
Using DataMove with
InterSystems IRIS

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using DataMove with InterSystems IRIS
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Using DataMove with InterSystems IRIS.. 1

1 Introduction to DataMove ... 1
2 DataMove Restrictions .. 1
3 Preparing to Use DataMove .. 2
4 The DataMove Workflow .. 3
5 DataMove in a Mirror or ECP Environment ... 3
6 The DataMove APIs .. 4

6.1 Create and Edit DataMove Namespace Mappings .. 4
6.2 Generate the DataMove ... 5
6.3 Start the DataMove ... 6
6.4 Monitor the DataMove .. 7
6.5 ^DATAMOVE Utility .. 8
6.6 Activate Mapping Changes and Finish the DataMove .. 13
6.7 Delete Source Globals and Finish DataMove ... 14
6.8 Other API Calls ... 15

7 DataMove States .. 17
8 DataMove Example ... 18

List of Tables
Table 1: List of DataMove States ... 17

Using DataMove with InterSystems IRIS iii

Using DataMove with InterSystems IRIS

This document describes how to use the DataMove process to move existing data associated with an InterSystems IRIS®
data platform namespace to a new location.

Important: InterSystems highly recommends that you test DataMove with your specific namespaces and databases in
a test environment before using it on a live system.

Note: Some single lines of code in this document wrap across lines, due to the page and font sizes.

1 Introduction to DataMove
The DataMove process allows you to move existing data associated with an InterSystems IRIS namespace to a different
database, by:

• Creating new mappings for the namespace.

• Analyzing the mapping changes to calculate which globals and global subscripts need to be moved.

• Copying the data to the new database or databases.

• Activating the mapping changes.

For example, DataMove allows you to move a global, or portion of a global, from a namespace’s default globals database
to a different database. You can use the process to move a namespace’s globals to a separate database from its routines, to
split data across multiple databases, or otherwise move data to new locations based upon updated design decisions over
the evolution of an application. DataMove allows you to move data and change mappings while actively using the same
data in your applications.

For more information on mappings, see “Add Global, Routine, and Package Mapping to a Namespace” in the System
Administration Guide.

2 DataMove Restrictions
The DataMove process is subject to the following restrictions:

• DataMove is designed to move data between databases on the same instance. Extra operational care is required for
mirrored systems and systems which have ECP clients attached.

• DataMove should not be used on applications that use extended global references. Data integrity cannot be ensured if
the application mixes the use of mappings and extended references.

• Journaling must be turned on for the system.

• The freeze on journal error switch must be set.

• Data can only be moved from a local database to another local database, or from a mirrored database to a mirrored
database.

• In a DataMove which contains mirrored databases, you can only run the DataMove on the Primary node.

Using DataMove with InterSystems IRIS 1

• If a DataMove is running on the primary mirror, and the failover or DR node becomes the primary, the DataMove will
automatically continue running on the new primary node.

For more information on extended global references, see “Namespaces” in Using ObjectScript.

3 Preparing to Use DataMove
DataMove creates and uses several globals to track its progress and state. These globals are stored in two databases you
must create. These databases should be created with the same attributes as the IRISSYS database. This includes file and
directory permissions and resource names. The MaxSize parameter should be 0 (unlimited) and the database needs to be
journaled. These databases can grow to be several GB, so ensure there is plenty of disk space allocated for them. The two
databases are:

IRISDATAMOVE — Required for running any type of DataMove on mirrored or non-mirrored systems.

IRISDATAMOVEMIRROR — Required only for running a DataMove on a mirrored system. This database needs to be created
as a mirrored database and must exist on all members of the mirror including Failover, Async, DR, and reporting members.

These databases need to be created and defined in the CPF file. Here is an example of what to include in your CPF file on
a mirrored system:

[Databases]
IRISDATAMOVE=C:\irisdatamove\
IRISDATAMOVEMIRROR=C:\irisdatamovemirror\

Here is an example of what the attributes of the IRISDATAMOVEMIRROR database should be:

%SYS>d ^DATABASE
1) Create a database
2) Edit a database
3) List databases
4) Delete a database
5) Mount a database
6) Dismount a database
7) Compact globals in a database
8) Show free space for a database
9) Show details for a databse
10) Recreate a database
11) Manage database encryptions
12) Return unused space for a database
13) Compact free space in a database
14) Defragment a database
15) Show background database tasks

Option? 9
Database directories? IRISDATAMOVEMIRROR
Device:
Right margin: 80 =>

Directory: c:\irisdatamovemirror\
MirrorDBName: IRISDATAMOVEMIRROR
MaxSize: 0
Size: 31
Status: Mounted/RW
BlockSize: 8192
ClusterMountMode: 0
ClusterMounted: 0
ExpansionSize: 0
LastExpansionTime: 03/03/2023 15:25:25
Mounted: 1
NewGlobalCollation: IRIS standard
NewGlobalGrowthBlock: 50
NewGlobalIsKeep: 0
GlobalJournalState: Yes
NewGlobalPointerBlock: 16
ReadOnly: 0
ResourceName: %DB_IRISSYS
MountedReadOnly: 0

2 Using DataMove with InterSystems IRIS

Preparing to Use DataMove

EncryptedDB: 0
EncryptionKeyID:
Configured DB Name: IRISDATAMOVEMIRROR
Mount Required At Startup: No

4 The DataMove Workflow
The DataMove workflow comprises the following phases:

1. Changes to the namespace mappings are saved in a temporary storage area.

2. A set of data moves is generated from the mappings.

3. The data moves are validated against the specified globals and databases, and sufficient free disk space in the destination
databases is confirmed. If any issues are found, the user can correct them and resume the workflow.

4. When the DataMove starts, several background jobs copy the existing data to the new location. As the data is copied,
other background jobs process the journal files and apply changes to the copied data.

5. When all the data has been copied, and the journal files have been applied, DataMove will run a DataCheck on the
source and destination globals to verify that the data is the same in both databases.

6. After the DataCheck has completed, the new mappings are activated in the namespace.

7. After the namespace changes have been successfully activated, you can delete the old source data that has been copied
to the new locations.

DataMove maintains a log file DataMoveName.log of all operations in the /mgr directory. There is also a record of all pre-
vious operations is in the DataMove.log file in the /mgr directory.

5 DataMove in a Mirror or ECP Environment
When using DataMove in an ECP or mirror environment, you must make sure that the new namespace mappings are updated
on the ECP clients and mirrors. Note that if you are in a mirror environment and are going to move data into newly created
mirrored databases, you must also create these mirrored databases on the backup and Async mirrors.

1. Create your DataMove and run it until it is ready to activate the new mappings.

2. If you have a failover mirror, you must demote the backup to a DR mirror before you activate.

3. If you have ECP clients, you must stop the application on the clients, or bring the ECP systems down before you activate.

4. If you are using Async mirrors, you must stop any applications accessing the data there, or any ECP clients connected
directly to them before you activate.

5. At this point you can activate the new DataMove mappings.

6. Update the mappings on the Async mirrors to match the new DataMove mappings you just applied, including the former
backup failover mirror. Additionally, update any ECP clients which are connected to the IRIS server. You can use the
iris merge command to help you with this.

7. Promote the former backup mirror from a DR Mirror back to a failover member.

8. Update any ECP clients with the new DataMove mappings you just applied.

9. Allow applications to restart on the Async mirrors and ECP clients.

Using DataMove with InterSystems IRIS 3

The DataMove Workflow

6 The DataMove APIs
This section details the API calls required for each phase of the DataMove workflow.

Make note of the following guidelines:

• You must provide any needed scripting or user interface, according to your specific requirements.

• To make use of the needed macros, your code should include the %syDataMove file.

• Your code should check the status returned by each method before proceeding to the next API call.

• If any destination databases do not exist, you must create them prior to calling the DataMove APIs.

• The workflow must be executed in the %SYS namespace.

Important: DataMove operations may move and delete large amounts of data and can take a significant amount of
time to complete. Because of this, InterSystems recommends you take a full backup of your system at the
following points in the DataMove workflow:

1. Immediately before you call DataMove.API.StartCopy()

2. Immediately before you call DataMove.API.Activate()

3. Immediately before you call DataMove.API.DeleteSourceGlobals()

A full backup includes the /mgr directory and all your journal data. These backups should be made in
addition to your regularly scheduled backups.

Since DataMove can generate a large amount of journal data, it is possible to set your journal archive and
purge schedule to a shorter timeframe. DataMove will only allow journal files to be purged which are no
longer needed by the DataMove operation. When purging journal files while using DataMove, use only
the system provided journal purge methods.

6.1 Create and Edit DataMove Namespace Mappings

6.1.1 DataMove.API.MapInitialize(Name as %String, Namespaces As %String) As %Status

Initializes the temporary storage area for a new set of mapping edits.

Argument:

• Name is the name of the DataMove.

• Namespaces is a comma-separated list of the namespaces on which you want to perform the DataMove.

This method must be called before any edits are made and is only valid for the specified namespaces. You may move data
in multiple namespaces as part of the same DataMove.

Example:

Set Namespace = "SALES"
Set Status = ##Class(DataMove.API).MapInitialize("DMName",Namespace)
If '$$$ISOK(Status) Write !,$SYSTEM.Status.GetErrorText(Status)

Example:

Set Namespaces = "SALES,PROSPECTS"
Set Status=##Class(DataMove.API).MapInitialize("DMName",Namespaces)
If $$$ISOK(Status) Write !,$SYSTEM.Status.GetErrorText(Status)

4 Using DataMove with InterSystems IRIS

The DataMove APIs

6.1.2 DataMove.API.MapGlobalsCreate(Name as %String, Namespace As %String, GblName As
%String, ByRef Properties As %String) As %Status

Creates a new global mapping for this namespace in the temporary storage area. You can call this method one or more
times, depending on the number of mappings you plan to include in this DataMove.

Arguments:

• Name is the name of the DataMove.

• Namespace is the namespace on which you want to perform the DataMove.

• GblName is the name of a global to be mapped to a specific database.

• Properties is an array of properties needed for this mapping, in particular, the name of the database used for this
mapping.

Setting the GblName argument to “A” specifies that this mapping affects the entire global ^A. Setting this argument to
“A(5):A(10)” specifies that this mapping affects the range of the global with subscripts ^A(5) up to, but not including,
^A(10).

Setting the Properties argument to an array Properties where Properties("Database") is set to “USER2” spec-
ifies that the global (or range of a global) is to be mapped to the database USER2.

The MapGlobalsModify() and MapGlobalsDelete() methods can be used to modify or delete existing mappings. See the
Class Reference for more information.

Examples:

Set Properties("Database")="DSTDB"

;Move ^X(100) up to but not including ^X(200) to database DSTDB
Set Status = ##Class(DataMove.API).MapGlobalsCreate("DMName","SALES","X(100):(200)",.Properties)

;Move the entire ^INFO global to database DSTDB
Set Status = ##Class(DataMove.API).MapGlobalsCreate("DMName","SALES","INFO",.Properties)

;Move all Data from the first subscript in ^BILLING
;(including the node ^BILLING itself) up to but not including ^BILLING(100)
;to database DSTDB
Set Status = ##Class(DataMove.API).MapGlobalsCreate("DMName","SALES","BILLING(BEGIN):(100)",.Properties)

;Move the entire global ^PROSPECT
;from its currently mapped database to DSTDB
Set Status = ##Class(DataMove.API).MapGlobalsModify("DMName","SALES","PROSPECT",.Properties)

;Move the entire global ^ORDERS from its currently mapped database
;back to the default database for the namespace SALES
Set Status=##Class(DataMove.API).MapGlobalsDelete("DMName","SALES","ORDERS")

For more information on defining global ranges, see Global Mappings in the System Administration Guide.

6.2 Generate the DataMove

6.2.1 DataMove.API.Generate(Name As %String, ByRef Properties As %String, ByRef Warnings
As %String, ByRef Errors As %String) As Status

Creates a new DataMove based on map edits in the temporary storage area.

Arguments:

• Name is the name of the DataMove to be created.

• Properties is an array of optional properties to be used to create the DataMove.

• Warnings is an array returned with conflicts that do not prevent the DataMove from being performed.

Using DataMove with InterSystems IRIS 5

The DataMove APIs

• Errors is an array returned with conflicts that do prevent the DataMove from being performed.

Properties is an array passed in as the Properties argument:

• Properties("MaxMBPerMin") optionally specifies the maximum number of MB per minute the DataMove oper-
ation is allowed to move to the destination database. Setting this to 0 allows the DataMove to run as fast as it can. If
not passed, it uses the system default.

• Properties("MaxMBCheckPerMin") optionally specifies the maximum number of MB per minute the DataMove
DataCheck operation is allowed to check.

Setting this to 0 allows the DataMove DataCheck to run as fast as it can. If not passed, it used the system default.

• Properties("Description") optionally provides a description of the DataMove to be performed.

• Properties("Flags") optionally provides any flags describing the DataMove operation, such as:

– $$$BitNoSrcJournal, allow copying of non-journaled databases.

– $$$BitCheckActivate, call the user-supplied routine $$CheckActivate^ZDATAMOVE() to check the
application status before activating the mapping changes.

• Properties("LogFile") optionally specifies a log file name, if other than the default.

The Warnings array contains a list of mappings where the data being moved is also mapped from another namespace.
This array is subscripted by the name of the global or the global range.

The Errors array contains a list of mappings where a conflict prevents the data from being moved. This array is subscripted
by the name of the global or the global range.

Example:

Set Properties("Flags")= $$$BitCheckActivate
Set Status=##Class(DataMove.API).Generate("TEST",.Properties,.Warnings,.Errors)

For more information on database journaling, see “Journaling” in the Data Integrity Guide.

For more information on running a process in batch mode, see “Process Management” in Specialized System Tools and
Utilities.

6.3 Start the DataMove

6.3.1 DataMove.API.StartCopy(Name As %String) As %Status

Starts the DataMove copy, which handles the actual moving of data.

Argument:

• Name is the name of the DataMove.

This method starts the initial DataMove copy as a set of background jobs which copy the individual ranges from the source
databases to the destination databases while at the same time journal transactions are applied to the destination databases
for data which changes as it is being copied.

Before the copy actually starts, StartCopy() calls Validate() and ValidateSizes() to validate the DataMove. If the validation
returns an error, the StartCopy() will return the validation error and will not start the DataMove. The user can then correct
the error, and call StartCopy() again.

After the copy is complete, StartCopy() will call DataCheck to verify that the source and destination data are the same.
Once DataCheck successfully completes, Activate() can be called.

6 Using DataMove with InterSystems IRIS

The DataMove APIs

6.4 Monitor the DataMove

6.4.1 DataMove.API.GetProperties(Name As %String, ByRef Properties as %String) As %Status

Returns the current properties of the DataMove.

Arguments:

• Name is the name of the DataMove.

• Properties is an array of the DataMove properties as follows:

– Properties("ExpandedState") – Expanded external format of the state.

– Properties("JRNMBToApply") – Current number of MB of Journal file to process=0.

– Properties("MaxMBPerMin") – Maximum number of MB per minute the DataMove is allowed to move.

– Properties("MaxMBCheckPerMin") – Maximum number of MB per minute the DataMove DataCheck
operation is allowed to process.

– Properties("MBCopied") – Amount of MB copied. At the end of a DataMove when all the data has been
copied, and before Activate() is called, the amount of MB copied may not equal the amount of MBToCopy on a
system where data in the source database is being updated while the DataMove is running.

– Properties("MBChecked") – Amount of MB that have been DataChecked. After the DataCheck completes,
this value will be more than the size of the data copied.

– Properties("MBToCopy") – Approximate amount of MB to copy.

– Properties("State") – Current state of the move; see the table below.

– Properties("StateExternal") – External format of the State property.

– Properties("Status") – %Status value of any errors which occur.

– Properties("Stop") – Stop state of the DataMove:

• $$$DMStopNone – Stop not signaled.

• $$$DMStopNormal – Stop signaled when called by the Activate() method.

• $$$DMStopShutdown – Stop signaled by normal system shutdown. DataMove will resume on system restart
if the parameter to restart on system startup is set.

• $$$DMStopUser – Stop signaled by user calling the method StopCopy(). Copy can be restarted by StartCopy().

• $$$DMStopForce – Stop signaled by Force(). Copy can be restarted by StartCopy().

• $$$DMStopErrorRecoverable – Stop signaled by error. Copy can be restarted by StartCopy() once the
error is corrected.

• $$$DMStopErrorUnRecoverable – Stop signaled by unrecoverable error. This may be due to several
different reasons including journal errors. The only option here is to call Rollback() and then StartCopy() to
restart the DataMove, or Delete() to delete the DataMove.

Example:

Using DataMove with InterSystems IRIS 7

The DataMove APIs

%SYS>Set x=##Class(DataMove.API).GetProperties("ABC1",.Properties)

%SYS>Zwrite Properties
Properties("ExpandedState")="ActivateReady/Run"
Properties("JRNMBToApply")=0
Properties("MBChecked")=25622
Properties("MBCopied")=24722
Properties("MBToCopy")=24722
Properties("MaxMBCheckPerMin")=0
Properties("MaxMBPerMin")=0
Properties("State")=10
Properties("StateExternal")="ActivateReady"
Properties("Status")=1
Properties("Stop")=0

6.5 ^DATAMOVE Utility

The ̂ DATAMOVE utility displays the current state of all DataMoves defined on the system and allows users to set DataMove
default parameters. Multiple DataMove can be running at the same time.

6.5.1 Setting DataMove Default Parameters

DataMove default system parameters allow the user to specify what happens when the system restarts, and can also limit
the amount of data which can be moved per minute. By default, a running DataMove will copy data as fast as it can.
However, this can affect other user processes on the system, as well as affect the latency of a mirrored system.

%SYS>d ^DATAMOVE
1) Monitor DataMove
2) Edit DataMove settings
3) Exit
Option? 2

Setting the maximum number of MB DataMove is allowed to copy per minute
to 0 means that DataMove will copy the data as fast as it can. Changing
this setting will apply the new value to future DataMoves, and optionally
any currently running DataMoves. You can also change this setting through
the 'Metrics' display screen for a running DataMove without changing the
system default.
Maximum number of MB to copy per minute? 0 => 5000
Do you want to apply this change to existing Data Moves? Yes => Yes

Setting the maximum number of MB DataMove DataCheck is allowed to check per minute to 0 means that DataMove
DataCheck will check the data as fast as it can. Changing this setting will apply the new value to future DataMoves and,
optionally, any currently running DataMoves. You can also change this setting through the “Metrics” display screen for a
running DataMove DataCheck without changing the system default.

Maximum number of MB to check per minute? 0 => 8000
Do you want to apply this change to existing Data Moves? Yes => Yes
Confirm changes? Yes => Yes
DataMove settings updated

1) Monitor DataMove
2) Edit DataMove settings
3) Exit

6.5.2 Monitoring DataMove

Once you have called the Generate() method, you can use ^DATAMOVE to examine the state of the move, and which
ranges are set to move.

%SYS>d ^DATAMOVE
1) Monitor DataMove
2) Edit DataMove settings
3) Exit
Option? 1

This is an example of what is displayed after Generate() and StartCopy() have been called. It shows the accumulated
statistics for all the ranges in the DataMove.

8 Using DataMove with InterSystems IRIS

The DataMove APIs

These fields show the following information:

• Jrn Cycle Time – Amount of time it took for the journal scanner/apply to reach the end of the current journal file
for the last time it reached the end of the journal.

• DataCheck Time – Amount of time it took for the DataCheck to complete.

• CopyTime – Amount of time it took to copy the global.

• Size Time– Amount of time it took for the global size calculation.

• Done – Amount of each operation found in the journal file that it applied to the destination database.

• Avoid – Amount of each operation found in the journal file which could be skipped. Operations can be skipped if the
Copy has not yet started, or the operation occurs in a piece of the global which has not yet been copied to the destination.

• Copy – Amount of each operation which were applied to the destination database while the Copy was running.

• Journal Start – Journal file and offset where the DataMove started.

• Journal Current – Current journal file and offset.

• Max MB/Min – Maximum MB per minute the DataMove is allowed to copy. This is set for the DataMove in one of
three ways:

– DataMove default from ^DATAMOVE.

– The Metrics screen shown below.

– The Modify() API.

• MB/Min – MB per minute the DataMove has copied over the lifetime of the DataMove.

• Blks Copied – Actual number of database blocks copied.

• Nodes Checked – Number of global nodes which were DataChecked.

Using DataMove with InterSystems IRIS 9

The DataMove APIs

• JRN Count/Size – Number of transactions and total size for this DataMove which were found in the current journal
file and the previous journal file before the StartCopy() method was called.

• Pid Move/Jrn – Process ID of the two processes handling the copy and dejournal.

• Pid Copy/Chk – Process ID of the Master DataMove process and Master DataCheck Process.

When you select the range option, you can see that there are 8 ranges of globals which are being moved.

You can examine the detail of each of the ranges in the Range Detail screen. These are described above but apply only to
the selected range.

10 Using DataMove with InterSystems IRIS

The DataMove APIs

The Jobs display show which jobs are operating on which pieces of data.

Jobs with a type of “Copy” are processes which are copying data from the source to the destination database. Jobs with a
type of “Jrn” are applying journal transactions to the destination database. Jobs with a type of “Chk” are running DataChecks
between the source and destination databases. The job number, Commands, Globals, State, and PID here correspond to the
same information found in JOBEXAM or the Management Portal process display.

Using DataMove with InterSystems IRIS 11

The DataMove APIs

The Metrics display shows the activity on the system, and how much of it is related to the running DataMove.

In this example we can see the DataMove is running with the Max allowed MB Copied/Min set to 0 (Unlimited). We also
see that it is taking up most of the global references and journal entries, as well as causing the mirror latency to increase.

We can restrict the DataMove to a slower rate as follows:

12 Using DataMove with InterSystems IRIS

The DataMove APIs

And now we see the new rate and much lower metrics.

6.6 Activate Mapping Changes and Finish the DataMove

6.6.1 DataMove.API.Activate(Name As %String, Display as %Boolean,Timeout As %Integer =
120, Force as %Integer=0) As %Status

Finishes the DataMove and activates the namespace mapping changes. Activate() will not run until the DataCheck() completes.

Arguments:

• Name is the name of the DataMove.

• Display should be set to 1 if you want to see progress messages.

• Timeout is number of seconds to wait for the DataMove to finish running and apply journals operation before proceeding.

• Force will start the namespace mapping activation even if the journals have not caught up. Setting the Force flag will
cause the activate process to spend extra time applying the last of the journal files while switch 10 is set.

This method stops the DataMove background jobs, finishes processing any journal files, writes the mapping changes to the
CPF, and activates the mapping changes. It momentarily sets switch 10 to prevent other processes from interfering with
the execution.

If $$$BitCheckActivate is set, the method will call a user-supplied routine $$CheckActivate^ZDATAMOVE(), if
it exists, to execute before continuing. If $$CheckActivate^ZDATAMOVE() does not return 1, the method will quit
without activating the new mappings, leaving the DataMove running.

Note: The user-supplied routine is called immediately before switch 10 is set. This routine can do anything the user
wants before activating the new mappings.

For more information on switch 10, see “Using Switches” in Specialized System Tools and Utilities.

Using DataMove with InterSystems IRIS 13

The DataMove APIs

Note: Activate() checks the State property of the DataMove to make sure that the initial copy is complete, DataCheck()
has completed, and the journal apply is caught up before proceeding.

6.6.2 Update Mappings on Mirror Members and ECP Clients

After you have activated the new namespace mappings on the system, you can update the mappings on all other mirror
members and ECP clients. DataMove generates a file in the MGR directory with the name:
DataMove_DataMoveName_Actions.cpf. This file contains a set of actions which can be merged into the mirror and ECP
CPF files. Below is an example of the file’s format:

[Actions]
CreateMapGlobal:Namespace=SALES,Name=A(86048):(172095),Database=DATA
CreateMapGlobal:Namespace=SALES,Name=A(172095):(258142),Database=DATA
CreateMapGlobal:Namespace=SALES,Name=A(258142):(344189),Database=DATA
CreateMapGlobal:Namespace=SALES,Name=A(344189):(430236),Database=DATA

Examine this file closely. It should contain the set of mappings which have been newly applied to your system’s CPF file.
You can then copy this file to your other mirror members and ECP clients and use the iris merge command to insert and
activate the mappings into the CPF file on those systems.

6.7 Delete Source Globals and Finish DataMove

After the copy has completed and the updated namespaces activated, you should verify that that your application data has
been successfully copied and the mappings activated. Once you have done this, you can proceed with deleting the source
globals which have been moved and finish the DataMove.

6.7.1 DataMove.API.DeleteSourceGlobals(Name As %String) As %Status

Deletes the globals from the source directory that have been copied in the DataMove.

Argument:

• Name is the name of the DataMove.

This method deletes all globals in the source database that have been copied to the destination database. Several processes
may be created to delete the source globals.

6.7.2 DataMove.API.Finish(Name As %String) As %Status

Completes the DataMove process.

Argument:

• Name is the name of the DataMove.

This method writes a success or failure message to the log file, closes the log file, and sets the State property of the DataMove
to $$$DMStateDone. It also copies the log file into the file DataMove.log, which is a record of all the DataMoves performed
on the system.

6.7.3 DataMove.API.Delete(Name As %String) As %Status

Cleans up the DataMove process.

Argument:

• Name is the name of the DataMove.

This method deletes the DataMove and cleans up any temporary storage.

14 Using DataMove with InterSystems IRIS

The DataMove APIs

If the DataMove operation you want to delete has been started and then stopped, you should first call the Rollback() method
to rollback any of the data which had been moved.

6.8 Other API Calls

6.8.1 DataMove.API.Validate(Name As %String) As %Status

Validates the DataMove.

Argument:

• Name is the name of the DataMove.

Validating the DataMove involves looking at all of the specified mappings, checking the source and destination databases,
and making sure the destination globals do not already exist. Any errors are reported in the status.

Validate() is called as part of StartCopy(). You can use this method to validate the DataMove before you actually start the
copy with StartCopy()

6.8.2 DataMove.API.Modify(Name as %String, byref Properties as %String) as %Status

Modifies an existing or running DataMove.

Arguments:

• Name is the name of the DataMove.

• Properties is an array of properties to modify, which may include:

– Properties("MaxMBPerMin") – Maximum number of MB per minute the DataMove operation is allowed
to move to the destination database. Setting this to 0 allows the DataMove to run as fast as it can. This can be
called on a running DataMove to change the rate.

– Properties("MaxMBCheckPerMin") – Maximum number of MB per minute the DataMove DataCheck
operation is allowed to check. Setting this to 0 allows the DataMove DataCheck to run as fast as it can. This can
be called on a running DataMove to change the rate.

6.8.3 DataMove.API.ValidateSizes(Name As %String) As %Status

Makes sure sufficient space exists for the data specified by the DataMove to be copied.

Argument:

• Name is the name of the DataMove .

Validating sizes for a DataMove involves determining the amount of data to be copied and ensuring enough space exists
in the destination database. Any errors are reported in the status.

ValidateSizes() is called as part of StartCopy(). You can use this method to validate the DataMove size requirements before
you actually start the copy with StartCopy()

6.8.4 DataMove.API.StopCopy(Name As %String) As %Status

Stops the DataMove copy job.

Argument:

• Name is the name of the DataMove.

Using DataMove with InterSystems IRIS 15

The DataMove APIs

This method stops the DataMove copy background jobs, allowing you to gracefully stop the copy after it is in process. You
can restart the DataMove with StartCopy().

6.8.5 DataMove.API.Rollback(Name As %String) As %Status

Rolls back the DataMove.

Argument:

• Name is the name of the DataMove.

This method deletes any globals that have been copied to destination databases by the DataMove copy job. This method
can be used to abort the DataMove or recover from an error in the copy process.

StopCopy() must be run before calling this method.

After doing the rollback, you can start over with StartCopy() or delete the DataMove with Delete().

6.8.6 DataMove.API.RollbackMappings(Name As %String)

Rolls back the DataMove mappings.

Argument:

• Name is the name of the DataMove.

This will restore the systems mappings to the state before the DataMove Name was run. The DataMove Name must be in
the State $$$DMStateNSPActivateDone. An example of using this would be if you started to test the application after the
DataMove activates its mappings and detected there was something wrong. After the mappings are restored to their previous
value, the State will be set to $$$DMStateReady. From here you can call Rollback() (recommended), or StartCopy() and
retry the activation.

6.8.7 DataMove.API.RollbackCopy(Name As %String,Warnings as %String, Errors as %String)

Rolls back a copy of the DataMove.

Arguments:

• Name is the name of the DataMove.

• Warnings is an array returned with conflicts that do not prevent the DataMove from being performed.

• Errors is an array returned with conflicts that do prevent the DataMove from being performed.

This will create a DataMove called Name-ROLLBACK which when run will move the data copied in the DataMove Name
back to its original source directories. The DataMove Name must be in the State $$$DMStateDeleteSrcGlobalsDone (all
the source globals have been deleted by the DeleteSourceGlobals() method. After the method finishes, you can then run
StartCopy() and Activate() to move the data back to their original directories. The DataMove Name will have its state set
to $$$DMStateRollbackCopy.

6.8.8 Query DataMove.API.ListDMs(Names As %String, Flags as %Integer=0) As %Status

Query which returns a list of all DataMoves and their properties.

Arguments:

• Names is a commas separated list of DataMoves.

• Flags –

– 0 = Return current information in the DataMove record

16 Using DataMove with InterSystems IRIS

The DataMove APIs

– 1 = Return information summed across all the ranges

6.8.9 Query DataMove.API.ListRanges(Name As %String, SrcDBs As %String = "*", DstDBs As
%String = "*", Ranges As %String = "*", Flags = 0) As %Status

Query which returns a list of all the DataMove ranges and their properties.

Arguments:

• Names is the name of the DataMove.

• SrcDBs – comma separated list of source databases

• DstDBs – Comma separated list of destination databases

• Ranges – Comma separated list of ranges

• Flags –

– 0 = Return formatted times

– 1 = Return times as $h UTC times

6.8.10 Query DataMove.API.ListProcesses(Name As %String) As %Status

Query which returns a list of all the DataMove processes.

Argument:

• Name is the name of the DataMove.

7 DataMove States
The DataMove keeps track of its progress through the workflow by means of the State property. You can inspect this
property to monitor its progress using GetProperties(), or to troubleshoot any issues that arise, using the query ListDMs().

The integer values for the each state are defined in the %syDataMove.inc include file.

Table 1: List of DataMove States

DescriptionState

The DataMove is in the middle of being created.$$$DMStateCreate

Generate() has been called to create the DataMove.$$$DMStateNotStarted

StartCopy() has been called to start the copy.$$$DMStateStarted

The size of the data to be moved is being calculated.$$$DMStateSize

The size of the data to be moved has been calculated.$$$DMStateSizeDone

The source data is being copied to the destination
databases.

$$$DMStateCopy

The source data has finished being copied to the
destination database.

$$$DMStateCopyDone

Using DataMove with InterSystems IRIS 17

DataMove States

DescriptionState

All the source data has been copied to the destination
databases, and the journals are now being applied to
the destination databases. It will remain in this state
until the DataCheck starts running.

$$$DMStateJournal

DataMove processes are running DataCheck$$$DMStateDataCheck

The DataMove has completed the DataCheck and is
ready to activate.

$$$DMStateReady

Activate() has been called. Switch 10 has been set,
and the new namespace mappings are being
activated.

$$$DMStateNSPActivate

The new namespace mappings have been activated.$$$DMStateNSPActivateDone

DeleteSourceGlobals() has been called, and the
source globals are being deleted.

$$$DMStateDeleteSrcGlobals

All of the source globals have been deleted.$$$DMStateDeleteSrcGlobalsDone

Finish() has been called. All data has been moved to
the destination databases, namespaces activated and
the final log file updated.

$$$DMStateDone

The Rollback() method has been called, and all the
destination globals which have been copied are being
deleted. When complete the state will be set to
$$$DMStateNotStarted.

$$$DMStateRollback

The RollbackCopy() method has been called. This
DataMove was completed, and a new DataMove was
created from this which will move the data back to its
previous location.

$$$DMStateRollbackCopy

8 DataMove Example
This ObjectScript routine moves globals ABC and DEF in namespace LIVE to database LIVE-CT using a DataMove object
named DataMover.

For demonstration purposes, this example does not include comprehensive error checking. Check the returned status after
each API call.

IRIS for Windows^MAC^^~Format=IRIS.S~^RAW
%RO on 22 Jun 2023 2:33 PM
DMEXAMPLE^MAC^^66647,52367.6489234^0
DMEXAMPLE
#include %occInclude
#include %syDataMove
 /*
 This example creates a DataMove called "TEST" which moves pieces of the
 global ^A in namespace TESTDATA into 3 new databases.

 Assume the following entries in the CPF file, where the NEWDATA* databases
 are newly created empty databases, and the DATA database contains the
 entire global ^A.
.
 [Databases]
 DATA=c:\iris\mgr\data

18 Using DataMove with InterSystems IRIS

DataMove Example

 NEWDATA1=c:\iris\mgr\newdata1
 NEWDATA2=c:\iris\mgr\newdata2
 NEWDATA3=c:\iris\mgr\newdata3
.
 [Namespaces]
 TESTDATA=DATA
.
 The first subscript in ^A up to ^A(5000) will move into database NEWDATA1.
 ^A(5000) up to ^A(7000) will move into database NEWDATA2.
 ^A(7000) up to ^A(10000) is not moved and remains in the database DATA.
 ^A(10000) through the last subscript will move into database NEWDATA3.

 After the DataMove completes, the CPF file will have mappings added to it as follows:

 [MAP.TESTDATA]
 Global_A(BEGIN):(5000)=NEWDATA1
 Global_A(5000):(7000)=NEWDATA2
 Global_A(10000):(END)=NEWDATA3

 */
 New
 s DMName="TEST"
 s Namespace="TESTDATA"
#;Initialize the namespace
 s Status=##Class(DataMove.API).MapInitialize(DMName,Namespace)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
#;Now create the 3 mappings for the DataMove
 s Properties("Database")="NEWDATA1"
 s Status=##class(DataMove.API).MapGlobalsCreate(DMName,Namespace,"A(BEGIN):(5000)",.Properties)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
 s Properties("Database")="NEWDATA2"
 s Status=##class(DataMove.API).MapGlobalsCreate(DMName,Namespace,"A(5000):(7000)",.Properties)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
 s Properties("Database")="NEWDATA3"
 s Status=##class(DataMove.API).MapGlobalsCreate(DMName,Namespace,"A(10000):(END)",.Properties)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
#;Generate the DataMove. Limit the maximum number of MB per minute the
#;DataMove operation is allowed to move to 1GB (60GB/hour)
 k Properties
 s Properties("MaxMBPerMin")=1000
 s Status=##Class(DataMove.API).Generate(DMName,.Properties,.Warnings,.Errors)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
#;At this point you could use the ^DATAMOVE utility to start, halt, monitor, and
#;activate the DataMove.
#;Or you can use the API's as follows:
#;Start the copy and dejournal processes
 s Status=##Class(DataMove.API).StartCopy(Name)
 i '$$$ISOK(Status) w !,$SYSTEM.Status.GetErrorText(Status) q
#;Monitor state every 10 seconds
#;Activate will only run if the state is "Ready" and there is 20 MB or less
#;of journal to apply.
 For {
 Hang 10
 Set Status=##Class(DataMove.API).GetProperties(DMName,.Properties)
 If (Properties("State")=$$$DMStateReady) {
 If (Properties("JRNMBToApply")<=20) {
 Quit
 }
 }
 Write !,"State: "_Properties("ExpandedState")
 Write !,"MB to copy: "_Properties("MBToCopy")
 Write !,"MB copied: "_Properties("MBCopied")
 Write !,"MB checked: "_Properties("MBChecked")
 Write !,"Journal MB still to apply: "_Properties("JRNMBToApply")
 }
 w !,"DataMove is ready to Activate"
 q

Using DataMove with InterSystems IRIS 19

DataMove Example

	Table of Contents
	1 Introduction to DataMove
	2 DataMove Restrictions
	3 Preparing to Use DataMove
	4 The DataMove Workflow
	5 DataMove in a Mirror or ECP Environment
	6 The DataMove APIs
	6.1 Create and Edit DataMove Namespace Mappings
	6.2 Generate the DataMove
	6.3 Start the DataMove
	6.4 Monitor the DataMove
	6.5 ^DATAMOVE Utility
	6.6 Activate Mapping Changes and Finish the DataMove
	6.7 Delete Source Globals and Finish DataMove
	6.8 Other API Calls

	7 DataMove States
	8 DataMove Example
	Index

