
Using WebSockets (RFC 6455)

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using WebSockets (RFC 6455)
InterSystems Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Using WebSockets (RFC 6455).. 1

1 WebSockets Protocol ... 1
2 WebSockets Client Code (JavaScript) ... 2

2.1 Creating a WebSocket ... 2
2.2 WebSocket Client Events .. 2
2.3 WebSocket Client Methods ... 2

3 WebSockets Server Code ... 3
3.1 WebSocket Server Events .. 3
3.2 WebSocket Server Methods .. 3
3.3 WebSocket Server Properties .. 4

4 WebSockets Server Example ... 4
5 WebSockets Server Asynchronous Operation ... 5
6 See Also ... 6

Using WebSockets (RFC 6455) iii

Using WebSockets (RFC 6455)

The WebSockets protocol (RFC 6455) addresses the fundamental requirement of allowing servers to proactively push
messages to clients by providing a full-duplex message-oriented communications channel between a client and its server.
The protocol is designed to operate, and hence be secured, over the standard TCP channel already established between the
client and server and used to support the HTTP protocol between a web browser and web server.

The WebSockets protocol and its API are standardized by the W3C and the client part is included with HTML 5.

Intermediaries, such as proxies and firewalls, are expected to be aware of, and to support, the WebSockets protocol.

1 WebSockets Protocol
Creating a WebSocket involves an ordered exchange of messages between the client and the server. First, the WebSocket
handshake must take place. The handshake is based on, and resembles, an HTTP message exchange so that it can pass
without problem through existing HTTP infrastructure.

• Client sends handshake request for a WebSocket connection.

• Server sends handshake response (if it is able to).

The web server recognizes the conventional HTTP header structure in the handshake request message and sends a similarly
constructed response message to the client indicating that it supports the WebSocket protocol - assuming it is able to. If
both parties agree then the channel is switched from HTTP (http://) to the WebSockets protocol (ws://).

• When the protocol is successfully switched, the channel allows full duplex communication between the client and
server.

• The data framing for individual messages is minimal.

Typical WebSocket Handshake Message from Client

GET /csp/user/MyApp.MyWebSocketServer.cls HTTP/1.1
Host: localhost
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Version: 13
Origin: http://localhost

Typical WebSocket Handshake Message from Server

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat

Note how the client handshake message requests that the protocol be upgraded from HTTP to WebSocket. Note also the
exchange of unique keys between the client (Sec-WebSocket-Key) and server (Sec-WebSocket-Accept).

Using WebSockets (RFC 6455) 1

https://datatracker.ietf.org/doc/rfc6455/

2 WebSockets Client Code (JavaScript)
In the browser environment, the client uses JavaScript. Standard text books describe the usage model in detail. This section
briefly describes the basics.

2.1 Creating a WebSocket

The first parameter represents the URL identifying the server end of the WebSocket application. The second parameter is
optional, and if present, specifies the sub-protocol that the server must support for the WebSocket connection to be successful.

var ws = new WebSocket(url, [protocol]);

Example:

ws = new WebSocket(((window.location.protocol == "https:")
 ? "wss:" : "ws:")
 + "//" + window.location.host
 + /csp/user/MyApp.MyWebSocketServer.cls);

Note how the protocol is defined as either ws or wss depending on whether or not the underlying transport is secured using
SSL/TLS.

The read-only attribute ws.readyState defines the state of the connection. It can take one of the following values:

• 0 The connection is not yet established.

• 1 The connection is established and communication is possible.

• 2 The connection is subject to the closing handshake.

• 3 The connection is closed or could not be opened.

The read-only attribute ws.bufferedAmount defines the number of bytes of UTF-8 text that have been queued using
the send() method.

2.2 WebSocket Client Events

The following events are available.

• ws.onopen Fires when the socket connection is established.

• ws.onmessage Fires when the client receives data from the server.

Data received in event.data.

• ws.onerror Fires when an error occurs in the communication.

• ws.onclose Fires when the connection is closed.

2.3 WebSocket Client Methods

The following methods are available.

• ws.send(data) Transmit data to the client.

• ws.close() Close the connection.

2 Using WebSockets (RFC 6455)

WebSockets Client Code (JavaScript)

3 WebSockets Server Code
The base InterSystems IRIS® class for implementing WebSocket Servers is %CSP.WebSocket

When the client requests a WebSocket connection, the initial HTTP request (the initial handshake message) instructs the
CSP engine to initialize the application's WebSocket server. The WebSocket server is the class named in the requesting
URL. For example, if your WebSocket server is called MyApp.MyWebSocketServer and is designed to operate in the
USER namespace, then the URL used to request the WebSocket connection is:

/csp/user/MyApp.MyWebSocketServer.cls

3.1 WebSocket Server Events

To implement a WebSocket server, create a subclass of %CSP.WebSocket and define callbacks in that class as needed.
Note that the web session is unlocked before calling any of these methods.

OnPreServer()

Implement this method to invoke code that should be executed before the WebSocket server is established. Changes
to the SharedConnection property must be made here.

Server() (required)

Implement this method to create the WebSocket server. This is the server-side implementation of the WebSocket
application. Messages can be exchanged with the client using the Read() and Write() methods. Use the EndServer()
method to gracefully close the WebSocket from the server end.

OnPostServer()

Implement this method to invoke code that should be executed after the WebSocket server has closed.

3.2 WebSocket Server Methods

You can invoke the following methods from within these callbacks:

Read()

Method Read(ByRef len As %Integer = 32656,
 ByRef sc As %Status,
 timeout As %Integer = 86400) As %String

This method reads up to len characters from the client. If the call is successful the status (sc) is returned as
$$$OK; otherwise one of the following error codes is returned:

• $$$CSPWebSocketTimeout The Read method has timed-out.

• $$$CSPWebSocketClosed The client has terminated the WebSocket.

Write()

Method Write(data As %String) As %Status

This method writes data to the client.

Using WebSockets (RFC 6455) 3

WebSockets Server Code

EndServer()

Method EndServer() As %Status

This method gracefully ends the WebSocket server by closing the connection with the client.

OpenServer()

Method OpenServer(WebSocketID As %String = "") As %Status

This method opens an existing WebSocket Server. Only a WebSocket operating asynchronously
(SharedConnection=1) can be accessed using this method.

3.3 WebSocket Server Properties

You can set or get the following properties from within these callbacks:

SharedConnection (default: 0)

This property determines whether the communication between the client and WebSocket server should be over a
dedicated Web Gateway connection or asynchronous over a pool of shared Web Gateway connections. This
property must be set in the OnPreServer() method and may be set as follows:

• SharedConnection=0The WebSocket server communicates synchronously with the client via a dedicated
Web Gateway connection. In this mode of operation the hosting connection is effectively 'private' to the
application’s WebSocket Server.

• SharedConnection=1 The WebSocket server communicates asynchronously with the client via a pool of
shared Web Gateway connections. Also, the socket times out once there is no activity for the CSP session
timeout period.

WebSocketID

This property represents the unique identity of the WebSocket.

SessionId

This property represents the hosting CSP Session ID against which the WebSocket was created.

BinaryData

This property instructs the Web Gateway to bypass functionality that would otherwise interpret the transmitted
data stream as UTF-8 encoded text and set the appropriate binary data fields in the WebSocket frame header.

This should be set to 1 before writing a stream of binary data to the client. For example:

Set ..BinaryData = 1

4 WebSockets Server Example
The following simple WebSocket server class accepts an incoming connection from a client and simply echos back data
received.

The timeout is set to 10 seconds and each time the Read() method times-out a message is written to the client. This illustrates
one of the key concepts underpinning WebSockets: initiating a message exchange with the client from the server.

4 Using WebSockets (RFC 6455)

WebSockets Server Example

Finally, the WebSocket closes gracefully if the client (i.e. user) sends the string exit.

Method OnPreServer() As %Status
{
 Quit $$$OK
}

Method Server() As %Status
{
 Set timeout=10
 For {
 Set len=32656
 Set data=..Read(.len, .status, timeout)
 If $$$ISERR(status) {
 If $$$GETERRORCODE(status) = $$$CSPWebSocketClosed {
 Quit
 }
 If $$$GETERRORCODE(status) = $$$CSPWebSocketTimeout {
 Set status=..Write(“Server timed-out at “_$Horolog)
 }
 }
 else {
 If data="exit" Quit
 Set status=..Write(data)
 }
 }
 Set status=..EndServer()
 Quit $$$OK
}

Method OnPostServer() As %Status
{
 Quit $$$OK
}

5 WebSockets Server Asynchronous Operation
The example given in the previous section illustrates a WebSocket server operating synchronously with the client over a
dedicated InterSystems IRIS connection. When such a connection is established it is labeled as WebSocket in the status
column of the Web Gateways Systems Status form. With this mode, the WebSocket is operating within the security context
of the hosting web session and all properties associated with that session can be easily accessed.

With the asynchronous mode of operation (SharedConnection=1), the hosting connection is released as soon as the
WebSocket Object is created and subsequent dialog with the client is over the pool of shared connections: messages from
the client arrive via the conventional pool of Web Gateway connections to InterSystems IRIS and messages to the client
are dispatched over the pool of Server connections that have been established between the Web Gateway and InterSystems
IRIS.

In asynchronous mode, the WebSocket Server becomes detached from the main web session: the SessionId property holds
the value of the hosting Session ID but an instance of the session object is not automatically created.

The example given previously can be run asynchronously simply by setting the SharedConnection property in the OnPre-
Server() method. However, it is not necessary to have an InterSystems IRIS process permanently associated with the
WebSocket. The Server() method can exit (and the hosting process halt) without closing the WebSocket. Provided the
WebSocketID has been retained, the WebSocket can be subsequently opened in a different InterSystems IRIS process and
communication with the client resumed.

In the following example, MYAPP.SAVE() and MYAPP.RETRIEVE() are placeholders for custom code you create for
saving and retrieving a WebSocket ID.

Using WebSockets (RFC 6455) 5

WebSockets Server Asynchronous Operation

Example:

Class MyApp.MyWebSocketServer Extends %CSP.WebSocket
{
 Method OnPreServer() As %Status
 {
 MYAPP.SAVE(..WebSocketID)
 Set ..SharedConnection = 1
 Quit $$$OK
 }

 Method Server() As %Status
 {
 Quit $$$OK
 }

 Method OnPostServer() As %Status
 {
 Quit $$$OK
 }
}

Note that the WebSocketID is retained for subsequent use in the OnPreServer() method. Note also, the setting of the
SharedConnection property in the OnPreServer() method and that the Server() method simply exits.

Subsequently retrieving the WebSocketID:

Set WebSocketID = MYAPP.RETRIEVE()

Re-establishing a link with the client:

Set ws=##class(%CSP.WebSocket).%New()
Set %status = ws.OpenServer(WebSocketID)

Reading from and writing to the client:

Set %status=ws.Write(message)
Set data=ws.Read(.len, .%status, timeout)

Finally, closing the WebSocket from the server side:

Set %status=ws.EndServer()

6 See Also
• RFC 6455

• %CSP.WebSocket in the class reference

6 Using WebSockets (RFC 6455)

See Also

https://datatracker.ietf.org/doc/rfc6455/

	Table of Contents
	1 WebSockets Protocol
	2 WebSockets Client Code (JavaScript)
	2.1 Creating a WebSocket
	2.2 WebSocket Client Events
	2.3 WebSocket Client Methods

	3 WebSockets Server Code
	3.1 WebSocket Server Events
	3.2 WebSocket Server Methods
	3.3 WebSocket Server Properties

	4 WebSockets Server Example
	5 WebSockets Server Asynchronous Operation
	6 See Also

