
Creating CSP-Based Web
Applications

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Creating CSP-Based Web Applications
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Introduction to CSP-Based Web Applications ... 1
1.1 Components of a CSP-Based Web Application .. 1
1.2 Information Flow .. 2

2 Configuring a CSP-Based Web Application ... 3
2.1 General Settings for a CSP-Based Web Application .. 3
2.2 Security Settings ... 4
2.3 Session Settings .. 5

2.3.1 About the SameSite Attribute ... 6
2.4 CSP File Settings .. 6
2.5 Custom Pages ... 7
2.6 Enabling Access to Pages and Classes ... 7

2.6.1 Background Information on the ^SYS Global ... 8
2.6.2 Category: AllowClass ... 8
2.6.3 Category: AllowPrefix .. 9
2.6.4 Category: AllowPercent ... 10

2.7 How the CSP Server Handles Static Files .. 10
2.7.1 Character Encoding of JavaScript Files ... 10

3 Creating a CSP Page Class .. 11
3.1 Basics ... 11
3.2 Controlling the Default Response Headers .. 12
3.3 Other Callbacks .. 13

3.3.1 OnPreHTTP() ... 13
3.3.2 OnPostHTTP() ... 13

3.4 Best Practice for Links ... 13
3.5 Tag-Based Development (Legacy) ... 14

4 Examining the Request .. 15
4.1 URL .. 15
4.2 URL Parameters ... 15
4.3 Form Data ... 16
4.4 CGI Variables ... 16
4.5 MIME Data .. 17

5 Managing Sessions .. 19
5.1 Session Creation ... 19
5.2 Basic Properties .. 19
5.3 Managing Session Data .. 20
5.4 Deleting Session Data .. 20
5.5 Customizing Session Handling (Event Class) .. 20
5.6 Preserving Context ... 21

6 Ending Sessions ... 23
6.1 Provide Logout Option ... 23
6.2 Have the Server End the Session .. 23
6.3 Session Timeout ... 23

6.3.1 Modifying the Timeout Programmatically ... 24
6.4 Customizing End Behavior .. 24
6.5 Session End Details .. 24

Creating CSP-Based Web Applications iii

7 Saving and Using Cookies .. 25
7.1 Saving Cookies ... 25

7.1.1 The SameSite Attribute .. 25
7.2 Accessing Cookies .. 26

8 Updating a Page without Reloading ... 27
8.1 Basics ... 27
8.2 Example .. 28

9 Handling Errors .. 29
9.1 Adding a Custom Error Page .. 29
9.2 Handling Errors Before License Grant ... 30

10 Controlling Access to CSP Pages ... 31
10.1 Making a Page Private .. 31
10.2 Requiring Permissions to Use the Page .. 31

11 Encryption ... 33
11.1 Encrypting and Decrypting Values ... 33
11.2 Encrypting URL Parameters .. 33

12 Localizing Text in a CSP Page ... 35
12.1 Setting the Default Runtime Language .. 35
12.2 %response.GetText() Method ... 36

13 Authentication Sharing Strategies ... 37
13.1 Authentication Approaches .. 37
13.2 One-Time Sharing: Login Cookies .. 37
13.3 By-Session Groups (Session-Sharing) ... 38

13.3.1 CSPSHARE ... 38
13.4 By-ID Groups .. 39
13.5 Authentication Architecture .. 39

13.5.1 Security Context & Sticky Logins .. 39
13.5.2 Cascading Authentication ... 40
13.5.3 Log Out or End Session ... 40

13.6 Considerations in Choosing Your Strategy ... 41
13.6.1 Considerations for Login Cookies ... 41
13.6.2 Considerations for Groups ... 41
13.6.3 Considerations about CSPSHARE ... 42
13.6.4 Sharing Data ... 42

14 Enabling Logging .. 43
14.1 Enabling and Disabling Logging .. 43
14.2 Log Levels .. 43
14.3 ISCLog Details ... 44
14.4 Message Format ... 45

Appendix A: Reserved URL Parameters ... 47

Appendix B: Special HTML Directives ... 49
B.1 &html<> Basics ... 49
B.2 Expressions within &html<> ... 49

Appendix C: CSP Error Codes .. 51

iv Creating CSP-Based Web Applications

List of Tables

Table 14–1: ISCLOG Fields .. 44
Table III–1: CSP Error Codes, Error Messages, and When Reported ... 51

Creating CSP-Based Web Applications v

1
Introduction to CSP-Based Web
Applications

InterSystems IRIS® data platform provides a technology that enables you to create web user interfaces. For historical reasons,
this technology is known as CSP and the result is a CSP-based web application.

CSP intercepts HTTP requests before the browser sees them, and CSP provides an easy way to write directly to the browser.
These factors mean that you have complete control over the web pages you generate. You can use CSP in conjunction with
third-party JavaScript libraries if wanted, because you can simply add any needed JavaScript to your pages.

1.1 Components of a CSP-Based Web Application
From the point of view of an application developer, a CSP-based web application consists of the following elements on an
InterSystems IRIS server:

• A web application definition that is configured to use CSP/ZEN options instead of REST options.

The web application definition controls things such as the allowed authentication mechanisms, the InterSystems IRIS
namespace to run the code in, custom pages to use for specific purposes, timeouts, handling of static files, and more.

• One or more CSP page classes. These classes generate full HTML pages in response to HTTP requests. A CSP page
class has easy access to the request and to session information, and utility methods enable you to manage cookies,
access CGI variables, and more.

• External JavaScript files, style sheets, image files, static HTML files, and other resources as needed. These can live
on the same server, can be on other servers, or can be a mix of both.

Architecturally, there are additional components:

• A web server, as supported for use with InterSystems IRIS.

• The Web Gateway, which acts as the intermediary between the web server and the InterSystems IRIS server or servers.
The Web Gateway maintains a pool of connections to these servers.

The Web Gateway configuration includes definitions of web applications running on the InterSystems IRIS servers.
These definitions enable the Web Gateway to route requests to the correct web applications on the InterSystems IRIS
servers (sending the requests via the CSP server, discussed next).

Creating CSP-Based Web Applications 1

• The CSP Server, which is a dedicated process running on an InterSystems IRIS server that waits for requests from the
Web Gateway and then handles them as needed. Each InterSystems IRIS server may run as many CSP server processes
as desired (subject to limits imposed by machine type; CSP servers are not counted in license calculations).

1.2 Information Flow
For a CSP-based web application, the request and return process is as follows:

1. An HTTP client, typically a web browser, requests a page from a web server using HTTP.

2. Because of how web server is configured, it recognizes the request as a CSP request and forwards it to the Web Gateway.

3. The Web Gateway determines the InterSystems IRIS server to talk to and forwards requests to the CSP server on that
target system.

4. The CSP Server processes the request and determines whether the request is for a static file or for a CSP class.

The CSP Server includes the Stream Server, which is the class %CSP.StreamServer. The Stream Server is responsible
for handling files and other streams. If the request is for a static file, the Stream Server finds the file within the local
file system, determines how to encode it, and packages it.

If the request is for a class, the CSP server calls the Page() method of the class, which in turn calls the callback methods
defined in that class.

5. The CSP Server returns the requested content to the Web Gateway, which passes it back to the web server.

6. The web server sends the content to the browser for display.

2 Creating CSP-Based Web Applications

Introduction to CSP-Based Web Applications

2
Configuring a CSP-Based Web Application

You can use the same Management Portal pages (and the same APIs) to configure CSP-based web applications as you do
for other applications. This page primarily discusses the settings that are specific to CSP-based applications.

To configure a CSP-based web application:

1. Follow the instructions in Create and Edit Applications to display the application definition (creating it first if needed).

2. For the General tab, use the information below to define the web application.

3. For the other parts of the application definition, see Create and Edit Applications.

4. Ensure that the Web Gateway configuration is also updated to provide access to this web application. (For background,
see Components of a CSP-Based Web Application.)

2.1 General Settings for a CSP-Based Web Application
For a CSP-based web application, specify values in the initial section of the General tab as follows:

Name

Specifies the identifier for the application. The name must include a leading slash (/), such as in the /myorg/myapp

application.

Note that the name /csp/docbook is reserved.

Description

Specifies a text description of the application.

Namespace

Specifies the namespace where this application runs. When you select a different namespace, the dialog immediately
displays the default application for that namespace to the right of this drop-down menu.

Namespace Default Application

Specifies whether the application is the default application for this namespace. The %System.CSP.GetDefaultApp()

method returns the default application for the namespace. InterSystems IRIS® data platform import functions,
such as $system.OBJ.Load() or $system.OBJ.ImportDir(), use the default application when importing a page
without an associated application.

Creating CSP-Based Web Applications 3

Enable Application

Specifies whether the application is available for use. When enabled, an application is available, subject to user
authentication and authorization; when disabled, it is not available.

Enable REST or CSP/ZEN

Select CSP/ZEN.

Analytics

Specifies whether to enable use of Business Intelligence and Natural Language Processing within this application.

Inbound Web Services

Specifies whether to serve SOAP requests from within this application. Uncheck to disable.

Prevent login CSRF attack

Specifies whether the application automatically prevents Cross-Site Request Forgery (CSRF) attacks. InterSystems
recommends that you enable this option for all new applications; it is also recommended for all existing applications
except if there is code that programmatically requests pages from the application.

2.2 Security Settings
For a CSP-based web application, specify security settings as follows:

Resource Required

A resource for which users must have the Use permission so they can run the application.

Note that you can also specify required resources within CSP page classes. Both mechanisms are applied.

Group by ID

For use by By-ID groups to enable you to share authentication across multiple web applications. Enter a group
name for this application to share authentication privileges with all other applications with this group name.

Allowed Authentication Methods

The application’s supported authentication mechanisms, from the set of defined mechanisms.

Permitted Classes

Specify classes whose methods can be executed within this application. There are three ways to do this:

• Use an ObjectScript match pattern. Example: 1"myclass".3N allows myclass123.cls to run in this
application, but not myclassxy.cls

• Use an ObjectScript expression that evaluates to a boolean, prefixed with @. The requested class name is
passed as a variable named class. Example: @class = "PermittedClasses.PermittedPage"

• Use a call to a class method (can also use @syntax). Example:
##class(MyPackage).CheckClassIsPermitted(class)

See also Enabling Application Access to %CSP Pages.

4 Creating CSP-Based Web Applications

Configuring a CSP-Based Web Application

2.3 Session Settings
For a CSP-based web application, specify Session Settings as follows:

Session Timeout

The default session timeout in seconds. You can override this value programmatically.

Note that a user moves from one web application to another during a session, the timeout period is still controlled
by the first web application used during the session. For example, if a session starts out in Web Application A,
with a default timeout of 900 seconds, and then moves into Web Application B, which has a default timeout of
1800 seconds, the session still times out after 900 seconds. In such a case, you may want to define a session event
class to update the session timeout.

Event Class

The default name of the class that handles web application events, such as a timeout or session termination.

Use Cookie for Session

Whether or not the application tracks the browser session by using a cookie. Choices are:

• Always — Default. Always use a cookie to track the browser session.

• Never — Never use a cookie to track the browser session.

• Autodetect — Use a cookie to track the browser session unless the client browser has disabled them. If the
user has disabled cookies, the application uses URL rewriting to track the browser session.

Note that this option does not set whether the application uses cookies; rather, it controls how the application
manages sessions, subject to the user’s preferences. Further, even with values of Always or Autodetect, an appli-
cation uses cookies only if it contains specific code to do so.

Session Cookie Path

The portion of the URL that the browser uses to send the session cookie back to InterSystems IRIS for this appli-
cation. If you do not specify a value for this field, the application uses the value of the Name field with leading
and following slashes as its default scope. Hence, for an application named myapp, specifying no value here means
that /myapp/ is the scope.

The application only sends the cookie for pages within the specified scope. If you restrict the scope to pages
required by a single web application, this prevents other web applications on this machine from using this session
cookie; it also prevents any other web application on this web server from seeing the cookie.

Note that a primary application and its subapplications can have different security settings while simultaneously
sharing a session cookie (if they all use the primary application’s path).

Session Cookie Scope

Controls the default value of the SameSite attribute for session cookies.

User Cookie Scope

Controls the default value of the SameSite attribute for application-specific cookies.

Creating CSP-Based Web Applications 5

Session Settings

2.3.1 About the SameSite Attribute

The SameSite attribute determines how an application handles cookies in relation to third-party applications (aka cross-
site requests). SameSite can have a value of:

• None — The application sends cookies with cross-site requests. If SameSite has a value of None, browsers may require
applications to use HTTPS connections.

• Lax — The application sends cookies with safe, top-level cross-site navigation.

• Strict — The application does not send cookies with cross-site requests. (The default for system web applications and
new or upgraded user applications.)

You can programmatically override this attribute within the CSP page classes.

The SameSite attribute is part of an initiative from the IETF and is addressed in several of their documents.

2.4 CSP File Settings
The CSP server can serve static files in addition to passing back content generated by the CSP pages. For a CSP-based web
application, the CSP File Settings control how the CSP server handles static files. Also see How the CSP Server Handles
Static Files.

You can use a traditional configuration of serving static pages from the web server. (In this case, the settings described
here are irrelevant.) This may be preferable in certain situations. For example, if you have a system where one web server
serves multiple remote InterSystems IRIS instances, it may be more efficient to serve those files from a common location
local to the web server machine.

Note, however, that configuring the web server to serve static files may cause problems: for example, if the common web
server serves different versions of InterSystems IRIS, the web server may encounter a conflict between two different versions
of the same file (for example, hyperevent broker components). Such conflicts do not occur when each CSP server handles
static content for its own applications. Additionally, if you have configured the web server itself to serve static files, you
must make sure that the static content is present on every single web server in your system.

Serve Files

Controls whether to serve static files from the directory specified by Physical Path.

• No — Never serve files from this application path.

• Always — Default. Always serve files from this application path and ignore the CSP security setting for this
path for static files. This is the default for new applications; it is backward compatible with applications that
previously had static files served from the web server.

• Always and cached — Always serve files from this application path and allow the Web Gateway to cache
these files to avoid having to request them from InterSystems IRIS. This is the mode that deployed applications
are expected to use.

• Use CSP Security — If you have permission to view a CSP page in this application, then you can also view
static files. If you do not have permission to view a page, then you see a 404 page not found message.

Serve Files Timeout

Specifies the length of time for which the browser should cache static files (in seconds). Default is 3600.

6 Creating CSP-Based Web Applications

Configuring a CSP-Based Web Application

https://www.ietf.org/

Physical Path

The directory on the InterSystems IRIS server from which to serve files for this web application. The path is relative
to the install-dir/csp/ directory.

Ignore the options Package Name, Default Superclass, Recurse, Auto Compile, and Lock CSP Name, which apply only to
tag-based development. (If needed, see Editing a CSP Application: The General Tab in the Caché/Ensemble documentation.)

2.5 Custom Pages
For a CSP-based web application, specify Custom Pages as follows:

Login Page

Optionally specifies the name of a CSP page class, which may be prefixed with the full web application path. For
example: /csp/user/MyApp.LoginPage.cls

Usually, the login page is loaded before the user has logged in to InterSystems IRIS, so the requesting process
runs under the CSPSystem user (or whatever user connects the CSP Gateway to InterSystems IRIS). As a result,
the CSPSystem user must have sufficient privileges to load and run the code in the login page, which generally
requires READ permissions on the resource protecting the database in which the login page is located.

Change Password Page

Optionally specifies the name of the page class to use when changing password.

Custom Error Page

Optionally specifies the name of a CSP error page class to display if an error occurs when generating a page within
this application.

2.6 Enabling Access to Pages and Classes
The following rules govern access to pages and classes from within a web application:

1. By default, a user application is allowed to access the following pages:

• Pages of the /csp/sys/ application and all of its subapplications are allowed.

• Pages of the /isc/studio/templates/ and /isc/studio/usertemplates/ applications are allowed.

2. By default, a user application is allowed to access all non-% classes in the current namespace.

3. A user application can also access the following classes:

• %CSP.Broker, %CSP.StreamServer, %CSP.Login, %CSP.PasswordChange, %CSP.PageLookup are allowed.

• %ZEN.SVGComponent.svgPage and %ZEN.Dialog.* are allowed, with the following additional conditions:

– All other %ZEN.* classes are not allowed.

– All other %Z* classes are allowed.

• All %z* classes are allowed.

Creating CSP-Based Web Applications 7

Custom Pages

Checking for allowed classes is performed in addition to checking the setting in the web application.

To permit access to additional classes, configure the global ^SYS("Security","CSP","category") in the %SYS

namespace, where category is AllowClass, AllowPrefix, or AllowPercent. The following sections describe these
options.

Important: Checking is done by applying the default rules first, then the categories in the order listed.

Also, each keyword can be invoked more than once. This means that you can make an entire package
accessible, and then restrict access to one class in that package.

2.6.1 Background Information on the ^SYS Global

The ^SYS global is available in the %SYS namespace and contains configuration information. You may find it helpful to
start by examining the current contents of the relevant part of this global. To do so, open the Terminal and switch to the
%SYS namespace. Then enter the following command:

ObjectScript

 zw ^SYS("Security", "CSP")

The system then displays one line for each node, showing its current value. For example:

^SYS("Security","CSP")=1
^SYS("Security","CSP","AllowClass","/csp/samples/","%CSP.UI.Portal.About")=1
^SYS("Security","CSP","AllowClass","/csp/samples/","%SOAP.WebServiceInfo")=1
^SYS("Security","CSP","AllowClass","/csp/samples/","%SOAP.WebServiceInvoke")=1
^SYS("Security","CSP","AllowPrefix","/csp/samples/","%DeepSee.")=1

2.6.2 Category: AllowClass

If your application relies on invoking a particular class, use the AllowClass option to make that class available.

Important: If your application relies on invoking any class other than those listed as allowed at the beginning of
Enabling Application Access to %CSP Pages, it could potentially be unsafe to use. InterSystems recommends
that you determine if calling this class is required, and perform a risk assessment for your deployment, so
that you understand the implications of making the class available.

To enable a given web application to invoke a particular class, use the following command in the %SYS namespace:

 Set ^SYS("Security", "CSP", "AllowClass", "web-app-name", "package.class") = value

Where:

• web-app-name is the name of the web application. The web application name must be in lowercase and must start and
end with a trailing slash.

To enable all web applications to use the given class or package, specify web-app-name as 0; in this case, you can
omit the enclosing quotes.

• package.class is the fully qualified name of a class. If you omit class, then all classes in the specified package are
allowed.

• value is either 1 or 0.

If you specify this as 1, the web application can invoke this class (or package).

If you specify this as 0, this web application cannot invoke this class (or package).

8 Creating CSP-Based Web Applications

Configuring a CSP-Based Web Application

For example, to enable the /csp/webapps application to use the class %User.Page, you would use the following command:

 Set ^SYS("Security", "CSP", "AllowClass", "/csp/webapps/", "%User.Page") = 1

Or to enable all web applications to use the %User.Page, you would use the following command:

 Set ^SYS("Security", "CSP", "AllowClass", 0, "%User.Page") = 1

For another example, to enable the /csp/myapp application to use all classes in the %User package except for the %User.Other

class, you would use the following two commands:

 Set ^SYS("Security", "CSP", "AllowClass", "/csp/myapp/", "%User") = 1
 Set ^SYS("Security", "CSP", "AllowClass", "/csp/myapp/", "%User.Other") = 0

2.6.3 Category: AllowPrefix

If your application relies on invoking multiple classes or packages that begin with the same set of characters, use the
AllowPrefix option.

Important: If your application relies on invoking any class other than those listed above, it could potentially be unsafe
to use. InterSystems recommends that you determine if calling this class is required, and perform a risk
assessment for your deployment, so that you understand the implications of making the class available.

To enable a given web application to invoke classes or packages that begin with the same set of characters, use the following
command in the %SYS namespace:

 Set ^SYS("Security", "CSP", "AllowPrefix", "web-app-name", "prefix") = value

Where:

• web-app-name is the name of the web application. The web application name must be in lowercase and must start and
end with a trailing slash.

To enable all web applications to use the given classes or packages, specify web-app-name as 0; in this case, you can
omit the enclosing quotes.

• prefix is the first characters in the name.

• value is either 1 or 0.

If you specify this as 1, the web application can invoke these classes (or packages).

If you specify this as 0, this web application cannot invoke these classes (or packages).

For example, to enable the /csp/webapps application to invoke the entire MyApp package, use the following command:

 Set ^SYS("Security", "CSP", "AllowPrefix", "/csp/webapps/", "MyApp.") = 1

Note that prefix is "MyApp." and the period in the prefix means that the web application cannot access the packages such
as MyAppUtils. The web application can, however, access the packages MyApp.Utils and MyApp.UnitTests.

For another example, to enable all applications to access all packages that begin with My, use the following command:

 Set ^SYS("Security", "CSP", "AllowPrefix", 0, "My") = 1

For another example, suppose that the /csp/myapp application should be able to access all classes in the %MyPkg package
except for the class %MyPkg.Class1. In that case you would use the following two commands:

 Set ^SYS("Security", "CSP", "AllowClass", "/csp/myapp/", "%MyPkg.Class1") = 0
 Set ^SYS("Security", "CSP", "AllowPrefix", "/csp/myapp/", "%MyPkg.") = 1

Creating CSP-Based Web Applications 9

Enabling Access to Pages and Classes

2.6.4 Category: AllowPercent

If your application relies on invoking the packages that begin with the % character generally, the AllowPercent option
makes those classes available.

Important: If your application relies on invoking any class other than those listed above, it could potentially be unsafe
to use. InterSystems recommends that you determine if calling this class is required, and perform a risk
assessment for your deployment, so that you understand the implications of making the class available.

To enable all web applications to use all packages that begin with the % character, use the following command in the %SYS

namespace:

 Set ^SYS("Security", "CSP", "AllowPercent") = 1

Note: Or use the value 0 to explicitly forbid any web application from accessing these packages.

2.7 How the CSP Server Handles Static Files
For a web application that is configured to serve static files, the CSP server — specifically its Stream Server component
— processes static files. It uses the file extension to determine:

• The file type (the MIME type)

• Whether the file is a binary file

• The character encoding of the file (if applicable)

For JavaScript files, the Stream Server determines the character encoding in a manner consistent with major web servers,
described below. You can override the default behavior if needed.

2.7.1 Character Encoding of JavaScript Files

The modern convention is for all JavaScript files to be marked as Content-Type of application/javascript. With
JavaScript files marked this way:

• If a file contains a BOM (byte-order mark), the browser automatically detects this and uses the correct character set
to read it.

• If the file does not contain a BOM, then the browser assumes the file is UTF-8.

If you need to override this behavior to specify a character set for JavaScript files, set the global
^%SYS("CSP","MimeFileClassify","JS") to the list value $listbuild(contenttype, binary, charset). For example,

 Set list=$listbuild("text/javascript", 0 ,"ISO-8859-1")
 Set ^%SYS("CSP", "MimeFileClassify", "JS") = list

This sets the older content-type and uses the ISO-8859-1 character set. Also, if the default InterSystems IRIS translate table
is defined to be something other than an empty string or if the global node ^%SYS("CSP","DefaultFileCharset") is set to
a null value, InterSystems IRIS will use this character set for all JavaScript and other text files. By default, neither of these
global nodes are set.

10 Creating CSP-Based Web Applications

Configuring a CSP-Based Web Application

3
Creating a CSP Page Class

A CSP page class processes requests and generates HTML, writing that HTML directly to the browser. When you create
a CSP-based web application, your primary task is to define the OnPage() callback method of your page class or classes.

3.1 Basics
To create a CSP page class, do the following:

1. Create a subclass of %CSP.Page.

2. In this subclass, implement the OnPage() callback method. This method has access to the following variables:

• %request, which contains properties with information about the request. This variable is an instance of
%CSP.Request.

• %session, which contains information about the browser session. This variable is an instance of %CSP.Session.

• %response, which contains information about the default HTTP response. This variable is an instance of
%CSP.Response.

Your method should examine that information as needed, generate the HTML page as a string, and use the Write
command to write that string. InterSystems IRIS® data platform automatically redirects the standard output device
($IO) so that all Write output is sent back to the HTTP client.

%CSP.Page provides helpful class methods you can use to escape and unescape strings for use in HTML and JavaScript
contexts.

Also see Special HTML Directives for an alternative approach.

3. Optionally override parameters of %CSP.Page, which enable you to control:

• Default response headers sent to the client

• Access to the page

• Encryption

• Error pages displayed in specific scenarios

For a list of all available class parameters, refer to the documentation for %CSP.Page.

4. Optionally override other callback methods to control processing at additional times.

Creating CSP-Based Web Applications 11

For example:

Class Definition

Class GCSP.Basic Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 Set html="<!DOCTYPE html>"
 _"<html lang=""en"" dir=""ltr"">"
 _"<body>"
 _"<h1>Basic Page</h1>"

 // examine %request object and
 // write more output...

 Set html=html_"</body>"
 _"</html>"

 Write html //finally, write the page
 Quit $$$OK
}

}

This example concatenates the entire page as a single string and then writes it, which is fine for pages expected to be under
the long string limit. The following variation produces the identical HTML:

Class Definition

Class GCSP.Basic Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 write "<!DOCTYPE html>"
 _"<html lang=""en"" dir=""ltr"">"
 _"<body>"
 _"<h1>Basic Page</h1>"

 // examine %request object and
 // write some more html...

 write "</body>"
 _"</html>"

 Quit $$$OK
}

}

Note that when there are multiple pages that need to have the same overall appearance, it is better to have separately testable
helper methods for constructing the page start, the <head> with the HTML meta data, any JavaScript, links to style sheets,
the navigation <div>s, the footer, the page end, and so on.

3.2 Controlling the Default Response Headers
Class parameters in your CSP page class determine the default HTTP response headers sent to the client.

To control the type of content returned to the browser, specify the CONTENTTYPE class parameter. For example:

Class Member

Parameter CONTENTTYPE = "application/vnd.ms-excel";

Similarly, to control the character set used, specify the CHARSET class parameter:

12 Creating CSP-Based Web Applications

Creating a CSP Page Class

Class Member

Parameter CHARSET = "UTF-8";

For a list of all available class parameters, refer to the documentation for %CSP.Page.

You can also control the HTTP headers of the response by setting properties of the %response object, within the
OnPreHTTP() callback, discussed next.

3.3 Other Callbacks
When InterSystems IRIS® data platform determines which %CSP.Page class should process a request, it calls the Page()
method of the class, which in turn calls these callback methods in order:

1. OnPreHTTP()

2. OnPage() discussed above

3. OnPostHTTP()

3.3.1 OnPreHTTP()

You can implement OnPreHTTP() for finer control of the HTTP headers of the response.

Specifically, you can set properties of the %response object, such as the ContentType property, if that needs to be different
from the default that you chose:

 set %response.ContentType="text/html"

Then InterSystems IRIS uses those values when writing to the client.

The OnPreHTTP() method is also where you can define redirects, if needed. You can create a normal client-side redirect
by setting the Redirect property:

 set %response.Redirect="https://someotherurl"

Or, if you want to invoke another CSP page, you can instead set the ServerSideRedirect property, which will cause the CSP
Server to invoke the Page() method in the specified class.

 set %response.Redirect="GCSP.OtherPage.cls"

Note that a server-side redirect does not change the URL seen in the browser.

3.3.2 OnPostHTTP()

The OnPostHTTP() method is provided as a place to perform any operations you wish to perform after processing of the
HTTP request is complete.

3.4 Best Practice for Links
When you include an HTML <A> anchor link, use the Link() method of %CSP.Page to create the URL. This method performs
any URL escaping and also encrypts the URL parameters if applicable (depending on the definition of the target page).

Creating CSP-Based Web Applications 13

Other Callbacks

This method has the following signature:

classmethod Link(link As %String, ByRef query As %String,
 addQ As %Boolean = 0) as %String

Where:

• link is the base URL

• query is a multidimensional array containing any URL parameters

• addQ is a Boolean value specifying whether to include a trailing ? or & (as appropriate) at the end of the returned value.
This option enables you to append additional query parameters.

For example:

ObjectScript

 Set origurl="GCSP.EncryptPage2.cls"
 Set urlparms("SAMPLEPARM")="sample value"
 Set tURL = ##class(%CSP.Page).Link(origurl,.urlparms)
 Set html="<p>Link to page 2: Link"_"</p>"

You can also use the Context property of the %response object to automatically insert values into all links and forms; see
the class reference for details.

3.5 Tag-Based Development (Legacy)
Legacy applications may also include .csp files, which are used in tag-based development. In the tag-based development
model, the developer creates .csp files contained within the directory structure accessed by the web application. The files
contain a mix of HTML and specialized tags that provide for communication with the server. The CSP compiler reads the
files and generate class definitions from them, and the class definitions generate the actual runtime HTML. For information
on tag-based development, consult Tag-based Development with CSP in the Caché/Ensemble documentation.

14 Creating CSP-Based Web Applications

Creating a CSP Page Class

https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCSP_TAGBASED

4
Examining the Request

When the CSP server responds to an HTTP request, it packages information about the incoming request into the %request
object, which is available on all CSP pages. This variable is an instance of %CSP.Request.

Note that the CSP pages also have access to the %session, which you can use to pass additional data from page to page.

4.1 URL
To find the URL (not including the query string) of an incoming HTTP request, use the URL property of the %request
object:

 Write "URL: ", %request.URL

4.2 URL Parameters
A URL may contain a list of parameters (also known as the URL query). The %request object makes these available via
its Data property.

For example, suppose the incoming URL contains:

/csp/user/MyPage.csp?A=10&a=20&B=30&B=40

You can retrieve these parameters on the server using:

 Write %request.Data("A",1) // this is 10
 Write %request.Data("a",1) // this is 20
 Write %request.Data("B",1) // this is 30
 Write %request.Data("B",2) // this is 40

Data is a multidimensional property and each value stored within it has 2 subscripts: the name of the parameter and the
index number of the parameter (parameters can occur multiple times within a URL as with B above). Note that parameter
names are case-sensitive.

Also note that it does not matter if an incoming HTTP request is a GET or a POST request: the Data property represents the
parameter values in exactly the same way.

Creating CSP-Based Web Applications 15

You can use the ObjectScript $Data function to test if a given parameter value is defined:

 If ($Data(%request.Data("parm",1))) {
 }

If you wish to refer to a parameter but are not sure if it is defined, you can use the ObjectScript $Get function:

 Write $Get(%request.Data("parm",1))

You can find out how many values are defined for a particular parameter name using the Count method of the %request
object:

 For i = 1:1:%request.Count("parm") {
 Write %request.Data("parm",i)
 }

The same techniques also work even when the parameter values are encrypted.

4.3 Form Data
When the CSP server receives a form submit request, it places all name/value pairs into the multidimensional Data property
of the %request object, where the subscripts of Data are the names.

For example, if the form looks like this:

<form name="edit" method="post" action="GCSP.EncryptPage3.cls">
<p>Value A: <input type="text" name="inputA"></p>
<p>Value B: <input type="text" name="inputB"></p>
<p><input type="submit" value="Submit This" ></p>
</form>

Then on the server, use this to get the values of the Value A and Value B inputs:

 set myvalueA=$GET(%request.Data("inputA",1))
 set myvalueB=$GET(%request.Data("inputB",1))

If InterSystems IRIS receives a value that is longer than the string length limit, it automatically creates a stream (an instance
of %CSP.CharacterStream), writes the value to that stream, and places the stream OREF into the Data property in place of
the actual value. This means that in any case where you might receive a very long string, your code should examine the
value to see if it is an OREF, and then handle it accordingly:

ObjectScript

 Set value=%request.Data("fieldname",1)
 If $isobject(value) {
 ; Treat this as a stream
 } Else {
 ; Treat this as a regular string
 }

4.4 CGI Variables
The web server provides a set of values, referred to as CGI (Common Gateway Interface) environment variables, which
contain information about the HTTP client and web server. You can get access to these CGI environment values using the
multidimensional property CgiEnvs of the %request object. You can use this in the same manner as the Data property.

16 Creating CSP-Based Web Applications

Examining the Request

For example, to determine what type of browser is making the HTTP request, look at the value of the CGI environment
variable HTTP_USER_AGENT:

 Write %request.CgiEnvs("HTTP_USER_AGENT")

For information on the available CGI environment variables, see CGI Environment Variables.

4.5 MIME Data
An incoming request may contain MIME (Multipurpose Internet Mail Extensions) data. This is typically used for larger
pieces of information, such as files. You can retrieve MIME data using the using the multidimensional property MimeData

of the %request object.

Creating CSP-Based Web Applications 17

MIME Data

5
Managing Sessions

A session represents a series of requests from a particular client to a particular application over a certain period of time.
InterSystems IRIS® data platform provides session tracking automatically. Within your CSP-based web application, you
can access information about the current session by examining the %session object, which is an instance of %CSP.Session.

For information on sharing authentication sessions or data among applications, see Authentication Sharing Strategies. Also
see Ending Sessions.

5.1 Session Creation
A session starts when an HTTP client makes its first request to a web application. The InterSystems IRIS server then does
the following:

1. Creates a new session ID number.

2. Performs licensing checks, as appropriate.

3. Creates the %session object (which is persistent).

4. Calls the OnStartSession() method of the session event class (if present).

5. Creates a session cookie in order to track subsequent requests from the HTTP client during the course of the session.
If the client browser has disabled cookies, InterSystems IRIS automatically uses URL rewriting (placing a special
value into every URL) in order to track sessions.

5.2 Basic Properties
For the first request of a session, the NewSession property of the %session object is set to 1. For all subsequent requests it
is set to 0:

 If (%session.NewSession = 1) {
 // this is a new session
 }

The SessionId property of the %session object contains the unique identifier of the session.

Creating CSP-Based Web Applications 19

5.3 Managing Session Data
The %session object provides an easy way to save application-specific data across the session without using cookies or
URL parameters. In particular, the Data property of this object is a multidimensional array property for use by your code.
For example, suppose that you want to save the following set of key-value pairs:

ValueKey

"widgets"product

100quantity

"cases"unitofmeasure

To do this, you can save values in the Data property as follows:

ObjectScript

 set %session.Data("product")="widgets"
 set %session.Data("quantity")=100
 set %session.Data("unitofmeasure")="cases"

Similarly, perhaps on a different page of the application, you can retrieve the values:

ObjectScript

 set productodisplay=$GET(%session.Data("product"))
 set quantityodisplay=$GET(%session.Data("quantity"))
 set uomtodisplay=$GET(%session.Data("unitofmeasure"))

Note that this example uses $GET to prevent an error in the case when a particular subscript is not defined. It is best practice
to use $GET (or $DATA) to protect against such an error.

Also note that this technique allows you to store only literal data (not object references) and each value in the array must
be shorter than the long string limit.

5.4 Deleting Session Data
To remove data from the Data property, use the ObjectScript Kill command:

 Kill %session.Data("MyData")

5.5 Customizing Session Handling (Event Class)
To customize what happens when various session events occur:

1. Define a session event class, which must be a subclass of %CSP.SessionEvents.

2. In that class, implement the callback or callbacks to customize what the application does when the session starts, times
out, or when other events occur.

The callback methods include the following:

20 Creating CSP-Based Web Applications

Managing Sessions

• OnStartSession() — controls what happens when a session starts.

• OnSessionEnd() — controls what happens when a session ends. Called for all session endings.

• OnTimeout() — controls what happens when a session timeout occurs. Called only in case of timeout.

• OnApplicationChange() — controls what happens when the user moves from one application to another within
a session. (In such a case, you may want to update the session timeout value).

For details, see %CSP.SessionEvents.

3. Configure the web application to use this session event class.

Or, within your application code, programmatically specify the session event class by setting the EventClass property
of the %session object.

5.6 Preserving Context
By default, only the processing context preserved by the CSP server from one request to the next is held within the %session
object. The CSP server provides a mechanism for preserving the entire processing context variables, instantiated objects,
database locks, open devices between requests. This is referred to as context preserving mode. You can turn context
preservation on or off within a CSP application at any time by setting the value of the Preserve property of the %session
object. Note that tying a process to one session results in a lack of scalability and that it is very uncommon to use this option.

Creating CSP-Based Web Applications 21

Preserving Context

6
Ending Sessions

Within an InterSystems IRIS® data platform CSP-based web application, a session can end because the user logs out,
because the server ends the session explicitly, or because the session times out.

6.1 Provide Logout Option
The standard practice is to provide a link or a button with which the user can log out.

The recommended practice is to define this link or button so that it links to the application home page and to include
IrisLogout=end in the link URL. This server then ends the current session before it attempts to run the home page.

6.2 Have the Server End the Session
From within the application, you can end a session explicitly, in the following ways:

• End the session (for example, if the client is stopped or navigates to a new site):

ObjectScript

 set %session.EndSession=1

• Log the user out:

ObjectScript

 do %session.Logout()

These techniques use the %session object that is available on the server; this is an instance of %CSP.Session.

6.3 Session Timeout
In session timeout, a session ends because it did not receive any requests within the specified session timeout period.

By default, the session timeout is set to 900 seconds (15 minutes). This is controlled by the web application definition.

Creating CSP-Based Web Applications 23

6.3.1 Modifying the Timeout Programmatically

From within the application, you can modify the timeout by setting the AppTimeout property of the %session object. For
example:

ObjectScript

 Set %session.AppTimeout = 3600 // set timeout to 1 hour

To disable session timeouts, set the timeout value to 0.

Note that if a session changes web applications during its life span, its timeout value will not be updated according to the
default timeout defined in the application that the session moved into. For example, if a session starts out in web application
A, with a default timeout of 900 seconds, and then moves into web application B, which has a default timeout of 1800
seconds, the session will still timeout after 900 seconds.

If you want an application change to result in the session timeout being updated to that of the new application, define a
session event class. In that class, override the OnApplicationChange() callback method, and add code to handle the update
of the AppTimeout property of the %session object.

6.4 Customizing End Behavior
To customize what happens when a session ends, define a session event class and implement the OnEndSession() callback
method of that class.

Similarly, to customize what happens when a session timeout occurs, define a session event class and implement the
OnTimeout() callback method of that class.

6.5 Session End Details
When a session ends, the server deletes the persistent %CSP.Session object and decrements the session license count, if
appropriate.

The server also deletes existing session data and removes the security context of the session.

If the session ended because of a timeout or server action, the server also calls the OnEndSession() method of the session
event class (if it is present).

24 Creating CSP-Based Web Applications

Ending Sessions

7
Saving and Using Cookies

This page describes how to save and use cookies, within a CSP-based web application.

A cookie is a name-value pair stored within the client browser. Every subsequent request from the client includes all of the
previous cookie values.

Storing information within a cookie is useful for information that you want to remember past the end of a session. (To do
this, you must set an expiration date as, by default, cookies end when the browser closes.) For example, you could
remember a username in a cookie so that in a subsequent session they would not have to reenter this information.

7.1 Saving Cookies
To save a cookie, use the SetCookie() method of the %response as in the following example:

ObjectScript

 Do %response.SetCookie("UserName",name)

A cookie definition can include an expiration date and a path in this format:

ObjectScript

 Do %response.SetCookie("NAME","VALUE",expireData,path)

A blank expireData field defines an in-memory cookie (available only during the current session). If, however, you specify
a value for the expireData field, this becomes a permanent cookie that is removed at the time specified. The format for the
expireData field is Wdy, DD-Mon-YYYY HH:MM:SS GMT, for example: Wednesday, 24-Mar-2024 18:12:00
GMT.

For details, see %CSP.Response in the class reference.

7.1.1 The SameSite Attribute

When creating a cookie, you can specify the SameSite argument, which determines how an application handles cookies in
relation to third-party applications (aka cross-site requests). This argument overrides the default SameSite value specified
by the web application.

If you specify that a cookie has a SameSite value of None, then you must use an HTTPS connection.

Creating CSP-Based Web Applications 25

7.2 Accessing Cookies
Any cookies are available in the Cookies property of the %request. This property is a multidimensional property, whose
subscripts are the names of the cookies.

The %request object also provides methods for counting and iterating through the cookies. See GetCookie(), NextCookie(),
and CountCookie() in %CSP.Request. For example, the following simple page class displays all cookies and their values:

Class Definition

Class Sample.CookieDemo Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 Set html="<!DOCTYPE html>"
 _"<html lang=""en"" dir=""ltr"">"
 _"<body>"
 _"<p>COOKIES:</p>"
 _""

 Set cookie=%request.NextCookie("")
 While cookie'="" {
 For count=1:1:%request.CountCookie(cookie) {
 Set html=html_""_cookie_" - "
 _..EscapeHTML(%request.GetCookie(cookie,count))
 _""
 }
 Set cookie=%request.NextCookie(cookie)
 }
 Set html=html_""
 _"</body>"
 _"</html>"

 Write html
 Quit $$$OK
}

}

26 Creating CSP-Based Web Applications

Saving and Using Cookies

8
Updating a Page without Reloading

All modern browsers have a built-in XMLHttpRequest object to request data from a server; with this object it is possible
to interact with the server after page load and update a page without reloading it.

InterSystems IRIS® data platform provides an easy system to use this object within CSP pages, to communicate directly
with the CSP server.

8.1 Basics
There are three parts to this system:

• When generating the <head> part of the HTML page, call HyperEventHead(), which returns a string consisting of
two successive <script> elements that are required by this system. The method signature is as follows:

classmethod HyperEventHead(iframeOnly As %Boolean,
 strict As %Boolean = 0) as %String

Where:

– The iFrameOnly argument is ignored but is present for compatibility.

– If strict is 1, the returned string will use the strict HTML 4 format of <script> tag.

• Create a (server-side) method to call. The method must be an instance method and can return a literal value (not an
OREF). It cannot pass arguments by reference or as output.

Tip: A common reason to XMLHttpRequest is to modify the page, so it may be helpful for this method to return
a fully formed piece of HTML to add to the page.

• As part of the page HTML, define a JavaScript function that uses HyperEventCall() to invoke your method and that
uses the results of that call, if applicable.

The HyperEventCall() method has the following signature:

classmethod HyperEventCall(methodName As %String,
 args As %String,
 type As %Integer = 0) as %String

Where:

– methodName is a reference to the server method, either in the form ..MethodName() if the method is in the
same class, or in the following longer form: Package.Class.MethodName

Creating CSP-Based Web Applications 27

– args contains all the argument to pass to the method. args is a quoted string containing a comma-separated list of
variables (which are defined earlier within your JavaScript function).

– If type is 1 (recommended), the call is asynchronous.

HyperEventCall() returns the value returned by the server method.

8.2 Example
An example shows how this fits together. In this scenario, we want to define a function that retrieves additional parts of a
tree control. The function will use the GetChildren() method of a class named %CSP.Documatic.Helper. The method takes
three string arguments: name, parent, and ns and it returns a fully formed piece of HTML that is meant to be added to the
page within the tree control. (For our purposes here, it does not matter exactly how that tree control works or exactly what
this method does.)

Within the code that generates the <head> for this HTML page, we call both HyperEventHead() and HyperEventCall()
as follows:

 //Add hyperevent-related scripts for left navigation
 set headhtml=_..HyperEventHead()
 _"<script>function addChildrenAfter(item,name,Id,ns) {"
 "var h="..HyperEventCall("%CSP.Documatic.Helper.GetChildren","name,Id,ns",1)_";"
 _"if (h!==null) {"
 _"item.insertAdjacentHTML('afterend',h); } else {"
 _"location.reload();}"
 _"return false;"
 _"}</script>"

The resulting HTML looks like this (with line breaks added and edits for readability):

<script type="text/javascript" src="/somelocation/csp/broker/cspxmlhttp.js">
</script>
<script type="text/javascript" src="/somelocation/csp/broker/cspbroker.js">
</script>
<script>function addChildrenAfter(item,name,Id,ns)
{var h=cspHttpServerMethod("pyK473ekNn0...very long...DOKepQ",name,Id,ns);
if (h!==null) {item.insertAdjacentHTML('afterend',h);
 } else {location.reload();
}return false;}</script>

Notice that this HTML does not include the name of the server method, but instead includes a long token that the server
uses to identify the code to run. Also note that this HTML includes cspHttpServerMethod, which is a JavaScript
function provided by HyperEventHead().

28 Creating CSP-Based Web Applications

Updating a Page without Reloading

9
Handling Errors

For any web application, InterSystems IRIS® data platform provides a default error page that displays a message to the
user if an application error occurs. You can instead provide your own custom error page. There are special options in the
case when an error occurs and no license has been obtained (so server code cannot be run).

This page assumes you are familiar with ObjectScript error handling and error logging.

9.1 Adding a Custom Error Page
To add a custom error page:

1. Create a subclass of %CSP.Error and customize its OnPage() callback method.

In this class, you can use the %request, %response, and %session objects as usual.

In particular, %request.Get("Error:ErrorCode") contains the error information. Use DecomposeError() to obtain
a multidimensional array containing the text of the error or errors, as follows:

 Do ..DecomposeError(%request.Get("Error:ErrorCode"),.ErrorInfo)

Then you can loop over the ErrorInfo variable (returned by reference) as follows:

For i=1:1:ErrorInfo {
 if (i=1) {
 set return="<p>"_ErrorInfo(i,"Desc")_"</p>"
 } else {
 set return=return_$CHAR(13,10)_"<p>"_ErrorInfo(i,"Desc")_"</p>"
 }
 }

This example builds a string to be included in the HTML, with one paragraph for each error message.

Also see %CSP.Error for additional methods for pulling information out of the error.

2. Optionally override parameters of this class to display custom pages when no license has been granted.

3. Configure the web application to use this error class.

Creating CSP-Based Web Applications 29

9.2 Handling Errors Before License Grant
If a web application does not yet have a license, and a error occurs, then InterSystems IRIS displays the standard web
HTTP/1.1 404 Page Not Found error message by default.

You can change what page is displayed when errors are encountered in such cases by specifying the following parameters
in your error page class:

LICENSEERRORPAGE

This parameter controls what InterSystems IRIS does when a license cannot be granted. The parameter can have
either the following two values:

• "" or null — Returns the HTTP/1.1 404 Page Not Found error (default)

• Path to a static HTML file — Displays the named file, such as /csp/myapp/static.html.

PAGENOTFOUNDERRORPAGE

This parameter controls what InterSystems IRIS does if any of the following errors are generated:

• License cannot be granted

• Class does not exist

• Method does not exist

• Web application does not exist (set parameter on default error page)

• CSP page does not exist

• File does not exist

• Namespace does not exist

• Illegal request

• File cannot be opened

• Session timeout

The parameter can have either the following values:

• "" — Return the HTTP/1.1 404 Page not found error (default)

• 1 — Obtains a license and displays the standard error page.

• Path to a static HTML file — Displays the named file, such as /csp/myapp/static.html.

OTHERSTATICERRORPAGE

This parameter controls what InterSystems IRIS does in the case of other errors. The parameter can have any the
following values:

• "" — Obtains a license and displays the standard error page (the default)

• 1 — Outputs the 404 Page not found error.

• Path to a static HTML file — Displays the named file, such as /csp/myapp/static.html.

30 Creating CSP-Based Web Applications

Handling Errors

10
Controlling Access to CSP Pages

In addition to adding authentication (not explicitly described here), you can make your pages private and you can require
permissions to use pages.

These options are combined with the security settings of the web application in which the CSP pages are executed.

10.1 Making a Page Private
If you make a page private, when a user tries to display the page, the browser shows a message saying Forbidden.

To make a page private, so that it can be accessed only via links from other CSP pages, specify the PRIVATE class
parameter as 1:

Class Member

Parameter PRIVATE = 1;

By default, pages are public.

10.2 Requiring Permissions to Use the Page
Use the SECURITYRESOURCE class parameter to limit access to CSP pages. For example:

Class Member

Parameter SECURITYRESOURCE = "%Development:USE";

The SECURITYRESOURCE parameter must be a comma-delimited list of system resources and the required permissions
for each. You can specify an OR condition using the vertical bar (|) and an AND condition using a comma (,). A user must
hold the specified permissions on all of the specified resources in order to view this page or invoke any of its server-side
methods from the client.

An item in the list has the following format:

Resource[:Permission]

Resource is any of the resources defined on the server. Navigate to System Administration > Security > Resources for a list
of resources.

Creating CSP-Based Web Applications 31

Permission is one of USE, READ, or WRITE. Optional; default is USE.

For another example:

Parameter SECURITYRESOURCE = "R1,R2|R3,R3|R4" ;

This example means the user must have resource R1 AND one of (R2 OR R3) AND one of (R3 OR R4). If the user has
R1,R3 they can run the page. If the user has R1,R4, they cannot run the page, as they do not meet the R2 OR R3 condition.
The vertical bar (|) OR condition takes precedence over the comma (,) AND condition.

32 Creating CSP-Based Web Applications

Controlling Access to CSP Pages

11
Encryption

In your CSP pages, you can encrypt values sent to the browser, including URL parameters sent to other CSP pages, by
using the unique session key of the %session. This mechanism is secure because the session key is never sent to an HTTP
client.

11.1 Encrypting and Decrypting Values
To encrypt a value, use the Encrypt() method of your page class. This method is inherited from %CSP.Page superclass.
Within the same session, you can decrypt this value by using the Decrypt() method. Note that in both cases, the method
automatically uses the session key.

11.2 Encrypting URL Parameters
You can encrypt URL parameters when you include an HTML <A> anchor link from one CSP page to another CSP page
in the same session. The URL seen by the browser includes the CSPToken URL parameter instead of the original parameter
or parameters (example is truncated):

GCSP.EncryptPage2.cls?CSPToken=1nz1Q1kNd$fJPuzngVKhsKrO...

There are two parts to the system:

• On the page where you are creating the URL for the link, use the Link() method of %CSP.Page to create the URL.

It is best practice to use Link() for all URLs, whether or not they are to be encrypted.

ObjectScript

 Set origurl="GCSP.EncryptPage2.cls"
 Set urlparms("SAMPLEPARM")="sample value"
 Set tURL = ##class(%CSP.Page).Link(origurl,.urlparms)
 Set html="<p>Link to page 2: Link"_"</p>"

• On the target page, specify the ENCODED class parameter as either 1 or 2. This class parameter can have any of the
following values:

– ENCODED=0 — Query parameters are not encrypted. The browser receives them as is.

Creating CSP-Based Web Applications 33

– ENCODED=1 — All query parameters are encrypted and passed within the CSPToken URL parameter (as shown
in the example).

– ENCODED=2 — Same as 1 except for any unencrypted parameters, which are URL parameters appended manually
to the URL (in contrast to parameters added via the Link() method). Unencrypted parameters are removed from
the %request.

For example:

Class Member

Parameter ENCODED = 2;

Even when a URL parameter is encrypted as described here, you can retrieve the parameter value in the usual way. For
example:

ObjectScript

 set urlparm=$GET(%request.Data("SAMPLEPARM",1))

InterSystems IRIS® data platform always decrypts the value if necessary, automatically.

34 Creating CSP-Based Web Applications

Encryption

12
Localizing Text in a CSP Page

For general information on localizing application text, see String Localization and Message Dictionaries.

For a CSP-based web application, there are additional options that use the %response object.

12.1 Setting the Default Runtime Language
For text localized via the $$$Text, $$$TextJS, and $$$TextHTML macros, the default runtime language is determined
by the Language property of the %response object, if you have set that explicitly. If the Language property is not set
explicitly, the runtime language is determined by the browser settings.

The recommended way to set the Language property is to use the MatchLanguage() method of %Library.MessageDictionary,
as in the following example:

 Set lang = ##class(%MessageDictionary).MatchLanguage(languages,domain,flag)
 Set %response.Language=lang

Given a list of languages and a domain name, this method uses HTTP 1.1 matching rules (RFC2616) to find the best-match
language within the domain. This method has the following signature:

classmethod MatchLanguage(languages As %String,
 domain As %String = "",
 flag As %String = "") as %String

Where:

• languages is a comma-separated list of RFC1766 format language names. Each language in the list may be given an
associated quality value which represents an estimate of the user’s preference for the languages specified by the list
of languages. The quality value defaults to q=1.

For example, da, en-gb;q=0.8, en;q=0.7 would mean: I prefer Danish, but will accept British
English and other types of English.A language from the list matches a supported language tag if it
exactly equals the tag, or if it exactly equals a prefix of the tag such that the first tag character following the prefix is
a hyphen (-). The special language asterisk (*), if present in the input list, matches every supported language not
matched by any other language present in the list.

The language quality factor assigned to a supported language tag is the quality value of the longest language in the list
that matches the language-tag. The language that is returned is the supported language that has been assigned the
highest quality factor.

• domain is the localization domain in which to perform the matching.

Creating CSP-Based Web Applications 35

https://datatracker.ietf.org/doc/rfc2616.txt
https://datatracker.ietf.org/doc/rfc1766/

• flag is an optional flag indicating whether system or application messages are to be matched.

12.2 %response.GetText() Method
The %response object includes a GetText() instance method that enables you to retrieve text from the message dictionary
and substitute values for any arguments the message may have.

The method signature is:

 method GetText(language As %String = "",
 domain As %String = "",
 id As %String,
 default As %String,
 args...) returns %String

Where:

• language is an optional RFC1766 code specifying the language. InterSystems IRIS converts this string to all-lowercase.
The default language is the Language property of the %response. If the Language property is not set explicitly, the
language used is determined by the browser settings.

• domain is an optional string specifying the domain for the message. If not specified, domain defaults to the Domain

property of the %response object.

• id is the message ID.

• default is the string to return if the message identified by language, domain, and id is not found.

• arg1, arg2, and so on are the substitution text for the message arguments. All of these are optional, so you can use
GetText() even if the message has no arguments.

36 Creating CSP-Based Web Applications

Localizing Text in a CSP Page

https://datatracker.ietf.org/doc/rfc1766/

13
Authentication Sharing Strategies

This page describes how to configure multiple CSP-based web applications to work as a group in two ways:

• Sharing authentication: If applications do not share authentication, the user must log in to each application that is linked
to by another application separately. Shared authentication allows the user to enter all linked applications with a single
login.

• Sharing data: The applications may want to share and to coordinate global state information.

13.1 Authentication Approaches
The following approaches are available for sharing authentication.

• One-time sharing of login cookies. All applications with the same id share authentication.

• Continuous sharing by sharing sessions (having a By-Session group). In this system, the authentication of the group’s
applications moves as a unit. If a user in an application in a group logs in as a new user, all the applications move to
that user. If one application logs out, they are all logged out.

Applications are run in sessions. Each session has a security context associated with it.

If several applications are placed in the same session, they share authentication. This is called a By-Session group
(session-sharing). In addition, the session may contain user defined data.

• Continuous sharing by matching group identifiers. This is called a By-ID group. In this system, the group shares a
security context. The applications are usually in separate sessions.

Important: In this system, the group does not manage user data, only authentication.

13.2 One-Time Sharing: Login Cookies
Login Cookies hold information about the most recently logged-in user. If you want to keep your users from having to log
in too often, but you want your applications to remain distinct and unconnected, use Login Cookies. This corresponds to
the web application option Login Cookies.

Creating CSP-Based Web Applications 37

For Login Cookies, place each application in a separate session. Then authentication is shared only when an application is
entered for the first time. Login Cookies applications do not form a group. So after login, changes in authentication in one
application do not affect the other applications.

When a user logs in with a password, that authentication is saved in a cookie. If another application with Login Cookies
enabled is entered (for the first time), it uses the authentication saved in the cookie. If the user jumps to a third application
(for the first time) which does not have Login Cookies enabled, the user must enter a username/password.

13.3 By-Session Groups (Session-Sharing)
One way to share authentication and data between applications is to define a by-Session group). In this system, the
authentication of the group’s applications moves as a unit. If a user in an application in a group logs in as a new user, all
the applications move to that user. If one application logs out, they are all logged out.

When applications share a session, they share both authentication and data via the session object.

Sharing a session has potential issues. Session events are picked up only from the original web application. If the link goes
to a page that requires different session events, then these session events do not run. Also, running a page in another web
application with a different security context may require a login; the login might alter the security context of running pages
in the original web application. Before choosing to use By-Session groups, please read Considerations in Choosing Your
Strategy below.

There are two ways to share a session:

• Session Cookie Path: All applications with exactly-matching session cookie paths are placed into the same session.

• CSPSHARE: Putting CSPSHARE=1 in the link to the application page. Use this when the source application’s Session
Cookie Path is different from the target’s Session Cookie Path.

If By-Session sharing is required, then the best solution is to name all applications so they can be given the same Session
Cookie Path. You may have to rename your applications because the Session Cookie Path must be a substring of the
application name.

If this cannot be done and session sharing is required, then you have to put the CSPSHARE parameter in links that jump
from one application to another. The target application page is placed in the same session as the source application’s pages.
The source’s session is determined either from the CSPCHD parameter or the session cookie.

13.3.1 CSPSHARE

When CSP receives a request from a browser it does a series of checks to see if the sessionId it receives is a valid one.
These checks include:

• Whether the User-Agent is the same as that of previous requests from this sessionId

• If cookies are being used, whether this sessionId comes from a cookie or from a CSPCHD parameter

If you pass a CSPSHARE=1 query parameter, a sessionId cannot be passed through a URL, even if the application has been
configured to only use cookies, if the “Prevent Login CSSRF attack” option has been checked. InterSystems recommends
employing this behavior.

If the “Prevent Login CSSRF attack” option has not been checked and CSPSHARE=1, CSP performs no checks and a user
can construct a link to another web application and include the current sessionId, using CSPCHD=sessionId, so that this link
runs in the same session as your existing page. In addition, if CSPSHARE=1 when you construct a link, CSP automatically
inserts the CSPCHD=sessionId in to the link. If you manually insert a link with Write statements, you may need to insert the

38 Creating CSP-Based Web Applications

Authentication Sharing Strategies

sessionId manually. For example, if you have an application that requests an http page from an https page (or an https
page from an http page), add CSPSHARE=1 to the link as follows:

#(..Link()(%request.URL_"?CSPSHARE=1"))#

CSPSHARE=1 forces the link construction to add CSPCHD to share the sessionId even if InterSystems IRIS detects that
cookies are enabled.

See Considerations about CSPSHARE for more information.

13.4 By-ID Groups
Another way to share authentication and data between applications is to define a by-ID group, as follows:

1. Navigating to System Administration > Security > Applications > Web Applications on the Management Portal.

2. Give the applications a common group name in the Group by Id field. This name groups opened applications together.

Groups are in different sessions. The applications do not share data.

The group name is attached to an application, not a namespace. Applications with the same group name share authentication
regardless of namespace.

Authentication is shared within a single browser only.

13.5 Authentication Architecture

13.5.1 Security Context & Sticky Logins

Applications are run in sessions. A session requires a security context in which to run an application. The security context
contains the authentication state.

By-Sessions and By-ID Groups have a sticky login which remembers the security context of the last application used in
the session or group. If a user in a group application logs in as a different user, the sticky login is updated. (The sticky login
is not updated if the user logs in to an unauthenticated application.)

When jumping to an application in a session, the session attempts to use the sticky login appropriate for the target application.
If the sticky login does not match the session’s current security context and the application can accept the authentication
method in the sticky login, the session’s security context is switched to that in the sticky context.

A session’s sticky login is lost when the session is ended. The group’s sticky login is lost when all the sessions containing
any of the group’s applications are ended.

After the initial login, a group has an associated sticky login object which it attempts to use when entering one of the group’s
applications. The sticky login is not updated when an application in the group is entered as UnknownUser as this would
have the effect of moving all other applications in the group to the unauthenticated security context.

If the sticky login contains a two-factor authenticated user, that two-factor authentication is used for non-two-factor appli-
cations, so long as the username authentication matches in the two applications.

Creating CSP-Based Web Applications 39

By-ID Groups

13.5.2 Cascading Authentication

The CSP Server uses precedence when attempting to obtain authentication information for an application. It attempts to
get new authentication information in each of the following events:

• For the first request to a new session;

• When there is an application change within the session;

• When the application is part of a By-id group and the session’s current security context does not match that of the
group’s sticky context;

• When the request contains a username/password pair.

It attempts to get new authentication information sequentially in the following order:

1. Explicit Login: Checks to see if the user entered an authenticated username/password. If they did, the system updates
the application’s authentication group’s context. (This sets the group’s Sticky Login.)

2. Sticky Login: Get the Application’s group’s sticky context. If no sticky login and group-by-session, use session’s
current context.

3. Login Cookie: Use if one exists and is enabled for this application.

4. Unauthenticated: Use Unknown User if enabled for application.

5. Put up Login Page: If all the above fail, then request username/password from user. If called from the %CSP.Session

API, then only username/password is tried. After login, update the group’s sticky login unless just logged in as
UnknownUser.

13.5.3 Log Out or End Session

Authentication is lost when a session is logged out or ended. You can use the following %CSP.Session methods to log out
or end a session:

Recommended: CacheLogout=end
The recommended way to logout of a CSP session is to link to the application home page passing a URL that contains the
string, CacheLogout=end. This ends the current session – releases any license acquired, deletes existing session data,
and removes the security context of the session – before it attempts to run the home page.

If this web application requires authentication, there is no session and no authenticated user. In this case, IRIS does not run
the home page logic but displays the login page instead. When the user submits a valid login this starts this new session
and then displays the home page.

Set EndSession? =1
This kills the session. The session’s sticky context is destroyed. OnEndSession() is called. If the session contains a By-
Session group, then the group is destroyed. If the session contains a By-Id application, then that application is removed
from the group which continues to exist unless this was the only application in the group. Login cookies are unaffected.
By-Session groups lose their data. However, for By-Id groups, the sticky-login for the group is unaffected by a singular
destruction and the other members of the group remain logged in.

In addition, for By-Session groups, the destruction disperses the members of the group and if the member applications are
reentered, it cannot be guaranteed that they will be reintegrated into the same new session or (if they were grouped using
CSPSHARE) sent to diverse sessions.

40 Creating CSP-Based Web Applications

Authentication Sharing Strategies

Session Logout
The session is logged out. Its sticky context is destroyed. If the session contains a by-session group, then all the applications
in the group lose their authentication. If the session contains an application from a by-id group, then group loses its sticky
context and all the applications in the group are logged out.

In addition, OnLogout is called. The login cookie is destroyed.

The session continues to exist, so data is retained for By-Session groups.

Session Logout All
It is possible to log out all session currently authenticated as a particular user.

This zaps the login cookie.

The sessions continue to exist but have not authentication.

13.6 Considerations in Choosing Your Strategy
This section contains some points to consider when you are choosing your strategy.

13.6.1 Considerations for Login Cookies

When deciding whether or not to share via Login Cookies, consider the following points:

• The login cookie is updated to a new user whenever the user logs in with a password.

• Login cookies are not generated for an unauthenticated login (as UnknownUser).

• Login cookies are not generated when logging in through API calls.

• Login cookie sessions are independent once that session has been authenticated. So logging out or timing out in one
session does not affect the other sessions.

• Authentication from a Login-Cookie application cannot be shared with a password-only (non-Login-Cookie) application.
For authenticated applications in a group, for consistent behavior, use Login Cookies for all or for none.

13.6.2 Considerations for Groups

This section contains some points to consider when you are creating authentication groups to share authentication.

• Use session-sharing only when you decide that data must be shared via the session object. By-ID and Login Cookies-
sharing are more robust and predictable.

• When creating groups, be as consistent as possible to create uniform behavior for your targeted users. Do not place an
application in both a By-ID group and a By-Session group. Using the different authentication strategies may cause
unexpected behavior. By-ID takes precedence over By-Session. So if an application has both, it stays synchronized
By-ID.

• Use the same authentication types for all members of the group. In particular, if some applications in the group allow
Login Cookies and others do not, then entering the group via a username/password authenticates the entire group,
whereas entering it via a login cookie authenticates only some of the applications. This can cause confusion among
your users about why sometime a login is required and other times not.

• The CSP server considers every application to be in an Authentication Group. A lone application in a session forms a
single-entity By-Session authentication group.)

Creating CSP-Based Web Applications 41

Considerations in Choosing Your Strategy

• Try not to put unauthenticated-only applications in By-ID groups.

• By-Session groups are fragile; using By-ID is a more robust approach. Since all the information about a group,
including its shared data, is contained in a single session, the group can easily be lost. This is because a session can
time out, that is, after a specific amount of time the session is automatically destroyed. If the user steps away from his
computer or uses an application which is not in the By-Session group, the session may timeout. If one of the applications
in the group marks ENDSESSION=1, the group is dispersed.

• If the browser has open tabs containing pages from the dispersed applications, clicking on them may require multiple
logins, especially if they were originally grouped using CSPSHARE=1. In any case, the data from the original session
is permanently gone.

When a group loses its authentication, refreshing or going to an open page from a group application requires that the
user re-login.

• Ending a session containing a By-Session application requires that the user re-login when refreshing any page of any
application in that by-session group. Killing a session containing a By-ID application does not require any logins unless
that session’s application was the only member of the group.

• Logging out a session logs out all members of the session’s group, even if they are in different sessions. Refreshing
any of the group’s pages requires a new login. However, for By-ID groups, one login logs in the entire group. For By-
Session groups, one login logs in the entire group as long the Web Gateway is able to direct the dispersed applications
back to a newly constructed session object.

• Logging out does not destroy the session, so any session data continues to exist.

• One cannot have same application logged in to two different users in different tabs of the same browser.

• Authentication is shared within a single browser only. This runtime identifier is stored in the %Session object.

• Grouping allows you to share authentication with users that are in the same group (By-ID) or the same session (By-
Session). If you want to share authentication from applications that are outside your specified group, use Login
Cookies. If you want to send authentication to applications outside your specified group, use CSPSHARE=1. (See
Considerations about CSPSHARE.)

13.6.3 Considerations about CSPSHARE

Use CSPSHARE as a last resort.

By-Session application links do not need CSPSHARE=1 in the following cases:

• If the source and target applications have the same group ID.

• If the target page is in the same application as the source page.

• If the target page application’s Session Cookie Path matches the source application’s Session Cookie Path.

13.6.4 Sharing Data

By-Session groups can share data via the session object.

By-ID groups must manage their own data. If the data is stored, for example, in a global, the data could be keyed using the
current user, $Username, or by the group’s runtime ID. The CSP Server assigns each browser a browser-id cookie. When
a By-Id group is created it is assigned a key which is the browser ID concatenated with the group ID. This creates a unique
key, %CSP.Session.BrowserId, which can be used as a key under which to store data.

42 Creating CSP-Based Web Applications

Authentication Sharing Strategies

14
Enabling Logging

This page describes how to enable logging that records CSP activity, which is useful for troubleshooting CSP-based web
applications.

14.1 Enabling and Disabling Logging
Enable logging by entering the following command in the Terminal:

ObjectScript

 Set ^%ISCLOG = 2

You can view logging information in the ^ISCLOG global.

You can turn logging off with either of the following commands:

ObjectScript

 Set ^%ISCLOG = 0
 Kill ^%ISCLOG

14.2 Log Levels
For reference, the log levels are as follows:

• 0 — InterSystems IRIS® data platform performs no logging.

• 1 — InterSystems IRIS logs only exceptional events (such as error messages).

• 2 — InterSystems IRIS logs detailed information, such as method ABC invoked with parameters X,Y,Z
and returned 1234.

• 3 — InterSystems IRIS logs raw information such as data received from an HTTP request.

• 5 — InterSystems IRIS logs OAuth 2.0 information.

Creating CSP-Based Web Applications 43

14.3 ISCLog Details
In ISCLOG, some entries match Event Log header fields as follows:

Event LogISCLOG

Cache-PIDJob

Session-IDSessionId

Request-IDTag

Fields and definitions in ISCLOG are shown in the table below.

Table 14–1: ISCLOG Fields

DefinitionField

CSPServer: Logged from cspServer, cspServer2, %request, %response.%category

CSPSession Logged from %session and parts of cspServer and cspServer2 which
handle a session. This allows watching the lifecycle of a session.

CSPLicenseLogged from parts of cspServer and cspServer2 which handle a licensing.

Gateway RequestLogged from the GatewayMgr, GatewayRegistry, the Gateway request
handler and parts of cspServer2 which handle gateway requests.

1= Exceptions and errors.%level

2=CSPSession information. CSPLicense information. Information from cspServer: the
part of the request handling after the %response, %session, and %request have been
setup.This includes authentication, license handling, redirection, and calling the CSPpage.

3=Information from cspServer2: the part of handling the request which sets up the
%response, %session, %request, and hand-shaking/data transfer with the Web Gateway.

The value of $job when the ISCLOG request was made. Matches the Cache-PID field from
the Event Log header.

%job

Entered when available. The value of sessionid at the time the ISCLOG request was
made. Matches the Session-ID field from the Event Log header.

%sessionid

For the CSP Server, the tag contains the Request id from the gateway (when available).
This matches the Request-ID field from the Event Log header. Other loggers may set this
value to any value.
Available for use by creators of ISCLOG entries. Stores ID of the request sent to it by the
Web Gateway. It can be used as a filter for generation of ISCLOG entries.

 Set ^%ISCLOG("Tag","mytagvalue1")=1
 Set ^%ISCLOG("Tag","mytagvalue2")=1

Only ISCLOG requests with no tag or with tags of "mytagvalue1" or "mytagvalue2" will be
recorded.

%tag

44 Creating CSP-Based Web Applications

Enabling Logging

DefinitionField

The name of the routine currently being executed.%routine

See Message Format below.%message

14.4 Message Format
Messages start with the name of the tag label or method currently being executed. This name is enclosed in square brackets.
[MyMethod] rest of messages.

Messages in the CSPSession category also have CSPSession-Id=sessid after the method name. This is needed as
session events can be logged before the session is created or after it was destroyed, meaning the SessionId field is empty
in the ISCLOG entry.

[MyMethod] CSPSession-Id: 12ty34ui22

Messages in the GatewayRegistry category also have CSPID=cspid(when available) after the method name. This
allows the tracking of an individual gateway request from the API call through the Gateway Request Handler.

 [MyMethod]CSPID:334r43345 rest of message

Creating CSP-Based Web Applications 45

Message Format

A
Reserved URL Parameters

The following URL parameters are reserved, within the context of a CSP-based web application:

IRISUserName

From the login page, contains the username to log in

IRISPassword

From the login page, contains the password of the user designated by IRISUserName

IRISOldPassword

If passed in with IRISUserName and IRISPassword, it contains the current password for the user. The security
routines changes the user’s password to a new value, the one from IRISPassword, such as,
IRISOldPassword=fredsAboutToBeChangedPwd. After the password is changed, the user is logged in
using the new password.

IRISLogout

IRISLogout with no value or any value other than cookie causes the session for this request to be logged out
(but not destroyed.) Logging out destroys the current login cookie and removes any two-factor security tokens
being held in limbo for this session.

IRISLogout=cookie destroys the current login cookie.

IRISSecurityToken

IRISSecurityToken contains the value of a submitted security token from the Login Security Token page,
such as IRISSecurityToken=12345678.

IRISSecuritySubmit

The presence of this name indicates that the user is submitting a security token whose value is associated with
IRISSecurityToken.

IRISSecurityCancel

The presence of this name indicates that the user has cancelled out of the Login Security Token page.

Creating CSP-Based Web Applications 47

IRISLoginPage

Login pages, including custom login pages, contain two sub-pages: one for login and one for returning the security
token value. The page checks the value of IRISLoginPage to determine which subpage to display.
IRISLoginPage=1 indicates the Login subpage should be displayed.

IRISNoRedirect

A page P is requested, but it is unauthenticated, so the Login page is displayed. After the user submits the infor-
mation from the login page, usually the page request for P is redirected back to the browser. (This stops the browser
from asking the user to press the <Resend> button before its shows P.) This behavior can be short-circuited by
passing IRISNoRedirect=1

48 Creating CSP-Based Web Applications

Reserved URL Parameters

B
Special HTML Directives

In the OnPage() callback in a CSP page class, you can use the special directive &html<> to write HTML. This directive
can be a simpler way to construct HTML, although the result does not lend itself to unit testing (because you cannot
examine the result without using a browser).

B.1 &html<> Basics
The special directive &html<> can contain any valid HTML, including multiple lines of HTML. For example:

Class Definition

Class GCSP.HTML Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 &html<<!DOCTYPE html>
 <html lang="en" dir="ltr">
 <body>
 <h1>Basic Page</h1>
 <div>No double quotes needed "here"</div>
 </body>
 </html>>

 Quit $$$OK
}

}

B.2 Expressions within &html<>
Sometimes it is convenient to include expressions within the HTML contained in the directive &html<>. There are two
possibilities:

• Expressions evaluated at compile time. For this, you can use the following syntax:

##(expression)##

This kind is known as a CSP compile-time expression.

• Expressions evaluated at run time. For this, you can use the following syntax:

#(expression)#

Creating CSP-Based Web Applications 49

Where expression is any ObjectScript expression. This kind is known as a CSP run-time expression.

In either case, simply include the syntax at the position where the expression is needed (not performing any sort of concate-
nation). Here is an example:

Class GCSP.HTML1 Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 &html<<!DOCTYPE html>
 <html lang="en" dir="ltr">
 <body>
 <h1>Basic Page</h1>
 <div>This class was compiled at ##($zdatetime($h,3))##</div>
 <div>This class was viewed at #($zdatetime($h,3))#</div>
 </body>
 </html>>

 Quit $$$OK
}

}

50 Creating CSP-Based Web Applications

Special HTML Directives

C
CSP Error Codes

This page describes causes of errors that can occur within a CSP-based web application, as well as approaches to solving
them. Some of these errors apply only in tag-based development but are included here for simplicity.

Table III–1: CSP Error Codes, Error Messages, and When Reported

When ReportedError MessageError
Code

Reported when calling %apiCSP to add attributes to a rule if you
specify a rule name that does not exist.

Rule '%1' does not exist5902

Reported if you attempt to add or delete a rule but do not provide
a name for the rule.

Rule name is required5903

Reported if you did not supply a required attribute for a tag in the
CSP page. The page cannot compile without this required
attribute.

Attribute '%2' is required for tag
'<%1>' on line number %3

5904

Reported if the value of an attribute in a CSP page is not a valid
choice. For example if you define <script language="Cache"
runat="XXXXX">, the runat value is not a valid choice. The
CSP compiler cannot compile this page and reports this error.

The value of attribute %1, '%2',
is invalid, on line number %3

5905

Reported if you attempt to create an instance of %CSP.Session

without supplying a session ID in the %New() method. For
example, Set session=##class(%CSP.Session).%New()'
reports this error but Set
session=##class(%CSP.Session).%New(1234)' does not
as it passes the session ID 1234.

Session ID is missing5906

Reported if you attempt to load an existing %CSP.Session but
pass the %OpenId() a session ID that is not stored in InterSystems
IRIS® data platform.

Session ID '%1' does not exist5907

Reported by the CSP compiler if it cannot create the class
corresponding to the CSP page.

Failed to create class '%1': %25908

Reported if the CSP compiler detects that you opened a tag but
never closed it (if the tag specifies that it needs a closing tag in
the rule definition).

There is no closing tag for the
tag <%1> on line number %2

5909

Creating CSP-Based Web Applications 51

When ReportedError MessageError
Code

Reported if the character set specified in the CSP page to output
this page is not installed in InterSystems IRIS. This could be the
character set specified in the %response.CharSet property in the
OnPreHTTP() method. See the charset property of the class
%CSP.Page. Check that you intend to use the character set
reported in the error and if so, check that this is installed in
InterSystems IRIS. or by setting the %response.CharSet property
in the OnPreHTTP() method.

Character Set '%1' not installed,
unable to perform character set
translation

5911

Reported if you request a CSP page that does not exist.You
may have mistyped a URL or a link on another CSP page may
be incorrect. Check if the page exists on the server and, if not,
then look for where the link came from. If the page should exist,
make sure the web application settings are correctly set to point
to the right directory and check that the CSP file exists on the
disk. This error only occurs if the autocompile option is on and
the CSP engine tries to compile this page and cannot find the
file.

CSP Page '%1' does not exist5912

Reported when the application part of the URL cannot be found
in the web application list. For example, you try to load the page
/cspx/samples/menu.csp with a type of cspx rather than csp, then
InterSystems IRIS cannot find the web application. Check the
list of applications by navigating to System Administration > Security

> Applications > Web Applications in the Management Portal and
check the command for mistakes.

Web Application '%1' does not
exist

5914

Reported if the license limit has been reached so this new request
for a CSP session cannot be granted.You may be able to reduce
the default timeout on CSP sessions specified in the web
application configuration or you need to look at buying more
licenses.

Cannot allocate a license5915

Reported when you try to reach a private page by entering the
URL instead of being redirected from another CSP page which
includes the encrypted token to allow access to this page, or by
using an invalid encrypted token to allow access to this private
page.

Illegal CSP Request5916

Reported when you attempt to use an unsupported HTTP method.
HTTP methods supported are GET, POST, HEAD. We do not
support other HTTP methods in the CSP server at present. It
can also be caused by an incompatible version of the Web
Gateway talking to the CSP server.

HTTP method '%1' not
supported by CSP

5917

52 Creating CSP-Based Web Applications

CSP Error Codes

When ReportedError MessageError
Code

Reported if the CSP request contains encrypted data, but the
session is a brand new session, so there is no way that the
decryption key can match the encrypted data. Typically this is
because the session has timed out.Then the user subsequently
does something in the browser to cause another request.You
can increase the session timeout value or use the error
mechanism to redirect the user to an initial page so they can
start their action again.

You are logged out, and can no
longer perform that action

5918

Reported typically when passing an encrypted string to
InterSystems IRIS from the CSP page where the decryption key
does not match the key used to encrypt this data. This can be
caused by the user tampering with the URL manually or by
anything that could change the value of the encrypted string
between it being generated in InterSystems IRIS and returned
back to InterSystems IRIS in the next HTTP message.

The action you are requesting
is not valid

5919

Each web application is tied to a specific namespace in
InterSystems IRIS. This error is reported if you attempt to do
something such as compiling a page from /csp/samples/loop.csp

in the USER namespace when the /csp/samples application is tied
to the SAMPLES namespace.

Must run this CSP page from
namespace '%1'

5920

Reported if the configuration of the web application is missing
the namespace. This generally indicates that the CPF file has
been badly edited by hand as the Management Portal does not
allow a web application to be created without a namespace.

The web application '%1' must
specify a namespace to run in

5921

Reported by the %Net.HttpRequest object when it times out waiting
for a response from the HTTP server it is talking to.

Timed out waiting for response5922

Reported If more than 4 redirects are detected in one page. The
compiler assumes that there is a loop. If a CSP page uses the
ServerSideRedirect to jump to another page there is a possibility
that page A.csp could redirect to B.csp which redirects to A.csp

creating a loop.

Redirected %1 times, appears
to be a redirection loop

5923

When an error in a CSP page occurs at runtime, the CSP engine
redirects to a user-specified error page that can handle the error
in any manner it wishes. If, however, this user-specified error
page does not exist or there is an error in generating this error
page, then the CSP engine logs the fact that something has gone
wrong using BACK^%ETN and reports this error message. As this
error may appear on a production system if there is a bug in the
user— written error page, the message is deliberately vague.To
resolve this error, first check that the error page specified in the
web application exists and then look at possible bugs in this error
page.

An error occurred and the
specified error page could not
be displayed - please inform the
web master

5924

Creating CSP-Based Web Applications 53

CSP Error Codes

When ReportedError MessageError
Code

Reported if the <script language="Cache"> tag is missing
the required attribute runat (to tell the CSP compiler when this
code should run), or themethod attribute to create a new method.

<SCRIPT LANGUAGE=Cache>
tag is missing either RUNAT or
METHOD attribute, on line
number %1

5925

Reported if you try to use a server side redirect after data has
been written to the browser .If you attempt to use the
%response.ServerSideRedirect feature to redirect to another
page, this must be done before any data has been written back
to the browser. Typically this means you must do this in the
OnPreHTTP() method of the page.

Unable to redirect as HTTP
headers have already been
written and flushed

5926

Reported if you have two CSP files with identical names in
different applications in the same namespace: For example, if
you have two CSP applications, /test and /anothertest, both
in the USER namespace. which are in different directories on
the InterSystems IRIS server, each of which has a file test.csp. If
you have autocompile turned on and you enter the URL
/test/test.csp the CSP compiler compiles this page into the class
csp.test. If you enter the URL /anothertest/test.csp, it tries to load
this page to create the class csp.test, finds it already exists for a
different application and reports this error. If it did not do this,
you would see very poor performance as each request would
recompile the entire page. Either avoid using identical file names
in the same namespace or change the package defined in the
web application, which defaults to csp. For example,
change/anothertest to use package name package.Then when
it compiles test.csp, it creates the class name package.test which
does not conflict with the other application that uses csp.test.

Unable to load page '%1'
because its class name conflicts
with the class '%2' that is
already loaded

5927

Reported if you call a function that needs to be called in the
OnPreHTTP() method of the page so that it can modify some
parameters before any data is output to the browser. Move this
call to the OnPreHTTP() method to resolve this.

Can only call this method/set
this value in OnPreHTTP()
before page has started to be
displayed

5931

Reported if the version of the Web Gateway you are using does
not support this action. Either do not use this feature or upgrade
the version of the Web Gateway to a later version.

Action not valid with this version
of the Web Gateway on the web
server

5932

Reported if an unexpected error condition has occurred inside
the CSP engine. Please report this to InterSystems support.

The CSP server had an internal
error: %1

5933

When a CSP page is autocompiled it is first locked to make sure
that two jobs do not both attempt to compile the same page at
the same time. If the lock is not released by the other job in 60
seconds, it assumes the compile failed for some reason and
reports this error message.Try recompiling this page from Studio
to see if any errors are reported.

Failed to lock CSP page.5954

Reported if the query to determine the list of CSP applications
is invalid. This error should never be seen on a working system.

CSPAppList query: invalid data
in Fetch().

5955

54 Creating CSP-Based Web Applications

CSP Error Codes

When ReportedError MessageError
Code

Reported if the directory pointed to by the web application does
not exist in the file system.

Directory '%1' for Web
Application '%2' does not exist

5956

Reported when a request from a browser comes in. The
information sent by the browser is converted into the current
InterSystems IRIS default locale and there is an error. To debug
the conversion, isolate the information being sent by the browser
and convert it from that character set manually in a test program.

Unable to convert character set
'%1'.

5961

Reported when calling %session.ForceNewSession() if there
are no new slots in this session Id.

Unable to allocate new session.5962

Reported when setting the internal log level if the level is outside
the allowed range.

Invalid SysLog level: %1.5963

Creating CSP-Based Web Applications 55

CSP Error Codes

	Table of Contents
	1 Introduction to CSP-Based Web Applications
	1.1 Components of a CSP-Based Web Application
	1.2 Information Flow

	2 Configuring a CSP-Based Web Application
	2.1 General Settings for a CSP-Based Web Application
	2.2 Security Settings
	2.3 Session Settings
	2.3.1 About the SameSite Attribute

	2.4 CSP File Settings
	2.5 Custom Pages
	2.6 Enabling Access to Pages and Classes
	2.6.1 Background Information on the ^SYS Global
	2.6.2 Category: AllowClass
	2.6.3 Category: AllowPrefix
	2.6.4 Category: AllowPercent

	2.7 How the CSP Server Handles Static Files
	2.7.1 Character Encoding of JavaScript Files

	3 Creating a CSP Page Class
	3.1 Basics
	3.2 Controlling the Default Response Headers
	3.3 Other Callbacks
	3.3.1 OnPreHTTP()
	3.3.2 OnPostHTTP()

	3.4 Best Practice for Links
	3.5 Tag-Based Development (Legacy)

	4 Examining the Request
	4.1 URL
	4.2 URL Parameters
	4.3 Form Data
	4.4 CGI Variables
	4.5 MIME Data

	5 Managing Sessions
	5.1 Session Creation
	5.2 Basic Properties
	5.3 Managing Session Data
	5.4 Deleting Session Data
	5.5 Customizing Session Handling (Event Class)
	5.6 Preserving Context

	6 Ending Sessions
	6.1 Provide Logout Option
	6.2 Have the Server End the Session
	6.3 Session Timeout
	6.3.1 Modifying the Timeout Programmatically

	6.4 Customizing End Behavior
	6.5 Session End Details

	7 Saving and Using Cookies
	7.1 Saving Cookies
	7.1.1 The SameSite Attribute

	7.2 Accessing Cookies

	8 Updating a Page without Reloading
	8.1 Basics
	8.2 Example

	9 Handling Errors
	9.1 Adding a Custom Error Page
	9.2 Handling Errors Before License Grant

	10 Controlling Access to CSP Pages
	10.1 Making a Page Private
	10.2 Requiring Permissions to Use the Page

	11 Encryption
	11.1 Encrypting and Decrypting Values
	11.2 Encrypting URL Parameters

	12 Localizing Text in a CSP Page
	12.1 Setting the Default Runtime Language
	12.2 %response.GetText() Method

	13 Authentication Sharing Strategies
	13.1 Authentication Approaches
	13.2 One-Time Sharing: Login Cookies
	13.3 By-Session Groups (Session-Sharing)
	13.3.1 CSPSHARE

	13.4 By-ID Groups
	13.5 Authentication Architecture
	13.5.1 Security Context & Sticky Logins
	13.5.2 Cascading Authentication
	13.5.3 Log Out or End Session

	13.6 Considerations in Choosing Your Strategy
	13.6.1 Considerations for Login Cookies
	13.6.2 Considerations for Groups
	13.6.3 Considerations about CSPSHARE
	13.6.4 Sharing Data

	14 Enabling Logging
	14.1 Enabling and Disabling Logging
	14.2 Log Levels
	14.3 ISCLog Details
	14.4 Message Format

	Appendix A: Reserved URL Parameters
	Appendix B: Special HTML Directives
	B.1 &html<> Basics
	B.2 Expressions within &html<>

	Appendix C: CSP Error Codes
	Index

