
The %UnitTest Framework for
InterSystems IRIS

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

The %UnitTest Framework for InterSystems IRIS
InterSystems Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 About the InterSystems IRIS %UnitTest Framework .. 1

2 Creating Test Cases: The %UnitTest.TestCase Class .. 3
2.1 Extending the %UnitTest.TestCase Class .. 3

2.1.1 Example: Extended %UnitTest.TestCase Class ... 4
2.2 Macros of the %UnitTest.TestCase Class ... 4
2.3 %UnitTest.TestCase Class Preparation and Cleanup Methods ... 6

2.3.1 Example: Preparation Method ... 6
2.3.2 Example Cleanup Method .. 6

3 Executing Unit Tests Using the %UnitTest.Manager Methods .. 9
3.1 %UnitTest Test Execution Methods ... 9

4 Viewing %UnitTest Results ... 11
4.1 Viewing %UnitTest Results Programmatically .. 11

4.1.1 Troubleshooting Test Assert Locations .. 12
4.2 Viewing %UnitTest Reports in the Management Portal ... 12

The %UnitTest Framework for InterSystems IRIS iii

List of Tables

Table 4–1: ... 11

iv The %UnitTest Framework for InterSystems IRIS

1
About the InterSystems IRIS %UnitTest
Framework

%UnitTest is the InterSystems IRIS unit testing framework. Developers familiar with xUnit frameworks will find the
structures contained within %UnitTest familiar:

• Create unit tests by extending the %UnitTest.TestCase class, adding test methods. See Extending the %UnitTest.TestCase
Class for details.

• Execute preparation and cleanup tasks by adding code to special cleanup and preparation methods in the
%UnitTest.TestCase class.

See %UnitTest.TestCase Class Preparation and Cleanup Methods for details.

• Use the RunTests() method in the %UnitTest.Manager class to execute your tests. The general results appear in your
terminal window. See Executing Unit Tests Using the %UnitTest.Manager Methods for details.

• View the test results web page in the Management Portal for more detailed information. See Viewing %UnitTest
Reports in the Management Portal for details.

The %UnitTest package includes the following classes:

• TestCase — Extend this class to create your testing class, then add class methods that contain your unit tests.

• Manager — Contains methods to execute your unit tests.

• Report — Controls the output from testing, including a test results web page.

The %UnitTest Framework for InterSystems IRIS 1

2
Creating Test Cases:The
%UnitTest.TestCase Class

This is the general workflow to set up unit tests using the %UnitTest framework:

1. Extend the %UnitTest.TestCase class, adding one test method for each method to be tested. Test method names must
begin with the word Test. See Extending the %UnitTest.TestCase Class.

2. A single test method can contain multiple tests. Typically a test method will contain one test for each aspect of the
method to be tested. Within each test method, devise one or more tests using the $$$AssertX macros. Typically, the
macro will call the method to be tested, comparing its output to some expected value. If the expected value matches
the macro output, the test will be considered successful. See Macros of the %UnitTest.TestCase Class.

3. Add code to the preparation and cleanup methods to perform needed tasks. For example, if a test seeks to delete an
element from a list, that list must first exist and it must contain the element to be deleted. See %UnitTest.TestCase
Class Preparation and Cleanup Methods.

Note: Preparation methods and cleanup methods are also often called setup methods and teardown methods.

2.1 Extending the %UnitTest.TestCase Class
Create a class that extends %UnitTest.TestCase to contain the test methods that execute your unit tests. This process is
designed to be flexible, to accommodate your particular testing needs.

Most likely, you will add test methods, and you might add properties as well. Test methods will be executed by the
RunTests() method from the %UnitTest.Manager class, which looks for and executes methods whose names begin with
‘Test’. You can add other helper methods to your class, but a method will be run as a unit test when you call RunTests()
only if its name begins with ‘Test’.

Note: Test methods are executed in alphabetical order, so, for example, TestAssess() would be executed before
TestCreate().

Within a test method, create one or more tests. Use an $$$AssertX macro for each test. See Macros of the
%UnitTest.TestCase Class for details about $$$AssertX macros.

You may decide to create a test method for each class method you wish to test. For example, suppose your class
MyPackage.MyClassToBeTested contains a method Add(), which calls for multiple tests — you might want to create test
method MyTests.TestAdd() to contain the code that executes the needed tests.

The %UnitTest Framework for InterSystems IRIS 3

You may also wish to test object instances. In this case, you would create a method like MyTests.TestMyObject(), which
could contain tests to make sure the object’s properties and functionality are correct.

In addition to creating test methods, you may wish to create properties in your extended class. This enables your test
methods to share information. Consider the following points when adding properties:

• Declare your custom properties in the class itself.

• Set the properties by adding code to the preparation methods OnBeforeOneTest() and OnBeforeAllTests(), using
..<property> syntax.

• Access the properties by adding code to your test methods and/or to the cleanup methods OnAfterOneTest() and
OnAfterAllTests(), using ..<property> syntax.

Note: For example, if your custom property is called PropertyValue, you would set it or access it using
..PropertyValue.

2.1.1 Example: Extended %UnitTest.TestCase Class
Class MyPackage.MyClassToBeTested
{
 Method Add (Addend1 as %Integer, Addend2 as %Integer) As %Integer
 {
 Set Sum = Addend1 + Addend2
 Return Sum
 }
}

Class MyPackage.MyTests Extends %UnitTest.TestCase
{
 Method TestAdd()
 {
 do $$$AssertEquals(##class(MyPackage.MyClassToBeTested).Add(2,3),5, "Test 2+3=5")
 do $$$AssertNotEquals(##class(MyPackage.MyClassToBeTested).Add(3,4),5, "Test 3+4 '= 5")
 }
}

2.2 Macros of the %UnitTest.TestCase Class
Within each of your test methods, use one of the following $$$AssertX macros to test each testable aspect of the class
method. For example, if a test method is designed to test the Add() method, it might contain a test, using $$$AssertEquals,
to ensure that it adds 2+3 equals 5, and a second test, using $$$AssertNotEquals, to ensure that it does not add 3+4
equals 5.

Select the macro that best matches the desired test outcome. Another way to think of this principle is to write your test from
the perspective that the assertion succeeds. If you expect two values to be equal, use $$$AssertEquals; if you expect
the values not to be equal, use $$$AssertNotEquals.

A test fails if the specified $$$AssertX macro returns false; otherwise the test passes.

The $$$AssertX macros can take the following arguments:

• arg1 — Typically either the output from the method being tested or a value calculated from that output.

• arg2 — When present, a value compared by the macro to arg1.

• test_description — A string that appears in the displayed test outcome listing, and describes what the macro has tested.
This has no effect on the outcome of the test. Don’t forget that this argument can include concatenations, variables,
and methods. For example, its value could be:

“Failed to create” _ maxObjects _ "objects: " _ $system.Status.GetErrorText(status)

4 The %UnitTest Framework for InterSystems IRIS

Creating Test Cases: The %UnitTest.TestCase Class

$$$AssertEquals (arg1, arg2, test_description)

Returns true if arg1 and arg2 are equal.

do $$$AssertEquals (##class(MyPackage.MyClassToBeTested).Add(2,3), 5, “Test Add(2,3) = 5”)

$$$AssertNotEquals (arg1, arg2, test_description)

Returns true if arg1 and arg2 are not equal.

do $$$AssertNotEquals (##class(MyPackage.MyClassToBeTested).Add(3,4), 5, "Test Add(3,4) '= 5")

$$$AssertStatusOK (arg1, test_description)

Returns true if the returned status code is 1.

do $$$AsserStatusOK(##class(MyPackage.MyClassToBeTested).SaveContact(valid_contact_ID),
 "Test that valid contact is saved")

$$$AssertStatusNotOK (arg1, test_description)

Returns true if the returned status code is not 1.

do $$$AssertStatusNotOK(##class(MyPackage.MyClassToBeTested).SaveContact(invalid_contact_ID),
 "Test that invalid contact is not saved")

$$$AssertTrue (arg1, test_description)

Returns true if the expression is true.

do $$$AssertStatusTrue(##class(MyPackage.MyClassToBeTested).IsContactValid(valid_contact_ID),
 "Test that valid contact is valid")

$$$AssertNotTrue (arg1, test_description)

Returns true if the expression is not true.

do $$$AssertStatusNotTrue(##class(MyPackage.MyClassToBeTested).IsContactValid(invalid_contact_ID),
 "Test that invalid contact is not valid")

$$$AssertFilesSame (arg1, arg2, test_description)

Returns true if two files are identical.

do $$$AssertFilesSame(##class(MyPackage.MyClassToBeTested).FetchFile(URL), control_file,
 "Test that fetched file is identical to control file")

$$$AssertFilesSQLUnorderedSame (arg1, arg2, test_description)

Returns true if two files containing SQL query results contain the same unordered results.

do $$$AssertFilesSQLUnorderedSame(output.log,reference.log,"Comparing output.log to reference.log")

$$$AssertSuccess(test_description)

Unconditionally log success. This assertion is intended to replace the convention of passing 1 to $$$AssertTrue

$$$AssertFailure(test_description)

Unconditionally log failure. This assertion is intended to replace the convention of passing 0 to $$$AssertTrue.

$$$AssertSkipped(test_description)

Logs a message that the test has been skipped for the reason described in test_description. This might be used, for
instance, if the preconditions for a test have not been met.

The %UnitTest Framework for InterSystems IRIS 5

Macros of the %UnitTest.TestCase Class

Note: OnBeforeAllTests() does not support this macro. Calls to $$$AssertSkipped in OnBeforeAllTests()
could result in false positives.

$$$LogMessage (message)

Writes the value of message as a log entry, independent of any particular test. This can, for instance, be very useful
for providing context and organization in your log.

do $$$LogMessage("-- ALL TEST OBJECTS CREATED -- ")

Note: For the latest list of macros, see %UnitTest.TestCase in the Class Reference.

2.3 %UnitTest.TestCase Class Preparation and Cleanup
Methods
%UnitTest.TestCase includes preparation and cleanup methods for your tests. You can add code to these methods to perform
preparation tasks such as creating database connections or initializing a database with test data, or to perform cleanup tasks
such as closing database connections or restoring the state of the database.

OnBeforeOneTest()

Executes immediately before each test method in the test class.

OnBeforeAllTests()

Executes only once, before any test methods in the test class.

OnAfterOneTest()

Executes immediately after each test method in the test class.

OnAfterAllTests()

Executes only once, after all of the test methods in the test class have executed.

2.3.1 Example: Preparation Method

The code in this method will execute once, before execution of the test suite. It creates a single contact for use during testing.
To execute preparation tasks multiple times, once before each test in the suite, add code to OnBeforeOneTest() instead.

Method OnBeforeAllTests()
{
 Do ##class(MyPackage.Contact).Populate(1)
 Return $$$OK
}

2.3.2 Example Cleanup Method

The code in this method will execute once, after execution of the entire test suite. It kills all contacts in the extent once
testing is complete. To execute cleanup tasks multiple times, once after each test in the suite, add code to OnAfterOneTest()
instead.

6 The %UnitTest Framework for InterSystems IRIS

Creating Test Cases: The %UnitTest.TestCase Class

Method OnAfterAllTests()
{
 Do ##class(MyPackage.Contact).%KillExtent()
 Return $$$OK
}

The %UnitTest Framework for InterSystems IRIS 7

%UnitTest.TestCase Class Preparation and Cleanup Methods

3
Executing Unit Tests Using the
%UnitTest.Manager Methods

Launch tests using the methods included in the %UnitTest.Manager class.

This is the general workflow to execute unit tests using the %UnitTest framework:

1. Inform the system where to find your tests by setting the ^UnitTestRoot global:

USER>set ^UnitTestRoot = "C:\UnitTests"

2. Execute your tests, using the RunTests() or DebugRunTestCase() method of the %UnitTest.Manager class:

USER>do ##class(%UnitTest.Manager).RunTests("MyTests")

3. View the results of your tests.

Note: By default, RunTests() loads any test classes it finds within the ^UnitTestRoot directory, compiles them, executes
any tests they contain, and deletes them from memory.

However, this may not be the most efficient paradigm when you are developing your code. That is, you may not
want to reload and recompile your tests every time you make a small change to the method being tested. As a
result, unit test classes are often stored externally. You can use the arguments of the RunTests() method to
explicitly control whether to load tests and from where, whether to delete them, and other considerations.

3.1 %UnitTest Test Execution Methods
The default behavior when running unit tests is for the tests to be loaded into InterSystems IRIS, compiled, executed, and
then deleted. This prevents test code from cluttering your InterSystems IRIS namespace. To deviate from this default
behavior, you can either use DebugRunTestCase() or you can add flags to the qualifiers argument of either of these
methods. For example, you may want to develop your test cases locally, within your namespace, without having to reload
them every time you make a change. In that case, you could pass the /nodelete flag as part of the qualifiers argument.

RunTest (“testSpec”, “qualifiers”, “userparam”)

Executes a test or set of tests within the directory specified in the global ^UnitTestRoot. Once tests are executed,
deletes from InterSystems IRIS all loaded tests and test classes.

USER>Do ##class(%UnitTest.Manager).RunTest("MyTests")

The %UnitTest Framework for InterSystems IRIS 9

See RunTest() in the class reference for a detailed description of how to use this method and its arguments.

DebugRunTestCase (“testSpec”, “qualifiers”, “userparam”)

Executes a test or set of tests without loading or deleting any test classes.

USER>Do ##class(%UnitTest.Manager).DebugRunTestCase("MyTests", "/display=none/debug", "/log")

See DebugRunTestCase() in the class reference for more information.

Note: Occasionally, one of your unit tests may change the value of a SQL Configuration Option (such as AutoParallel

or AutoParallelThreshold, for example) or may leave behind a lock or an open transaction or similar,
triggering an error notification that states the problem. The unit test manager, %UnitTest.Manager, automatically
resets the value of the changed SQL Configuration Option, deletes the leftover lock, or closes the transaction
before executing the next unit test.

10 The %UnitTest Framework for InterSystems IRIS

Executing Unit Tests Using the %UnitTest.Manager Methods

4
Viewing %UnitTest Results

You can view the results of your tests in any of the following ways:

• In the console — Basic test results are printed to the console output.

• In the %UnitTest.Result.TestAssert table — Test results are stored in tabular form in ^UnitTest.Result, and they can be
accessed via the %UnitTest.Result.TestAssert table.

• In the Management Portal — Running a unit test generates a test report that comprises a series of web pages. Test
reports are organized by namespace, and they can be viewed in the Management Portal, in the UnitTest Portal area.
See Viewing %UnitTest Reports in the Management Portal for details.

4.1 Viewing %UnitTest Results Programmatically
Test asserts, including test results, are logged in the %UnitTest.Result.TestAssert table for structured access to the data. The
table includes the following fields:

Status

The success of failure value of the test assert. Possible values are as follows:

Table 4–1:

MeaningLogical Value

failed0

passed1

skipped2

Action

The name of the $$$AssertX macro used to perform the test. Note that the leading $$$ are not included in the
table.

Description

The value of the test_description argument you passed to the $$$AssertX macro. If test_description

was not passed, this field defaults to the string representation of the first argument to the $$$AssertX macro.
See Macros of the %UnitTest.TestCase Class for details about $$$AssertX macro arguments.

The %UnitTest Framework for InterSystems IRIS 11

Location

The location in the test class from which the test assert originates, in label[+offset]^[|"ns"|]doc.ext

format.

4.1.1 Troubleshooting Test Assert Locations

Under certain circumstances, it is possible the test assert locations may not be properly mapped back to the classes. For
example, if all of the locations are in generated INT routines. In such cases, you should run your tests with the /keepsource

and /generatemap qualifiers in the qualifiers argument to RunTest(). This enables the test manager to resolve the
routine locations back to the source classes.

4.2 Viewing %UnitTest Reports in the Management Portal
Executing tests generates a hierarchical report, available in the Management Portal, containing results related to all tests
executed.

If the report indicates a test has passed, that means the relevant $$$AssertX macro returned true: Your test produced the
expected result. Test failure indicates the macro returned false: Your test did not produce the expected result, and you may
need to debug the method being tested.

Follow these steps to view the report in the Management Portal:

1. Grant access for the %UnitTest classes to access the UnitTest Portal in the USER namespace:

USER>set $namespace = "%SYS"
%SYS>set ^SYS("Security", "CSP", "AllowPrefix", "/csp/user/", "%UnitTest.")=1

Note: This step must be executed once, for security reasons, or you will not be able to navigate to Unit Test Portal

in the Management Portal.

2. In the Management Portal, navigate to System Explorer > Tools > UnitTest Portal, and switch back to the USER

namespace.

3. To launch UnitTest Portal and view your test report, click Go. Your report displays.

4. Drill down in the report by following the links in the report to find increasingly specific information.

• The first page provides a summary for all test suites.

• The second page displays results by each test suite.

• The third page displays the results by each test case.

• The fourth page displays the results broken out by test method.

• The final page displays results for each $$$AssertX macro used in a test method.

12 The %UnitTest Framework for InterSystems IRIS

Viewing %UnitTest Results

	Table of Contents
	1 About the InterSystems IRIS %UnitTest Framework
	2 Creating Test Cases: The %UnitTest.TestCase Class
	2.1 Extending the %UnitTest.TestCase Class
	2.1.1 Example: Extended %UnitTest.TestCase Class

	2.2 Macros of the %UnitTest.TestCase Class
	2.3 %UnitTest.TestCase Class Preparation and Cleanup Methods
	2.3.1 Example: Preparation Method
	2.3.2 Example Cleanup Method

	3 Executing Unit Tests Using the %UnitTest.Manager Methods
	3.1 %UnitTest Test Execution Methods

	4 Viewing %UnitTest Results
	4.1 Viewing %UnitTest Results Programmatically
	4.1.1 Troubleshooting Test Assert Locations

	4.2 Viewing %UnitTest Reports in the Management Portal

