InterSystems-

IRIS Data Platform

Implementing InterSystems
IRIS Business Intelligence

Version 2024.1
2024-07-02

Implementing InterSystems IRIS Business Intelligence
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Embedding Business Intelligence within APpliCationsSccocooiiiieieineneseeeee e 1
1.1 BUSINeSS INEIIgENCE FEATUIESoviviieeirieteieeie ettt 1

1.2 Business Intelligence Components to Add to Your AppliCationccceoevereeneennieneienieiennns 2

1.3 RecommENded AFCIITECIUIEc.viieiiieieie ettt 2

1.4 Main Implementation STEPScieieiverieiieieeeeisese e e e ste e e s e e e e e e e e ste s e s resreseesresseseeseensenens 3

1.5 IMPIemMENLAtION TOOIS ...cveieiiieieieeeeee e e ettt be bbb e 4

1.6 ACCESSING the SAMPIESeeiieieiiiiie bbbt bbbt e b b e 5

2 Performing the I nitial BUSINESS INTEIlIJENCE SELUP ..ouveuereireeierereeece e 7
2.1 Setting Up the WeD APPIICALIONSciviiiiiiiiieee e 7

2.2 Placing the Business Intelligence Globals in a Separate Databasecocevvevveveiviivsnrinsinnnnns 8

2.3 Alternative Mappings for the GIODalS ... 8

2.4 Adjusting the Web Session TImeout Periodccceveiieieiienisiese s 10

3 CONTIQUITNG SEELINGS ..ttt s b e s b e bbb e e e b e e e e e e e ae e st e aeebesbesaesbesbeseeseenean 13
3.1 Accessing the Business INtelligeNnCe SELHNGSccooveiririiirire st 13

3.2 SPECITYING BASIC SELLINGS ...vvveriirierieriiieieriereeiees ettt sttt ste st st e e e e enee e eseeneereneeens 14

3.3 Configuring Business Intelligence to SUPPOrt EMailcccocevieniiiiniinnniiecesesenee e 15

3.4 CUStOMIZING WOTKIISES ..o.vcviiiiiiiieiiieisiese et bbbttt 15

3.5 Creating Runtime Variables for Use as Default Values for Filters ... 17
3.5.1 Editing RUNTIME VariabIescoiiiiiiiiiieieic ettt 17

3.5.2 Removing RUNtIME Variablesccooiiiiiiiinieeee s 18

3.6 Allowed Default Values fOr FIITEISooiiiiiiece et 18

3.7 CrEAtING ICONS w.euviuieieeeeieese ettt s e s et s e e e e e e s e e re et e s sesbesbeseeseestesteseenseneeseeneenenneaneanens 18

3.8 Creating Custom Color PAIELESccccviierieiiiirieie e 19

4 DefiNiNG Data CONNECLOIS ..ottt ettt sttt b bbb e e et aeeb e e aesaesbesbeseesre b es 21
4.1 Introduction t0 Data CONNECLOISeiviiueriirieie ettt sbe bbbt sbe e b e e e ens 21

4.2 Defining a Basic Data CONNEBCIONcoiiiuiriiiirieie sttt 21
4.2.1 Defining the Query in an XData BIOCKcccooiriiiiiniiiieeee e 22

4.2.2 Defining the Output SPECIfiCatioNcccoviveirieiirire s 23

4.3 Previewing the QUENY RESUILSciviiiiiiiiree ittt st s 24

4.4 Defining the QUErY at RUNTIMEcviiiiiiiiecie ettt st sreene e e 24
4.4.1 Restricting the Records When an Update IS Requestedccocvvieneneniienenicieeeen 25

4.4.2 Restricting the Records When a Listing 1S ReqUESTEdcccoerreniinneneeeeseeee 25

4.4.3 Other CallDACKS ...eveiveieieriieie ettt et ne st tesnesre e e 27

4.5 Using a Data Connector ProgrammatiCallyccccevvrerericrcricieeccese s 27

5 PErfOrMANCE TIPS veeeterieterieierieierieestees e st st st st et st b see s st e sesbe st st et s be e s beseebeseebeseebeseebenaesestenestaneas 29
5.1 Result Caching and Cube UPAALEScc.couiiiiriieiiiire e 29

5.2 Cache BUCKELS @and FACE OFUENoiiiiiiiiieiecie sttt bbb 29

5.3 Removing INactive Cache BUCKELSccciiiiriiiieiriee ettt 30

5.4 Precomputing CUDE CelIScueiieiiiiiieiee bbb 30
5.4.1 Defining the Cell CACNEccvcv e 30

5.4.2 Precomputing the CUDE CEelISccccvviiiiiiiiiericee et 31

5.5 Using the Index Compression ULHILYcooociiiiiiiiinicnne e 32

5.6 Limiting Worker Assignment for Background TasKScccceererenereneisineseees e 32

6 DEfiNING CUSLOM ACLIONSoitiitiiiitisie ettt st st se ettt e st et et e e e e ene e e eneesesaesaesrens 33
TR 1 [T o] PSSR 33

Implementing InterSystems IRIS Business Intelligence

6.1.1 ConteXt INFOrMALIONeeeiiiiiii et e s s sb b e e ebae e sares 34

6.2 Defining the Behavior OF ACHIONScoiiiiiiiieeee e e 34
6.2.1 DECIATING ACLIONS ..ottt ettt 34
6.2.2 Defining the Behavior 0f the ACHIONScoceiiiiinieeee e 35

6.3 Available Context INFOrMALIONcooveiriiireie e 36
6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data SOUrCeccccvevverververecvennnne, 36
6.3.2 Scenario: Pivot Table Widget with KPI as Data SOUICEccccceveiieeveiieeiesie e 37
6.3.3 Scenario: Scorecard with Pivot Table or KPI as Data SOUICEcccccvererenierieneeieene. 38

6.4 Executing Client-Side COMMANGScociieirieirieesee e 39
6.4.1 Available COMMANGScoeieeieieieeeee et se et sresre st seenre e es 40
6.4.2 Details for applyFilter and SEtFIItercvvvvviviiierere e 41

6.5 Displaying a Different Dashboardccccoveveiiiciiciecececese e e 42

6.6 Generating a SQL Table from Cube CONEXLccocvveieiiieiice e 42

7 Accessing Dashboar ds from Your APPlICALIONcoeiiiineiiiiiee et 43

7.1 AcCesSiNg @ DASNDOAITcceiiiiiiiiiiii e 43
7.0.1 URL ENCOGING ..ottt e sttt sttt 43

7.2 Available URL ParameLersccoiierieierieiesiee s sttt sttt st sttt st s 44

7.3 Options for the SETTINGS Parametercccceeeiverierieieeieeeeesesesreseeseessesseseeseesseseeseessessesessens 47

7.4 Accessing Other Business Intelligence Pages from Your Applicationccccocvvviencncnnnnn 50

8 Keeping the CUDES CUMTENT ..ottt s s a et e e et e e e e ne e 51

8L OVEIVIBW .ttt ettt sttt sttt sttt b ek b e bt et e e b ebesb e b se et et e e eneeseeseaneebenbesbeanens 51
8.1.1 Cube Updates and Related CUDESccoiiiiiiiniiirsinsreseeerese s 52
8.1.2 Cube Updates and the ReSUlt CACNEcccccvviviiiiirieri e 52

8.2 Updating Cubes ManUaIlYcccoieiiiiieiiscececece e s 53

8.3 DiISADIING CUDES ...ttt st e st s et e e aeesbe e e e sreentesneenrens 54

8.4 Injecting Facts into the FACt TADIEcoi i e 54

8.5 Pre-building DImension TabIES ..o 54

8.6 Updating a Dimension Table ManUalTYccociriiiiiniiieec e 55

8.7 SEE AISO .ttt bbb et e b e b e bbb bbb 56

9 UsiNg Cube SYNCArONIZAtIONccceveeirieerice e bbbt 57

9.1 How Cube Synchronization WOTKSc.cccciieiieiieeiesieeieseesieseeste e ste s e sreseesresnestesnesseannens 57
9.1.1 When Cube Synchronization 1S POSSIDIEccoeieiiiiiiiiiiiresr e 58
9.1.2 When Cube Synchronization IS NOt POSSIDIEcccuoeriiiriiiiiiieeeeeeeeneees 58
9.1.3 Cube Synchronization in a Mirrored ENVIFONMENTceoviiiiiiniiniineeniecsecsieeseens 59
9.1.4 Structure of the Cube Synchronization GIobalsccccviviiviiiiiini e 59

9.2 Enabling Cube SYNChIroNIiZationccccceiieieieiese et 61

9.3 Clearing the "OBJ.DSTIME GIODalcccciiiieiiie et 61

9.4 Using %SYNChIONIZECUDE() ..veueeueeeieieiieiie ettt 62

9.5 PUIGING DSTIME ..ottt 62

0.6 OLNET OPLIONS ..ttt ettt b et b et bbbt b et ekt bbb bbb nr e 63
9.6.1 USING DSTIME=MANUAL ..ottt 63

ST T U] o] [T USSR 64

0.8 SBE AISD .ttt bbb b e E et b et h e b e ne e b e 64

10 USING the CUDE MENAGETciiiuiiiiiieiie ettt s r st st e bt se e et sbesae e b nbas 67

10.1 Introduction t0 the CUDE IMANAGETceiviiriiiriiieieeer et 67

10.2 Introduction t0 UPAAte PIANScoriiiiriiiiee ettt 67

10.3 Accessing the CUDE MANAGETc..cveveeieeeeeese s see et re e snesresre e nnees 68
10.3.1 TTEE WIBW .ttt ettt bbbttt bbbt 69
10.3.2 TADIE VIBW ..ttt ettt st ettt e b e b s sbeneas 70

Implementing InterSystems IRIS Business Intelligence

10.4 Modifying the Registry DELailScccceiiiiieiiiie e sre e 70

10.5 RegiStering @ CUDE GIOUP ...c.oueeiieiieeeeeteeies ettt sttt sttt b et sbe bbb b e 71
10.6 Specifying an Update PIAN ..ot 71
10.7 IMEIGING GIOUDS ...vtuvetiteieiteieeteeete sttt seete ettt ettt b et b et b e bt e bt nb bbbt st st s e et b e b s 72
10.8 Building All the RegiStered CUDESc.ccveveiiieisise e 73
10.9 Performing ONn-Demand BUIlAScccoeieeieisieiesnse s 73
10.10 Unregistering @ CUDE GIOUPc.ceeiiiirireiesiesie sttt sttt be e s 74
10.11 Viewing Cube Manager EVENTScccociiiiiiiiiiiie ettt 74
10.12 Restricting Access to the CUDE IMBNAGETcovevirirerieiree e 75
IO T =T £ SRS 75
11 Executing Business I ntelligence Queries Programmaticallyccccoevvivvivvevenienevvseceeeeeene 7
11.1 USING the RESUIE SELAP ...viieie ettt sttt nesneenenes 77
11.2 BaSIC EXAMPIE ..o ettt ene s 78
11.3 Preparing and EXeCUtiNg @ QUETYc..eiirueruiriinierieseeieie ettt sttt st st sa e e se e 79
11.4 Printing the QUENY RESUILScvciriiiiieiriiieiest et 80
11.5 Examining the QUENY RESUILS ...c.ciiiiiiieiieiite e 81
11.5.1 Getting the Number of Columns and ROWSccecvvviiriniesiniene e 81
11.5.2 Getting the Value of @ GIVEN Cell ... 82
11.5.3 Getting the Column or ROW LabEISc.ccveiiiiiii e 82
11.5.4 Getting Details for Cell CONTENTScoveirieirieirieereesee e 84
11.6 Examining the Query Results for a DRILLTHROUGH QUETYcccoeviiiniieninennensene 86
11.7 Examining the QUEry MEadataccoerireriieriiinse e 87
11.8 Other IMELNOUS ...o.vviieieiieesie ettt ettt ettt 89
11.9 EXecuting QUETY FIIES ...oiuiiiieie ettt 89
11.9.1 ADOUL QUETY FIIES ettt sttt e sneeresne e 90
11.9.2 Executing @ QUENY Filecociiiiiiere s 90

12 Performing L ocalization for BuSINESS I NtElIgENCEcccoireriririrne e 93
12.1 Overview of Localization in Business INtEllIgence ... 93
12.1.1 MOdel LOCAHZALION ...cveiveiiiieiiiieisieisie ettt e 93
12.1.2 Folder 1tem LOCAlIZAtIONcoivivirieiiiieierieieeesie et 93
12.2 Preparing for Model LOCAHZATIONccocviiriiierieieieeieceeeeceese e e 94
12.3 Preparing for Folder 1tem LOCAliZatioNccccoiieiieiineiieese e 95
12.3.1 Default DOMAINociiiiiiiiie ettt sttt sttt be bbb sbe st e 95
12.3.2 Adding Strings to the Message DICLIONANYccccovereiereieneieneesee e 95
12.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder Item 95
12.4 LOCAlIZING the SIIINGS w.euveiieiieicr ettt re st st s te s ae e e nn e neenes 97
13 Packaging Business Intelligence ElementSinto ClaSSEScevveceevecceeveesie e 99
131 OVEBIVIBW .ttt ettt bbbttt h bbbt e bt e bt b e bt b e sbeeb e s e e e e eneebeebeebeabenbeee 99
13.2 Exporting Folder Items t0 @ Container CIASScocevieriiereineinesecse e 100
13.3 Editing the Business Intelligence Folder Items for Portabilityccccocoveveieiniciniinnns 101
13.3.1 Removing <filterState> EIEMENTSccccvvivvriiiriere v 101
SRS IS 1T o] o111l @ V) Moo | I I L L 101
13.4 Importing an Exported ContaiNer CIASScoouriririiirininene e 102
13.5 Using the FOIAEr MANAJETcccevruririiirieisies et 102
13.5.1 Seeing the Dependencies of a FOlder [EM ..o 103
13.5.2 Exporting Business Intelligence Folder Items to the Serverccocevvveevererceeneee 103
13.5.3 Exporting Business Intelligence Folder Items to the Browserc.ccocvvevvvvcrvervenene 104
13.5.4 Importing Business Intelligence FOlder Itemscccccivveveieieieececceses e 105

14 Creating Portletsfor Usein Dashboardscccccvieeveieeieseese e seese st eee s 107

Implementing InterSystems IRIS Business Intelligence

I o] [A S T2 Ty o SR 107

14.2 Defining and USING SELHINGSooeiiiiiiiierieie ettt sbesne s 108
14.2.1 TYPES OF SELLINGS ..e.veverveterieriiieisiee ettt ettt 108

14.2.2 Receiving Settings Passed Via URL ... 109

I T U 110 IR TS 110

I B T 130] L= 110

15 Other Development Work for Business INtelligenceooeveeeirnienenenesesene e 113
15.1 AATING PAPEE SIZES ...veveieiiieitieiesie ettt sttt b et st b et e st bt s be b b sbenbe e 113
15.2 AUAITING USEE ACTIVILY ..veveieiieiiiieisietse sttt bbbt 113
15.2.1 Audit Code Requirements and OPLIONSccoeereireieneineeneese e 114

ST o 1] o] R SRSRRRS 115

15.3 Defining Server INitialization COUEccccvveiieiieiieieeiece s sne 115

16 CONLIOIING ACCESSveiviterieieitesie ettt sttt st se e b et et e st e st et ebesbesbesbeebesbeseennenbeneans 117
16.1 OVEIVIEW OF SECUIILY ..o.viiviiiiiiiitiiie ittt ettt sbe b b e 117
16.2 BaSIC REQUITEIMENTSoiviiiiitiiieiiesiesieie ettt sttt sttt s e e e enesbesnesne s 118
16.3 Security Requirements for Common Business Intelligence Tasksccocvevrevnieniererenennns 119
16.4 Adding Security for Model EIBMENLSc..cvriiiriiirieiiecees e 121
16.5 Specifying the Resource for a Dashboard or Pivot Table ... 122
16.6 Specifying the Resource for @ FOIAENoooiiiiiiiiie e 122
16.7 SEE AISO .ottt ettt b ettt b e benenaens 123
ApPendix A: USING CUDE VEISIONS ...c.ccuiieiiieeierieerieene ettt ere e 125
A.1 Introduction to the Cube VErsion FEAUIEccvcvrererierieieieeeeeese st 125
A.1.1 Keeping the CUDE CUIENTcccviieieiiee ettt e eneens 126

A.1.2 Model Changes Can Break QUETIEScccccvvviereiiesesesesiesiesieseeseesesessessessesessessesees 126

A.2 Modifying a Cube t0 SUPPOIT VEISIONSc.coiiuiriiiiiiniirie st e 127
A.2.1 Cube Versions and RelationShiPsooiieiiieieiicieer e 128

A.2.2 Details for % ActivatePendingCubeVersion()cocooveveereencenecneeseeseses 128
A.3Updating @ CUDE VEISIONcueiiuiiiiiieiirietcsietese ettt 129

A.4 Specifying the Cube t0 WOrK WIthccccvviiiiiiire e 131

y AN AN [0 [T T F= LI o] o] SRS 132
A.5.1 Disabling the Cube Version FEALUIEccceveiieeieiieeiieieste et esve e sre e sre e e 132
Appendix B: How the AnalyticS ENGINEWOIKSooiiiiiiieiereeieee e 133
L0 I [a1 oo [FTox 1o OO PT PO 133
B.1.1 Use Of BitMap INUEXEScveuveiieeeieieriesiesie e seesie et see st st st nae e seensenenns 133

B.1.2 CACNING ..ottt bbb bbb bbb 133

BL1.3 BUCKELS ..ottt b ettt b s 135

B.2 ENQING STEPS ..eueiuietirtirie ittt sttt sttt ettt b bttt e b e s bbb e b et se et e st e e et e bt et e e b e ebeabe b e 135

B.3 AXIS FOIUING .ttt bbb b bbbttt beebe b b 136

B4 QUENY PIANS ...tttk ettt 137

B.5 QUENY STALISTICS ...evevitiriitiiiteiete ettt bbbttt bbb b 138
Appendix C: Using the MDX Performance ULHITYccoecvrrininninineeeseeseeseeeseeeseens 141
Appendix D: Diagnosticsfor Inter Systems Business INtelligenceccocvvvveveveeceeeccencecenenennens 143
Appendix E: Other Export/Import Options for Business Intelligencecccoeveervnieninienenene 145
E.1 Creating a Business Intelligence Container CIassccoeierereieinicinescecse s 145

E.2 Exporting and Importing FOIAEr ITEMSooiiiiiiee e e 146
E.2.1 Exporting Folder Items Programmaticallycccoeorirninieniineenesec e 146

E.2.2 Importing Folder Items Programmaticallyccccoevververeeivenninin s 147

vi

Implementing InterSystems IRIS Business Intelligence

Appendix F: Business I ntelligence and DiSaster RECOVENYcoeviririerienienienieieeeeerese e 149
F.1 CONTIQUIALION ...ttt ettt b e bt bbbt bbbt e b e e e e s ens 149
F.2 DISASIEN RECOVEIY ...cueiviietiietirteiisteiesie stttk b bbbt bttt ne s 149

Implementing InterSystems IRIS Business Intelligence vii

Embedding Business Intelligence within
Applications

InterSystems IRIS® data platform Business Intelligence enables you to embed business intelligence (BI) within your
applications so that your users can ask and answer sophisticated questions of their data. This page provides an overview
of the features you can add, the overall process, and the tools you use.

Be sure to consult Inter Systems Supported Platforms for information on system requirements for Business Intelligence.

1.1 Business Intelligence Features

Your application can include dashboards, which contain graphical widgets. The widgets display data and are driven by
pivot tables and KPIs (key performance indicators). For a pivot table, a user can display a listing, which displays source
values.

Pivot tables, KPIs, and listings are queries and are executed at runtime:

» Anpivot table can respond to runtime input such as filter selections made by the user. Internally it uses an MDX (Mul-
tiDimensional eXpressions) query that communicates with a cube.

A cube consists of a fact table and its indexes. A fact table consists of a set of facts (rows), and each fact corresponds
to a base record. For example, the facts could represent patients or departments. The system also generates a set of
level tables. All the tables are maintained dynamically.

Depending on your configuration and implementation, the system detects changes in your transactional tables and
propagates them to the fact tables as appropriate.

The system generates an MDX query automatically when a user creates the pivot table in the Analyzer.

e AKRPI can also respond to runtime user input. Internally, it uses either an MDX query (with a cube) or an SQL query
(with any table or tables).

In either case, you create the query manually or copy it from elsewhere.

» Alisting displays selected values from the source records used for the rows of the pivot table that the user has selected.
Internally, a listing is an SQL query.

You can specify the fields to use and let the system generate the actual query. Or you can specify the entire query.

Implementing InterSystems IRIS Business Intelligence 1

Embedding Business Intelligence within Applications

Dashboards can include buttons and other controls that launch actions. Actions can apply or set filters, refresh the dashboard,
open other dashboards or other URLSs, run custom code, and so on. The system provides a set of standard actions, and you
can define custom actions.

1.2 Business Intelligence Components to Add to Your
Application

To add Business Intelligence to an application, you add some or all of the following components:
» Data connector classes. A data connector enables you to use an arbitrary SQL query as the source of a cube or a listing.

» Cube definition classes. A cube defines the elements used within Business Intelligence pivot tables, and controls the
structure and contents of the corresponding fact table and indexes.

A cube definition points to the transactional class (or the data connector) that it uses as its basis.
You can have any number of cubes, and you can use a given class as the basis of multiple cubes.
For each cube, the system generates and populates a fact table class and other classes.

e Subject area classes.

A subject area is primarily a filtered cube. (It includes a filter and overrides for different parts of the cube definition,
as wanted.) You can use cubes and subject areas interchangeably in Business Intelligence.

* KPI definition classes.

You define KPIs when you need custom queries, particularly queries that are determined at runtime based on user
input.

You also define KPIs when you need custom actions, because actions are contained in KPI classes.
» Pivot tables, which you create by drag and drop. The system generates the underlying MDX queries.
» Dashboards, which display pivot tables and KPIs by running the underlying queries and displaying the results.
» The User Portal, which displays pivot tables and dashboards.

1.3 Recommended Architecture

As noted in the High Availability Guide, InterSystems generally recommends that you use mirroring as part of your high
availability strategy. For any large-scale application, InterSystems recommends a mirror involving a failover pair, an async
reporting member, and at least one async disaster recovery member.

Analytics applications can consume all available processing power on an instance during their run time; by providing
Analytics functionality through a reporting async member, the failover members of the mirror are better able to maintain
high transaction volume.

Specifically:

» Define your application so that the code and the data are in separate databases. This is not required, but is a typical
architecture.

e Set up mirroring so that the application data is mirrored to the async reporting member.

2 Implementing InterSystems IRIS Business Intelligence

Main Implementation Steps

So that the system can access the application data, copy some or all of the application classes and other code to the
reporting async member as well.

It is not generally necessary to mirror the application code.
On the reporting async member, create a database to contain the cube definitions and (optionally) data.

Optionally create another database to store the Business Intelligence fact table and other large-volume Business Intel-
ligence data. Performing the Initial Setup provides information on the globals that the system uses.

On the async reporting member, define a namespace in which to run Business Intelligence. In this namespace, define
mappings to access the application data, application code, cube definitions, and Business Intelligence data on this
server.

Note that for small-scale applications or demos, all the code and data can be in the same database.

For recommendations on Business Intelligence disaster recovery, see Business Intelligence and Disaster Recovery.

Also be sure to consult Inter Systems Supported Platformsfor information on system requirements for Business Intelligence.

1.4 Main Implementation Steps

The implementation process includes the following steps:

1.

If the namespace in which you want to use Business Intelligence does not yet define a web application, define a web
application for it. See Performing the Initial Setup.

Optionally map the Business Intelligence globals from other databases, for performance. See Performing the Initial
Setup.

Create the cubes and optional subject areas. This process includes the following steps, which you iterate as needed:
a. Define one or more cubes. In this step, you use either the Architect, an IDE, or both.
b. Build the cubes. Here you use the Architect or the Terminal.

c. Use the Analyzer to view the cubes and validate them.

After the cubes are defined, define any subject areas based on those cubes.

For information on creating cubes and subject areas, see Defining Models for Inter Systems Business I ntelligence.
For information on using the Analyzer, see Using the Analyzer.

Optionally create KPIs. See Advanced Modeling for Inter Systems Business Intelligence.

Optionally create custom actions. See Defining Custom Actions.

Make changes as needed to keep the cubes current. The way that you do this depends on how current the data must
be, as well as any performance considerations.

See Keeping the Cubes Current.

Create pivot tables and dashboards. See Using the Analyzer and Creating Dashboards.
Package the pivot tables and dashboards into InterSystems IRIS classes for easier deployment.
See Packaging Business Intelligence Elements into Classes.

Create links from your application to dashboards. See Accessing Dashboards from Your Application.

At the appropriate points during this process, you may also have to do the following:

Implementing InterSystems IRIS Business Intelligence 3

Embedding Business Intelligence within Applications

Create data connectors — See Defining Data Connectors.

Configure settings — See Configuring Settings.

Perform localization — See Performing Localization.

Define custom portlets for use in dashboards — See Creating Portlets for Use in Dashboards.
Perform other development tasks — See Other Development Work.

Set up security — See Setting Up Security for Business Intelligence.

1.5 Implementation Tools

You use the following tools during the implementation process:

Tools available from the Business Intelligence section of the Management Portal:

— Architect — Use this to define cubes and subject areas. Here you can also compile and build cubes (and compile
subject areas).

— Analyzer — Use this to examine cubes and subject areas when validating your model. Later you use it to create
pivot tables.

— User Portal — Use this to define dashboards.
— MDX Query Tool — Use this to create MDX queries and view their query plans.

— Folder Manager — Use this primarily to export pivot tables and dashboards so that you can package their definitions
within an InterSystems IRIS class.

You can also use it to associate resources with folders.

— Settings option — Use this to specify the appearance and behavior of the User Portal, and to define variables that
can be used in dashboards.

— Business Intelligence Logs — Use this to see the Business Intelligence build log for this namespace.

Terminal — You can use this to rebuild cubes and to test methods.

MDX shell (running in the Terminal) — Use this to examine cubes and subject areas and to create custom MDX queries
and see their results.

Other sections of the Management Portal — Use these to map globals, define resources, roles, and users for use with
Business Intelligence, and to examine the Business Intelligence fact tables if wanted.

Utility methods:

— %DeepSee.Utils includes methods that you can use to build cubes, synchronize cubes, clear the cell cache, and
other tasks.

— %DeepSee.UserLibrary.Utils includes methods that you can use to programmatically perform the tasks supported
in the Folder Manager.
The data connector class (%DeepSee.DataConnector) — Use this to make arbitrary SQL queries available for use in

cubes and listings.

The result set API (%DeepSee.ResultSet) — Use this to execute MDX queries programmatically and access the results.

Implementing InterSystems IRIS Business Intelligence

Accessing the Samples

1.6 Accessing the Samples

Most of the samples in this documentation are part of the Samples-Bl sample (https://github.com/intersystems/Samples-
BI) or the Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation).

InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with Inter Systems IRIS

These samples include cube definitions, subject areas, KPIs, data connectors, and plug-ins. They also include sample pivot
tables and dashboards.

Implementing InterSystems IRIS Business Intelligence

https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-Aviation

Performing the Initial Business

Intelligence Setup

This page describes setup activities to perform at the start of the Business Intelligence implementation process.

2.1 Setting Up the Web Applications

In order to use InterSystems IRIS® data platform Business Intelligence in a web application, it is necessary to configure
that web application so that it is Analytics-enabled. Specifically, a web application is Analytics-enabled if you select the
Enable Analytics check box when you configure the application. For details on defining and configuring web applications,

see Defining Applications.

The application name has an effect on how the application can be accessed; see the table below.

Web Application Configuration

* Name is /csp/namespace
* Namespace iS hamespace

e Enable Analytics is selected

* Name is any name other than /csp/namespace
* Namespace iS hamespace

* Enable Analytics is selected

In the Management Portal, the Business
Intelligence menus link to this web application

YES (note that the Business Intelligence menus
always try to access this web application — even
if another web application is configured as the
default, via the Namespace Default Application option)

NO (you can still access the web application by
entering its URL in the browser)

Implementing InterSystems IRIS Business Intelligence

Performing the Initial Business Intelligence Setup

2.2 Placing the Business Intelligence Globals in a
Separate Database

When you use Business Intelligence in a given namespace, that increases the amount of data stored in the database (or
databases) used by that namespace. If the source table is large, the system correspondingly stores a large amount of its own
data. The Business Intelligence caches further increase the storage needs. As a consequence, it is generally a good idea to
map some of the Business Intelligence globals to different databases. You can map all the Business Intelligence globals to
a single database or you can define multiple mappings. As an example, the following steps describe how to place all the
Business Intelligence globals in a single separate database:

1. Create the database.

When you do so, you might consider pre-expanding the database (that is, setting its initial size), to avoid disk fragmen-
tation created by runtime expansion.

2. Add a global mapping in the namespace that contains the classes that you plan to use with Business Intelligence. When

you do so:

» For Globals Database Location, select the database that you just created.

e For Global Name, type DeepSee.*

Also see the next section for more specific mappings you might use.

3. Recompile all cube, subject area, and KPI classes in this namespace.

Also rebuild all cubes.

For details on creating databases and mapping globals, see Configuring Databases and Add Global, Routine, and Package

Mapping to a Namespace .

2.3 Alternative Mappings for the Globals

In some cases, you might want to separately map the Business Intelligence and related globals to separate databases. The
following table lists the key globals:

Items

Fact tables and their
indexes

Globals used to keep
cube synchronized
with the source table

Cube internals

Globals

"DeepSee.Fact
"DeepSee.FactRelation

"DeepSee.Index

~OBJ.DSTIME
"DeepSee.Update

"DeepSee.Cubes
"DeepSee.Dimension

"DeepSee.Dimensionl

Comments

When you initially build the cube,
you might disable journaling for the
database that contains these
globals. After that, enable
journaling for the databases.

See Keeping the Cubes Current.

Implementing InterSystems IRIS Business Intelligence

Alternative Mappings for the Globals

Items

Cube Manager

Listing groups

Result cache (for
large data sets)

Items created in the
Analyzer and in the
Dashboard Designer

Term lists

Quality measures

Pivot variables

Other portal options

Globals

"DeepSee.CubeManager
"DeepSee.CubeManager.CubeEventD
"DeepSee.CubeManager.CubeEventl

"DeepSee.CubeManager.CubeRegistr

"DeepSee.ListingGroups

"DeepSee.BucketList
"DeepSee.Cache.*
"DeepSee.Joinindex
"DeepSee.UpdateCounter
"DeepSee.Listing

"DeepSee.Filters
"DeepSee.Folder*

"DeepSee.Folderltem*

"DeepSee.TermList

"DeepSee.QMsrs

"DeepSee.Variables

"DeepSee.DashboardSettings (user-spe-
cific dashboard settings)

"DeepSee.User.SendTo (user email
addresses)

"DeepSee.User.Settings (runtime vari-
ables)

"DeepSee.User.lcons (custom icons)

"DeepSee.UserPortalSettings (general
settings and worklist settings)

"DeepSee.UserPreferences (recent items,
per user)

"DeepSee.PaperSizes (see Adding Paper
Sizes.)

Comments

See Using the Cube Manager.

See Defining Listing Groups.

You can disable journaling for the
database that contains these
globals. For information on the
result cache, see Cube Updates
and the Result Cache.

See Using the Analyzer and Creat-
ing Dashboards.

See Advanced Modeling for
InterSystems Business
Intelligence.

See Advanced Modeling for
InterSystems Business
Intelligence.

See Defining and Using Pivot
Variables.

For most of these, see Configuring
Settings.

Implementing InterSystems IRIS Business Intelligence

Performing the Initial Business Intelligence Setup

ltems Globals Comments

Custom code + "DeepSee.InitCode See Other Development Work.

e "DeepSee.AuditCode

Recent history and "DeepSee.AgentLog

logs

e "DeepSee.Last*

e "DeepSee.PivotError
« "DeepSee.QueryLog
e "DeepSee.Session

e "DeepSee.SQLError

InterSystems IRIS « MRISIK.*

NLP

Internals used for e "DeepSee.ActiveTasks
processing

e "DeepSee.Build

* "DeepSee.Cancel

e "DeepSee.ComputedSQL
» "DeepSee.Functions

e "DeepSee.IDList

e "DeepSee.Pivot

e "DeepSee.Shell

e "DeepSee.TaskGroups

* "DeepSee.Tasks

* "DeepSee.Ul.Charts

This is not a comprehensive list; the system uses additional globals with names that start “DeepSee. Globals not listed
here typically contain only small amounts of data or are typically defined only briefly.

2.4 Adjusting the Web Session Timeout Period

The User Portal respects the web session timeout period for the namespace you are working in. The default session timeout
period is 15 minutes, which might not be long enough.

To increase the web session timeout period:

1. Go to the Management Portal.

2. Click system > System Administration> Security > Applications > Web Application.

3. Click Edit in the row for the namespace in which you are using Business Intelligence.

4. Change the value of Session Timeout, which specifies the default timeout period for the web session, in seconds.

10 Implementing InterSystems IRIS Business Intelligence

Adjusting the Web Session Timeout Period

5. Click save.

Implementing InterSystems IRIS Business Intelligence 11

Configuring Settings

This page describes how to configure options that affect the appearance and behavior of InterSystems IRIS® data platform
Business Intelligence, as part of the implementation process.

3.1 Accessing the Business Intelligence Settings

To access the Business Intelligence settings:
1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS® username and password.
2. Switch to the appropriate namespace as follows:

a. Click the current namespace name to open the list of available namespaces.

b. From the list, click the appropriate namespace.
3. Click Analytics > Admin > Settings.

The system displays the following page:

User Portal settings for namespace SAMPLES.

Press Save to apply changes.

(General || Worklists | [Run-time Variables | [User-defined Icons |

General Color Scheme Chart Series Color Scheme
Simple - Default -

Home page title

Title for Portal Home page

Company Name

Company name to display in Portal title

Implementing InterSystems IRIS Business Intelligence 13

Configuring Settings

3.2 Specifying Basic Settings

On the General tab, you can specify the following settings:

General Color Scheme — Select a color scheme for the User Portal.

Chart Series Color Scheme — Select a color scheme for chart series. This is used as the default color scheme. Via the
Dashboard Editor, users can apply a different color scheme to a given chart.

Home Page Title — Specify the title for the browser page or tab.

Company Name — Select a title to display in the upper right area of the User Portal.

If you specify this, do not specify Company Logo.

Company Logo — Specify the URL of an image to display to the right of the company name.

Specify either a complete URL, starting with http:// or a URL relative to the web application defined for this
namespace.

If you specify this, Company Name is ignored.
Company Link — Specify the URL to open when a user clicks the company logo or name in the upper right.

Specify either a complete URL, starting with http:// or a URL relative to the web application defined for this
namespace.

Google Maps API Key — Specify a key to use for the Google Maps API. Google has changed their policy regarding
the use of the Google Maps libraries so that all new installations require an API key to function. See the Google Maps
API Documentation for more information.

Dashboard email — See the next topic.

Default Resource — Default resource to use to secure pivot tables and dashboards.

See Adding Security for Business Intelligence Elements.

No Dashboard Titles — If this option is selected, the system hides the title area in the User Portal and in all dashboards.
The title area is this area:

Menu Home | Save | Logout Uzer: UnknownlUser Licenzed to:InterSystems Sales Engineers Patients Sample

This option is equivalent to the NOTITLE URL parameter; see Available URL Parameters.

No Dashboard Borders — If this option is selected, the system hides the border in the User Portal and in all dashboards.
This option is equivalent to the NOBORDER URL parameter; see Available URL Parameters.

Show Calculated Members in Filters — If this option is selected, calculated members that are part of existing cube
dimensions will appear in filters. This setting does not affect calculated members that are part of special dimensions
created by the definition of a calculated member.

Autosave — These options enable or disable the autosave feature in this namespace. If the Analyzer check box is
selected, the system automatically saves the state of the Analyzer for each user, for each pivot table. This means that
when a given user opens a pivot table in the Analyzer, the system displays that pivot table as the user last saw it.

Similarly, if the User Portal Settings check box is selected, the system automatically saves the state of the User Portal
for each user, for each dashboard.

In both the Analyzer and the User Portal, there is an option to clear the autosave state. (You can also remove all autosave
data programmatically. See the % Kill AutosaveFolder s() method of %DeepSee.UserLibrary.Utils.)

14

Implementing InterSystems IRIS Business Intelligence

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

Configuring Business Intelligence to Support Email

Click save after making any changes on this tab.

3.3 Configuring Business Intelligence to Support Email

On the General tab, you can configure Business Intelligence so that users can send email from within dashboards. To do
S0, use the Dashboard email setting. Select one of the following:

Use client-side email — Enables email in Business Intelligence. When a user sends email, the system accesses the
default client-side email system, which the user then uses to send a message. The message contains a link to the dash-
board, and the user can edit the message.

Use server-side email — Enables email in Business Intelligence. When a user sends email, the system displays a dialog
box where the user types the email address and enters an optional comment, which the system adds to the message
that it generates; this default message contains a link to the dashboard. The system then sends the email via an SMTP
server.

If you select this, you must also configure InterSystems IRIS to use an SMTP server. See Configuring Task Manager
Email Settings.

Disabled — Disables support for email within Business Intelligence.

This is the default.

3.4 Customizing Worklists

On the Worklists tab, you can customize how the system displays worklists. To do so, click Customized worklists and then
select options in the following groups:

The Home Page Top Panel and Home Page Bottom Panel options specify the worklists that are available in the User
Portal, which always has two worklist areas on the left.

The Dashboard Page Top Panel and Dashboard Page Bottom Panel options specify the worklists that are available in
dashboards, which can have zero, one, or two worklist areas on the left, depending on their configuration.

In each section of this page, select the worklists to be available in the corresponding area. The available worklists are as
follows:

The Details worklist displays details for the pivot table or dashboard that the user has selected. For example:

Details Ox0O

Type

Dashboard

Hame

Demao Real Time Updates

Created on
Today at 04:16:45
Last modified

Today at 04:16:45

The Favorites worklist displays any items that the user has marked as favorites. For example:

Implementing InterSystems IRIS Business Intelligence 15

Configuring Settings

rFavnrites 0 * @

@ Basic Dashboard Demo X
s Today at 04:16:45

@ Sales Against Targets X
“W_I¥ Today at 04:16:48

e The Recent items worklist displays items that the user has recently accessed. For example:

Recent items O % @

@ Patients Compound Cube X
s’ Today at 10:28:09

@ Demo Trend Lines X
w7 Today at 10:27:05
@ Basic Dashboard Demo X
L& Today at 10:25:29

* The Alerts worklist displays recent alerts for the user. For example:

rAlerts 19 new item(s) m *
From Subject Date e
& Keith Magison ::Err}';”g”;r::;?” o I”Ud;: :é X =
T e S X
J NBAKER ELSE:‘EE REVIEW THIS :I:[lldl::a;f :?t %
i inenee See this recent Today at w

* The Filters worklist displays filters and other controls in the dashboard. For example:

.] p -
Filters vy m
Home ZIP Code

Q
Patient Group

Q
Ciagnoses

Q

16 Implementing InterSystems IRIS Business Intelligence

Creating Runtime Variables for Use as Default Values for Filters

3.5 Creating Runtime Variables for Use as Default Values
for Filters

On the Run-time Variables tab, you can define variables that have a logical name and a value that is an ObjectScript
expression that is evaluated at runtime. You use these within dashboards for the default values of filters.

To add a setting:
1. Click New.
The page then displays the following:

Mame

Value

Context “
Comment

[Apiphy][Remaove]

2. Specify the following details:
* Name — Specify the name of the variable.
» Value — Specify an ObjectScript expression.

The value can be any valid ObjectScript expression. For example, it can be an invocation of a class method or
routine; that method or routine can use special variables such as SUSERNAME and $ROLES.

For details on the allowed values, see the section Allowed Default Values for Filters.

* Context — Select DefaultFilterValue to specify the context in which you will use this expression. Then the Widget
Editor lists this setting as a possible default value for a filter, when you add a control to a widget.

The value Other is currently not used.

* Description — Optionally specify a comment.

3. Click Apply.

The variable is added to the table, which also shows its current value:

Name Value Context Comment Evaluates to
DefaultPatGroup |#Fclass(MyApp.Utils).GetDefaultPatGroup) |DefaultFiltervalue |Uses SROLE |&[Group B] |3
DefaultZIP #class(MyApp Utils) GetDefaultZIP() DefaultFilterValue |Uses §ROLE |&[34577] x

3.5.1 Editing Runtime Variables

To edit a runtime variable:
1. Click the variable in the table.
2. Edit the details in the area below the table.

3. Click Apply.

Implementing InterSystems IRIS Business Intelligence 17

Configuring Settings

3.5.2 Removing Runtime Variables

To remove a runtime variable, click the X in the row for that variable.

The system immediately removes the variable.

3.6 Allowed Default Values for Filters

The following table lists the possible default values for filters, when used with an MDX-based data source. Use this infor-
mation when you define runtime variables to use as filter defaults, or when you specify filters in other ways described in

this documentation.

Scenario

A single member

A range of members
A set of members

All members of the level except
for a specified single member

All members of the level except
for a specified subset

Expression That Returns This Value

"&[keyval]" where keyval is the key for the member. See Key Values.
"&[keyvall]:&[keyval2]"
"{&[keyvall],&[keyval2],&[keyval3]}"

"%NOT &[keyval]™

"®WNOT{&[keyvall],&[keyval2],&[keyval3]}"

Note that for an MDX-based data source, the filter name and filter value are not case-sensitive (except for the optional

%NOT string).

3.7 Creating Icons

On the User-defined Icons tab, you can define reusable icons with logical names. You can use these icons within pivot
tables that have conditional formatting and within widget controls on dashboards.

To add an icon:

1. Click New.

The bottom area of the page then displays the following:

Mame |Myleon

Path
- |

2. For Name, specify the name you will use to refer to this icon.

3. For Path, specify the location of the icon file. Do one of the following:

» Specify a relative path that is relative to install-dir/CSP/broker/

e Specify a complete URL.

18

Implementing InterSystems IRIS Business Intelligence

Creating Custom Color Palettes

4. Click Apply.

The icon is added to the table, which also shows a preview.

You can edit or remove icons in the same way that you do with runtime variables. See the previous section for details.

For information on using icons in pivot tables with conditional formatting, see Applying Conditional Formatting. For
information on configuring widget controls, see Adding a Control.

3.8 Creating Custom Color Palettes

You can also create custom color palettes, for use in the dashboard editor, which provides a color picker. The following
shows this color picker with one of the default color palettes:

 Back Color

X
Il
=

Standard v

To add a custom color palette, add nodes to the “DeepSee .UserPortalColorSets global, as follows:

Node Value

~DeepSee .UserPortalColorSets(n) wherenis | AS$LISTBUILD listthat consists of the following items,
an integer, incremented from the previous node inthe | in order:

global. 1. Logical name of the color palette
2. Display name of the color palette. Optionally use
$$$Text() to make this name localizable.
3. Alist of CSS color names, separated by semi-
colons.
For example:

ObjectScript

set colorlist = "darkturquoise;greenyellow;hotpink;floralwhite;palevioletred;plum;"
set colorlist = colorlist _"powderblue;palegreen;plum;mediumaquamarine;linen;"

set colorlist = colorlist _"lightsteelblue;lightpink;oldlace;lightsalmon;gold;"
set mycolors=$LB("'"My Custom Colors","My Custom Colors'",colorlist)

set ~DeepSee.UserPortalColorSets($1("DeepSee.UserPortalColorSets)) = mycolors

Implementing InterSystems IRIS Business Intelligence 19

Configuring Settings

When a user selects a color palette, the system displays a sample of each color in the grid. You can specify up to 64 colors.

20 Implementing InterSystems IRIS Business Intelligence

Defining Data Connectors

This page describes how to define data connectors, as part of the Business Intelligence implementation process.

4.1 Introduction to Data Connectors

A data connector maps the results of an arbitrary SQL SELECT query into an object that can be used as the source of a
cube, for a detail listing, or both. (For information on defining cubes and listings, see Defining Models for Inter Systems
Business Intelligence.)

The SQL query can use a combination of the following:
» Local tables in the namespace in which you are using InterSystems IRIS Business Intelligence.
* Views in the same namespace.

e Linked tables in the same namespace. You define a linked table with the Link Table Wizard. The table has a class
definition in your namespace but is linked to a table in an external database.

Important: There are restrictions on queries when using linked tables. See Restrictions on SQL Gateway Queries.

You can define a data connector so that it supports updates to the cube. To update this cube, you must either rebuild the
entire cube or use ProcessFact(); see Keeping the Cubes Current.

4.2 Defining a Basic Data Connector

To define a data connector, create a class as follows:
e It must extend %DeepSee.DataConnector.
» It must specify a query. You can specify the query in an XData block, as described in the first subsection.
Another possibility is to implement a callback to construct the query at runtime. This is described later in this page.
» Itmust define an output specification, which maps the query columns to properties, as described in the second subsection.

» If you need to use this data connector for a listing, the class must specify the SUPPORTSIDLIST class parameter as 1:

Implementing InterSystems IRIS Business Intelligence 21

Defining Data Connectors

Class Member

Parameter SUPPORTSIDLIST = 1;

» If you need to use this data connector for a cube, and if you want to support cube updates, the class must specify the
SUPPORTSS NGLE parameter as 1:
Class Member

Parameter SUPPORTSSINGLE = 1;

When you compile a data connector, the system generates a class with the name packagename.classname.ResultSet, where
packagename.classname is the full name of the data connector class itself. Do not edit the generated class.

4.2.1 Defining the Query in an XData Block
To define the query in an XData block, add an element to the data connector class like the following:

Class Member

XData SourceQuery [XMLNamespace = "http://www.intersystems.com/deepsee/connector/query"]

<sqI>SELECT %I1D, DateOfSale, Product->Name AS ProductName FROM HoleFoods.SalesTransaction</sql>

Notes:

* You cannot use this technique if the data connector must support detail listings or updates. In such cases, instead see
Defining the Query at Runtime, later in this page.

e The name of this XData block must be SourceQuery

* The XMLNamespace parameter must equal "*http://www. intersystems.com/deepsee/connector/query"
» The XData block must contain one <sql> element, which contains the SQL query to execute.

* The query must return the 1Ds of the records, in addition to other fields you need.

e To include the less than symbol (<) in the query, use &I t;

For example:
<sql>SELECT A,B,C FROM MyApp.MyTable WHERE A&It;*50"</sql>

Similarly, to include an ampersand (&) in the query, use &

» If you use arrow syntax to access a field, it might be necessary to also supply an alias for the field. Specifically, an
alias is required if you use the data connector as the basis of a cube and you want to use the field in the definition of
a cube element.

For example, consider the following query:
SELECT %ID, DateOfSale, Product->Name FROM HoleFoods.SalesTransaction

In this case, there is no way for a cube definition to refer to the Product->Name field; the build process throws an
error if you use either Product->Name or Product.Name. As a consequence, you cannot use this field as the basis
of a level or measure.

In contrast, consider this query:

SELECT %1D, DateOfSale, Product->Name AS ProductName FROM HoleFoods.SalesTransaction

22 Implementing InterSystems IRIS Business Intelligence

Defining a Basic Data Connector

In this case, you can treat ProductName as a property in the source class, so you can define a level or measure based

on it.

4.2.2 Defining the Output Specification

Every data connector class must contain an XData block that maps the query columns to properties, as in the following
example:

Class Member

XData Output [XMLNamespace = "http://www.intersystems.com/deepsee/connector/output" 7]

<connector>

<property
<property
<property
<property

<property

</connector>

name=""Gender" sourceProperty="Gender" />

name=""Age" sourceProperty="Age" type="%ZEN.Datatype.integer'/>
name=""HomeCity" sourceProperty="HomeCity'/>

name=""PatientGroup" sourceProperty="PatientGroup"

transform="$CASE(%val ,"A":""Group A","B":"Group B",:%val)" />
name=""TestScore" sourceProperty="TestScore" type="%ZEN.Datatype.integer'/>

Each <property> element is a property of the data connector and can be used by Business Intelligence.

Notes:

The name of this XData block must be Output

The XMLNamespace parameter must equal "*http://www. intersystems.com/deepsee/connector/output’

This XData block must contain one <connector> element.

The <connector> element must include one or more <property> elements.

Each <property> element must specify some or all of the following attributes:

Attribute Purpose

name

Name of the property, for use as a source property in a cube, in a source
expression in a cube, or as a field in a listing.

sourceProperty Name of the corresponding column of the result set.

type

(Optional) Data type for the property. The default is %Library.String.

transform (Optional) An expression that uses %val (the current column value) as input

and returns a transformed value.

If you are going to use this data connector for a listing, also specify the i dkey attribute for the appropriate <property>
element or elements. This attribute indicates that the given property or properties represent the IdKey of the data set.

If you mark multiple fields with idKey=""true"", the data connector combines these fields.

Note: If you have a cube based on a data connector and listings in that cube that are also based on data connectors,
all of these data connectors must have the same property (or properties) marked as i dkey=""true"", because
the underlying mechanism uses the same ID values in all cases.

The following shows an example with idkey:

Implementing InterSystems IRIS Business Intelligence 23

Defining Data Connectors

Class Member

XData Output [XMLNamespace = " http://www.intersystems.com/deepsee/connector/output"]
{

<connector >

<property name= "%ID" sourceProperty ="ID" displayName ="Record ID" idKey= "true'/>
<property name= "Product" sourceProperty ="Product" displayName ="Product name'/>
<property name= "AmountOfSale" sourceProperty ="AmountOfSale'" displayName ="Amount of sale"/>

</connector >

4.3 Previewing the Query Results

To test a data connector, you can directly view the query results. To easily see the output for a data connector, use its
% Print() class method in the Terminal. For example:

d
1
2
3

##class(BI .Model .PatientsQuery) .%Print()

1 SUBJ_1003 M 27 Redwood
2 SUBJ_1003 M 41 Magnolia
3 SUBJ_1003 F 42 EIm Heigh

By default, this method prints the first 100 records of the output.

This method has the following signature:

classmethod %Print(ByRef pParameters, pMaxRows As %Integer = 100) as %Status

Where pParameters is currently not used, and pMaxRows is the maximum number of rows to display.

4.4 Defining the Query at Runtime

Instead of defining a hardcoded query in an XData block, you can construct the query at runtime. If the data connector must
support detail listings or updates, you must use this technique.

To construct the query at runtime, implement the % OnGetSour ceResultSet() method. This method has the following
signature:

Method %OnGetSourceResultSet(ByRef pParameters, Output pResultSet) As %Status

Where pParameters is currently unused, and pResultSet is the result set.

In your implementation, do the following:

1. Ifyou are using this data connector for multiple purposes, examine the %mode property of the data connector instance.
The system automatically sets this property when it creates the data connector instance. This property has one of the
following values:

e "all'" — Indicates that the cube is being built or that an All member is being shown.
e "idlist" — Indicates that a listing is being requested.
« "single" — Indicates that % ProcessFact() has been invoked.

2. Creates an instance of %SQL.Statement. The query must return the IDs of the records, in addition to other fields you
need.

24 Implementing InterSystems IRIS Business Intelligence

Defining the Query at Runtime

The details of the query should be different, depending on the mode in which this data connector has been created.
Typically:

* You define a basic query for use with the ""al I'* mode.

* You add arestriction when the mode is "'single™, to get the single record that is being updated. The first subsection
provides details.

e You add a different restriction when the mode is ""idlist', to get a subset of the records. The second subsection
provides details.

3. Execute that statement, optionally passing to it any runtime values as parameters. Certain runtime values are available
as properties of the statement instance, as discussed in the following subsections.
This step creates an instance of %SQL.StatementResult.

4. Return the instance of %SQL.StatementResult as an output parameter.

4.4.1 Restricting the Records When an Update Is Requested

When you update a cube with ProcessFact(), you indicate the 1D of the record to update. When you create a data connector
for use by a cube, you must add logic so that its query uses only the given ID. In this case, you can use the %singleld
property of your data connector; it contains the 1D of the record that is being updated. For example:

//do this when constructing the SQL statement
if (..%mode="single™) {
set sql = sgql _ " where %ID = ?"

""//do this when executing the SQL statement
if (..%mode="single"™) {
set pResultSet = tStatement.%Execute(..%singleld)
}

For information on ProcessFact(), see the article Keeping the Cubes Current.

4.4.2 Restricting the Records When a Listing Is Requested

When a user requests a listing, the system retrieves the 1Ds of the records used in the given context and stores them for
later use. For a default listing, the system automatically uses those IDs in the SQL query of the listing. When you create a
data connector for use in a listing, you must add logic so that your query uses the IDs.

In this case, it is necessary to understand how the system stores the IDs for a listing. It writes these IDs to a table (the listing
table for this cube), which includes the following columns:

» _DSqueryKey — Identifies a listing.

» _DSsourceld — An ID, as in the original source data.

The following shows an example:

|_DSListingld _DSqueryiey |_DSsourceld
1)183818140||3970 (83816140 3970
2|83818140||41581 83616140 4151
3|83618140||4188 |[83815140 4188
4|83618140||9245 (83815140 6245
5|83618140||18985 (83815140 8885
§|2139316107||1337 2139316107 (1337
7|2139318107||7071 (2139318107 (7071

Implementing InterSystems IRIS Business Intelligence 25

Defining Data Connectors

Here, the first five rows are associated with the listing 83616140, which uses the I1Ds of five records, given in the
_DSsourceld column. The next two rows are associated with the listing 2139316107, which uses the IDs of two records.

There are two ways to modify the data connector query to use the listing table:

* Add an IN clause to the query and use the applicable rows from the listing table in a subquery. The following shows
an example:

SQL

SELECT A,B,C FROM MyApp.MyTable
WHERE (ID IN (SELECT _DSsourceld FROM listingtable WHERE
_DSqueryKey=somekey))

In this case:

— listingtable is the name of the listing table for the cube. To get this table name, you use the %listingTable
property of your data connector.

— somekey is the unique key for the current listing. To get this key, you use the %listingkey property of your data
connector.

This approach can lead to <MAXSTRING> errors and other size-related issues.

» Perform a JOIN between the source table and the listing table with the correct WHERE clause.

The following shows an example, from a data connector that is used as the source for a cube and as the source for a listing.
Notice that the listing key is passed to the query as a parameter.

Class Member

Method %OnGetSourceResultSet(ByRef pParameters, Output pResultSet) As %Status

set tSC = $$$0K

set pResultSet = """

Try {
set sql = "SELECT %ID, fdate, fname, ftimestamp FROM TestTD.TimeDimensions"
//when we"re using this for a listing, add WHERE clause to restrict to
//the appropriate IDs (in the table given by the %listingTable property)

if (..%mode=""idlist") {
set sql = sql _ " where %ID in (select _DSsourceld from "
_ ..%listingTable _ " where _DSqueryKey = ?)"
3

set tStatement = ##class(%SQL.Statement) .%New()
set tSC = tStatement.%Prepare(.sql)

I $$$ISERR(ESC) {
set ex = ##class(%Exception.StatusException).CreateFromStatus(tSC)
throw ex

//iT we"re using this for a listing, pass in the listing key as a parameter
it (..%mode=""idlist") {

set pResultSet = tStatement.%Execute(..%listingKey)
} else {

set pResultSet = tStatement.%Execute()

//check %SQLCODE and report if there"s an error
IT pResultSet._%SQLCODE {
set sqlcode=pResultSet.%SQLCODE
set message=pResultSet.%Message
set ex = ##class(%Exception.SQL).CreateFromSQLCODE(sqlcode, message)
throw ex

%atch(ex) é _

Set tS ex.AsStatus()

¥
Quit tSC

26 Implementing InterSystems IRIS Business Intelligence

Using a Data Connector Programmatically

4.4.3 Other Callbacks

The %DeepSee.DataConnector class provides additional callback methods that you can customize to handle errors, perform
transformations on rows, perform filtering, and so on. These include % OnNextRecor d() and % OnProcessRecord(). For
details, see the Inter Systems Class Reference.

4.5 Using a Data Connector Programmatically

To use a data connector programmatically, do the following:

1. Create an instance of it.

2. Invoke its % Execute() method, which returns a result set. This method also returns a status by reference.
3. Check the returned status.

4. If the status is not an error, you can now use the result set, which is an instance of %SQL.StatementResult.
For example:

ObjectScript

Set tConnector=._%New()
Set tRS=tConnector.%Execute(, -tSC)
IT $$SISERR(ESC) {Quit}
//use tRS as needed ...

Implementing InterSystems IRIS Business Intelligence 27

Performance Tips

This page contains performance tips for InterSystems IRIS® data platform Business Intelligence, which you should review
as part of the implementation process. Also see Placing the Business Intelligence Globals in a Separate Database.

For more information on performance and troubleshooting options, see the InterSystems Developer Community.

5.1 Result Caching and Cube Updates

For any cube that uses more than 64,000 records (by default), the system maintains and uses a result cache. When you
update a cube by synchronizing or rebuilding it, or when you explicitly invoke after a manual update, parts of the result
cache are considered invalid and are cleared. The details depend upon options in the cube definition (see Cache Buckets
and Fact Order, later in this page). Therefore, it is not generally desirable to update the cubes constantly.

The result cache works as follows: Each time a user executes a query (via the Analyzer for example), the system caches
the results for that query. The next time any user runs that query, the system checks to see if the cache is still valid. If so,
the system then uses the cached values. Otherwise, the system re-executes the query, uses the new values, and caches the
new values. The net effect is that performance improves over time as more users run more queries.

5.2 Cache Buckets and Fact Order

As noted earlier, for large data sets, the system maintains and uses a result cache. In this case, it can be useful to control
the order of rows in the fact table, because this affects how the system creates and uses the cache. To do this, you can
specify the Initial build order option for the cube; see Other Cube Options.

When users evaluate pivot tables, the system computes and caches aggregate values that it later reuses whenever possible.
To determine whether the system can reuse a cache, the system uses the following logic:

1. It examines the IDs of the records used in a given scenario (for example, for a given pivot table cell).

2. It checks the buckets to which those IDs belong. A bucket is a large number of contiguous records in the fact table
(details given later).

» If the bucket has been updated (because there was a change for at least one ID in the bucket), the system discards
any corresponding cache associated with that bucket and regenerates the result.

» If the bucket has not been updated, the system reuses the appropriate cache (if available) or generates the result
(if not).

Implementing InterSystems IRIS Business Intelligence 29

https://community.intersystems.com/node/418306

Performance Tips

In some scenarios, changes to the source records (and the corresponding updates to any cubes) occur primarily in the most
recent source records. In such scenarios, it is useful to make sure that you build the fact table in order by age of the records,
with the oldest records first. This approach means that the caches for the older rows would not be made invalid by changes
to the data. (In contrast, if the older rows and newer rows were mixed throughout the fact table, all the caches would
potentially become invalid when changes occurred to newer records.)

For more information, see How the Analytics Engine Works.

5.3 Removing Inactive Cache Buckets

When a cache bucket is invalidated (as described in the previous section), it is marked as inactive but is not removed. To
remove the inactive cache buckets, call the % PurgeObsoleteCache() method of %DeepSee.Utils. For example:

d ##class(%DeepSee.Utils) .%PurgeObsoleteCache('patients'™)

5.4 Precomputing Cube Cells

As noted earlier, when users evaluate pivot tables, the system computes and caches aggregate values that it later reuses
whenever possible. This caching means that the more users work with Business Intelligence, the more quickly the system
runs. (For details, see How the Analytics Engine Works.)

To speed up initial performance as well, you can precompute and cache specific aggregate values that are used in your
pivot tables, especially wherever performance is a concern. The feature works as follows:

» Within the cube class, you specify an additional XData block (Ce l 1Cache) that specifies cube cells that should be
precomputed and cached. For details, see the first subsection.

* You programmatically precompute these cube cells by using a utility method. See the second subsection.

You must do this after building the cube.

Important: A simpler option is to simply run any queries ahead of time (that is, before any users work with them).

5.4.1 Defining the Cell Cache

Your cube class can contain an additional XData block (Cel ICache) that specifies cube cells that can be precomputed
and cached, which speeds up the initial performance of Business Intelligence. The following shows an example:

/// This xml document defines aggregates to be precomputed.
XData CellCache [XMLNamespace = "' http://www. intersystems.com/deepsee/cellCache™]

{
<cellCache xmlns= "http://www. intersystems.com/deepsee/cellCache" >
<group name= "'BS'">
<item>

<element >[Measures].[Big Sale Count]</element >
</item>
</group>
<group name= "'G1'">
<item>

<element >[UnitsPerTransaction].[H1].[UnitsSold]</ element>
<element >[Measures].[Amount Sold]</element >
</item>
<item>
<fact >DxUnitsSold</fact >
<element >[Measures].[Amount Sold]</element >
</item>

30 Implementing InterSystems IRIS Business Intelligence

Precomputing Cube Cells

</group>
</cellCache >
The <celICache> element is as follows:
e It must be in the namespace ""http://www. intersystems.com/deepsee/cellCache”

e It contains zero or more <group> elements.

Each <group> element is as follows:

» It has a name attribute, which you use later when specifying which groups of cells to precompute.

» It contains one or more <item> elements.

Each <item> element represents a combination of cube indexes and corresponds to the information returned by
%SHOWPLAN. An <item> element consists of one or more <e lement> elements.

An <element> can include one or more of either of the following structures, in any combination:
<fact>fact_table_field_name</fact>

Or:

<element>mdx_member_expression</element >

Where:

+ fact_table field_name is the field name in the fact table for a level or measure, as given by the factName attribute
for that level or measure.

e mdx_member_expression is an MDX expression that evaluates to a member. This can be either a member of a level
or it can be a measure name (each measure is a member of the special MEASURES dimension).

This expression cannot be a calculated member.

Note: Each group defines a set of intersections. The number of intersections in a group affects the processing speed
when you precompute the cube cells.

5.4.2 Precomputing the Cube Cells

To precompute the aggregate values specified by a <group>, use the % ComputeAggregateGroup() method of
%DeepSee.Utils. This method is as follows:

classmethod %ComputeAggregateGroup(pCubeName As %String,
pGroupName As %String,
pVerbose As %Boolean = 1) as %Status

Where pCubeName is the name of the cube, pGroupName is the name of the <group>, and p\Verbose specifies whether
to write progress information while the method is running. For pGroupName, you can use ***** to precompute all groups
for this cube.

If you use this method, you must first build the cube.

The method processes each group by looping over the fact table and computing the intersections defined by the items within
the group. Processing is faster with fewer intersections in a group. The processing is single-threaded, which allows querying
in the foreground.

Implementing InterSystems IRIS Business Intelligence 31

Performance Tips

5.5 Using the Index Compression Utility

When a cube is frequently updated via synchronization, its need for storage capacity for indexes will grow significantly.
In order to minimize index storage requirements, InterSystems provides a %CompressIndices method as part of the
%DeepSee . Uti Is class. This method is as follows:

classmethod %Compressindices(pCubeName As %String,
pVerbose As %Boolean = 0) As %Status

Where pCubeName is the name of the cube, and p\Veerbose specifies whether to write information while the method is running.

5.6 Limiting Worker Assignment for Background Tasks

Users may limit the number of %¥SYSTEM.WorkMgr agents assigned to particular groupings of background tasks via the
%SetAgentCount method. This method is as follows:

classmethod %SetAgentCount(pNumAgents As %lInteger = ', pType = "build", Output pStatus As %Status) As
%Integer

Where pNumAgents is the number of agents which can be assigned to a given type of background task, and pType is the
category of background task to which the limit is being applied. pType defaults to bui Id tasks, but can also be set to
runTime. Each type's limit is stored separately and can be retrieved by running the following command:

write %DeepSee.UtiIs:%GetAgentCount(type)

Where type is the category of task for which you want to see the limit of assignable agents.

32 Implementing InterSystems IRIS Business Intelligence

Defining Custom Actions

This page describes how to define custom actions for use in dashboards, as part of the Business Intelligence implementation
process.

6.1 Introduction

You define custom actions within KPI classes. Then:

* When you display a given KPI in a widget, you can add controls to that widget that invoke the custom actions. See
Adding Widget Controls.

» If you specify a KPI class as the actionClass attribute of the <cube> element, all actions within this class are
available to pivot tables that use this cube, which means they can be added as controls to widgets that display these
pivot tables.

» If you specify a KPI class as the actionClass attribute of another <kpi> element, all actions within this class are
available to that KPI, in addition to any actions defined within that KPI.

* You can execute actions from within the Analyzer. Note that in this case, only a subset of the client-side commands
are supported: alert, navigate, and newwindow. Other commands are ignored.
For details on defining KPls, see Advanced Modeling for Inter Systems Business I ntelligence.

You can perform many of the same operations with either a standard action or a custom action:

Operation Available As Can Be Performed
Standard Action? in Custom Action?

Setting a filter Yes Yes
Setting a filter and refreshing the display Yes Yes
Refreshing the display of a widget Yes Yes
Refreshing the display of the entire Yes No
dashboard

Specifying the row or column sort for a pivot | Yes No
table

Specifying the row or column count for a Yes No
pivot table

Implementing InterSystems IRIS Business Intelligence 33

Defining Custom Actions

Operation Available As Can Be Performed
Standard Action? in Custom Action?

Displaying a listing for a pivot table Yes No

Displaying another dashboard Yes Yes

Displaying a URL in the same page Yes Yes

Displaying a URL in a new page No Yes

Executing code on the server No Yes

Changing the data source of the widget Yes No

Changing the row or column specification of | Yes No

the widget

For details on the standard actions, see Adding Widget Controls.

6.1.1 Context Information

The system makes context information available to actions, by two different mechanisms. When a user launches a custom
action, the system writes context information into the pContext variable, which is available in your custom code on the
server. When a custom action opens a URL, the system replaces the $$$VALUEL IST and $$$CURRVALUE tokens, if these
are included in the URL. The following figure illustrates these mechanisms:

das hboard other web pages
|

When user launches an
action, EE5VALUELIST
and SSSCURRVALLE
tokens are replaced

When the uzer
launches an action,

the pContext variable
iz =et

senver

6.2 Defining the Behavior of Actions

To define custom actions, you must both declare the actions and define their behavior.

6.2.1 Declaring Actions

To declare actions, do either or both of the following tasks in a KPI class:

» Within the <kpi> element, include one <action> element for each action.

34 Implementing InterSystems IRIS Business Intelligence

Defining the Behavior of Actions

This element specifies the name of an action available within this KPI class; the user interfaces use this information
to create lists of available actions for the users. For example:

<kpi xmIns="http://www. intersystems.com/deepsee/kpi"
name=""Holefoods Actions'>

<action name="ActionA"/>
<action name="ActionB'/>
<action name="ActionC"/>
</kpi>

For information on <action>, see Reference Information for KPI and Plug-in Classes.

e Override the % OnGetActionList() callback method of your KPI class. This method has the following signature:
ClassMethod %OnGetActionList(ByRef pActions As %List, pDataSourceName As %String = ") As %Status

Where pActions is an array with the following nodes:

Node Value

pActions Number of actions

pActions(n) Details for the nth action. This is a $LISTBUILD list that consists of the following
items:

— A string that equals the logical action name

— A string that equals the corresponding display name

And pDataSourceName is for future use.
For example:

ClassMethod %OnGetActionList(ByRef pActions As %List, pDataSourceName As %String = '"'') As %Status

set newaction=$LB("'New Action","New Action Display Name')
set pActions($I(pFilters))=newaction
quit $$$0K

6.2.2 Defining the Behavior of the Actions

To define the behavior of the actions, override the % OnDashboar dAction() callback method of your KPI class. This
method has the following signature:

classmethod %OnDashboardAction(pAction As %String, pContext As %ZEN.proxyObject) as %Status

The system executes this callback when a user invokes an action on a dashboard. pAction is the logical name of the action.
pContext is an object that contains information about the currently selected scorecard row and that provides a way for the
method to return commands to the dashboard; the next sections give the details.

A simple example is as follows:

Implementing InterSystems IRIS Business Intelligence 35

Defining Custom Actions

Class Member

ClassMethod %OnDashboardAction(pAction As %String, pContext As %ZEN.proxyObject) As %Status
Set sc = $$$0K
Try {
If (pAction = "Action 1) {
//this part defines Action 1
//perform server-side actions
}
Elseif (pAction="Action 2')
//this part defines Action 2
//perform other server-side actions
}
Catch(ex) {
Set sc = ex.AsStatus()

Quit sc

This method defines two actions, Action 1 and Action 2.

Note: Because % OnDashboardAction() is a class method, you do not have access to %seriesNames or other properties
of the KPI class from within this method (no class instance is available from the method).

6.3 Available Context Information

An action can use context information — values from the dashboard, based on the row or rows that the user selected before
launching the action. These values are useful if you want to cause changes in the database that are dependent on context.

Because % OnDashboar dAction() is a class method, you do not have access to %seriesNames or other properties of the
KPI class from within this method. Instead, the system provides the pContext variable, which is an object whose properties
provide information for use in the action. The details are different in the following scenarios:

» Pivot table widget that uses a pivot table as the data source
* Pivot table that uses a KPI as the data source

» Scorecard that uses either a pivot table or a KPI as the data source

6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data Source

In this scenario, within the % OnDashboar dAction() method, the pContext object contains the properties described in the
following table. As noted, the contents of the pContext object vary depending on whether the widget is displaying the pivot
table itself (pivot mode) or a listing (listing mode).

36 Implementing InterSystems IRIS Business Intelligence

Available Context Information

Property Name

currValue

currSeriesNo

currltemNo

currFilterSpec

valuelList

cubeName

mdx

pivotVariables

filters

dataSource

Contents in Pivot Mode

Value of first selected cell

Column number

Row number

MDX %FILTER clause or clauses that
represent the filtering applied to the
current cell context. This includes values
of any filter controls, as well as the row
and column context.

Null

Name of the cube queried by this pivot
table

MDX query defined by this pivot table

A proxy object that contains one property
for each pivot variable. Specifically,
pContext.pivotVariables.varname
contains the value of the pivot variable
varname. In this proxy object, all pivot
variable names are in lowercase. For
example, if the server defines a pivot
variable named MyVar, this pivot variable
is available as
pContext.pivotVariables.myvar

An array that indicates the current values
of the filter controls which are currently
active. The subscript for each node in the
array is the MDX expression for the filter.
The value of the node is the
corresponding key or keys, in the form
described at Allowed Default Values for
Filters.

Name of the current data source

Contents in Listing Mode

Value of the first selected cell that was
displayed before the listing was shown

Column number of the first selected cell
that was displayed before the listing was
shown

Null
Null

Comma-separated list of values from the
first column of the listing (these values
must not contain commas)

Null

Null

Same as in pivot mode

Same as in pivot mode

Name of the current data source

6.3.2 Scenario: Pivot Table Widget with KPI as Data Source

In this scenario, within the % OnDashboar dAction() method, the pContext object contains the properties described in the
following table. As noted, the contents of the pContext object vary depending on whether the widget is displaying the pivot
table itself (pivot mode) or a listing (listing mode).

Implementing InterSystems IRIS Business Intelligence

37

Defining Custom Actions

Property Name

currValue

currSeriesNo

valuelList

pivotVariables

filters

dataSource

Contents in Pivot Mode

Value of first selected cell

Column number

Null

A proxy object that contains one property
for each pivot variable. Specifically,
pContext.pivotVariables.varname
contains the value of the pivot variable
varname. In this proxy object, all pivot
variable names are in lowercase. For
example, if the server defines a pivot
variable named MyVar, this pivot variable
is available as
pContext.pivotVariables.myvar

An array that indicates the current values
of all filter controls. Each node in the
array corresponds to one of the filters
defined by the data source KPI. The
subscript for each node in the array is the
name of the filter, as specified in the KPI
definition class. The value of the node is
the key or keys currently selected for that
filter, in the form described in Allowed
Default Values for Filters. If no keys are
selected for a filter, the value of the
corresponding node is null.

Name of the current data source

Contents in Listing Mode

Value of the first selected cell that was
displayed before the listing was shown

Column number of the first selected cell
that was displayed before the listing was
shown

Comma-separated list of values from the
first column of the listing (these values
must not contain commas)

Same as in pivot mode

Same as in pivot mode

Name of the current data source

6.3.3 Scenario; Scorecard with Pivot Table or KPI as Data Source

For scorecards, the contents of the pContext object within the % OnDashboar dAction() method are mostly the same

regardless of whether the data source is a pivot table or a KPI. The following table describes the contents of pContext for
a scorecard, noting where there are variations depending on the data source:

38 Implementing InterSystems IRIS Business Intelligence

Executing Client-Side Commands

Property Name

currValue

currSeriesNo

valuelList

pivotVariables

filters

dataSource

Contents with Pivot Table as Data
Source

Value of the pivot column that is marked
as Value Column in this scorecard

Row number

Value of the pivot column that is marked
as Value Column in this scorecard

A proxy object that contains one property
for each pivot variable. Specifically,
pContext.pivotVariables.varname
contains the value of the pivot variable
varname. In this proxy object, all pivot
variable names are in lowercase. For
example, if the server defines a pivot
variable named MyVar, this pivot variable
is available as
pContext.pivotVariables.myvar

An array that indicates the current values
of the filter controls which are currently
active. The subscript for each node in the
array is the MDX expression for the filter.
The value of the node is the
corresponding key or keys, in the form
described at Allowed Default Values for
Filters.

Name of the current data source

Contents with KPI as Data Source

Value of the KPI property that is marked
as Value Column in this scorecard

Same as when the data source is a pivot
table

Value of the KPI property that is marked
as Value Column in this scorecard

Same as when the data source is a pivot
table

An array that indicates the current values
of all filter controls. Each node in the
array corresponds to one of the filters
defined by the data source KPI. The
subscript for each node in the array is the
name of the filter, as specified in the KPI
definition class. The value of the node is
the key or keys currently selected for that
filter, in the form described in Allowed
Default Values for Filters. If no keys are
selected for a filter, the value of the
corresponding node is null.

Same as when the data source is a pivot
table

6.4 Executing Client-Side Commands

An action can contain commands to execute when the control returns to the dashboard. To include such commands, set the
pContext . command property within the definition of the action. For example:

ObjectScript

//this part defines Action 1

//perform server-side actions
//on returning, refresh the widget that is using this KPI
Set pContext.command="refresh;"

For pContext . command, specify a string of the following form to execute a single command:

commandl

Implementing InterSystems IRIS Business Intelligence

39

Defining Custom Actions

For pContext . command, specify a semicolon-delimited list of commands:

The final semicolon is optional.

Some commands accept one or more arguments. For these, use command:argl:arg2: ... instead of command.

6.4.1 Available Commands

Within pContext. command, you can use the following commands:

alert
alert:message
Displays the message in a dialog box. message is the message to display
For example:
ObjectScript
Set pContext.command = "alert:hello world!"
applyFilter
applyFilter:target:filterSpec
For information on the arguments, see Details for applyFilter and setFilter.
This command sets the given filter and refreshes the browser window.
For example, the following applies a filter to a pivot table:
ObjectScript
Set pContext.command = "applyFilter:samplepivot:[DateOfSale].[Actual].[YearSold]:&[2008]"
navigate
navigate:url
Where url is the URL to display.
This command opens the given URL in the same browser window.
For example:
ObjectScript
Set pContext.command = "navigate:http://www.google.com"
newWindow

newWindow:url
Where url is the URL to display.

This command opens the given URL in a new browser window.

For example:

40 Implementing InterSystems IRIS Business Intelligence

Executing Client-Side Commands

ObjectScript
Set pContext.command = "newWindow:http://www.google.com"
popup
popup:popupurl
Where popupurl is the relative URL of a popup window.
This command displays the given popup window. For example:
ObjectScript
Set pContext.command = "popup:%ZEN.Dialog.fileSelect.cls”
refresh
refresh:widgetname

Where widgetname is the optional name of a widget to refresh; if you omit this argument, the command refreshes
the widget from which the user launched the action.

This refreshes the browser window, using any current settings for filters.

For example:

ObjectScript

// Refresh the widget that fired this action and another named samplepivot.
Set pContext.command = "refresh;refresh:samplepivot”

Note that this example includes multiple commands, separated by a semicolon.

setFilter
setFilter:target:filterSpec

For information on the arguments, see Details for applyFilter and setFilter.

This command sets the given filter, but does not refresh the browser window.

6.4.2 Details for applyFilter and setFilter

The applyFilter and setFilter commands are as follows, respectively:
applyFilter:target:filterSpec

And:

setFilter:target:filterSpec

Where:
e target is the widget to filter. You can use an asterisk (*) to apply the filter to all widgets.

» filterSpec specifies the filter value or values to apply to the given target. This must have the following form:
filter_name:filter_values

Where the arguments depend upon the details of the target widget as follows:

Implementing InterSystems IRIS Business Intelligence 41

Defining Custom Actions

Scenario filter_name filter_values
Target widget | [dimension].[hierarchy].[level] See Allowed Default Values for Filters
displays a in Configuring Settings.
pivot table
Target widget | Name of a filter defined in that KPI One of the allowed values for this filter,
displays a KPI as defined in the KPI

Notes:

— You can use multiple filter specifications; to do so, separate them with a tilde (~). For example:
FILTER:filterspecl~fTilterspec2

— The filter name and filter values are not case-sensitive for pivot tables or for KPIs that use MDX queries.

— The filter can affect only widgets that have been configured with a filter control (possibly hidden) that uses the
same filter. For example, suppose that a widget includes a Cities filter control, and has no other filter controls. If
the action filters to a city, the widget is updated. If the action filters to a ZIP code, the widget is not updated.

6.5 Displaying a Different Dashboard

In your custom action, you can use navigate or newWindow to display a different dashboard. Use the dashboard URL
as described in Accessing Dashboards from Your Application. The URL can include the SETTINGS keyword, which ini-
tializes the state of the dashboard.

6.6 Generating a SQL Table from Cube Context

In your custom action, you can use the % CreateTable API to create a SQL table from cube context. The table may be
created from either:

1. Afield list

2. The name of a listing defined in the cube, either as a field list or a custom SQL query.

See the class reference for more details.

42 Implementing InterSystems IRIS Business Intelligence

Accessing Dashboards from Your
Application

This page describes how to access InterSystems IRIS® data platform Business Intelligence dashboards and the User Portal
from your application. You would establish these connections, as part of the Business Intelligence implementation process.

7.1 Accessing a Dashboard

To access a dashboard, the URL has the following form, using the <baseURL> for your instance:
http://<baseURL>/csp/samples/_DeepSee.UserPortal .DashboardViewer.zen?DASHBOARD=dashbdname.dashboard

Where samplesis the namespace in which the dashboard is defined and dashbdname is the name of the dashboard, including
the folder to which it belongs, if any.

More generally, use a URL of the following form:

http://<baseURL>/csp/samples/_DeepSee.UserPortal .DashboardViewer.zen?parmstring&parmstring&parmstring. . .
Where parmstring is a parameter, followed by an equals sign, followed by a value. For example:
DASHBOARD=Dri 1 1%200ptions.dashboard

As shown previously, use an ampersand (&) to combine multiple parameter strings. For example:

DASHBOARD=Dri 1 1%200ptions.dashboard&NOMODIFY=1

7.1.1 URL Encoding

Certain characters have reserved meanings in a URL and others are disallowed. To include such a character in parmstring,
replace the character with the URL-encoded version (also called percent-encoded). The easiest way to do this is as follows:

1. Identify all the strings that could potentially include reserved or disallowed characters.
2. For each such string, do the following in sequence:
a. Convert to UTF-8 encoding

b. Create a URL-encoded version of the string.

Implementing InterSystems IRIS Business Intelligence 43

Accessing Dashboards from Your Application

If you are performing these transformations on the server, you can use an ObjectScript function such as $ZCONVERT
or STRANSLATE. For example:

set UTF8db=$ZCONVERT (dashboardname, 0" ,""UTF8")
set escapeddb=$ZCONVERT(UTF8db, 0", ""URL"")
set url=baseurl_"DASHBOARD="_escapeddb

If you are performing these transformations on the client, use a suitable client function. For example, if the client uses
JavaScript, use the encodeURI() function.

Or use other logic such as the $TRANSLATE function. Some of the most commonly used characters are these:

Character URL-Encoded Version
space character %20
& %26

%2C

You can find lists of URL-encoded characters on the Internet; one resource is Wikipedia
(https://en.wikipedia.org/wiki/Percent-encoding).

7.2 Available URL Parameters

You can use the following case-sensitive parameters within the dashboard URL. Note that for some parameters, you can
use either a plain-text version or an encrypted version. For example, the dashboard URL can include an encrypted version
of the dashboard name.

DASHBOARD

DASHBOARD=dashbdname . dashboard

This parameter specifies the dashboard to display. You must specify either this parameter or the XDASHBOARD
parameter.

dashbdname is the name of the dashboard, including the folder to which it belongs, if any. For example:
DASHBOARD=Dashboards/Dashboard%20with%20Fi I ters%20and%20Listing%20Button.dashboard

Here %20 represents a space character; see URL Encoding, earlier in this page.

XDASHBOARD

XDASHBOARD=encryptedvalue

Encrypted version of the DASHBOARD parameter. You can use parameter only within the context of a web session.
You must specify either this parameter or the DASHBOARD parameter.

To create encryptedvalue, start with the name of the dashboard, including the folder to which it belongs, if any.
For example:

Dashboards/Dashboard with Filters and Listing Button.dashboard

Do not include URL escaping; for example, leave a space as a space character.

44

Implementing InterSystems IRIS Business Intelligence

https://www.w3schools.com/jsref/jsref_encodeURI.asp
https://en.wikipedia.org/wiki/Percent-encoding

Available URL Parameters

Then use the Encrypt() class method of %CSP.Page to encrypt this value. Use the value returned by Encrypt()
as the value of the XDASHBOARD parameter.

EMBED
EMBED=1

If this parameter is 1, the dashboard is displayed in embedded mode. This is equivalent to setting NOTITLE=1,
NOMODIFY=1, NOBORDER=1, and WORKLISTS=0.

XEMBED
XEMBED=encryptedvalue

Encrypted version of the EMBED parameter. You can use parameter only within the context of a web session.

To create encryptedvalue, start with the value you would use for EMBED. Then use the Encrypt() class method
of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XEMBED parameter.

NOTITLE
NOTITLE=1

If this parameter is 1, the dashboard is displayed without a title area. The title area is the top area, as in the following
example:

Menu Home | Save | Logout User: Unknownlser Licenssd to: InterSystems Sales Engineers Patients Sample
NOMODIFY
NOMODIFY=1

If this parameter is 1, the dashboard cannot be modified. This option removes items from Menu. It also suppresses
the edit options on widgets, so that a widget includes only minimize, maximize, and remove options in the upper
right.

NOBORDER

NOBORDER=1

If this parameter is 1, the dashboard is displayed without the border.
RESIZE

RESI1ZE=boolean

Specifies whether the widgets can be resized and moved. If boolean is 1 (the default), the widgets can be resized
and moved. If boolean is 0, they cannot.

WORKLISTS
WORKLISTS=n

Where nis 0, 1, or 2. This parameter specifies the number of worklist areas to display on the left.

Implementing InterSystems IRIS Business Intelligence 45

Accessing Dashboards from Your Application

XWORKLISTS
XWORKLISTS=encryptedvalue

Encrypted version of the WORKLISTS parameter. You can use parameter only within the context of a web session.

To create encryptedvalue, start with the value you would use for WORKLISTS. Then use the Encrypt() class
method of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XWORKLISTS
parameter.

SCHEME
SCHEME=schemename

Specifies the color scheme for the dashboard (if you do not want to use the default). For schemename, specify a
scheme as listed in the General tab of the Settings page. See Specifying Basic Settings.

SETTINGS

Where namel, name2, name3, and so on are hames of dashboard settings, as described in the next section, and
valuel, value2, value3, and so on are the values for the settings.

You can include this parameter multiple times in the URL.

For example, to pass values to a specific widget in a dashboard, use the following variation:

To pass values to all widgets in a dashboard, use a URL of the following form, noting the exclusion of the TARGET
parameter used in the previous example:

To pass values to multiple widgets in a dashboard, use the following variation:
basic_dashboard_url&SETTINGS=...;&SETTINGS=...;&SETTINGS=...;...;

A setting for a specific widget always takes precedence over settings for all widgets. Otherwise, the settings are
applied in the order in which they are specified; if one setting is inconsistent with another setting, the later setting
takes effect. These settings do not take precedence over any user settings.

XSETTINGS
XSETTINGS=encryptedvalue

Encrypted version of the SETTINGS parameter. You can use parameter only within the context of a web session.

To create encryptedvalue, start with the value that you would use with SETTINGS. Then use the Encrypt() class
method of %CSP.Page to encrypt this value. Use the value returned by Encrypt() as the value of the XSETTINGS
parameter.

IRISUsername and IRISPassword
IR1SUsername=myuser&lR1SPassword=mypass

Where myuser is an InterSystems IRIS username and mypass is the corresponding password. Include these
parameters if the user has not yet logged in to InterSystems IRIS.

46 Implementing InterSystems IRIS Business Intelligence

Options for the SETTINGS Parameter

AUTOSAVE

AUTOSAVE

Requests the autosaved version of the dashboard. For information on the autosave feature, see Specifying Basic
Settings.

7.3 Options for the SETTINGS Parameter

For the SETTINGS URL parameter, you can use settings given in the following list. Any SETTINGS string either applies
to all widgets or applies to a specific widget. Include as many SETTINGS strings as you need. For example:

basic_dashboard_url&SETTINGS=. .. ;&SETTINGS=.._;&SETTINGS=._.;...;

Note: When InterSystems IRIS parses a SETTINGS parameter, it assumes that any semicolon is a delimiter between
two different settings strings. To include a semicolon and not have it treated as a delimiter, you must replace it
with %3B%3B (this sequence is two URL-encoded semicolons; it is necessary to use two URL-encoded semicolons
because of how the parsing is performed).

TARGET

TARGET :widgetname

Specifies the widget to which this set of settings applies. If you want the settings to apply to all widgets, omit this
parameter from the SETTINGS string.

FILTER
FILTER:Filter_name.filter_values

Specifies how to filter the given widgets. The arguments depend upon the details of the target widget as follows:

Scenario filter_name filter_values

Target widget | URL-encoded version of URL-encoded version of the allowed
displays a [dimension].[hierarchy].[level] | filter values that are shown in Allowed
pivot table Default Values for Filters in

Configuring Settings

Target widget | URL-encoded version of the name of a URL-encoded version of an allowed
displays a filter defined in that KPI value for this filter, as defined in the
KPI KPI

For information on creating URL-encoded strings, see URL Encoding.

Notes:

* You can use the special token $$$FILTERS in place of filter_namefilter_value. This is useful if you use the
URL in a custom navigate action (which accesses another dashboard from a given dashboard; see Displaying
a Different Dashboard). In this scenario, $$$F ILTERS is replaced with the current filter values of the original
dashboard. For example:

FILTER:$$$FILTERS

Implementing InterSystems IRIS Business Intelligence 47

Accessing Dashboards from Your Application

The target dashboard should include the same filters.

* You can use multiple filter specifications; to do so, separate them with a tilde (~). For example:
FILTER:Filterspecl~Tilterspec2

Where each filterspec is filter_name. filter_values

« Touse multiple members of the same filter together, use a set expression that lists those members; see Allowed
Default Values for Filters in Configuring Settings. (If you include the same filter multiple times within the
SETTINGS string, the system uses the last value that you provide; this is probably not the behavior that you
want.)

Passing a FILTER parameter in a SETT INGS string with no TARGET parameter may cause "Dimension not found"
errors due to certain widgets being based on cubes which lack the dimension being filtered for.

VARIABLE
VARIABLE:variable_name.variable_value

Specifies the value of the given pivot variable. For information on pivot variables, see Defining and Using Pivot
Variables.

You can use the special token $$$VARIABLES in place of variable_name.variable value. This is useful if you
use the URL in a custom navigate action (which accesses another dashboard from a given dashboard; see Displaying
a Different Dashboard.). In this scenario, $$$VARIABLES is replaced with the current values of the given pivot
variables, as specified in the original dashboard. For example:

VARIABLE : $$$VARIABLES
ROWCOUNT

ROWCOUNT :n

Specifies the maximum number (n) of rows to display; this applies only when members are displayed as rows.
COLCOUNT

COLCOUNT:n

Specifies the maximum number (n) of columns to display; this applies only when members are displayed as
columns.

ROWSORT
ROWSORT :measure

Specifies the measure by which to sort the rows. Here measureis the MDX identifier for the measure. For example:
ROWSORT : [MEASURES] - [mymeasure]

Note that you cannot omit the square brackets of these identifiers (in contrast to other uses of MDX in Business
Intelligence).

COLSORT

COLSORT: [MEASURES] . [my measure]

48 Implementing InterSystems IRIS Business Intelligence

Options for the SETTINGS Parameter

Specifies the measure by which to sort the columns. Here measure is the MDX identifier for the measure; see
ROWSORT.

ROWSORTDIR
ROWSORTDIR:sortkeyword
Specifies how to sort the rows. Here sortkeyword is one of the following:
* ASC — Sort in ascending order but preserve any hierarchies.
» DESC — Sort in descending order but preserve any hierarchies.
* BASC — Sort in ascending order and break any hierarchies.

e BDESC — Sort in descending order and break any hierarchies.

COLSORTDIR
COLSORTDIR:sortkeyword

Specifies how to sort the columns. See ROWSORTDIR.

PORTLET
PORTLET:portlet_setting.value

Specifies the value for a portlet setting, to override any configured value for that setting. As with the other SET-
TINGS options, this setting is applied to all widgets listed by the TARGET parameter (or all portlet widgets if
TARGET is not specified).

Here portlet_setting must be the name of the setting as defined in the portlet, and value must be the URL-encoded
version of an allowed value for this setting. For information on creating URL-encoded strings, see URL Encoding,
earlier in this page.

You can use multiple portlet specifications; to do so, separate them with a tilde (~). For example:
PORTLET:portletspecl~portletspec2

Where each portletspec is portlet_setting. value
For information on defining portlets, see Creating Portlets for Use on Dashboards.

To see an example, display the dashboard Widget Examples/Custom Portlet, which displays a round clock, and
then add the following to the end of the URL in the browser:

&SETTINGS=PORTLET:CIRCLE.O~SIZE.200

Then press Enter. You should see the clock change into a square, slightly larger than it had previously been.

For example, the following limits the column count to 3 for most widgets but limits the column count to 1 for the widget
RegionVsYear.

&SETTINGS=TARGET:RegionVsYear ; COLCOUNT :1;&SETTINGS=COLCOUNT:3;

Note: These settings are not supported for custom widgets or custom controls.

Implementing InterSystems IRIS Business Intelligence 49

Accessing Dashboards from Your Application

7.4 Accessing Other Business Intelligence Pages from
Your Application

Your application can also provide direct links to other Business Intelligence web pages, such as the Analyzer and User
Portal.

The URLSs for the Business Intelligence web pages have the following general structure.

http://<baseURL>/csp/samples/_Package.Class

Where samples is the namespace in which you are running Business Intelligence and _Package.Class is the name of the
package and class that defines the page, with an underscore instead of a percent sign at the start of the package name. When
you access the Analyzer or other Business Intelligence pages, this URL is shown in the toolbar or your browser.

You can use any of the applicable URL parameters with these pages; see Available URL Parameters, earlier in this page.
When you use the URL for the Analyzer, you can also specify the PIVOT URL parameter, which indicates the pivot table
to display. For example:

http://l1ocalhost:8000/csp/samples/_DeepSee .Ul . Analyzer.zen?PIVOT=Pivot%20Features’2FConditional%20Formatting.pivot

Note that if you use the URL for the Analyzer, and you specify the AUTOSAVE URL parameter but not the PIVOT
parameter, the Analyzer displays the most recently viewed item.

50 Implementing InterSystems IRIS Business Intelligence

Keeping the Cubes Current

This page generally discusses how to keep the cubes current, as needed within your Business Intelligence implementation
process. Additional pages describe cube synchronization and the Cube Manager in detail.

8.1 Overview

The generic phrase updating a cube refers to the process of causing a cube to reflect the current contents of the source table
and related tables. The system provides three techniques:

Rebuild the cube, using the Build option in the Architect, for example. This process can be time-consuming, and queries
cannot be executed while a cube is being rebuilt.

— You can also use Selective Build to rebuild certain elements of the cube if you expect that only certain columns
in the source table have been updated.

Synchronize the cube. The cube synchronization feature (also known as the DSTIME feature) enables InterSystems
IRIS Business Intelligence to keep track of changes to the data. You periodically synchronize the cube to include those
changes.

It is possible to execute queries during synchronization.

Depending on the cube implementation and depending on which data changes, it may not be possible to use this feature;
see When Cube Synchronization Is Possible.

Update the cube manually. This process uses the %ProcessFact() and %DeleteFact() methods. Unlike with the other
options, in this case, it is necessary for your code to know which records of the fact table to update or delete.

It is possible to execute queries during the manual updates.

You can use any suitable combination of these techniques. The following table compares them:

Implementing InterSystems IRIS Business Intelligence 51

Keeping the Cubes Current

Rebuilding Synchronizing Updating Selective Build
Manually
Comparative duration of process long short short long
Able to execute queries during this no yes yes yes (cube
process elements being
rebuilt not
available for
queries)
Technique is available in all scenarios | yes no yes yes*
Technique requires you to know which | no no yes no
records were changed
Technique invalidates parts of the result | yes yes no yes
cache
User interfaces that provide this option | Cube Cube none Architect
Managerand | Manager
Architect

*Selective Build attempts to synchronize the cube at the end of the main build procedure. You can still perform a Selective
Build when synchronization is not possible, but Selective Build does not update data in fact table columns other than the
columns included in the build. In such cases, a full build is necessary to ensure that all data in the cube are current.

For information on the Cube Manager, see Using the Cube Manager.

8.1.1 Cube Updates and Related Cubes

For any kind of update, whenever you have cube-to-cube relationships, it is necessary to update the cubes in a specific
order. In particular, update the independent cube first. Then update any cubes that depend on it. To do this, you can use the
Cube Manager, which traverses the relationships and determines the correct update order.

Or you can write and use a utility method or routine that builds your cubes in the appropriate order.

8.1.2 Cube Updates and the Result Cache

For any cube that uses more than 512,000 records (by default), the system maintains and uses a result cache. For any
combination of update techniques and tools, you should also carefully consider the frequency of cube updates, because any
update could invalidate parts of the result cache.

For large data sets, the system maintains and uses a result cache for each cube as follows: Each time a user executes a query
(via the Analyzer for example), the system caches the results for that query. The next time any user runs that query, the
system checks to see if the cache is still valid. If so, the system then uses the cached values. Otherwise, the system re-executes
the query, uses the new values, and caches the new values. The net effect is that performance improves over time as more
USErs run more queries.

When you update a cube by synchronizing or rebuilding it, the system clears the parts of the result cache which are no
longer valid. The details depend upon options in the cube definition (see Cache Buckets and Fact Order). Therefore, it is
not generally desirable to update constantly.

52 Implementing InterSystems IRIS Business Intelligence

Updating Cubes Manually

Note: Manually updating a cube does not automatically invalidate the results cache. This is because InterSystems IRIS
determines when cached results are outdated based on entries in the "OBJ.DSTIME global, which the %ProcessFact()
and %DeleteFact() methods do not update. ("OBJ.DSTIME acts as a buffer in the automatic processes for updating
cubes, as described in the next section.) To ensure that queries on the cube do not return cached results which are
outdated, you must invoke the %SetCubeDSTime() method after manual updates (for example, by calling it in the
%OnAfterProcessFact() method of the cube class). Alternatively, you can invoke %SynchronizeCube() to invalidate
the cache after a manual updates if you take precautions to ensure that fact insertions are not duplicated (see
Updating Cubes Manually).

8.2 Updating Cubes Manually

As described in When Cube Synchronization Is Not Possible, it is sometimes necessary to update a cube manually. In these
situations, your application must do the following:

1. Determine the IDs of the affected records in the base class.
2. Update the cube for those records by calling the % ProcessFact() and % DeleteFact() methods of %DeepSee.Utils.

As input, these methods require the ID of the affected row or rows.

Note: %ProcessFact enables the developer to completely control single-1D inserts or updates into a DeepSee cube. In
proivding that capability it bypasses the concurrency protection that are provided within %BuildCube and
%SynchronizeCube to prevent multiple processes from attempting the same work.

When including %ProcessFact in custom code, it is strongly recommended that this code prevents multiple calls
on the same cube, ID pair. Without this protection there is known potential to perform duplicate inserts into the
fact table if %ProcessFact is simultaneously called on the same ID in multiple processes.

The following list provides information on these methods:

%ProcessFact()

classmethod %ProcessFact(pCubeName As %String,
pSourceld As %String

pVerbose As %Boolean 0)’as %Status

Where pCubeName is the logical name of a cube, and pSourcel D is the ID of a record in the base class used by
that cube. For the given cube, this method updates the corresponding row of the fact table, the associated indexes,
and any level tables if affected.

If pVerbose is true, the method writes status information to the console.

%DeleteFact()

classmethod %DeleteFact(pCubeName As %String,
pSourceld As %String
pVerbose As %Boolean

0)'as %Status

Where pCubeName is the logical name of a cube, and pSourcelD is the ID of a record in the base class used by
that cube. For the given cube, this method deletes the corresponding row of the fact table and updates the indexes
correspondingly.

If pVerbose is true, the method writes status information to the console.

Implementing InterSystems IRIS Business Intelligence 53

Keeping the Cubes Current

8.3 Disabling Cubes

In certain scenarios, you may wish to temporarily disable a cube. This can serve to prevent users from encountering errors
when attempting to use a cube while its definition is being edited, or when correcting a known error. Unlike deleting a
cube, disabling a cube preserves the code apart from whatever is manually edited. As a disabled cube becomes invisible to
the Cube Manager, InterSystems strongly advises against disabling cubes which already have established relationships.

In order to disable a cube, perform the following procedure:

1. Log in to the Management Portal as a user with administrative privileges.
Ensure you are in the desired Analytics-enabled namespace.

Navigate to Home > Analytics and click GO.

Click open and select the appropriate cube from the pop-up window.

o c DD

In the Details pane to the right of the interface, you will see a checkbox labeled Disabled. Click this to disable the cube.

Once you have implemented the changes you wish to implement, you may reenable the cube by unchecking the Disabled
box described above. You will be required to rebuild the cube when reenabling.

8.4 Injecting Facts into the Fact Table

In rare cases, you might need the fact table to include records that do not correspond to any source records. In such cases,
use the %I njectFact() method of the cube class.

This method has the following signature:

classmethod %InjectFact(ByRef pFactld As %String,
ByRef pValues As %String,
pDimensionsOnly As %Boolean = 0)
as %Status

Where:
e pFactld s the ID of the fact. Set this to " for an insert. On return, this argument contains the ID used for the fact.
» pValuesisamultidimensional array of fact values. In this array, the subscript is the sourceProperty name (case-sensitive).

» pDimensionsOnly controls whether the method affects both the fact table and dimension tables or just the dimension
tables. If this argument is true, the method affects only the dimension tables. You use this argument if you prebuild
the dimension tables as described in the next section.

CAUTION: Do not use this method to update dimension tables for levels that are based on source expressions. To
add records to those tables, instead use an SQL UPDATE statement.

You can use % I njectFact() to update dimension tables for levels that are based on source properties.

8.5 Pre-building Dimension Tables

By default, the system populates the dimension tables at the same time that it builds the fact table. It is possible to prebuild
one or more dimension tables so that they are populated before the fact table, if this is necessary for some reason.

54 Implementing InterSystems IRIS Business Intelligence

Updating a Dimension Table Manually

To pre-build one or more dimension tables, do the following:

* Implement the % OnBuildCube() callback in the cube definition class. This method has the following signature:
classmethod %OnBuildCube() as %Status

The % BuildCube() method calls this method just after it removes the old cube contents and before it starts processing
the new contents.

* Inthisimplementation, invoke the % I njectFact() method of the cube class and specify the pDimensionsOnly argument
as true.

For details on this method, see the previous section.
For example, the following partial implementation predefines the Cities dimension in the HoleFoods sample:

Class Member

ClassMethod %OnBuildCube() As %Status
{

// pre-build City dimension
Set tVar('Outlet.Country.Region_Name'™) = "N. America"
Set tVar('Outlet.Country._Name'™) = "USA"

Set tVar('Outlet'™) = 1000
Set tVar(Outlet.City') = "Cambridge"
Do ..%InjectFact("",.tvVar,1)

Set tvVar('Outlet'™) = 1001
Set tVar(''Outlet.City') = "Somerville"”
Do ..%InjectFact('"',.tVar,1)

Set tvar('Outlet'™) = 1002
Set tVar('Outlet.City') = "Chelsea"
Do ..%InjectFact('"",.tVar,1)
Quit $$$0K
3

Notes:
» Itis necessary to provide a unique ID as well as a name for a member.

» For completeness, this code should also provide the city population, longitude, and latitude, because the corresponding
dimension table contains these values.

» ltis also necessary to provide values for any higher level members.

8.6 Updating a Dimension Table Manually

In some cases, there is no change to your base class, but there is a change to a lookup table that is used as a level. In these
cases, you can update the cube in any of the ways described earlier in this page. If the only change is to a single dimension
table, however, it is quicker to update the level table directly. You can do so via the % UpdateDimensionProperty() method
of %DeepSee.Utils.

This method has the following signature:

classmethod %UpdateDimensionProperty(pCubeName As %String,
pSpec As %String,
pvalue As %String,
pKey As %String)
as %Status

Where:

Implementing InterSystems IRIS Business Intelligence 55

Keeping the Cubes Current

» pCubeName is the name of the cube.

* pSpecisthe MDX member expression that refers to the level member to update. You must use the dimension, hierarchy,
and level identifiers in this expression. For example: **[docd] - [h1] - [doctor] -&[61]"

As a variation, pSpec can be a reference to a member property. For example:
"[homed] . [h1].-[city]-&[Magnolia].Properties(""'Principal Export™")"

The system uses this argument and the pCubeName argument to determine the table and row to update.
* pValueis the new name for this member, if any.

Or, if you specified a member property, pValue is used as the new value of the property.
* pKeyis the new key for this member, if any.

Specify this argument only if you specify a member for pSpec.

You can make three kinds of changes with this method:

e Specify a new key for a member. For example:

Set tSC =
#ttclass(UDeepSee . Uti Is) .%UpdateDimensionProperty(“'patients™, " [docd] - [h1] - [doctor] -&[186]", ,"*100000"")

By default, the key is also used as the name, so this action might also change the name.

e Specify a new name for a member. For example:

Set tSC =
#iclass(%DeepSee.Utils) .%UpdateDimensionProperty(*'patients™,"[docd] .- [doctor] .&[186]", " Psmith,
Alvin™)

By default, the name is the key, so this action might change the key.
» Specify a new value for some other property (both Name and Key are properties). For example:

Set memberprop="homed.hl.city.Pine.Properties(" " Principal Export'™")

Set tSC = ##class(%DeepSee.Utils).%UpdateDimensionProperty(‘'patients' ,memberprop,''Sandwiches')

8.7 See Also

» Using Cube Synchronization
* Using the Cube Manager

e Using Cube Versions

56 Implementing InterSystems IRIS Business Intelligence

Using Cube Synchronization

This topic describes how to use the cube synchronization feature to keep cubes current.

9.1 How Cube Synchronization Works

This section describes briefly how cube synchronization works. Internally, this feature uses two globals: “OBJ.DSTIME
and "DeepSee.Update.

First, it is necessary to perform an initial build of the cube.

When InterSystems IRIS® data platform detects a change within the source table used by a cube, it adds entries to the
~OBJ.DSTIME global. These entries are to indicate which 1Ds have been added, changed, or deleted.

When you synchronize the cube (via % SynchronizeCube(), described later in this page), InterSystems IRIS first reads
the “OBJ.DSTIME global and uses it to update the "DeepSee.Update global. After it adds an ID to the "DeepSee.Update
global, InterSystems IRIS removes the same ID from the ~"OBJ.DSTIME global. (Note that in previous versions, the cube
synchronization feature used only one global; the newer system prevents a race condition.)

Then InterSystems IRIS uses the "DeepSee.Update global and updates the fact and dimension tables of the cube, thus
bringing the cube up to date.

The following figure shows the overall flow:

Implementing InterSystems IRIS Business Intelligence 57

Using Cube Synchronization

Cube 4. ZeSynchronizeCube() method
uses "DeegpSee.Update lo
;&;tﬁ”ﬂﬂﬁgﬂ er update fact and dimension
cube tabies of the cube

source table of cube *0B.).D 5TIME *DeegpSee.l pdate

stores D= of records in stores |Ds of records in
' source table that have : source table that have
changed =since last changed since last purge
cube =ynchronization
2. Analytics defects 2. JeSynchonizeCube()
changes and updates method processes dats
AOBJ . DETIME from “OBJ. DSTIME into

*"Deepsee. Update

The subsections discuss the following details:

* When the cube synchronization feature can be used

e When the cube synchronization feature cannot be used
e Cube synchronization in a mirrored environment

e Structure of the cube synchronization globals

9.1.1When Cube Synchronization Is Possible

You can use the cube synchronization feature in scenarios where all the following items are true:
» The base class for the cube is a persistent class (but is not a linked table).

e The changed record is a record in that class.

9.1.2When Cube Synchronization Is Not Possible

You cannot use the cube synchronization feature in the following scenarios:

» The base class for the cube is a data connector. (See Defining Data Connectors.)

» The base class for the cube is a linked table. (See The Link Table Wizard).

» Thechanged record is not in the extent of the base class used by the cube. That is, the changed record belongs to another
table.

In these scenarios, the cube synchronization feature cannot detect the change, and your application must update the cube

manually as described in Updating Cubes Manually.

Also, cube synchronization does not affect age dimensions (that is, dimensions whose Dimension type iS age).

58 Implementing InterSystems IRIS Business Intelligence

How Cube Synchronization Works

9.1.3 Cube Synchronization in a Mirrored Environment

If you use Business Intelligence on a mirror server, note that the ~OBJ.DSTIME global is part of the application data and
should be mirrored (if it mapped to a different database, for example, that database should be mirrored). The "DeepSee. Update
global is generated by Business Intelligence code and thus is present only in the database that contains the cube definitions
and data.

Production Server Mirror Server

*0BJ.D5TME

*0B.J.05TME *Deep See. Update,

application application mirrored copied cube
data code application application definitions
data code (subset) and data
4
mirroring

Important: On the mirror server, the databases that store the “OBJ.DSTIME and ~DeepSee.Update globals must be
read/write. Note that you can store both of these globals in the same database, although the above figure
shows them in separate databases.

For a discussion of using Business Intelligence on a mirror server, see Recommended Architecture.

9.1.4 Structure of the Cube Synchronization Globals

This section describes the structure of the cube synchronization globals. You do not need this information to use cube
synchronization; this information is provided in case you wish to use these globals for other purposes.

9.1.4.1"0OBJ.DSTIME
The ~OBJ.DSTIME global has a different form depending on whether DSINTERVAL is set.
If DINTERVAL is not set, this global has nodes like the following:

Node Value

~OBJ.DSTIME(class, increment, ID) where class isthe | One of the following values:
full package and class name of the source class,

increment is 0, and ID is the ID of the new, changed,
or deleted record in the given class * 1 (which means that the record was added)

* 0 (which means that the record was changed)

* 2 (which means that the record was deleted)

Note that it is possible to manually delete a fact from a fact table without deleting the corresponding record from the source
class by using the % SetDSTimel ndex() method.

If DINTERVAL is set, this global has nodes like the following:

Implementing InterSystems IRIS Business Intelligence 59

Using Cube Synchronization

Node Value

~OBJ.DSTIME(class,timestamp, ID) where class and | Same as in the other scenario

ID are the same as in the other scenario, and timestamp
is the number of seconds since midnight on December
31st, 1840

The system removes unneeded entries from the "OBJ.DSTIME global when you synchronize or rebuild a cube.

9.1.4.2 "DeepSee.Update
The "DeepSee.Update global has nodes as follows:

Node

~DeepSee.Update

~DeepSee .Update(class,increment, D) where class is the full
package and class name of the source class, incrementis 0 or a
positive integer, and ID is the ID of the new, changed, or deleted
record in the given class. Each time you synchronize cubes, the
system new nodes to this global, using the next highest integer for
increment. See the example.

~DeepSee .Update(‘'cubes™,cube, "dstime’) where cube is the
logical name of a cube

~DeepSee.Update(‘'cubes’,cube, " lastDataUpdate’) where
cube is the logical name of a cube

Here is an example:

~DeepSee.Update=3

~DeepSee .Update("'DeepSee.Study.Patient"
~DeepSee .Update("'DeepSee.Study.Patient"
~DeepSee.Update(''DeepSee.Study.Patient"
~DeepSee .Update("'DeepSee.Study.Patient"
~DeepSee .Update("'DeepSee.Study.Patient"
~DeepSee.Update(''DeepSee.Study.Patient"
~DeepSee .Update("'DeepSee.Study.Patient"
~DeepSee .Update(''DeepSee.Study.Patient"
~DeepSee.Update(''DeepSee.Study.Patient",
~DeepSee .Update(*'cubes","PATIENTS","dstime')=3

NN R OO0
=
)
(=]
-
Il
o

Value

Integer that indicates the next value
of increment to use

Same as in the "OBJ.DSTIME global

Integer that indicates the next value
of increment to use when creating
nodes in this global to record
changes for the given cube.

The date and time (in $H format)
when this cube was last
synchronized.

~DeepSee .Update(*'cubes™,"PATIENTS", " lastDataUpdate')="64211,63222.68"

The nodes under “DeepSee .Update(*'DeepSee.Study.Patient',0) represent the first set of changes, the nodes
under “DeepSee .Update(*'DeepSee.Study.Patient',1 represent the second set of changes, and so on.

InterSystems IRIS does not automatically remove nodes from ~DeepSee.Update global. For information on purging this

global; see Purging DSTIME.

60 Implementing InterSystems IRIS Business Intelligence

Enabling Cube Synchronization

9.2 Enabling Cube Synchronization

Before you can synchronize a cube, you must enable the cube synchronization feature for that cube. To do so:

1.

Make sure that cube synchronization is possible in your scenario. See When Cube Synchronization Is Possible, earlier
in this page.

Add the DSTIME parameter to the base class used by that cube, as follows:

Class Member

Parameter DSTIME = "‘value';

The DSTIME parameter accepts one of three strings as its value. When "*AUTO"" is specified, the ~"OBJ.DSTIME global
will receive an update for every modification of a record. This means that when you invoke the % SynchronizeCube()
method (as described in the section below), all changes will be transcribed to “DeepSee.Update and then synchronized
with the corresponding cube. When DSTIME is set to ""MANUAL"", automatic journaling of changes to records of that
base class will be disabled. The value "*CONDITIONAL"* allows you to specify the conditions under which "OBJ.DSTIME
will log changes for synchronization dynamically by specifying a DSCONDITION parameter for the class (see below).

If you set the DSTIME parameter to **CONDITIONAL"", add the following parameter to the base class:
Parameter DSCONDITION = expression

When the expression provided evaluates as TRUE, “"OBJ.DSTIME will receive updates for records of the given class
for synchronization. Note that although DSCONDITION is an expression to be executed at runtime, it is not necessary
to specify its parameter type as COSEXPRESSION explicitly, as is usually the case.

Optionally, you may also add the following parameter to the base class:

Class Member

Parameter DSINTERVAL = 5;

This parameter primarily affects how entries are stored in the ~OBJ.DSTIME global; see Structure of the Cube Syn-
chronization Globals. The form of the ~"OBJ.DSTIME global has no effect on the behavior of the cube synchronization
mechanism.

Recompile the base class and all cube classes that use it.

Rebuild these cubes.

9.3 Clearing the *OBJ.DSTIME Global

This section describes how to clear the "\OBJ.DSTIME global. In some cases, you might want to periodically clear the
"OBJ.DSTIME global. For example, if you are not using cubes in Business Intelligence, you may want to clear the
“OBJ.DSTIME global to free up space.

Implementing InterSystems IRIS Business Intelligence 61

Using Cube Synchronization

You can set up a task in the Task Manager to periodically clear the "OBJ.DSTIME global. To do so, create a new task with
an OnTask() method such as the following:

Method OnTask() As %Status

set classname=$ORDER(™OBJ.DSTIME("""))
while (classname=""") {

//check to see if this classname is contained in ~DeepSee.Cubes(*'classes'™)
set test=3$DATA("DeepSee.Cubes('classes™”,classname))

if (test™"=1) {
kill ~OBJ.DSTIME(classname)

}
set classname=$0ORDER("OBJ.DSTIME(classname))

}
q $$$0K
}

This task clears “"OBJ.DSTIME entries if they aren’t being used by Business Intelligence cubes. Use the Task Schedule
Wizard to schedule the task to run as often as necessary.

9.4 Using %SynchronizeCube()

Note: Before you can synchronize a cube, follow the steps in Enabling Cube Synchronization, earlier in this page.

To synchronize a cube programmatically (that is, without the Cube Manager), call the % SynchronizeCube() method of
the %DeepSee.Utils class, which has the following signature:

classmethod %SynchronizeCube(pCubeName As %String, pVerbose As %Boolean = 1) as %Status

For the specified cube (pCubeName), this method finds and applies all changes from the source data that have been made
since the last call to this method.

If pVerbose is true, the method writes status information to the console. For additional arguments for this method, see the
class reference.

You can call % SynchronizeCube() in either of the following ways:

e Call the method from the part of your code that changes the data in the base class.
This is the approach used in the Patients sample.

» Periodically call % SynchronizeCube() as a recurring task.

If % SynchronizeCube() displays the message No changes detected, this can indicate that you had not previously
rebuilt the cube.

9.5 Purging DSTIME

For historical reasons and for convenience, the phrase purging DSTIME refers to purging the older entries from the
"OBJ.DSTIME global. It is necessary to purge this global periodically because it can become quite large.

To purge DSTIME for a given cube, do the following:

62 Implementing InterSystems IRIS Business Intelligence

Other Options

Call the REST API /Data/GetDSTIME. See GET /Data/GetDSTIME. Pass, as an argument, the full name of the source
class of the cube.

This REST call returns the last "OBJ.DSTIME timestamp processed for that source class on a given server. In the case
of an async mirror setup, the timestamp retrieved from this REST service will be the most recent timestamp that can
safely be purged on the primary production server.

Using the returned timestamp as an argument, call the % PurgeUpdateBuffer () method of %DeepSee.Utils so that
you purge “OBJ.DSTIME up to but not including the timestamp processed on the remote server. The default behavior
for this method is to increment the top node of the local “OBJ.DSTIME so that every purge will provide a new sync
point to be propagated to the Business Intelligence server.

9.6 Other Options

This section discusses other options that are more advanced or less common:

How to use DSTIME=MANUAL
How to inject a record into the fact table
How to prebuild dimension tables

How to update a dimension table manually

9.6.1 Using DSTIME=MANUAL

Instead of letting the system automatically update the ~"OBJ.DSTIME global, you can update this global at times that you
choose. To do so:

1.
2.

Specify DSTIME as ""MANUAL"" rather than "*AUTO"".

Then within your application, call the method % SetDSTimel ndex() of the class %DeepSee.Utils whenever you add,
change, or delete objects of the class, or when you want to update the “OBJ.DSTIME global.

This method has the following signature:

ClassMethod %SetDSTimelndex(pClassName As %String,
pObjectld As %String,
pAction As %Integer,
plnterval As %Integer = 0)

Where:
e pClassName is the full package and class name of the object that you have added, changed, or deleted.
» pObjectld is the object ID for that object.

» pAction is 0 if you updated the object, 1 if you added it, or 2 if you deleted it or want to delete the corresponding
fact from the fact table without deleting the object. The value of pAction is used as the value of the resulting
AOBJ.DSTIME node. Note that facts are removed from a cube during synchronization if the corresponding record
does not exist in the source class, or if a value of 2 is specified for pAction.

e pinterval is an optional integer. If you specify this as a positive integer, the system uses time stamp subscripts in
the “OBJ.DSTIME and “DeepSee.Update globals. See the discussion of the DSNTERVAL parameter in Enable
Cube Synchronization.

Implementing InterSystems IRIS Business Intelligence 63

Using Cube Synchronization

Then, when you want to update a given cube, call the % SynchronizeCube() method of the %DeepSee.Utils class, as
described previously.

9.7 Examples

The Patients sample includes utility methods that change data and that use either synchronization or manual updates as
appropriate. To try these methods, you can use a dashboard provided with this sample:

1. Open the User Portal in the namespace where you installed the samples.
2. Click the dashboard Real Time Updates.

3. Click the buttons in the upper left area. Each of these executes a KPI action that executes a method to randomly change
data in this sample. The action launches the method via JOB, which starts a background process.

* Add Patients adds patients.
This action calls a method that adds 100 patients and calls % SynchronizeCube() after adding each patient.
* Change Patient Groups changes the patient group assignment for some patients.

This action calls a method that randomly changes the patient group assignment for some percentage of patients
and calls % SynchronizeCube() after each change.

* Delete Some Patients deletes some patients.
This action calls a method that deletes 1 percent of the patients and calls % SynchronizeCube() after each deletion.
* Change Favorite Colors changes the favorite color for some patients.

This action calls a method that randomly changes the favorite color for some percentage of the patients. In this
case, the changed data is stored in the BI_Study.PatientDetails table, which is not the base table for the Patients
cube. Hence it is necessary to use % ProcessFact() instead of % SynchronizeCube().

This block of code executes an SQL query to return all patients who are affected by the change to the data. It then
iterates through those patients and updates the Patients cube for each of them.

e Add Encounters adds encounters for some patients.
This action calls a method that includes logic similar to that for BI.Study.PatientDetails; see the previous item.
* Change Doctor Groups changes the doctor group assignment for some of the primary care physicians.

This action calls a method that includes logic similar to that for BI.Study.PatientDetails.

Tip: These methods write log details to the global ~ DeepSee.Study.L og. For example:

~DeepSee.Study.Log(1)="13 May 2011 05:29:37PM Adding patients..."
~DeepSee.Study.Log(2)="13 May 2011 05:29:38PM Current patient count is 10200"

9.8 See Also

* Keeping the Cubes Current
e Using the Cube Manager

64 Implementing InterSystems IRIS Business Intelligence

See Also

e Using Cube Versions

Implementing InterSystems IRIS Business Intelligence 65

10

Using the Cube Manager

This page describes how to access and use the Cube Manager, which is designed to help you manage cube updates, as part
of keeping the cubes current. You use it to determine how and when to update cubes. The Cube Manager adds tasks that
rebuild or synchronize cubes at the scheduled dates and times that you choose.

Note: The Cube Manager tasks are visible in the Task Manager. InterSystems recommends that you do not modify these
tasks in any way.

10.1 Introduction to the Cube Manager

The Cube Manager enables you to define the cube registry, which contains information about the cubes in the current
namespace. In particular, it contains information about how they are to be built, synchronized, or both.

The cube registry defines a set of cube groups. A cube group is a collection of cubes that need to be updated together, either
because they are related or because you have chosen to update them together. When you first access the Cube Manager, it
displays an initial set of cube groups. Each initial cube group is either a single cube or a set of cubes that are related to each
other (and thus must be updated as a group). You can merge these initial cube groups together as wanted. You cannot,
however, break up any of the initial cube groups.

Each cube group is initially unregistered, which means that it is not included in the cube registry. After you register a cube
group (thus placing it into the registry), you define an update plan for it. The Cube Manager creates automatic tasks that
use these update plans. See the next section for details.

10.2 Introduction to Update Plans

The update plan for a cube group specifies how and when the cubes are to be updated. Each group has a default plan, which
you can modify. You can also specify different update plans for specific cubes in the group. In both cases, the plan choices
are as follows:

* Build and Synch — Rebuild periodically, once a week by default. Also synchronize periodically, once a day by default.

This option is not supported for a given cube unless that cube supports synchronization (as described earlier in this
page).
e Build Only — Rebuild periodically, once a week by default.

* Synch Only — Synchronize the cubes periodically, once a day by default.

Implementing InterSystems IRIS Business Intelligence 67

Using the Cube Manager

This option is not supported for a given cube unless that cube supports synchronization (as described earlier in this
page).

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least once
from the Cube Manager.
Manual — Do not rebuild or synchronize from the Cube Manager.

Instead, use any suitable combination of other tools: the Build option in the Architect and the % BuildCube(),
% SynchronizeCube(), % ProcessFact(), and % DeleteFact() methods; the latter three methods are described later in
this page.

Alternatively, you may manually rebuild the cube with a call to % DeepSee.CubeM anager.Utils.BuildCube(). You
may also manually synchronize the cube with a call to % DeepSee.CubeM anager.Utils.SynchronizeCube().

For each plan (other than Manual), you can customize the schedule details.

For any namespace, the Cube Manager defines two tasks: one performs all requested cube build activity in this namespace,
and one performs all requested cube synchronization activity in this namespace. Both of these tasks follow the instructions
provided in the cube registry. Both tasks also automatically process cubes in the correct order required by any relationships.

The Cube Manager provides an Exclude check box for each registered group and cube, which you can use to exclude that
group or cube from any activity by the Cube Manager. Specifically, the Cube Manager tasks ignore any excluded groups
and cubes. Initially these check boxes are selected, because it is generally best to not to perform updates until you are ready
to do so.

10.3 Accessing the Cube Manager

To access the Cube Manager, do the following in the Management Portal:

1. Switch to the appropriate namespace as follows:
a. Click the name of the current namespace to open the list of available namespaces.
b. From the list, click the appropriate namespace.

2. Click Analytics > Admin > Cube Manager.

3. If you have not used the Cube Manager in this namespace, it prompts you for information about the cube registry. In
this case, specify the following information:

e Cube Registry Class Name — Specify a complete class name, including package. This class definition will be the
cube registry for this namespace.

» Disable — Optionally click this to disable the registry. If the registry is disabled, the Cube Manager tasks are
suspended. (Because there are no Cube Manager tasks yet, it would be redundant to disable the registry at this
point.)

e Update Groups — Specify how to update groups with respect to each other. If you select Serially, the tasks update
one group at a time. If you select In Parallel, the tasks update the groups in parallel.

* Allow build to start after this time — Specify the earliest possible build time.

You can change all these details later, apart from the class name.

Then click OK.

68 Implementing InterSystems IRIS Business Intelligence

Accessing the Cube Manager

The system displays the Cube Registry page. You can view this page in two modes (via the View buttons). Click the left
View button for tree view or click the right view button for table view.

10.3.1 Tree View

In tree view, the left area of the Cube Manager displays a tree of unregistered cube groups. For example:

¥ Unregistered Groups

¥ W Group 1

[] AVIATICNEVENTS

AVIATICNAIRCRAFT
WVIATICNCREW
roup 2
TIES
roup 3
TYRAINFALL
roup 4
CMPOUNDCUBE/CITY RAINF
roup 5
] cOMPOUNDCUBE/DOCTORS

=1

-4

|
Qo2 o2 o

-4

«
UL ILLL)

g

The middle area displays a table (initially empty) with information for the registered groups. The following example shows
what this table looks like after you have registered a group:

Registered Groups Build Frequency Synch Frequency
¥ Group 14 1 Week (Sunday) 1 Day
RELATEDCUBESICITIES 1 Week (Sunday)
RELATEDCUBES/DOCTORS 1 Week (Sunday)
RELATEDCUBESIPATIENTS 1 Week (Sunday) 1 Day
RELATEDCUBES/ALLERGIES 1 Week (Sunday)
RELATEDCUBESI/CITYRAINFALL 1 Week (Sunday) 1 Day

This area is color-coded as follows:

* White background — The group or cube is included, which means that the Cube Manager tasks update it. See the
Exclude option in Specifying an Update Plan, later in this page.

» Gray background — The group or cube is excluded, which means that the Cube Manager tasks ignore it.

This area also lists (in italics) any subject areas based on a given cube, for example:

¥ Group 10 1 Week {Sunday) 1 Day
FATIEMTS 1 Week (Sunday) 1 Day
ASTHMAPATIENTS
DEMOMDX
YOUNGPATIENTS

Note that you cannot specify update plans for the subject areas, because updates in a cube are automatically available in
any subject area based on that cube. (So there is no need and no way to update a subject area independently from the cube
on which it is based.)

Implementing InterSystems IRIS Business Intelligence 69

Using the Cube Manager

In the right area, the Details tab (not shown) displays details for the current selection. You can make edits in this tab. The
Tools tab provides links to other tools.

Note: When the Cube Manager is in tree view, you can expand or collapse the display of all registered groups, which
are shown in the middle area. To do so, use the Expand All or Collapse All button, as applicable, at the top of the
middle area. These buttons do not affect the left area of the page, which displays the unregistered groups.

10.3.2 Table View

In table view, the Cube Manager lists all cubes in the current namespace, with their update plans. For example:

Filter: Page size: |0 Max rowws: | 1000 Results: 20 | Page: | 1 | of 1

Cube Hame 5;%‘; Registered Exclude 8:3;E Build Update Plan g;llffﬁgiize Eug:_!, Es’;':"h
CITIES Group 2 Yes Yes 1 Build Onby No 1 Week
CITyRAINFALL Group 3 Yes Yes 1 Build and Synch Yes 1 Week 1 Day
HOLEFOODS Group 8 Yes No 1 Build Onky Yes 1 Week

PATIENTS Group 12 Yes No 1 Build and Synch Yes 1 Week 1 Day
RELATEDCUBESICITIES Group 14 Yes Yes 1 Build Onty No 1 Week
RELATEDCUBES/DOCTORS Group 14 Yes Yes 2 Build Onhy No 1 Week
RELATEDCUBES/PATIENTS Group 14 Yes Yes 3 Build and Synch Yes 1 Week 1 Day
RELATEDCUBES/ALLERGIES Group 14 Yes Yes 4 Build Onhy No 1 Week
RELATEDCUBES/CITYRAINFALL Group 14 Yes No 5 Build Onty Yes 1 Week
AVIATIONEWVENTS Group 1 No Yes No

AVIATIONAIRCRAFT Group 1 MNo Yes No

AVIATIONCREW Group 1 Mo es No

COAMDALMNCHIRFCMYDAIMEAL DL Craon 4 KMa ao “aco

This table is color-coded as follows:

» White background — The cube is included, which means that the Cube Manager tasks update it. See the Exclude option
in Specifying an Update Plan, later in this page.

e Gray background — The cube is excluded, which means that the Cube Manager tasks ignore it.
» Pink background — The cube is not registered and therefore has no update plan.
The Group Name field indicates the group to which each cube belongs, and the Group Build Order field indicates the order

in which each cube is to be built or synchronized within its group. The Cube Manager computes this order only for cubes
in registered groups.

In the right area, the Details tab (not shown) displays details for the current selection. You can make edits in this tab. The
Tools tab provides links to other tools.

10.4 Modifying the Registry Details

When you first access the Cube Manager, it prompts you for initial information. To modify these details later (other than
the registry class name, which cannot be changed):

1. Display the Cube Manager in tree view.
2. Inthe middle area, click the heading that starts Registered Groups.
3. Edit the details on the right.

For information on the options, see the previous section.

70 Implementing InterSystems IRIS Business Intelligence

Registering a Cube Group

4. Click save.

10.5 Registering a Cube Group

To register a cube group:

1. Display the Cube Manager in tree view.

2. Expand the list of unregistered cubes on the left.

3. Drag the group from that area and drop it onto the Registered Groups heading in the middle area.

Or display the Cube Manager in table view, click the row for any cube in the group, and click Register Group in the right
area.

In either case, the change is automatically saved.

10.6 Specifying an Update Plan

To specify the update plan for a cube group and its cubes:

1. Display the Cube Manager in tree view.

2. Click the group in the middle area.

3. Inthe Details pane on the right, specify the following information:
* Name — Unique name of this group.

* Exclude — Controls whether the generated tasks perform update activities for cubes in this group. Initially this
option is selected, and the group is excluded.

The Cube Manager displays any excluded groups or cubes with a gray background.
e Update Plan — Select an update plan.

Note that the Cube Manager does not permit you to use synchronization unless that cube supports it (as described
earlier in this page). For example, you can choose the Build and Synch plan for the group, but the Cube Manager
automatically sets the update plan to Build for any cube that does not support synchronization.

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least
once from the Cube Manager.
» Build every — Use these fields to specify the schedule for the build task (if applicable).
* Synch every — Use these fields to specify the schedule for the synchronization task (if applicable).
e Build Cubes Synchronously — Select this to cause the system to build these cubes synchronously (if applicable).
If this option is clear, the system builds them asynchronously.
Initially, these details apply to all cubes in the group. If you edit details for a specific cube and then later want to
reapply the group defaults, click Apply to All Cubes in Group.

4. Optionally click a cube within this group (in the middle area) and edit information for that cube in the Details pane on
the right.

Implementing InterSystems IRIS Business Intelligence 71

Using the Cube Manager

The options are similar to those for the entire group, but include the following additional options, depending on whether
the cube supports synchronization:

* Post-Build Code — Specify a single line of ObjectScript to be executed immediately after building this cube. For
example:

do ##class(MyApp.Utils).MyPostBuildMethod(''transactionscube')

* Pre-Synchronize Code — Specify a single line of ObjectScript to be executed immediately before synchronizing
this cube. For example:

do ##class(MyApp.Utils) _MyPresynchMethod(*'transactionscube'™)
If needed, to abort the synchronization, do the following in your code:
set $$SABORTSYNCH=1

* Post-Synchronize Code — Specify a single line of ObjectScript to be executed immediately after synchronizing
this cube. For example:

do ##class(MyApp.Utils) _MyPostsynchMethod(*'transactionscube'™)

In all cases, your code can perform any processing required.
Modify each cube as needed.
Click save.

When you do so, the Cube Manager creates or updates the cube registry in this namespace. If the Task Manager does
not yet include the necessary tasks, the Cube Manager creates them.

10.7 Merging Groups

You can merge one group (group A) into another (group B). Specifically this moves all the cubes from group A into the
group B and then removes the now-empty group A.

To merge one group into another, use the following procedure. In this procedure, group A must not yet be registered, and
group B must be registered.

1.
2.

Display the Cube Manager in tree view.

Drag group A (the group that contains the cubes that you want to move) from the left area and drop it into the group
heading of group B (the target group) in the middle area.

The system prompts you to confirm the action.
Click oK.

If group B currently has an update plan that cannot be used for some of the newly moved cubes, the system displays
a dialog box to indicate this. Click oK. For any such cubes, the Cube Manager selects an update plan that can be used.

Review the update plan for each newly moved cube and modify it as needed.

Click save.

Or use the following alternative procedure. In this procedure, both groups must already be registered.

1.

Display the Cube Manager in table view.

72

Implementing InterSystems IRIS Business Intelligence

Building All the Registered Cubes

2. Inthe middle area, click the row for any cube in group A (the group that contains the cubes that you want to move).
3. On the right, click Merge to another group and then select group B (the target group) from the drop-down list.
4. Click Merge.
The system prompts you to confirm the action.
5. Click ok.

If group B currently has an update plan that cannot be used for some of the newly moved cubes, the system displays
a dialog box to indicate this. Click oK. For any such cubes, the Cube Manager selects an update plan that can be used.

6. Review the update plan for each newly moved cube and modify it as needed.

7. Click save.

10.8 Building All the Registered Cubes

The system provides a utility method that you can use to build all the registered cubes, in the correct order. The method is
BuildAllIRegisteredGroups() in the class %DeepSee.CubeManager.Utils. This method ignores the schedule specified in
the registry but uses the build order specified in the registry.

Important: Before you synchronize cubes from the Cube Manager, it is necessary to build the cubes at least once from
the Cube Manager user interface.

10.9 Performing On-Demand Builds

The Cube Manager also provides options to build cubes on demand (that is, ignoring the schedule). In this kind of build,
the Cube Manager rebuilds the requested cube as well as any cubes that depend on it.

To perform an on-demand build:

1. Save any changes to the cube registry.

Important: The build options are disabled if there are any unsaved changes.

2. Select a registered cube. To do so, either:
» Display the Cube Manager in tree view and then click a cube in the middle area.

» Display the Cube Manager in table view and click a cube that shows Yes in the Registered column.

3. On the right, clear the Exclude option.
4. Click Build Dependency List.
The Cube Manager then displays the build dialog box.
5. Click Build List.
The dialog box displays progress of the build.
6. When the build is done, click OK.

There are other ways to perform on-demand builds:

Implementing InterSystems IRIS Business Intelligence 73

Using the Cube Manager

» Display the Cube Manager in tree view. Click the header of the table in the middle area. Then click Build All Registered
Groups. Continue as described previously.

» Display the Cube Manager in tree view. Click a cube group in the middle area. Then click Build This Group. Continue
as described previously.

10.10 Unregistering a Cube Group

To unregister a cube group:
1. Display the Cube Manager in tree view.
2. Inthe middle area, click the X in the row for the cube group.

3. Click oK.

10.11 Viewing Cube Manager Events

For certain events, the Cube Manager writes log entries to a table, which you can query via SQL. The table name is
%DeepSee_CubeManager.CubeEvent. The CubeEvent field indicates the type of cube event. Possible logical values for
this field include the following:

CubeEvent Value When the Cube Manager Writes This Log Entry

register Immediately after registering a cube group.

update Immediately after saving changes to a cube group.

unregister Immediately after unregistering a cube group.

build When building a cube. The Cube Manager generates an initial log just before starting

the build, and then updates that entry after the build is complete.

synch When synchronizing a cube. The Cube Manager generates an initial log just before
starting the synchronization is started, and then updates that entry after the
synchronization is complete.

presynch Immediately after executing any code specified by the Pre-Synchronize Code option.
postsynch Immediately after executing any code specified by the Post-Synchronize Code option.
postbuild Immediately after executing any code specified by the Post-Build Code option.
repair When you use the Build Dependency List option (which performs an on-demand build

of a given cube and any related cubes). The Cube Manager generates an initial log
just before starting the build, and then updates that entry after the build is complete.

For information on other fields in this table, see the class reference for %DeepSee.CubeManager.CubeEvent.

74 Implementing InterSystems IRIS Business Intelligence

Restricting Access to the Cube Manager

10.12 Restricting Access to the Cube Manager

You may want to manage the cube update schedule without allowing users to change that schedule through the Cube Registry
page. To restrict access to the Cube Registry page, set the UserUpdatesLocked attribute to **true’ in either the
RegistryMap or RegistryMapGroup objects within your saved cube registry. For example:

<RegistryMap Disabled="false'" IndependentSync="false" SerialUpdates="false" UserUpdatesLocked=""true">

When UserUpdatesLocked is set to ""true' for a RegistryMap:

» The registry’s Disable setting cannot be changed through the Details tab. For information on accessing this tab, see
Modifying the Registry Details.

When UserUpdatesLocked is set to ""true' for a RegistryMapGroup:

» Each registered group’s Exclude check box is displayed but disabled.

» Each registered cube’s Exclude check box is hidden.

» Each registered group’s Update Plan is hidden.

» Each registered cube’s Update Plan is hidden.

e The red X button for removing registered groups is removed.

e The Build Frequency and Synch Frequency columns are left blank.

* The Build Dependency List is available for cubes, but the Build This Group button is disabled.

10.13 See Also

» Keeping the Cubes Current
e Using the Task Manager

e Using Cube Synchronization

Implementing InterSystems IRIS Business Intelligence 75

11

Executing Business Intelligence Queries
Programmatically

This page describes how to use the InterSystems IRIS® data platform Business Intelligence result set API, as well as how
to execute files that contain MDX files. These options may be necessary for your Business Intelligence implementation.

For information on % ShowPlan() and % PrintStatistics(), see How the Analytics Engine Works. .

11.1 Using the Result Set API

The class %DeepSee.ResultSet enables you to execute MDX queries against cubes and to view and examine the results.
To use this class, do the following:

1. Create an instance of %DeepSee.ResultSet.

For example:

ObjectScript

set rset=##class(%DeepSee.ResultSet) .%New()

2. Optionally disable use of the cache. To do so, set the %UseCache property of that instance equal to 0. For example:

ObjectScript

set rset.%UseCache=0

By default, caching is enabled.

3. Optionally enabling tracing. To enable detailed tracing during the prepare phrase, set the %Trace property of the result
set instance equal. To enable tracing for all phases of the query, set the %dstrace variable equal to 1. For example:
ObjectScript

set rset.%Trace=1
set %dstrace=1

By default, tracing is disabled.

4. Create an MDX query, as a string. For example:

Implementing InterSystems IRIS Business Intelligence 77

Executing Business Intelligence Queries Programmatically

ObjectScript

set query="SELECT MEASURES.[%COUNT] ON O, diagd.MEMBERS ON 1 FROM patients"

For details on the MDX syntax and functions supported in Business Intelligence, see Using Inter Systems MDX and
Inter Systems MDX Reference.

Prepare and execute the query. Typically you do this as follows:
a. Call the % PrepareM DX() method of your instance, using your query string as the argument.

b. Call % Execute() or % ExecuteAsynch().

Each of these methods returns a status, which your code should check before proceeding.
Or you can call % ExecuteDirect(), which prepares and executes the query.

Or you can call lower-level methods of the %DeepSee.ResultSet; these are not discussed here.

Note: If the query uses any plug-ins, note that % Execute() and % ExecuteDirect() do not return until all pending
results are complete. Specifically they do not return until the analytics engine has finished executing any
plug-ins used in the query.

If you used % ExecuteAsynch(), periodically check to see whether the query has completed. If the query uses any
plug-ins, make sure that any pending results are also complete; pending results are the results from the plug-ins, which
are executed separately from the query.

To determine the status of the query, call the % GetStatus() method of your instance. Or call the % GetQueryStatus()
class method of %DeepSee.ResultSet. These methods return the status of the query and also (separately) the status of
any pending results; see the class documentation for details.

Optionally, to cancel a query that has not yet completed, call the % CancelQuery() class method.

Your instance of %DeepSee.ResultSet now contains the query results. Now you can use methods of this instance to
perform tasks such as the following:

* Print the results.
» Get cell values, get the number of cells or axes in the result set, and otherwise examine the results.

» Get the metadata for the query itself, such as the query plan, the SQL used for the listing, the MDX used for a
range of cells in the query, and so on.

» Get the query statistics.

11.2 Basic Example

The following example creates and prepares a query, executes it, returns the result set as output, and displays the results:

78

Implementing InterSystems IRIS Business Intelligence

Preparing and Executing a Query

Class Member

ClassMethod RunQueryl(Output result As %DeepSee.ResultSet) As %Status

Set rset=##class(%DeepSee.ResultSet) .%New()

Set query="SELECT MEASURES.[%COUNT] ON O, diagd.MEMBERS ON 1 FROM patients’
Set status=rset.%PrepareMDX(query)

If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Set status=rset.%Execute()
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Write !, "Full results are as follows i
Do rset.%Print()

Quit $$$0K
b

When you run this method in the Terminal, you see results like the following:

SAMPLES>do ##class(BI.API1Samples) .RunQueryl()

Full results are as follows ******ixxtkkiix
Patient Count

1 None 8,394
2 asthma 671
3 CHD 357
4 diabetes 563
5 osteoporosis 212

11.3 Preparing and Executing a Query

When you prepare and execute a query, you typically use the following methods:

%PrepareMDX()
method %PrepareMDX(pMDX As %String) as %Status

Parses the query, converts it to a runtime query object, and prepares it for execution.

%Execute()
method %Execute(ByRef pParms) as %Status

Executes the query synchronously; the pParms argument is discussed after this list. Use this only after you have
prepared the query.

%ExecuteAsynch()

method %ExecuteAsynch(Output pQueryKey As %String,
ByRef pParms,
pWait As %Boolean = 0) as %Status

Executes the query asynchronously (or synchronously depending on the value of pWait). The arguments are dis-
cussed after this list. Use this only after you have prepared the query.

%ExecuteDirect()

classmethod %ExecuteDirect(pMDX As %String,
ByRef pParms,
Output pSC As %Status) as %DeepSee.ResultSet

Prepares and executes the query and then returns the result set. pSC is the status, which you should check. For the
other arguments, see the discussion after this list.

Implementing InterSystems IRIS Business Intelligence 79

Executing Business Intelligence Queries Programmatically

Where:

» pParms— Specifies the values of any named parameters to use in this query. This is a multidimensional array with
one or more nodes as follows:

Node Value

Parameter name, not case-sensitive Value of this parameter

These values override any values for the same parameters given within the body of the query itself.

» pQueryKey — Returns the unique key for this query, for use when later referring to the query (to cancel it, get the cell
count, or for other uses).

* pWait — Specifies whether to wait until the query has completed, before returning from this method call.

If pWait is true, % ExecuteAsynch() runs synchronously.
The following sample uses a query that contains a named parameter; this is an InterSystems extension to MDX:

Class Member

ClassMethod RunQuery2(city as %String = "Magnolia",Output result As %DeepSee.ResultSet) As %Status
{

Set rset=##class(%DeepSee.ResultSet) .%New()
Set query="WITH %PARM c as “value:Pine" "
_"SELECT homed.[city].@c ON O FROM patients"
Set status=rset.%PrepareMDX(query)
IT $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Set myparms(‘‘'c')=city
Set status=rset.%Execute(.myparms)
If $$$I1SERR(status) {Do $System.Status.DisplayError(status) Quit status}

Write !, "Full results are as follows L1
Do rset.%Print()

Quit $$$0K
3

The following shows an example Terminal session:

d ##class(BI.APISamples) .RunQuery2(‘‘Centerville')

Full results are as follows *****xddkkdrtix
Centerville
1,124

11.4 Printing the Query Results

To display the query results for diagnostic purposes, use one of the following methods:

%Print()
Prints the query results and returns a status. For an example, see Basic Example and Preparing and Executing a
Query, earlier in this page.

%PrintListing()

If the query uses the MDX DRILLTHROUGH clause, this method performs the drillthrough for the first cell of
the query, and prints the results to the current device. Otherwise, it prints an error.

This method does not return anything.

80 Implementing InterSystems IRIS Business Intelligence

Examining the Query Results

Important: Both methods include a line number at the start of each line of data (that is, after any column headings).
The line number is not part of the results.

The following example demonstrates % PrintListing():

Class Member

ClassMethod RunQuery3(Q)
Set rset=##class(%DeepSee.ResultSet) .%New()

Set query="DRILLTHROUGH SELECT gend.female ON O,birthd.[1913] ON 1 *
_"FROM patients RETURN PatientlD,PrimaryCarePhysician->LastName"

Set status=rset.%PrepareMDX(query)
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

Set status=rset.%Execute()
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

Write !, "Listing details for the first cell are as follows 1
Do rset.%PrintListing()

3
You can use this in the Terminal as follows:

SAMPLES>d ##class(BI.AP1Samples).RunQuery3()

Listing details for the First cell are as follows *****xkkkkdkrrx
PatientID LastName

SUBJ_101317 Xiang

SUBJ_104971 North

SUBJ_105093 Klausner

SUBJ_109070 Quine

DWNPFH

11.5 Examining the Query Results

To work with the query results programmatically, you first need to understand their organization. The result set is a set of
cells organized by a set of axes. Unless you are sure of the organization of the result set, use % GetRowCount() and
% GetColumnCount() to get information about the number of rows and columns.

Then to access the value in a given cell, use the % GetOr dinalVValue() method. Or to access the column and row header
labels, use the % GetOrdinalL abel () method. Or to get detailed information about members used in a cell, use the
% GetAxisM ember s() method. The following subsections give the details.

Note: There are different methods to examine the results of a DRILLTHROUGH query. See the next section.

11.5.1 Getting the Number of Columns and Rows

To get the number of columns in the result set, use % GetColumnCount().
Similarly, to get the number of rows, use % GetRowCount().

For example, the following method prints a given result set and then uses the preceding methods to report on the axes of
this result set:

Implementing InterSystems IRIS Business Intelligence 81

Executing Business Intelligence Queries Programmatically

Class Member

ClassMethod ShowRowAndColInfo(rset As %DeepSee.ResultSet)
{

//print query results
write I, "Result set for comparison”,!
do rset.%Print()

set colCount=rset.%GetColumnCount()

set rowCount=rset.%GetRowCount()

write !, "This result set has ",colCount, " column(s)"
write !, "This result set has ",rowCount, " row(s)"

}
The following shows example output from this method:

Result set for comparison
Patient Count

1 None 844
2 asthma 55
3 CHD 38
4 diabetes 55
5 osteoporosis 26

This result set has 1 column(s)
This result set has 5 row(s)

The following shows output based on a different result set:

Result set for comparison

1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

This result set has 1 column(s)
This result set has 6 row(s)

As noted earlier, remember that % Print() includes a line number at the start of each line of data, and this line number is
not part of the results.

11.5.2 Getting the Value of a Given Cell

To get the value of a given cell, use % GetOrdinalValug(). This method has the following signature:
method %GetOrdinalValue(colNumber,rowNumber) as %String

Where colNumber is the column number (and 1 represents the first column). Similarly, rowNumber is the row number (and
1 represents the first row). If there is no such cell within the result set, the method returns null.

11.5.3 Getting the Column or Row Labels

To get the labels used for a column or a row, call the % GetOrdinalL abel() method of your instance. This method has the
following signature:

method %GetOrdinalLabel (Output pLabel As %String,
pAxis As %Integer,
pPosition As %Integer,
Output pFormat As %String) as %Integer

Where:

» pLabel is a multidimensional array with one node for each label as follows:

82 Implementing InterSystems IRIS Business Intelligence

Examining the Query Results

Node Value

Integer that represents the label number; the first label is 1, and so on. Label

In this array, the first label is the most specific (innermost) label, the second label is the next most specific, and so on.
See the example.

This array is returned as an output parameter.
» pAXisis the axis to examine. Use 1 to get the column labels or use 2 to get the row labels.

» pPosition is the position along the axis to examine. The first position is 1.

This method returns the number of labels at the given position on the given axis. The following shows an example. It executes
a CROSSJOIN query (so that an axis has multiple labels), displays the results so that you can compare them to the labels,
and then it iterates through the members on that axis, printing the labels for each:

Class Member

ClassMethod ShowRowLabels() As %Status
{

Set rset=##class(%DeepSee.ResultSet) .%New()

Set query="SELECT CROSSJOIN(aged.[age group].MEMBERS,"

Set query=query_"'gend.gender .MEMBERS) ON 1 FROM patients"

Set status=rset.%PrepareMDX(query)

If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Set status=rset.%Execute()
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Write !, "Full results are as follows i
Do rset.%Print()

Write !, "Labels used on the rows are as follows i
For j=1:1:rset.%GetRowCount() {

Write I, "Row ",j

Set labelcount=rset.%GetOrdinalLabel(.pLabel,2,j)

For i=1:1:labelcount {

?rite " label (""_i_") is "_plLabel (i)
}
Quit $$$0K

When executed in the Terminal, this method gives output like the following:

SAMPLES>d ##class(BI.APISamples).ShowRowLabels()

Full results are as follows *****xkdkkdktix

1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

Labels used on the rows are as Tollows ******dddkddidk

Row 1
label (1) is Female
label(2) is 0 to 29
Row 2
label (1) is Male
label(2) is 0 to 29
Row 3
label (1) is Female
label (2) is 30 to 59
Row 4
label (1) is Male
label (2) is 30 to 59
Row 5
label (1) is Female
label (2) is 60 +

Implementing InterSystems IRIS Business Intelligence 83

Executing Business Intelligence Queries Programmatically

Row 6
label (1) is Male
label (2) is 60 +
SAMPLES>

11.5.4 Getting Details for Cell Contents

So far, this page has provided instructions only on obtaining labels and cell values. In some cases, you might need more
specific information about the contents of a given cell.

First, it is useful to review the concepts, with some example queries for reference. Consider the following query results, as
seen in the Business Intelligence shell:

Patient Count

1 None 844
2 asthma 55
3 CHD 38
4 diabetes 55
5 osteoporosis 26

In this example, each row corresponds to one member of the diagnosis dimension. The column corresponds to one member
(Patient Count) of the Measures dimension. The following shows another example:

Patient Count

1 0 to 29->Female 207
2 0 to 29->Male 192
3 30 to 59->Female 205
4 30 to 59->Male 209
5 60+->Female 115
6 60+->Male 72

In this example, each row corresponds to a tuple that combines one member of the age group dimension with one member
of the gender dimension. (A tuple is a intersection of members.)

In general, in an MDX result set, each row corresponds to a tuple and each column corresponds to a tuple. Each of these
tuples might be a simple member as in the first example, or might be a combination of multiple members as shown in the
second example. A tuple may or may not include a measure.

For any given cell, you might need to find information about the tuple of the column to which it belongs and the tuple of
the row to which it belongs. To get information about these tuples, do the following:

1. Invoke the % GetAxisM ember s() method of your result set:

method %GetAxisMembers(pAxis As %Integer,
Output pKey,
pltemNo As %Integer = ') as %Status

Finds information for the requested axis (and the optional requested item on that axis), writes that to a process-private
global and returns, by reference, a key that you can use to retrieve information from that global. (The system writes
this information to a process-private global because potentially there can be a large amount of information, and it is
impossible to determine its structure ahead of time.)

pAXxis optionally specifies the axis you are interested in:
e Use 0 to return information about the slicer axis (the WHERE clause).
» Use 1 to return information about the columns (this is axis 0 in MDX).

e Use 2 to return information about the rows.

pKey, which is returned as an output parameter, is a key that you use later to access the information.

pltemNo optionally specifies the tuple on that axis for which you want information. If you specify this argument, the
method writes data only for that tuple; if you omit it, the method writes data for all tuples. Use 1 for the first tuple on
an axis.

84 Implementing InterSystems IRIS Business Intelligence

Examining the Query Results

2. Use pKey to retrieve the appropriate node or nodes from the process-private global /||DeepSee. AxisMembers. The
% GetAxisM ember s() method writes data to the nodes || DeepSee.AxisMember s(pKey,pAxis,j,K) where:

* pKey is the key returned by the % GetAxisM ember s() method.

* pAXisis an integer that specifies the axis.

e jisan integer that specifies the tuple in which you are interested. Use 0 for the first tuple on an axis.

« kis an integer that specifies the member of the tuple in which you are interested. Use 1 for the first member of a

tuple.

3. Retrieve the appropriate list items from each of those nodes. Each node of /||DeepSee. AxisMembers has a value of the
following form:

$LB(nodeno, text,dimName,hierName, levelName,memberKey,dimNo,hierNo, levelNo)

Where:
* nodeno is the node number of this part of the axis.
» textis the text for this part of the axis.

» dimName, hierName, and levelName are the names of the dimension, hierarchy, and level used for this part of the
axis.
* memberKey is the key for the member used for this part of the axis.

e dimNo, hierNo, and levelNo are the numbers of the dimension, hierarchy, and level used for this part of the axis.

4. Kill the generated nodes of the process-private global /||DegpSee. AxisMembers.
Or, if you are certain that no other processes are using the % GetAxisM ember s() method, kill the entire global.

The system does not automatically Kill this global.

The following example method prints a description of the column and row tuples for a given cell, given a result set and a
cell position:

Class Member

ClassMethod ShowCellDetails(rset As %DeepSee.ResultSet, col As %Integer = 1, row As %Integer = 1)

//print query results
write I, "Result set for comparison",!
do rset.%Print()

//call %GetAxisMembers to build process-private global with info
//for given result set and axis; return key of node that has this info
Set status=rset.%GetAxisMembers(l, .columnkey)

IT $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

Set status=rset.%GetAxisMembers(2, - rowkey)

IT $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}

write I, "We are looking at the cell (“"_col_","_row_")"
write !, "The value in this cell is ", rset.%GetOrdinalvalue(col,row)
write !, "For this cell, the column is a tuple that combines the following member(s):"
set i=0
while (i "= ")
write I, ™ Member ", i
set |nfoI|st—A||DeepSee AxusMembers(columnkey 1,col, |)

write:$LI(Cinfolist,3)" . Dimension name: ,$LI1(infolist,3)
write:$LI(infolist,4)"="" ! " Hierarchy name: ",$L1(infolist,4)
write:$LI(infolist,5)"="" 1" Level name: ",$Ll(infolist,5)
write:$LI(infolist,6)"="" 1 Member key: *,$L1(infolist,6)

set i=$0RDER(| |DeepSee.AxisMembers(columnkey,1,col,i))

}

write 1, "For this cell, the row is a tuple that combines the following member(s):"
set i=0
while (i "= ") {

Implementing InterSystems IRIS Business Intelligence 85

Executing Business Intelligence Queries Programmatically

write I, " Member ",i

set |nfo||st-A||DeepSee AX|sMembers(rowkey 2,row, i)
write:$LI(infolist,3) =" Dimension name: ",$Ll(infolist,3)
write:$LI(infolist,4)"= Hierarchy name: ",$LI1(infolist,4)
write:$LI(infolist,5) =" Level name: ",$LI(infolist,5)
write:$LI(infolist,6)"=""" o Member key: ",$LI(infolist,6)

set 1=$0RDER(| |DeepSee.AxisMembers(rowkey,2,row,i))

~| |DeepSee . AxisMembers(columnkey)
~| | DeepSee . AxisMembers(rowkey)

ot \aad

}

The following shows example output for this method:

Result set for comparison

0 to 29 30 to 59 60+
1 Female->None 189 184 62
2 Female->asthma 18 7 7
3 Female->CHD * 4 14
4 Female->diabetes * 11 23
5 Female->osteopor * * 23
6 Male->None 178 186 45
7 Male->asthma 14 7 2
8 Male->CHD * 5 15
9 Male->diabetes * 11 10
10 Male->osteoporos * * 3

We are looking at the cell (2,6)
The value in this cell is 186
For this cell, the column is a tuple that combines the following member(s):
Member O
Dimension name: AgeD
Hierarchy name: H1l
Level name: Age Group
Member key: 30 to 59
For this cell, the row is a tuple that combines the following member(s):
Member O
Dimension name: GenD
Hierarchy name: H1
Level name: Gender
Member key: Male
Member 1
Dimension name: DiagD
Hierarchy name: H1
Level name: Diagnoses
Member key: <null>

11.6 Examining the Query Results for a DRILLTHROUGH
Query

If the query uses the MDX DRILLTHROUGH statement, then you use a different technique to examine the results.

In this case, use the following method of your instance of %DeepSee.ResultSet:
method %GetListingResultSet(Output pRS As %SQL.StatementResult, Output pFieldList As %List) as %Status

This method returns the following as output parameters:
* PRSis an instance of %SQL.StatementResult that contains the results from the DRILLTHROUGH query.
o pFiedListisalist (in $L1ST format) of the fields in this result set.

Use pRSin the same way that you use any other instance of %SQL.StatementResult; see the class reference for details.

86 Implementing InterSystems IRIS Business Intelligence

Examining the Query Metadata

11.7 Examining the Query Metadata

You can use the following methods to get the cube name, query text, and other metadata for any instance of
%DeepSee.ResultSet. (For information on accessing the query plan, see the next section.)

%GetCubeName()

method %GetCubeName() as %String

Returns the name of the cube that the query uses. The query must be prepared before you can use this method.
%GetListingSQL()

method %GetListingSQL() as %String

Returns the SQL statement used to display the source data, if the query is a DRILLTHROUGH query.

%GetParameterinfo()
method %GetParameter Info(Output pParms) as %Status

Returns a multidimensional array that contains the parameters used in the query, along with the values used for
them. This array has the structure described earlier in this page.

%GetQueryText()
method %GetQueryText() as %String

Returns a string that contains the MDX query that was used to create this result set.

%GetSlicerForCellRange()

method %GetSlicerForCellRange(Output pSlicer As %String,
pStartRow As %Integer, pStartCol As %Integer,
pEndRow As %Integer, pEndCol As %Integer)
as %Status

Returns, by reference, a string that contains the MDX slicer statement for the given range of cells. You specify a
range of cells by indicating a rectangle that consists of a starting row and column and an ending row and column.
The first cell position on any axis is 1.

%IsDrillThrough()
method %IsDrillThrough() as %Boolean

Returns true if the query is a DRILLTHROUGH query; returns false otherwise.

For example, the following method generates a report on the basic metadata:

Class Member

ClassMethod ShowQueryMetadata(rset As %DeepSee.ResultSet) As %Status
{

Set cubename=rset._%GetCubeName()
Write !, "This result set comes from the following cube: ",cubename,!

Set status=rset.%GetParameterInfo(.pParms)
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}
I $DATA(pParms) {

Write "The query uses the following parameters:",!

Implementing InterSystems IRIS Business Intelligence 87

Executing Business Intelligence Queries Programmatically

Set p = $ORDER(pParms('''"))
While (p "= ") {
Write $$SUPPER(p), " = " ,$GET(pParms(p,"VALUE™)),!
Set p = $ORDER(pParms(p))
3

Set query=rset.%GetQueryText()
Write "The query is as follows:",!, query,!

Set isdrill=rset.%IsDrillThrough()
If isdrill {
Set listingsqgl=rset.%GetListingSQL()
Write 1!, "It uses the following SQL to drill into the source table:"
Write I, listingsql
3
}

The following examples (with line breaks added for readability) show output from this method, using several sample result
sets. In the first case, we use GetResultSet1() of the sample class BI.APISamples:

SAMPLES>set rsil=##class(BI.APISamples).GetResultSetl()
SAMPLES>d ##class(BI.APISamples).ShowQueryMetadata(rsl)

This result set comes from the following cube: patients

The query is as follows:

SELECT {[MEASURES].[AVG TEST SCORE],[MEASURES].[%COUNT]} ON O,
[DIAGD] - [H1]-[DIAGNOSES] -MEMBERS ON 1 FROM [PATIENTS]

In the next example, we use GetResultSet2(), which uses a query that contains named parameters:

SAMPLES>set rs2=##class(BI.APISamples).GetResultSet2()
SAMPLES>d ##class(BI.APISamples).ShowQueryMetadata(rs2)

This result set comes from the following cube: patients

The query uses the following parameters:

C = Magnolia

The query is as follows:

SELECT [HOMED].[H1].[CITY].MAGNOLIA ON O,%SEARCH ON 1 FROM [PATIENTS]

In the next example, we use GetResultSet3(), which uses a query that does a drillthrough:

SAMPLES>set rs3=##class(BI.APISamples).GetResultSet3()
SAMPLES>d ##class(BI.APISamples).ShowQueryMetadata(rs3)

This result set comes from the following cube: patients

The query is as follows:

DRILLTHROUGH SELECT [GEND].[H1].[GENDER].[FEMALE] ON O, [BIRTHD].[H1]-[YEAR].[1913] ON 1
FROM [PATIENTS] RETURN PatientlD, PrimaryCarePhysician-> LastName

It uses the following SQL to drill into the source table:

SELECT TOP 1000 PatientlD,PrimaryCarePhysician-> LastName FROM
Bl_Study.Patient source WHERE source.%ID IN (SELECT _DSsourceld FROM
Bl_Model_PatientsCube.Listing WHERE _DSqueryKey = "1858160995%)

The following example method generates a report that shows the MDX slicer for a given range of cells, in a given result
set:

Class Member

ClassMethod ShowSlicerStatement(rset As %DeepSee.ResultSet, Rowl As %Integer = 1,
Coll As %Integer = 1, Row2 As %Integer, Col2 As %Integer) As %Status
{

If "$DATA(Row2) {Set Row2=Rowl}

I "$DATA(Col2) {Set Col2=Col1l}

Set status=rset.%GetSlicerForCellRange(.slicer,Rowl,Coll,Row2,Col2)
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit status}

Write !, "The requested cell range:"
Write !, "™ Columns ",Coll, " through ", Col2
Write I, ™ Rows ",Rowl, " through ", Row2

88 Implementing InterSystems IRIS Business Intelligence

Other Methods

Write !, "The slicer statement for the given cell range is as follows:"
Write !, slicer

IT "rset.%lIsDrillThrough(){
Write 1!, "For comparison, the query results are as follows:",!
Do rset.%Print()

}

Else {
Write 1!, "This is a drillthrough query and %Print "
_"does not provide a useful basis of comparison"

}

To try this method, we use GetResultSet4() of BI.APISamples, which uses a query that has different levels for rows and
columns:

SAMPLES>d ##class(BI.APISamples).ShowSlicerStatement(rs4)

The requested cell range:

Columns 1 through 1

Rows 1 through 1
The slicer statement for the given cell range is as follows:
CROSSJOIN({[AgeD]-[H1]-[Age Bucket].-&[0 to 9]1}.{[GenD]-[H1]-[Gender].&[Female]l})

For comparison, the query results are as follows:

Female Male
10 to9 689 724
2 10 to 19 672 722
3 20 to 29 654 699
4 30 to 39 837 778
5 40 to 49 742 788
6 50 to 59 551 515
7 60 to 69 384 322
8 70 to 79 338 268
9 80+ 204 113

11.8 Other Methods

The class %DeepSee.ResultSet also provides additional methods like the following:
s %GetCelCount()

e %FormatNumber()

* %GetOrdinalLabel()

* %GetOrdinalKey()

* %GetQueryKey()

* %GetRowTotal()

* %GetColumnTotal()

e %GetGrandTotal()

For a full list and details, see the class reference.

11.9 Executing Query Files

The system provides a tool for executing MDX queries that have been saved in files. The output can be written to the current
device or to a file. The output results include statistics on the query run.

This tool can be useful for simple testing.

Implementing InterSystems IRIS Business Intelligence 89

Executing Business Intelligence Queries Programmatically

11.9.1 About Query Files

A query file must be an ASCI| file as follows:

* Any line breaks in the file are ignored.

» Two or more blank spaces in a row are treated as a single blank space.
e The file can contain any number of MDX queries (zero or more).

e The queries can contain comments, but comments cannot be nested. An MDX comment has the following form:
/* comment here */

A comment may or may not be on its own line.

» Use the command GO on a line by itself to execute a query. The query consists of all text from the previous GO (or
the start of the file) up to, but not including, the GO command.

There must be no spaces before GO on this line.

For example:

/* First query in this file*/
SELECT MEASURES.%COUNT ON O,
homed. [home zip].[34577].CHILDREN
ON 1 FROM patients

GO

/* Second query in the file*/

SELECT MEASURES.%COUNT ON O,

homed.[home city].MEMBERS ON 1 /*ignore this comment*/FROM patients
GO

11.9.2 Executing a Query File

To execute a query file, use the following class method of %DeepSee.Shell:
ClassMethod %RunQueryFile(pQueryFile As %String, pResultFile As %String = ") As %Status

Where:
* pQueryFileis the name of the query file.
* pResultFileis the name of the file into which to write the query statistics.

If this argument is null, the method writes the query statistics to the current device.

In all cases, the method writes the query results to the current device.

For example:

d ##class(%DeepSee.Shell) .%RunQueryFile('c:\mdxtest.txt")

Query 1:
/* First query in this Ffile*/SELECT MEASURES.%COUNT ON O, homed.[home zip].[34577]-CHILDREN ON 1 FROM
patients

Count
1 Cypress 1,091
2 Magnolia 1,087
3 Pine 1,121
Query Statistics:
Results Cache: 1

90 Implementing InterSystems IRIS Business Intelligence

Executing Query Files

Computations: 0
Cache Hits: 0
Cells: 0
Expressions: 0
Prepare: 0.261 ms
Execute Axes: 0.026 ms
Execute Cells: 0.000 ms
Consolidate: 0.000 ms
Total Time: 0.287 ms
ResultSet Statistics:

Cells: 3
Parse: 3.553 ms
Display: 0.361 ms
Total Time: 3.914 ms
Query 2:

/* Query 2*/SELECT MEASURES.%COUNT ON O, homed.[home city]-MEMBERS ON 1 /*ignore this comment*/FROM
patients

Count
1 Cedar Falls 1,119

For information on query statistics, see How the Analytics Engine Works.

Implementing InterSystems IRIS Business Intelligence 91

12

Performing Localization for Business
Intelligence

This page describes how to localize strings in InterSystems IRIS® data platform Business Intelligence, as part of the
Business Intelligence implementation process.

12.1 Overview of Localization in Business Intelligence

This section provides an overview of how InterSystems IRIS Business Intelligence supports localization of strings.

12.1.1 Model Localization

The system provides a simple mechanism for localizing the names of level, measures, and other model elements.

Every element in the Business Intelligence model has a logical value and a display value. You specify the logical value,
the original display value, and alternative display values for use with other language locales. Then:

* In MDX queries, you always use the logical value.

» The user interfaces use the appropriate display value, if available. The user configures the browser to use a preferred
language, and when the browser sends requests to a server, those requests indicate the preferred language to use, if
available. The server sends a reply that includes the appropriate set of strings, based on that language preference.

12.1.2 Folder Item Localization

In a similar manner, you can localize a specific set of following strings within dashboards, pivot tables, and other folder
items. For these strings, you specify the original display value and alternative display values for use with other language
locales.

The User Portal and the dashboard viewer use the appropriate display value, if available. The user configures the browser
to use a preferred language, and when the browser sends requests to a server, those requests indicate the preferred language
to use, if available. The server sends a reply that includes the appropriate set of strings, based on that language preference.

Implementing InterSystems IRIS Business Intelligence 93

Performing Localization for Business Intelligence

12.2 Preparing for Model Localization

To prepare for localization of strings in the Business Intelligence models, do the following:
» Specify the DOMAIN class parameter in each cube, subject area, and KPI class.

For example:

Class Member

Parameter DOMAIN = "PATIENTSAMPLE";

The classes in the Patients sample all use the same value for DOMAIN, but this practice is not required. You can
specify a different value for each class.

» Specify a value for the displayName attribute for every Business Intelligence element.

In the Architect, when you specify a name, the system initializes the Display name field with the same value. When
you work in an IDE, however, you must remember to specify the displayName attribute (which is optional), in
addition to the name attribute (which is required).

When you compile the classes, the system adds values to the 1 RI S.M sg global in this namespace. These values may look
like this:

Global Search Mask: “"IRIS.Msg
Search History. AMRIS.Msg ¥ Maximum Rows: | 100
iE AIRIS.Msg("HOLEFOODS™) = "en"
2 AIRIS.Msg("HOLEFOODS","en",14218931) = "Date of sale"
3: AIRIS.Msg("HOLEFOODS","en",32956064) = "Channel Name"
4: AIRIS.Msg("HOLEFOODS","en",41399927) = "¥%Search"
=k AIRIS.Msg("HOLEFOODS","en",65437166) = "Daysold"
6: AIRIS.Msg("HOLEFOODS","en",79524168) = "Listing"
Tie AIRIS.Msg("HOLEFOODS","en",118549960) = "Longitude"
B: AIRIS.Msg("HOLEFOODS","en",125554797) = "HoleFoods Budget"
e AIRIS.Msg("HOLEFOODS","en",147780672) = "Region”
18: AIRIS.Msg("HOLEFOODS","en",212821625) = "Product Category"
11: AIRIS.Msg("HOLEFOODS","en",273309567) = "Product Name"

This global (which is known as the Message Dictionary) contains the messages defined in this namespace; for Business
Intelligence, each message corresponds to the name of a model element.

When you compile a cube, subject area, or KPI class that defines the DOMAIN parameter, the system updates this global
to include the messages defined in that class, in your default language. Each message uses a numeric identifier and has a
string value that applies to the default language.

If you do not see the expected set of strings, make sure that the class defines the DOMAIN parameter, that you have specified
values for displayName, and that you have compiled the class.

94 Implementing InterSystems IRIS Business Intelligence

Preparing for Folder Item Localization

12.3 Preparing for Folder Item Localization

This section describes how to prepare for localization of strings in the dashboards, pivot tables, and other folder items.

12.3.1 Default Domain

DeepSeeUser is the domain that the system uses by default when it looks for a localized string in a dashboard. For details,
see the following sections.

12.3.2 Adding Strings to the Message Dictionary

Create a class that, when compiled, generates a set of entries in the Message Dictionary. In this class:
» Extend %RegisteredObject or any other class that provides access to the standard system macros.

» Specify the DOMAIN class parameter. For example:

Class Member

Parameter DOMAIN = "‘DeepSeeUser";

The DeepSeeUser domain is the most convenient choice, because this is the default domain.

» Define a method that uses $$$Text(Localizable Sring) to refer to each string that the given domain should contain.
Localizable Sring is an expression that evaluates to a string in this domain.

You can specify any name for the method. It does not need to take any arguments or return any values. The following
shows an example:

ClassMethod DefineL18NQ)
{
set x=$$$Text(''Dashboard Title')
set x=$$$Text('Dashboard Description')
set x=$$$Text(""KeywordA™)
set x=$$$Text(''KeywordB'")
set x=$$$Text(""Control Label™)
set x=$$$Text("'Tooltip')

set x=$$$Text(""Widget Title™)
set x=$$$Text(""Chart Title™)

}

Or, instead of $$$Text(Localizable Sring}, use $$$Text(@Messagel D@) where Messagel D is a numeric ID that
is unique within the given domain.

When you compile this class, the compiler finds each instance of the $$$Text macro and adds values to the *I|RIS.M sg
global in this namespace.

12.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder
ltem

In the definition of a dashboard, pivot table, or other folder item, use one of the following values instead of the exact string
that you want to see:
* $$$Localizable Sring

Where Localizable Sring is a string defined in the default domain.

For example:

Implementing InterSystems IRIS Business Intelligence 95

Performing Localization for Business Intelligence

Description Keywords
£2iDashboard Description EEEsEeywordh
£EEKeywordB

Used to help find items. One keyword per line

For another example:

Control Label or lcon

[3$$Control Label |

Label displayed for this control; L

Control Tooltip

$$3Tooltip
Tooltip displayed for this control

* $$$Localizable Sring/ OtherDomain
Where Localizable String is a string defined in the domain given by OtherDomain.

For example:
Description Keywords
£25Dashboard Descriptionl/myDomain EEEHeyworddl /myDomain

Pl

S£EEKeywordBl /myDomain

Used to help find items. One keyword per line

If you do not include the /7OtherDomain part, the system looks for this string in the default domain.

Important: For the name of a folder or of a folder item, use the following variation: $$$Localizable
Sring#OtherDomain

For example: use the following as a folder name: $$$My Folder#MyDeepSeeDomain

* $$$@MessagelD
Where Messagel D is a numeric message 1D defined in the default domain.
* $$$@Messagel D/OtherDomain
Where Messagel D is a numeric message ID defined in the domain given by Other Domain.

If you do not include the /OtherDomain part, the system looks for this string in the default domain.

Use these values for any of the following strings in the folder item definition:

» Folder name

* Folder item name

» (For dashboards) Dashboard title (if specified, this is shown instead of the dashboard name)
* Item description

» Keywords

+ Labels for dashboard controls

e Tooltips for dashboard controls

« Titles of widgets (but not their logical names)

96 Implementing InterSystems IRIS Business Intelligence

Localizing the Strings

» Chart titles within dashboard widgets that display charts

12.4 Localizing the Strings

To localize the strings:

1. Export the Message Dictionary to one or more XML files. To do so, do the following in the Terminal:

a.
b.

Change to the namespace in which you are using Business Intelligence.

Identify the output file and its location:

ObjectScript

SET file="C:\myLocation\Messages.xml"

The specified directory must already exist; the system does not create it.
Run the export command:

» It may be practical to export only those messages in a particular domain:
ObjectScript
DO ##class(Y%Library.MessageDictionary).ExportDomainList(file, "myDomain'™)
The domain names are case-sensitive.

e Or, to export all the messages in the namespace:

ObjectScript

DO ##class(%Library._MessageDictionary) . Export(file)

2. For each desired language, make a copy of the message file.

3. Edit each message file as follows:

a

Edit the Language attribute of the root element:
<MsgFile Language="'en''>

Change this to the language name of the desired language.

This must be an all-lowercase language tag that conforms to RFC1766 (so that a user can choose the preferred
language in the browser from the standard set). This tag consists of one or more parts: a primary language tag

(such as en or ja) optionally followed by a hyphen (-) and a secondary language tag (so that the result has the
form en-gb or ja-jp).

For example:

<MsgFile Language="es'">

Scan the file to find the <MsgDomain> element that corresponds to the appropriate domain:
<MsgbDomain Domain="myDomain'>

If you exported only one domain, the file contains only one <MsgDomain> element.

Implementing InterSystems IRIS Business Intelligence 97

https://www.ietf.org/rfc/rfc1766.txt

Performing Localization for Business Intelligence

c. Within this section, edit the value of each message. For example, change this:
<Message 1d="2372513034">City</Message>
To this:

<Message 1d=""2372513034">Ciudad</Message>

4. Import the edited message file or files. To do so:

» To import a single file:

ObjectScript

SET file=""C:\myLocation\myfile.xml"
DO ##class(%Library._MessageDictionary) . Import(file)

» To import all the files in the same directory:

ObjectScript
SET myFiles="C:\myLocation"
DO ##class(%Library._MessageDictionary). ImportDir(myFiles,"d")

5. Optionally use the Management Portal to verify that the message dictionary has been updated. To do so, switch to the
appropriate namespace, select System Explorer > Globals, and then click View Globals for the ~ I RI S.M sg global.

Within this global, you should see a new set of subscripts that correspond to the language you have added.

6. Inyour browser, find the setting that controls the language that it requests for use on localized pages. Change this setting
to the language that you specified in the edited message file.

Depending on the browser, you might need to clear the browser cache, restart the browser, or both.
7. Access the Analyzer and validate that you see translated strings.

For more information on the utility methods in %Library.MessageDictionary, see the class reference for that class or see
Sring Localization and Message Dictionaries.

98 Implementing InterSystems IRIS Business Intelligence

13

Packaging Business Intelligence Elements
Into Classes

While implementing Business Intelligence, you typically develop your application elements on a test system and then copy
them to a production system. This page describes how to package the InterSystems IRIS® data platform Business Intelligence
elements and copy them to another system.

Note: This page assumes that you are familiar with the process of exporting from and importing into your IDE.

Also see Other Export/Import Options.

13.1 Overview

Your Business Intelligence implementation may include some or all of the following elements:

* Cube class definitions

e Subject area class definitions

» KPI class definitions

» Business Intelligence folder items, which include all the items that are not defined as classes. These include pivot
tables, dashboards, pivot variables, and so on.

To move all these items to another system (here called the target system), do the following:

1. Export all the folder items to one or more Business Intelligence container classes, as described in the next section.

A Business Intelligence container class contains an XML representation of any number of Business Intelligence folder
items.

2. Export the cube, subject area, and KPI class definitions.

You can create a project that contains all your Business Intelligence class definitions and folder items. Then you can
export this project from InterSystems IRIS® data platform and import it into another InterSystems IRIS instance, where
needed. You can use your IDE export/import options or you can use the usual class methods in %SYSTEM.OBJ.

3. Examine the exported folder item definitions to make edits for portability.

4. Import all the class definitions to the target system.

Implementing InterSystems IRIS Business Intelligence 99

Packaging Business Intelligence Elements into Classes

When you compile the container classes, the system iterates over all the folder items contained in those classes and
creates or overwrites each of those items in the target system.

13.2 Exporting Folder Items to a Container Class

To export Business Intelligence folder items to container classes, you use a method that generates a file that defines a
container class that includes the items. The method is % ExportContainer (), which is in the class %DeepSee.UserLibrary.Utils.
This method is as follows:

classmethod %ExportContainer(ByRef pltemList As %String,

Where:

pFileName As %String,
pContainerClassName As %String = ') as %Status

* pltemList is a multidimensional array that has nodes of the following form:

pltemList(itemidentifier)

Node Node Value

For each itemidentifier, use one of the following strings:

dashboardname. dashboard where dashboardname is the name of a dashboard. You can use the wildcard * to
represent all dashboards; you can use the wildcard with the other types of items as well.

pivotname. pivot where pivotname is the name of a pivot table (or use *).

Note that the % ExportContainer () method identifies all the pivot tables used by any dashboard you export. The
only pivot tables you need to export explicitly are the pivot tables that are not used by any dashboard.

namedfiltername. namedFi I ter where namedfiltername is the name of a named filter (or use *).

sharedcal cmembername. sharedCal cMember where sharedcalcmembernameis the name of a shared calculated
member (or use *).

listinggroupname. listingGroup where listinggroupname is the name of a listing group (or use *).
pivotvarname. pivotVariable where pivotvarname is the name of a pivot variable (or use *).
settingname. userSetting where settingname is the name of a user setting (or use *).
termlistname. termL i st where termlistname is the name of a term list (or use *).

themename. theme where themename is the name of a dashboard theme (or use *).

widgettemplatename. widgetTemplate where widgettemplatename is the name of a widget template (or use
*)_
linkname. 1 ink where linkname is the name of a dashboard link (or use *).

reportname. report where reportname is the name of a dashboard report (or use *).

» pFileName is the name of the file to generate.

e pContainerClassName is the full name of the container class to generate, including package.

100

Implementing InterSystems IRIS Business Intelligence

Editing the Business Intelligence Folder Items for Portability

13.3 Editing the Business Intelligence Folder Items for
Portability

If you intend to copy a Business Intelligence folder item to another system, it is worthwhile to examine the exported XML
and make any necessary edits, discussed in the following subsections.

Also note the following points:

* When you export a dashboard, the system does not automatically export any pivot tables that it uses. It is your
responsibility to identify and export the pivot tables as well.

» References between Business Intelligence elements (such as from a dashboard to any pivot tables) are made by name.

13.3.1 Removing <filterState> Elements

If it was saved in a previous release, a folder item definition might contain <fi I terState> elements, which are no longer
supported. If so, you should remove these — that is, remove both the starting tag <fi I terState> and the matching
ending tag </filterState>.

13.3.2 Stripping Out Local Data

A folder item definition might also contain information that is local to your system and not available on another system
(depending on what elements you package and share between systems). Check the XML for the following items:

| ocal Dat aSour ce attribute
Where found: <widget> elements in exported dashboards.

This attribute contains any local overrides performed in the Mini Analyzer. You should always clear this when
you use the exported XML in another system. For example, change this:

localDataSource=""$LOCAL/Basic Dashboard Demo/SamSmith/590125613._pivot"
To this:
localDataSource="""
Or remove the localDataSource attribute.
owner attribute

Where found: All folder items.

This element contains the name of the user who owns this item. If the given user does not exist on the target system,
edit this attribute. You can set the attribute to null. For example, change this:

owner="DevUser""
To this:
owner="""

Or you can remove the attribute.

Implementing InterSystems IRIS Business Intelligence 101

Packaging Business Intelligence Elements into Classes

resour ce attribute
Where found: All folder items.
This element contains the name of the resource used to secure this item, if any. If this resource does not exist on
the target system, edit this attribute. You can set the attribute to null or even remove the attribute.
cr eat edBy attribute
Where found: All folder items.

This element contains the name of the user who created this item. You can set the attribute to null or even remove
the attribute. If you do so, when the XML is imported (or the container class is compiled), createdBy is set to
the current user.

t i meCr eat ed attribute

Where found: All folder items.

This element contains the date and time (UTC) when this item was created. You can set the attribute to null or
even remove the attribute. If you do so, when the XML is imported (or the container class is compiled),
timeCreated is set to the current time stamp.

| ast Accessed attribute
Where found: All folder items.

This element contains the date and time (UTC) when this item was last accessed by a user. You can set the attribute
to null or even remove the attribute. If you do so, when the XML is imported (or the container class is compiled),
timeCreated is set to the current time stamp.

13.4 Importing an Exported Container Class

To import an exported container class, use the % ImportContainer () method, which is in the class
%DeepSee.UserLibrary.Utils. This method is as follows:

ClassMethod %ImportContainer(pFileName As %String = "', pReplace As %Boolean = 1) As %Status

Where:
» pFileName is the name of the file to generate.

» pReplace specifies whether to replace the existing class.

Note that % I mportContainer () automatically calls the % OnL oad() method if it is defined in the container class.

13.5 Using the Folder Manager

This section describes how to use the Folder Manager to see the dependencies of an item, export items, and import items.
You can also export and import these items programmatically.

102 Implementing InterSystems IRIS Business Intelligence

Using the Folder Manager

13.5.1 Seeing the Dependencies of a Folder Item

If you click the check box for a single item, the left area of the Folder Manager displays details for that item, including a
list of the items that it depends on:

Details |[Directory|
Name
Real Time Updates.dashboard

Created on

07/09/2012 13:18:48
Last modified
Today at 12:01:20

Depends on

* kpi . DEMODATACHANGES

« pivot: Use in Dashboards/Patients by
Doctor Group

« pivot: Use in Dashboards/Patients by
Favorite Color

« pivot: Use in Dashboards/Patients by
Group

13.5.2 Exporting Business Intelligence Folder Items to the Server

To export Business Intelligence folder items to files on the server:

1.

Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS username and password.
Switch to the appropriate namespace as follows:

a. Click the name of the current namespace to open the list of available namespaces.

b. From the list, click the appropriate namespace.

Select Analytics > Admin > Folder Manager.
Select Server.

For server Directory, type the full path of the directory in which to export the items. Or type the name of a directory
relative to the directory that contains the default database for this namespace. Or use the Browse button.

The directory must already exist.

Click the check box next to each item that you want to export.

Or to select all items, click the check box at the top of the column of check boxes.
Click Export.

Optionally click the Directory tab, which shows the files in the given directory.

Implementing InterSystems IRIS Business Intelligence 103

Packaging Business Intelligence Elements into Classes

Exportimport Location
= Server Browser

Server Directory
Coitest

Create Container Class For Export

[Details |[Directory |

Contents of export directory
Basic_Dashboard_Demo-dashboard xmil
Date_Fitter_Dema-dashboard xmil
HoleFoods Compound_Cube-dashboard xmil

13.5.2.1 Variation: Exporting a Container Class

To instead export a single file that consists of a container class that contains the given folder items, do the following:
1. Specify Server and Server Directory as in the preceding steps.

2. Select the items to export.

3. Select the option Create Container Class For Export.

4

Optionally select Export Related Supporting Items to export all supporting items that might be needed to deploy the
selected folder items. Examples of supporting items include pivot variables, named filters, and shared calculated
members.

5. For Container Class Name, optionally specify a fully qualified class name (package and class). If no Container Class
Name is specified, both the container class and the export file will use generated names.

6. Click Export.

For information on container classes, see Packaging Business Intelligence Folder Items into Classes.

13.5.3 Exporting Business Intelligence Folder Items to the Browser

To export Business Intelligence folder items to the browser’s download directory:
1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS username and password.
2. Switch to the appropriate namespace as follows:

a. Click the name of the current namespace to open the list of available namespaces.

b. From the list, click the appropriate namespace.

Select Analytics > Admin > Folder Manager.
Select Browser.

Select the items to export.

o o~ w

Optionally select Export Related Supporting ltems.

104 Implementing InterSystems IRIS Business Intelligence

Using the Folder Manager

7. For Container Class Name, optionally specify a fully qualified class name (package and class). If no Container Class
Name is specified, both the container class and the export file will use generated names.

8. Click Export.

13.5.4 Importing Business Intelligence Folder Iltems

To import a folder item that has previously been exported:
1. Click Analytics, Admin, and then click Folder Manager.

2. For server Directory, type the full path of the directory that contains the exported items. Or type the name of a directory
relative to the directory that contains the default database for this namespace.

3. Click the Directory tab, which shows the filenames for items in the given directory.

Exportimport Location
= Server Browser

Server Directory
Ctest

Create Container Class For Export

=3
[Details | [Directory |

Contents of export directory
Basic_Dashboard_Demo-dashboard xmi
Date_Fitter_Demo-dashboard.xmil
HoleFoods_Compound_Cube-dashboard xmil

4. Click the check box next to each file that you want to import.
Or to select all items, click the check box at the top of the column of check boxes.
5. Click Import.

6. Click ok at the prompt to continue. Or click Cancel.

Note: For the items created when you import the files, the owner is the username under which the InterSystems service
runs, for example SYSTEM.

13.5.4.1 Variation: Importing Local Files to the Server
To import a local file to the server:

Click Analytics, Admin, and then click Folder Manager.

Select Browser.

Click the Directory tab, and then click Choose File.

1
2
3
4. Select the file that you want to import.
5. Click import.

6

Click ok at the prompt to continue. Or click Cancel.

Implementing InterSystems IRIS Business Intelligence 105

14

Creating Portlets for Use in Dashboards

This page describes how to create portlets that users can add to dashboards, as widgets, for use in a Business Intelligence
implementation.

14.1 Portlet Basics

To define a portlet, create and compile a class as follows:
» Use %DeepSee.Component.Portlet.abstractPortlet as a superclass.
e Implement the % DrawHTM L () method, which should draw the body of the portlet as HTML.

This method has the following signature:
method %DrawHTML(Q)

Also see Using Settings for additional options.

» Optionally implement the % OnGetPortletName() method, which returns the localized name of the portlet, to display
in the Widget Builder dialog box.

Otherwise, the short class name becomes the portlet name.

This method has the following signature:
classmethod %OnGetPortletName() as %String

e Optionally implement the % OnGetPortletl con() method, which returns the URL of the icon for the portlet, to display
in the Widget Builder dialog box.

Otherwise, the system uses a generic icon.

This method has the following signature:
classmethod %OnGetPortletlcon() as %String

e Optionally implement the % OnGetPortletSettings() method, which returns one or more configurable settings. See
Defining Settings.

Otherwise, the portlet has no settings.

Implementing InterSystems IRIS Business Intelligence 107

Creating Portlets for Use in Dashboards

» Optionally implement the adjustContentSize() method, which the system calls whenever the widget containing the
portlet is loaded or resized. This method has the following signature:

ClientMethod adjustContentSize(load, width, height) [Language = javascript]

» Optionally implement the onApplyFilters() method, which the system calls whenever a filter change is sent to the
widget. This method has the following signature:

ClientMethod onApplyFilters(refresh) [Language = javascript]

14.2 Defining and Using Settings

It is fairly simple to define a portlet that provides configurable settings. To do this, implement the % OnGetPor tlet Settings()
method in the portlet class. This method has two purposes:

» To define settings to be listed in the Settings menu for this widget, in the Dashboard Designer.
» To receive values for these settings via the dashboard URL. For information on passing the values via the URL, see

Accessing Dashboards from Your Application.

The % OnGetPor tletSettings() method has the following signature:
classmethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) as %Status
plnfo should be a multidimensional array that contains the following nodes:

Node Value

pinfo(integer) List returned by $LISTBUILD as follows:
$LB(name,default,type,caption,tooltip)

« name is the logical name of the setting

o default is the default value of the setting

e type is the type of the setting. See the following subsection.
e caption is the localized caption of the setting

< tooltip is an optional tooltip

pSettings is a multidimensional array that is passed to this method; it contains the values of any settings passed via the
URL. For details, see the second subsection.

14.2.1Types of Settings

In the plnfo argument of % OnGetPor tlet Settings(), you can specify the type of each setting; this controls how the Dashboard
Designer displays that setting. Use one of the following:

e "WYinteger"

e "%Boolean"

* "ENUM~captionl:valuel,caption2:value2" orasimilar form. In this string, captionl and caption2 are labels
to display in the Dashboard Designer, and valuel and value2 are the corresponding values that are actually used. In

108 Implementing InterSystems IRIS Business Intelligence

Defining and Using Settings

practice, a setting of this type can provide only a few options, before the Dashboard Designer runs out of space to
display them. See the next item.

* "DRILL~captionl:valuel,caption2:value2" or asimilar form. In this string, captionl and caption2 are
labels to display in the Dashboard Designer, and valuel and value2 are the corresponding values that are actually used.

The following figure shows a sample of each of these types of settings:

. Back Widget Settings

Integer Setting 150

Boolean Setting m
ENUM Setting (Eestnclopions

DRILL Setting option >

The following implementation of % OnGetPortletSettings() shows how these settings were defined:

Class Member
ClassMethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) As %Status

{
Kill plnfo
set pInfo($1(pInfo)) = SLBC"INTEGERSETTING',""150","%Integer", " Integer Setting","Sample integer setting')

set pInfo($1(pInfo)) = $LB('BOOLEANSETTING", 1" ,"%Boolean™, " 'Boolean Setting","Sample boolean setting")

set pInfo($1(pInfo)) = SLB(ENUMSETTING", 150", "ENUM~optionl:150,option2:200,0ption3:200",
"ENUM Setting',"Sample ENUM setting')

set pInfo($1(pInfo)) = $LBC'DRILLSETTING", 150",
"DRILL™optionl:150,o0ption2:200,o0ption3:200,0ption4:200,o0ption5:200,0ption6:200,o0ption7:200",
"“DRILL Setting","Sample DRILL setting')

Quit pinfo

14.2.2 Receiving Settings Passed Via URL

The URL of a dashboard can pass values to some or all widgets on that dashboard, including values for any portlet settings.
To accept these values, when you implement % OnGetPortletSettings(), use the pSettings argument, which is a multidi-
mensional array that contains values for any settings that were provided in the URL. The structure of this array is as follows:

Node Value

pSettings(*'setting’") where setting is the name of a setting Value of that setting

Implementing InterSystems IRIS Business Intelligence 109

Creating Portlets for Use in Dashboards

One approach is to use $GET (pettings(*'setting') as the default value for each setting. For example:

ClassMethod %OnGetPortletSettings(Output pInfo As %List, ByRef pSettings) As %Status

Kill plnfo

Set pInfo($1(pInfo)) = $LB('LOGO",$G(pSettings('LOGO™)), """ ,"Clock logo™,"Logo displayed on top of
clock™)

Set pInfo($1(pInfo)) = $LB("STEP",$G(pSettings(''STEP™),"10™),"%Integer",
"Second hand redraw interval (msec)","milliseconds steps of second hand'™)

Set pInfo($l(pInfo)) = $LB('OFFSET",$G(pSettings("'OFFSET™),"0"),"%Integer",
"Offset from base time (min)","minutes difference from base time (Local or UTC)")

Set pInfo($1(pInfo)) = $LB('UTC",$G(pSettings('UTC™),"0""),"%Boolean,"UTC",""Time Base: local (default)
or UTC™)

Set pInfo($1(pInfo)) = $LB('CIRCLE",$G(pSettings("'CIRCLE™),"1"),"%Boolean",
"Circle","Shape: square (default) or circle™)

Set pInfo($1(pInfo)) = $LB('SIZE",$G(pSettings('SIZE™), "150™), " %Integer","Size","Size of the clock™)

Quit pinfo

14.2.3 Using Settings

To use the settings in the portlet, define the % DrawHTML () method so that it extracts the values of the settings from the
settings property of the portlet and then uses those values in whatever manner is suitable for your needs. The settings
property of the portlet is a multidimensional array of the following form:

Node Value

settings("'setting') where setting is the name of a setting Value of that setting

For a simple example, % DrawHTML () could contain extract a setting called S1ZE:
set size=%$G(..settings("'SIZE™))

And the method could use this value to set the size of the portlet.

14.3 Examples

The following shows a simple example:

Class Bl .Model .Custom.MyPortlet Extends %DeepSee.Component.Portlet.abstractPortlet
{

/// Static HTML display method: draw the BODY of this component as HTML.
Method %DrawHTMLQ)
{
&html<<div class="portletDiv" style="overflow:hidden;">>
&html<<div style="font-size:16px; border-bottom:1px solid gray;'>My Widget</div>>

Set tinfo(l)
Set tInfo(2)
Set tInfo(3)

$LB("'Sales™,"UP","12")
$LB(""Costs",""DOWN",""-8")
$LB('Profits',""UP",""18")

&html<<table width="100%" cellspacing="0" border="0">>
Set n = $0(CtInfo(""""))
While (n"=""") {

Set tName = $LG(tInfo(n),1)

Set tDir = $LG(tInfo(n),2)

Set tPct = $LG(tInfo(n),3)

Set clr = $S(tPct<0:"red",1:"black')

Set bg = $S(n#2:"#FFEEEE",1:"white')

110 Implementing InterSystems IRIS Business Intelligence

Examples

Set tPct = tPct _ "%"

&html<<tr style="font-size:24px; background:#(bg)#;color:#(clr)#;">
<td style="padding:4px;">#(tName)#</td>
<td style="padding:4px;">#(tDir)#</td>
<td style="padding:4px;text-align:right; " >#(tPct)#</td></tr>>

Set n = $0(tInfo(n))

&html<</table>>
&html<</div>>

When used as a widget, the widget has the following contents:

My Widget

Sales UP 12%
Costs DOWN -8%
Profits UP 18%

This example displays static data, but your portlet could display real-time data.

For a more complex example that also defines settings, see the sample classB1 .Model . PortletDemo.ClockPortlet.

Implementing InterSystems IRIS Business Intelligence

111

15

Other Development Work for Business
Intelligence

Depending on the users’ needs and the business requirements, you may have to do some or all of the additional development
work described here, as part of your Business Intelligence implementation.

15.1 Adding Paper Sizes

When users print a dashboard widget to a PDF file, the system provides a default set of paper sizes, and the user can choose
among them. To extend this set of sizes, add nodes as needed to the * DeepSee.Paper Sizes global, as follows:

Node Value

"DeepSee.PaperSizes(n) where nis | $LISTBUILD(sizename,dimensions) where sizename is the name
an integer of the size and dimensions specifies the dimensions. dimensions
must have one of the following forms:

widthxheight in
widthxheight mm

There must be exactly one space between height and the unit name.

For example:

Set ~DeepSee.PaperSizes(l) = $LB('My Sticker","100x100 mm')

The new size is immediately available.

15.2 Auditing User Activity

You can execute custom code, such as writing to an audit log, every time a user executes a query or accesses a dashboard.

To add custom code to execute when users execute a query, perform the following one-time setup steps:

Implementing InterSystems IRIS Business Intelligence 113

Other Development Work for Business Intelligence

» Write a class method, routine, or subroutine that contains the custom code. The first subsection provides details on the
requirements and options; the second subsection provides an example.

* Set"DeepSee. Audi t Quer yCode equal to a string containing a valid ObjectScript statement that executes that
method, routine, or subroutine.

For example, do the following in the Terminal:
set "DeepSee.AuditCode="do ~MyBlAuditCode"

Every time a query is executed in this namespace, the system executes the code specified in
"DeepSee. Audi t Quer yCode, thus invoking your routine or class method.

Similarly, to add custom code to execute when users access a dashboard:

» Write a class method, routine, or subroutine that contains the custom code.

e Set”DeepSee. Audi t Code equal to a string containing a valid ObjectScript statement that executes that method,
routine, or subroutine.

Every time a dashboard is accessed in this namespace, the system executes the code specified in
"DeepSee. Audi t Code.

15.2.1 Audit Code Requirements and Options

When you define audit code for either scenario, make sure that the code does not write any output to the current device.
Also make sure that it does not kill any % variables required by InterSystems IRIS® data platform.

Your code can use the following variables:

¢ $USERNAME — name of the current user.

* $ROLES— roles of the current user.

* %dsQueryText — text of the current query.

* %dsCubeName — logical name of the cube used in the current query.

e %dsResultSet — current instance of %DeepSee.ResultSet, which you can use to access other information, if needed.
For details on working with %DeepSee.ResultSet, see Executing Business Intelligence Queries Programmatically.

* %dsDashboard — name of the dashboard that is being accessed, if any.

Typically, audit code writes output to a file or to a global.

Note that %dsQueryText, %dsCubeName, and %dsResultSet are only available to audit routines using
"DeepSee. Audi t Quer yCode, while %dsDashboard is only available to routines using * DeepSee. Audi t Code.

114 Implementing InterSystems IRIS Business Intelligence

Defining Server Initialization Code

15.2.2 Example

The following shows a simple example audit routine. It has one subroutine for use with *DeepSee. Audi t Quer yCode
and another subroutine for use with ~ DeepSee. Audi t Code:

; this is the routine DeepSeeAudit
quit
dashboard
set auditentry="At " _$ZDT($H,3)_ ", " _SUSERNAME_" accessed dashboard: "_%dsDashboard
set "MyBlAuditLog($INCREMENT("“MyBlAuditLog))=auditentry
quit
query
set auditentry="At "_$ZDT($H,3)_", " _$USERNAME_'" ran query: "'_%dsQueryText

set ~MyBlAuditLog($INCREMENT ("“MyBIlAuditLog))=auditentry
quit

To use this routine, we would enter the following two lines in the Terminal:

SAMPLES>set ”"DeepSee.AuditQueryCode=""do query”DeepSeeAudit"
SAMPLES>set ”"DeepSee.AuditCode=""do dashboard”DeepSeeAudit"

To see the audit log, we can use ZWRITE. The following shows example results (with line breaks added for readability):

SAMPLES>zw ~MyBlAuditLog

~MyBlAuditLog=2

~MyBlAuditLog(1l)="At 2014-06-20 16:26:38, SamSmith accessed dashboard: User Defined Listing.dashboard"
~MyBlAuditLog(2)=""At 2014-06-20 16:26:38, SamSmith ran query: SELECT NON EMPTY {[MEASURES].[AMOUNT
soLD],

[MEASURES] - [UNITS SOLD]} ON O,NON EMPTY [DATEOFSALE].[ACTUAL].[YEARSOLD].MEMBERS ON 1 FROM [HOLEFOODS]"

15.3 Defining Server Initialization Code

To define server initialization code:
» Place a valid ObjectScript statement in the ~ DeepSee.I nitCode global.

For example, do the following in the Terminal:
set "DeepSee.InitCode="do ~myroutine"
e Make sure that the code does not write any output to the current device.

» Also make sure that it does not kill any % variables required by InterSystems IRIS.

This code is called by the % RunServer I nitCode() method of %DeepSee.Utils. This method is called whenever an Inter-
Systems IRIS Business Intelligence session is created.

Implementing InterSystems IRIS Business Intelligence 115

16

Controlling Access

During a Business Intelligence implementation project, you should define access to functionality and Business Intelligence
items. InterSystems IRIS® Business Intelligence has a formal mechanism that is based on the underlying InterSystems
security framework.

This page assumes that you are familiar with InterSystems security as described in Authorization Guide. In particular, it
assumes that you understand the relationships between resources, roles, and users.

Note: Ifyouinstall InterSystems IRIS® data platform with the Minimal Security option (and if you do not tighten security
after that), the user UnknownUser belongs to the %Al | role and has access to all parts of Business Intelligence.
In this case, ignore this page.

Important: Also note that you use Business Intelligence from within a web application. By default, a web application
can access a subset of InterSystems classes, which does not include the %DeepSee classes. To use Business
Intelligence in your web application, you must explicitly enable access to Analytics. For details, see Setting
Up the Web Applications.

16.1 Overview of Security

The following table summarizes how elements in Business Intelligence are secured:

Implementing InterSystems IRIS Business Intelligence 117

Controlling Access

Element
Business Intelligence User Portal

Analyzer

Architect

Folder Manager and Cube Manager

MDX Query Tool and Settings pages

Term List Manager and Quality Measure
Manager pages

Listing Group Manager

Cubes, subject areas, listings, listing
fields, listing groups, KPIs, folders, and
folder items (such as dashboards and
pivot tables)

Quality measures

Term lists

How Secured
%eepSee_Portal and %eepSee_Port al Edi t resources

%eepSee_Port al , %DeepSee_Anal yzer, and
%eepSee_Anal yzer Edi t resources

%eepSee_Portal , ¥DeepSee_Architect and
%eepSee_Architect Edi t resources

%eepSee_Portal and “DeepSee Admi n resources

%DeepSee_Port al , “DeepSee_Adm n, and %evel opnent
resources

%eepSee_Portal and “eepSee_Port al Edi t resources

%eepSee_Li sti ngG oup, ¥DeepSee_Li sti ngG oupkEdi t, and
%eepSee_Li stingG oupSQ resources

Custom resources (optional)

Accessible only to users of any cubes to which the quality
measures are published; no additional security

No security options

For details, see Security Requirements for Common Business Intelligence Tasks, later in this page.

16.2 Basic Requirements

For a user to use Business Intelligence, the following must be true, in addition to the other requirements listed in the rest

of this page:

e The user must have access to the database or databases in which Business Intelligence is used.

By default, when you create a database, InterSystems IRIS does the following:

— Creates a resource with a name based on the database name (%DB_ database name).

— Establishes that this resource controls access to the new database.

— Creates a role with the same name as the resource. This role has read and write privileges on the resource.

You can specify whether the read and write privileges are public. These privileges are not public by default.

For example, suppose that you create a database called MyApp for use with Business Intelligence, and you let InterSystems
IRIS create the resource and role as described here, and suppose that the read and write privileges are not public. In
this case, a Business Intelligence user must belong to the %DB_My App role, which has read and write privileges on the

%DB_MyApp resource.

» Ifthe "DeepSeeglobals are mapped from another database, the user must also have access to the database that contains

these globals.

118

Implementing InterSystems IRIS Business Intelligence

Security Requirements for Common Business Intelligence Tasks

16.3 Security Requirements for Common Business

Intelligence Tasks

The following table lists the security requirements for common tasks, in addition to the items in the previous section.

Task

Viewing the User Portal (apart
from the Analyzer or the mini
Analyzer) with no ability to create
dashboards

Viewing the User Portal (apart
from the Analyzer or the mini
Analyzer) with the ability to create
new dashboards

Viewing a dashboard (including
exporting to Excel and printing to
PDF)

Read-only access to the Analyzer
or Mini Analyzer

Full access to the Analyzer or Mini
Analyzer

Privileges That the User Must Have for This Task™

USE permission for the %eepSee_Port al resource

USE permission for the %eepSee_Por t al resource

USE permission for the %eepSee_Port al Edi t resource

USE permission for the %DeepSee_Port al resource

USE permission for the resource (if any) associated with the dash-
board; see Adding Security for Model Elements

USE permission for the resources (if any) associated with the pivot
tables used in the dashboard

USE permission for the resources (if any) associated with the folders
that contain the dashboard and the pivot tables

USE permission for the resources (if any) associated with the cubes
or subject areas used in the pivot tables

USE permission for the resources (if any) associated with the KPIs
used in the dashboard

SQL SELECT privilege for all tables used by the queries of the KPIs

Note that the system displays all widgets to which the user has
permission. That is, the dashboard is displayed even though the user
cannot see all of it.

L]

USE permission for the %eepSee_Port al resource

USE permission for the ¥eepSee_Anal yzer resource

USE permission for the ¥eepSee_Por t al resource

USE permission for the %eepSee_Anal yzer Edi t resource

Implementing InterSystems IRIS Business Intelligence

119

Controlling Access

Task

Viewing a listing

Modifying an existing pivot table in
the Analyzer

Creating a new dashboard

Modifying an existing dashboard

Read-only access to the Architect

Creating a new cube or subject
area in the Architect

Modifying an existing cube or
subject area in the Architect

Privileges That the User Must Have for This Task™

USE permission for the %eepSee_Port al resource
USE permission for the resource (if any) associated with the listing

SQL SELECT privilege for all source tables used by the listing and
SELECT privilege for the generated CubeClass.Listing table for that
cube. If a custom listing uses the $$$RESTRICT token, SELECT
privilege on the CubeClass.Listing table are required.

USE permission for the ¥eepSee_Por t al resource
USE permission for the ¥eepSee_Anal yzer Edi t resource

USE and WRITE permissions for the resource (if any) associated
with the given pivot table

USE permission for the resources (if any) associated with the folders
that contain the pivot table

USE permission for the resources (if any) associated with the cube”
or subject area used in the pivot table

USE permission for the ¥eepSee_Por t al resource
USE permission for the %eepSee_Por t al Edi t resource

USE permission for the resource (if any) associated with the folder
that contains the dashboard

USE permission for the ¥eepSee_Por t al resource
USE permission for the ¥eepSee_Por t al Edi t resource

USE and WRITE permissions for the resource (if any) associated
with the given dashboard

USE permission for the resource (if any) associated with the folder
that contains the dashboard

USE permission for the ¥eepSee_Por t al resource

USE permission for the %eepSee_Ar chi t ect resource

USE permission for the %DeepSee_Port al resource

USE permission for the %eepSee_Ar chi t ect Edi t resource

USE permission for the %eepSee_Port al resource
USE permission for the ¥eepSee_Ar chi t ect Edi t resource

USE and WRITE permissions for the resource (if any) associated
with the given cube or subject area; see Adding Security for Model
Elements

120

Implementing InterSystems IRIS Business Intelligence

Adding Security for Model Elements

Task

e Folder Manager page
* MDX Query Tool page
» Settings pages

e Term List Manager page

* Quality Measures page

Listing Group Manager (read only
access)

Listing Group Manager (edit
access, except for custom SQL
guery options)

Listing Group Manager (edit
access, including custom SQL
guery options)

Privileges That the User Must Have for This Task™

USE permission for the %eepSee_Port al resource

USE permission for the ¥%DeepSee_Admi n resource or USE permis-
sion for the %evel opnent resource

USE permission for the %DeepSee_Port al resource

USE permission for the %eepSee_Port al Edi t resource

USE permission for the “eepSee_Li st i ngG oup resource

USE permission for the %eepSee_Li st i ngG oupEdi t resource

USE permission for the %eepSee_Li sti ngG oupEdi t resource

USE permission for the ¥eepSee_Li st i ngG oupSQ resource

“Also see the previous section. Note that in your resource definitions, some of the permissions might be public. For example,
in a minimal security installation, by default, the USE permission is public for all the Business Intelligence resources.

“If a cube contains relationships to other cubes, those cubes are secured separately. A user must have USE permission for
all of them in order to use the relationships. Similarly, a compound cube consists of multiple cubes, which are secured

separately.

16.4 Adding Security for Model Elements

To add security for a cube, subject area, KPI, pivot table, dashboard, listing, or listing field:

1. Create a resource in the Management Portal. Use the Resources page (select System Administration > Security >

Resources).

2. Create a role in the Management Portal. Use the Roles page (select System Administration > Security > Roles). This
role should have USE and WRITE permissions on the resource you just created.

Or you could create one role with USE and WRITE permissions and another role with only USE permission.

3. Associate the resource with the Business Intelligence item as follows:

e For adashboard or pivot table, when you save the item, type the name of the applicable resource into the Access

Resource field.

See also Specifying the Resource for a Dashboard or Pivot Table.

To save a dashboard or pivot table, you must also have the USE and WRITE privileges for the appropriate Business
Intelligence user interface component, as described in the previous heading.

» Foracube, subject area, or listing field, use the Architect to specify the resource that secures that item.

» For alisting defined in a cube definition, use the Architect to specify the resource that secures that item.

Implementing InterSystems IRIS Business Intelligence 121

Controlling Access

» Foralisting group or for a listing defined in a listing group, use the Listing Group Manager to specify the resource
that secures that item.

* For a KPI, edit the class definition in your IDE. Use the name of the applicable resource as the value of the
RESOURCE class parameter.

4. Assign users to roles as needed.

16.5 Specifying the Resource for a Dashboard or Pivot
Table

To specify the resource for a dashboard or pivot table, specify the Access Resource field when you save the item. You can
do this in any of the following cases:

» The item has no owner (specified as the Owner field).
* You are the owner of the item.

e You have USE permission on the %DeepSee_Adni n resource.

16.6 Specifying the Resource for a Folder

To specify the resource for a folder:
1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS username and password.
2. Switch to the appropriate namespace as follows:

a. Click the name of the current namespace to open the list of available namespaces.

b. From the list, click the appropriate namespace.

3. Click Analytics > Admin > Folder Manager.
4. Click the check box next to a folder.

5. Inthe left area, click the Details tab.

 Details | Directory |

Name
Dashboards

Resource

Save Folder

6. Type the name of the resource.

122 Implementing InterSystems IRIS Business Intelligence

See Also

7. Click save Folder.

16.7 See Also

e Setting Up the Web Applications

* Authorization Guide

Implementing InterSystems IRIS Business Intelligence 123

Using Cube Versions

This page describes how to use the cube version feature for Business Intelligence, which enables you to modify a cube
definition, build it, and provide it to users, with only a short disruption of running queries. Cube versions are an optional
feature that may be helpful in your Business Intelligence implementation.

This feature requires twice the amount of disk space, per cube. Also, this feature requires editing the cube class in an IDE.

Note: The cube version feature is not supported for a cube that defines a formally shared dimension. It is also not supported

for a cube that defines a one-way relationship; it can be used with cubes that define two-way relationships.

A.1 Introduction to the Cube Version Feature

The cube version feature enables you to modify a cube definition, build it, and provide it to users, with only a short disruption
of running queries. The feature works as follows:

A given cube definition can have versions.
The system generates a version-specific fact table and dimension tables for each cube version.
At any given time, only one cube version is active. The user interfaces and all generated queries use this version.

To make the newest cube version available, it must be activated. At this point, the system momentarily blocks any
queries from being run and then switches to the newest version.

The following figure shows the overall process:

Implementing InterSystems IRIS Business Intelligence 125

Using Cube Versions

user interfaces utility methods

cube logical name,
withaut version

radirected
automaticaily

pending cube

deprecated cube deprecated cube aclive cube .
inewest varsion)

deprecated cubes can be removed awtamatically
Create new cube versions aver fime £

The cube logical name is redirected automatically to the active cube. The Analyzer and other user interfaces use only the
cube logical name and thus see only the active cube. Similarly, if you use methods in %DeepSee.Utils and you specify the
cube logical name without a version number, the system runs the method against the active cube.

When you update the cube version number in an IDE and recompile the cube class, that creates a pending cube, which you
can then build. When you are ready, you use a utility method to activate the cube, which causes the pending cube to become
active and causes the previously active cube to become deprecated.

By default, the activation process automatically deletes the deprecated cube. The cube version feature is not intended to
support switching back and forth between versions.

The best practice is to use source control. The cube version feature is not a replacement for source control, but can be
helpful in conjunction with it.

A.1.1 Keeping the Cube Current

If a cube uses the cube version feature, you cannot build the active version of the cube. That is, the method

$SY STEM .DeepSee.BuildCube() does not affect the active version; instead an error is returned. The Build option in the
Architect behaves the same way. These actions are blocked because they would disrupt running queries for a long time,
and the goal of this feature is to prevent that disruption.

You can synchronize the cube.

A.1.2 Model Changes Can Break Queries

The cube version feature does not check to ensure that queries that function correctly on the active cube will function correctly
on the pending cube. For example, if the pending cube no longer includes a model element that is defined in the active
cube, any queries that use that element will not work when you activate the pending cube. It is the customer’s responsibility
to identify model changes that could cause disruption and to handle such changes appropriately.

126 Implementing InterSystems IRIS Business Intelligence

Modifying a Cube to Support Versions

A.2 Modifying a Cube to Support Versions

To modify a cube so that it supports the cube version feature (and to create and activate the initial version):

Important: Read this note if you are making a transition to cube versions and you have existing cubes that do not use
this feature and you do not want any queries to be disrupted.

When you make the transition to cube versions, the process is different for the first cube version. Specifically,
the first cube version should be runtime-compatible with the cube currently in use (the unversioned cube
definition). This means that the first cube version should not remove or redefine any measures or levels,

compared to the non-versioned cube definition. It can add elements; that has no effect on existing queries.

1. Add the following parameter to the cube class:
Parameter USECUBEVERSIONS=1;

To make this change and the next, it is necessary to use an IDE.

2. Add the following attribute to the <cube> element and then save the class:
version="versionnum"

Where versionnum is an integer.

3. Compile the class. Within the package generated by the system for this cube, there is now a new subpackage (named
Versionversionnum). For example:

=& HoleFoods

=l BudgetCube

|_:_|1_§ Cube

-8 Versionl

----- “1# Fact

----- “77 Listing

----- “T3 Stard75620761

..... “iy StarCategornyViaProduct
----- “1# StarChannel

----- “17 StarDiscountRg857767687
----- “i3 StarMameViaCountryViaOutlet
----- “13 StarOutlet

----- “iy StarProduct

----- “17 StarUnitsSold

..... “iz Versionl

----- “1¥ BudgetCube

----- “17 CombinedCube

..... “13 Country

----- “ig Cube

In this example, the new package is HoleFoods.Cube.Version1.

The classes HoleFoods.Cube.Fact, HoleFoods.Cube.Listing, HoleFoods.Cube.Star475620761, and so on existed previously;
these were generated for the cube before USECUBEVERS ONSwas added. The cube version utilities do not touch
these class definitions.

Implementing InterSystems IRIS Business Intelligence 127

Using Cube Versions

4. Optionally make changes to the cube definition. Read the important note at the start of this section to decide which
changes to make. Save your changes.

5. Build the cube. This step does not affect any running queries (nor do the preceding steps, provided that you follow the
guidelines in the important note at the start of this section).

If you build the cube in the Terminal, the system displays slightly different output, to indicate that it is building a specific
cube version. For example:

Building cube [HOLEFOODS:1]

6. Inthe Terminal, execute the % ActivatePendingCubeVer sion() method of the class %DeepSee.CubeVersion. Utils.
This method takes one argument, the name of the cube to build (without any version number). For example:
ObjectScript

d ##class(%DeepSee.CubeVersion.Utils).%ActivatePendingCubeVersion(“'holefoods')

This method displays output like the following:

Pending version for holefoods: 1

Pending version synchronized: HOLEFOODS:1
Queries locked for cube: holefoods
Killing active tasks for cube: holefoods
Cube version activated: HOLEFOODS:1
Removing non-versioned cube data

One step of this method does briefly prevent queries from being executed against the cube; however, it is likely that
users would not experience any actual delay.

Now all users see the new version of the cube.

7. Ifyouare using the Cube Manager to update this cube, make sure that the update plan for the cube is either Synch Only
or Manual. See Keeping the Cube Current.

A.2.1 Cube Versions and Relationships

You can use the cube version feature with cubes that are part of relationships. The rules are as follows:
» All relationships must be two-way, rather than one-way.
» Each of the related cubes must also specify a cube version.

* When you update the version, build the new version, and activate the new version for any of the cubes, you must do
the same for all the related cubes.

» Activate the related cubes in the same order in which you build them. See Determining the Build Order for Related
Cubes.

A.2.2 Details for %ActivatePendingCubeVersion()

The % ActivatePendingCubeVersion() method has the following signature:

ClassMethod %ActivatePendingCubeVersion(pCubeGenericName As %String,
pRemoveDeprecated As %Boolean = 1,
pVerbose As %Boolean = 1) As %Status

Where:

* pCubeGenericName is the name of the cube, without version number. This argument is not case-sensitive.

128 Implementing InterSystems IRIS Business Intelligence

Updating a Cube Version

pRemoveDeprecated specifies whether the method should also remove the cube version that is now being deprecated.
If this argument is 1, the method removes the fact table and its data, dimension tables and their data, any cached data,
and any internally used metadata for the cube version that is now being deprecated.

When you use this method for the first time, in the transition from a non-versioned cube, it removes the data stored in
the fact table and so on for the non-versioned cube. It does not remove the non-versioned generated classes, which the
system needs.

pVerbose specifies whether to display messages indicating the stage of processing of this method.

A.3 Updating a Cube Version

Important: If you have not yet activated the first cube version, see the previous section. When you compile the first

cube version, any changes to the cube would affect running queries, even before you activate the cube.
Therefore it is necessary to compile, build, and activate one version of the cube that is runtime-compatible
with the non-versioned cube; see the previous section for what this means.

If you have already modified a cube and created an initial version, use the following process to update the cube:

1.

First modify the cube class so that it uses a new version number, in the <cube>element. This precaution prevents any
cube changes from being visible too early. (Recall that some cube changes, such as to display names, take effect as
soon as you compile a cube. See When to Recompile and Rebuild.)

Save the cube class.

Make changes to the cube as wanted and save them.

Note that for a live system, you should test these changes on a different system first.
Compile the cube.

Within the package generated by the system for this cube, there is now another new subpackage with the new version
number. For example:

Implementing InterSystems IRIS Business Intelligence 129

Using Cube Versions

23§ HoleFoods
w-2@ BudgetCube
|_—‘_|1j Cube
B Versionl

B Version

----- “1g Listing

----- “1% Stard75620761

----- “1¢ StarCategoryViaProduct
----- “1¢ StarChannel

----- “1g StarDiscountRg857767687
----- “1# StarMameViaCountryViaCOutlet
----- “7¢ StarOutlet

----- “1¢ StarProduct

----- “17 StarUnitsSold

----- “1# Versionl

----- “7¢ Version2

----- “1¢ BudgetCube

5. Build the cube.

6. Inthe Terminal, execute the % ActivatePendingCubeVer sion() method of the class %DeepSee.CubeVersion.Utils. In
this case, this method displays output like the following:

Pending version for holefoods: 2

Pending version synchronized: HOLEFOODS:2

Queries locked for cube: holefoods

Killing active tasks for cube: holefoods

Cube version activated: HOLEFOODS:2

Deprecating previously active version: HOLEFOODS:1
Removing previously active version: HOLEFOODS:1

Within the package generated by the system for this cube, there is now only the subpackage with the new version
number. For example:

130 Implementing InterSystems IRIS Business Intelligence

Specifying the Cube to Work With

=-F HoleFoods
--1__‘ BudgetCube
55§ Cube

- Yersion2

..... “¢ Listing

----- “T¢ Stard 75620761

..... “I# StarCategoryViaProduct

----- “13 StarChannel

----- “13 StarDiscountRg857767687

----- “13 StarMameViaCountryViaOutlet
----- “1# StarCutlet

----- “1y StarProduct

----- “13 StarUnitsSeld

Now all users see the new cube.

Note: You can define subject areas based on a cube that uses the versioning feature. As with any change in a base cube,

when you change a cube version, you must also recompile the subject area so it will function properly.

A.4 Specifying the Cube to Work With

When you use cube versions, you have the following options for specifying which cube to work with:

When creating a manual query in the Analyzer or in the MDX Query Tool, you can use either of the following forms
of cube name:

— The logical cube name. In this case, the query uses the active version of the cube.

— The form cubename: versionnumwhere cubename s the logical cube name, and versionnumis the version number.
In this case, the query uses the specified version.

In the Analyzer, Cube Manager, and other user interfaces, you can work only with the active version, with the exceptions

noted in the previous bullet.

The user interfaces display the cube caption, which contains no information about the version.

Also, when you save changes, the saved data contains only the logical cube name (that is, without the version number),
unless you typed a version number into a manual query. By default, definitions of pivot tables and listing groups do
not contain version numbers.

When you use methods in %DeepSee.Utils that accept a cube name as an argument, you can use either the logical cube
name or the form cubename: versionnum.

In the MDX shell, you can use either the logical cube name or the form cubename: versionnum. If tracing is enabled
in the shell, the shell displays the cube version number.

Implementing InterSystems IRIS Business Intelligence 131

Using Cube Versions

A.5 Additional Options

The class %DeepSee.CubeVersion.Utils provides additional methods that you can use for debugging purposes. These include:
* %GetVersionedCubeName()

* %DeprecateCubeVersion()

* % SetPendingCubeVersion()

* %RemoveCubeVersion()

For details, see the class reference for %DeepSee.CubeVersion. Utils.

Also, the % BuildCube() of %DeepSee.Utils can return, by reference, the cube name with the active version number. For
example:

SAMPLES>set cubename='"'patients"
SAMPLES>set status=##class(%DeepSee.Utils) . %BuildCube(.cubename)

Building cube [PATIENTS:1]
Existing cube deleted.

Fact table built: 1,000 fact(s) (2 core(s) used)
Fact indices built: 1,000 fact(s) (2 core(s) used)
Complete

Elapsed time: 0.461454s

Source expression time: 0.298187s

SAMPLES>w cubename
PATIENTS:1

The method $SY STEM .DeepSee.BuildCube() does not provide this option.

A.5.1 Disabling the Cube Version Feature

To disable versions for a given cube:

1. Modify the cube class and specify USECUBEVERS ONSas 0.
2. Save and compile the class.

3. Build the cube.
4

Optionally delete the cube versions that are no longer needed. Execute the following command in the Terminal:

ObjectScript
set status=##class(%DeepSee.CubeVersion.Utils) .%RemoveCubeVersion(cubename,version)
Where cubename is the logical cube name, and versionnum is the version number.

This method returns an error if you attempt to remove the active version.

From this point on, the cube behaves the same as a non-versioned cube.

132 Implementing InterSystems IRIS Business Intelligence

How the Analytics Engine Works

This page explains how the Analytics Engine executes MDX queries. You may find this information useful when you are
viewing query plans or diagnosing problems, either while implementing Business Intelligence or later.

Important: This page provides some information on globals used internally. This information is provided for demon-
stration purposes; direct use of these globals is not supported. The organization of these globals is subject
to change without notice.

B.1 Introduction

This section introduces the basic concepts. The next section provides a more detailed description.

B.1.1 Use of Bitmap Indexes

When you compile a cube class, the Analytics Engine creates the fact table class that the engine uses. This class defines
all bitmap indexes as needed by the engine; these are stored in the global ~"DeepSee . Index. When you build or synchronize
a cube, the engine updates these indexes as appropriate. When it is necessary to find records in the fact table, the engine
combines and uses these bitmap indexes as appropriate.

As an example, one bitmap index provides access to all the records that contribute to the Snack member of the Product
Category level. Another bitmap index provides access to all the records that contribute to the Madr id member of the
City level. Yet another provides access to all the records that contribute to the 2012 member of the YearSold level. To
find all the records that contribute to Snack, Madrid, and 2012, the engine combines those bitmap indexes and then uses
the resulting index to retrieve the records.

B.1.2 Caching

For any cube that uses more than 512,000 records (by default), the Analytics Engine maintains and uses a result cache. In
this case, whenever the engine executes MDX queries, it updates the result cache, which it later uses wherever possible.
The result cache includes the following globals:

» /DeepSee.Cache.Results, which contains values for each query previously executed for a given cube. This global
also contains meta-information about those queries that can be used to quickly rerun them. To retrieve information for
a query, the engine uses the cube name and the query key, which is a hash of the normalized query text.

Implementing InterSystems IRIS Business Intelligence 133

How the Analytics Engine Works

For a given cube name and query key, this global includes a set of subnodes that contain final and intermediate values.
These subnodes are organized by bucket number and then by result cell. (A bucket is a contiguous set of records in
the source table; see the next subsection.)

The following shows an example:

~DeepSee.Cache.Results(*"HOLEFOODS", "'en2475861404","'data’,-1,2,3)=67693.46
~DeepSee.Cache.Results(''"HOLEFOODS",''en2475861404" ,''data',-1,2,4)=425998.02
~DeepSee.Cache .Results(""HOLEFOODS",""'en2475861404" ,""data',-1,2,5)=212148.68
~DeepSee.Cache.Results(""HOLEFOODS", "'en2475861404","'data’,0,2,3)=301083.77

~DeepSee.Cache.Results(''"HOLEFOODS",''en2475861404" ,''data',0,2,4)=1815190.08
~DeepSee .Cache .Results(""HOLEFOODS","'en2475861404","data',0,2,5)=910314.95
~DeepSee.Cache .Results(""HOLEFOODS",""en2475861404" ,""data',1,2,3)=78219.74

~DeepSee.Cache.Results(''HOLEFOODS",''en2475861404" ,''data',1,2,4)=463165.12
~DeepSee .Cache .Results(""HOLEFOODS",""'en2475861404","data",1,2,5)=233031.39
~DeepSee.Cache.Results(*""HOLEFOODS", "'en2475861404","'data'",2,2,3)=79153.44

~DeepSee.Cache.Results(''HOLEFOODS",''en2475861404" ,''data',2,2,4)=461472 .97
~DeepSee .Cache .Results(""HOLEFOODS",""'en2475861404" ,""data",2,2,5)=233584_42
~DeepSee.Cache.Results(""HOLEFOODS", "'en2475861404","'data'",3,2,3)=76017.13

~DeepSee.Cache.Results(''HOLEFOODS",''en2475861404" ,''data',3,2,4)=464553.97
~DeepSee.Cache .Results(""HOLEFOODS",""'en2475861404","data",3,2,5)=231550.46

In this example, the first subscript after **data’" indicates the bucket number. Buckets —1 and 0 are special: the -1
bucket is the active bucket (representing the most recent records), and the 0 bucket is the consolidated result across all
buckets.

The final subscripts indicate the result cell by position. The value of the node is the value of the given result cell.

For example, ~DeepSee . Cache .Results("*HOLEFOODS", ""'en2475861404" ,"'data",0,2,3) contains the
consolidated value for cell (2,3) across all buckets. Notice that this number equals the sum of the intermediate values
for this cell, as contained in the other nodes.

e /DeepSee.Cache.Axis, which contains metadata about the axes of previously run queries. the engine uses this
information whenever it needs to iterate through the axes of a given query. It does not contain cached data.

* "DeepSee.Cache.Cells, which contains cached values of measures for cells returned by previously executed
queries. A cell is an intersection of any number of non-measure members (such as the intersection of Madrid, Snack,
and 2012). In this global, each cell is represented by a cell specification, which is a specialized compact internal-use
expression. The following shows a partial example:

21", 1)=$1b(1460.05)
2", 1)=$1b(606.22)
3", 1)=$1b(40.17)
14" 1)=$1b(63.72)
11", 1)=$1b(3778)
2" 1)=$1b(1406.08)
3", 1)=$1b(117.31)
14" 1)=$1b(412.24)

~DeepSee.Cache.Cells(""HOLEFOODS",1,":-:2012::::: 1:
~DeepSee.Cache.Cells("'"HOLEFOODS",1," 1 : :1:
~DeepSee.Cache.Cells(""HOLEFOODS",1,"
~DeepSee.Cache.Cells(*"HOLEFOODS", 1,
~DeepSee.Cache.Cells(''"HOLEFOODS",1,"
~DeepSee.Cache.Cells(""HOLEFOODS™ ,1,":::
~DeepSee.Cache.Cells(""HOLEFOODS",1,"::: :
~DeepSee.Cache.CelIs(*'"HOLEFOODS",1,":::2012:::::1:

N
o
P
[N
[
RPRRRRRERR
NNNNR R R R

The first subscript is the cube name, the second is the bucket number, the third is the cell specification
("":::2012:::::1:1::1:1" forexample), and the last indicates the measure. The value of a given node is the
aggregate value of the given measure for the given cube, cell, and bucket. In this case, the results are expressed in
$LISTBUILD form for convenience in internal processing. Notice that this global does not use the query key; this is
because the same cell could easily be produced by multiple, quite different queries.

This global is known as the cell cache and is populated only when the cache uses buckets.
The cell cache does not include values for the active bucket. Nor does it include values for the 0 bucket (consolidated
across all buckets).
These globals are not populated until users execute queries. The cache grows in size as more queries are executed, resulting
in faster performance because the engine can use the cache rather than re-executing queries.

Note that the cache does not include values for any properties defined with isReference=""true". These values are
always obtained at runtime.

134 Implementing InterSystems IRIS Business Intelligence

Engine Steps

B.1.3 Buckets

For any cube that uses more than 512,000 records (by default), the engine organizes the cache into buckets. Each bucket
corresponds to a large number of contiguous records in the fact table, as shown in the following figure:

source table fact table

cached
intermediate
bucket 1 | results for
these rows of
fact table

optionally use
Initial build order
to change order of
records (affects
only full builds)

r

cached
intermediate
bucket 2 | results for
these rows of
fact table

F

bucket 1

________________ cached
intermediate
bucket 3 | results for
(partial) | these rows of
fact table

The final bucket (or partial bucket) is the active bucket and is not represented in the cell cache.

By default, the fact table contains records in the same order as the source table. You can specify Initial build order for the
cube to control the order in which the engine examines the source table records when it performs a full build of the cube;
see Other Cube Options.

When you update a cube by synchronizing or rebuilding it, or when you explicitly invoke after a manual update, the engine
discards parts of the cache as appropriate. More specifically, the engine invalidates any buckets that use records from the
affected part or parts of the fact table. Other buckets are left alone. When it executes a query, the engine uses cached data
only for the valid buckets. For records that do not have valid cached results, the engine uses the bitmap indexes and
recomputes the needed intermediate values. As the last phase of query execution, the engine consolidates the results. Thus
the engine can provide results that come from a combination of cached data and new or changed data. Also, because some
of the engine work can be split by bucket, the engine can (and does) perform some processing in parallel.

B.1.3.1 Default Bucket Size

By default, a bucket is 512,000 records. The bucket size is controlled by the bucketSize option, which expresses the
bucket size as an integer number of groups of records, where a group is 64,000 contiguous records. The default bucketSize
is 8, so that the default bucket is 8 x 64,000 records or 512,000 records. For information on bucketSize, see <cube>.

B.2 Engine Steps

To process an MDX query, the Analytics Engine performs the following steps:

Implementing InterSystems IRIS Business Intelligence 135

How the Analytics Engine Works

1. Preparation, which occurs in process (that is, this step is not launched as a background process). In this phase:

a.

The engine parses the query and converts it to an object representation, the parsetree.

In the parse tree, each axis of the query is represented separately. One axis represents the overall filtering of the
query.
The engine converts the parse tree to a normalized version of the query text.

In this normalized version, for example, all %FILTER clauses have been combined into a single, equivalent
WHERE clause.

The engine generates a hash that is based on the normalized query text. the engine uses this hash value as the query
key. The query key enables the engine to look up results for this query in the globals discussed in this page.

If the engine finds that it is possible to reuse previous results for this query (from ~DeepSee .Cache .Resul ts),
the engine does so and skips the following steps.

2. Execute axes, which also occurs in process. In this phase:

a.

b.

The engine executes any subqueries.

The engine examines the slicer axis (the WHERE clause), merges in any relevant filtering (such as from a subject
area filter), and updates ~“DeepSee . Cache . Axis with information about this axis.

The engine examines each of the remaining axes and updates “DeepSee .Cache . Axis.

Execute cells, which occurs in the background (in multiple parallel processes). In this phase, the engine obtains inter-

mediate values for each cell of the results, separately for each bucket, as follows:

a.

First the engine checks to see if "DeepSee.Cache.Cell contains a value for the cell for the given bucket.
If so, the engine uses that value.

Otherwise, the engine uses the applicable nodes of ~“DeepSee . Index to obtain the bitmap indexes that it needs.
The engine combines these bitmap indexes and then uses the result to find the applicable records in the source
table.

If the cache uses buckets, the engine adds nodes to “DeepSee . Cache.Cel I for use by later queries.

4. Consolidation, which occurs in process. In this phase:

a.

For each slicer axis, the engine examines each result cell for that axis.

For each result cell, the engine finds all the nodes in ~“DeepSee .Cache.Cel I that contain values for this cell.
It then combines those values.

For each result cell, the engine then combines the results across the slicer axes and obtains a single value.

For information, see the next section.

The engine evaluates the CURRENTMEMBER function during the consolidation phase. In contrast, it evaluates other
functions earlier in the processing.

B.3 Axis Folding

In the consolidation phase, if there are multiple slicer axes, the Analytics Engine combines results across these axes, for
each result cell. This step is known as axis folding.

136

Implementing InterSystems IRIS Business Intelligence

Query Plans

Important: Axis folding means that if a given source record has a non-null result for each slicer axis, that record is
counted multiple times.

To determine whether axis folding is required, the engine considers all the filters applied to the query, from all sources:
the subject area, the pivot table, and the dashboard. The net combination of these filters determines whether axis folding
is needed, as follows. The following table lists the main possibilities:

Form of Filter AXxis
Folding
Performed?

Single member. Example: [PRODUCT] . [P1] - [PRODUCT CATEGORY].&[Candy] No

Single measure. Example: [MEASURES] . [Units Sold] No

A tuple (combination of members or of members and a measure). Example: No

([Outlet].[H1].[City]-&[7],[PRODUCT].[P1].[PRODUCT CATEGORY].&[Candy])

Cross joins that use members wrapped in % TIMERANGE functions Yes

CUSDNANENE(Ert D). JH- L] Sy, Bt]| o] SEmm)) NG 0] [o] S, JEt)] S10T))

Other cross joins. Example: No

NONEMPTYCROSSJOIN([Outlet].[H1]-[City]-&[7],[PRODUCT]-[P1]-[PRODUCT
CATEGORY] -&[Candy])

The %OR function, wrapped around a set expression that lists multiple members. Example: No
%OR({[Product].[P1]-[Product Category].&[Candy], [Product].[P1]-[Product
Category].&[Snack]})

A set expression that lists multiple members but does not use %OR. Example: Yes
{[Product].[P1].[Product Category].&[Candy], [Channel].[H1].[Channel
Name] -&[2]}

To create these expressions (as filters) in the Analyzer, you generally drag and drop items to the Filters box. To create the
set expressions in the last two rows, you must use the Advanced Filter editor. Note that the engine automatically uses the
%OR function when possible; the Advanced Filter editor does not display it as an option.

B.4 Query Plans

If you execute a query in the MDX Query Tool, you can see the query plan. Similarly, if you execute a query programmat-
ically (as described in Executing Business Intelligence Queries Programmatically), you can call the % ShowPlan() method
of your result set. For example:

SAMPLES>do rsi1.%ShowPlan()

—————————————— Query Plan ———————————o

**SELECT {[MEASURES].[AVG TEST SCORE],[MEASURES].[%COUNT]} ON O, [AGED].[AGE
BUCKET] .MEMBERS ON 1, [GEND].[GENDER].MEMBERS ON 2 FROM [PATIENTS]****
DIMENSION QUERY (%GetMembers): SELECT %I1D,DxAgeBucket MKEY, DxAgeBucket
FROM Bl_Model_PatientsCube.DxAgeBucket ORDER BY DxAgeBucket**
**DIMENSION QUERY (%GetMembers): SELECT %ID,DxGender MKEY, DxGender
FROM Bl_Model_PatientsCube.DxGender ORDER BY DxGender**

**EXECUTE: 1x1 task(s) **

CONSOL IDATE

—————————————— End of Plan --————————————————

Note that line breaks and spaces have been added here to format the documentation properly for its PDF version.

Implementing InterSystems IRIS Business Intelligence 137

How the Analytics Engine Works

B.5 Query Statistics

If you execute a query programmatically (as described in Executing Business Intelligence Queries Programmatically), you
can call the % PrintStatistics() method of your result set. For example:

SAMPLES>do rsl.%PrintStatistics()
Query Statistics:

Results Cache: 0
Query Tasks: 1
Computations: 15
Cache Hits: 0
Cells: 10
Slices: 0
Expressions: 0
Prepare: 0.874 ms
Execute Axes: 145.762 ms
Columns: 0.385 ms
Rows: 144.768 ms
Members: 134.157 ms
Execute Cells: 6.600 ms
Consolidate: 1.625 ms
Total Time: 154 .861 ms
ResultSet Statistics:
Cells: 0
Parse: 3.652 ms
Display: 0.000 ms
Total Time: 3.652 ms

The values shown here are as follows:

Query Statistics — This group of statistics gives information about the query, which returned a result set. It
does not include information on what was done to use that result set.

Results Cache is 1 if the results cache was used or is 0 otherwise.
Query Tasks counts the number of tasks into which this query was divided.

Computations indicates how much time was spent performing intermediate computations such as aggregating
a measure according to its aggregation option. It does not include evaluating MDX expressions.

Cache Hits counts the number of times an intermediate cache was used.
Cells counts all the cells of the result set as well as any intermediate cells that were computed.

Slices counts the number of cube slices in the query. This count indicates the number of items on the WHERE
clause.

Expressions indicates how much time was spent evaluating MDX expressions.
When the cache is used, Computations, Cache Hits, Cells, and Expressions are all zero.

Prepare, Execute Axes,Execute Cells,and Consol idate indicate how long different parts of the query
processing took place. These parts are listed in order.

Total Time is the sum of those parts.

When the cache is used, Execute Cellsand Consolidate are both zero, because those parts of the processing
are not performed.

ResultSet Statistics — This group of statistics gives information about what was done to use the result set
after it was returned by the result set. The values are as follows:

Cel Is counts the number of cells in the result set.

Parse indicates how long it took to parse the result set.

138

Implementing InterSystems IRIS Business Intelligence

Query Statistics

— Display indicates how long it took to display it.

— Total Time isthe sum of those times.

Implementing InterSystems IRIS Business Intelligence 139

Using the MDX Performance Utility

The system provides a tool, the %DeepSee.Diagnostic. MDXUTtils class, to enable you to gather query statistics and lower-
level performance statistics at the same time. You can use this tool while implementing Business Intelligence or later.

This class provides the % Run() method:

classmethod %Run(pMDX As %String = "',
pBaseDir As %String = "',
pVerbose As %Boolean = O,
ByRef pParms=""",
Output pOutFile=""") as %Status

Given an MDX query, this method prepares and runs the query and generates files that contain diagnostic information about
that query. The arguments are as follows:

* pMDX — Specifies the MDX query.

» pBaseDir — Specifies the base directory to which the output directory (MDXPer¥) is written. The default base directory
is the installation directory.

e p\erbose — Specifies whether to invoke routines in verbose mode. Use 1 for yes, or 0 (the default) for no.
» pParms— Specifies a multidimensional array of parameters. This array can have the following nodes:
— pParms(*'CubeStats') — Specifies whether to generate cube statistics. Use 1 (the default) for yes, or 0 for no.

— pParms(**'TimePERFMON') — Specifies how long, in seconds, to collect data via *PERFM ON. Specify a pos-
itive integer; the default is 15. For details, see Monitoring Performance Using "PERFMON.

— pParms(**'pButtonsOn') — Specifies whether to also generate a * SystemPerfor mance report. Use 1 for yes,
or 0 (the default) for no.

— pParms(*'pButtonsProfile'™) — Specifies the name of the * SystemPer for mance profile to use. For details,
see Monitoring Performance Using ~SystemPerformance.

» pOutFile— Returned as an output parameter, this argument specifies the name of the main report HTML file generated
by this method.

The % Run() method generates the following files:

e MDXPerf_nnnnn_nnnnn.html — Main HTML report file. This contains query statistics, the query plan, and so on.

* cubenamexml — Definition of the given cube.

e Cached_MDXPerf_cubename_nnnnn_nnnnn.html — *PERFM ON timed collection report for running the query when
using the result cache.

For details, see Monitoring Performance Using "PERFMON.

Implementing InterSystems IRIS Business Intelligence 141

Using the MDX Performance Utility

* Uncached_MDXPerf_cubename_nnnnn_nnnnn.html — *PERFM ON timed collection report for running the query
when not using the result cache.

Note that the engine creates a result cache only for a cube that uses more than 512,000 records (by default), so this
report could have the same numbers as Cached_MDXPerf_cubename_nnnnn_nnnnn.html.

* hostname_date_time.html — " SystemPerfor mance report.
For details, see Monitoring Performance Using “SystemPerformance.

» Other files generated by * SystemPerfor mance. These vary by operating system.

142 Implementing InterSystems IRIS Business Intelligence

Diagnostics for InterSystems Business
Intelligence

DeepSeeButtons is a tool used to generate diagnostic reports about your Business Intelligence environment. You can use
this tool while implementing Business Intelligence or later.

The HTML-formatted report provides information on the following aspects of your system:

Setup parameters

Server details

A list of cubes and their properties

For each cube, a list of dimensions and their properties

For each cube, a list of other elements such as pivot variables, named sets, and listing fields
Business Intelligence Logs

The content of the iris.cpffile

The content of the messages. log file

In order to generate this report, you may launch the DeepSeeButtons tool from the terminal by ensuring you are in the %SYS
namespace and execute the following code:

Do ~DeepSeeButtons

Follow the subsequent prompts to generate the report. InterSystems recommends that you view the generated HTML in
Chrome or Firefox.

Implementing InterSystems IRIS Business Intelligence 143

Other Export/Import Options for Business
Intelligence

This page describes additional options for exporting and importing Business Intelligence elements, as a supplement to
Packaging Business Intelligence Elements into Classes, as a step in the implementation process.

Note: This page assumes that you are familiar with the process of exporting code from and importing code into your
IDE.

E.1 Creating a Business Intelligence Container Class

As noted in Packaging Business Intelligence Elements into Classes, you can package pivot tables and other folder items
into InterSystems IRIS® data platform classes. You can package as many elements as needed into a single class, which is
easier to export and import than many separate files.

To create such a class:
e The class must extend %DeepSee.UserLibrary.Container.

» The class must include an XData block named Contents. For this XData block, you must specify the XML namespace
as follows:

[XMLNamespace = "http://www. intersystems.com/deepsee/library”]

» The top-level element within the XData block must be <items>.

Include as many XML definitions as needed within <items>. You can copy the definitions in an IDE or from exported
XML files. Also see the next section, which describes edits you should make.

Also be sure to copy and paste only the definition, not the XML declarations at the top of the file. That is, do not copy the
following line into the XData block:

<?xml version="1.0" encoding="UTF-8"?>

Implementing InterSystems IRIS Business Intelligence 145

Other Export/Import Options for Business Intelligence

For example:

Class Bl .Model .Dashboardltems Extends %DeepSee.UserLibrary.Container

XData Contents [XMLNamespace = "http://www. intersystems.com/deepsee/library"]
<items>

<dashboard dashboard definition here ...
</dashboard>

<dashboard another dashboard definition here ...
</dashboard>

<pivot pivot definition here ...

</pivot>

<pivot another pivot definition here ...
</pivot>

<pivot yet another pivot definition here ...
</pivot>

</items>

}
}

When you compile this class or when you call its % Process() instance method, the system creates the items defined in the
XData block. Specifically, it imports these definitions into the internal global that the User Portal uses.

The same class can also define the % OnL oad() callback, which can execute any additional code needed when these items
are set up.

For samples of pivot tables and dashboards that are packaged into class definitions, see the sample classes Bl.DashboardsEtc
and HoleFoods.DashboardsEtc.

If you delete a container class, that has no effect on the pivots and dashboards that currently exist.

E.2 Exporting and Importing Folder Items

This section describes the older API for exporting and importing folder items.

E.2.1 Exporting Folder Items Programmatically

To export folder items programmatically, use the following command:
Do ##class(%DeepSee.UserLibrary._Utils) . %Export(itemname,filename)

Where:
e itemnameis the full name of the item, including the folder in which it belongs.
— For a pivot table, append the extension -pivot
— For a dashboard, append the extension .dashboard
— For awidget, append the extension .widget
— For atheme, append the extension . theme

» filenameis the full path and file name of the file to create. InterSystems suggests that you end the file name with .xml,
because the file is an XML file.

For example:

146 Implementing InterSystems IRIS Business Intelligence

Exporting and Importing Folder Items

ObjectScript

set DFIname="Chart Demos/Area Chart._pivot"
set filename='"c:/test/Chart-Demos-Area-Chart-pivot.xml"
do ##class(%DeepSee.UserLibrary.Utils).%Export(DFlname,filename)

set DFIname="KPIs & Plugins/KPl with Listing.dashboard"
set filename="c:/test/KPIs-Plugins-KPIl-with-Listing-dashboard.xml"
do ##class(%DeepSee.UserLibrary.Utils).%Export(DFIname, filename)

E.2.1.1 Alternative Technique (for Exporting Multiple ltems)

To export multiple items programmatically into a single XML file, use the $system.OBJ.Export() method. The first and
second arguments for this method are as follows:

e itemsis a multidimensional array as follows:

Array Node Node Value

items(**full-folder-item-name.DFI'") where items is the name of the array | ****
and full-folder-item-name.DFl is the full name of the folder item, exactly as
seen in an IDE, including case.

Note that because this argument is a multidimensional array, you must precede it with a period when you use the
$system.OBJ.Export() method.

» filenameis the full path and file name of the file to create. InterSystems suggests that you end the file name with .xml,
because the file is an XML file.

For example:

ObjectScript

set items("'Chart Demos-Area Chart.pivot.DFI')=""
set items(''Chart Demos-Bar Chart.pivot.DFI')=""
set items("'Chart Demos-Bubble Chart._pivot_.DFI')="""
set filename='"c:/test/Chart-Samples.xml"

do $system.OBJ.Export(.items,filename)

You can also use this method to export other items such as classes; for details, see the Class Reference for %SYSTEM.OBJ.

E.2.2 Importing Folder Items Programmatically
To import folder items programmatically:

ObjectScript
Do ##class(%DeepSee.UserLibrary.Utils) . %Import(pFile, pReplace, pVerbose)
Where:
* pFileis the full path and file name of the file to import.
» If pReplaceis true, replace an existing item with the same name. The default is false.

« If pVerboseis true, write status to the console. The default is true.
For example:

ObjectScript

set filename='"c:/test/Chart-Demos-Area-Chart-pivot.xml"
do ##class(%DeepSee.UserLibrary.Utils) . %Import(filename,1,1)

Implementing InterSystems IRIS Business Intelligence 147

Business Intelligence and Disaster
Recovery

This page describes the recommended procedure for write-protecting copied source data on an async mirror member using
Business Intelligence.

F.1 Configuration

This section describes the necessary initial configuration tasks.

1. Setup the async mirror as a disaster recovery (DR) async with all source data databases and the newly-mapped database
for "OBJ.DSTIME. This will perform more validation of the system and push any issues with the ISCAgent and so on
to configuration time instead of recovery time. Note that this mode does not allow for a read-write database.

2. Once configured, switch the DR to a read-only async member.
3. Onaread-only async, each specific database has a ReadOnly flag that can be cleared, allowing writes. Do this for
the database containing “OBJ.DSTIME.

The source data is now write-protected and the cubes can be synchronized properly.

F.2 Disaster Recovery

This section describes the steps to take during disaster recovery.

1. Remove the database containing “OBJ.DSTIME from the mirror configuration. Note that the database is still available.
2. Switch the async member back to a DR member.

3. Promote the member to primary.

4. Synchronize cubes.

The ~OBJ.DSTIME buffer needs to be treated as out-of-date on any other systems that may now be relying on this one, as

there will be no attempt to synchronize that data with other async members. The database containing ~OBJ.DSTIME needs
to be added back into the mirror set as part of the recovery procedure.

Implementing InterSystems IRIS Business Intelligence 149

	Table of Contents
	1 Embedding Business Intelligence within Applications
	1.1 Business Intelligence Features
	1.2 Business Intelligence Components to Add to Your Application
	1.3 Recommended Architecture
	1.4 Main Implementation Steps
	1.5 Implementation Tools
	1.6 Accessing the Samples

	2 Performing the Initial Business Intelligence Setup
	2.1 Setting Up the Web Applications
	2.2 Placing the Business Intelligence Globals in a Separate Database
	2.3 Alternative Mappings for the Globals
	2.4 Adjusting the Web Session Timeout Period

	3 Configuring Settings
	3.1 Accessing the Business Intelligence Settings
	3.2 Specifying Basic Settings
	3.3 Configuring Business Intelligence to Support Email
	3.4 Customizing Worklists
	3.5 Creating Runtime Variables for Use as Default Values for Filters
	3.5.1 Editing Runtime Variables
	3.5.2 Removing Runtime Variables

	3.6 Allowed Default Values for Filters
	3.7 Creating Icons
	3.8 Creating Custom Color Palettes

	4 Defining Data Connectors
	4.1 Introduction to Data Connectors
	4.2 Defining a Basic Data Connector
	4.2.1 Defining the Query in an XData Block
	4.2.2 Defining the Output Specification

	4.3 Previewing the Query Results
	4.4 Defining the Query at Runtime
	4.4.1 Restricting the Records When an Update Is Requested
	4.4.2 Restricting the Records When a Listing Is Requested
	4.4.3 Other Callbacks

	4.5 Using a Data Connector Programmatically

	5 Performance Tips
	5.1 Result Caching and Cube Updates
	5.2 Cache Buckets and Fact Order
	5.3 Removing Inactive Cache Buckets
	5.4 Precomputing Cube Cells
	5.4.1 Defining the Cell Cache
	5.4.2 Precomputing the Cube Cells

	5.5 Using the Index Compression Utility
	5.6 Limiting Worker Assignment for Background Tasks

	6 Defining Custom Actions
	6.1 Introduction
	6.1.1 Context Information

	6.2 Defining the Behavior of Actions
	6.2.1 Declaring Actions
	6.2.2 Defining the Behavior of the Actions

	6.3 Available Context Information
	6.3.1 Scenario: Pivot Table Widget with Pivot Table as Data Source
	6.3.2 Scenario: Pivot Table Widget with KPI as Data Source
	6.3.3 Scenario: Scorecard with Pivot Table or KPI as Data Source

	6.4 Executing Client-Side Commands
	6.4.1 Available Commands
	6.4.2 Details for applyFilter and setFilter

	6.5 Displaying a Different Dashboard
	6.6 Generating a SQL Table from Cube Context

	7 Accessing Dashboards from Your Application
	7.1 Accessing a Dashboard
	7.1.1 URL Encoding

	7.2 Available URL Parameters
	7.3 Options for the SETTINGS Parameter
	7.4 Accessing Other Business Intelligence Pages from Your Application

	8 Keeping the Cubes Current
	8.1 Overview
	8.1.1 Cube Updates and Related Cubes
	8.1.2 Cube Updates and the Result Cache

	8.2 Updating Cubes Manually
	8.3 Disabling Cubes
	8.4 Injecting Facts into the Fact Table
	8.5 Pre-building Dimension Tables
	8.6 Updating a Dimension Table Manually
	8.7 See Also

	9 Using Cube Synchronization
	9.1 How Cube Synchronization Works
	9.1.1 When Cube Synchronization Is Possible
	9.1.2 When Cube Synchronization Is Not Possible
	9.1.3 Cube Synchronization in a Mirrored Environment
	9.1.4 Structure of the Cube Synchronization Globals

	9.2 Enabling Cube Synchronization
	9.3 Clearing the ^OBJ.DSTIME Global
	9.4 Using %SynchronizeCube()
	9.5 Purging DSTIME
	9.6 Other Options
	9.6.1 Using DSTIME=MANUAL

	9.7 Examples
	9.8 See Also

	10 Using the Cube Manager
	10.1 Introduction to the Cube Manager
	10.2 Introduction to Update Plans
	10.3 Accessing the Cube Manager
	10.3.1 Tree View
	10.3.2 Table View

	10.4 Modifying the Registry Details
	10.5 Registering a Cube Group
	10.6 Specifying an Update Plan
	10.7 Merging Groups
	10.8 Building All the Registered Cubes
	10.9 Performing On-Demand Builds
	10.10 Unregistering a Cube Group
	10.11 Viewing Cube Manager Events
	10.12 Restricting Access to the Cube Manager
	10.13 See Also

	11 Executing Business Intelligence Queries Programmatically
	11.1 Using the Result Set API
	11.2 Basic Example
	11.3 Preparing and Executing a Query
	11.4 Printing the Query Results
	11.5 Examining the Query Results
	11.5.1 Getting the Number of Columns and Rows
	11.5.2 Getting the Value of a Given Cell
	11.5.3 Getting the Column or Row Labels
	11.5.4 Getting Details for Cell Contents

	11.6 Examining the Query Results for a DRILLTHROUGH Query
	11.7 Examining the Query Metadata
	11.8 Other Methods
	11.9 Executing Query Files
	11.9.1 About Query Files
	11.9.2 Executing a Query File

	12 Performing Localization for Business Intelligence
	12.1 Overview of Localization in Business Intelligence
	12.1.1 Model Localization
	12.1.2 Folder Item Localization

	12.2 Preparing for Model Localization
	12.3 Preparing for Folder Item Localization
	12.3.1 Default Domain
	12.3.2 Adding Strings to the Message Dictionary
	12.3.3 Using Localizable Strings in a Dashboard, Pivot Table, or Other Folder Item

	12.4 Localizing the Strings

	13 Packaging Business Intelligence Elements into Classes
	13.1 Overview
	13.2 Exporting Folder Items to a Container Class
	13.3 Editing the Business Intelligence Folder Items for Portability
	13.3.1 Removing <filterState> Elements
	13.3.2 Stripping Out Local Data

	13.4 Importing an Exported Container Class
	13.5 Using the Folder Manager
	13.5.1 Seeing the Dependencies of a Folder Item
	13.5.2 Exporting Business Intelligence Folder Items to the Server
	13.5.3 Exporting Business Intelligence Folder Items to the Browser
	13.5.4 Importing Business Intelligence Folder Items

	14 Creating Portlets for Use in Dashboards
	14.1 Portlet Basics
	14.2 Defining and Using Settings
	14.2.1 Types of Settings
	14.2.2 Receiving Settings Passed Via URL
	14.2.3 Using Settings

	14.3 Examples

	15 Other Development Work for Business Intelligence
	15.1 Adding Paper Sizes
	15.2 Auditing User Activity
	15.2.1 Audit Code Requirements and Options
	15.2.2 Example

	15.3 Defining Server Initialization Code

	16 Controlling Access
	16.1 Overview of Security
	16.2 Basic Requirements
	16.3 Security Requirements for Common Business Intelligence Tasks
	16.4 Adding Security for Model Elements
	16.5 Specifying the Resource for a Dashboard or Pivot Table
	16.6 Specifying the Resource for a Folder
	16.7 See Also

	Appendix A: Using Cube Versions
	A.1 Introduction to the Cube Version Feature
	A.1.1 Keeping the Cube Current
	A.1.2 Model Changes Can Break Queries

	A.2 Modifying a Cube to Support Versions
	A.2.1 Cube Versions and Relationships
	A.2.2 Details for %ActivatePendingCubeVersion()

	A.3 Updating a Cube Version
	A.4 Specifying the Cube to Work With
	A.5 Additional Options
	A.5.1 Disabling the Cube Version Feature

	Appendix B: How the Analytics Engine Works
	B.1 Introduction
	B.1.1 Use of Bitmap Indexes
	B.1.2 Caching
	B.1.3 Buckets

	B.2 Engine Steps
	B.3 Axis Folding
	B.4 Query Plans
	B.5 Query Statistics

	Appendix C: Using the MDX Performance Utility
	Appendix D: Diagnostics for InterSystems Business Intelligence
	Appendix E: Other Export/Import Options for Business Intelligence
	E.1 Creating a Business Intelligence Container Class
	E.2 Exporting and Importing Folder Items
	E.2.1 Exporting Folder Items Programmatically
	E.2.2 Importing Folder Items Programmatically

	Appendix F: Business Intelligence and Disaster Recovery
	F.1 Configuration
	F.2 Disaster Recovery

	Index

