
Using Multidimensional
Storage (Globals)

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Multidimensional Storage (Globals)
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Introduction to Globals .. 1
1.1 What Are Globals? ... 1
1.2 Why Should Application Developers Learn About Globals? ... 2
1.3 Examples of Globals .. 2

1.3.1 Scalars .. 2
1.3.2 Arrays ... 2
1.3.3 Dictionaries .. 3
1.3.4 Ordered Trees ... 3

1.4 Globals and External Languages .. 3

2 Formal Rules about Globals .. 5
2.1 Introduction to Global Names and Limits .. 5

2.1.1 Variations .. 5
2.2 Introduction to Global Nodes and Subscripts .. 6
2.3 Rules for Global Subscripts .. 6
2.4 Collation of Globals ... 7

3 Extended Global References .. 9
3.1 Forms of Extended Global References ... 9
3.2 Bracket Syntax ... 9
3.3 Bracket Syntax with References to Databases ... 10
3.4 Environment Syntax ... 11

4 Global Mapping and Subscript-Level Mapping .. 13
4.1 Simple Example of Subscript-Level Mapping ... 13
4.2 More Complex Example of Subscript-Level Mapping .. 14
4.3 Key Principles .. 14

4.3.1 Using Distinct Ranges of Globals and Subscripts ... 14
4.3.2 Logging Changes ... 15

5 Working with Globals ... 17
5.1 Storing Data in Globals .. 17

5.1.1 Creating Globals .. 17
5.1.2 Storing Data in Global Nodes .. 17

5.2 Deleting Global Nodes ... 18
5.3 Testing the Existence of a Global Node ... 18
5.4 Retrieving the Value of a Global Node ... 19

5.4.1 The $GET Function .. 19
5.4.2 The WRITE, ZWRITE, and ZZDUMP Commands .. 19

5.5 Traversing Data within a Global .. 19
5.5.1 The $ORDER (Next / Previous) Function ... 20
5.5.2 Looping Over a Global ... 21
5.5.3 The $QUERY Function .. 21

5.6 Copying Data within Globals ... 22
5.7 Maintaining Shared Counters within Globals .. 23
5.8 Sorting Data within Globals ... 23

5.8.1 Collation of Global Nodes ... 23
5.8.2 Numeric and String-Valued Subscripts .. 24
5.8.3 The $SORTBEGIN and $SORTEND Functions .. 24

Using Multidimensional Storage (Globals) iii

5.9 Using Indirection with Globals .. 25
5.10 Managing Concurrency .. 26
5.11 Checking the Most Recent Global Reference .. 26

5.11.1 Naked Global Reference .. 26

6 SQL and Persistent Class Use of Multidimensional Storage .. 29
6.1 Storage Definitions ... 29

6.1.1 Default Structure .. 29
6.1.2 IDKEY ... 30
6.1.3 Subclasses .. 31
6.1.4 Parent-Child Relationships ... 32
6.1.5 Embedded Objects ... 32
6.1.6 Streams ... 33

6.2 Indices .. 33
6.2.1 Storage Structure of Standard Indexes ... 33

6.3 Bitmap Indexes ... 34
6.3.1 Logical Operation of Bitmap Indexes .. 34
6.3.2 Storage Structure of Bitmap Indexes ... 35
6.3.3 Direct Access of Bitmap Indexes ... 36

7 Temporary Globals and the IRISTEMP Database .. 37
7.1 Using Temporary Globals .. 37
7.2 Defining a Mapping for Temporary Globals .. 38
7.3 System Use of IRISTEMP ... 39
7.4 ^CacheTemp Globals .. 39

8 Management Portal Options .. 41
8.1 General Advice ... 41
8.2 Introduction to the Globals Page .. 42
8.3 Viewing Global Data .. 42
8.4 Editing Globals ... 43
8.5 Exporting Globals .. 44
8.6 Importing Globals .. 44
8.7 Finding Values in Globals .. 45

8.7.1 Performing Wholesale Replacements .. 45
8.8 Deleting Globals ... 46

9 APIs for Working with Globals ... 47

iv Using Multidimensional Storage (Globals)

1
Introduction to Globals

This topic introduces you to the concept of globals, the underlying multidimensional storage structure for InterSystems
IRIS® data platform. No matter how you decide to store or access your data, what you’re doing is using globals.

Globals can be accessed using a relational model, using an object model, or directly. For a video that explains the benefits
of this multi-model access and a hands-on exercise that lets you try the three alternatives yourself, see Exploring Multiple
Data Models with Globals.

1.1 What Are Globals?
One of the hallmarks of the InterSystems IRIS is its ability to store data once and allow you to access it using multiple
paradigms. For example, you can use InterSystems SQL to visualize your data as rows and columns, or you can use
ObjectScript and think of your data in terms of objects that have properties and methods. Your application can even mix
these data models, using whichever model is easiest and more efficient for a given task. But no matter how you write or
access your data, InterSystems IRIS stores it in underlying data structures known as globals.

Globals are persistent multidimensional sparse arrays:

• Persistent — Globals are stored in the database and can be retrieved at any time, by any process that can access that
database.

• Multidimensional — The nodes in a global can have any number of subscripts. These subscripts can be integers, decimal
numbers, or strings.

• Sparse — Node subscripts do not have to be contiguous, meaning that subscripts without a stored value do not use
any storage.

Nodes in a global can store many types of data, including:

• Strings

• Numeric data

• Streams of character or binary data

• Collections of data, such as lists or arrays

• References to other storage locations

Even the server-side code you write is ultimately stored in globals!

Using Multidimensional Storage (Globals) 1

https://learning.intersystems.com/course/view.php?name=QSGlobals
https://learning.intersystems.com/course/view.php?name=QSGlobals

1.2 Why Should Application Developers Learn About
Globals?
While it is possible to write an application on the InterSystems IRIS platform with little or no knowledge of globals, there
are several reasons why you may want to learn more about them:

• Some operations may be easier or more efficient if you access globals directly.

• You may want to create custom data structures for data that does not conform to relational or object data models.

• Some system administration tasks are done at the global level, and understanding globals will make these tasks more
meaningful to you.

1.3 Examples of Globals
If you’re new to InterSystems IRIS, you may be tempted to compare globals to data structures you have encountered from
programming in other languages. This is a difficult exercise because a global is a flexible data structure that can be used
in many different ways. But no matter the type of data it holds, a global is differentiated from a regular variable by placing
a caret (^) in front of the name. This indicates that the variable is persisted to the database.

1.3.1 Scalars

In its simplest form, a global can be used to store a single value, or scalar:

^a = 4

In this example, the global ^a holds an integer with the value 4, but as mentioned earlier, it can hold data of other types
just as easily.

1.3.2 Arrays

Globals can also be used as you would use an array in other languages, for example:

^month(1) = "January"
^month(2) = "February"
^month(3) = "March"
^month(4) = "April"
.
.
.
^month(12) = "December"

However, not every subscript in the array must include data. Since an array can be sparse, no storage is allocated for locations
in an array that are not used.

^sparse(1,2,3) = 16
^sparse(1,2,5000) = 400

2 Using Multidimensional Storage (Globals)

Introduction to Globals

And, unlike arrays in many languages, the subscripts of a global can be negative numbers, real numbers, or strings. And
the same array can hold data of varying types.

^misc(-4, "hello", 3.14) = 0
^misc("Sam", 27) = "Persimmon"

1.3.3 Dictionaries

Because of their flexibility, many people conceptualize globals as dictionaries (or nested dictionaries), with key-value pairs.
In the following example, the global ^team stores information about a baseball team:

^team("ballpark") = "Fenway Park"
^team("division") = "East"
^team("established") = 1901
^team("league") = "American"
^team("name") = "Boston Red Sox"
^team("retired number",1) = "Bobby Doerr"
^team("retired number",4) = "Joe Cronin"
^team("retired number",6) = "Johnny Pesky"
^team("retired number",8) = "Carl Yastrzemski"
^team("retired number",9) = "Ted Williams"
^team("world series titles") = $lb(1903,1912,1915,1916,1918,2004,2007,2013,2018)

In many languages, dictionaries are unordered, meaning that when you retrieve data from the dictionary, the data can be
returned in some unspecified order. With globals, however, data is sorted according to its subscripts as it is stored.

1.3.4 Ordered Trees

It is more accurate to visualize a global as an ordered tree, where each node in the tree can have a value and/or children.
In this regard, it is more flexible than nested dictionaries in other languages, where typically only the leaves of the tree
contain data. In the following example, the global ^bird stores birds according to their scientific names, with the names
of each bird stored at the leaves of the tree. Here, the root node stores an overall description of the global, while a node
representing a family of birds stores a description of that family:

^bird = "Birds of North America"
^bird("Anatidae") = "Ducks, Geese and Swans"
^bird("Anatidae", "Aix", "sponsa") = "Wood Duck"
^bird("Anatidae", "Anas", "rubripes") = "American Black Duck"
^bird("Anatidae", "Branta", "leucopsis") = "Barnacle Goose"
^bird("Odontophoridae") = "New World Quails"
^bird("Odontophoridae", "Callipepia", "californica") = "California Quail"
^bird("Odontophoridae", "Callipepia", "gambelii") = "Gambel's Quail"

For an animated illustration of how data is stored in ordered trees, see Ordered Trees.

For a short hands-on exercise and a whiteboard demonstration on globals, see Globals Quickstart.

1.4 Globals and External Languages
If you are writing an application in any of the supported external languages, InterSystems IRIS provides APIs that allow
you to manipulate your data using the three models discussed in this topic, as follows:

• Relational access through JDBC, ADO.NET, DB-API, or ODBC

• Object access through the InterSystems XEP APIs for Java and .Net

• Direct access to globals through the InterSystems Native SDKs

Note: Not all forms of access are supported for all languages.

Using Multidimensional Storage (Globals) 3

Globals and External Languages

https://learning.intersystems.com/course/view.php?name=Globals

2
Formal Rules about Globals

This topic describes formal rules governing globals and global references (apart from extended global references, discussed
separately).

2.1 Introduction to Global Names and Limits
The basic rules for global names are as follows:

• The name begins with a caret character (^) prefix. This caret distinguishes a global from a local variable.

• The next character can be a letter or the percent character (%):

– Globals with names that start ^% are available in all namespaces. These are sometimes called percent globals.

– Globals with names that do not use % are available only in the current namespace unless there are global mappings
in effect.

• The other characters of a global name may be letters, numbers, or the period (.) character, except that the last character
of the name cannot be a period.

• A global name may be up to 31 characters long (exclusive of the caret character prefix). You can specify global names
that are significantly longer, but InterSystems IRIS treats only the first 31 characters as significant.

• Global names are case-sensitive.

• There are naming conventions to follow to avoid collision with InterSystems globals; see Global Variable Names to
Avoid.

• InterSystems IRIS imposes a limit on the total length of a global reference, and this limit, in turn, imposes limits on
the length of any subscript values. See Maximum Length of a Global Reference.

For more details, see Rules and Guidelines for Identifiers.

2.1.1 Variations

• A process-private global is an array variable that is only accessible to the process that created it. The name of a process-
private global starts with ^|| rather than a single caret (^). For details, see Process-Private Globals.

• You can refer to a global in another namespace via an extended global reference.

Using Multidimensional Storage (Globals) 5

2.2 Introduction to Global Nodes and Subscripts
A global typically has multiple nodes, generally identified by a subscript or set of subscripts. For a basic example:

ObjectScript

 set ^Demo(1)="Cleopatra"

This statement refers to the global node ^Demo(1), which is a node within the ^Demo global. This node is identified by
one subscript.

For another example:

ObjectScript

 set ^Demo("subscript1","subscript2","subscript3")=12

This statement refers to the global node ^Demo("subscript1","subscript2","subscript3"), which is another
node within the same global. This node is identified by three subscripts.

For yet another example:

ObjectScript

 set ^Demo="hello world"

This statement refers to the global node ^Demo, which does not use any subscripts.

The nodes of a global form a hierarchical structure. ObjectScript provides commands that take advantage of this structure.
You can, for example, remove a node or remove a node and all its children; see Using Multidimensional Storage (Globals).

Important: Note that any global node cannot contain a string longer than the string length limit, which is extremely
long. See General System Limits.

2.3 Rules for Global Subscripts
Subscripts have the following rules:

• Subscript values are case-sensitive.

• A subscript value can be any ObjectScript expression, provided that the expression does not evaluate to the null string
("").

The value can include characters of all types, including blank spaces, non-printing characters, and Unicode characters.
(Note that non-printing characters are less practical in subscript values.)

6 Using Multidimensional Storage (Globals)

Formal Rules about Globals

• Before resolving a global reference, InterSystems IRIS evaluates each subscript in the same way it evaluates any other
expression. In the following example, we set one node of the ^Demo global, and then we refer to that node in several
equivalent ways:

SAMPLES>s ^Demo(1+2+3)="a value"

SAMPLES>w ^Demo(3+3)
a value

SAMPLES>w ^Demo(03+03)
a value

SAMPLES>w ^Demo(03.0+03.0)
a value

SAMPLES>set x=6

SAMPLES>w ^Demo(x)
a value

• InterSystems IRIS imposes a limit on the total length of a global reference, and this limit, in turn, imposes limits on
the length of any subscript values. See Maximum Length of a Global Reference.

CAUTION: The preceding rules apply for all InterSystems IRIS supported collations. For older collations still in use
for compatibility reasons, such as “pre-ISM-6.1”, the rules for subscripts are more restrictive. For example,
character subscripts cannot have a control character as their initial character; and there are limitations on
the number of digits that can be used in integer subscripts.

2.4 Collation of Globals
Within a global, nodes are stored in a collated (sorted) order.

Applications typically control the order in which nodes are sorted by applying a conversion to values used as subscripts.
For example, the SQL engine, when creating an index on string values, converts all string values to uppercase letters and
prepends a space character to make sure that the index is both not case-sensitive and collates as text (even if numeric values
are stored as strings).

Using Multidimensional Storage (Globals) 7

Collation of Globals

3
Extended Global References

You can refer to a global located in a namespace other than the current namespace. This is known as an extended global
reference or simply an extended reference.

Note that the rule about the maximum length of a global reference applies to extended global references as well as to the
more common global references.

3.1 Forms of Extended Global References
There are two forms of extended references:

• Explicit namespace reference — You specify the name of the namespace where the global is located as part of the
syntax of the global reference.

• Implied namespace reference — You specify the directory and, optionally, the system name as part of the syntax of
the global reference. In this case, no global mappings apply, since the physical dataset (directory and system) is given
as part of the global reference.

The use of explicit namespaces is preferred, because this allows for redefinition of logical mappings externally, as
requirements change, without altering your application code.

InterSystems IRIS supports two syntaxes for extended references:

• Bracket syntax, which encloses the extended reference with square brackets ([]).

• Environment syntax, which encloses the extended reference with vertical bars (| |).

Note: The examples shown here use the Windows directory structure. In practice, the form of such references is operating-
system dependent.

3.2 Bracket Syntax
You can use bracket syntax to specify an extended global reference with either an explicit namespace or an implied
namespace:

Explicit namespace:

^[nspace]glob

Using Multidimensional Storage (Globals) 9

Implied namespace:

^[dir,sys]glob

In an explicit namespace reference, nspace is a defined namespace that the global glob has not currently been mapped or
replicated to. In an implied namespace reference, dir is a directory (the name of which includes a trailing backslash: \),
sys is a system, and glob is a global within that directory. If nspace or dir is specified as a carat (^), the reference is to a
process-private global.

You must include quotation marks around the directory and system names or the namespace name unless you specify them
as variables. The directory and system together comprise an implied namespace. An implied namespace can reference
either:

• The specified directory on the specified system.

• The specified directory on your local system, if you do not specify a system name in the reference. If you omit the
system name from an implied namespace reference, you must supply a double caret (^^) within the directory reference
to indicate the omitted system name.

To specify an implied namespace on a remote system:

["dir","sys"]

To specify an implied namespace on the local system:

["^^dir"]

For example, to access the global SAMPLE in the C:\BUSINESS\ directory on a machine called SALES:

ObjectScript

 Set x = ^["C:\BUSINESS\","SALES"]SAMPLE

To access the global SAMPLE in the C:\BUSINESS\ directory on your local machine:

ObjectScript

 Set x = ^["^^C:\BUSINESS\"]SAMPLE

To access the global SAMPLE in the defined namespace MARKETING:

ObjectScript

 Set x = ^["MARKETING"]SAMPLE

To access the process-private global SAMPLE:

ObjectScript

 Set x = ^["^"]SAMPLE

3.3 Bracket Syntax with References to Databases
InterSystems IRIS provides special bracket syntaxes to represent databases within extended references.

10 Using Multidimensional Storage (Globals)

Extended Global References

You can create an extended reference that includes a database name, as specified in the CPF file. Use the format
:ds:DB_name. For example

["^^:ds:MYDATABASE"]

A similar syntax is available for an extended reference that refers to a database on a mirror. Use the format
:mirror:mirror_name:mirror_DB_name. For example, when referring to the database with the mirror database name
mirdb1 in the mirror CORPMIR, you could form an implied reference as follows:

["^^:mirror:CORPMIR:mirdb1"]

The mirrored database path can be used for both local and remote databases.

3.4 Environment Syntax
The environment syntax is defined as:

^|"env"|global

"env" can have one of five formats:

• The null string ("") — The current namespace on the local system.

• "namespace" — A defined namespace that global is not currently mapped to. Namespace names are not case-sensitive.
If namespace has the special value of "^", it is a process-private global.

• "^^dir" — An implied namespace whose default directory is the specified directory on your local system, where dir
includes a trailing backslash (\).

• "^system^dir" — An implied namespace whose default directory is the specified directory on the specified remote
system, where dir includes a trailing backslash (\).

• omitted — If there is no "env" at all, it is a process-private global.

To access the global SAMPLE in your current namespace on your current system, when no mapping has been defined for
SAMPLE, use the following syntax:

ObjectScript

 Set x = ^|""|SAMPLE

This is the same as the simple global reference:

ObjectScript

 Set x = ^SAMPLE

To access the global SAMPLE mapped to the defined namespace MARKETING:

ObjectScript

 Set x = ^|"MARKETING"|SAMPLE

You can use an implied namespace to access the global SAMPLE in the directory C:\BUSINESS\ on your local system:

Using Multidimensional Storage (Globals) 11

Environment Syntax

ObjectScript

 Set x = ^|"^^C:\BUSINESS\"|SAMPLE

You can use an implied namespace to access the global SAMPLE in the directory C:\BUSINESS on a remote system named
SALES:

ObjectScript

 Set x = ^|"^SALES^C:\BUSINESS\"|SAMPLE

To access the process-private global SAMPLE:

ObjectScript

 Set x = ^||SAMPLE
 Set x=^|"^"|SAMPLE

12 Using Multidimensional Storage (Globals)

Extended Global References

4
Global Mapping and Subscript-Level
Mapping

You can map globals and routines from one database to another on the same or different systems. This allows simple refer-
ences to data which can exist anywhere and is the primary feature of a namespace. You can map whole globals or pieces
of globals; mapping a piece of a global (or a subscript) is known as subscript-level mapping (SLM).

You can map globals and routines from one database to another on the same or different systems. Because you can map
global subscripts, data can easily span disks.

To configure this type of mapping, see Add Global, Routine, and Package Mapping to a Namespace.

4.1 Simple Example of Subscript-Level Mapping
Global mapping is applied hierarchically. For example, if the NSX namespace has an associated DBX database, but maps
the ^x global to the DBY database and ^x(1) to the DBZ database, then any subscripted form of the ^x global — except
those that are part of the ^x(1) hierarchy — is mapped to DBY; those globals that are part of the ^x(1) hierarchy are mapped
to DBZ. The following diagram illustrates this hierarchy:

In this diagram, the globals and their hierarchy appear in gray, and the databases to which they are mapped appear in black.

Using Multidimensional Storage (Globals) 13

4.2 More Complex Example of Subscript-Level Mapping
It is also possible to map part of a mapped, subscripted global to another database, or even back to the database to which
the initial global is mapped. Suppose that the previous example had the additional mapping of the ^x(1,2) global back to
the DBY database. This would appear as follows:

Again, the globals and their hierarchy appear in gray, and the databases to which they are mapped appear in black.

Once you have mapped a global from one namespace to another, you can reference the mapped global as if it were in the
current namespace — with a simple reference, such as ^ORDER or ^X(1).

Important: When establishing subscript-level mapping ranges, the behavior of string subscripts differs from that of
integer subscripts. For strings, the first character determines the range, while the range for integers uses
numeric values. For example, a subscript range of ("A"):("C") contains not only AA but also AC and
ABCDEF; by contrast, a subscript range of (1):(2) does not contain 11.

4.3 Key Principles

4.3.1 Using Distinct Ranges of Globals and Subscripts

Each of a namespace’s mappings must refer to distinct ranges of globals or subscripts. Mapping validation prevents the
establishment of any kind of overlap. For example, if you attempt to use the Management Portal to create a new mapping
that overlaps with an existing mapping, the Portal prevents this from occurring and displays an error message.

14 Using Multidimensional Storage (Globals)

Global Mapping and Subscript-Level Mapping

4.3.2 Logging Changes

Successful changes to the mappings through the Portal are also logged in messages.log; unsuccessful changes are not
logged. Any failed attempts to establish mappings by hand-editing the configuration parameter (CPF) file are logged in
messages.log; for details on editing the CPF, see Editing the Active CPF.

Using Multidimensional Storage (Globals) 15

Key Principles

5
Working with Globals

This topic describes the various operations you can perform using multidimensional storage (globals).

Also see Temporary Globals and the IRISTEMP Database.

Note: When using direct global access within applications, develop and adhere to a naming convention to keep different
parts of an application from “walking over” one another; this is similar to developing naming convention for
classes, method, and other variables. Also, avoid certain global names that InterSystems IRIS® data platform
uses; for a list of these, see Global Variable Names to Avoid.

5.1 Storing Data in Globals
Storing data in global nodes is simple: you treat a global as you would any other variable. The difference is that operations
on globals are automatically written to the database.

5.1.1 Creating Globals

There is no setup work required to create a new global; simply setting data into a global implicitly creates a new global
structure. You can create a global (or a global subscript) and place data in it with a single operation, or you can create a
global (or subscript) and leave it empty by setting it to the null string. In ObjectScript, these operations are done using the
SET command.

The following examples define a global named Color (if one does not already exist) and associate the value “Red” with
it. If a global already exists with the name Color, then these examples modify it to contain the new information.

In ObjectScript:

ObjectScript

 SET ^Color = "Red"

5.1.2 Storing Data in Global Nodes

To store a value within a global subscript node, simply set the value of the global node as you would any other variable. If
the specified node did not previously exist, it is created. If it did exist, its contents are replaced with the new value.

You can store any data in a global node, with the exception that any global node cannot contain a string longer than the
string length limit, which is extremely long. See General System Limits.

Using Multidimensional Storage (Globals) 17

Setting the value of a global node is an atomic operation: It is guaranteed to succeed and you do not need to use any locks
to ensure concurrency.

ObjectScript

 SET ^TEST = 2
 SET ^TEST("Color")="Red"
 SET ^TEST(1,1)=100 /* The 2nd-level subscript (1,1) is set
 to the value 100. No value is stored at
 the 1st-level subscript (^TEST(1)). */
 SET ^TEST(^TEST)=10 /* The value of global variable ^TEST
 is the name of the subscript. */
 SET ^TEST(a,b)=50 /* The values of local variables a and b
 are the names of the subscripts. */
 SET ^TEST(a+10)=50

Also, you can construct global references at runtime using indirection.

5.2 Deleting Global Nodes
To remove a global node, a group of subnodes, or an entire global from the database, use the ObjectScript KILL or ZKILL
commands.

The KILL command deletes all nodes (data as well as its corresponding entry in the array) at a specific global reference,
including any descendant subnodes. That is, all nodes starting with the specified subscript are deleted.

For example, the ObjectScript statement:

ObjectScript

 KILL ^TEST

deletes the entire ^TEST global. A subsequent reference to this global would return an <UNDEFINED> error.

The ObjectScript statement:

ObjectScript

 KILL ^TEST(100)

deletes contents of node 100 within the ^TEST global. If there are descendant subnodes, such as ^TEST(100,1),
^TEST(100,2), and ^TEST(100,1,2,3), these are deleted as well.

The ObjectScript ZKILL command deletes a specified global or global subscript node. It does not delete descendant
subnodes.

Note: Following the kill of a large global, the space once occupied by that global may not have been completely freed,
since the blocks are marked free in the background by the Garbage Collector daemon. Thus, a call to the
ReturnUnusedSpace method of the SYS.Database class immediately after killing a large global may not return
as much space as expected, since blocks occupied by that global may not have been released as yet.

You cannot use the NEW command on global variables.

5.3 Testing the Existence of a Global Node
To test if a specific global (or its descendants) contains data, use the $DATA function.

18 Using Multidimensional Storage (Globals)

Working with Globals

$DATA returns a value indicating whether or not the specified global reference exists. The possible return values are:

MeaningStatus
Value

The global variable is undefined.0

The global variable exists and contains data, but has no descendants. Note that the null string
("") qualifies as data.

1

The global variable has descendants (contains a downward pointer to a subnode) but does not
itself contain data. Any direct reference to such a variable will result in an <UNDEFINED> error.
For example, if $DATA(^y) returns 10, SET x=^y will produce an <UNDEFINED> error.

10

The global variable both contains data and has descendants (contains a downward pointer to a
subnode).

11

5.4 Retrieving the Value of a Global Node
To get the value stored within a specific global node, simply use the global reference as an expression:

ObjectScript

 SET color = ^TEST("Color") ; assign to a local variable
 WRITE ^TEST("Color") ; use as a command argument
 SET x=$LENGTH(^TEST("Color")) ; use as a function parameter

5.4.1 The $GET Function

You can also get the value of a global node using the $GET function:

ObjectScript

 SET mydata = $GET(^TEST("Color"))

This retrieves the value of the specified node (if it exists) or returns the null string ("") if the node has no value. You can
use the optional second argument of $GET to return a specified default value if the node has no value.

5.4.2 The WRITE, ZWRITE, and ZZDUMP Commands

You can display the contents of a global or a global subnode by using the various ObjectScript display commands. The
WRITE command returns the value of the specified global or subnode as a string. The ZWRITE command returns the
name of the global variable and its value, and each of its descendant nodes and their values. The ZZDUMP command
returns the value of the specified global or subnode in hexadecimal dump format.

5.5 Traversing Data within a Global
There are a number of ways to traverse (iterate over) data stored within a global.

Using Multidimensional Storage (Globals) 19

Retrieving the Value of a Global Node

5.5.1 The $ORDER (Next / Previous) Function

The ObjectScript $ORDER function allows you to sequentially visit each node within a global.

Given a subscript (or set of subscripts) as an argument, the $ORDER function returns the value of the next subscript at a
given level. This is best explained by example. Suppose you have defined a set of nodes in a global named ̂ TEST, as follows:

ObjectScript

 Set ^TEST(1) = ""
 Set ^TEST(1,1) = ""
 Set ^TEST(1,2) = ""
 Set ^TEST(2) = ""
 Set ^TEST(2,1) = ""
 Set ^TEST(2,2) = ""
 Set ^TEST(5,1,2) = ""

To find the first, first-level subscript, we can use:

ObjectScript

 SET key = $ORDER(^TEST(""))

This returns the first, top-level subscript following the null string (""). (The null string is used to represent the subscript
value before the first entry; as a return value it is used to indicate that there are no following subscript values.) In this
example, key will now contain the value 1.

We can find the next, top-level subscript by using 1 or key in the $ORDER expression:

ObjectScript

 SET key = $ORDER(^TEST(key))

If key has an initial value of 1, then this statement will set it to 2 (because ^TEST(2) is the next first-level subscript). Exe-
cuting this statement again will set key to 5 as that is the next first-level subscript. Note that 5 is returned even though there
is no data stored directly at ^TEST(5). Executing this statement one more time will set key to the null string (""), indicating
that there are no more first level subscripts.

By using additional subscripts with the $ORDER function, you can iterate over different subscript levels. For example,
using the data above, the statement:

ObjectScript

 SET key = $ORDER(^TEST(1,""))

will set key to 1 because ^TEST(1,1) is the next second-level subscript. Executing this statement again will set key to 2 as
that is the next second-level subscript. Executing this statement one more time will set key to "" indicating that there are
no more second-level subscripts under node ^TEST(1).

5.5.1.1 Looping with $ORDER

The following ObjectScript code defines a simple global and then loops over all of its first-level subscripts:

ObjectScript

 // clear ^TEST in case it has data
 Kill ^TEST

 // fill in ^TEST with sample data
 For i = 1:1:100 {
 // Set each node to a random person's name
 Set ^TEST(i) = ##class(%PopulateUtils).Name()

20 Using Multidimensional Storage (Globals)

Working with Globals

 }

 // loop over every node
 // Find first node
 Set key = $Order(^TEST(""))

 While (key '= "") {
 // Write out contents
 Write "#", key, " ", ^TEST(key),!

 // Find next node
 Set key = $Order(^TEST(key))
 }

5.5.1.2 Additional $ORDER Arguments

The ObjectScript $ORDER function takes optional second and third arguments. The second argument is a direction flag
indicating in which direction you wish to traverse a global. The default, 1, specifies forward traversal, while –1 specifies
backward traversal.

The third argument, if present, contains a local variable name. If the node found by $ORDER contains data, the data found
is written into this local variable. When you are looping over a global and you are interested in node values as well as
subscript values, this approach is efficient and requires the fewest coding steps.

5.5.2 Looping Over a Global

If you know that a given global is organized using contiguous numeric subscripts, you can use a simple For loop to iterate
over its values. For example:

ObjectScript

 For i = 1:1:100 {
 Write ^TEST(i),!
 }

Generally, it is better to use the $ORDER function described above: it is more efficient and you do not have to worry about
gaps in the data (such as a deleted node).

5.5.3 The $QUERY Function

If you need to visit every node and subnode within a global, moving up and down over subnodes, use the ObjectScript
$QUERY function. (Alternatively you can use nested $ORDER loops).

The $QUERY function takes a global reference and returns a string containing the global reference of the next node in the
global (or "" if there are no following nodes). To use the value returned by $QUERY, you must use the ObjectScript indi-
rection operator (@).

For example, suppose you define the following global:

ObjectScript

 Set ^TEST(1) = ""
 Set ^TEST(1,1) = ""
 Set ^TEST(1,2) = ""
 Set ^TEST(2) = ""
 Set ^TEST(2,1) = ""
 Set ^TEST(2,2) = ""
 Set ^TEST(5,1,2) = ""

The following call to $QUERY:

ObjectScript

 SET node = $QUERY(^TEST(""))

Using Multidimensional Storage (Globals) 21

Traversing Data within a Global

sets node to the string “^TEST(1)”, the address of the first node within the global. Then, to get the next node in the global,
call $QUERY again and use the indirection operator on node:

ObjectScript

 SET node = $QUERY(@node)

At this point, node contains the string “^TEST(1,1)” .

The following example defines a set of global nodes and then walks over them using $QUERY, writing the address of
each node as it does:

ObjectScript

 Kill ^TEST // make sure ^TEST is empty

 // place some data into ^TEST
 Set ^TEST(1) = ""
 Set ^TEST(1,1) = ""
 Set ^TEST(1,2) = ""
 Set ^TEST(2) = ""
 Set ^TEST(2,1) = ""
 Set ^TEST(2,2) = ""
 Set ^TEST(5,1,2) = ""

 // now walk over ^TEST
 // find first node
 Set node = $Query(^TEST(""))
 While (node '= "") {
 Write node,!
 // get next node
 Set node = $Query(@node)
 }

5.6 Copying Data within Globals
To copy the contents of a global (entire or partial) into another global (or a local array), use the ObjectScript MERGE
command.

The following example demonstrates the use of the MERGE command to copy the entire contents of the ̂ OldData global
into the ^NewData global:

ObjectScript

 Merge ^NewData = ^OldData

If the source argument of the MERGE command has subscripts then all data in that node and its descendants are copied.
If the destination argument has subscripts, then the data is copied using the destination address as the top level node. For
example, the following code:

ObjectScript

 Merge ^NewData(1,2) = ^OldData(5,6,7)

copies all the data at and beneath ^OldData(5,6,7) into ^NewData(1,2).

22 Using Multidimensional Storage (Globals)

Working with Globals

5.7 Maintaining Shared Counters within Globals
A major concurrency bottleneck of large-scale transaction processing applications can be the creation of unique identifier
values. For example, consider an order processing application in which each new invoice must be given a unique identifying
number. The traditional approach is to maintain some sort of counter table. Every process creating a new invoice waits to
acquire a lock on this counter, increments its value, and unlocks it. This can lead to heavy resource contention over this
single record.

To deal with this issue, InterSystems IRIS provides the ObjectScript $INCREMENT function. $INCREMENT atomically
increments the value of a global node (if the node has no value, it is set to 1). The atomic nature of $INCREMENT means
that no locks are required; the function is guaranteed to return a new incremented value with no interference from any other
process.

You can use $INCREMENT as follows. First, you must decide upon a global node in which to hold the counter. Next,
whenever you need a new counter value, simply invoke $INCREMENT:

ObjectScript

 SET counter = $INCREMENT(^MyCounter)

For persistent classes (other than those created via SQL, the default storage structure uses $INCREMENT to assign unique
object (row) identifier values. For persistent classes created via SQL, the default storage structure instead uses $SEQUENCE.

5.8 Sorting Data within Globals
Data stored within globals is automatically sorted according to the value of the subscripts. For example, the following
ObjectScript code defines a set of globals (in random order) and then iterates over them to demonstrate that the global
nodes are automatically sorted by subscript:

ObjectScript

 // Erase any existing data
 Kill ^TEST

 // Define a set of global nodes
 Set ^TEST("Cambridge") = ""
 Set ^TEST("New York") = ""
 Set ^TEST("Boston") = ""
 Set ^TEST("London") = ""
 Set ^TEST("Athens") = ""

 // Now iterate and display (in order)
 Set key = $Order(^TEST(""))
 While (key '= "") {
 Write key,!
 Set key = $Order(^TEST(key)) // next subscript
 }

Applications can take advantage of the automatic sorting provided by globals to perform sort operations or to maintain
ordered, cross-referenced indexes on certain values. InterSystems SQL and ObjectScript use globals to perform such tasks
automatically.

5.8.1 Collation of Global Nodes

The order in which the nodes of a global are sorted (referred to as collation) is controlled at two levels: within the global
itself and by the application using the global.

Using Multidimensional Storage (Globals) 23

Maintaining Shared Counters within Globals

At the application level, you can control how global nodes are collated by performing data transformations on the values
used as subscripts (InterSystems SQL and objects do this via user-specified collation functions). For example, if you wish
to create a list of names that is sorted alphabetically but ignores case, then typically you use the uppercase version of the
name as a subscript:

ObjectScript

 // Erase any existing data
 Kill ^TEST

 // Define a set of global nodes for sorting
 For name = "Cobra","jackal","zebra","AARDVark" {
 // use UPPERCASE name as subscript
 Set ^TEST($ZCONVERT(name,"U")) = name
 }

 // Now iterate and display (in order)
 Set key = $Order(^TEST(""))
 While (key '= "") {
 Write ^TEST(key),! // write untransformed name
 Set key = $Order(^TEST(key)) // next subscript
 }

This example converts each name to uppercase (using the $ZCONVERT function) so that the subscripts are sorted without
regard to case. Each node contains the untransformed value so that the original value can be displayed.

5.8.2 Numeric and String-Valued Subscripts

Numeric values are collated before string values; that is a value of 1 comes before a value of “a”. You need to be aware
of this fact if you use both numeric and string values for a given subscript. If you are using a global for an index (that is,
to sort data based on values), it is most common to either sort values as numbers (such as salaries) or strings (such as postal
codes).

For numerically collated nodes, the typical solution is to coerce subscript values to numeric values using the unary +
operator. For example, if you are building an index that sort id values by age, you can coerce age to always be numeric:

ObjectScript

 Set ^TEST(+age,id) = ""

If you wish to sort values as strings (such as “0022”, “0342”, “1584”) then you can coerce the subscript values to always
be strings by prepending a space (“ ”) character. For example, if you are building an index that sort id values by zipcode,
you can coerce zipcode to always be a string:

ObjectScript

 Set ^TEST(" "_zipcode,id) = ""

This ensures that values with leading zeroes, such as “0022” are always treated as strings.

5.8.3 The $SORTBEGIN and $SORTEND Functions

Typically you do not have to worry about sorting data within InterSystems IRIS. Whether you use SQL or direct global
access, sorting is handled automatically.

There are, however, certain cases where sorting can be done more efficiently. Specifically, in cases where (1) you need to
set a large number of global nodes that are in random (that is, unsorted) order and (2) the total size of the resulting global
approaches a significant portion of the InterSystems IRIS buffer pool, then performance can be adversely affected — since
many of the SET operations involve disk operations (as data does not fit in the cache). This scenario usually arises in cases
involving the creation of index globals such as bulk data loads, index population, or sorting of unindexed values in temporary
globals.

24 Using Multidimensional Storage (Globals)

Working with Globals

To handle these cases efficiently, ObjectScript provides the $SORTBEGIN and $SORTEND functions. The $SORTBEGIN
function initiates a special mode for a global (or part thereof) in which data set into the global is written to a special scratch
buffer and sorted in memory (or temporary disk storage). When the $SORTEND function is called at the end of the oper-
ation, the data is written to actual global storage sequentially. The overall operation is much more efficient as the actual
writing is done in an order requiring far fewer disk operations.

The $SORTBEGIN function is quite easy to use; simply invoke it with the name of the global you wish to sort before
beginning the sort operation and call $SORTEND when the operation is complete:

ObjectScript

 // Erase any existing data
 Kill ^TEST

 // Initiate sort mode for ^TEST global
 Set ret = $SortBegin(^TEST)

 // Write random data into ^TEST
 For i = 1:1:10000 {
 Set ^TEST($Random(1000000)) = ""
 }

 Set ret = $SortEnd(^TEST)

 // ^TEST is now set and sorted

 // Now iterate and display (in order)
 Set key = $Order(^TEST(""))
 While (key '= "") {
 Write key,!
 Set key = $Order(^TEST(key)) // next subscript
 }

The $SORTBEGIN function is designed for the special case of global creation and must be used with some care. Specifically,
you must not read from the global to which you are writing while in $SORTBEGIN mode; as the data is not written, reads
will be incorrect.

InterSystems SQL automatically uses these functions for creation of temporary index globals (such as for sorting on unindexed
fields).

5.9 Using Indirection with Globals
By means of indirection, ObjectScript provides a way to create global references at runtime. This can be useful in applications
where you do not know global structure or names at program compilation time.

Indirection is supported via the indirection operator, @, which de-references a string containing an expression. There are
several types of indirection, based on how the @ operator is used.

The following code provides an example of name indirection in which the @ operator is used to de-reference a string con-
taining a global reference:

ObjectScript

 // Erase any existing data
 Kill ^TEST

 // Set var to an global reference expression
 Set var = "^TEST(100)"

 // Now use indirection to set ^TEST(100)
 Set @var = "This data was set indirectly."

 // Now display the value directly:
 Write "Value: ",^TEST(100)

Using Multidimensional Storage (Globals) 25

Using Indirection with Globals

You can also use subscript indirection to mix expressions (variables or literal values) within indirect statements:

ObjectScript

 // Erase any existing data
 Kill ^TEST

 // Set var to a subscript value
 Set glvn = "^TEST"

 // Now use indirection to set ^TEST(1) to ^TEST(10)
 For i = 1:1:10 {
 Set @glvn@(i) = "This data was set indirectly."
 }

 // Now display the values directly:
 Set key = $Order(^TEST(""))
 While (key '= "") {
 Write "Value ",key, ": ", ^TEST(key),!
 Set key = $Order(^TEST(key))
 }

Indirection is a fundamental feature of ObjectScript; it is not limited to global references. For more information, see Indi-
rection. Indirection is less efficient than direct access, so you should use it judiciously.

5.10 Managing Concurrency
The operation of setting or retrieving a single global node is atomic; it is guaranteed to always succeed with consistent
results. For operations on multiple nodes, InterSystems IRIS provides the ability to acquire and release locks. See Locking
and Concurrency Control.

5.11 Checking the Most Recent Global Reference
The most recent global reference is recorded in the ObjectScript $ZREFERENCE special variable. $ZREFERENCE
contains the most recent global reference, including subscripts and extended global reference, if specified. Note that
$ZREFERENCE indicates neither whether the global reference succeeded, nor if the specified global exists. InterSystems
IRIS simply records the most recently specified global reference.

5.11.1 Naked Global Reference

Following a subscripted global reference, InterSystems IRIS sets a naked indicator to that global name and subscript level.
You can then make subsequent references to the same global and subscript level using a naked global reference, omitting
the global name and higher level subscripts. This streamlines repeated references to the same global at the same (or lower)
subscript level.

Specifying a lower subscript level in a naked reference resets the naked indicator to that subscript level. Therefore, when
using naked global references, you are always working at the subscript level established by the most recent global reference.

The naked indicator value is recorded in the $ZREFERENCE special variable. The naked indicator is initialized to the
null string. Attempting a naked global reference when the naked indicator is not set results in a <NAKED> error. Changing
namespaces reinitializes the naked indicator. You can reinitialize the naked indicator by setting $ZREFERENCE to the
null string ("").

In the following example, the subscripted global ^Produce(“fruit”,1) is specified in the first reference. InterSystems IRIS
saves this global name and subscript in the naked indicator, so that the subsequent naked global references can omit the

26 Using Multidimensional Storage (Globals)

Working with Globals

global name “Produce” and the higher subscript level “fruit”. When the ^(3,1) naked reference goes to a lower subscript
level, this new subscript level becomes the assumption for any subsequent naked global references.

ObjectScript

 SET ^Produce("fruit",1)="Apples" /* Full global reference */
 SET ^(2)="Oranges" /* Naked global references */
 SET ^(3)="Pears" /* assume subscript level 2 */
 SET ^(3,1)="Bartlett pears" /* Go to subscript level 3 */
 SET ^(2)="Anjou pears" /* Assume subscript level 3 */
 WRITE "latest global reference is: ",$ZREFERENCE,!
 ZWRITE ^Produce
 KILL ^Produce

This example sets the following global variables: ^Produce("fruit",1), ^Produce("fruit",2), ^Produce("fruit",3), ^Pro-
duce("fruit",3,1), and ^Produce("fruit",3,2).

With few exceptions, every global reference (full or naked) sets the naked indicator. The $ZREFERENCE special variable
contains the full global name and subscripts of the most recent global reference, even if this was a naked global reference.
The ZWRITE command also displays the full global name and subscripts of each global, whether or not it was set using
a naked reference.

Naked global references should be used with caution, because InterSystems IRIS sets the naked indicator in situations that
are not always obvious, including the following:

• A full global reference initially sets the naked indicator, and subsequent full global references or naked global references
change the naked indicator, even when the global reference is not successful. For example attempting to WRITE the
value of a nonexistent global sets the naked indicator.

• A command postconditional that references a subscripted global sets the naked indicator, regardless of how InterSystems
IRIS evaluates the postconditional.

• An optional function argument that references a subscripted global may or may not set the naked indicator, depending
on whether InterSystems IRIS evaluates all arguments. For example the second argument of $GET always sets the
naked indicator, even when the default value it contains is not used. InterSystems IRIS evaluates arguments in left-to-
right sequence, so the last argument may reset the naked indicator set by the first argument.

• The TROLLBACK command, which rolls back a transaction, does not roll back the naked indicator to its value at
the beginning of the transaction.

If a full global reference contains an extended global reference, subsequent naked global references assume the same
extended global reference; you do not have to specify the extended reference as part of a naked global reference.

Using Multidimensional Storage (Globals) 27

Checking the Most Recent Global Reference

6
SQL and Persistent Class Use of
Multidimensional Storage

This topic describes how InterSystems IRIS® data platform persistent classes and SQL engine make use of multidimensional
storage (globals) for storing persistent objects, relational tables, and indexes.

Though the InterSystems IRIS object and SQL engines automatically provide and manage data storage structures, it can
be useful to understand the details of how this works.

The storage structures used by the object and relational view of data are identical. For simplicity, this document only
describes storage from the object perspective.

6.1 Storage Definitions
Every persistent class that uses the %Storage.Persistent storage class (the default) can store instances of itself within the
InterSystems IRIS database using one or more nodes of multidimensional storage (globals). Specifically, every persistent
class has a storage definition that defines how its properties are stored within global nodes. This storage definition (referred
to as “default structure”) is managed automatically by the class compiler. (You can modify this storage definition or even
provide alternate versions of it if you like. This is not discussed in this document.)

6.1.1 Default Structure

The default structure used for storing persistent objects is quite simple:

• Data is stored in a global whose name starts with the complete class name, including package name. A D is appended
to form the name of the data global, while an I is appended for the index global.

(See Hashed Global Names for an option that results in a shorter global name.)

• Data for each instance is stored within a single node of the data global with all non-transient properties placed within
a $List structure.

• Each node in the data global is subscripted by object ID value. For persistent classes (other than those created via
SQL), the default storage structure uses $Increment to assign unique object (row) identifier values. For persistent
classes created via SQL, the default storage structure instead uses $Sequence.

For example, suppose we define a simple persistent class, MyApp.Person, with two literal properties:

Using Multidimensional Storage (Globals) 29

Class Definition

Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
}

If we create and save two instances of this class, the resulting global will be similar to:

 ^MyApp.PersonD = 2 // counter node
 ^MyApp.PersonD(1) = $LB("",530,"Abraham")
 ^MyApp.PersonD(2) = $LB("",680,"Philip")

Note that the first piece of the $List structure stored in each node is empty; this is reserved for a class name. If we define
any subclasses of this Person class, this slot contains the subclass name. The %OpenId method (provided by the %Persistent

class) uses this information to polymorphically open the correct type of object when multiple objects are stored within the
same extent. This slot shows up in the class storage definition as a property named “%%CLASSNAME”.

For more details, refer to the section on subclasses below.

CAUTION: Globals that are part of an extent are managed by corresponding ObjectScript and SQL code. Any changes
made to such a global through direct global access may corrupt the structure of the global (rendering its
data inaccessible) or otherwise compromise access to its data through ObjectScript or SQL.

To prevent this, you should not use the kill command on globals for tasks like dropping all the data in an
extent. Instead, you should use API methods such as %KillExtent() or TRUNCATE TABLE, which perform
important maintenance, such as resetting associated in-memory counters. However, classes that use a
customized storage definition to project data from globals, are fully managed by application code, are
exceptions to this rule. In such classes, you should consider setting either READONLY to 1 or MAN-
AGEDEXTENT to 0 or both.

6.1.2 IDKEY

The IDKEY mechanism allows you to explicitly define the value used as an object ID. To do this, you simply add an
IDKEY index definition to your class and specify the property or properties that will provide the ID value. Note that once
you save an object, its object ID value cannot change. This means that after you save an object that uses the IDKEY
mechanism, you can no longer modify any of the properties on which the object ID is based.

For example, we can modify the Person class used in the previous example to use an IDKEY index:

Class Definition

Class MyApp.Person Extends %Persistent
{
Index IDKEY On Name [Idkey];

Property Name As %String;
Property Age As %Integer;
}

If we create and save two instances of the Person class, the resulting global is now similar to:

 ^MyApp.PersonD("Abraham") = $LB("",530,"Abraham")
 ^MyApp.PersonD("Philip") = $LB("",680,"Philip")

Note that there is no longer any counter node defined. Also note that by basing the object ID on the Name property, we
have implied that the value of Name must be unique for each object.

If the IDKEY index is based on multiple properties, then the main data nodes has multiple subscripts. For example:

30 Using Multidimensional Storage (Globals)

SQL and Persistent Class Use of Multidimensional Storage

Class Definition

Class MyApp.Person Extends %Persistent
{
Index IDKEY On (Name,Age) [Idkey];

Property Name As %String;
Property Age As %Integer;
}

In this case, the resulting global will now be similar to:

 ^MyApp.PersonD("Abraham",530) = $LB("",530,"Abraham")
 ^MyApp.PersonD("Philip",680) = $LB("",680,"Philip")

Important: There must not be a sequential pair of vertical bars (||) within the values of any property used by an
IDKEY index, unless that property is a valid reference to an instance of a persistent class. This restriction
is imposed by the way in which the InterSystems SQL mechanism works. The use of || in IDKey properties
can result in unpredictable behavior.

6.1.3 Subclasses

By default, any fields introduced by a subclass of a persistent object are stored in an additional node. The name of the
subclass is used as an additional subscript value.

For example, suppose we define a simple persistent MyApp.Person class with two literal properties:

Class Definition

Class MyApp.Person Extends %Persistent
{
Property Name As %String;

Property Age As %Integer;
}

Now we define a persistent subclass, MyApp.Student, that introduces two additional literal properties:

Class Definition

Class MyApp.Student Extends Person
{
Property Major As %String;

Property GPA As %Double;
}

If we create and save two instances of this MyApp.Student class, the resulting global will be similar to:

^MyApp.PersonD = 2 // counter node
^MyApp.PersonD(1) = $LB("Student",19,"Jack")
^MyApp.PersonD(1,"Student") = $LB(3.2,"Physics")

^MyApp.PersonD(2) = $LB("Student",20,"Jill")
^MyApp.PersonD(2,"Student") = $LB(3.8,"Chemistry")

The properties inherited from the Person class are stored in the main node, and those introduced by the Student class are
stored in an additional subnode. This structure ensures that the Student data can be used interchangeably as Person data.
For example, an SQL query listing names of all Person objects correctly picks up both Person and Student data. This
structure also makes it easier for the Class Compiler to maintain data compatibility as properties are added to either the
super- or subclasses.

Note that the first piece of the main node contains the string “Student” — this identifies nodes containing Student data.

Using Multidimensional Storage (Globals) 31

Storage Definitions

6.1.4 Parent-Child Relationships

Within parent-child relationships, instances of child objects are stored as subnodes of the parent object to which they belong.
This structure ensures that child instance data is physically clustered along with parent data.

For example, here is the definition for two related classes, Invoice:

Class Definition

/// An Invoice class
Class MyApp.Invoice Extends %Persistent
{
Property CustomerName As %String;

/// an Invoice has CHILDREN that are LineItems
Relationship Items As LineItem [inverse = TheInvoice, cardinality = CHILDREN];
}

and LineItem:

Class Definition

/// A LineItem class
Class MyApp.LineItem Extends %Persistent
{
Property Product As %String;
Property Quantity As %Integer;

/// a LineItem has a PARENT that is an Invoice
Relationship TheInvoice As Invoice [inverse = Items, cardinality = PARENT];
}

If we store several instances of Invoice object, each with associated LineItem objects, the resulting global will be similar to:

^MyApp.InvoiceD = 2 // invoice counter node
^MyApp.InvoiceD(1) = $LB("","Wiley Coyote")
^MyApp.InvoiceD(1,"Items",1) = $LB("","Rocket Roller Skates",2)
^MyApp.InvoiceD(1,"Items",2) = $LB("","Acme Magnet",1)

^MyApp.InvoiceD(2) = $LB("","Road Runner")
^MyApp.InvoiceD(2,"Items",1) = $LB("","Birdseed",30)

For more information on relationships, see Relationships.

6.1.5 Embedded Objects

Embedded objects are stored by first converting them to a serialized state (by default a $List structure containing the object’s
properties) and then storing this serial state in the same way as any other property.

For example, suppose we define a simple serial (embeddable) class with two literal properties:

Class Definition

Class MyApp.MyAddress Extends %SerialObject
{
Property City As %String;
Property State As %String;
}

We now modify our earlier example to add an embedded Home address property:

32 Using Multidimensional Storage (Globals)

SQL and Persistent Class Use of Multidimensional Storage

Class Definition

Class MyApp.MyClass Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
Property Home As MyAddress;
}

If we create and save two instances of this class, the resulting global is equivalent to:

 ^MyApp.MyClassD = 2 // counter node
 ^MyApp.MyClassD(1) = $LB(530,"Abraham",$LB("UR","Mesopotamia"))
 ^MyApp.MyClassD(2) = $LB(680,"Philip",$LB("Bethsaida","Israel"))

6.1.6 Streams

Global streams are stored within globals by splitting their data into a series of chunks, each smaller than 32K bytes, and
writing the chunks into a series of sequential nodes. File streams are stored in external files.

6.2 Indices
Persistent classes can define one or more indexes; additional data structures are used to make operations (such as sorting
or conditional searches) more efficient. InterSystems SQL makes use of such indexes when executing queries. InterSystems
IRIS Object and SQL automatically maintain the correct values within indexes as insert, update, and delete operations are
carried out.

6.2.1 Storage Structure of Standard Indexes

A standard index associates an ordered set of one or more property values with the object ID values of the object containing
the properties.

For example, suppose we define a simple persistent MyApp.Person class with two literal properties and an index on its
Name property:

Class Definition

Class MyApp.Person Extends %Persistent
{
Index NameIdx On Name;

Property Name As %String;
Property Age As %Integer;
}

If we create and save several instances of this Person class, the resulting data and index globals is similar to:

 // data global
 ^MyApp.PersonD = 3 // counter node
 ^MyApp.PersonD(1) = $LB("",34,"Jones")
 ^MyApp.PersonD(2) = $LB("",22,"Smith")
 ^MyApp.PersonD(3) = $LB("",45,"Jones")

 // index global
 ^MyApp.PersonI("NameIdx"," JONES",1) = ""
 ^MyApp.PersonI("NameIdx"," JONES",3) = ""
 ^MyApp.PersonI("NameIdx"," SMITH",2) = ""

Note the following things about the index global:

Using Multidimensional Storage (Globals) 33

Indices

1. By default, it is placed in a global whose name is the class name with an “I” (for Index) appended to it.

2. By default, the first subscript is the index name; this allows multiple indexes to be stored in the same global without
conflict.

3. The second subscript contains the collated data value. In this case, the data is collated using the default SQLUPPER
collation function. This converts all characters to uppercase (to sort without regard to case) and prepends a space
character (to force all data to collate as strings).

4. The third subscript contains the Object ID value of the object that contains the indexed data value.

5. The nodes themselves are empty; all the needed data is held within the subscripts. Note that if an index definition
specifies that data should be stored along with the index, it is placed in the nodes of the index global.

This index contains enough information to satisfy a number of queries, such as listing all Person class order by Name.

6.3 Bitmap Indexes
A bitmap index is similar to a standard index except that it uses a series of bitstrings to store the set of object ID values
that correspond to the indexed value.

6.3.1 Logical Operation of Bitmap Indexes

A bitstring is a string containing a set of bits (0 and 1 values) in a special compressed format. InterSystems IRIS includes
a set of functions to efficiently create and work with bitstrings:

• $Bit — Set or get a bit within a bitstring. ‘

• $BitCount — Count the number of bits within a bitstring.

• $BitFind — Find the next occurrence of a bit within a bitstring.

• $BitLogic — Perform logical (AND, OR) operations on two or more bitstrings.

Within a bitmap index, ordinal positions within a bitstring correspond to rows (Object ID number) within the indexed table.
For a given value, a bitmap index maintains a bitstring that contains 1 for each row in which the given value is present, and
contains 0 for every row in which it is absent. Note that bitmap indexes only work for objects that use the default storage
structure with system-assigned, numeric Object ID values.

For example, suppose we have a table similar to the following:

ProductStateID

HatMA1

HatNY2

ChairNY3

ChairMA4

HatMA5

If the State and Product columns have bitmap indexes, then they contain the following values:

A bitmap index on the State column contains the following bitstring values:

34 Using Multidimensional Storage (Globals)

SQL and Persistent Class Use of Multidimensional Storage

11001MA

00110NY

Note that for the value, “MA”, there is a 1 in the positions (1, 4, and 5) that correspond to the table rows with State equal
to “MA”.

Similarly, a bitmap index on the Product column contains the following bitstring values (note that the values are collated
to uppercase within the index):

01100CHAIR

10011HAT

The InterSystems SQL Engine can execute a number of operations by iterating over, counting the bits within, or performing
logical combinations (AND, OR) on the bitstrings maintained by these indexes. For example, to find all rows that have
State equal to “MA” and Product equal to “HAT”, the SQL Engine can simply combine the appropriate bitstrings together
with logical AND.

In addition to these indexes, the system maintains an additional index, called an “extent index,” that contains a 1 for every
row that exists and a 0 for rows that do not (such as deleted rows). This is used for certain operations, such as negation.

6.3.2 Storage Structure of Bitmap Indexes

A bitmap index associates an ordered set of one or more property values with one or more bitstrings containing the Object
ID values corresponding to the property values.

For example, suppose we define a simple persistent MyApp.Person class with two literal properties and a bitmap index on
its Age property:

Class Definition

Class MyApp.Person Extends %Persistent
{
Index AgeIdx On Age [Type = bitmap];

Property Name As %String;
Property Age As %Integer;
}

If we create and save several instances of this Person class, the resulting data and index globals is similar to:

 // data global
 ^MyApp.PersonD = 3 // counter node
 ^MyApp.PersonD(1) = $LB("",34,"Jones")
 ^MyApp.PersonD(2) = $LB("",34,"Smith")
 ^MyApp.PersonD(3) = $LB("",45,"Jones")

 // index global
 ^MyApp.PersonI("AgeIdx",34,1) = 110...
 ^MyApp.PersonI("AgeIdx",45,1) = 001...

 // extent index global
 ^MyApp.PersonI("$Person",1) = 111...
 ^MyApp.PersonI("$Person",2) = 111...

Note the following things about the index global:

1. By default, it is placed in a global whose name is the class name with an “I” (for Index) appended to it.

2. By default, the first subscript is the index name; this allows multiple indexes to be stored in the same global without
conflict.

Using Multidimensional Storage (Globals) 35

Bitmap Indexes

3. The second subscript contains the collated data value. In this case, a collation function is not applied as this is an index
on numeric data.

4. The third subscript contains a chunk number; for efficiency, bitmap indexes are divided into a series of bitstrings each
containing information for about 64000 rows from the table. Each of these bitstrings are referred to as a chunk.

5. The nodes contain the bitstrings.

Also note: because this table has a bitmap index, an extent index is automatically maintained. This extent index is stored
within the index global and uses the class name, with a “$” character prepended to it, as its first subscript.

6.3.3 Direct Access of Bitmap Indexes

The following example uses a class extent index to compute the total number of stored object instances (rows). Note that
it uses $Order to iterate over the chunks of the extent index (each chunk contains information for about 64000 rows):

Class Member

/// Return the number of objects for this class.

/// Equivalent to SELECT COUNT(*) FROM Person
ClassMethod Count() As %Integer
{
 New total,chunk,data
 Set total = 0

 Set chunk = $Order(^MyApp.PersonI("$Person",""),1,data)
 While (chunk '= "") {
 Set total = total + $bitcount(data,1)
 Set chunk = $Order(^MyApp.PersonI("$Person",chunk),1,data)
 }

 Quit total
}

36 Using Multidimensional Storage (Globals)

SQL and Persistent Class Use of Multidimensional Storage

7
Temporary Globals and the IRISTEMP
Database

For some operations, you may need the power of globals without requiring the data to be saved indefinitely. For example,
you may want to use a global to sort some data which you do not need to store to disk. For these operations, InterSystems
IRIS® data platform provides the mechanism of temporary globals.

Temporary globals have the following characteristics:

• Temporary globals are stored within the IRISTEMP database, which is always defined to be a local (that is, a non-network)
database. All globals mapped to the IRISTEMP database are treated as temporary globals.

• Changes to temporary globals are not written to disk. Instead the changes are maintained within the in-memory buffer
pool. A large temporary global may be written to disk if there is not sufficient space for it within the buffer pool.

• For maximum efficiency, changes to temporary globals are not logged to a journal file.

• Temporary globals are automatically deleted whenever InterSystems IRIS is restarted. (Note: it can be a very long
time before a live system is restarted; so you should not count on this for cleaning up temporary globals.)

Tip: Temporary globals are useful when you need temporary data for use by multiple processes. If you need temporary
data for use only within a single process, consider using a process-private global, which is a special form of variable
that is available only within the process that creates it and that is automatically removed when the process ends.

7.1 Using Temporary Globals
The mechanism for using temporary globals works as follows:

• For your application namespace, you define a global mapping so that globals with a specific naming convention are
to be mapped to the IRISTEMP database, which is a special database as discussed below.

For example, you might define a global mapping so that all globals with names of the form ^AcmeTemp* are mapped
to the IRISTEMP database.

• When your code needs to store data temporarily and read it again, your code writes to and reads from globals that use
that naming convention.

For example, to save a value, your code might do this:

 set ^AcmeTempOrderApp("sortedarray")=some value

Using Multidimensional Storage (Globals) 37

Then later your code might do this:

 set somevariable = ^AcmeTempOrderApp("sortedarray")

By using temporary globals, you take advantage of the fact that the IRISTEMP database is not journaled. Because the
database is not journaled, operations that use the database do not result in journal files. Journal files can become large and
can cause space issues. However, note the following points:

• You cannot roll back any transactions that modify globals in the IRISTEMP database; this behavior is specific to
IRISTEMP. If you need to manage temporary work via transactions, do not use globals in IRISTEMP for that purpose.

• Take care to use IRISTEMP only for work that does not need to be saved.

• The IRISTEMP database increases in size when it requires more memory. You can use the MaxIRISTempSizeAtStart
parameter to help manage the size of IRISTEMP.

7.2 Defining a Mapping for Temporary Globals
To define a mapping for temporary globals, do the following:

1. Choose a naming convention and ensure that all of your developers are aware of it. Note the following points:

• Consider whether to have many temporary globals or fewer temporary globals with multiple nodes. It is easier for
InterSystems IRIS to efficiently read or write different nodes within the same global, compared to reading or
writing the equivalent number of separate globals. The efficiency difference is negligible for small numbers of
globals but is noticeable when there are hundreds of separate globals.

• If you plan to use the same global mapping in multiple namespaces, then devise a system so that work in one
namespace does not interfere with work in another namespace. For example, you could use the namespace name
as a subscript in the globals.

• Similarly, even within one namespace, devise a system so that each part of the code uses a different global or a
different subscript in the same global, again to avoid interference.

• Do not use system-reserved global names. See Global Variable Names to Avoid.

2. In the Management Portal, navigate to the Namespaces page (System Administration > Configuration > System Config-

uration > Namespaces).

3. In the row for your application namespace, click Global Mappings.

4. From the Global Mappings page, click New Global Mapping .

5. For Global database location, select IRISTEMP.

6. For Global name, enter a name ending in an asterisk (*). Do not include the initial caret of the name.

For example: AcmeTemp*

This mapping causes all globals with names that start AcmeTemp* to be mapped to the IRISTEMP database.

7. Click OK.

Note: The >> symbol displayed in the first column of the new mappings row indicates that you opened the mapping
for editing.

8. To save the mappings so that InterSystems IRIS uses them, click Save Changes.

38 Using Multidimensional Storage (Globals)

Temporary Globals and the IRISTEMP Database

For more details, see Configuring Namespaces.

7.3 System Use of IRISTEMP
Note that InterSystems uses temporary system globals as scratch space, for example, as temporary indexes during the exe-
cution of certain queries (for sorting, grouping, calculating aggregates, etc.). These globals are automatically mapped to
IRISTEMP and include:

• ^IRIS.Temp*

• ^CacheTemp*

• ^mtemp*

Never change any of these globals.

7.4 ^CacheTemp Globals
Historically, customers have used globals having names starting with ^CacheTemp as temporary globals. By convention,
these globals use names starting with ̂ CacheTempUser to avoid possible conflict with temporary system globals. However,
the best practice is to define your own temporary globals and map them to IRISTEMP, as described in Using Temporary
Globals.

Using Multidimensional Storage (Globals) 39

System Use of IRISTEMP

8
Management Portal Options

The Management Portal provides tools for viewing, modifying, and working with globals. This topic describes how to use
these tools. Also see APIs.

For information on defining global mappings, see Configuring Namespaces.

8.1 General Advice
As with the ObjectScript commands SET, MERGE, KILL, and others, the tools described here provide direct access to
manipulate globals. If you delete or modify via global access, you bypass all object and SQL integrity checking and there
is no undo option. It is therefore important to be very careful when doing these tasks. (Viewing and exporting do not affect
the database and are safe activities.)

CAUTION: Globals that are part of an extent are managed by corresponding ObjectScript and SQL code. Any changes
made to such a global through direct global access may corrupt the structure of the global (rendering its
data inaccessible) or otherwise compromise access to its data through ObjectScript or SQL.

To prevent this, you should avoid use the kill command on globals for tasks like dropping all the data in
an extent. Instead, you should use API methods such as %KillExtent() or TRUNCATE TABLE, which
perform important maintenance, such as resetting associated in-memory counters. However, classes that
use a customized storage definition to project data from globals, are fully managed by application code,
are exceptions to this rule. In such classes, you should consider setting either READONLY to 1 or MAN-
AGEDEXTENT to 0 or both.

When using the tools described in this topic, make sure of the following:

• Be sure that you know which globals InterSystems IRIS® data platform uses. Not all of these are treated as “system”
globals — that is, some of them are visible even when you do not select the System check box. Some of these globals
store code, including your code.

See Global Variable Names to Avoid.

• Be sure that you know which globals your application uses.

Even if your application never performs any direct global access, your application uses globals. Remember that if you
create persistent classes, their data and any indexes are stored in globals, whose names are based on the class names
(by default). See Data.

Using Multidimensional Storage (Globals) 41

8.2 Introduction to the Globals Page
The Management Portal includes the Globals page, which allows you to view, and edit globals in different ways. To access
this page from the Management Portal home page:

1. Select System Explorer > Globals.

2. Select the namespace or database of interest:

• Select either Namespaces or Databases from the Lookin list.

• Select the desired namespace or database from the displayed list.

Selecting a namespace or database updates the page to display its globals.

3. If you are looking for a particular global and do not initially see its name:

• Optionally specify a search mask. To do so, enter a value into the Globals field. If you end the string with an
asterisk “*”, the asterisk is treated as a wildcard, and the page displays each global whose name begins with the
string before the asterisk.

After entering a value, press Enter.

• Optionally select System items to include all system globals in the search.

• Optionally select Show SQL Table Names to include Table and Usage columns in the globals table. If a global is
used with an SQL table, these columns display the name of that table and its usage, such as whether it is a
data/master map or a type of index.

• Optionally select a value from Page size, which controls the number of globals to list on any page.

8.3 Viewing Global Data
The View Global Data page lists nodes of the given global. In the table, the first column displays the row number, the next
column lists the nodes, and the right column shows the values. This page initially shows the first hundred nodes in the
global.

To access this page, display the Globals page and select the View link next to the name of a global. Or click the View button.

On this page, you can do the following:

• Specify a search mask. To do so, edit the value in Global Search Mask as follows:

– To display a single node, use a complete global reference. For example: ^Sample.PersonD(9)

– To display a subtree, use a partial global reference without the right parenthesis. For example: ̂ %SYS("JOURNAL"

– To display all nodes that match a given subscript, include the desired subscript and leave other subscript fields
empty. For example: ^IRIS.Msg(,"en")

– To display all subtrees that match a given subscript, use a value as in the previous option but also omit the right
parenthesis. For example: ^IRIS.Msg(,"en"

– To display nodes that match a range of subscripts, use subscriptvalue1:subscriptvalue2 in the place of a subscript.
For example: ^Sample.PersonD(50:60)

As with the previous option, if you omit the right parenthesis, the system displays the subtrees.

42 Using Multidimensional Storage (Globals)

Management Portal Options

Then click Display or press Enter.

• Specify a different number of nodes to display. To do so, enter an integer into Maximum Rows.

• Repeat a previous search. To do so, select the search mask in the Search History drop-down.

• Select Allow Edit to make the data editable; see the next topic.

To close this page, click Cancel.

8.4 Editing Globals

CAUTION: Before making any edits, be sure that you know which globals InterSystems IRIS uses and which globals
your application uses; see General Advice. There is no undo option. A modified global cannot be restored.

The Edit Global Data page enables you to edit globals. In the table, the first column displays the row number, the next column
lists the nodes, and the right column shows the values (with a blue underline to indicate that the value can be edited). This
page initially shows the first hundred nodes in the global.

To access and use this page:

1. Display the Globals page.

2. Select the Edit link next to the name of a global.

3. Optionally use the Global Search Mask field to refine what is displayed. See Viewing Global Data

4. Optionally specify a different number of nodes to display. To do so, enter an integer into Maximum Rows.

5. If necessary, navigate to the value you want to edit by selecting the subscripts that correspond to it.

6. Select the value that you want to edit.

The page then displays two editable fields:

• The top field contains the full global reference for the node you are editing. For example:
^Sample.PersonD("18")

You can edit this to refer to a different global node. If you do so, your action affects the newly specified global
node.

• The bottom field contains the current value of this node. For example:

$lb("",43144,$lb("White","Orange"),$lb("8262 Elm Avenue","Islip","RI",57581),"Rogers,Emilio
L.",
$lb("7430 Washington Street","Albany","GA",66833),"650-37-4263","")

Edit the values as needed.

7. If you make edits, click Save to save your changes, or click Cancel.

Or, to delete a node:

1. Optionally select Delete global subnodes during deletion

2. Click Delete.

3. Click OK to confirm this action.

Also see Performing Wholesale Replacements.

Using Multidimensional Storage (Globals) 43

Editing Globals

8.5 Exporting Globals

CAUTION: Because of how easy it is to import globals (which is an irreversible change), it is good practice to export
only the globals you need to import. Note that if you export all globals, the export includes all the globals
that contain code. Be sure that you know which globals InterSystems IRIS uses and which globals your
application uses; see General Advice.

The Export Globals page enables you to export globals.

To access and use this page:

1. Display the Globals page.

2. Specify the globals to work with. To do so, see steps 2 and 3 in Introduction to the Globals Page.

3. Click the Export button.

4. Specify the file into which you wish to export the globals. To do this, either enter a file name (including its absolute
or relative pathname) in the Enter the path and name of the export on server <hostname> field or click Browse and
navigate to the file.

5. Select the export file’s character set with the Character set list.

6. In the page’s central box:

• Choose an Output format

• Choose a Record format

7. Select or clear Check here to run export in the background...

8. Click Export.

9. If the file already exists, click OK to overwrite it with a new version.

The export creates a .gof file.

8.6 Importing Globals

CAUTION: Before importing any globals, be sure that you know which globals InterSystems IRIS uses and which
globals your application uses; see General Advice. There is no undo option. After you import a global into
an existing global (thus merging the data), there is no way to restore the global to its previous state.

The Import Globals page enables you to import globals. To access and use this page:

1. Display the Globals page.

2. Click the Import button.

3. Specify the import file. To do this, either enter a file (including its absolute or relative pathname) in the Enter the path

and name of the import file field or click Browse and navigate to the file.

4. Select the import file’s character set with the Character set list.

5. Select Next.

6. Choose the globals to import using the check boxes in the table.

44 Using Multidimensional Storage (Globals)

Management Portal Options

7. Optionally select Run import in the background. If you select this, the task is run in the background.

8. Click Import.

8.7 Finding Values in Globals
The Find Global String page enables you to find a given string in the subscripts or in the values of selected globals.

To access and use this page:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Find button.

4. For Find What, enter the string to search for.

5. Optionally clear Match Case. By default, the search is case-sensitive.

6. Click either Find First or Find All.

The page then displays either the first node or all nodes whose subscripts or values contain the given string, within the
selected globals. The table shows the node subscripts on the left and the corresponding values on the right.

7. If you used Find First, click Find Next to see the next node, as needed.

8. When you are done, click Close Window.

8.7.1 Performing Wholesale Replacements

CAUTION: Before making any edits, be sure that you know which globals InterSystems IRIS uses and which globals
your application uses; see “General Advice.” This option changes the data permanently. It is not recom-
mended for use in production systems.

For development purposes, the Find Global String page also provides an option to make wholesale changes to values in
global nodes. To use this option:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in the section “Introduction to the Globals Page.”

3. Click the Replace button.

4. Use this page to find values as described in the previous section.

5. Specify a value for Replace With.

6. Click Replace All.

7. Click OK to confirm this action.

The page then displays a preview of the change.

8. If the results are acceptable, click Save.

9. Click OK to confirm this action.

Using Multidimensional Storage (Globals) 45

Finding Values in Globals

8.8 Deleting Globals

CAUTION: Before deleting any globals, be sure that you know which globals InterSystems IRIS uses and which
globals your application uses; see General Advice. There is no undo option. A deleted global cannot be
restored.

The Delete Globals page enables you to delete globals. To access and use this page:

1. Display the Globals page.

2. Select the globals to work with. To do so, see steps 2 and 3 in Introduction to the Globals Page.

3. Click the Delete button.

4. Click OK to confirm this action.

46 Using Multidimensional Storage (Globals)

Management Portal Options

9
APIs for Working with Globals

InterSystems IRIS® data platform provides the following APIs to work with globals:

• The class %SYSTEM.OBJ provides the following methods:

– Export() enables you to export globals to an XML file.

– Load() and LoadDir() enable you to import globals contained in XML files.

These are both available via the $SYSTEM variable, for example: $SYSTEM.OBJ.Export

• The class %Library.Global provides the following methods:

– Export() enables you to export globals to .gof and other file formats (not including XML).

– Import() enables you to import globals to .gof and other file formats (not including XML).

%Library.Global also provides the Get() class query, which you can use to find globals, given search criteria.

For pointers to additional APIs, see Globals in the InterSystems Programming Tools Index.

Using Multidimensional Storage (Globals) 47

	Table of Contents
	1 Introduction to Globals
	1.1 What Are Globals?
	1.2 Why Should Application Developers Learn About Globals?
	1.3 Examples of Globals
	1.3.1 Scalars
	1.3.2 Arrays
	1.3.3 Dictionaries
	1.3.4 Ordered Trees

	1.4 Globals and External Languages

	2 Formal Rules about Globals
	2.1 Introduction to Global Names and Limits
	2.1.1 Variations

	2.2 Introduction to Global Nodes and Subscripts
	2.3 Rules for Global Subscripts
	2.4 Collation of Globals

	3 Extended Global References
	3.1 Forms of Extended Global References
	3.2 Bracket Syntax
	3.3 Bracket Syntax with References to Databases
	3.4 Environment Syntax

	4 Global Mapping and Subscript-Level Mapping
	4.1 Simple Example of Subscript-Level Mapping
	4.2 More Complex Example of Subscript-Level Mapping
	4.3 Key Principles
	4.3.1 Using Distinct Ranges of Globals and Subscripts
	4.3.2 Logging Changes

	5 Working with Globals
	5.1 Storing Data in Globals
	5.1.1 Creating Globals
	5.1.2 Storing Data in Global Nodes

	5.2 Deleting Global Nodes
	5.3 Testing the Existence of a Global Node
	5.4 Retrieving the Value of a Global Node
	5.4.1 The $GET Function
	5.4.2 The WRITE, ZWRITE, and ZZDUMP Commands

	5.5 Traversing Data within a Global
	5.5.1 The $ORDER (Next / Previous) Function
	5.5.2 Looping Over a Global
	5.5.3 The $QUERY Function

	5.6 Copying Data within Globals
	5.7 Maintaining Shared Counters within Globals
	5.8 Sorting Data within Globals
	5.8.1 Collation of Global Nodes
	5.8.2 Numeric and String-Valued Subscripts
	5.8.3 The $SORTBEGIN and $SORTEND Functions

	5.9 Using Indirection with Globals
	5.10 Managing Concurrency
	5.11 Checking the Most Recent Global Reference
	5.11.1 Naked Global Reference

	6 SQL and Persistent Class Use of Multidimensional Storage
	6.1 Storage Definitions
	6.1.1 Default Structure
	6.1.2 IDKEY
	6.1.3 Subclasses
	6.1.4 Parent-Child Relationships
	6.1.5 Embedded Objects
	6.1.6 Streams

	6.2 Indices
	6.2.1 Storage Structure of Standard Indexes

	6.3 Bitmap Indexes
	6.3.1 Logical Operation of Bitmap Indexes
	6.3.2 Storage Structure of Bitmap Indexes
	6.3.3 Direct Access of Bitmap Indexes

	7 Temporary Globals and the IRISTEMP Database
	7.1 Using Temporary Globals
	7.2 Defining a Mapping for Temporary Globals
	7.3 System Use of IRISTEMP
	7.4 ^CacheTemp Globals

	8 Management Portal Options
	8.1 General Advice
	8.2 Introduction to the Globals Page
	8.3 Viewing Global Data
	8.4 Editing Globals
	8.5 Exporting Globals
	8.6 Importing Globals
	8.7 Finding Values in Globals
	8.7.1 Performing Wholesale Replacements

	8.8 Deleting Globals

	9 APIs for Working with Globals
	Index

