
Using HTTP Adapters in
Productions

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using HTTP Adapters in Productions
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 About the HTTP Adapters ... 1
1.1 HTTP Inbound Adapter and Helper Classes .. 1
1.2 HTTP Outbound Adapter and Helper Classes .. 2

2 Using the HTTP Inbound Adapter ... 5
2.1 Overall Behavior .. 5
2.2 Creating a Business Service to Use the HTTP Inbound Adapter ... 7
2.3 Implementing the OnProcessInput() Method ... 8
2.4 Implementing the OnErrorStream() Method .. 9
2.5 Using the HTTP Request .. 9

2.5.1 About the Attributes Array ... 10
2.5.2 Retrieving Form Variables from a POST Request ... 11

2.6 Adding and Configuring the Business Service ... 11
2.6.1 Specifying the Sources of HTTP Requests .. 12
2.6.2 Specifying the Character Set to Use .. 12

3 Using the HTTP Outbound Adapter ... 13
3.1 Overall Behavior .. 13
3.2 Creating a Business Operation to Use the Adapter .. 13
3.3 Creating Message Handler Methods .. 15
3.4 Calling HTTP Commands .. 16

3.4.1 Sending Form Data .. 16
3.4.2 Sending a Request Body .. 16
3.4.3 Reference Information for HTTP Methods .. 17
3.4.4 Handling the HTTP Response .. 20

3.5 Managing Cookies .. 20
3.6 Creating Custom HTTP Requests .. 21
3.7 Using the HTTP Response ... 21
3.8 Examples .. 22

3.8.1 Example with Post ... 22
3.8.2 Example with Get ... 23

3.9 Adding and Configuring the Business Operation ... 23
3.9.1 Specifying the Destination Server and URL Path .. 24
3.9.2 Specifying a Proxy Server .. 24

4 Built-in HTTP Components ... 25
4.1 Available HTTP Business Hosts ... 25
4.2 Generic HTTP Message Class .. 25
4.3 Target URL of the HTTP Request .. 26
4.4 URL Parameters ... 26
4.5 More About Message Headers ... 26

HTTP Adapter Settings ... 27
Settings for the HTTP Inbound Adapter .. 28
Settings for the HTTP Outbound Adapter .. 31

Using HTTP Adapters in Productions iii

1
About the HTTP Adapters

The HTTP adapters (EnsLib.HTTP.InboundAdapter and EnsLib.HTTP.OutboundAdapter) enable your production to send and
receive HTTP requests and responses. This topic provides a brief introduction to these adapters.

Note: While InterSystems strongly recommends that you use the Web Gateway to set up communication between a web
server and InterSystems IRIS, you can use the HTTP inbound adapter if needed. Note that this is not a replacement
for a web server; it does not, for example, support proxy forwarding.

Tip: InterSystems IRIS® data platform also provides specialized business service classes that use these adapters, and
one of those might be suitable for your needs. If so, no programming would be needed. See Connectivity Options.

1.1 HTTP Inbound Adapter and Helper Classes
The EnsLib.HTTP.InboundAdapter is the HTTP listener for custom port listening, XML listening, and/or raw HTML handling.
The inbound adapter listens on a private port rather than using a CSP page (which uses the standard web server to handle
HTTP requests). For more information about the Web Gateway, see Installing the Web Gateway.

The EnsLib.HTTP.InboundAdapter class provides runtime settings that you use to specify items like the following:

• A local port, where the adapter will listen for input

• A list of IP addresses from which the adapter will accept input (if you want to restrict the possible sources)

• Settings that specify whether to use the character set given in the inbound request, and if not, what other character set
to use

The inbound HTTP adapter listens on the specified port, reads the input, and sends the input as a stream (either binary or
character, depending on the character set in use) to the associated business service. The business service, which you create
and configure, uses this stream and communicates with the rest of the production.

Using HTTP Adapters in Productions 1

When you work with the HTTP inbound adapter, there are two helper classes that you might use:
%Library.GlobalCharacterStream and %Library.GlobalBinaryStream. The inbound adapter sends a stream to the associated
business service. Specifically, this is an instance of %Library.GlobalCharacterStream or %Library.GlobalBinaryStream,
depending on the character set being used. In general, these classes provide methods that you can use to read the contents
of the stream, get the length of the stream, read a single line, rewind, append data, and so on. For information on these
classes, see Working with Streams.

1.2 HTTP Outbound Adapter and Helper Classes
EnsLib.HTTP.OutboundAdapter is the adapter for sending HTTP requests outside a production and receiving HTTP responses.
This adapter provides settings to control items such as the following:

• Server and port to which the adapter will send HTTP requests

• URL path for the resource to request, at the given server and port

• An optional TLS configuration to use for the connection to the server

• Optional information to specify a proxy server through which the adapter can route requests

The adapter provides methods for sending HTTP POST, GET, and PUT actions:

• The main methods are PostFormData() and GetFormData(). Each accepts an output argument for the response object,
a comma-separated list of form variable names, and a variable number of form variable arguments, one for each of the
names in the comma-separated list. If you want to set multiple values for a form variable, you can use the same name
multiple times in the list. Of course, you can also use these methods with no form variables to request flat scalar content
such as a regular web page.

• For situations with a complicated set of form variables, use the methods PostFormDataArray() and GetFormDataArray().
These methods accept a multidimensional array instead of a variable argument list. This can help keep things organized,
because you can provide multiple values for a given form variable as subnodes in the array, rather than as multiple
entries in the list of names. You can also index the array by form variable name rather than by position.

• The low-level worker method SendFormDataArray() is available for situations when you need to use a PUT or some
other unusual HTTP request, or where you need to customize aspects of your HTTP request other than form variables
or cookies.

2 Using HTTP Adapters in Productions

About the HTTP Adapters

The adapter also provides properties and methods to manage cookies.

When you work with the HTTP outbound adapter, there are two helper classes that you can use:

• The HTTP outbound adapter uses %Net.HttpRequest to encapsulate the HTTP request that it sends.

If you use PostFormData(), GetFormData(), PostFormDataArray(), or GetFormDataArray(), the adapter creates the request
automatically and you do not have direct access to it.

However, if you use SendFormDataArray(), you can create an instance of the %Net.HttpRequest class, set its properties,
and use it to initialize the HTTP request that you send in that method. You use this technique when you need to set
properties of the HTTP request (such as the proxy authentication) that cannot be set via the adapter.

• In all cases, the HTTP response is encapsulated in an instance of %Net.HttpResponse. The %Net.HttpResponse class
provides methods to access the HTTP headers, as well as properties that contain the body of the response (a stream
object), reason codes, the HTTP version of the server, and so on.

Using HTTP Adapters in Productions 3

HTTP Outbound Adapter and Helper Classes

2
Using the HTTP Inbound Adapter

This topic describes the default behavior of the HTTP inbound adapter (EnsLib.HTTP.InboundAdapter) and describes how
to use this adapter in your productions.

Tip: InterSystems IRIS® data platform also provides specialized business service classes that use this adapter, and one
of those might be suitable for your needs. If so, no programming would be needed. See Connectivity Options.

2.1 Overall Behavior
EnsLib.HTTP.InboundAdapter is an HTTP listener for custom port listening, XML listening, and/or raw HTML handling.
You use this adapter in cases when you prefer to listen on a private port rather than using a CSP page (which uses your
configured web server to handle HTTP requests).

First, the class provides runtime settings that you use to specify items like the following:

• A local port, where the adapter will listen for input

• A list of IP addresses from which the adapter will accept input (if you want to restrict the possible sources)

• Settings that specify whether to use the character set given in the inbound request, and if not, what other character set
to use

The inbound HTTP adapter listens to a port on the local machine, reads the input, and sends the input as a stream to the
associated business service. The business service, which you create and configure, uses this stream and communicates with
the rest of the production. The following figure shows the overall flow:

Using HTTP Adapters in Productions 5

In more detail:

1. The adapter receives an HTTP message and opens a TCP connection. (HTTP is a format of header and body data that
is sent over a TCP connection.)

2. When the adapter connects, it executes its OnConnected() method, which first determines the character set to use. By
default, it uses the character set specified in the inbound HTTP request. For details, however, see Specifying the
Character Set to Use.

3. The adapter chooses the appropriate translation table for the character set.

4. The adapter reads the body of the input, translates it, and places it into a new stream object.

• If the adapter is using a non-binary character set, the stream is of type %GlobalCharacterStream.

• If the adapter is using a binary character set, the stream is of type %GlobalBinaryStream.

Note that %GlobalCharacterStream and %GlobalBinaryStream are deprecated but are still supported for use in this way.
It is not recommended to substitute different stream classes for this use case.

The adapter also extracts each HTTP header and adds that header to the Attributes property of the stream; this property
is a multidimensional array, as discussed later.

Also, if the URL includes form parameters, these are passed as follows:

• If the HTTP request is a GET request, the adapter puts them into the Attributes array under the "Params" subscript.

• If the HTTP request is a POST request, then the form variables are written into the request body.

5. The adapter then calls the internal ProcessInput() method of the business service class, passing the stream as an input
argument.

6. The internal ProcessInput() method of the business service class executes. This method performs basic production tasks
such as maintaining internal information as needed by all business services. You do not customize or override this
method, which your business service class inherits.

7. The ProcessInput() method then calls your custom OnProcessInput() method, passing the stream object as input. The
requirements for this method are described later in Implementing the OnProcessInput() Method.

6 Using HTTP Adapters in Productions

Using the HTTP Inbound Adapter

8. If ProcessInput() or OnProcessInput() returns an error, the production invokes the OnErrorStream() method of the
business service.

The response message follows the same path, in reverse.

2.2 Creating a Business Service to Use the HTTP Inbound
Adapter
To use this adapter in your production, create a new business service class as described here. Later, add it to your production
and configure it. You must also create appropriate message classes, if none yet exist. See Defining Messages.

The following list describes the basic requirements of the business service class:

• Your business service class should extend Ens.BusinessService.

• In your class, the ADAPTER parameter should equal EnsLib.HTTP.InboundAdapter.

• If you need to parse form variables from an HTTP POST request, implement the OnInit() callback method as follows:

Class Member

Method OnInit() As %Status
{
 Set ..Adapter.ParseBodyFormVars=1
 Quit 1
}

This step is not necessary to parse the form variables from a GET request; these are automatically parsed into the
Attributes property as discussed below.

• Your class should implement the OnProcessInput() method, as described in Implementing the OnProcessInput() Method.

• Your class can implement the OnErrorStream() method. See Implementing the OnErrorStream() Method.

• For other options and general information, see Defining a Business Service Class.

The following example shows the overall structure of your business service class. The details of the OnProcessInput()

method depend on the character set that the adapter is using. If the adapter is using a non-binary character set, the general
structure should be as follows:

Class Definition

Class EHTTP.NewService1 Extends Ens.BusinessService
{
Parameter ADAPTER = "EnsLib.HTTP.InboundAdapter";

Method OnProcessInput(pInput As %GlobalCharacterStream, pOutput As %RegisteredObject) As %Status
{
 set tsc=$$$OK
 //your code here
 Quit tsc
}
}

Or, if the adapter is using a binary character set, the OnProcessInput() method should be as follows instead:

Using HTTP Adapters in Productions 7

Creating a Business Service to Use the HTTP Inbound Adapter

Class Member

Method OnProcessInput(pInput As %GlobalBinaryStream, pOutput As %RegisteredObject) As %Status
{
 set tsc=$$$OK
 //your code here
 Quit tsc
}

2.3 Implementing the OnProcessInput() Method
Within your custom business service class, the signature of your OnProcessInput() method depends on the character set
that the adapter is using:

• If the adapter is using a non-binary character set, the signature should be as follows:

Method OnProcessInput(pInput As %GlobalCharacterStream, pOutput As %RegisteredObject) As %Status

• If the adapter is using a binary character set, the signature should be as follows:

Method OnProcessInput(pInput As %GlobalBinaryStream, pOutput As %RegisteredObject) As %Status

Here pInput is the input that the adapter will send to this business service. Also, pOutput is the generic output argument
required in the method signature.

Note that %GlobalCharacterStream and %GlobalBinaryStream are deprecated but are still supported for use in this way. It
is not recommended to substitute different stream classes for this use case.

The OnProcessInput() method should do some or all of the following:

1. Examine the input object and extract the needed data from it. See Using the HTTP Request.

2. Create an instance of the request message, which will be the message that your business service sends.

For information on creating message classes, see Defining Messages.

3. For the request message, set its properties as appropriate, using values obtained from the input stream.

If the attribute Content-Type is specified in the Attributes property, by default, that is used as the Content-Type
of the request message. If Content-Type is not specified in the Attributes property, by default, the Content-Type
of the request message is set to "text/html". If these defaults are not appropriate, be sure to set this attribute. For
example, the following code checks the value of the attribute Content-Type of the input stream and uses "text/xml"
if the value is missing:

ObjectScript

 Set outputContentType=$GET(pInput.Attributes("Content-Type"),"text/xml")

4. Call a suitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see Sending
Request Messages.

Each of these methods returns a status (specifically, an instance of %Status).

5. Optionally check the status of the previous action and act upon it.

6. Optionally examine the response message that your business service has received and act upon it.

7. Make sure that you set the output argument (pOutput). This step is required.

8. Return an appropriate status. This step is required.

8 Using HTTP Adapters in Productions

Using the HTTP Inbound Adapter

The following shows a simple example:

Class Member

Method OnProcessInput(pInput As %GlobalCharacterStream, Output pOutput As %RegisteredObject) As %Status
{
 //get contents of inbound stream
 //in this case, the stream contains a single value: a patient ID
 Set id=pInput.Read(,.tSC)

 //make sure Read went OK
 If $$$ISERR(tSC) do $System.Status.DisplayError(tSC)

 //create request object to send
 Set tRequest=##class(EHTTP.Request.Patient).%New()
 Set tRequest.patientID=id

 //send to lookup process
 Set tSC=..SendRequestSync("EHTTP.LookupProcess",tRequest,.tResponse)

 //define output for OnProcessInput
 Set pOutput=tResponse

 Quit tSC
}

2.4 Implementing the OnErrorStream() Method
If the ProcessInput() or OnProcessInput() method of your business service returns an error, the production invokes the
OnErrorStream() method of the business service. You can implement this method to contain any desired error handling.
The method should accept a status code as input and should return the desired output stream.

2.5 Using the HTTP Request
Within OnProcessInput(), the HTTP request is available as pInput, which is an instance of %GlobalCharacterStream or
%GlobalBinaryStream, depending on your implementation. The following figure illustrates how this instance represents the
HTTP request:

Using HTTP Adapters in Productions 9

Implementing the OnErrorStream() Method

The body of the request is written to the pInput stream. For information on working with streams, see Defining and Using
Stream Properties.

Additional data is available in the Attributes property of the pInput stream, as discussed in the following subsection. This
includes the HTTP headers. If the request was a GET request, it also includes any form variables (URL parameters).

If the request was a POST request, then the form variables are available in the body.

2.5.1 About the Attributes Array

The Attributes property of the pInput stream is a multidimensional array that carries the following data:

ContentsNode

Value of the given HTTP headerAttributes(http_header_name) Where http_header_name is the
header name in lowercase, for example, "content-length"

Value of the nth instance of the given URL
form variable (if the HTTP request was a
GET request).

Attributes("Params",form_variable_name,n)

Complete URL of the HTTP requestAttributes("URL")

So you can retrieve a header value as follows:

10 Using HTTP Adapters in Productions

Using the HTTP Inbound Adapter

ObjectScript

 set contentlength = pInput.Attributes("content-length")

Or, to retrieve a URL form variable (for a GET request):

ObjectScript

 set pResponse.MessageRequestTimeStamp = pInput.Attributes("Params","REQUESTTIMESTAMP",1)

2.5.2 Retrieving Form Variables from a POST Request

If the HTTP request was a POST request, then the form variables are available in the pInput stream. The form variables
will be in key-value pairs, separated by an & delimiter. For example:

Q1=Answer1&Q2=Answer2&Q3=Answer3

Use ObjectScript string functions to retrieve the form variables. The following shows you an example of how to do this:

Class Member

Method OnProcessInput(pInput As %GlobalCharacterStream, pOutput As %RegisteredObject) As %Status
{
 Set tData=pInput.Read(,.tSC)

 If $$$ISERR(tSC) {
 Do $System.Status.DisplayError(tSC)
 }

 Set tRequest=##class(EHTTP.Request.Patient).%New()

 //use a delimiter to separate the form variables
 Set list=$LISTFROMSTRING(tData,"&")

 //examine each element and extract the relevant data
 Set ptr=0
 While $LISTNEXT(list,ptr,key) {
 If $PIECE(key,"=") = "Q1" {
 Set tRequest.Q1 = $PIECE(key,"=",2)
 }
 Elseif $PIECE(key,"=") = "Q2" {
 SET tRequest.Q2 = $PIECE(key,"=",2)
 }
 Elseif $PIECE(key,"=") = "Q3" {
 Set tRequest.Q3 = $PIECE(key,"=",2)
 }
 }

 Set tSC=..SendRequestSync("EHTTP.LookupProcess",tRequest,.tResponse)

 Set pOutput=tResponse

 Quit tSC
}

You can also use the OnInit() to parse the form variables of a POST request.

2.6 Adding and Configuring the Business Service
To add your business service to a production, use the Management Portal to do the following:

1. Add an instance of your custom business service class to the production.

2. Configure the adapter so that it can receive input. Specifically:

• Specify the port on which the adapter will listen. To do so, specify the Port setting.

Using HTTP Adapters in Productions 11

Adding and Configuring the Business Service

• Optionally specify the IP addresses from which the adapter will accept input, if you want to limit the sources with
which the adapter communicates.

• Optionally specify the character set of the input data.

3. Enable the business service.

4. Run the production.

2.6.1 Specifying the Sources of HTTP Requests

You can configure the inbound HTTP adapter to recognize sources of HTTP requests in two different ways:

• You can permit HTTP requests from any server. This is the default.

• You can permit HTTP requests from a list of specific servers (optionally with specific ports).

To do so, specify the Allowed IP Addresses setting. See HTTP Adapter Settings.

2.6.2 Specifying the Character Set to Use

When the EnsLib.HTTP.InboundAdapter receives input, it translates the characters in that input according to a translation
table. To determine which translation table to use, the adapter first determines which character set the input uses.

In general, the HTTP Content-Type header of the input indicates which character set that request uses. By default, the
adapter uses that character set.

However, you can control which character set the adapter uses, by using the following runtime settings:

• Force Charset

• Charset

See HTTP Adapter Settings.

For information on character sets and translation tables, see Translation Tables.

12 Using HTTP Adapters in Productions

Using the HTTP Inbound Adapter

3
Using the HTTP Outbound Adapter

This topic describes the overall behavior of the HTTP outbound adapter (EnsLib.HTTP.OutboundAdapter) and describes
how to use this adapter in your productions.

Tip: InterSystems IRIS® data platform also provides specialized business service classes that use this adapter, and one
of those might be suitable for your needs. If so, no programming would be needed. See Connectivity Options.

3.1 Overall Behavior
Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

EnsLib.HTTP.OutboundAdapter is the adapter for sending HTTP requests outside a production and receiving HTTP responses.
This adapter provides settings to control items such as the following:

• Server and port to which the adapter will send HTTP requests

• URL path for the resource to request, at the given server and port

• An optional TLS configuration to use for the connection to the server

• Optional information to specify a proxy server through which the adapter can route requests

The HTTP requests are in the default character encoding of the local InterSystems IRIS server. To specify a different
character encoding, create and send custom HTTP requests, as described in Creating Custom HTTP Requests.

3.2 Creating a Business Operation to Use the Adapter
To create a business operation to use the EnsLib.HTTP.OutboundAdapter, you create a new business operation class. Later,
add it to your production and configure it.

You must also create appropriate message classes, if none yet exist.

The following list describes the basic requirements of the business operation class:

• Your business operation class should extend Ens.BusinessOperation.

• In your class, the ADAPTER parameter should equal EnsLib.HTTP.OutboundAdapter.

Using HTTP Adapters in Productions 13

• In your class, the INVOCATION parameter should specify the invocation style you want to use, which must be one of
the following.

– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job is allocated for the task. This is
the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

• Your class should define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
{
<MapItems>
 <MapItem MessageType="messageclass">
 <Method>methodname</Method>
 </MapItem>
 ...
</MapItems>
}

• Your class should define all the methods named in the message map. These methods are known as message handlers.
Each message handler should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is
the name of a response message class. In general, the method code will refer to properties and methods of the Adapter

property of your business operation.

For information on defining message classes, see Defining Messages.

For information on defining the message handler methods, see Creating Message Handler Methods

• For other options and general information, see Defining a Business Operation Class.

The following example shows the general structure that you need:

Class Definition

Class EHTTP.NewOperation1 Extends Ens.BusinessOperation
{
Parameter ADAPTER = "EnsLib.HTTP.OutboundAdapter";

Parameter INVOCATION = "Queue";

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status
{
 Quit $$$ERROR($$$NotImplemented)
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="RequestClass">
 <Method>Sample</Method>
 </MapItem>
</MapItems>
}
}

14 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

3.3 Creating Message Handler Methods
When you create a business operation class for use with EnsLib.HTTP.OutboundAdapter, typically your biggest task is
writing message handlers for use with this adapter, that is, methods that receive production messages and then perform
various HTTP operations.

Each message handler method should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is the
name of a response message class.

In general, the method should do the following:

1. Examine the inbound request message.

2. Using the information from the inbound request, call a method of the Adapter property of your business operation. For
example, call the Get method, which sends the HTTP GET command:

 set status=..Adapter.Get(.pHttpResponse,"Name",pRequest.Name)

This example sends a GET request, passing in a parameter called Name, which has the value of pRequest.Name.

The available methods are discussed in the next section. Each of them returns a status (specifically an instance of
%Status).

These methods also return an HTTP response as output. In the preceding example, the response is placed into
pHttpResponse. The response is an instance of %Net.HttpResponse; for information on using this object, see Using
the HTTP Response.

3. Examine the HTTP response.

4. Use information in the HTTP response to create a response message (an instance of Ens.Response or a subclass), which
the method returns as output.

For basic information on defining message classes, see Defining Messages.

5. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message. This
step is required.

6. Return an appropriate status. This step is required.

The following shows an example:

Class Member

Method PostMessage(pRequest As EHTTP.Request.OutboundPost,
Output pResponse As EHTTP.Response.OutboundPost) As %Status
{
 Set tSC=$$$OK
 Set input=pRequest.MessageStream
 Set tResponse = ##class(%Net.HttpResponse).%New()
 Set tSC = ..Adapter.Post(.tResponse,,input)

 If $$$ISOK(tSC){
 Set pResponse = ##class(EHTTP.Response.OutboundPost).%New()
 Set len = tResponse.Data.SizeGet()
 While (tResponse.Data.AtEnd = 0) {
 Do pResponse.MessageStream.Write(tResponse.Data.Read())
 }
 }
 Return tSC
}

Using HTTP Adapters in Productions 15

Creating Message Handler Methods

3.4 Calling HTTP Commands
The adapter provides methods for sending HTTP POST, GET, PATCH, PUT and DELETE requests:

• The main methods are named after the HTTP action. For example, the Post() method handles POST requests. Each of
these main methods accepts an output argument for the response object, a comma-separated list of form variable names,
and a variable number of form variable arguments, one for each of the names in the comma-separated list. If you want
to set multiple values for a form variable, you may use the same name multiple times in the list. Of course, you can
also use these methods with no form variables to request flat scalar content such as a regular web page.

• For situations with a complicated set of form variables, you can use alternate methods that accept a multidimensional
array instead of a variable argument list. Each HTTP action has one of these alternate methods. For example, instead
of the Post() method you could use the PostFormDataArray() method. This can help keep things organized, because
multiple values for a given form variable can be given as subnodes in the array, rather than by using multiple entries
in the list of names. You can also index the array by form variable name rather than by position.

• The low-level worker method SendFormDataArray() is available for situations when you need to use some other unusual
HTTP request, or where you need to customize aspects of your HTTP request other than form variables or cookies.

The following topics provide more information about using methods of EnsLib.HTTP.OutboundAdapter to send HTTP
commands:

• How to send form data

• How to send a request body

• Reference information for the adapter methods

• Basic information about the HTTP response

3.4.1 Sending Form Data

You can send HTTP form data using any of the adapter’s methods. Each method returns (as output) an HTTP response,
which is an instance of %Net.HttpResponse. For information on using this object, see Using the HTTP Response.

The details differ from method to method, but a partial example follows:

 set tFormVar="USER,ROLE,PERIOD"

 set tUserID=pRequest.UserID
 set tRole=pRequest.UserRole
 set tED=pRequest.EffectiveDate

 set tSC=..Adapter.Get(.tResponse,tFormVar,tUserID,tRole,tED)

Note that this example assumes that the request message has the properties UserID, UserRole, and EffectiveDate.

3.4.2 Sending a Request Body

You can send a request body using any of the adapter’s methods. In this case, you will pass the request body as an argument,
and you will leave the form data argument empty. A request body can be either a stream or a string, depending on your
needs. For information on creating as stream and writing to it, see Defining and Using Stream Properties.

Each of these methods returns (as output) an HTTP response, an instance of %Net.HttpResponse. For information on using
this object, see Using the HTTP Response.

16 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

The details differ from method to method, but a partial example follows:

 set tsc = ..Adapter.Post(.tResponse,,pRequest.MessageStream)

Note that this example assumes that the request message has a property MessageStream.

Additionally, note that to use the EnsLib.HTTP.OutboundAdapter to POST data formatted as text/xml, such data must be
placed in the EntityBody property of the HTTPRequest object that will be entered as an input to the class method you will
use to POST data.

3.4.2.1 Stream Attributes as HTTP Headers

If you create a stream and send that as the request body, you can force the HTTP outbound adapter to include some or all
of the stream attributes as HTTP headers. To do so, set the SkipBodyAttrs property equal to a list of attributes that should
not be used as HTTP headers. The default value is "*" which means that the stream attributes are ignored by default (and
not used as headers). Note that this property is not available as a runtime setting.

For information on stream attributes, see the class reference for %Library.AbstractStream.

3.4.3 Reference Information for HTTP Methods

This section provides reference information on the methods you can use to invoke HTTP commands.

Post()

Method Post(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) As %Status

Sends the HTTP POST command to the configured destination (see Specifying the Destination), sending either
form data or a request body.

The HTTP response is returned as output in the first argument. This is an instance of %Net.HttpResponse; for
information on using this object, see Using the HTTP Response.

With this method, do one of the following:

• To send form data to the named form variables, specify the pFormVarNames argument and pData arguments
as needed. pFormVarNames is a comma-separated list of form variable names to use. For each name in the
list, a pData argument should be supplied.

To pass multiple values for a given form variable, include the variable name multiple times in the
pFormVarNames list.

Any extra pData arguments you supply will be assigned to the last form variable in the list.

• To send a request body instead of form variables, leave pFormVarNames empty and pass the body text as the
pData argument.

A data value passed for body text may be of either string or stream type. Data values passed for form variables
must be of string type.

PostFormDataArray()

Method PostFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 ByRef pData) As %Status

Sends the HTTP POST command to the configured destination (see Specifying the Destination), sending form
data to the named form variables.

Using HTTP Adapters in Productions 17

Calling HTTP Commands

pFormVarNames is a comma-separated list of form variable names to use. For each name in the list, a pData
argument should be supplied.

The pData argument is an array. The top node of the array is not used. Each subnode is subscripted by the index
of the corresponding form variable in the pFormVarNames list. The value at a given subscript should be specified
as follows:

• For a form variable (varname) with a single value, the value at pData(“varname”) should be the form data
value to send. There should be no subnodes.

• For a form variable (varname) with multiple values, the value pData(“varname”) should be the count of the
values. Each of the values for this form variable should appear in a subnode, subscripted by its position in the
node.

PostURL()

method PostURL(pURL As %String,
 Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP POST command to the specified URL (pURL), sending form data to the named form variables.
This allows you to override the adapter’s URL property. See the remarks for Post().

Get()

Method Get(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) As %Status

Sends the HTTP GET command to the configured destination (see Specifying the Destination), sending either
form data or a request body. See the remarks for Post().

GetFormDataArray()

Method GetFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 ByRef pData) As %Status

Sends the HTTP GET command to the configured destination (see Specifying the Destination), sending form data
to the named form variables. See the remarks for PostFormDataArray().

GetURL()

method GetURL(pURL As %String,
 Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP GET command to the specified URL (pURL), sending form data to the named form variables.
This allows you to override the adapter’s URL property. See the remarks for Post().

Put()

Method Put(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) As %Status

Sends the HTTP PUT command to the configured destination (see Specifying the Destination), sending either
form data or a request body. See the remarks for Post().

18 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

PutFormDataArray()

Method PutFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 ByRef pData) As %Status

Sends the HTTP PUT command to the configured destination (see Specifying the Destination), sending form data
to the named form variables. See the remarks for PostFormDataArray().

PutURL()

method PutURL(pURL As %String,
 Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP PUT command to the specified URL (pURL), sending form data to the named form variables.
This allows you to override the adapter’s URL property. See the remarks for Post().

Patch()

Method Patch(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) As %Status

Sends the HTTP PATCH command to the configured destination (see “Specifying the Destination”), sending
either form data or a request body. See the remarks for Post().

PatchFormDataArray()

Method PatchFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 ByRef pData) As %Status

Sends the HTTP PATCH command to the configured destination (see “Specifying the Destination”), sending
form data to the named form variables. See the remarks for PostFormDataArray().

PatchURL()

method PatchURL(pURL As %String,
 Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP PATCH command to the specified URL (pURL), sending form data to the named form variables.
This allows you to override the adapter’s URL property. See the remarks for Post().

Delete()

method Delete(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP DELETE command to the configured destination (see Specifying the Destination), sending either
form data or a request body. See the remarks for Post().

DeleteFormDataArray()

method DeleteFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 ByRef pData) as %Status

Using HTTP Adapters in Productions 19

Calling HTTP Commands

Sends the HTTP DELETE command to the configured destination (see Specifying the Destination), sending form
data to the named form variables. See the remarks for PostFormDataArray().

DeleteURL()

method DeleteURL(pURL As %String,
 Output pHttpResponse As %Net.HttpResponse,
 pFormVarNames As %String = "",
 pData...) as %Status

Sends the HTTP DELETE command to the specified URL (pURL), sending form data to the named form variables.
This allows you to override the adapter’s URL property. See the remarks for Post().

SendFormDataArray()

Method SendFormDataArray(Output pHttpResponse As %Net.HttpResponse,
 pOp As %String,
 pHttpRequestIn As %Net.HttpRequest,
 pFormVarNames As %String = "",
 ByRef pData) As %Status

Sends the HTTP request to the configured destination (see Specifying the Destination), sending form data to the
named form variables.

The pOp argument specifies the HTTP action to take. This should be one of the following: "POST" "GET" "PUT"

pFormVarNames is a comma-separated list of form variable names to use. For each name in the list, a pData
argument should be supplied.

The pData argument is an array; see the remarks for the GetFormDataArray() method.

For special needs, create an instance of %Net.HTTPRequest or a subclass, specify its properties, and use this as
the pHttpRequestIn argument. If you do this, the HTTP request is initialized with the properties of your instance.
This method gives you more control than the other methods of the outbound adapter. For example, it enables you
to add your own HTTP headers to the request.

3.4.4 Handling the HTTP Response

When you use any of the methods described in the previous subsection, you receive, as output, an HTTP response. This
object is an instance of %Net.HttpResponse. For more details, see Using the HTTP Response.

3.5 Managing Cookies
A cookie is a text string in a response header that a server can ask a client to save and return as a header value in subsequent
HTTP requests. Some servers use cookies to maintain open sessions,

The EnsLib.HTTP.OutboundAdapter provides the following properties and methods to manage cookies. Your custom
methods can use these.

UseCookies property

Specifies whether to save cookies received in HTTP responses while this adapter is instantiated, and insert them
in each subsequent HTTP request. If UseCookies is true, then any job associated with an instance of that adapter
will maintain a collection of cookies and send the appropriate selection of them with each new request that it sends.
If UseCookies is false (0), cookies will not be sent. This convention allows each of these jobs to maintain its own
persistent session with any web server that requires it.

20 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

The default is false. This property is also available as a runtime setting.

%Cookies property

Contains an array of cookies. Indexed by Domain/Server; each element is $LB(name, domain, path, value, expires,
secure). This property is InterSystems IRIS multidimensional array.

DeleteCookie() method

Method DeleteCookie(pName As %String,
 pPath As %String,
 pDomain As %String) As %Status

Deletes a particular cookie.

DeleteCookies() method

Method DeleteCookies(pDomain As %String = "",
 pPath As %String = "") As %Status

Deletes all cookies from the specified domain and/or path.

Note: Remember that cookies are specific to an HTTP server. When you insert a cookie, you are using a connection to
a specific server, and the cookie is not available on other servers.

3.6 Creating Custom HTTP Requests
If you use the more common methods of the HTTP outbound adapter (such as Get), the adapter automatically creates and
sends an HTTP request, which can include either form data or a request body. In special cases, you may want to create a
custom HTTP request so that you can specify details such as proxy authorization or a different character encoding.

To send the custom request, use the SendFormDataArray() method of the HTTP outbound adapter as described in Calling
HTTP Commands. Then Sending HTTP Requests and Reading HTTP Responses.

3.7 Using the HTTP Response
After you use the outbound adapter to send an HTTP request, you receive a response object (%Net.HttpResponse). Specif-
ically, the main methods of the HTTP.OutboundAdapter enable you to send an HTTP request. All these methods give you
access to the HTTP response that is sent in return:

• If you use the PostFormData(), PostFormDataArray(), GetFormData() or GetFormDataArray method, the HTTP
response is returned as output in the first argument of the method call. This argument is an instance of
%Net.HttpResponse.

• If you use the SendFormDataArray() method, the HttpResponse property of the request is updated. This property is
an instance of %Net.HttpResponse.

For details on these methods, see Calling HTTP Commands.

For more information on using the HTTP response, see Sending HTTP Requests and Reading HTTP Responses.

Using HTTP Adapters in Productions 21

Creating Custom HTTP Requests

3.8 Examples
This section provides a couple of examples.

3.8.1 Example with Post

The following example uses the HTTP outbound adapter and posts an XML message to the configured destination. First,
the business operation class is as follows:

Class Definition

Class EHTTP.PostOperation Extends Ens.BusinessOperation
{

Parameter ADAPTER = "EnsLib.HTTP.OutboundAdapter";

Parameter INVOCATION = "Queue";

Method PostMessage(pRequest As EHTTP.Request.OutboundPost,
Output pResponse As EHTTP.Response.OutboundPost) As %Status
{
 Set tSC=$$$OK

 Set tResponse = ##class(%Net.HttpResponse).%New()
 Set tSC = ..Adapter.Post(.tResponse,,pRequest.MessageStream)
 Set stream = ""

 If $$$ISOK(tSC){
 Set pResponse = ##class(EHTTP.Response.OutboundPost).%New()
 Set len = tResponse.Data.SizeGet()
 While (tResponse.Data.AtEnd = 0) {
 Do pResponse.MessageStream.Write(tResponse.Data.Read())
 }
 }
 Return tSC
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="EHTTP.Request.OutboundPost">
 <Method>PostMessage</Method>
 </MapItem>
</MapItems>
}

}

The request message class is as follows:

Class Definition

Class EHTTP.Request.OutboundPost Extends Ens.Request
{

/// MessageStream contains the complete SOAP Message to post
Property MessageStream As %GlobalCharacterStream(CONTENT = "MIXED");

}

The response message class is as follows:

Class Definition

Class EHTTP.Response.OutboundPost Extends Ens.Response
{

/// MessageStream contains the Response to the SOAP Message post
Property MessageStream As %GlobalCharacterStream(CONTENT = "MIXED");

}

22 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

3.8.2 Example with Get

The following example uses the Get() method.

Method GetEvent(pRequest As EHTTP.Request.GetEvent,
ByRef pResponse As EHTTP.Response.GetEvent) As %Status
{
 Set tSC=$$$OK

 Set pResponse=##class(EHTTP.Response.GetEvent).%New()

 Set tFormVar="Name,Country,City"

 Set tName=pRequest.EventName
 Set tCountry=pRequest.EventCountry
 Set tCity=pRequest.EventCity

 Set tSC=..Adapter.Get(.tResponse,tFormVar,tName,tCountry,tCity)

 If '$IsObject(tResponse) {Quit
 }
 ;
 ;now parse the XML stream
 ;
 Set reader=(%XML.Reader).%New()
 Do tResponse.Data.Rewind()
 Set tSC=reader.OpenStream(tResponse.Data)

 If $$$ISERR(tSC) {
 $$$LOGWARNING("Unable to open the XML Stream")
 $$$TRACE("XML request probably failed")
 Do tResponse.Data.Rewind()
 Set traceline = tResponse.Data.Read(1000)
 $$$TRACE(traceline)
 Set tSC=$$$OK
 Quit
 }
 ;
 ;Associate a class name with the XML element Name
 ;
 Do reader.Correlate("EventResult","EHTTP.Event.EventResult")

 If reader.Next(.tResults,.tSC)
 {
 Set pResponse.EventValues=tResults.EventValues
 }
 Return tSC
}

This example retrieves an XML file from the target server, parses it, retrieving specific data.

3.9 Adding and Configuring the Business Operation
To add your business operation to a production, use the Management Portal to do the following:

1. Add an instance of your custom business operation class to the production.

2. Configure the adapter to communicate with a specific external data source. Specifically:

• Specify the destination for HTTP requests

• Optionally specify a proxy server

3. Enable the business operation.

4. Run the production.

Using HTTP Adapters in Productions 23

Adding and Configuring the Business Operation

3.9.1 Specifying the Destination Server and URL Path

Use the following runtime settings to specify the destination to which you will send HTTP requests:

• HTTP Server

• HTTP Port

• Credentials

• URL

3.9.1.1 Example

For example, suppose that the URL to which you are posting is http://122.67.980.43/HTTPReceive.aspx

In this case, you would use the following settings:

ValueSetting

122.67.980.43HTTPServer

HTTPReceive.aspxURL

3.9.2 Specifying a Proxy Server

Use the following runtime settings to route the HTTP request via a proxy server, if needed:

• Proxy Server

• Proxy Port

• Proxy HTTPS

24 Using HTTP Adapters in Productions

Using the HTTP Outbound Adapter

4
Built-in HTTP Components

InterSystems IRIS® data platform provides built-in business hosts that use the HTTP adapters, allowing you to add HTTP
support to a production without creating a custom business service or business operation. This page briefly introduces them,
as well as the generic HTTP message class.

4.1 Available HTTP Business Hosts
If you need a business service that uses the HTTP inbound adapter, you can add EnsLib.HTTP.GenericService to the produc-
tion. This business service uses EnsLib.HTTP.InboundAdapter as its adapter.

Similarly, a production that needs to leverage the HTTP outbound adapter can use EnsLib.HTTP.GenericOperation. This
business operation uses EnsLib.HTTP.OutboundAdapter as its adapter.

4.2 Generic HTTP Message Class
InterSystems IRIS provides a message class designed to carry a HTTP request or response through a production. This
message class, EnsLib.HTTP.GenericMessage, includes the headers and body of the HTTP request. In some cases, it may
be useful to construct a EnsLib.HTTP.GenericMessage from scratch and then send it out using EnsLib.HTTP.GenericOperation.
This process consists of building the body and populating the headers before creating the new message. The following is
an example:

// Build the header
#dim tRESTHTTPHeaders
Set tRESTHTTPHeaders("HttpRequest")="POST"
Set tRESTHTTPHeaders("HTTPVersion")="1.1"

// Build the body
#dim tPOSTStream = ##class(%Stream.GlobalCharacter).%New()
#dim tPOSTJSON = {}
Set tPOSTJSON.projection = []
Do tPOSTJSON.projection.%Push("%Doc")
Do tPOSTJSON.%ToJSON(.tPOSTStream)

// Add more headers
Set tRESTHTTPHeaders("content-length") = tPOSTStream.Size
Set tRESTHTTPHeaders("content-type") = "application/json"

// Create message
Return ##class(EnsLib.HTTP.GenericMessage).%New(tPOSTStream,,.tRESTHTTPHeaders)

Using HTTP Adapters in Productions 25

When creating the HTTP message using EnsLib.HTTP.GenericMessage.%New(), you have several options for passing in
the headers. Commonly, the header argument is passed in as an array. However, the %New() method also accepts headers
as an ObjectScript array reference, an %AbstractStream with its own Attributes to copy from, an %Net.HttpResponse object
with its own Headers to copy from, or a string of the form 'a=1,b=2,c=3'.

4.3 Target URL of the HTTP Request
When a production uses EnsLib.HTTP.GenericOperation, the URL header of the message is processed in conjunction with
the URL property of the outbound adapter to determine the URL path of the request. Like other adapter properties, the value
of this URL property is determined by the URL setting of the production’s business operation. For details on how the URL
header and the URL property interact, refer to the class reference for the URL property of EnsLib.HTTP.OutboundAdapter.

4.4 URL Parameters
By default, URL parameters are sent in the HTTP request body. To force URL parameters to be sent in the URL, set the
RawParams HTTP header. (If the IParams header is specified, then that will be used if the RawParams header is empty.)

4.5 More About Message Headers
The following example shows what the headers of a EnsLib.HTTP.GenericMessage might look like if it were created
by InterSystems IRIS:

<HTTPHeaders>
 <HTTPHeadersItem HTTPHeadersKey="CharEncoding" xsi:nil="true"></HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="EnsConfigName">ForDocker</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="HTTPVersion">1.1</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="HttpRequest">POST</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="IParams">0</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="RawParams" xsi:nil="true"></HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="TranslationTable">RAW</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="URL">/api/atelier/v4/TEST/action/query</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="accept">application/json, text/plain, */*</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="connection">close</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="content-length">127</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="content-type">application/json</HTTPHeadersItem>
 <HTTPHeadersItem
HTTPHeadersKey="cookie">CSPSESSIONID-SP-42773-UP-api-atelier-=001000000000t7LT7VX9SXUNIM7S8yKxK44S$uBbUtzNHVjIAk</HTTPHeadersItem>

 <HTTPHeadersItem HTTPHeadersKey="host">127.0.0.1:55773</HTTPHeadersItem>
 <HTTPHeadersItem HTTPHeadersKey="user-agent">axios/0.21.1</HTTPHeadersItem>
</HTTPHeaders>

If you are building a EnsLib.HTTP.GenericMessage from scratch, not all of these headers are required. At a minimum, the
HttpRequest, HTTPVersion, and content-type headers should be defined, and the content-length header is
also commonly defined.

26 Using HTTP Adapters in Productions

Built-in HTTP Components

HTTP Adapter Settings

This section provides reference information for the HTTP adapters.

Also see Settings in All Productions.

Using HTTP Adapters in Productions 27

Settings for the HTTP Inbound Adapter
Provides reference information for settings of the HTTP inbound adapter, EnsLib.HTTP.InboundAdapter.

Summary
The inbound HTTP adapter has the following settings:

SettingsGroup

Call Interval, PortBasic Settings

Job Per Connection, Allowed IP Addresses, OS Accept Connection Queue Size, Stay
Connected, Read Timeout, SSL Configuration, Local Interface, Enable Standard
Requests

Connection
Settings

Charset, Force Charset, GenerateSuperSessionIDAdditional Settings

The remaining settings are common to all business services. For information, see Settings for All Business Services.

Allowed IP Addresses
Specifies a comma-separated list of remote IP addresses from which to accept connections. The adapter accepts IP addresses
in dotted decimal form.

Note: IP address filtering is a means to control access on private networks, rather than for publicly accessible systems.
InterSystems does not recommend relying on IP address filtering as a sole security mechanism, as it is possible
for attackers to spoof IP addresses.

An optional :port designation is supported, so either of the following address formats is acceptable: 192.168.1.22 or
192.168.1.22:3298. If a port number is specified, connections from other ports will be refused.

If the string starts with an exclamation point (!) character, the inbound adapter initiates the connection rather than waiting
for an incoming connection request. The inbound adapter initiates the connection to the specified address and then waits
for a message. In this case, only one address may be given, and if a port is specified, it supersedes the value of the Port

setting; otherwise, the Port setting is used.

Also see Specifying the Sources of HTTP Requests.

Call Interval
This adapter does not use polling. It listens for a connection, and once a connection is established, it listens for messages
on that connection (and responds immediately, if possible). It does, however, periodically check to see whether there have
been requests to shut down the adapter or make it quiescent. This setting specifies the interval, in seconds, for the
EnsLib.HTTP.InboundAdapter to perform this check.

The default value is 5 seconds. The minimum is 0.1 seconds.

Charset
Specifies the character set of the incoming data. InterSystems IRIS® automatically translates from this encoding. The setting
value is not case-sensitive. Use Binary for binary files, or for any data in which newline and line feed characters are distinct
or must remain unchanged, for example in HL7 Version 2 or EDI messages. Other settings may be useful when transferring
text documents. Choices include:

• Auto—Use the encoding declared in the incoming HTTP header Content-Type field. This is the default.

• AutoXML—Use the encoding declared in the XML header of the incoming XML body content, if any.

28 Using HTTP Adapters in Productions

HTTP Adapter Settings

• Binary—Read the raw bytes of the body without performing any character encoding transformation.

• RawBytes—Read the raw bytes of the body without performing any character encoding transformation.

• Default—Use the default character encoding of the local InterSystems IRIS server.

• Latin1—The ISO Latin1 8-bit encoding.

• ISO-8859-1—The ISO Latin1 8-bit encoding.

• UTF-8—The Unicode 8-bit encoding.

• UCS2—The Unicode 16-bit encoding.

• UCS2-BE—The Unicode 16-bit encoding in big-endian form.

• Any other alias from an international character encoding standard for which NLS (National Language Support) is
installed in InterSystems IRIS.

For information on character sets and translation tables, see Translation Tables.

Force Charset
If this setting is true, the adapter uses the Charset setting instead of any character set declared in the incoming HTTP header
Content-Type field. The default is false.

Generate SuperSession ID
This property controls whether the message will have a SuperSessionID, which can be used to identify messages that cross
from one namespace to another. If this property is set, the business service first checks the HTTP header of the inbound
message for a SuperSession ID. If it has a SuperSessionID value, it uses it; otherwise, it generates a new SuperSession
value. It sets the SuperSesssion value in the production message and can also return the value in any HTTP response it
sends to the caller.

Job Per Connection
If this setting is true, the adapter spawns a new job to handle each incoming TCP connection and allows simultaneous
handling of multiple connections. If it is false, the adapter does not spawn a new job for each connection. The default is
true.

Local Interface
Specifies the network interface through which the connection should go. Select a value from the list or type a value. An
empty value means use any interface.

Enable Standard Requests
Specifies that the business service associated with the adapter can receive requests from both the Web Gateway port and
the custom port that you specify.

This setting is applicable only when the HTTP business service is based on a custom class that extends the
EnsLib.HTTP.Service class. For more information, see Creating a Business Service to Use the HTTP Inbound Adapter.

The default value for HL7 HTTP business services is false. The default value for all other HTTP business services is
true.

When you enable this setting, you must take additional steps to ensure that the Web Gateway can communicate with the
business service:

• If only one business service is based on the custom class, set the configuration name of the business service to the
name of the custom class. Then, include the name of the custom class in any URL that invokes the business service,
for example:

Using HTTP Adapters in Productions 29

Settings for the HTTP Inbound Adapter

/csp/myapplication/mynamespace/myserviceclassname

• If multiple business services are based on the custom class, include the ?CfgItem=configitemname parameter in
any URL that invokes the business service , where configitemname is the business service configuration name, for
example:

/csp/myapplication/mynamespace/myserviceclassname?CfgItem=myserviceconfignameA

/csp/myapplication/mynamespace/myserviceclassname?CfgItem=myserviceconfignameB

• Additionally, if you use a CSP web application to communicate with the business service, set the Dispatch Class for
the web application to the name of the custom class.

If you select Enable Standard Requests and set the pool size to 0, then business service receives data only from the Web
Gateway port and not from the custom port.

Note: If you use the Web Gateway port, First-In-First-Out processing for messages is not supported.

OS Accept Connection Queue Size
Specifies the number of incoming connections should the operating system should hold open. Set to 0 if only one connection
at a time is expected. Set to a large number if many clients will connecting rapidly.

Port
Identifies the TCP port on the local machine where the adapter is listening for HTTP requests. Avoid specifying a port
number that is in the range used by the operating system for ephemeral outbound connections.

Read Timeout
Number of seconds to wait for each successive incoming read, following receipt of initial data from remote port.

Stay Connected
Specifies whether to keep the TCP connection open between requests.

• If this setting is zero, the adapter will disconnect immediately after each message is received.

• If this setting is positive, it specifies the idle time, in seconds. The adapter disconnects after this idle time.

• If this setting is -1, the adapter auto-connects on startup and then stays connected.

30 Using HTTP Adapters in Productions

HTTP Adapter Settings

Settings for the HTTP Outbound Adapter
Provides reference information for settings of the HTTP outbound adapter, EnsLib.HTTP.OutboundAdapter.

Summary
The outbound HTTP adapter has the following settings:

SettingsGroup

HTTP Server, HTTP Port, URL, CredentialsBasic Settings

SSL Configuration, SSL Check Server Identity, Proxy Server, Proxy Port, Proxy HTTPS,
Proxy Http Tunnel, Response Timeout, ConnectTimeout, WriteTimeout, LocalInterface

Connection
Settings

Use Cookies, SendSuperSessionAdditional Settings

The remaining settings are common to all business operations. For information, see Settings for All Business Operations.

Connect Timeout
Specifies the number of seconds to wait for the connection to the server to open. The default value is 5.

If the connection is not opened in this time period, the adapter retries repeatedly, up to the number of times given by Failure

Timeout divided by Retry Interval.

Credentials
ID of the production credentials that can authorize a connection to the given destination URL. For information on creating
production credentials, see Configuring Productions.

HTTP Port
TCP port on the server to send HTTP requests to (will use 80 by default, or 443 if SSLConfig is specified). Values other
than 80 are included in the Host: header of the HTTP request that you are sending. For more information, see Specifying
the Destination Server and URL Path.

HTTP Server
IP address of the server to send HTTP requests to. This is used in the Host: header of the HTTP request that you are
sending. Also see Specifying the Destination Server and URL Path.

Local Interface
Specifies the network interface through which the HTTP connection should go. Select a value from the list or type a value.
An empty value means use any interface.

Proxy HTTPS
If using a proxy server, indicates whether the proxy server communicates with the target system using HTTPS. If you
enable this option and specify a value in the Proxy Server property, then the proxy server issues requests for HTTPS pages
rather than HTTP pages. Additionally, enabling this option changes the default HTTP Port to 443, which is the HTTPS
port.

Proxy Port
If using a proxy server, specifies the port on the proxy server to connect to. The default value is 8080.

Using HTTP Adapters in Productions 31

Settings for the HTTP Outbound Adapter

Proxy Server
If using a proxy server, specifies the proxy server host name. Request are made to the proxy server that you specify on the
Proxy Port that you specify. If you do not specify a value, a proxy server is not used.

Proxy HTTP Tunnel
Specifies whether the adapter uses the HTTP CONNECT command to establish a tunnel through the proxy to the target
HTTP server. If true, the request uses the HTTP CONNECT command to establish a tunnel. The address of the proxy server
is taken from the Proxy Server and Proxy Port properties. If Proxy Https is true, then once the tunnel is established, Inter-
Systems IRIS® negotiates the TLS connection. The default value is false.

Response Timeout
Specifies the timeout for getting a response from the server (the timeout for opening the connection to the server is set by
ConnectTimeout). The default value is 30.

If no response is received, the adapter retries repeatedly, up to the number of times given by Failure Timeout divided by
Retry Interval.

SSL Check Server Identity
Specifies that when making a TLS connection, the adapter should check that the server identity in the certificate matches
the name of the system being connecting to. This defaults to specifying that the check should be made. Uncheck this for
test and development systems where the name specified in the TLS certificate does not match the DNS name.

SSL Configuration
The name of an existing TLS configuration to use to authenticate this connection. Choose a client TLS configuration,
because the adapter initiates the communication.

To create and manage TLS configurations, use the Management Portal. See InterSystems TLS Guide. The first field on the
Edit SSL/TLS Configuration page is Configuration Name. Use this string as the value for the SSL Configuration setting.

SendSuperSession
The SendSuperSession is a Boolean setting that controls whether the outbound adapter creates a SuperSession header in
the HTTP header and assigns an identifier to it. When finding a message, you can use the SuperSession value to match a
message in one production with the related message in another production. Within a production, it is easy to track a message
as it travels between business services, processes, and operations using the SessionId. But once a message leaves a business
operation via an HTTP message and enters a different production, the production receiving the message assigns a new
SessionId.

If SendSuperSession is selected, the HTTP outbound adapter does the following:

1. Check if the message has an empty value in Ens.MessageHeaderBase.SuperSession property. If it does have an empty
value, the adapter generates a new value and stores it in the SuperSession property.

2. Stores the value of the SuperSession property in the private InterSystems.Ensemble.SuperSession HTTP header of the
outgoing message.

When an HTTP incoming adapter receives a message, it checks for the SuperSession value in the incoming HTTP message
header. If the value is present, it sets the Ens.MessageHeaderBase.SuperSession property. This property is preserved as the
message passes from one production component to another.

Note: There are no tools to automate tracking messages between productions using SuperSession.

32 Using HTTP Adapters in Productions

HTTP Adapter Settings

URL
URL path to request from the server (not including http:// or the server address).

Also see Specifying the Destination Server and URL Path.

Use Cookies
Specifies whether to save cookies received in HTTP responses while this adapter is instantiated, and insert them in each
subsequent HTTP request.

WriteTimeout
Specifies a timeout value for writes to the web server. If this setting is null, there is no timeout.

Using HTTP Adapters in Productions 33

Settings for the HTTP Outbound Adapter

	Table of Contents
	1 About the HTTP Adapters
	1.1 HTTP Inbound Adapter and Helper Classes
	1.2 HTTP Outbound Adapter and Helper Classes

	2 Using the HTTP Inbound Adapter
	2.1 Overall Behavior
	2.2 Creating a Business Service to Use the HTTP Inbound Adapter
	2.3 Implementing the OnProcessInput() Method
	2.4 Implementing the OnErrorStream() Method
	2.5 Using the HTTP Request
	2.5.1 About the Attributes Array
	2.5.2 Retrieving Form Variables from a POST Request

	2.6 Adding and Configuring the Business Service
	2.6.1 Specifying the Sources of HTTP Requests
	2.6.2 Specifying the Character Set to Use

	3 Using the HTTP Outbound Adapter
	3.1 Overall Behavior
	3.2 Creating a Business Operation to Use the Adapter
	3.3 Creating Message Handler Methods
	3.4 Calling HTTP Commands
	3.4.1 Sending Form Data
	3.4.2 Sending a Request Body
	3.4.3 Reference Information for HTTP Methods
	3.4.4 Handling the HTTP Response

	3.5 Managing Cookies
	3.6 Creating Custom HTTP Requests
	3.7 Using the HTTP Response
	3.8 Examples
	3.8.1 Example with Post
	3.8.2 Example with Get

	3.9 Adding and Configuring the Business Operation
	3.9.1 Specifying the Destination Server and URL Path
	3.9.2 Specifying a Proxy Server

	4 Built-in HTTP Components
	4.1 Available HTTP Business Hosts
	4.2 Generic HTTP Message Class
	4.3 Target URL of the HTTP Request
	4.4 URL Parameters
	4.5 More About Message Headers

	HTTP Adapter Settings
	Settings for the HTTP Inbound Adapter
	Settings for the HTTP Outbound Adapter

	Index

