InterSystems-

IRIS Data Platform

InterSystems IRIS Demo:
Connecting with ADO.NET

Version 2024.1
2024-07-02

InterSystems IRIS Demo: Connecting with ADO.NET
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

Inter Systems RIS Demo: Connecting With ADO.NETccooiiiiinine e

1 Why ADO.NET IS IMPOFTANTecvviieiiiiesiesieriesesie s et ste sttt ss e e e eseesessesnesnenees
2 ADO.NET and INterSystemS IRIScc.ciiiiiiicieieeieise e s sre e
S EXPIONING ADOLNET ..ottt ettt te e ettt e et e st e et e e st e s beeneesteetesreeseesnaesennreens
3.1 BETOIe YOU BEOIN ..ottt bbb ettt st b b b e
3.2 Configuring the Visual StUdIO PrOJECEcvviiiiiiiiesese et
3.3 Connecting Via ADOLNET ...ooiiiiiii e
3.4 Confirming the Changes in the Management Portalccccooeveeieeieciecinsie e,
T 1= Y =] o TSP P TP PPPRPRPP

InterSystems IRIS Demo: Connecting with ADO.NET

InterSystems IRIS Demo: Connecting with
ADO.NET

This article explains how to connect to InterSystems IRIS® data platform via the InterSystems ADO.NET Managed Provider.
Once you have completed the demo that follows, you will have configured a Visual Studio project to use the
InterSystems.Data.IRISClient.dll assembly, established an ADO.NET connection to InterSystems IRIS, run several SQL
statements from your .NET application, and confirmed the effects of these statements in the InterSystems IRIS System
Management Portal.

To give you a taste of the ADO.NET Managed Provider without bogging you down in details, we’ve kept this exploration
simple. These activities are designed to only use the default settings and features, so that you can acquaint yourself with
the fundamentals of the feature without having to deal with details that are off-topic or overly complicated. When you bring
ADO.NET to your production systems, there may be things you will need to do differently. Be sure not to confuse this
exploration of ADO.NET with the real thing! The sources provided at the end of this document will give you a good idea
of what is involved in using ADO.NET in production.

For more documentation and other learning resources for ADO.NET and InterSystems IRIS, see Next Steps.

1Why ADO.NET Is Important

ADO.NET is a data access technology from the Microsoft .NET Framework that provides access to data sources. It is used
to establish database connectivity and provides a standard, reliable way for .NET Framework programmers to connect to

many types of data sources or perform operations on them with SQL. Connecting to InterSystems IRIS via the ADO.NET
Managed Provider is simple, especially if you’ve used ADO.NET before. Establishing an ADO.NET connection to Inter-

Systems IRIS from a .NET application allows you to run SQL commands against InterSystems IRIS databases from your
.NET application.

If you’re new to InterSystems IRIS but familiar with .NET and SQL, you can use your existing expertise right away to help
you become familiar with the database platform. You can test ADO.NET connections and SQL commands in a development
environment with just a few lines of code.

2 ADO.NET and InterSystems IRIS

InterSystems IRIS is a fully compliant implementation of the ADO.NET specification. The InterSystems ADO.NET
Managed Provider provides easy relational access to data. It processes ADO.NET method calls from applications and
submits SQL requests to InterSystems IRIS. It then returns results to the calling application — in this case, your .NET
application.

Connecting to InterSystems IRIS via ADO.NET is a very straightforward process.

In order to use InterSystems IRIS ADO.NET capability, you must first add the InterSystems.Data.IRISClient.dll assembly
as a dependency to your Visual Studio project. After confirming a few settings, use our sample code to establishan ADO.NET
connection to InterSystems IRIS and to execute SQL queries. Note that the InterSystems.Data.IRISClient.dll assembly is
implemented using .NET managed code throughout, making it easy to deploy within a .NET environment. It is thread-safe
and can be used within multithreaded .NET applications.

InterSystems IRIS Demo: Connecting with ADO.NET 1

Exploring ADO.NET

3 Exploring ADO.NET

We have developed a brief demo that shows you how to work with ADO.NET and InterSystems IRIS.

3.1 Before you Begin

To use this procedure, you will need a Windows system to work on, with the .NET framework and Visual Studio installed,
and a running InterSystems IRIS instance to connect to. Your choices for InterSystems IRIS include several types of licensed
and free evaluation instances; the instance need not be hosted by the system you are working on (although they must have
network access to each other). For information on how to deploy each type of instance if you do not already have one to
work with, see Deploying InterSystems IRIS in Inter Systems IRISBasics: Connecting an IDE. Connect Visual Studio to
your InterSystems IRIS instance using the information in InterSystems IRIS Connection Information and .Net IDEs in the
same document.

3.2 Configuring the Visual Studio Project

In the Visual Studio main menu, create a new Project by selecting File > New > Project. In the resulting dialog, click the
Visual C# option, and choose Console App (.NET Framework). For the Name field, enter ADONET. Click oK. This should
create a new console application using the .NET Framework.

Next, in the Visual Studio main menu, select Project > ADONET Properties. Under Target framework, select .NET Framework
4.6.2.

Note: Thisdemo uses .NET Framework 4.6.2, but it is possible to use any supported version of NET or .NET Framework
if itis installed on your system. For current supported versions and file locations, see Supported .NET Frameworks
in Inter Systems Supported Platforms.

3.2.1 Adding the Assembly Reference

The InterSystems.Data.IRISClient.dll assembly must be installed on your local system. You can download the assembly
from the InterSystems IRIS Driver Packages page. If InterSystems IRIS is installed on your local system or another you
have access to, the assembly is already installed in the subdirectory install-dir\dev\dotnet\bin\v4.6.2, where install-dir is the
installation directory for the instance.

To add an assembly reference to InterSystems.Data.IRISClient.dll to a project:
1. From the Visual Studio main menu, select Project > Add Reference...

In the resulting window, click Browse....

Browse to the location of the InterSystems.Data.IRISClient.dll file.

Select the file and click Add.

a &~ w D

Click oK.

In the Visual Studio Solution Explorer, the InterSystems.Data.IRISClient.dll assembly should now be listed under References.

3.3 Connecting via ADO.NET

At this point, you are ready to connect to InterSystems IRIS from your .NET application. The connection string for the
InterSystems ADO.NET Managed Provider is made up of key-value pairs that define the connection properties. The con-
nection string syntax is:

2 InterSystems IRIS Demo: Connecting with ADO.NET

https://intersystems-community.github.io/iris-driver-distribution/

Exploring ADO.NET

Server=host_IP; Port=superserverPort; Namespace=namespace; Password=password; User ID=username;

where the variables represent the InterSystems IRIS instance host’s IP address, the instance’s superserver port, a namespace
on the instance, and credentials for the instance. This is the same information you used to connect Visual Studio to your
instance, as described in Before You Begin.

Update this information in the code that follows after you paste it into Visual Studio. You can set namespaceto the predefined
namespace USER, as shown, or to another namespace you have created on your installed instance.

using System;
using InterSystems._Data.lIRISClient;

namespace ADONET
{

class Program

static void Main(string[] args)

String host = "<host>";

String port = "'<port>"';

String username = ‘‘'<username>"';
String password = "'<password>"';
String Namespace = "USER";

IRISConnection IRISConnect = new IRISConnection();

IR1SConnect.ConnectionString = "Server = " + host
+ "; Port =" + port + '"'; Namespace = " + Namespace
+ '; Password = " + password + ''; User ID = " + username;

IRISConnect.Open();

String sqlStatementl "CREATE TABLE People(ID int, FirstName varchar(255), LastName

varchar(255))";

}

}

}

String sqlStatement2 = "INSERT INTO People VALUES (1, "John®, "Smith")";
String sqlStatement3 = "INSERT INTO People VALUES (2, "Jane", "Doe")";
String queryString = "SELECT * FROM People™;

IRISCommand cmdl
IR1SCommand cmd2
IR1SCommand cmd3
IRISCommand cmd4

new IRISCommand(sglStatementl, IRISConnect);
new IRISCommand(sglStatement2, IRISConnect);
new IRISCommand(sqglStatement3, IRISConnect);
new IRISCommand(queryString, IRISConnect);

//ExecuteNonQuery() is used for CREATE, INSERT, UPDATE, and DELETE SQL Statements
cmdl.ExecuteNonQuery();
cmd2.ExecuteNonQuery();
cmd3.ExecuteNonQuery();

//ExecuteReader() is used for SELECT
IRISDataReader Reader = cmd4.ExecuteReader();

Console.WriteLine("Printing out contents of SELECT query: ');
while (Reader.Read())
{

Console.WriteLine(Reader.GetValue(0).ToString() + ", " + Reader.GetValue(l).ToString(Q)
+ Reader.GetValue(2).ToString());

}

Reader.Close();
cmdl._Dispose();
cmd2.Dispose();
cmd3.Dispose();
cmd4 _Dispose();
IR1SConnect.Close();

Console.WriteLine(''Press any key to continue...');
Console.ReadKey();

Run the code by clicking the Start button, or by pressing F5.

InterSystems IRIS Demo: Connecting with ADO.NET 3

Next Steps

If the connection and queries have completed successfully, you should see a console window containing the results of the
SELECT query.

3.4 Confirming the Changes in the Management Portal

Next, confirm your results in the Management Portal, using the following procedure:

1. Open the Management Portal for your instance in your browser, using the URL described for your instance in Inter Sys-
tems IRISBasics. Connecting an IDE.

2. If you are not in the namespace you specified in the code, switch to it (click %SYsS, or whatever namespace is shown,
in the Namespace: indicator at the top of the page).

3. Navigate to the SQL page (System Explorer > SQL), then click the Execute Query tab and paste in the following SQL
query:

SELECT
ID, FirstName, LastName
FROM SQLUser .People

Click Execute. The page should display the contents of the People table created in the sample code.

4 Next Steps

To learn more about ADO.NET, SQL, and InterSystems IRIS, see:

» Using the InterSystems Managed Provider for .NET

» Using InterSystems SQL

» ADO.NET Overview

To learn about all of the available technologies for connecting .NET applications to InterSystems IRIS, see Connecting

.NET Applications to InterSystems Products, a learning path providing access to videos, courses, and exercises as well as
documentation.

4 InterSystems IRIS Demo: Connecting with ADO.NET

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview
https://learning.intersystems.com/course/view.php?name=.NET%20Experience
https://learning.intersystems.com/course/view.php?name=.NET%20Experience

	Table of Contents
	1 Why ADO.NET Is Important
	2 ADO.NET and InterSystems IRIS
	3 Exploring ADO.NET
	3.1 Before you Begin
	3.2 Configuring the Visual Studio Project
	3.3 Connecting via ADO.NET
	3.4 Confirming the Changes in the Management Portal

	4 Next Steps
	Index

