interfaces are listed below. Italicized items are not implemented:

e java.sgl.Array

e java.sql.Blob — all methods fully supported.

* java.sql.Clob — all methods fully supported.

e java.sgl.NClob — all methods fully supported.
o java.sgl.Ref

* java.sgl.Rowld — all methods fully supported.
* java.sgl.Savepoint — all methods fully supported.
* javasgl.QLData

e java.sgl.SQLInput

e java.sgl.SQLOutput

e java.sgl.SQLXML

* java.sgl.Sruct

2.2.3 java.sql Exceptions

The InterSystems JDBC driver throws only the following exceptions:
* java.sgl.BatchUpdateException
* java.sgl.SQLException

* java.sgl.SQLWarning

The following exceptions are listed here for completeness, but are not required and are never used:

» DataTruncation

* SQLClientInfoException

e SQLDataException

e SQLFeatureNotSupportedException

* SQLlIntegrityConstraintViolationException
» SQLInvalidAuthorizationSpecException
* SQLNonTransientConnectionException
* SQLNonTransientException

e SQLRecoverableException

e SQLSyntaxErrorException

* SQLTimeoutException

* SQLTransactionRollbackException

* SQLTrans entConnectionException

InterSystems Implementation Reference for Third Party Software

JDBC Driver Support

L TransientException

2.2.4 Required javax.sql Interfaces

The following required interfaces are supported. The standard implementation annotation indicates that the generic
implementation of the class has been used without alteration:

javax.sgl.ConnectionEvent — standard implementation.

javax.sql.DataSource — implemented with enhancements and additional methods (see *“DataSource Extensions and
Enhancements” for details).

javax.sgl.RowSetEvent — standard implementation.

javax.sgl.StatementEvent — standard implementation.

2.2.5 Optional javax.sql Interfaces

All optional javax.sql interfaces are listed below. Italicized items are not implemented:

javax.sgl.CommonDataSource — not implemented. Use javax.sgl.DataSource instead (see “DataSource Extensions
and Enhancements” for related information).

javax.sgl.ConnectionEventListener — all methods fully supported.

javax.sgl.ConnectionPoolDataSource — implemented with variants and additional methods (see “ConnectionPoolData-
Source Extensions and Enhancements” for details).

javax.sqgl.PooledConnection — all methods fully supported.
javax.sql.Rowset

javax.sgl.RowSetinternal

javax.sgl.RowSetListener

javax.sgl.RowSetMetaData

javax.sgl.RowSetReader

javax.sgl.RowSetWriter

javax.sql.SatementEventListener

javax.sgl.XAConnection

javax.sgl.XADataSource

2.3 Variants and Unsupported Optional Methods

The following interfaces have optional methods that the InterSystems JDBC driver does not support, or methods implemented
in a non-standard manner:

CallableStatement: Unsupported Methods
Connection: Unsupported or Restricted Methods

DatabaseMetaData: Variant Methods

InterSystems Implementation Reference for Third Party Software

Variants and Unsupported Optional Methods

2.3.1 CallableStatement: Unsupported Methods

Driver: Unsupported Methods
PreparedStatement: Unsupported Methods
ResultSet: Unsupported or Restricted Methods
Statement: Unsupported or Restricted Methods

Unsupported Optional Methods

java.sgl.CallableStatement does not support the following optional methods:

Note:

getArray()

Array getArray(int i)
Array getArray(String paraneter Nane)

getObj ect()

Ohj ect getObject(int i, java.util.Mp map)
Obj ect get Obj ect(String paraneterNane, java.util.Mp map)

getRef()

Ref getRef(int i)
Ref get Ref (String paranet er Nane)

getRowl d() and setRowld()

java.sqgl . Rowi d get Rowi d(int i)
Jjava. sql . Rowm d get Row d(String paramnet er Nane)

voi d set Rowl d(String paraneterNanme, java.sql.Rowd x)
getURL () and setURL ()

java.net.URL get URL(int i)
java. net. URL get URL(String paraneter Nane)

voi d set URL(String paraneterNanme, java.net.URL val)
getSQL XML () and setSQL XML ()

java.sqgl . SQLXM. get SQLXM_(i nt par anet er | ndex)
java. sgl . SQLXM. get SQLXM_(Stri ng par anet er Nane)

voi d set SQLXM_(String paraneterNane, java.sql.SQXM xm Obj ect)

The java.sgl.CallableStatement class also has one InterSystems extension method, which is discussed elsewhere
(see “CallableStatement getBinaryStream() Extension Method™).

2.3.2 Connection: Unsupported or Restricted Methods

Unsupported Optional Methods

The InterSystems implementation of java.sql.Connection does not support the following optional methods:

abort()

voi d abort (Executor executor)

InterSystems Implementation Reference for Third Party Software

JDBC Driver Support

createArrayOf()

java.sql . Array createArrayOf (String typeNane, Object[] el enents)
createBlob()

Bl ob creat eBl ob()

createClob()

Cl ob createC ob()

createNClab()

java. sql . Nd ob creat eNd ob()

createSQLXML()

java.sqgl . SQLXM. creat eSQLXM()

createStruct()

java.sqgl.Struct createStruct(String typeNane, Ooject[] attributes)

getTypeMap()

java.util.Map get TypeMap()

setTypeMap()

voi d set TypeMap(java.util.Map map)

Optional Methods with Restrictions
The following optional java.sgl.Connection methods are implemented with restrictions or limitations:

prepareCall()

Only TYPE_FORWARD ONLY is supported for resultSetType. Only CONCUR_READ ONLY is supported for
resultSetConcurrency.

java.sqgl . Cal |l abl eSt at enent prepareCall (String sql, int resultSetType, int resultSetConcurrency)

setReadOnly()
A no-op (the InterSystems IRIS driver does not support READ_ONLY mode)

voi d set ReadOnl y(Bool ean readOnl y)

setCatalog()

A no-op (the InterSystems IRIS driver does not support catalogs)
voi d setCatal og(String catal og)

setTransactionl solation()

Only TRANSACTI ON_READ COWM TED and TRANSACTI ON_READ UNCOWM TED are supported for level.

voi d set Transactionlsol ation(int |evel)

InterSystems Implementation Reference for Third Party Software

Variants and Unsupported Optional Methods

The following java.sgl.Connection methods do not support CLOSE_CURSORS_AT_COW T for resultSetHoldability:

e createStatement()
java.sqgl. Statenment createStatenent(int resultSetType, int result, int resultSetHol dability)
* prepareCall()

java.sqgl . Cal | abl eSt at enent prepareCal | (String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability)

* prepareStatement()

j ava. sql . PreparedSt at ement prepareStatenment(String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHol dability)

InterSystems IRIS currently supports only zero or one Auto Generated Keys. An exception is thrown if the java.sgl.Connection
methods below provide columnlndexes or columnNames arrays whose lengths are not equal to one.

» prepareStatement()

java. sqgl . PreparedSt at ement prepareStatenent (String sql, int[] columml ndexes)
j ava. sqgl . PreparedSt at ement prepareStatement(String sql, String[] col unmNanes)

2.3.3 DatabaseMetaData: Variant Methods

Variant Methods

java.sgl.DatabaseMetaData is fully supported, but has methods that vary from the JDBC standard due to InterSystems-
specific handling of their return values. The following methods are affected:

» supportsMixedCaseQuotedl dentifier s()

InterSystems IRIS returns f al se, which is not JDBC compliant.
bool ean supportsM xedCaseQuot edl denti fiers()

« getldentifier QuoteString()

If delimited id support is turned on, InterSystems IRIS returns " (double quote character), which is what a JDBC
compliant driver should return; otherwise InterSystems IRIS returns a space.

String getldentifierQuoteString()

2.3.4 Driver: Unsupported Methods

Unsupported Optional Method
java.sql.Driver does not support the following optional method:

e getParentL ogger()

voi d get Par ent Logger ()

InterSystems Implementation Reference for Third Party Software 9

JDBC Driver Support

2.3.5 PreparedStatement: Unsupported Methods

Unsupported Optional Methods
java.sqgl.PreparedStatement does not support the following optional methods:

o setArray()

void setArray(int i, Array x)

. setRef()
void setRef(int i, Ref x)
« setRowld()

voi d set Row d(int paraneterlndex, Rowd x)
¢ setSQLXML()
voi d set SQLXM_(i nt paraneterlndex, SQXM xm Cbject)

e setUnicodeStream()

Deprecated in Java JDK specification.

voi d setUnicodeStrean(int i, InputStreamx, int |ength)
« setURL()
void setURL(int i, java.net.URL x)

2.3.6 ResultSet: Unsupported or Restricted Methods

Optional Method with Restrictions

InterSystems IRIS does not support TYPE_SCROLL_SENSI TI VE result set types. The following method is implemented
with restrictions:

* setFetchDirection()

Does not support Resul t Set . FETCH_REVERSE (instead, use after L ast to move the result set's cursor to after the
last row, and use previous to scroll backwards).

voi d setFetchDirection(int direction)

Unsupported Optional Methods
java.sgl.ResultSet does not support the following optional methods:

e getArray()

Array getArray(int i)
Array getArray(String col Nane)

e getCursorName()

String get Cursor Nane()

10 InterSystems Implementation Reference for Third Party Software

Variants and Unsupported Optional Methods

e getObject()

Obj ect getObject(int i, java.util.Map map)
Ohj ect getObject(String col Nane, java.util.Map map)

* getRef()

Ref getRef(int i)
Ref getRef (String col Nane)

» getHoldability()
int getHoldability()

* getUnicodeStream()

Deprecated in Java JDK specification.

java.io. | nput Stream get Uni codeStream(int i)
java.io. | nput Stream get Uni codeStream(String col Nane)

« getURL()

java.net. URL get URL(int i)
java.net.URL get URL(String col Nane)

* updateArray()

voi d updateArray(int i, Array x)
voi d updateArray(String col Name, Array Xx)

e updateRef()

voi d updateRef (int i, Ref x)
voi d updat eRef (String col Nane, Ref x)

2.3.7 Statement: Unsupported or Restricted Methods

Unsupported Optional Methods
java.sqgl.Statement does not support the following optional methods:

» cancel()
voi d cancel ()
e closeOnCompletion()
voi d cl oseOnConpl eti on()
* isCloseOnCompletion()
bool ean i sCl oseOnConpl eti on()

Optional Methods with Restrictions
The following optional java.sgl.Statement methods are implemented with restrictions or limitations:

* getResultSetHoldability()

InterSystems Implementation Reference for Third Party Software 11

JDBC Driver Support

Only HOLD _CURSORS_OVER COW T
int getResultSetHoldability()
setCursorName()

A no-op.

voi d set Cursor Nane(String nane)

setEscapeProcessing()
A no-op (does not apply)
voi d set EscapePr ocessi ng(Bool ean enabl e)

setFetchDirection()

Does not support Resul t Set . FETCH_REVERSE (instead, use after L ast to move the result set's cursor to after the
last row, and use previous to scroll backwards).

voi d set FetchDirection(int direction)

InterSystems IRIS currently supports only zero or one auto-generated key. An exception is thrown if the java.sgl.Statement
methods below provide columnlndexes or columnNames arrays whose lengths are not equal to one:

execute()

bool ean execute(String sql, int[] columl ndexes)
bool ean execute(String sql, String[] col umNanes)

executeUpdate()

int executeUpdate(String sqgl, int[] columl ndexes)
int executeUpdate(String sql, String[] columNanes)

2.4 InterSystems Enhancements and Extensions

The following classes provide additional InterSystems-specific extension methods:

CallableStatement getBinaryStream() Extension Method

ConnectionPoolDataSource Extensions and Enhancements discusses
com.intersystems.jdbc.IRISConnectionPoolDataSource, which is the InterSystems implementation of the
javax.sgl.ConnectionPoolDataSource interface.

DataSource Extensions and Enhancements discusses com.intersystems.jdbc.IRISDataSource, which is the InterSystems
implementation of javax.sqgl.DataSource.

2.4.1 CallableStatement getBinaryStream() Extension Method

java.sgl.CallableStatement implements the following additional InterSystems-specific extension method:

getBinaryStream()

12

InterSystems Implementation Reference for Third Party Software

InterSystems Enhancements and Extensions

Retrieves the value of the designated parameter (where i is the index of the parameter) as a java.io.InputStream object.
java.io. |l nputStream getBi naryStream(int i)

This method is a complement to the standard setBinar yStream() method, and an alternative to getChar acter Stream()
(which returns java.io.Reader).

2.4.2 ConnectionPoolDataSource Extensions and Enhancements

The com.intersystems.jdbc.IRISConnectionPoolDataSource class fully implements the javax.sgl.ConnectionPoolDataSource
interface. This class does not inherit the methods of javax.sql.CommonDataSource, which is not supported by the InterSystems
JDBC driver.

Restricted Method

getPooledConnection() is implemented because it is required by the JDBC standard, but the InterSystems IRIS implemen-
tation should never be called directly. InterSystems IRIS driver connections must always be obtained by calling the
getConnection() method. (See “Using a Connection Pool” in Using Java with Inter Systems Software for more information).

» getPooledConnection()

j avax. sql . Pool edConnecti on get Pool edConnecti on()
j avax. sql . Pool edConnecti on get Pool edConnection(String usr, String pwd)

CAUTION: Calling applications should never use the getPooledConnection() methods or the PooledConnection class.
InterSystems IRIS driver connections must always be obtained by calling the getConnection() method
(which is inherited from IRISDataSource). The InterSystems IRIS driver provides pooling transparently
through the java.sgl.Connection object that it returns.

IRISConnectionPoolDataSource inherits from IRISDataSource (see “DataSource Extensions and Enhancements™), which
provides additional InterSystems extension methods.

2.4.2.1 ConnectionPoolDataSource Extension Methods

IRISConnectionPoolDataSource also supports the following additional InterSystems IRIS-only management methods (see
*“Using a Connection Pool” in Using Java with Inter Systems Software for more information):

* restartConnectionPool()

Restarts a connection pool. Closes all physical connections, and empties the connection pool.
voi d restart Connecti onPool ()

e getPoolCount()

Returns the current number of entries in the connection pool.
i nt getPool Count ()

* setMaxPoolSize()

Sets a maximum connection pool size. If the maximum size is not set, it defaults to 40.
voi d set MaxPool Si ze(i nt max)

* getMaxPoolSize()

InterSystems Implementation Reference for Third Party Software 13

JDBC Driver Support

Returns the current maximum connection pool size

int get MaxPool Si ze()

2.4.3 DataSource Extensions and Enhancements

The com.intersystems.jdbc.IRISDataSource class fully implements the javax.sql.DataSource interface. This class does not
inherit the methods of javax.sql.CommonDataSource, which is not supported by the InterSystems JDBC driver.

Enhanced Required Method

The InterSystems IRIS implementation of this method is enhanced to provide automatic, transparent connection pooling.
(See “Using a Connection Pool” in Using Java with Inter Systems Software for more information).

» getConnection()

j ava. sqgl . Connecti on get Connecti on()
J ava. sqgl . Connecti on get Connection(String usr, String pwd)

2.4.3.1 DataSource Extension Methods

In addition to the methods defined by the interface, IRISDataSource also implements the following methods that can be
used to get or set DataSource properties supported by InterSystems IRIS. (See “Setting Connection Properties™ in Using
Java with Inter Systems Software for more information).

» getConnectionSecurityL evel()

Returns an int representing the current Connection Security Level setting.
int getConnectionSecuritylevel ()

» getDatabaseName()

Returns a String representing the current database (InterSystems IRIS namespace) name.
String get Dat abaseNane()

e getDataSourceName()

Returns a String representing the current data source name.
String get Dat aSour ceName()

o getDefaultTransactionl solation()

Gets the current default transaction isolation.
int getDefaultTransactionlsol ation()
» getDescription()
Returns a String representing the current description.

String getDescription()

e getEventClass()

Returns a String representing an Event Class object.

String get Eventd ass()

14 InterSystems Implementation Reference for Third Party Software

InterSystems Enhancements and Extensions

e getKeyRecoveryPassword()

Returns a String representing the current Key Recovery Password setting.
get KeyRecover yPasswor d()

» getNodelay()
Returns a boolean representing a current TCP_NODELAY option setting.

bool ean get Nodel ay()

* getPassword()

Returns a String representing the current password.
String getPassword()

e getPortNumber ()

Returns an int representing the current port number.
i nt getPortNunber ()

e getServerName()

Returns a String representing the current server name.
String get Server Nane()

* getServicePrincipalName()

Returns a String representing the current Service Principal Name setting.
String get ServicePrinci pal Name()

e getSSL ConfigurationName()

Returns a String representing the current TLS Configuration Name setting.

get SSLConf i gur ati onNane()

« getURL()

Returns a String representing a current URL for this connection.
String get URL()

* getUser()

Returns a String representing the current username.
String getUser()

» setConnectionSecurityL evel()

Sets the connection security level

Sets the Connection Security Level for this DataSource object.

» setDatabaseName()

InterSystems Implementation Reference for Third Party Software

15

JDBC Driver Support

Sets the database name (InterSystems IRIS namespace) for this connection.
voi d set Dat abaseNane(String dn)

setDataSour ceName()

Sets the data source name for this connection. Dat aSour ceNane is an optional setting and is not used by
IRISDataSource to connect.

voi d set Dat aSour ceNane(String dsn)

setDefault Transactionl solation()

Sets the default transaction isolation level.
voi d set Defaul t Transacti onl sol ation(int |evel)

setDescription()

Sets the description for this connection. Descri pti on is an optional setting and is not used by IRISDataSource to
connect.

voi d set Description(String d)

setEventClass()

Sets the Event Class for this connection. The Event Class is a mechanism specific to InterSystems IRIS JDBC. It is
completely optional, and the vast majority of applications will not need this feature.

The InterSystems JDBC server will dispatch to methods implemented in a class when a transaction is about to be
committed and when a transaction is about to be rolled back. The class in which these methods are implemented is
referred to as the “event class.” If an event class is specified during login, then the JDBC server will dispatch to

% OnTranCommit just prior to committing the current transaction and will dispatch to % OnTranRollback just prior
to rolling back (aborting) the current transaction. User event classes should extend % Ser ver Event. The methods do
not return any values and cannot abort the current transaction.

voi d setEventd ass(String e)

setK eyRecover yPasswor d()

Sets the Key Recovery Password for this connection.

set KeyRecoveryPassword(j ava. | ang. Stri ng password)
setL ogFile()

Unconditionally sets the log file name for this connection.
set LogFi | e(java.l ang. String | ogFile)

setNodelay()

Sets the TCP_NCDELAY option for this connection. Toggling this flag can affect the performance of the application.
If not set, it defaultsto t r ue.

voi d set Nodel ay(bool ean nd)

setPasswor d()

Sets the password for this connection.

voi d set Password(String p)

16

InterSystems Implementation Reference for Third Party Software

InterSystems Enhancements and Extensions

e setPortNumber()

Sets the port number for this connection
voi d set Port Nunber (i nt pn)

e setServerName()

Sets the server name for this connection.
voi d set Server Nane(String sn)

» setServicePrincipalName()

Sets the Service Principal Name for this connection.
voi d set Servi cePrinci pal Name(String nane)

» setSSL ConfigurationName()

Sets the TLS Configuration Name for this connection.
set SSLConf i gurati onNane(j ava. |l ang. String nane)

« SsetURL()

Sets the URL for this connection.
void set URL(String u)

e setUser()

Sets the username for this connection.

voi d setUser(String u)

InterSystems Implementation Reference for Third Party Software 17

Python DB-API Support

nterSystems supports the Python Database API specification with two different implementations:

The InterSystems DB-API is a fully compliant implementation of PEP 249 version 2.0 providing a direct interface to
the InterSystems database.

See Using the Python DB-API in Using the Native SDK for Python for more information.

pyodbc is a third party open source Python module. InterSystems supports use of pyodbc as a way to access the database
via the InterSystems ODBC driver. This module can also be used with versions of InterSystems IRIS earlier than
2022.1.

See Support for pyodbc Python ODBC Bridge in Using the Inter Systems ODBC Driver for more information.

InterSystems Implementation Reference for Third Party Software 19

https://www.python.org/dev/peps/pep-0249

Hibernate Support

The InterSystems Hibernate Dialect is an implementation of the Hibernate dialect interface. Since every vendor’s imple-
mentation of SQL is slightly different, the dialect interface allows vendors to create custom Hibernate mappings for a specific
database. Vendor-provided dialect implementations are distributed as part of Hibernate.

The following topics provide technical details about the InterSystems Hibernate Dialect:
» Hibernate and the InterSystems Hibernate Dialect — provides an overview and resource links for the Hibernate Dialect.
» Installation and Configuration — provides InterSystems-specific instructions.

» Dialect File Locations — lists the InterSystems dialect files and their required locations.

4.1 Hibernate and the InterSystems Hibernate Dialect

Java Persistence Architecture (JPA) is the recommended persistence technology for complex object hierarchies in Java
projects. InterSystems currently supports JPA via the Hibernate implementations of the JPA specifications. Hibernate is
an open source framework from JBoss that acts as a wrapper around JDBC to provide object/relational mapping (ORM)
services for relational databases. Hibernate provides a vendor-neutral persistence service, which may be a requirement for
some projects.

The InterSystems Hibernate Dialect is an implementation of the Hibernate dialect interface. Since every vendor’s imple-
mentation of SQL is slightly different, Hibernate includes vendor-provided "dialects" that customize its mappings to specific
databases. Current Hibernate distributions include a high performance, customized InterSystems dialect class.

4.1.1 When to Use Hibernate

Hibernate provides the infrastructure to persist objects to relational tables. Essentially, it is a wrapper around JDBC that
allows you to focus on working with objects while transparently handling conversion between objects and tables in SQL
queries. Hibernate can be used in most environments, but it is not always the best option. Here are some considerations to
bear in mind:

» Hibernate is helpful when you have a complex but static object model. You must know what your data looks like and
how the classes interact before you map them to your InterSystems IRIS table model.

» Since Hibernate objects are cached, other applications should never interact with the data while Hibernate is accessing
it. If you are working in an environment with real-time data that must remain accessible to other applications, you
should consider XEP (see Persisting Java Objects with Inter Systems XEP) as a possible alternative.

InterSystems Implementation Reference for Third Party Software 21

Hibernate Support

» Hibernate is good for common CRUD operations with simple querying, but more complex queries may be easier to
write, or more efficient, using JDBC directly.

4.2 Installation and Configuration

This section provides instructions for setting up your system to use Hibernate with InterSystems IRIS. The instructions
assume that the correct versions of both InterSystems IRIS and Hibernate are installed and operational.

4.2.1 Requirements

The following software must be installed on your system:
e InterSystems IRIS®
» Hibernate 5.2 or 5.3. Hibernate can be downloaded from www.hibernate.org.

e Asupported version of the Java JDK 1.8 or higher (see “Supported Java Technologies™ in the Inter Systems Supported
Platforms document for this release).

4.2.2 Directories

The instructions in this chapter refer to the following directories:

» <install-dir> — the InterSystems IRIS installation directory. To locate <install-dir> in your instance of InterSystems
IRIS, open the InterSystems terminal and issue the following command:

wite $system Uil.InstallDirectory()

See Installation Directory for system-specific information on the location of <install-dir>.

* <hibernate_root> — your Hibernate installation directory.

4.2.3 System Settings

Make the following changes to your system:
e intersystems-jdbc-<version>.jar File

The InterSystems JDBC jar file contains the InterSystems JDBC driver. If you haven't already done so, copy the latest
version of the JDBC jar file to <hibernate_root>\lib (where <hibernate_root> is your installation directory. The file is
named intersystems-jdbc-<version>.jar, where <version> is a number such as 3.3.0 (the latest version number may be
higher than this). You can download the latest version of the file from the InterSystems IRIS Driver Packages page.

» Java Classpath
Make sure the following items are on your Java classpath:
— The jar files from <hibernate_root>\lib

— The directory or directories where the Hibernate configuration files (hibernate.properties and hibernate.cfg.xml)
are kept. By default, both files are in <hibernate_root>\etc.

22 InterSystems Implementation Reference for Third Party Software

GIEMISC_defaultdir
https://intersystems-community.github.io/iris-driver-distribution/

Installation and Configuration

4.2.4 Hibernate Configuration

In the Hibernate configuration files (either hibernate.properties or hibernate.cfg.xml), specify the connection information
for your database, and the name of the InterSystems dialect class.

The following five configuration properties are required:

o dialect — The fully qualified name of the InterSystems dialect class. The base dialect class is:
org. hibernate. dial ect.|nterSystensl Rl SDi al ect

You can use a custom dialect class derived from this base class if you need to enable support for the Hibernate primary
key generator classes.

e driver_class— The fully qualified name of the InterSystems JDBC driver class:
comintersystens.jdbc.| R SDriver

This class is in he InterSystems JDBC driver .jar file (see “System Settings” for details).
e username — Username for the InterSystems IRIS namespace you want to access (default is _ SYSTEM.
» password — Password for the InterSystems IRIS namespace (default is SYS).

* url — The URL for the InterSystems JDBC driver. The format for the URL is:
jdbc: I RI S: /] <host>: <port >/ <nanespace>

where <host > is the IP address of the machine hosting InterSystems IRIS, <por t > is the SuperServer TCP port of
your InterSystems IRIS instance, and <nanmespace> is the namespace that contains your InterSystems IRIS database
data (see “Defining a JDBC Connection URL” in Using Java with Inter Systems Software for more details).

A typical entry in hibernate.properties would contain the following lines (change url, username, and password as appropriate
for your system)):

hi ber nat e. di al ect org. hi bernate. di al ect.|nterSystensl Rl SDi al ect

hi bernat e. connection. driver_class comintersystens.jdbc.| Rl SDriver
hi bernat e. connection.url jdbc:IR S://127.0.0.1: 51773/ USER/

hi ber nat e. connecti on. user nane _SYSTEM

hi ber nat e. connecti on. password SYS

The following example shows the same information as it would appear in hibernate.cfg.xml:

<hi ber nat e- confi gurati on>
<sessi on-factory>
<property nane="di al ect">
org. hibernate. dial ect.|nterSystensl Rl SDi al ect
</ property>
<property nanme="connection.driver_cl ass">
comintersystens.jdbc. | R SDriver</property>
<property nanme="connecti on. user nane">_SYSTEM/ property>
<property nane="connecti on. password" >SYS</ property>
<property nanme="connection.url">
jdbc: IRIS://127.0.0.1: 51773/ USER
</ property>
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

CAUTION: If the same property is set in both hibernate.properties and hibernate.cfg.xml, Hibernate will use the value
from hibernate.cfg.xml.

InterSystems Implementation Reference for Third Party Software 23

Hibernate Support

4.3 Dialect File Locations

The InterSystems Hibernate dialect consists of four files that should be located as follows
(where <hibernate> is hibernate-orm\hibernate-core\src\main\java\org\hibernate):

* InterSystemsIRISDialect.java in <hibernate>\dialect\

* IntersystemsIRISIdentityColumnSupport.java in <hibernate>\dialect\identity\

* InterSystemsIRISSQLExceptionConversionDelegate.java in <hibernate>\exception\internal\

* InterSystemslIRISJoinFragment.java in <hibernate>\sql\

24 InterSystems Implementation Reference for Third Party Software

	Table of Contents
	1 Overview of Third Party Software
	2 JDBC Driver Support
	2.1 JDBC and the InterSystems JDBC Driver
	2.1.1 Installation and Configuration

	2.2 JDBC Driver Compliance
	2.2.1 Required java.sql Interfaces
	2.2.2 Optional java.sql Interfaces
	2.2.3 java.sql Exceptions
	2.2.4 Required javax.sql Interfaces
	2.2.5 Optional javax.sql Interfaces

	2.3 Variants and Unsupported Optional Methods
	2.3.1 CallableStatement: Unsupported Methods
	2.3.2 Connection: Unsupported or Restricted Methods
	2.3.3 DatabaseMetaData: Variant Methods
	2.3.4 Driver: Unsupported Methods
	2.3.5 PreparedStatement: Unsupported Methods
	2.3.6 ResultSet: Unsupported or Restricted Methods
	2.3.7 Statement: Unsupported or Restricted Methods

	2.4 InterSystems Enhancements and Extensions
	2.4.1 CallableStatement getBinaryStream() Extension Method
	2.4.2 ConnectionPoolDataSource Extensions and Enhancements
	2.4.3 DataSource Extensions and Enhancements

	3 Python DB-API Support
	4 Hibernate Support
	4.1 Hibernate and the InterSystems Hibernate Dialect
	4.1.1 When to Use Hibernate

	4.2 Installation and Configuration
	4.2.1 Requirements
	4.2.2 Directories
	4.2.3 System Settings
	4.2.4 Hibernate Configuration

	4.3 Dialect File Locations

	Index

