
Fine-Tuning a Web Service in
InterSystems IRIS

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Fine-Tuning a Web Service in InterSystems IRIS
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Disabling Access to the Online WSDL .. 1

2 Requiring a Username and Password ... 3

3 Controlling the XML Types ... 5

4 Controlling the Namespaces of the Schema and Types ... 7
4.1 Controlling the Namespace of the Schema .. 7
4.2 Controlling the Namespace of the Types .. 7

5 Including Documentation for the Types ... 9

6 Adding Namespace Declarations to the SOAP Envelope .. 11

7 Checking for Required Elements and Attributes .. 13

8 Controlling the Form of Null String Arguments ... 15

9 Controlling the Message Name of the SOAP Response .. 17

10 Overriding the HTTP SOAP Action and Request Message Name ... 19

11 Specifying Whether Elements Are Qualified ... 21

12 Controlling Whether Message Parts Use Elements or Types ... 23

13 Controlling Use of the xsi:type Attribute ... 25

14 Controlling Use of Inline References in Encoded Format .. 27

15 Specifying the SOAP Envelope Prefix ... 29

16 Restricting the SOAP Versions Handled by a Web Service .. 31

17 Sending Responses Compressed by gzip .. 33

18 Defining a One-Way Web Method .. 35
18.1 One-Way Web Methods and SOAP Headers .. 35
18.2 Dynamically Making a Web Method One Way .. 36

19 Adding Line Breaks to Binary Data .. 37

20 Adding a Byte-Order Mark to the SOAP Messages .. 39

21 Customizing the Timeout Period ... 41

22 Using Process-Private Globals to Support Very Large Messages .. 43

23 Customizing Callbacks of a Web Service ... 45

24 Specifying Custom Transport for a Web Service ... 47
24.1 Background .. 47
24.2 Defining Custom Transport for a Web Service .. 47

25 Defining Custom Processing in a Web Service ... 49
25.1 Overview .. 49
25.2 Implementing ProcessBodyNode() .. 49
25.3 Implementing ProcessBody() ... 51

Fine-Tuning a Web Service in InterSystems IRIS iii

1
Disabling Access to the Online WSDL

By default, it is possible to view the WSDL for an InterSystems IRIS® data platform web service via a URL of the following
form:

base/csp/app/web_serv.cls?WSDL

Here base is the base URL for your web server (including port if necessary), /csp/app is the name of the web application
in which the web service resides, and web_serv is the class name of the web service.

To disable the ability to access the WSDL in this way, specify the SOAPDISABLEWSDL parameter of the web service as
1. Note that even with SOAPDISABLEWSDL equal to 1, it is possible to use the FileWSDL() method to generate the WSDL
as a static file.

For more basic information about InterSystems IRIS® data platform web services, see Basic Settings of the Web Service.

Fine-Tuning a Web Service in InterSystems IRIS 1

2
Requiring a Username and Password

To configure an InterSystems IRIS® data platform web service to require a password, you configure its parent web appli-
cation to use password authentication, and to disallow unauthenticated access.

Fine-Tuning a Web Service in InterSystems IRIS 3

3
Controlling the XML Types

The WSDL defines the XML types for the arguments and return values of all methods of the web service. For an InterSystems
IRIS® data platform web service, the types are determined as follows:

• If the InterSystems IRIS type corresponds to a simple type (such as %String), an appropriate corresponding XML type
is used.

• If the InterSystems IRIS type corresponds to an XML-enabled class, the XMLTYPE parameter of that class specifies
the name of the XML type. If that parameter is not specified, the class name (without the package) is used as the XML
type name.

Also, the WSDL defines this type, by using the information in the corresponding class definition.

• If the InterSystems IRIS type corresponds to some other class, the class name (without the package) is used as the
XML type name. Also, the WSDL does not define this type.

For further details, see Projecting Objects to XML.

Also see WSDL Support in InterSystems IRIS.

Fine-Tuning a Web Service in InterSystems IRIS 5

4
Controlling the Namespaces of the
Schema and Types

This topic describes how to control the namespace for the schema of the WSDL for an InterSystems IRIS® data platform
web service, as well as the namespaces for any types defined within it.

4.1 Controlling the Namespace of the Schema
The TYPENAMESPACE parameter (of your web service) controls the target namespace for the schema of your web service.

If TYPENAMESPACE is null, the schema is in the namespace given by the NAMESPACE parameter of the web service.
The WSDL might look as follows:

<?xml version='1.0' encoding='UTF-8' ?>
...
<types>
<s:schema elementFormDefault='qualified'
targetNamespace = 'http://www.myapp.org'>
...

If you set TYPENAMESPACE to a URI, that URI is used as the namespace for the types. In this case, the WSDL might
look as follows:

<?xml version='1.0' encoding='UTF-8' ?>
...
<types>
<s:schema elementFormDefault='qualified'
targetNamespace = 'http://www.mytypes.org'>
...

4.2 Controlling the Namespace of the Types
For any types referenced within the schema, the following rules govern how they are assigned to namespaces:

• If the USECLASSNAMESPACES parameter of the web service is 0 (the default), then the types are in the same
namespace as the schema; see the previous section.

• If the USECLASSNAMESPACES parameter of the web service is 1 (and if the web service uses the document binding
style), then each type is in the namespace given by the NAMESPACE parameter of the corresponding type class.

Fine-Tuning a Web Service in InterSystems IRIS 7

For a given type, if the NAMESPACE parameter is null for the type class, then the type is in the same namespace as
the schema; see the previous section.

For information on binding styles, see Specifying the Binding Style for the SOAP Messages.

8 Fine-Tuning a Web Service in InterSystems IRIS

Controlling the Namespaces of the Schema and Types

5
Including Documentation for the Types

By default, the WSDL for an InterSystems IRIS® data platform web service does not include documentation for the types
used by the web service.

To include the class documentation for the types within <annotation> elements in the schema of the WSDL, specify
the INCLUDEDOCUMENTATION parameter of the web service as 1.

This parameter does not cause the WSDL to include comments for the web service and its web methods; there is no option
to automatically include these comments in the WSDL.

Fine-Tuning a Web Service in InterSystems IRIS 9

6
Adding Namespace Declarations to the
SOAP Envelope

To add a namespace declaration to the SOAP envelope (<SOAP-ENV:Envelope> element) of a SOAP message sent by
a given web service, modify each web method of that web service so that it invokes the %AddEnvelopeNamespace()
method of the web service. This method has the following signature:

Method %AddEnvelopeNamespace(namespace As %String,
 prefix As %String,
 schemaLocation As %String,
 allowMultiplePrefixes As %Boolean) As %Status

Where:

• namespace is the namespace to add.

• prefix is the optional prefix to use for this namespace. If you omit this argument, a prefix is generated.

• schemaLocation is the optional schema location for this namespace.

• allowMultiplePrefixes controls whether a given namespace can be declared multiple times with different prefixes. If
this argument is 1, then a given namespace can be declared multiple times with different prefixes. If this argument is
0, then if you add multiple declarations for the same namespace with different prefixes, only the last supplied prefix
is used.

Fine-Tuning a Web Service in InterSystems IRIS 11

7
Checking for Required Elements and
Attributes

By default, an InterSystems IRIS® data platform web service does not check for the existence of elements and attributes
that correspond to properties that are marked as Required. To cause a web service to check for the existence of such elements
and attributes, set the SOAPCHECKREQUIRED parameter of the web service to 1. The default value for this parameter is
0, for compatibility reasons.

Fine-Tuning a Web Service in InterSystems IRIS 13

8
Controlling the Form of Null String
Arguments

Normally, if an argument is omitted, an InterSystems IRIS® data platform web service omits the corresponding element
in the SOAP message that it sends. To change this, set the XMLIGNORENULL parameter to 1 in the web service class; in
this case, the SOAP message includes an empty element.

Note: This parameter affects only web method arguments of type %String.

Fine-Tuning a Web Service in InterSystems IRIS 15

9
Controlling the Message Name of the
SOAP Response

In an InterSystems IRIS® data platform web service, you can control the message name used in the response received from
a web method. By default, this message name is the name of the web method with Response appended to the end. The
following example shows a response from a web method called Divide; the response message name is DivideResponse.

XML

<SOAP-ENV:Body>
 <DivideResponse xmlns="http://www.myapp.org">
 <DivideResult>.5</DivideResult>
 </DivideResponse>
</SOAP-ENV:Body>

To specify a different response message name, set the SoapMessageName keyword within the web method definition.

Note that you cannot change the name of the SOAP message that invokes a given web method; this name of this message
is the name of the method. You can, however, override the SOAP action as given in the HTTP request; see Overriding the
Default HTTP SOAP Action.

Fine-Tuning a Web Service in InterSystems IRIS 17

10
Overriding the HTTP SOAP Action and
Request Message Name

When you invoke a web method via HTTP, the HTTP headers must include the SOAP action, which is a URI that indicates
the intent of the SOAP HTTP request. For SOAP 1.1, the SOAP action is included as the SOAPAction HTTP header. For
SOAP 1.2, it is included within the Content-Type HTTP header.

The SOAP action indicates the intent of the SOAP HTTP request. The value is a URI identifying the intent; it is generally
used to route the inbound SOAP message. For example, a firewall could use this header to appropriately filter SOAP request
messages in HTTP.

For a web method in an InterSystems IRIS® data platform web service, the SOAPAction HTTP header has the following
form by default (for SOAP 1.1):

SOAPAction: NAMESPACE/Package.Class.Method

Where NAMESPACE is the value of the NAMESPACE parameter for the web service, and Package.Class.Method is the
name of the method that you are using as a web method. For example:

SOAPAction: http://www.myapp.org/GSOAP.WebService.GetPerson

To override this, specify a value for the SoapAction method keyword, within the definition of the web method. Specify a
quoted string that indicates that identifies the intent of the SOAP request. In the typical scenario, each web method in the
web service specifies a unique value (if any) for SoapAction.

If SoapAction is not unique within this web service, each method must have a unique value of the SoapRequestMessage
method keyword. This keyword specifies the name of the top element in the SOAP body of the request message. Note that
SoapRequestMessage has an effect only for wrapped document/literal messages.

Fine-Tuning a Web Service in InterSystems IRIS 19

11
Specifying Whether Elements Are
Qualified

The ELEMENTQUALIFIED parameter (of your web service) controls the value of the elementFormDefault attribute
in the schema of the WSDL. Specifically:

• If ELEMENTQUALIFIED is 1, then elementFormDefault is "qualified".

• If ELEMENTQUALIFIED is 0, then elementFormDefault is "unqualified".

The default value for this parameter depends on the value of the SoapBodyUse class keyword. See the Class Definition
Reference. Normally SoapBodyUse is "literal", which means that ELEMENTQUALIFIED is 1.

For information on the differences between qualified and unqualified elements, as well as examples, see Projecting Objects
to XML.

Fine-Tuning a Web Service in InterSystems IRIS 21

12
Controlling Whether Message Parts Use
Elements or Types

Your web service has a parameter (XMLELEMENT) that controls the precise form of the message parts of the SOAP messages.
Specifically:

• If XMLELEMENT is 1, then the <part> element has attributes called name and element. In this case, the WSDL
contains a sample <message> element as follows:

XML

<message name="GetPersonSoapOut">
 <part name="GetPersonResult" element="s0:Person" />
</message>

• If XMLELEMENT is 0, then the <part> element has attributes called name and type. In this case, the WSDL contains
a sample <message> element as follows:

XML

<message name="GetPersonSoapOut">
 <part name="GetPersonResult" type="s0:Person" />
</message>

The default value for this parameter depends on the value of the SoapBodyUse class keyword. See the Class Definition
Reference. Normally SoapBodyUse is "literal", which means that XMLELEMENT is 1.

Fine-Tuning a Web Service in InterSystems IRIS 23

13
Controlling Use of the xsi:type Attribute

By default, InterSystems IRIS® data platform SOAP messages include the xsi:type attribute only for the top-level types.
For example:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name>Yeats,Clint C.</Name>
<DOB>1944-12-04</DOB>
</types:Person>
...

In these examples, line breaks have been added for readability. To use this attribute for all types in the SOAP messages,
set the OUTPUTTYPEATTRIBUTE parameter or the OutputTypeAttribute property to 1. The same output would look like
this:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name xsi:type="s:string">Yeats,Clint C.</Name>
<DOB xsi:type="s:date">1944-12-04</DOB>
</types:Person>
...

This parameter has no effect on the WSDL of the web service.

Fine-Tuning a Web Service in InterSystems IRIS 25

14
Controlling Use of Inline References in
Encoded Format

In an InterSystems IRIS® data platform web service, with encoded format, any object-valued property is included as a
reference, and the referenced object is written as a separate element in the SOAP message.

To instead write the encoded objects inline, specify the REFERENCESINLINE parameter or the ReferencesInline property
as 1.

The property takes precedence over the parameter.

Fine-Tuning a Web Service in InterSystems IRIS 27

15
Specifying the SOAP Envelope Prefix

By default, an InterSystems IRIS® data platform web service uses the prefix SOAP-ENV in the envelope of the SOAP
messages it sends. You can specify a different prefix. To do so, set the SOAPPREFIX parameter of the web service. For
example, if you set this parameter equal to MYENV, the web service includes this prefix in its messages, as follows:

XML

<?xml version="1.0" encoding="UTF-8" ?>
<MYENV:Envelope xmlns:MYENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <MYENV:Body>
 <DivideResponse xmlns="http://www.myapp.org">
 <DivideResult>.5</DivideResult>
 </DivideResponse>
 </MYENV:Body>
</MYENV:Envelope>

The SOAPPREFIX parameter also affects the prefix used in any SOAP faults generated by the web service.

This parameter has no effect on the WSDL of the web service.

Fine-Tuning a Web Service in InterSystems IRIS 29

16
Restricting the SOAP Versions Handled
by a Web Service

By default, an InterSystems IRIS® data platform web service can handle SOAP requests that use SOAP version 1.1 or 1.2.
To modify the web service so that it can handle only SOAP requests for a specific SOAP version, set the REQUESTVERSION
parameter. This parameter can equal "1.1", "1.2", or "". If this parameter is "", the web service has the default
behavior.

Note that the SOAPVERSION parameter does not affect the versions supported by the web service; it only controls which
versions are advertised in the WSDL.

Fine-Tuning a Web Service in InterSystems IRIS 31

17
Sending Responses Compressed by gzip

An InterSystems IRIS® data platform web service can compress its response messages with gzip, a free compression program
that is widely available on the Internet. This compression occurs after any other message packaging (such as creating
MTOM packages). To cause a web service to do so, set the GZIPOUTPUT parameter equal to 1.

This parameter has no effect on the WSDL of the web service.

If you make this change, be sure that the web client can automatically decompress the message with gunzip, the corresponding
decompression program.

If the web client is an InterSystems IRIS web client, note that the Web Gateway automatically decompresses inbound
messages before sending them to the web client.

Fine-Tuning a Web Service in InterSystems IRIS 33

18
Defining a One-Way Web Method

For an InterSystems IRIS® data platform web service, normally, when you execute a web method, a SOAP message is
returned, even if the method has no return type and returns nothing. This SOAP response message has the following general
form:

XML

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <MethodNameResponse xmlns="http://www.myapp.org"></MethodNameResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In rare cases, you might need to define a web method as being one-way. Such a method must return no value, and no SOAP
response is expected to the request message. To define a one-way web method, define the return type of the method as
%SOAP.OneWay. In this case:

• The WSDL does not define output defined for this web method.

• The web service does not return a SOAP message (unless the service adds a header element; see the subsection). That
is, the HTTP response message does not include any XML content.

Note: One-way methods should normally not be used. A request-response pair is much more common, supported, and
expected — even for a method that has no return type.

See WSDL Differences for One-Way Web Methods.

18.1 One-Way Web Methods and SOAP Headers
If the web method adds a header element, then the HTTP response does include XML content as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' ...
 <SOAP-ENV:Header>
 header elements as set by the web service
 </SOAP-ENV:Header>
 <SOAP-ENV:Body></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fine-Tuning a Web Service in InterSystems IRIS 35

18.2 Dynamically Making a Web Method One Way
You can also dynamically redefine a web method to be one way. To do so, invoke the ReturnOneWay() of the web service
within the definition of the web method. For example:

Class Member

Method HelloWorldDynamic(oneway as %Boolean = 0) As %String [WebMethod]
{
 If oneway {Do ..ReturnOneWay() }
 Quit "Hello world "
}

If the argument is 0, this web method returns a SOAP response whose body contains Hello world. If the argument is 1,
this method does not return a SOAP response.

36 Fine-Tuning a Web Service in InterSystems IRIS

Defining a One-Way Web Method

19
Adding Line Breaks to Binary Data

You can cause an InterSystems IRIS® data platform web service to include automatic line breaks for properties of type
%Binary or %xsd.base64Binary. To do so, do either of the following:

• Set the BASE64LINEBREAKS parameter to 1 in the web service class.

• Set the Base64LineBreaks property to 1, for the web service class instance. The value of this property takes precedence
over the value set by the BASE64LINEBREAKS parameter.

For the parameter and the property, the default value is 0; by default, an InterSystems IRIS web service does not include
automatic line breaks for properties of type %Binary or %xsd.base64Binary.

Fine-Tuning a Web Service in InterSystems IRIS 37

20
Adding a Byte-Order Mark to the SOAP
Messages

By default, a message sent by an InterSystems IRIS® data platform web service does not start with a BOM (byte-order
mark).

The BOM is usually not needed because the message is encoded as UTF-8, which does not have byte order issues. However,
in some cases, it is necessary or desirable to include a BOM in a SOAP message; this BOM merely indicates that the message
is UTF-8.

To add a BOM to the messages sent by an InterSystems IRIS web service, set the RequestMessageStart property of the
service. This property must equal a comma-separated list of the parts to include at the start of a message. These parts are
as follows:

• DCL is the XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

• BOM is the UTF-8 BOM.

The default is "DCL".

In practice, RequestMessageStart can equal any of the following values:

• "DCL"

• "BOM"

• "BOM,DCL"

Fine-Tuning a Web Service in InterSystems IRIS 39

21
Customizing the Timeout Period

The Web Gateway waits for a fixed length of time for an InterSystems IRIS® data platform web service to send a response
message. For information on setting the timeout period, see Configuring the Default Parameters for Web Gateway in the
Web Gateway Guide.

In some cases, you might know that a given web method requires a longer period before it can complete. If so, you can
specify the timeout period for that method. To do so, near the start of the definition of that web method, add a line to set
the Timeout property of the web service. Specify a timeout period in seconds. For example, if the default timeout period is
three minutes and you need the timeout period to be five minutes, you might do the following:

Method LongRunningMethod(Input) as %Status [WebMethod]
{
 set ..Timeout=300; this method will not time out until 5 minutes
 //method implementation here
}

Fine-Tuning a Web Service in InterSystems IRIS 41

22
Using Process-Private Globals to Support
Very Large Messages

By default, an InterSystems IRIS® data platform web service usually uses local array memory when it parses requests or
responses. You can force it to use process-private globals instead; this enables the web service to process very large messages.

To do so, specify the USEPPGHANDLER parameter of the web service class as follows:

Parameter USEPPGHANDLER = 1;

If this parameter is 1, then the web service always uses process-private globals when it parses requests or responses. If this
parameter is 0, then the web service always uses local array memory for these purposes. If this parameter is not set, then
the web service uses the default, which is usually local array memory.

Fine-Tuning a Web Service in InterSystems IRIS 43

23
Customizing Callbacks of a Web Service

You can customize the behavior of an InterSystems IRIS® data platform web service by overriding its callback methods:

OnRequestMessage()

Called when the web service receives a request message, if there is no security error; this callback is not invoked
in the case of a security error. The system invokes this callback after performing security processing, after
checking the envelope for errors, and after processing the actions specified in the WS-Addressing header (if any).
This callback is useful for tasks such as logging raw SOAP requests.

This method has the following signature:

Method OnRequestMessage(mode As %String, action As %String, request As %Stream.Object)

Where:

• mode specifies the type of SOAP request. This is either "SOAP" or "binary".

• action contains the value of SOAPAction header.

• request contains the SOAP request message in a stream.

This method can use the object %request, which is an instance of %CSP.Session. In this object:

• The Content property contains the raw request message.

• The NextMimeData() instance method enables you to retrieve individual MIME parts (if this is a MIME
SOAP request).

This method can also use properties of the web service instance. The following properties are set during initialization:

• The ImportHandler property contains the DOM for parsed SOAP request message.

• The SecurityIn property contains the WS-Security header element. For details, see Securing Web Services.

• The SecurityNamespace property contains the namespace for the WS-Security header element.

• The SoapFault property is set if SOAP fault has been generated.

To return a fault within OnRequestMessage(), set the SoapFault property. Do not call the ReturnFault() method.

OnPreWebMethod()

Called just before a web method is executed; does nothing by default. This method takes no arguments and cannot
return a value. This method therefore cannot change the execution of the web service except by returning a SOAP
fault in the same way that a web method would do.

Fine-Tuning a Web Service in InterSystems IRIS 45

This method can use %request, %session, and the web service properties. Note that the MsgClass property of the
web service is the message descriptor class that contains the web method arguments.

OnPostWebMethod()

Called just after a web method is executed; does nothing by default. This method takes no arguments and cannot
return a value. This method therefore cannot change the execution or return value of the web method. You customize
this method primarily to clean up required structures created by OnPreWebMethod().

46 Fine-Tuning a Web Service in InterSystems IRIS

Customizing Callbacks of a Web Service

24
Specifying Custom Transport for a Web
Service

By default, an InterSystems IRIS® data platform web service responds to transport in a specific way, described here. You
can customize this behavior.

24.1 Background
When an InterSystems IRIS web service receives a SOAP message, it executes its OnSOAPRequest() class method. By
default, this method does the following:

1. Initializes the web service instance by calling its Initialize() method. This method parses the inbound SOAP message,
returns several pieces of information by reference, and processes the security header. See the documentation for the
%SOAP.WebService class.

2. Sets properties of the web service instance, such as SoapFault and others.

3. Initializes the response stream.

4. Invokes the Process() method of the web service, passing to it the SOAP action and the method to invoke.

5. Resets the web service instance by calling its Reset() method.

6. Copies the result into the response stream.

24.2 Defining Custom Transport for a Web Service
To implement a web service using your own transport, get the SOAP message as a stream using your transport, instantiate
the web service class and call its OnSOAPRequest() class method.

The OnSOAPRequest() method must transport the request to the web service and obtain the response. To indicate an error,
it must return a SOAP fault in the response stream. The signature of this method must be as follows:

Method OnSOAPRequest(action,requestStream, responseStream)

Here:

Fine-Tuning a Web Service in InterSystems IRIS 47

1. action is a %String that specifies the SOAP action. The piece of the action string after the last "." is used as the method
name for using the correct descriptor class. If action is null, then the element name from the first element (the wrapping
element) in the SOAP body is used as the method name.

2. requestStream is a stream that contains the SOAP request message encoded according to the encoding attribute of the
XML directive.

3. responseStream is a character stream produced as the SOAP response that contains the response SOAP message
encoded in UTF-8. You can create this argument before calling OnSOAPRequest() and passed it in with the method
call. Or this argument can be a variable passed by reference. In this case, OnSOAPRequest() must set it equal to an
instance of %FileCharacterStream that contains the response.

48 Fine-Tuning a Web Service in InterSystems IRIS

Specifying Custom Transport for a Web Service

25
Defining Custom Processing in a Web
Service

In rare scenarios, it may be useful to define an InterSystems IRIS® data platform web service that uses custom processing
to handle inbound messages and to build response messages. In these scenarios, you implement either the ProcessBodyNode()
method or the ProcessBody() method in the web service. This topic provides the details.

25.1 Overview
In custom processing, you parse the inbound message and construct the response manually. The requirements are as follows:

• In the web service, you define web methods that have the desired signatures. You do this to establish the WSDL of
the web service. These web methods (or some of them) can be stubs. A method is executed only if ProcessBodyNode()
or ProcessBody() returns 0.

• Also in the web service, you implement one of the following methods:

– ProcessBodyNode() — This method receives the SOAP body as an instance of %XML.Node. You can use Inter-
Systems IRIS XML tools to work with this instance and build the response message. The SOAP envelope is
available in the Document property of this instance of %XML.Node.

– ProcessBody() — This method receives the SOAP Body as a stream. Because the SOAP body is an XML fragment
rather than an XML document, you cannot use the InterSystems IRIS XML tools to read it. Instead, you parse the
stream with ObjectScript functions and extract the needed parts.

If you define both of these methods, the ProcessBodyNode() method is ignored.

In either case, the response message that you construct must be consistent with the WSDL of the web service.

25.2 Implementing ProcessBodyNode()
The ProcessBodyNode() method has the following signature:

method ProcessBodyNode(action As %String, body As %XML.Node,
 ByRef responseBody As %CharacterStream) as %Boolean

Fine-Tuning a Web Service in InterSystems IRIS 49

Where:

• action is the SOAP action specified in the inbound message.

• body is an instance of %XML.Node that contains the SOAP <Body>.

• responseBody is the response body serialized as an instance of %Library.CharacterStream. This stream is passed by
reference and is initially empty.

If you implement this method in a web service, the method should do the following:

1. Examine the action and branch accordingly. For example:

ObjectScript

 if action["action1" {
 //details
 }

2. If you need to access the SOAP <Envelope> (for example, to access its namespace declarations), use the Document

property of body. This equals an instance of %XML.Document, which represents the SOAP envelope as a DOM (Doc-
ument Object Model).

Otherwise, use body directly.

3. Now you have the following options:

• Use %XML.Writer to write the body as a string, which you can then manipulate. For example:

ObjectScript

 set writer=##class(%XML.Writer).%New()
 do writer.OutputToString()
 do writer.DocumentNode(body)
 set request=writer.GetXMLString(.sc)
 // check returned status and continue

• Use methods of %XML.Document or %XML.Node, as appropriate, to navigate through the document. Similarly,
use properties of %XML.Document or %XML.Node to access information about the current part of the document.

• Use XPath expressions to extract data.

• Perform XSLT transformations.

For details, see Using XML Tools. Be sure to check the status returned by methods in these classes, to simplify trou-
bleshooting in the case of an error.

4. If an error occurs during the processing of the request, return a fault in the usual way using the ReturnFault() method.

5. Use the Write() method of the response stream to write the XML fragment which will become the child element of
<Body>.

6. If a response stream is created, return 1. Otherwise, return 0, which causes InterSystems IRIS to run the web method
associated with the given action.

For example:

ObjectScript

 if action["action1" {
 //no custom processing for this branch
 quit 0
 } elseif action["action2" {
 //details
 //quit 1
 }

50 Fine-Tuning a Web Service in InterSystems IRIS

Defining Custom Processing in a Web Service

25.3 Implementing ProcessBody()
The ProcessBody() method has the following signature:

method ProcessBody(action As %String, requestBody As %CharacterStream,
 ByRef responseBody As %CharacterStream) as %Boolean

Where:

• action is the SOAP action specified in the inbound message.

• requestBody is an instance of %Library.CharacterStream that contains the SOAP <Body> element. The stream contains
an XML fragment, not a complete XML document.

• responseBody, is the response body serialized as an instance of %Library.CharacterStream. This stream is passed by
reference and is initially empty.

If you implement this method in a web service, the method should do the following:

1. Examine the action and branch accordingly. For example:

ObjectScript

 if action["action1" {
 //details
 }

2. Use the Read() method of requestBody to obtain the SOAP <Body>. For example:

ObjectScript

 set request=requestBody.Read()

3. Parse this stream by using tools such as $EXTRACT. For example:

ObjectScript

 set in1="<echoString xmlns=""http://soapinterop.org/xsd""><inputString>"
 set in2="</inputString></echoString>"
 set contents=$extract(request,$length(in1)+1,*-$length(in2))

4. If an error occurs during the processing of the request, return a fault in the usual way using the ReturnFault() method.

5. Use the Write() method of the response stream to write the XML fragment that will become the child element of
<Body>. For example:

ObjectScript

 set in1="<echoString xmlns=""http://soapinterop.org/xsd""><inputString>"
 set in2="</inputString></echoString>"
 set request=requestBody.Read()
 if ($extract(request,1,$length(in1))'=in1) || ($extract(request,*-$length(in2)+1,*)'=in2) {
 do responseBody.Write("Bad Request: "_request)
 quit 1
 }

 set out1="<echoStringResponse xmlns=""http://soapinterop.org/xsd""><echoStringResult>"
 set out2="</echoStringResult></echoStringResponse>"
 do responseBody.Write(out1)
 do responseBody.Write($extract(request,$length(in1)+1,*-$length(in2)))
 do responseBody.Write(out2)

6. If a response stream is created, return 1. Otherwise, return 0, which causes InterSystems IRIS to run the web method
associated with the given action.

Fine-Tuning a Web Service in InterSystems IRIS 51

Implementing ProcessBody()

	Table of Contents
	1 Disabling Access to the Online WSDL
	2 Requiring a Username and Password
	3 Controlling the XML Types
	4 Controlling the Namespaces of the Schema and Types
	4.1 Controlling the Namespace of the Schema
	4.2 Controlling the Namespace of the Types

	5 Including Documentation for the Types
	6 Adding Namespace Declarations to the SOAP Envelope
	7 Checking for Required Elements and Attributes
	8 Controlling the Form of Null String Arguments
	9 Controlling the Message Name of the SOAP Response
	10 Overriding the HTTP SOAP Action and Request Message Name
	11 Specifying Whether Elements Are Qualified
	12 Controlling Whether Message Parts Use Elements or Types
	13 Controlling Use of the xsi:type Attribute
	14 Controlling Use of Inline References in Encoded Format
	15 Specifying the SOAP Envelope Prefix
	16 Restricting the SOAP Versions Handled by a Web Service
	17 Sending Responses Compressed by gzip
	18 Defining a One-Way Web Method
	18.1 One-Way Web Methods and SOAP Headers
	18.2 Dynamically Making a Web Method One Way

	19 Adding Line Breaks to Binary Data
	20 Adding a Byte-Order Mark to the SOAP Messages
	21 Customizing the Timeout Period
	22 Using Process-Private Globals to Support Very Large Messages
	23 Customizing Callbacks of a Web Service
	24 Specifying Custom Transport for a Web Service
	24.1 Background
	24.2 Defining Custom Transport for a Web Service

	25 Defining Custom Processing in a Web Service
	25.1 Overview
	25.2 Implementing ProcessBodyNode()
	25.3 Implementing ProcessBody()

	Index

