
Using Virtual Documents in
Productions

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Virtual Documents in Productions
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Introduction to Virtual Documents ... 1
1.1 Introduction .. 1
1.2 Kinds of Virtual Documents ... 1
1.3 Access to Contents of Virtual Documents .. 2
1.4 Support for Filter and Search ... 3

2 Schema Definitions for Virtual Documents .. 5
2.1 Introduction .. 5
2.2 Schema Categories ... 5
2.3 Document Structures .. 5
2.4 Document Types (DocType) ... 6
2.5 Tools ... 6

3 Virtual Property Paths for Virtual Documents .. 7
3.1 Introduction .. 7
3.2 Parsing EDI Documents: Segments and Fields .. 7
3.3 Segment Structures ... 8
3.4 Determining Virtual Property Paths ... 8
3.5 Virtual Document Classes .. 10
3.6 Testing Virtual Property Paths in the Terminal ... 11

4 Using Virtual Documents in a Production .. 13
4.1 Introduction .. 13
4.2 Business Services for Virtual Documents .. 14
4.3 Business Processes for Virtual Documents .. 15
4.4 Business Operations for Virtual Documents .. 15

5 Defining Search Tables for Virtual Documents .. 17
5.1 Defining a Search Table Class .. 17

5.1.1 XData Details for a Search Table Class ... 18
5.2 Defining Custom Search Table Classes .. 19
5.3 Management of Search Tables .. 21
5.4 Customizing Queries Used by the Management Portal ... 21

6 Controlling Message Validation for Virtual Documents ... 23
6.1 Introduction .. 23
6.2 Basic Validation Options and Logic ... 23

6.2.1 The d Validation Flag ... 24
6.2.2 The m Validation Flag .. 24

6.3 Overriding the Validation Logic ... 24
6.3.1 Overriding the Validation Logic in a Routing Process Class ... 24
6.3.2 Overriding the Validation Logic in a Business Service or Operation Class 24

6.4 Defining Bad Message Handlers .. 25

7 Creating Custom Schema Categories for Virtual Documents .. 27
7.1 When Custom Schema Categories Are Needed ... 27
7.2 Ways to Create Custom Schema Categories ... 27
7.3 Syntax for Schema Categories in InterSystems IRIS ... 28

7.3.1 <Category> ... 28
7.3.2 <SegmentStructure> ... 28

Using Virtual Documents in Productions iii

7.3.3 <SegmentSubStructure> .. 29
7.3.4 <MessageStructure> ... 30
7.3.5 <MessageType> ... 31

8 Portal Tools for Virtual Documents .. 33
8.1 Accessing the Tools .. 33
8.2 Using the Schema Structures Page ... 33
8.3 Using the Document Viewer Page .. 34

Syntax Guide for Virtual Property Paths .. 35
Virtual Property Shortcuts When DocType Is Unimportant ... 36
Virtual Property Path Basics ... 37
Curly Bracket { } Syntax ... 39
Square Bracket [] Syntax ... 40
Parenthesis () Syntax .. 41
Angle Bracket <> Syntax ... 42

Common Settings (Virtual Documents) ... 43
Settings for Business Services (Virtual Documents) .. 44
Settings for Routing Processes (Virtual Documents) ... 45
Settings for Business Operations (Virtual Documents) .. 48

iv Using Virtual Documents in Productions

1
Introduction to Virtual Documents

This page explains what virtual documents are, why they are useful, and how they are different from standard messages.
It also briefly introduces tools that InterSystems IRIS® data platform provides so that virtual documents can be used in all
the same ways as standard messages.

1.1 Introduction
A virtual document is a kind of message that InterSystems IRIS® data platform parses only partially. To understand the
purpose of virtual documents, it is useful to examine production messages a little more closely. Every production message
consists of two parts:

• The message header contains the data needed to route the message within InterSystems IRIS. The message header is
always the same type of object. This is a persistent object, meaning that it is stored within a table in the InterSystems
IRIS database.

• The message body contains the message data. For standard messages, the message body is a persistent object. For virtual
documents, the message body is implemented in a different way, as explained below.

An object represents each piece of data as a separate property. This is convenient in that any value in the object is easy to
access. When writing code, you simply reference a class property by name to get its value.

For EDI (Electronic Data Interchange) formats, this approach becomes unwieldy and unnecessary. The approach is unwieldy
because a large number of properties (possibly hundreds) would be required, and the process of creating an instance of the
object can be slow. The standard approach is unnecessary because many applications use only a small number of the fields
actually available in the document.

To address these issues, InterSystems IRIS provides an alternative type of message body called a virtual document. A virtual
document allows you to send raw document content as a body of a production message, without creating objects to hold
the contents of the document as a formal set of properties. The data in the virtual document is stored directly in an internal-
use global, for greater processing speed.

The virtual document approach is also useful for XML documents (which can also be handled as standard messages).

1.2 Kinds of Virtual Documents
InterSystems IRIS can handle the following kinds of documents as virtual documents:

Using Virtual Documents in Productions 1

SeeKind of Document

Routing EDIFACT Documents in ProductionsEDIFACT documents

Routing X12 Documents in ProductionsX12 documents

Routing XML Virtual Documents in ProductionsXML documents

You can also handle XML documents as standard messages. To do so, you can generate classes from the corresponding
XML schema. For information, see Using XML Tools.

1.3 Access to Contents of Virtual Documents
To work with data in a virtual document, you must be able to identify a specific data item within it. The data item is called
a virtual property. An virtual property path is the syntax that InterSystems IRIS uses to specify the location of a virtual
property. You can use virtual property paths in the following locations, among others:

• Business rules. The following shows an example:

The curly braces enclose a virtual property path.

• Data transformations. The following shows an example:

For both Property and Value, the curly braces enclose a virtual property path.

As a consequence, your production can work with a virtual document in much the same way that it works with standard
messages.

For details, see Virtual Property Paths.

2 Using Virtual Documents in Productions

Introduction to Virtual Documents

1.4 Support for Filter and Search
For standard message bodies, each property of the message is directly searchable in the Management Portal. That is, the
user can use the property for searching or filtering without having to know its path.

By default, with the exception of the message identifier, none of the data in an virtual document is directly searchable in
the Management Portal. That is, a user must know the property path for a data item in order to use that item for searching
or filtering.

To assist the user, you can use the following mechanism to make virtual properties directly searchable:

• You define a search table class; this class uses virtual property paths to define the searchable properties.

• You configure the applicable business hosts to use the search table class.

As the business host receives messages, InterSystems IRIS indexes these properties as if they were properties in a
standard message body.

Users can then use these properties directly without having to know the property paths that they use. For example:

For details on defining search tables, see Defining Search Tables.

Using Virtual Documents in Productions 3

Support for Filter and Search

2
Schema Definitions for Virtual Documents

This page introduces schema definitions, which InterSystems IRIS® data platform uses to validate virtual documents (and
to access data in them, as discussed in Virtual Property Paths).

2.1 Introduction
Because a virtual document is not represented as an object (with a corresponding class definition), InterSystems IRIS
requires additional tools to parse and validate the virtual document. These tools start with schema definitions.

An InterSystems IRIS schema definition is a set of descriptions that represent a specific EDI standard or an XML schema.
A schema definition is an InterSystems IRIS concept, not to be confused with other concepts such as a database schema
or XML schema. It is, however, based on the corresponding EDI or XML schema.

Schema definitions are specific to a given interoperability-enabled namespace and are stored in the InterSystems IRIS
database for that namespace.

2.2 Schema Categories
Each schema definition provides InterSystems IRIS with a complete view of an EDI standard (or of an XML schema).
There is one schema definition for X12, for example. In practical terms, a schema definition may contain only a subset of
the standard in question; this depends on how the corresponding EDI schema was imported into InterSystems IRIS.

In a schema definition, a schema category is a grouping convention. Each schema definition contains one or more schema
categories.

2.3 Document Structures
In a schema definition, each schema category contains one or more document structures. Each document structure describes
one type of document.

Depending on the EDI standard, InterSystems IRIS uses different approaches to organize a schema definition into schema
categories and document structures. For example, for X12, a schema definition has a flatter organization, commonly with
only one document structure per schema category:

Using Virtual Documents in Productions 5

2.4 Document Types (DocType)
Each virtual document has a document type, often simply called DocType (which is the name of the property that stores
this information). This corresponds to a specific part of a schema definition, the part that describes the expected structure
of and values in this virtual document. The DocType enables InterSystems IRIS to validate and parse that virtual document.

The DocType for a virtual document is identified by a combination of the schema category and document structure.
Specifically, the syntax for the DocType property is as follows:

category:structure

Where:

• category is the name of a schema category.

• structure is the name of a document structure within the referenced category. This piece is always required, even if
the schema category has only one document structure.

2.5 Tools
The Management Portal provides the Schema Structures page, where you can import EDI or XML schemas (thus creating
schema definitions), export schemas, and browse schema definitions. See Portal Tools.

6 Using Virtual Documents in Productions

Schema Definitions for Virtual Documents

3
Virtual Property Paths for Virtual
Documents

This page introduces virtual property paths, which InterSystems IRIS® data platform uses to access data within virtual
documents.

3.1 Introduction
To work with a virtual document, you must be able to identify a specific data item within it. The data item is called a virtual
property. An virtual property path is the syntax that InterSystems IRIS uses to specify the location of a virtual property.

Except for XML virtual documents, you can use virtual property paths only if you have loaded the applicable EDI schema
into InterSystems IRIS. Once the schema is loaded, InterSystems IRIS has all the information necessary to parse the corre-
sponding documents as intended by the EDI schema.

3.2 Parsing EDI Documents: Segments and Fields
For EDIFACT and X12 documents, the raw data stream is divided into segments, which are further subdivided into fields.
(The details are different for XML documents; see Routing XML Virtual Documents in Productions.)

A terminator character (often a carriage return) marks the end of the segment. In this case, each line is a segment.

Within a segment, separator characters mark the boundaries between fields. In this case, the colon is the separator character
between fields and the semicolon is the separator between subfields.

A field can contain sub-fields and further subdivisions. These are delimited by other separator characters.

The details of the terminator character and separator characters depend upon the EDI format.

• For details on X12, see Separators. The default X12 separators are:

* : \a ~ \r \n

• For details on EDIFACT see Separators. The default EDIFACT separators are:

: + ? ' \r \n

Using Virtual Documents in Productions 7

3.3 Segment Structures
Generally, an EDI standard defines a large number of possible segment structures to use as building blocks. Each document
structure can contain only specific segments. Different document structures may also combine segments in different
sequences or quantities.

(The details are different for XML documents; see Routing XML Virtual Documents in Productions.)

3.4 Determining Virtual Property Paths
Conceptually, a virtual property path includes all the following units:

• category:structure—the DocType

• segment:field—the path to a data value within a virtual document of that DocType

The following figure illustrates this convention.

8 Using Virtual Documents in Productions

Virtual Property Paths for Virtual Documents

Generally the segment portion of the path identifies the target segment within a hierarchical document structure containing
groups and repeating blocks of segments. For example, an NTE segment in a 2.3:ORM_O01 message might be identified
as:

ORCgrp(1).OBRuniongrp.OBXgrp(3).NTE(1)

Similarly, the field portion of the path identifies a target field within a hierarchical structure of fields, subfields, and
repeating groups within the target segment. As it happens, each field within NTE is simple, for example:

SourceofComment

So that the complete segment:field path looks like this:

ORCgrp(1).OBRuniongrp.OBXgrp(3).NTE(1):SourceofComment

Some fields can have complex hierarchical structures. Suppose we look at a PID segment in the same 2.3:ORM_O01
message structure. In the segment identified as:

Using Virtual Documents in Productions 9

Determining Virtual Property Paths

PIDgrp.PID

There could be a field path as follows:

PatientIDInternalID(1).identifiertypecode

Unlike segment paths, the field portion of the path generally allows numbers instead of names for fields and subfields; for
example, instead of the names previously shown, the following numbers may be used:

3(1).5

The Management Portal provides pages to help you determine the correct segment:field paths. (To access these pages,
click Interoperability, and then click Interoperate.) The DTL editor also provides a view of the document structures used in
a particular transformation.

(The details are different for XML documents; see Routing XML Virtual Documents in Productions.)

3.5 Virtual Document Classes
To work with virtual documents, there is no need to create message classes. InterSystems IRIS provides message classes,
for example, one class to carry X12 documents, another for XML documents, and so on. The business host classes automat-
ically use the appropriate message class.

These messages are known collectively as virtual documents.

The virtual document classes provide properties to carry the information that InterSystems IRIS needs to process the messages.
These properties include the following:

DocType property

Indicates the document type, a string in two parts as follows:

category:structure

Where:

• category is the name of a schema category.

• structure is the name of a document structure within the referenced category.

This property is visible in the Management Portal. You can use it for filtering, for example.

RawContent property

Contains the first 32 KB of the raw message.

This property is also visible in the Management Portal and is useful in analyzing and reporting badly formed
messages.

Note that this property is not indexed in any way. If you were to use this property in an SQL search query, the
query would not execute very efficiently. It is not recommended to access this property programmatically (for
example from a DTL). Instead, use virtual property paths to access the data that you need.

BuildMapStatus property

Contains a %Status value that indicates the success or failure of the most recent effort to map the raw content of
the message to a particular DocType. You can test BuildMapStatus in code as follows:

10 Using Virtual Documents in Productions

Virtual Property Paths for Virtual Documents

• Use the macro $$$ISOK(myX12Message.BuildMapStatus) in ObjectScript and the method
$SYSTEM.Status.IsOK(myMessage.BuildMapStatus) in Basic. If the test returns a True value,
BuildMapStatus contains a success value.

• Use the macro $$$ISERR(myMessage.BuildMapStatus) in ObjectScript and the method
$system.Status.IsError(myX12Message.BuildMapStatus) in Basic. If the test returns a True
value, BuildMapStatus contains a failure value.

To view details of any BuildMapStatus failure codes, use the Schema Structures page as described in Portal Tools.

The virtual document classes also provide the logic that InterSystems IRIS needs to interpret a virtual property path for a
specific format and DocType. The classes provide the following instance methods which you can (depending on the context)
use to get or set values within a virtual document:

GetValueAt() method

Returns the value of a virtual property in the message, given a virtual property path.

You can invoke this method (and the next one) from any place in the production where you have access to the
message and you can execute custom code—for example, within a BPL <code> element.

SetValueAt() method

Sets a value in the message, given a virtual property path and a value. See the comments for GetValueAt().

3.6 Testing Virtual Property Paths in the Terminal
It can be useful to test virtual document property paths in the Terminal before using them in business processes, data
transformations, and so on, particularly when you are getting familiar with the syntax. To do so:

1. Load the corresponding schema into InterSystems IRIS, if it is not yet loaded. To do so, see Portal Tools.

2. In the Terminal or in test code:

a. Create a string that contains the text of a suitable document.

b. Use the ImportFromString() method of the applicable virtual document class to create an instance of a virtual
document from this string.

The following table lists the classes:

Virtual Document ClassDocument Type

EnsLib.EDI.EDIFACT.DocumentEDIFACT

EnsLib.EDI.XML.DocumentXML

c. Set the DocType property of this instance.

d. Use the GetValueAt() instance method of this instance.

Using Virtual Documents in Productions 11

Testing Virtual Property Paths in the Terminal

4
Using Virtual Documents in a Production

This page provides a brief and general overview of how to use virtual documents in a production.

4.1 Introduction
For each kind of virtual document, InterSystems IRIS® data platform provides a set of classes that you can use as business
hosts, as follows:

ClassesItem

InterSystems IRIS provides one or more specialized business service classes, each
with a different associated adapter. No coding is needed to use these classes.

Business services

Business processes • EnsLib.MsgRouter.RoutingEngine, which is the standard virtual document routing
process class

• Specialized subclasses of this routing process class

No coding is needed to use these classes.

InterSystems IRIS provides one or more specialized business operation classes,
each with a different associated adapter. For example, for X12 documents, there
are different classes for file output, TCP output, and FTP output. No coding is needed
to use these classes.

Business operations

The business host classes include configurable targets. The following diagram shows some of them:

Using Virtual Documents in Productions 13

You must load any applicable schemas in InterSystems IRIS, so that InterSystems IRIS can use them to validate and parse
the virtual documents.

4.2 Business Services for Virtual Documents
For each virtual document format, InterSystems IRIS provides one or more specialized business service classes, each with
a different associated inbound adapter. You use these classes to add business services to your production. With a few
exceptions, these business hosts have the following configurable settings:

• Doc Schema Category—Specify a schema category that is relevant to the format and that is consistent with the expected
messages for this business service. This setting provides some of the information that the business service requires in
order to set the DocType of the message. Specifically, this setting determines the category part of the DocType.

The business service also parses the document to determine the structure part of the DocType, and it then sets the value
of that property.

• Search Table Class—Specify a suitable search table class that is consistent with the expected messages for this business
service. The business service uses this to index each message that it processes.

• Target Config Names—Specify the business host or hosts to which this business service should send messages.

• Validation—Specify a string that indicates the kinds of validation for this service to perform.

For details on the built-in validation process, see Message Validation for Virtual Documents.

As part of the process of defining the production, you load any applicable EDI or XML schemas in InterSystems IRIS,
so that InterSystems IRIS can use them to validate the virtual documents.

Some virtual document business services have additional configurable targets. For example, with FTP there is a persistent
connection via which reply messages can be sent, so some business hosts have the setting Reply Target Config Names.

These business services have many other settings, to specify details that are specific to the EDI or XML format.

14 Using Virtual Documents in Productions

Using Virtual Documents in a Production

4.3 Business Processes for Virtual Documents
InterSystems IRIS provides specialized business processes for use with virtual documents. These processes are generally
very similar to each other; each is designed as a routing process. A routing process routes and transforms messages by
using these key items:

• Routing rules direct messages to their destinations based on message contents.

• Schema categories provide a means to validate and access message contents.

• Data transformations apply changes to prepare messages for their destinations.

These routing processes have the following configurable settings (among others):

• Business Rule Name—Name of the business rule set that this process should use.

As part of the process of defining the production, you create this business rule set and any data transformations it
requires.

• Validation—Specify a string that indicates the kinds of validation for this process to perform.

For details on the built-in validation process, see Message Validation for Virtual Documents.

• Bad Message Handler—Name of the business host to which this process should send any bad messages, as determined
by the validation process.

In some cases, the routing process has additional configurable targets, to handle reply messages, for example. It has additional
settings, to specify details that are specific to the virtual document format.

4.4 Business Operations for Virtual Documents
For each virtual document format, InterSystems IRIS provides one or more specialized business operation classes, each
with a different associated outbound adapter. You use these classes to add business operations to your production. With a
few exceptions, these business hosts have the following configurable settings:

• Search Table Class—Specify a suitable search table class that is consistent with the expected messages for this business
service. The business operation uses this to index each message that it processes.

• Validation—Specify a string that indicates the kinds of validation for this operation to perform.

For details on the built-in validation process, see Message Validation for Virtual Documents.

These business operations have many other settings, to specify details that are specific to the virtual document format.

Using Virtual Documents in Productions 15

Business Processes for Virtual Documents

5
Defining Search Tables for Virtual
Documents

This page describes generally how to define search tables for virtual documents.

Be sure to perform these tasks in the same namespace that contains your production. When you create search tables, do not
use reserved package names; see Reserved Package Names.

Note: InterSystems IRIS® data platform does not retroactively index messages that were received before you added the
search table class. You can use the BuildIndex() method of the search table class to index these pre-existing
messages.

5.1 Defining a Search Table Class
To define a search table class, use the following general procedure:

• Create the class in the same namespace that contains your production. Also, do not use reserved package names; see
Reserved Package Names.

• Create a subclass (or a copy, as you prefer) of the default search table class used for your type of virtual document:

NotesDefault Search Table ClassDocument
Type

Indexes the Identifier property, which
corresponds to the X12 document ID.

EnsLib.EDI.X12.SearchTableX12

Indexes the Identifier property, which
corresponds to the EDIFACT document ID.

EnsLib.EDI.EDIFACT.SearchTableEDIFACT

Indexes the name of the root element of the XML
document.

EnsLib.EDI.XML.SearchTableXML

• In this subclass, include an XData block that defines the virtual properties as needed. The following subsection provides
the details.

This XData block does not need to include details about the virtual properties that are indexed by the superclass that
you chose. For example, several of the search table classes index a property named Identifier. If you subclass any
of those classes, your XData block does not need to include Identifier. You can improve search efficiency by

Using Virtual Documents in Productions 17

identifying properties that are not selective. Properties are not selective when many messages have identical values
for the property. When InterSystems IRIS is searching messages, it can be more efficient if it uses selective properties
to limit the number of messages found before it tests the values of properties that are not selective. You can specify
that a property is not selective by specifying Unselective="true" in the XData block.

• If this search table class is mapped to multiple namespaces, compile it in each of those namespaces, to ensure that the
metadata local to each namespace is up to date.

Important: Search table metadata is located in the default global database for each interoperability-enabled
namespace; therefore, changes to a search table class do not update metadata in all namespaces to
which the class is mapped. For this reason, it is necessary to recompile the search table class in each
of these namespaces.

When you compile this class, InterSystems IRIS generates code that dynamically fetches the local metadata for each search
table property and then caches the metadata if the process is running as an InterSystems IRIS host. If the property metadata
is not present, as in the case where a mapped search table class does not have local metadata for a new property, the class
still indexes all other properties and returns an error to indicate the metadata was not present. Similarly, when the message
bodies are deleted, InterSystems IRIS removes the corresponding entries from the search table; no work is required on your
part.

To use the search table class, specify it as a configuration option (called Search Table Class) for the applicable business
host. When that business host processes messages, it uses the configured search table class to index those messages.

5.1.1 XData Details for a Search Table Class

When you create a search table class, your goal is to provide one search table entry for each virtual property that you want
to search and filter in the Message Browser, Rules Editor, and other parts of the Management Portal. To do this, you include
an XData block like the following stub within your search table class:

Class Member

XData SearchSpec [XMLNamespace="http://www.intersystems.com/EnsSearchTable"]
{
<Items>
 <Item DocType="doctype1" PropName="name1" PropType="type1" StoreNulls="boolean"
 Unselective="true">path1</Item>
 <Item DocType="doctype2" PropName="name2" PropType="type2" StoreNulls="boolean">path2</Item>
< <Item DocType="doctype3" PropName="name3" PropType="type3" StoreNulls="boolean">path3</Item>
</Items>
}

Where:

• path1, path2, path3, and so on are virtual property paths.

Each of these is a string expression. This string expression may include the following components in any combination:

– Literal characters within double quotes.

– Virtual property syntax within {} or []. This resolves to the value of the specified field in the X12 document.
Square brackets differ from curly brackets in that square brackets enclose a segment:field combination that does
not require you to identify its containing document structure. For curly bracket syntax to resolve, the document
structure must be known.

– ObjectScript string operators, such as the underscore (_) for concatenation.

– Functions, such as $PIECE or $EXTRACT.

18 Using Virtual Documents in Productions

Defining Search Tables for Virtual Documents

• doctype1, doctype2, doctype3, and so on are DocType identifiers. Each of these is a schema category name and document
structure name, separated by a colon, as follows:

category:structure

If the category is missing, any schema is matched; if the structure is missing; any structure is matched. A value of ""
(a blank string) matches any schema category and any document structure.

This part of the <Item> specifies the DocType (or DocTypes) for which the given property path is to be indexed.

• name1, name2, name3, and so on are virtual property names of your choice.

This is the name that InterSystems IRIS will display in the Management Portal. Choose a string that you expect to be
meaningful, when viewed with others in the list. A virtual property name cannot have spaces.

If you assign the same name to different <Item> elements, this has a convenient additive effect: When the user selects
this name for a search, all of the entries with the same name are searched.

• type1, type2, type3, and so are optional type identifiers. Specify one of the following literal values:

– String:CaseSensitive

– String:CaseInsensitive

– Integer

– Numeric

– Boolean

– DateTime:ODBC

– DateTime:HL7 (supported only for virtual documents that carry EDIFACT messages)

String:CaseSensitive is the default.

• boolean is an optional flag that controls what happens when a search encounters an empty field in the document. If
this flag is true, InterSystems IRIS returns a valid pointer to an empty string. If this flag is false, InterSystems IRIS
returns a Not Found status and a null pointer.

Specify either 1 (which means true) or 0 (which means false). The default is 0.

• Unselective="true" specifies that a property value typically does not select a small number of messages. Inter-
Systems IRIS uses this information to search more efficiently. The default value is Unselective="false".

Important: When InterSystems IRIS indexes virtual documents (thus adding to the search tables), it replaces any ver-
tical bar (|) with a plus sign (+). Take this into consideration when you use the search table to search for
content. For example, to search for a message that contains my|string, use my+string as the search
criterion.

5.2 Defining Custom Search Table Classes
In some cases, the basic search table mechanism described in this page might not enable you to index messages as needed.
In such cases, you can define and use custom search table classes.

The class can define two kinds of properties. Within this topic, these properties are called: standard properties (which are
stored in the search table) and virtual properties (which are not stored in the search table but instead are retrieved at runtime).
Either kind of property is either indexed or not. If you index a property, more disk space is consumed but queries for that

Using Virtual Documents in Productions 19

Defining Custom Search Table Classes

property run more quickly. The Management Portal displays the indexed properties as a group above the non-indexed ones,
so that users can select them appropriately.

To define a custom search table class, define a class as follows:

• Extend Ens.CustomSearchTable.

This class defines one standard class property, DocId, which is indexed.

• Define additional class properties as needed, and add indexes for these class properties. For example:

Property Type As %String(COLLATION = "EXACT");

Index Type On Type [Type = bitmap];

Note that collection properties are not currently directly supported by the query generation mechanisms. For a collection
property, use the GetVirtualPropertyList() method mechanism described below.

• Optionally implement the GetPropertyList() method as needed.

classmethod GetPropertyList(Output pIndexedProperties As %List, Output pProperties As %List) as
%Status

Where:

– pIndexProperties is a $LISTBUILD list of standard properties that should be indexed.

– pProperties is a $LISTBUILD list of standard properties to define.

The purpose of this step is to indicate which class properties are to be used as standard properties (see the definitions
before this list), as well as which of those should be indexed.

By default, this method is generated, and InterSystems IRIS uses all class properties of the search table class as standard
properties and indexes them all, except for private, internal, transient, and multidimensional properties.

For virtual properties, implement GetVirtualPropertyList() instead (or in addition).

• Optionally implement the GetVirtualPropertyList() method as needed.

classmethod GetVirtualPropertyList(Output GetVirtualPropertyList As %List,
 Output pVirtualProperties As %List)
 as %Status

Where:

– GetVirtualPropertyList is a $LISTBUILD list of virtual properties that should be indexed.

– pVirtualProperties is a $LISTBUILD list of the virtual properties to define.

The purpose of this step is to indicate which class properties are to be used as virtual properties, as well as which of
those should be indexed.

For standard properties, implement GetPropertyList() instead (or in addition).

• If you implement GetVirtualPropertyList(), also implement the GetVirtualProperty() method. This method must
return the value of a virtual property, given a document ID and a virtual property name:

classmethod GetVirtualProperty(pDocID As %String,
 pPropName As %String,
 Output pPropValue As %String,
 ByRef pUserArgs) as %Status

Where:

– pDocID is the ID of a document in the custom search table.

20 Using Virtual Documents in Productions

Defining Search Tables for Virtual Documents

– pPropName is the name of a virtual property.

– pPropValue is the value of that property.

– pUserArgs specifies any arguments.

• Implement the OnIndexDoc() method.

ClassMethod OnIndexDoc(pDocObj As %Persistent, pSearchTable As Ens.CustomSearchTable) As %Status

This method should specify how to populate a given row in the search table from properties in a supplied message.

For OnProcessCondition() and additional options, see the class reference for Ens.CustomSearchTable.

For an example, see Demo.CustomSearchTable.Sample.

5.3 Management of Search Tables
The class Ens.DocClassMap manages all the search tables (including custom search tables). It writes to and reads from a
global (^Ens.DocClassMap). This global indicates, for each message class, which search tables contain data for it. Note
that you should never edit this global directly.

The InterSystems IRIS Interoperability classes use this class to remove search table entries when message bodies are deleted.

It should not normally be necessary to use this class directly. However, if the data in ̂ Ens.DocClassMap is lost or damaged,
use the RebuildMap() method of this class to recreate the global. For details, see the class reference for Ens.DocClassMap.

You can also use the class Ens.VDoc.SearchTable to manage registered search table index properties. These are applied
from Search Criteria dialogue of the Message Viewer to construct search table criteria message inquiries. An existing search
table property may become obsolete when a deployed custom search table definition is modified. These obsolete index
property entries continue to display in the Message Search table criteria until removed. Ens.VDoc.SearchTable includes
methods for managing these properties:

• DeleteProps() — method for deleting search table property indexes

• DeleteObsoleteProps() — method for removing obsolete property indexes and truncating obsolete index search data

Removing obsolete properties allows maintenance of search tables without having to rebuild their entire indexes.

5.4 Customizing Queries Used by the Management Portal
When users search for messages in the Message Viewer and the Message Bank Message Viewer pages in the Management
Portal, InterSystems IRIS generates and then uses queries. In advanced cases, you can customize how InterSystems IRIS
generates these queries. To do so, use the following general procedure:

• Define a subclass of EnsPortal.MsgFilter.AbstractAssistant. For details, see the class reference for that class.

• Set the name of the class into ^EnsPortal.Settings("MessageViewer","AssistantClass") for the Message Viewer or
^EnsPortal.Settings("MsgBankViewer","AssistantClass") for the Message Bank Viewer.

Using Virtual Documents in Productions 21

Management of Search Tables

6
Controlling Message Validation for Virtual
Documents

For virtual documents other than ASTM documents, InterSystems IRIS® data platform can provide message validation,
with an option to include a business host to handle bad messages. You can also override the validation logic, if wanted.
This page describes the details.

6.1 Introduction
For virtual documents other than ASTM documents, one or more of the specialized business host classes include the Vali-

dation setting, which you use to specify how that business host should validate messages that it receives, before attempting
further work.

If the message does not fail validation, the business host sends the message to the specified normal target or targets.

If the document does fail validation, the details are different depending on the kind of business host:

• A business service or business operation does not send the message anywhere.

• A routing process includes the additional setting Bad Message Handler, which is meant to be the name of a business
host. If the document fails validation, the routing process forwards the document to its bad message handler, as specified
by this setting. If there is no bad message handler, the routing process does not route the document, but logs an error.
The routing process may also include a setting to enable you to send an alert.

6.2 Basic Validation Options and Logic
This topic describes the allowed values for the Validation setting and describes how InterSystems IRIS validates a message.

MeaningValue

Validation examines the DocType property of the document to see if it has a value.d

Validation verifies that the document segment structure is well formed, and that it can be
parsed using the schema identified in the DocType property of the document.

m

Both d and m are active.dm

Using Virtual Documents in Productions 23

MeaningValue

The business host skips validation and routes all documents. For most virtual document
formats, this is the default setting.

(a blank
string)

6.2.1 The d Validation Flag

If the d flag is present in the Validation string, InterSystems IRIS examines the Schema Category specified in the message
(as set by the business service) and compares it with the message DocType. If the Schema Category in the message is blank,
the message is automatically declared bad. However, if Schema Category is not blank, but does not match the message
DocType, validation can continue, as long as there are more Validation flags defined, such as m.

6.2.2 The m Validation Flag

If the m flag is present in the Validation string, InterSystems IRIS searches for a way to either validate the message, or
declare it bad. The details depend upon the virtual document type.

6.3 Overriding the Validation Logic
The virtual document routing process (EnsLib.MsgRouter.VDocRoutingEngine), and its subclasses provide default validation
logic. Most of the specialized virtual document business service and operation classes also provide validation logic. You
can override the validation logic; to do so, create and use a subclass of the applicable class.

6.3.1 Overriding the Validation Logic in a Routing Process Class

If you create a subclass of an InterSystems IRIS Interoperability class and then override the OnValidate() method, you
can:

• Extend or replace the list of accepted values for the Validation setting.

• Determine how the routing process will validate documents, as controlled by your own Validation options.

When you override the OnValidate() method, you may also override the Validation property definition in the same subclass.
Pay careful attention to the following details:

• The InitialExpression value specifies the default for the Validation configuration setting.

• The comments that precede the Validation property definition are used as a tooltip for the Validation setting. Use the
/// convention and leave no white space lines between the last comment line and the property definition. This allows
Management Portal users to view your comments as a tooltip.

6.3.2 Overriding the Validation Logic in a Business Service or Operation Class

The virtual document business service and operation classes each provide a Validation property and OnValidate() method
that you can override. By default, this property is not exposed as a setting for any of these business services or business
operations, and by default, no OnValidate() activity ever occurs in these classes. You can change this if you want to validate
documents at the incoming or outgoing sides of the interface, rather than at the routing engine as is the usual case. To
accomplish this, follow these steps:

1. Use the instructions for overriding Validation and OnValidate() provided above.

24 Using Virtual Documents in Productions

Controlling Message Validation for Virtual Documents

2. If you want your users to be able to choose a type of validation, also add the Validation property as a setting. See Adding
and Removing Settings.

6.4 Defining Bad Message Handlers
A routing process has the setting Bad Message Handler. The purpose of this setting is to indicate the business host to which
the process should send messages that are found to be bad, according to the Bad Message Handler of the business process.
To define a bad message handler, first decide how you want to handle the bad message. Typically you create a business
operation. This business operation could do either or both the following, for example:

• (Via a file adapter) Write the contents of the message to a file.

• (Depending on a configuration setting) Trigger an alert whenever it encounters a bad message.

Note that the business process sends the bad message to this business host instead of its usual target for validated messages.

If a message is bad and if the Bad Message Handler setting is not specified, the routing process simply stops the validation
sequence and does not send the message.

Using Virtual Documents in Productions 25

Defining Bad Message Handlers

7
Creating Custom Schema Categories for
Virtual Documents

It may be necessary to create custom schema categories in InterSystems IRIS® data platform. This page describes the
details.

Important: Never edit the built-in schema category definitions. When you need a custom schema, create a custom
schema category definition that uses a built-in schema category definition as its schema base.

Be sure to perform these tasks in the same namespace that contains your production.

7.1 When Custom Schema Categories Are Needed
The EDIFACT and X12 standards are extensible.

For example, a common practice is to add custom segments to an otherwise standard document structure.

If you are working with documents that do not follow a standard schema that you have loaded, it is necessary to create the
corresponding custom schema category if you want to do either of the following:

• Perform structural document validation

• Use segment and field path names in BPL, DTL, and routing rule syntax

7.2 Ways to Create Custom Schema Categories
There are two general ways to create custom schema categories:

• Create a copy of the schema file that most closely meets your needs. Edit that file. Then import it, as described in
Portal Tools.

• In an IDE, open the schema category definition that most closely meets your needs. Save that as a new definition. Then
edit the copy. Syntax for Schema Categories in InterSystems IRIS provides details for the syntax of the definition.

Using Virtual Documents in Productions 27

7.3 Syntax for Schema Categories in InterSystems IRIS
InterSystems IRIS uses the same XML-based syntax to represent schema category definitions for EDIFACT and X12.

When you create a custom schema category, you supplement an existing schema by defining custom segments (Z-segments)
and then stating which message types and message structures may contain those segments. To accomplish this, you only
need to work with the XML elements <MessageType>, <MessageStructure>, and <SegmentStructure>.

A custom schema category definition is simpler than a built-in definition and contains fewer statements. Everything in the
base category is included in the custom schema category definition. There is no need to repeat the definitions of standard
message types. You only need to define custom message types. The conventions for doing this are as follows:

How to Define ItWhat to Define

<Category>Custom schema category definition

<SegmentStructure>Custom segments

<MessageStructure>Any message structures that include custom segments

<MessageType>Any message types that include message structures with custom segments. A
message type identifies:

• The message structure to send

• The message structure to expect in response

7.3.1 <Category>

The <Category> element is the top-level container for the XML document that describes the custom schema category.

The following table describes the <Category> attributes.

ValueDescriptionAttribute

String. For convenience, use the name of the
schema file

Name displayed in the Schema Structures page
in the list of available schema categories.

name

For standard schema category definitions only.
Do not use std in a custom schema.

When 1 (true), this <Category> block describes
a standard HL7 schema category. The default
is 0 (false).

std

The name of a standard or custom schema
category defined using a <Category> block in
another schema file.

Identifies the schema category that is the base
for this custom schema category. Every
definition in the schema base is automatically
included in the custom category; statements in
the custom schema category simply add to the
base.

base

7.3.2 <SegmentStructure>

A <Category> element may contain one or more <SegmentStructure> elements. Each <SegmentStructure> element defines
the structure of a custom segment.

The following table describes the <SegmentStructure> attributes.

28 Using Virtual Documents in Productions

Creating Custom Schema Categories for Virtual Documents

ValueDescriptionAttribute

3–character string. .Name displayed in the Schema Structures page
in the list of available segment structures.

name

StringText description of the segment contents,
displayed in the Schema Structures page and
as a tooltip for the Document Viewer page.

description

7.3.3 <SegmentSubStructure>

A <SegmentStructure> element may contain one or more <SegmentSubStructure> elements. Each <SegmentSubStructure>
element describes one field of the custom segment, in sequential order from top to bottom. The following is an example of
<SegmentSubStructure> element syntax:

XML

<SegmentSubStructure piece='6' description='Encounter Number' symbol='!'
 length='12' required='R' ifrepeating='0'/>

The following table describes the <SegmentSubStructure> attributes.

ValueDescriptionAttribute

Integer. Each <SegmentSubStructure> within
a <SegmentStructure> must use piece values
in sequential order, beginning at 1 and
incrementing by 1.

Number displayed in the Schema Structures
page when the user asks to view details of
the segment that contains this field. This
number can be used to identify the field in a
virtual property path.

piece

The name of a code table defined using a
<CodeTable> block.

Code table that enumerates a list of valid
values for this field. This attribute is typically
not used in a custom schema.

codetable

The name of a data structure defined using a
<DataStructure> block.

Data structure that specifies how to interpret
the values in this field. This attribute is
typically not used in a custom schema.

datastruct

StringText description of the field contents,
displayed in the Schema Structures page and
as a tooltip for the Document Viewer page.

description

A single character:

• ! means 1 only. The field must appear, but
only once.

• ? means 0 or 1. The field may appear, but
at most once.

• + means 1 or more. The field may repeat
one or more times.

• * means 0 or more. The field may repeat
zero or more times.

• & means the field may be present, and
may repeat, but only under certain condi-
tions.

Symbol that indicates the requirements for
presence, absence, or repetition of this field
within the segment.

This field is optional. It serves as an indicator
on the Schema Structures page. It does not
actually control the requirement or repetition
of fields. See required and ifrepeating.

symbol

Using Virtual Documents in Productions 29

Syntax for Schema Categories in InterSystems IRIS

ValueDescriptionAttribute

IntegerUpper limit on the number of characters that
can be present in this field.

length

A single character:

• C means conditional

• O means optional

• R means required

Whether or not this field must be present in
the segment.

required

Integer. 0 means no, 1 means yes.Whether or not this field may repeat within
the segment.

ifrepeating

7.3.4 <MessageStructure>

A <Category> element may contain one or more <MessageStructure> elements. Each <MessageStructure> element provides
a specification for the number and arrangements of segments in a message structure. The following is an example of
<MessageStructure> element syntax:

XML

<MessageStructure
 name='MFN_M03'
 definition='base:MSH~base:MFI~{~base:MFE~[~ZSI~]~base:OM1~[~base:Hxx~]~}'
 description='HNB MFN message'
 />

The following table describes the <MessageStructure> attributes.

ValueDescriptionAttribute

3–character string, plus an underscore (_),
plus a 3–character string.

Name displayed in the Schema Structures
page in the list of available message
structures.

name

String that includes the 3–character name
values for standard or custom message
segments defined using <SegmentStructure>

Specification for the number and
arrangements of segments in the message
structure. May include a mix of standard and
custom message segments. See syntax rules
below.

definition

StringText description of the field contents,
displayed in the Schema Structures page and
as a tooltip for the Document Viewer page.

description

Syntax for the definition string works as follows:

• Keep the entire string all on one line

• List each segment sequentially from left to right

• When listing a segment, use its name value as defined by a <SegmentStructure>

• Separate a segment from the next segment by a ~ (tilde) character

• If a segment or block of segments repeats, enclose the repeating part in {~ and ~}

• If a segment or block of segments is optional, enclose the optional part in [~ and ~]

30 Using Virtual Documents in Productions

Creating Custom Schema Categories for Virtual Documents

Within a definition, a name may be simple, in which case InterSystems IRIS assumes the value refers to a custom <Mes-
sageStructure> block within the same file. Alternatively, a name may refer to a standard message structure from the schema
base. This means it is defined in the file identified by the base attribute in the containing <Category> element. To indicate
this, the name must use the prefix:

base:

So that InterSystems IRIS can find the appropriate <SegmentStructure> in the other file. No other external file can be ref-
erenced; only the schema base.

7.3.5 <MessageType>

A <Category> element may contain one or more <MessageType> elements. <MessageType> entries define any message
types that include message structures that have custom segments. A <MessageType> element is a simple list of two items:

• A message structure to send

• A message structure to expect in response

The following is an example of <MessageType> element syntax:

XML

<MessageType name='ADT_A31' structure='ADT_A01' returntype='base:ACK_A31'/>

The following table describes the <MessageType> attributes.

ValueDescriptionAttribute

3–character string, plus an underscore (_), plus
a 3–character string.

Name displayed in the Schema Structures
page in the list of available message types.

name

The name of a standard or custom message
structure defined using <MessageStructure>

The message structure to send.structure

The name of a standard or custom message
structure defined using <MessageStructure>

The message structure to expect in response.
This must be a valid ACK message structure.
Make sure the returntype has a value from
the schema base. For example:
returntype="base:ACK"

returntype

structure values can be simple name values from the current file.

Alternatively, structure or returntype values can refer to a standard message structures from the schema base. To indicate
this, the values must use the prefix:

base:

Using Virtual Documents in Productions 31

Syntax for Schema Categories in InterSystems IRIS

8
Portal Tools for Virtual Documents

The Management Portal provides pages to help you view the schema categories and their subdivisions for virtual documents,
view documents, and perform related tasks. This page describes how to use these pages in general.

8.1 Accessing the Tools
1. In the Management Portal, switch to the appropriate namespace.

To do so, click Switch in the title bar, select the namespace, and click OK.

2. Click Interoperability.

3. Click Interoperate.

4. Click the menu option that corresponds to the EDI format in which you are interested.

8.2 Using the Schema Structures Page
InterSystems IRIS® data platform provides versions of the Schema Structures page for X12, EDIFACT, and XML. Inter-
Systems IRIS for Health™ provides versions of the Schema Structures page for additional formats. In general, you can use
the Schema Structures page to view and import schemas. You can also use the page to export schemas other than XML
schemas.

To access this page:

1. Click Interoperability > Interoperate, and then click the menu option that corresponds to the EDI format you are interested
in.

2. Click the option ending with Schema Structures, and then click Go.

InterSystems IRIS displays a page that lists the schemas of this type in this namespace.

In most cases, this page displays a list of schema categories on the left; these are all the schema categories in this namespace
related to this format.

This area enables you to specify which schema category you are interested in examining. When you click a schema category,
InterSystems IRIS displays details for that category in the tabs on the right.

Depending on the EDI format, you might see the following tabs on the right side of the page:

Using Virtual Documents in Productions 33

• DocType Structures identifies the sequence and grouping of segments within a message structure.

• Segment Structures lists the fields in each segment.

• Data Structures lists the contents of composite data fields.

• Code Tables lists the values that can be used within an enumerated field.

Additionally, you may see buttons that enable you to do some or all of the following:

• Import a schema into this namespace, for this EDI standard. To do so, click Import, use Browse to choose a file, and
click OK.

• Export a non-XML schema to a file. To do so, select the schema category, then click Export, enter a filename, select
a file type, and click OK.

• Remove a custom schema from this namespace. To do so, select a custom schema and click Delete, and then click OK.
You cannot delete any of the standard schemas installed with InterSystems IRIS.

The schema is immediately removed.

CAUTION: You cannot undo this operation.

• Create a new schema based on an existing schema. To do so, click New and then specify the base schema and the new
custom schema name. You can then specify the details for the custom schema.

8.3 Using the Document Viewer Page
For information on the document viewer, see Using the X12 Document Viewer Page. The information presented in these
guides is equally applicable to XML, EDIFACT, or any other EDI format.

34 Using Virtual Documents in Productions

Portal Tools for Virtual Documents

Syntax Guide for Virtual Property Paths

This reference describes the syntax details that support the virtual property model.

The following table summarizes where the virtual property path syntaxes can be used:

Search Filters and
Search Tables

Business RulesDTLBPLSyntax

not supportednot supportedsupportedsupportedGetValueAt()

supportedsupportedsupported (except for
in <code> and <sql>
elements)

supported (except
for in <code> and
<sql> elements)

{ } Syntax

supportedsupportednot supportednot supported[] Syntax

not supportedsupportedsupportednot supported() Syntax

not supportedsupportednot supportednot supported<> Syntax

Using Virtual Documents in Productions 35

Virtual Property Shortcuts When DocType Is Unimportant
Describes virtual property shortcuts that you can use when DocType is unimportant.

Details
Often when you need to identify a virtual property path, the specific DocType is clear from the context, so you only need
to identify the segment:field path. There are also cases when a specific DocType is not important and any DocType from
the schema definition that matches your search criteria is of interest. Consequently, there are two important shortcuts for
virtual property syntax used in BPL, DTL, and routing rules:

• Curly brackets

{segment:field}

Curly bracket syntax is available in BPL, DTL, business rules (including routing rules), search filters, or search tables.
The segment:field combination inside the curly brackets may use segment and field names, or numeric positions.
However, names work only when the DocType (category:structure) is clearly identified within the current context.
For example, a DTL data transformation always identifies the DocType of its source and target in its <transform> element.

• Square brackets

[segment:field]

Square bracket syntax is available for business rules, search tables, and search filters only. The segment must be a
name; field may be a name or number. Names can only be resolved when the DocType (category:structure) is known
at runtime. InterSystems IRIS can resolve a numeric field without knowing the specific message structure or schema.
If there is more than one result that matches the pattern in square brackets, this syntax returns a string that contains all
matching values, each value enclosed in <> angle brackets.

The following shortcuts are available only when defining routing rules:

• Round brackets or parentheses

(multi-valued-property-path)

• Angle brackets

<context|expression>

36 Using Virtual Documents in Productions

Syntax Guide for Virtual Property Paths

Virtual Property Path Basics
Describes how to create a virtual property path.

Introduction
For most EDI formats (not XML virtual documents), a virtual property path has the following syntax:

segmentorsubsegmentID:fieldorsubfieldID

Where:

• segmentorsubsegmentID refers to a segment or a subsegment. This identifier follows the rules given in Segment and
Subsegment Identifiers.

• fieldorsubfieldID refers to a field or subfield within the parent segment or subsegment. This identifier follows the rules
given in Field and Subfield Identifiers.

A virtual property path is relative to a specific message structure, and might not be valid in any other message structure.
The Management Portal provides pages to help you determine paths. See Portal Tools.

Important: For XML virtual documents, the syntax is different. See Routing XML Virtual Documents in Productions.

Segment and Subsegment Identifiers
To refer to a segment, use either of the following:

• Symbolic name of the segment.

If a message has multiple segments of the same name, append (n) to the end of the identifier, where n is the 1–based
position of the desired segment.

• Number of the segment as contained in the message. Typically this number is not known, so this syntax is less useful.

A segment can have subsegments (which can have further subsegments). To identify a subsegment, use the following
syntax:

segmentID.subsegmentID

Where both segmentID and subsegmentID follow the preceding rules for identifying a segment. Note that you cannot mix
symbolic names and numeric identifiers. That is, if you use a symbolic name for any part of this syntax, you must use
symbolic names in all parts of this syntax. Similarly, if you use the numeric identifier in any part of this syntax, you must
use the numeric identifiers in all parts of this syntax.

Field and Subfield Identifiers
To refer to a field, use either of the following:

• Symbolic name of the field.

If the parent segment or subsegment has multiple fields of the same name, append (n) to the end of the identifier,
where n is the 1–based position of the desired field.

• Number of the field within the parent segment or subsegment

A field can have subfields (which can have further subfields). To identify a subfield, use the following syntax:

fieldID.subfieldID

Using Virtual Documents in Productions 37

Virtual Property Path Basics

Where both fieldID and subfieldID follow the preceding rules for identifying a field. Note that you cannot mix symbolic
names and numeric identifiers. That is, if you use a symbolic name for any part of this syntax, you must use symbolic names
in all parts of this syntax. Similarly, if you use the numeric identifier in any part of this syntax, you must use the numeric
identifiers in all parts of this syntax.

Examples
The following virtual property path accesses the streetaddress subfield of the Address field of the second NK1 segment:

NK1(2):Address.streetaddress

The following virtual property path accesses the streetaddress subfield of the ContactAddress field of the
AUTgrp.CTD subsegment of the first PR1grp segment:

PR1grp(1).AUTgrp.CTD:ContactAddress.streetaddress

Special Variations for Repeating Fields
This section describes variations of virtual property paths that apply when you are referring to a repeating field.

Iterating Through the Repeating Fields

When you are using curly bracket {} notation in BPL or DTL, the shortcut () iterates through every instance of a repeating
field. For example, consider the following single line of DTL:

XML

<assign property='target.{PID:3().4}' value='"001"'/>

This line is equivalent to the following three lines of equally valid DTL:

XML

<foreach key='i' property='target.{PID:3()}'>
 <assign property='target.{PID:3(i).4}' value='"001"'/>
</foreach>

The same () convention is also available in BPL.

Counting Fields

If the path refers to a repeating field, you can use (*) to return the number of fields.

Important: To count fields within DTL, use ("*") instead of (*).

This syntax is also available for collection properties in standard messages.

Accessing the Last Field in a Set of Repeating Fields

For XML virtual documents only, you can use .(-) to return the last field if the path refers to a repeating field. For more
information, see Getting or Setting the Contents of an XML Element.

This syntax is also available for collection properties in standard messages.

Appending to a Set of Repeating Fields

If the path refers to a repeating field, you can use .() to append another field.

This syntax is also available for collection properties in standard messages.

38 Using Virtual Documents in Productions

Syntax Guide for Virtual Property Paths

Curly Bracket { } Syntax
Describes how to use curly bracket { } syntax to access virtual properties.

Where Applicable
You can use this syntax in business rules, search tables, search filters, BPL elements (other than <code> and <sql>), and
DTL elements (other than <code> and <sql>).

For curly bracket syntax to resolve, the message structure must be known. If the message structure is unknown in the current
context, use square bracket [] syntax instead, if possible.

Details
To use curly bracket { } syntax to access a virtual property, use the following syntax:

message.{myVirtualPropertyPath}

Where:

• message is a variable that refers to the current message. The name of this variable depends upon the context.

• myVirtualPropertyPath is a virtual property path as described earlier in this reference.

The preceding syntax is equivalent to the following method call:

message.GetValueAt("myVirtualPropertyPath")

Curly bracket {} syntax is simpler and so is commonly used where available.

Wholesale Copy
When you are using curly bracket {} notation in BPL or DTL, you can copy whole segments, groups of segments, or whole
composite fields within a segment. To do so, omit the field part of the virtual property path (as well as the colon separator).
Thus, the following DTL <assign> statements are all legal:

<assign property='target.{MSH}' value='source.{MSH}' />
<assign property='target.{DG1()}' value='source.{DG1()}' />
<assign property='target.{DG1(1):DiagnosingClinician}' value='"^Bones^Billy"'/>

Note: If the source and target types are different, you cannot use the wholesale copy to assign subproperties, even if the
structures appear to be parallel. For such a copy, you must assign each leaf node of a structure independently and
add a For Each action to process iterations.

The last line of the previous example uses the caret (^) as a component separator character. For details specific to each EDI
format, see:

• EDIFACT Separators

• X12 Separators

Using Virtual Documents in Productions 39

Curly Bracket { } Syntax

Square Bracket [] Syntax
Describes how to use square bracket [] syntax to access virtual properties.

Where Applicable
You can use this syntax in business rules, search tables, and search filters. This syntax is available for EDIFACT and X12
documents.

Details
To use square bracket [] syntax to access a virtual property, use the following syntax:

[myVirtualPropertyPath]

Where myVirtualPropertyPath is a virtual property path as described earlier in this reference, except that field identifiers
must be in numeric format. This syntax finds values in named segments regardless of message structure.

When using the square bracket syntax for a business rule, if there is more than one instance of the segment type in the
message, this syntax returns a string that contains all matching values, each value enclosed in <> angle brackets. For
example, if the syntax returns multiple values a, b, and c, they appear in a single string like this:

<a><c>

If you are using the square bracket syntax with a search table and there is more than one instance of the segment type in
the message, this syntax compiles a list of matching fields/segments, then iterates through the list and inserts each one
separately into the table.

You can use the IntersectsList utility function to test whether certain values are found in the string returned by the
square bracket syntax. For more details about IntersectsList , see Built-in Functions .

When you use square brackets, InterSystems IRIS can resolve the numeric path without knowing the specific message
structure or schema. This is different from curly brackets {} which require you to identify the message structure. For
example, a DTL data transformation identifies the message structure of the source and the target messages with attributes
of the <transform> element (sourceDocType and targetDocType) so that you can use curly bracket syntax.

Square bracket syntax supports the repeating field shortcut () only in the field portion of the property path (segment:field).

Example
The following excerpt from a search table class shows how to match all values in the FT1:12.1 and FT1:6 fields in a message.

XML

<Items>
 <Item DocType="" PropName="TransactionAmt">[FT1:12.1]</Item>
 <Item DocType="" PropName="TxType">[FT1:6]</Item>
</Items>

Comparison to FindSegmentValues()
The syntax is similar to but does not equate directly with the default behavior of FindSegmentValues(). Instead, it modifies
the separator and encloses the result in angle brackets, so the square bracket syntax equates to the following method call:

"<"_msg.FindSegmentValues("segment:field",,"><")_">"

40 Using Virtual Documents in Productions

Syntax Guide for Virtual Property Paths

Parenthesis () Syntax
Describes how to use parenthesis () syntax to access virtual properties.

Where Applicable
You can use this syntax in business rules and in DTL transformations.

Details
To use parenthesis syntax to access a virtual property, use the following syntax:

message.(multi-valued-property-path)

Where:

• message is a variable that refers to the current message. The name of this variable depends upon the context.

• multi-valued-property-path is a virtual property path that uses the repeating field shortcut () to iterate through every
instance of a repeating field, as described earlier in this reference.

Within DTL, the preceding syntax is equivalent to the following method call:

message.GetValueAt("multi-valued-property-path")

Within a business rule, the preceding syntax is equivalent to the following method call:

message.GetValues("multi-valued-property-path")

If the syntax returns multiple values a, b, and c, they appear in a single string enclosed in <> angle brackets, like this:

<a><c>

Using Virtual Documents in Productions 41

Parenthesis () Syntax

Angle Bracket <> Syntax
Describes how to use angle bracket <> syntax (with a XPath expression) to access virtual properties.

Where Applicable
You can use this syntax in business rules.

Details
To use angle bracket syntax to access a virtual property, use the following syntax:

message<xpathexpression>

Where

• message is a variable that refers to the current message. The name of this variable depends upon the context.

• xpathexpression is an XPath expression.

For example, a condition that uses an xpath expression to evaluate whether a string is in an XML document might be:

Contains(Document.Stream.</|name(/*)>, "00UK")

The preceding syntax is equivalent to the following:

GetXPathValues(message.stream,"context|expression")

GetXPathValues() is a convenience method in the rules engine. It operates on a message that contains a stream property
whose contents are an XML document. The method applies an XPath expression to the XML document within the stream
property, and returns all matching values. If the context| part of the XPath argument is missing, InterSystems IRIS searches
the entire XML document.

If the syntax returns multiple values a, b, and c they appear in a single string enclosed in <> angle brackets, like this:

<a><c>

42 Using Virtual Documents in Productions

Syntax Guide for Virtual Property Paths

Common Settings (Virtual Documents)

This section provides the following reference information related to virtual documents.

Using Virtual Documents in Productions 43

Settings for Business Services (Virtual Documents)
Provides reference information for settings of business services that handle virtual documents.

Summary
Many business services that handle virtual documents have the following settings:

SettingsGroup

Target Config Names, Doc Schema CategoryBasic Settings

Search Table Class, ValidationAdditional Settings

Doc Schema Category
Category to apply to incoming document type names to produce a complete DocType specification. Combines with the
document type name to produce a DocType assignment. This setting may also contain multiple comma-separated type
names followed by = and a DocTypeCategory or full DocType values to apply to documents declared as that type.

A trailing asterisk (*) at the end of a given partial type name matches any types beginning with the partial entry.

Note that a DocType assignment may be needed for Validation or Search Table Class indexing.

Search Table Class
Specifies the class to use to index virtual properties in the inbound documents. The default depends on the EDI format, but
you can create and use your own search table class. See Defining Search Tables.

In either case, be sure that the category given by Doc Schema Category includes the DocType values (if any) in the search
table class.

Target Config Names
Configuration items to which to send the received documents.

Validation
Determines the validation that a business host performs when it receives an incoming virtual document.

If the document fails validation, the business service or business operation does not send it. (The details are different for
business processes.)

The following table lists the possible values for Validation:

MeaningValue

Validation examines the DocType property of the document to see if it has a value.d

Validation verifies that the document segment structure is well formed, and that it can be
parsed using the schema identified in the DocType property of the document.

m

Both d and m are active.dm

The business host skips validation and routes all documents. This is the default setting.(a blank
string)

For a longer discussion, see Basic Validation Options and Logic.

44 Using Virtual Documents in Productions

Common Settings (Virtual Documents)

Settings for Routing Processes (Virtual Documents)
Provides reference information for settings of EnsLib.MsgRouter.RoutingEngine business process, which you use to route
most kinds of virtual documents.

Summary
EnsLib.MsgRouter.RoutingEngine has the following settings:

SettingsGroup

Validation, Business Rule NameBasic Settings

Act On Transform Error, Act On Validation Error, Alert On Bad Message, Bad Message
Handler, Forward Generated Response To Target, Response From, Response Target
Config Names, Response Timeout, Force Sync Send

Additional Settings

Rule LoggingDevelopment and
Debugging

The remaining settings are common to all business processes. See Settings for All Business Processes.

Act On Transform Error
If True, causes errors returned by a transformation to stop rule evaluation and the error to be handled by Reply Code Actions
setting.

Act On Validation Error
If True, causes errors returned by validation to be handled by Reply Code Actions setting.

Alert On Bad Message
If True, any document that fails validation automatically triggers an alert.

Bad Message Handler
If the document fails validation, and if the routing process has a configured Bad Message Handler, it sends the bad document
to this business operation instead of its usual target for documents that pass validation.

See Defining Bad Message Handlers.

Business Rule Name
The full name of the routing rule set for this routing process.

Force Sync Send
If True, make synchronous calls for all “send” actions from this routing process. If False, allow these calls to be made
asynchronously. This setting is intended to ensure FIFO ordering in the following case: This routing process and its target
business operations all have Pool Size set to 1, and ancillary business operations might be called asynchronously from
within a data transformation or business operation called from this routing process.

If Force Sync Send is True, this can cause deadlock if another business process is called by a target that is called synchronously
from this routing process.

Using Virtual Documents in Productions 45

Settings for Routing Processes (Virtual Documents)

Note that if there are multiple “send” targets, Force Sync Send means these targets will be called one after another in serial
fashion, with the next being called after the previous call completes. Also note that synchronous calls are not subject to the
Response Timeout setting.

Forward Generated Response To Target
Specifies whether to forward any response (generated by the routing engine) to the configuration items specified by the
setting Response Target Config Names. The default is True.

Response Target Config Names
Specifies a comma-separated list of configuration items within the production to which the business service should relay
any reply documents that it receives. Usually the list contains one item, but it can be longer. The list can include business
processes or business operations, or a combination of both.

This setting takes effect if either of the following is true:

• The Response From setting has a value.

• The setting Forward Generated Response To Target is enabled and the router generates a response.

Response From
A comma-separated list of configured items within the production. This list identifies the targets from which a response
may be forwarded back to the original caller, if the caller requested a response.

If a Response From string is specified, the response returned to the caller is the first response that arrives back from any
target in the list. If there are no responses, an empty “OK” response header is returned.

The Response From string also allows special characters, as follows:

• The * character by itself matches any target in the production, so the first response from any target is returned. If there
are no responses, an empty “OK” response header is returned.

• If the list of targets begins with a + character, the responses from all targets return together, as a list of document header
IDs in the response header. If none of the targets responds, an empty OK response header is returned.

• If the list of targets begins with a - character, only error responses will be returned, as a list of document header IDs
in the response header. If none of the targets responds with an error, an empty OK response header is returned.

If this setting value is unspecified, nothing is returned.

Response Timeout
Maximum length of time to wait for asynchronous responses before returning a “timed-out error” response header. A value
of -1 means to wait forever. Note that a value of 0 is not useful, because every response would time out. This setting takes
effect only if the Response From field has a value.

Rule Logging
If logging is enabled controls the level of logging in rules. You can specify the following flags:

• e—Log errors only. All errors will be logged irrespective of other flags, so setting the value to 'e' or leaving the value
empty will only log errors.

• r—Log return values. This is the default value for the setting, and is also automatic whenever the 'd' or 'c' flags are
specified.

• d—Log user-defined debug actions in the rule. For details on the debug action, see Adding Actions. This will also
include 'r'.

46 Using Virtual Documents in Productions

Common Settings (Virtual Documents)

• c—Log details of the conditions that are evaluated in the rule. This will also include 'r'.

• a—Log all available information. This is equivalent to 'rcd'.

Validation
For allowed values and basic information, see the Validation setting for business services.

If the document fails validation, the routing process forwards the document to its bad message handler, as specified by the
Bad Message Handler setting. If there is no bad message handler, the routing process does not route the document, but logs
an error. Also see Alert On Bad Message.

Using Virtual Documents in Productions 47

Settings for Routing Processes (Virtual Documents)

Settings for Business Operations (Virtual Documents)
Provides reference information for settings of business operations that handle virtual documents.

Summary
Many business operations that handle virtual documents have the following settings:

SettingsGroup

Search Table Class, ValidationAdditional Settings

Search Table Class
See the Search Table Class setting for business services.

Validation
See the Validation setting for business services.

48 Using Virtual Documents in Productions

Common Settings (Virtual Documents)

	Table of Contents
	1 Introduction to Virtual Documents
	1.1 Introduction
	1.2 Kinds of Virtual Documents
	1.3 Access to Contents of Virtual Documents
	1.4 Support for Filter and Search

	2 Schema Definitions for Virtual Documents
	2.1 Introduction
	2.2 Schema Categories
	2.3 Document Structures
	2.4 Document Types (DocType)
	2.5 Tools

	3 Virtual Property Paths for Virtual Documents
	3.1 Introduction
	3.2 Parsing EDI Documents: Segments and Fields
	3.3 Segment Structures
	3.4 Determining Virtual Property Paths
	3.5 Virtual Document Classes
	3.6 Testing Virtual Property Paths in the Terminal

	4 Using Virtual Documents in a Production
	4.1 Introduction
	4.2 Business Services for Virtual Documents
	4.3 Business Processes for Virtual Documents
	4.4 Business Operations for Virtual Documents

	5 Defining Search Tables for Virtual Documents
	5.1 Defining a Search Table Class
	5.1.1 XData Details for a Search Table Class

	5.2 Defining Custom Search Table Classes
	5.3 Management of Search Tables
	5.4 Customizing Queries Used by the Management Portal

	6 Controlling Message Validation for Virtual Documents
	6.1 Introduction
	6.2 Basic Validation Options and Logic
	6.2.1 The d Validation Flag
	6.2.2 The m Validation Flag

	6.3 Overriding the Validation Logic
	6.3.1 Overriding the Validation Logic in a Routing Process Class
	6.3.2 Overriding the Validation Logic in a Business Service or Operation Class

	6.4 Defining Bad Message Handlers

	7 Creating Custom Schema Categories for Virtual Documents
	7.1 When Custom Schema Categories Are Needed
	7.2 Ways to Create Custom Schema Categories
	7.3 Syntax for Schema Categories in InterSystems IRIS
	7.3.1 <Category>
	7.3.2 <SegmentStructure>
	7.3.3 <SegmentSubStructure>
	7.3.4 <MessageStructure>
	7.3.5 <MessageType>

	8 Portal Tools for Virtual Documents
	8.1 Accessing the Tools
	8.2 Using the Schema Structures Page
	8.3 Using the Document Viewer Page

	Syntax Guide for Virtual Property Paths
	Virtual Property Shortcuts When DocType Is Unimportant
	Virtual Property Path Basics
	Curly Bracket { } Syntax
	Square Bracket [] Syntax
	Parenthesis () Syntax
	Angle Bracket <> Syntax

	Common Settings (Virtual Documents)
	Settings for Business Services (Virtual Documents)
	Settings for Routing Processes (Virtual Documents)
	Settings for Business Operations (Virtual Documents)

	Index

