InterSystems-

IRIS Data Platform

High Availability Guide

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

High Availability Guide

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Failover Strategies for High Availability ... 1
1.1 NO FAIOVET SIFAIEGY ...veveveieeiiieeiiiteesteest ettt sttt b et b e b e e b e b et et nnebe e 1

A V[O 111 (- PP 2

L3 VIrtUALIZAEION HA .ottt bbb bbbt 2

1.4 InterSystems RIS MIITOTING ...vviveieieiisieieie e e et re e sttt b e e e s e e e e e eneeresneans 3

1.5 Using Distributed Caching with a Faillover Strategyccccvvvvevveieeiie e 4

2 MIFTOFING OVEIVIEBW ...ttt ettt sttt bbb e e et et e st e b e e bt e ae e b e e be e bt ebesbesbesbenbenbese e b e nbe e ene e 5
3 Mirroring Architecture and PIANNING ..o e 7
3.1 MIITOr COMPONENTESveeeteieterieie sttt sttt sttt eb ettt st et se bbbt sb bt s b s e s b et e b et ebe e et e e ebeneebe e 7
3.1.1 Failover Mirror IMEMDETScviuiiiirieirieire sttt 7

3.1.2 ASYNC MirrOr MEMDELS ..o.viiviiiieiieicieee ettt sttt e a e re st e snesresresresre e es 8

TN 15107 Vo 11| TSRO 11

TR N o] | (=] TSSOSO USSP PTURORPRIN 12

3.2 Mirror SYNCAFONIZATIONc..cveiieiirieierieie ettt sttt 12

3.3 Automatic Failover MECHANICScivivireeriecee e 13
3.3.1 Requirements for Safe Automatic FailOVErc.coviviviirienin i 13

3.3.2 AULOMALIC FAIOVEN RUIES ..ottt 14

3.3.3 Mirror Response to Various Outage SCENANIOSccveereeueeereiiriesiesiesiesieseeseesieseeeeneas 15

3.3.4 Locating the Arbiter to Optimize Mirror Availability ..., 17

3.3.5 Automatic Failover Mechanics Detailedcc.cooviiiiiiieienineeeee e 18

3.4 Preventing AULOMALIC FAITOVETccoiiiiiiiirieireeeee e 22

3.5 Mirroring COMMUNICALIONc.vevveieirceisese s e e e e st b sre e e sr e ae e e enaenens 22
3.5.1 Network Configuration CONSIAEIAtiONSccccvveierirerereerieiereereeesesre e sre e sre e see s 22

3.5.2 Network Latency CONSIAEIAtIONScvecvveieiieeieiteeriesee e see e see et e e e e et e sreenes 23

3.5.3 Mirror Traffic COMPIESSIONccviiuiriereiieie ettt bbb et 24

3.5.4 Mirror Member NetwWOrk AGAIESSEScivirvirierierieieiieiieeeteeese e eneas 24

3.6 Sample Mirroring Architecture and Network Configurationsccecveevveevenienenenerieieaeennns 26

3.6.1 Mirroring Configurations within a Single Data Center, Computer Room, or Campus .. 26
3.6.2 Mirroring Configurations For Dual Data Centers and Geographically Separated Disaster

R ETol 01V o TSRV RPRTRPN 32

3.7 Redirecting Application Connections Following Failover or Disaster ReCOVeryc.c....... 35
3.7.1 BUIlt-IN MECNANISMS ...ttt ettt st enea 35
3.7.2 EXternal TECANOIOTIEScueviuiiitirieie ettt 36
3.7.3 Planning a Mirror VArtual [P (VIP)ooviiiiieie et aenens 37

3.8 Mirroring in a Virtualized ENVIFONMENT ...c.vcveieiiece et 37
3.9 Mirroring in a Cloud ENVIFONMENTccveiiiieieciese et e st sne e 38
3.10 Limiting Access to the Backup Failover Member ... 39
3.11 Installing Multiple Mirror Members on a Single HOSLccooiriieniineireenceesce s 39
4 CONFIGUIING IMITTOTING .ottt bbbt b ettt 41
4.1 Automated Deployment Methods fOr IMIITOrSccvveceiericieee s 41
4.1.1 Deploy Mirrors Using InterSystems Cloud Manager (ICM)cccocevevvvvcvieiesieeeennenns 41
4.1.2 Deploy Mirrors Using the InterSystems Kubernetes Operator (IKO)ccccoevvenennne 41
4.1.3 Deploy Mirrors Using Configuration MEIQEccccevererenerienenienie e 42

4.2 Mirror Configuration GUIAEIINESc.ciriiiieiiiii e 42
4.3 INSElliNG the ATDITET .o.eieiiieic bbb 44
4.4 Starting the ISCAGENT ..eveie ettt sr e et et e e s e e e e eneeresresnenrenrenes 45

High Availability Guide

4.5 Securing Mirror Communication With TLS SECUTILYc.ccvevviiieiiiieie e 45

4.6 Using the "MIRROR ROULINEcceiiiiiiiriiiiieie ettt snene e 45
4.7 CreatiNg & MITTOT ..c.viuiiitiiitiiet ettt b bbbt e bbbt bbb b e es 46
4.7.1 Create a Mirror and Configure the First Failover Memberccoocoviinerneniiniennns 46
4.7.2 Configure the Second Failover MEMDBENcoveveieiienrsere e 48
4.7.3 Authorize the Second Failover Member or Async (TLS Mirrors Only)cccceevevveene. 49
4.7.4 Review Failover Member Status in the Mirror MONItOrcccooeievinincnineneneie 50
4.7.5 Configure ASYNC Mirror IMEMDETScc.coviiiiiriie et 50

4.8 Adding Databases t0 @ IMIITOFc.ciuiiiiiiriiiietireeie ettt 52
4.8.1 Mirrored Database CONSIAEIALIONSeieieereerierierieierieeeeeee e e e e e see e neeneens 53
4.8.2 Create @ Mirrored Databasecccereiririririnieirieeseeseese e 54
4.8.3 Add an Existing Database t0 the MIITOrccccvevierieiieieciececes e 54
4.8.4 Activating and Catching Up Mirrored Databasescccoceeirerenenenienenenieneneeeeeenes 56

4.9 Removing (Deleting) & MITTOTc.cociieiiiiieieie ettt 57
4.10 Editing or RemoVving Mirror MEmMDETSccociieiriinieeseenieese et 58
4.10.1 Clearing the FailoverDB Flag on Reporting Async Mirror Membersc.ccceenee. 58
4.10.2 Removing the Mirrored Database Attribute When Removing a Mirror Member 59
4.10.3 Editing or Removing an ASYNC MEMDETccceiveveieieieeesese e sre e s 59
4.10.4 Editing or Removing a Failover MEMDEKccoccveiiiiieiisierceese e 61
4.10.5 Remove Mirrored Databases from @ IMIFTOrcoeieiiiiniene e 63
4.11 Using Managed Key ENCryption in @ MirTOrcccooeiriiniineineneseeseeseesieseee s 64
4.11.1 Encrypting Mirrored Databasescccoveireiriiinirees s 64
4.11.2 Activating Journal ENcryption in @ MITTOFcccovveienieiierisese e 65
4.12 Configuring Application Server Connections t0 a MiITOrccccvveverierenenesereeeees e 66
4.13 Configuring @ Mirror Virtual 1P (VIP) ..ouv ottt se e 68
4.13.1 Configuring InterSystems IRIS for a Mirror VIP ..o 69
4.13.2 Configuring @ MIITOr VIPcouoiiiiiiiiie et 69
4.14 Configuring the ISCAGENT ..ottt 70
4.14.1 Starting and Stopping the ISCAQENTcvcvereeeese e 70
4.14.2 Customizing the ISCAGENT ...eceiveveeieeer et e e resresresre e 73
4.15 Configuring the Quality of Service (Q0S) Timeout SEttiNGcccceviveieerivecire e 74
4.16 Configuring Parallel DeJoUrNalingcoceeeeeierieieieieee ettt s ene 74
4.17 Using the A~ZMIRROR ROULINE ...c.viviiitiieiirieiiieeiesieiesieest ettt 75
4.18 Configuring Mirroring for Healthcare ProduCtsc.coceoieriieniensense e 76
5 ManagiNng MIFTOFING ..ottt bbb b et b sttt sttt es 79
5.1 MONITOTING IMITTOTS w.oviitiiitiiitiiieic ettt sttt sttt b bbb b 79
5.1.1 Using the Mirror MONITOEcooiiiiiniiie ettt 79
5.1.2 Using the "MIRROR Status MONIOrccocoeiiinieiieic s 85
5.1.3 Monitoring Mirroring CommuniCation PrOCESSESccveveererireresienesiesieseesieseeeenens 86

5.2 Updating Mirror Member NetwOrk AJUIESSEScoveviveerieiieriieese ettt 87
5.3 Resolving Network Address Validation ErTOrSccevvevveieiniesisnsese e 88
5.4 Authorizing X.509 DN Updates (TLS ONlY) ...ocovviviiiiieienie e e 89
5.5 Promoting a DR Async Member to Failover Memberc.ccccoveiiiieiiicvc e, 89
5.6 Demoting the Backup t0 DR ASYNC ...cvciriiirieirieiiieie ettt 92
5.7 Rebuilding @ Mirror MEMDEEcviiiiii e 93
5.8 Stopping Mirroring on Backup and ASYNC MEMDETScccvriirrinninieiriecnees e 94
5.9 Managing Database DejourNaliNgccccoevveieiiiiesiesnsesesese e seesie e ee e e e sne e s 94
5.9.1 Managing Dejournaling on the Backup or @ DR ASYNCcccccvevreiveennseseseseeseeniesnenns 95
5.9.2 Managing Dejournaling on a RePOrting ASYNCcoeieiririeinenenese e 95
5.9.3 Using a Dejournal Filter on a Reporting ASYNCcvocireeireereinieeneeseeeseesieesnens 96

High Availability Guide

5.10 General Mirroring CoNSIAEIAtiONSccceciueieeierieieseerteseeste e steseesresee e see e e aesreeaesreens 97

5.10.1 MIITOE APIS <.ttt bbbt bbb sttt e et b e et e besbesbesbe e 97
5.10.2 External Backup of Primary Failover MemMDErccccooviiiiiniininereesecseis 97
5.10.3 Upgrading InterSystems IRIS on Mirror MEMDEISccverviiriereenieienieenieeneenes 98
5.11 Database Considerations fOr IMIrTOIINGc.coveiveieereieriese s 98
5.11.1 InterSystems IRIS Instance Compatibilityccccoevveireiinieiieice e 98
5.11.2 Member Endianness CONSIAEIAtIONSccorveireerirreerienrienreeseeseesree s 99
5.11.3 Creating a Mirrored Database Using the "DATABASE ROULINEccccovvvvrerinenennenn. 99
5.11.4 Recreating an Existing Mirrored Database Using the "DATABASE Routine 100
5.11.5 Mounting/Dismounting Mirrored Datahasesc.ccerrerrernieneieneieseesee e 100
5.11.6 Copying Mirrored Databases to Nonmirrored SYStemMScccevvvrerierereereerierennennnns 100
5.12 Production Considerations for MIrTOINGcccceveieriereerieieniese e s s seese e see e eresneenens 100
5.12.1 How InterSystems IRIS Handles Interoperability-Enabled Namespaces with Mirrored
[- ST U U PP U R UPUROTTO 100
5.12.2 Recommended Mirroring Configuration for InterSystems IRIS Productions 101
5.12.3 How Production Autostart Works in a Mirrored Environmentccccocveevvivncvnnnn. 101
5.13 Mirroring Considerations for Healthcare Productsccocvevviviieveninis e seseseens 101
6 MIrror OULAgE PrOCEAUIESccviveiiesie e se e ste sttt e se et te e s tesre e s b be s tesa et e e e e eneeneeresneaneas 103
6.1 Planned OUuLage PrOCEAUIESccciviiieitiiiesieceesteetesteesae e e ste st ste st e stessaesbeensesneeneesneeneesneeneens 104
6.1.1 Maintenance of Backup Failover Member ... 104
6.1.2 Maintenance of Primary Failover MEMDEN ..o 105
6.1.3 Avoiding Unwanted Failover During Maintenance of Failover Members 105
6.1.4 Upgrade of InterSystems IRIS InsStances in @ Mirrorccovvevveeneeesinsiese e see s 105
6.2 Unplanned Outage ProCEAUIESccccvciieiirerieiesieieeseeesresesre e steseeseesaeseeseseesasessesressessens 105
6.2.1 Unplanned Outage of Backup Failover MemDEr ..o 106
6.2.2 Unplanned Outage of Primary Failover Member With Automatic Failover 106
6.2.3 Unplanned Outage of Primary Failover Member When Automatic Failover Does Not Occur
.. 106
6.2.4 Unplanned Isolation of Primary Failover MemDErccocvvevireiiereccieececc e 109
6.2.5 Unplanned Outage of Both Failover MEmDEIScccccvvviieievineie e 110
6.3 Disaster RECOVErY PrOCEAUIESccieiviiieieieesteseestesee s e te e e te st e sraeste s e s beseesreeeesneeneens 110
6.3.1 Manual Failover to a Promoted DR Async During @ DiSasterccocceerereieeienenncns 111
6.3.2 Planned Failover to a Promoted DR ASYNCc.ooiiriirieirieiniecsieeseeesieesne e 114
6.3.3 Temporary Replacement of a Failover Member with a Promoted DR Async 115

High Availability Guide

List of Figures

Figure 1-1: Failover Cluster CONTIQUIALIONc.couiiiiiiiiiie ettt 2
Figure 1-2: Failover in a Virtual ENVIFONMENTccoriiiiiiieenieesee st 3
Figure 1-3: INterSysStems TRIS IMIITOF ..c.oiuiiiiiiiiieirieree et 4
Figure 2—1: InterSystems IRIS IMITTOT ..c.oviieieicieieece st sne e e s 5
Figure 3—1: Mirror FailoVer MEMDEIS ...c..cvciieieccse st ettt sttt st 8
Figure 3-2: Multiple DR Async Members Connected to @ Single Mirrorc.ccoceveeeieieecicinicicncnen 9
Figure 3-3: Single Reporting Async Member Connected to Multiple Mirrorscccoevvnienenennene 10
Figure 3-4: Single Failover Member with Multiple ASync MemDErScoeireiineiirernesesee, 11
Figure 3-5: Mirror Failover Members and ArDITEr ... 12

High Availability Guide

List of Tables

Table 3-1: Mirror Responses to Lost Connections in Arbiter MOdecccooeviienieienienenenene e 20
Table 5-1: Mirroring Processes on Primary Failover MEMDErcccccooiiieiineiineineeneeneeseesee 86
87

Table 5-2: Mirroring Processes on Backup Failover/Async Memberccccvevrninninnineieneennns

High Availability Guide vii

Failover Strategies for High Availability

As organizations rely more and more on network-based applications, it is vital to make databases as available and reliable
as possible. This guide explains how InterSystems IRIS® data platform provides highly available and reliable data storage,
and describes strategies for recovering quickly from outages and failures while maintaining the integrity of your data.

InterSystems IRIS® provides several high availability (HA) solutions, and easily integrates with all common HA configu-
rations supplied by operating system providers.

The primary mechanism for maintaining high system availability is called failover. Under this approach, a failed primary
system is replaced by a backup system; that is, processing fails over to the backup system. Many HA configurations also
provide mechanisms for disaster recovery, which is the resumption of system availability when failover mechanisms have
been unable to keep the system available.

There are five general approaches to InterSystems IRIS instance failover for HA (including not implementing an HA
strategy). This topic provides an overview of these approaches, while the remainder of this guide provides procedures for
implementing them.

It is important to remember that in all of these approaches except mirroring, a single storage failure can be disastrous. For
this reason, disk redundancy, database journaling as described in Journaling, and good backup procedures, as described in
Backup and Restore, must always be part of your approach, as they are vital to mitigating the consequences of disk failure.

If you require detailed information to help you develop failover and disaster recovery strategies tailored to your environment,
or to review your current practices, please contact InterSystems Worldwide Response Center (WRC).

1.1 No Failover Strategy

The integrity of your InterSystems IRIS database is always protected from production system failure by the features described
in the Data Integrity Guide. Structural database integrity is maintained by InterSystems write image journal (W1J) technology,
while logical integrity is maintained through journaling and transaction processing. Automatic WIJ and journal recovery
are fundamental components of the InterSystems errorproof database architecture.

With no failover strategy in place, however, a failure can result in significant down time, depending on the cause of the
failure and your ability to isolate and resolve it. For many applications that are not business-critical, this risk may be
acceptable.

Customers that adopt this approach share the following traits:

» Clear and detailed operational recovery procedures, including journaling and backup and restore
» Disk redundancy (RAID and/or disk mirroring)

» Ability to replace hardware quickly

High Availability Guide 1

https://www.intersystems.com/support-learning/support/

Failover Strategies for High Availability

e 24X7 maintenance contracts with all vendors

* Management acceptance and application user tolerance of moderate downtime caused by failures

1.2 Failover Cluster

A common approach to achieving HA is the failover cluster, in which the primary production system is supplemented by
a (typically identical) standby system, with shared storage and a cluster IP address that follows the active member. In the

event of a production system failure, the standby assumes the production workload, taking over the programs and services
formerly running on the failed primary, including InterSystems IRIS.

InterSystems IRIS is designed to integrate easily with failover solutions provided at the operating system level, specifically
IBM PowerHA SystemMirror or Red Hat Enterprise Linux HA. A single instance of InterSystems IRIS is installed on the
shared storage device so that both cluster members recognize the instance, then added to the failover cluster configuration
so it will be started automatically as part of failover. If the active node becomes unavailable for a specified period of time,
the failover technology transfers control of the cluster IP address and shared storage to the standby and restarts InterSystems
IRIS on the new primary. On restart, the system automatically performs the normal startup recovery, with W1J, journaling,
and transaction processing maintaining structural and data integrity exactly as if InterSystems IRIS had been restarted on
the failed system.

The standby server must be capable of handling normal production workloads for as long as it may take to restore the failed
primary. Optionally, the standby can become the primary, with the failed primary becoming the standby once it is restored.

Figure 1-1: Failover Cluster Configuration

Connections to InterSystems IRIS over LAN routed to PRIMARY Connections rerouted to STANDBY

STANDBY

PRIMARY OUTAGE

Under this approach, failure of the shared storage device is disastrous. For this reason, disk redundancy, journaling and
good backup and restore procedures are critically important in providing adequate recovery capability.

1.3 Virtualization HA

Virtualization platforms generally provide HA capabilities, which typically monitor the status of both the guest operating
system and the hardware it is running on. On the failure of either, the virtualization platform automatically restarts the
failed virtual machine, on alternate hardware as required. When the InterSystems IRIS instance restarts, it automatically
performs the normal startup recovery, with W1J, global journaling, and transaction processing maintaining structural and
data integrity as if InterSystems IRIS had been restarted on a physical server.

2 High Availability Guide

InterSystems IRIS Mirroring

Figure 1-2: Failover in a Virtual Environment

Connections to Intersystems IRIS on VM over LAN

SERVER A SERVER B

SERVER A SERVER B

Virtual
maching

Virtual
maching:

RIS

SERVER AQUTAGE

In addition, virtualization platforms allow the relocation of virtual machines to alternate hardware for maintenance purposes,
enabling upgrade of physical servers, for example, without any down time. Virtualization HA shares the major disadvantage
of the failover cluster and concurrent cluster, however: failure of shared storage is disastrous.

1.4 InterSystems IRIS Mirroring

InterSystems IRIS database mirroring with automatic failover provides an effective and economical high availability solution
for planned and unplanned outages. Mirroring relies on data replication rather than shared storage, avoiding significant
service interruptions due to storage failures.

An InterSystems IRIS mirror consists of two physically independent InterSystems IRIS systems, called failover members.
Each failover member maintains a copy of each mirrored database in the mirror; application updates are made on the primary
failover member, while the backup failover member’s databases are kept synchronized with the primary through the
application of journal files from the primary. (See Journaling for information about journaling.)

The mirror automatically assigns the role of primary to one of the two failover members, while the other failover member
automatically becomes the backup system. When the primary InterSystems IRIS instance fails or otherwise becomes
unavailable, the backup automatically and rapidly takes over and becomes primary.

A third system, called the arbiter, maintains continuous contact with the failover members, providing them with the context
needed to safely make failover decisions when they cannot communicate directly. Agent processes running on each failover
system host, called | SCAgents, also help with automatic failover logic. The backup cannot take over unless it can confirm
that the primary is really down or unavailable and will not attempt to operate as primary. Between the arbiter and the
ISCAgents, this can be accomplished under almost every outage scenario.

Alternatively, when using a hybrid virtualization and mirroring HA approach (as discussed later in this section), the virtu-
alization platform can restart the failed host system, allowing mirroring to determine the status of the former primary
instance and proceed as required.

When the mirror is configured to use a virtual 1P address (VIP), redirection of application connections to the new primary
is transparent. If connections are by ECP, they are automatically reset to the new primary. Other mechanisms for redirection
of application connections are available.

When the primary instance is restored to operation, it automatically becomes the backup. Operator-initiated failover can
also be used to maintain availability during planned outages for maintenance or upgrades.

High Availability Guide 3

Failover Strategies for High Availability

Figure 1-3: InterSystems IRIS Mirror

Connections to InterSysterrs IRIS routed to current primary using vittual IP, ECP, or other failover-capable mechanism

PRIMARY
RIS Database
Synchronization

The use of mirroring in a virtualized environment creates a hybrid high availability solution combining the benefits of both.
While the mirror provides the immediate response to planned or unplanned outages through automatic failover, virtualization
HA software automatically restarts the virtual machine hosting a mirror member following an unplanned machine or OS

outage. This allows the failed member to quickly rejoin the mirror to act as backup (or to take over as primary if necessary).

For complete information about InterSystems IRIS mirroring, see Mirroring.

1.5 Using Distributed Caching with a Failover Strategy

Whatever approach you take to HA, a distributed cache cluster enabled by the Enterprise Cache Protocol (ECP) can be
used to provide a layer of insulation between the users and the database server. The application servers in a distributed
cache cluster are designed to preserve the state of the running application across a failover of the data server. Users remain
connected to the application servers when the data server fails, and user sessions that are actively accessing the database
during the outage pause until the data server becomes available again through either completion of failover. Depending on
the nature of the application activity and the failover mechanism, some users may experience a pause until failover completes,
but can then continue operating without interrupting their workflow.

Data servers in a distributed cache cluster can be mirrored for high availability in the same way as a stand-alone InterSystems
IRIS instance, and application servers can be set to automatically redirect connections to the backup in the event of failover.
For detailed information about the use of mirroring in a distributed cache cluster, see Configuring ECP Connections to a
Mirror.

The other failover strategies detailed here can also be used in a distributed cache cluster. Regardless of the failover strategy
employed for the data server, the application servers reconnect and recover their states following a failover, allowing
application processing to continue where it left off prior to the failure.

Bear in mind, however, that the primary purpose of distributed caching is horizontal scaling; deploying a cluster simply as
a component of your HA strategy can add costs, such as increased complexity and additional points of failure, as well as
benefits.

For information about distributed caching, see Horizontally Scaling for User Volume with Distributed Caching.

4 High Availability Guide

Mirroring Overview

Traditional high availability and data replication solutions often require substantial capital investments in infrastructure,
deployment, configuration, software licensing, and planning. InterSystems IRIS® database mirroring is designed to provide
an economical solution for rapid, reliable, robust automatic failover between two InterSystems IRIS® data platform instances,
providing an effective enterprise high-availability solution.

Traditional availability solutions that rely on shared resources (such as shared disk) are often susceptible to a single point
of failure with respect to that shared resource. Mirroring reduces that risk by maintaining independent resources on the
primary and backup mirror members. Further, by utilizing logical data replication, mirroring avoids the risks associated
with physical replication technologies such as SAN-based replication, including out-of-order updates and carry-forward
corruption.

Figure 2-1: InterSystems IRIS Mirror

Connections to InterSysterrs IRIS routed to current primary using vittual IP, ECP, or other failover-capable mechanism

PRIMARY

Database
Synchronization PRIMARY OUTAGE

Combining distributed caching with mirroring provides an additional level of availability; the application servers in a dis-
tributed cache cluster with a mirrored data server treat a mirror failover as a data server restart, allowing processing to
continue uninterrupted on the new primary, which greatly diminishes workflow and user disruption. Configuring the two
failover mirror members in separate data centers offers additional redundancy and protection from catastrophic events.

In addition to providing an availability solution for unplanned downtime, mirroring offers the flexibility to incorporate
planned downtimes (for example, InterSystems IRIS configuration changes, hardware or operating system upgrades, and
so on) on a particular InterSystems IRIS system without impacting the overall Service Level Agreements (SLASs) for the
organization.

Finally, in addition to the failover members, a mirror can include async members, which can be configured to receive
updates from multiple mirrors across the enterprise. This allows a single system to act as a comprehensive enterprise data
warehouse, allowing enterprise-wide data mining and business intelligence using InterSystems IRIS Business Intelligence™.
An async member can also be configured for disaster recovery (DR) of a single mirror, which allows it to seamlessly take
the place of one of the failover members should the need arise. A single mirror can include up to 16 members, so numerous
geographically dispersed DR async members can be configured. This model provides a robust framework for distributed
data replication, thus ensuring business continuity benefits to the organization; see Mirror Outage Procedures.

High Availability Guide 5

Mirroring Architecture and Planning

A mirror is a logical grouping of physically independent InterSystems IRIS® data platform instances simultaneously
maintaining exact copies of production databases, so that if the instance providing access to the databases becomes
unavailable, another can take over. A mirror can provide high availability through automatic failover, in which a failure
of the InterSystems IRIS instance providing database access (or its host system) causes another instance to take over auto-
matically and immediately.

This topic describes the components and mechanics of mirroring and explains issues in mirror planning including network
requirements, redirecting application connections following failover, and mirroring in a virtualized environment.

3.1 Mirror Components

The system hosting an InterSystems IRIS instance configured as part of a mirror is called a mirror member. (Similarly, the
InterSystems IRIS instance is sometimes referred to as a mirror member.) There are two types of mirror member:

e Failover Mirror Members

* Async Mirror Members

Two additional components support automatic failover from one failover member to the other:
e |ISCAgent
* Arbiter

3.1.1 Failover Mirror Members

To enable automatic failover, the mirror must contain two failover members, physically independent systems each hosting
an InterSystems IRIS instance. At any given time, one failover instance acts as primary, providing applications with access
to the databases in the mirror, while the other acts as backup, maintaining synchronized copies of those databases in
readiness to take over as primary. When the primary InterSystems IRIS instance becomes unavailable, the backup takes
over, providing uninterrupted access to the databases without risk of data loss. See Automatic Failover Mechanics for
detailed information about the automatic failover process.

Important: The purpose of the non-primary failover member is to be ready to take over as primary. It is not supported
to use this member directly to run queries or application code. If you do attempt to use this member to run
queries or application code, the LOCK command will fail with a <PROTECT> error.

This same limitation does not apply to DR and Reporting Async members.

High Availability Guide 7

Mirroring Architecture and Planning

Failover members communicate with each other through several communication channels using several mirror member
network addresses. External clients typically connect to the mirror through a virtual IP address (VIP), which is always

bound to an interface on the current primary. Application server connections in a mirrored distributed cache cluster are
automatically redirected to the new primary following failover, so a VIP is not required in this case.

Primary Failover Member

Figure 3-1: Mirror Failover Members

External Clients ECP Application Servers

Backup Failover Member

For information about configuring the failover members of a mirror, see Creating a Mirror.

Important:

The two failover members in a mirror are assumed to be coequal; neither is preferred as primary. For this
reason, primary and backup must be considered temporary designations only. If a problem is detected on
the primary and the backup is available to take over it will do so immediately, even if the problem on the
primary might resolve on its own given enough time.

Because network latency between the failover members is an important factor in application performance,
the relative physical locations of the failover members and the network connection between them should
be chosen to minimize latency in the connection; see Network Latency Considerations for more information.

3.1.2 Async Mirror Members

Async members maintain asynchronous copies of mirrored databases. There are two types of async member, disaster
recovery and reporting. A single mirror can include up to 16 members, so you can configure a mirror with a failover pair
and up to 14 async members of either type in any combination. A mirror can even be configured with a single failover
member to utilize async members without automatic failover.

Important:

Since the data on an async member is continually asynchronously updated with changes from the mirrors
to which it is connected, there is no guarantee of synchronization of updates and synchronization of results
across queries on the async member. It is up to the application running against the async member to guar-
antee consistent results for queries that span changing data.

Also, an async member can be configured for disaster recovery (DR) of a single mirror.

High Availability Guide

Mirror Components

See Configure Async Mirror Members for information about adding an async member to a mirror.

3.1.2.1 Disaster Recovery Asyncs

A mirror can provide disaster recovery capability through a disaster recovery (DR) async member, which can be manually
promoted to failover member and even become primary should both failover members become unavailable due to a disaster.
A promoted DR can also be useful in performing planned maintenance on or temporarily replacing a failover member. A

DR async member can belong to one mirror only, but you can configure as many as you want in a single mirror, up to the
mirror member limit of 16.

Generally speaking, DR async mirror members are a form of geo-replication (or georeplication).

Figure 3-2: Multiple DR Async Members Connected to a Single Mirror

p . DR Data Center B)
DR Data Center A
O DR Async

k DR Async ~ g

\

Main Data Center

Failover Members DR Async
‘. o

Note: A DR async member is never a candidate for automatic failover, which can be from one failover mirror member
to another only.

3.1.2.2 Reporting Asyncs

A reporting async mirror member maintains read-only or read-write copies of selected databases for purposes such as data
mining and business intelligence, and cannot be promoted to failover member. A reporting async can belong to up to 10
mirrors, allowing it to function as a comprehensive enterprise-wide data warehouse bringing together sets of related databases
from separate locations.

High Availability Guide 9

Mirroring Architecture and Planning

Figure 3-3: Single Reporting Async Member Connected to Multiple Mirrors

Mirror A

= .

Failover Members

-~

3.1.2.3 Single Failover Mirror Configuration

J 06

Mirror B

Failover Members

0

Reporting Async

A mirror can also consist of a single failover member and one or more asyncs. This configuration does not provide high
availability, but can address other needs. For example, a mirror with a single failover member, at least one DR async
member, and some number of reporting asyncs can provide data security and disaster recovery while supporting data col-
lection and warehousing. To provide high availability, the failover member can be located in an OS-level failover cluster
or some other high-availability configuration (see Failover Strategies for High Availability.

10

High Availability Guide

Mirror Components

Figure 3-4: Single Failover Member with Multiple Async Members

Data Center 3
Data Center 2
DR Async
Reporting Async N / /
\ ,

\ /
\ /
/
Data Center 1

o &U au

Failover Member DR Async Reporting Async

3.1.3 ISCAgent

A process called the ISCAgent runs on each mirror member’s host system, providing an additional means of communication
between mirror members. Most importantly, the ISCAgent provides a means by which one failover member can obtain
information about the other when normal communication between the two has been interrupted. The ISCAgent can send
data to mirror members that have been down or disconnected. The agent is also involved in failover decisions; for example,
a backup that has lost contact with both the primary instance and the arbiter can contact the primary’s ISCAgent (assuming
the primary’s host system is still operating) to confirm that the primary instance is truly down before taking over.

The ISCAgent is automatically installed with InterSystems IRIS, if not already installed. When multiple InterSystems IRIS
instances belonging to one or more mirrors are hosted on a single system, they share a single ISCAgent.

See the sections Automatic Failover Mechanics and Configuring the ISCAgent for detailed information about the role and
configuration of the ISCAgent.

High Availability Guide 11

Mirroring Architecture and Planning

3.1.4 Arbiter

The arbiter is an independent system hosting an ISCAgent with which the failover members of a mirror maintain continuous
contact, providing them with the context needed to safely make failover decisions when they cannot communicate directly.
A single arbiter can serve multiple mirrors, but a single mirror can use only one arbiter at a time. Use of an arbiter is not
required, but is strongly recommended as it significantly increases the range of failure scenarios under which automatic
failover is possible.

Figure 3-5: Mirror Failover Members and Arbiter

Arbiter

Failover Members ‘

L . P

Note: The arbiter plays no role in failover mechanics when the backup is not active.

Configuring a system as arbiter involves minimal software installation and does not require that InterSystems IRIS be
installed. The arbiter uses minimal system resources and can be located on a system that is hosting other services, or even
a workstation. The primary requirement concerning the arbiter is that it must be located and configured to minimize the
risk of unplanned simultaneous outage of the arbiter and a single failover member; see Locating the Arbiter to Optimize
Mirror Availability for more information.

3.2 Mirror Synchronization

As described in Journaling, journal files contain a time-sequenced record of the changes made to the databases in an Inter-
Systems IRIS instance since the last backup. Within a mirror, the journal data that records a change made to a database on
the primary becomes the basis for making that same change to the copy of the database on the backup and asyncs. Mirrored
databases are therefore always journaled on the primary, while on the backup and on DR asyncs they are always read only
to prevent updates from other sources. Typically they are read-only on reporting asyncs as well.

When data recording global update operations (primarily Set and Kill operations) on mirrored databases is written to the
journal on the primary, the journal records are transmitted to other mirror members. Once the journal records are received
on the backup or async member, the operations recorded in them are performed on the databases on that member. This

12 High Availability Guide

Automatic Failover Mechanics

process is called dgjournaling. (See Managing Database Dejournaling for important information about managing dejour-
naling on async members.)

Transfer of journal records from the primary to the backup is synchronous, with the primary waiting for acknowledgement
from the backup at key points. This keeps the failover members closely synchronized and the backup active, as described
in detail in Backup Status and Automatic Failover. An async, in contrast, receives journal data from the primary asyn-
chronously. As a result, an async mirror member may sometimes be a few journal records behind the primary.

Note: When an InterSystems IRIS instance becomes a member of a mirror, the following journaling changes to support
mirroring occur:

« When an InterSystems IRIS instance become the primary failover member in a mirror, the following changes
occur:

— Ajournal switch is triggered, to a new journal file prefixed with MIRROR-mirror_name, for example
MIRROR-MIR21-20180921.001. From that point, all journal files are written as mirror journal files and
logged to the mirrorjrn-mirror_name.log, for example mirrorjrn-MIR21.log, as well as to journal.log.

— The Freeze on error journaling configuration is automatically overridden to freeze all journaled global
updates when a journal 1/O error occurs, regardless of the current setting. If the current setting is No,
behavior reverts to this setting when the instance is no longer a primary failover member. To understand
the implications of this, see Configure Journal Settings and Journal 1/0 Errors.

* When an instance becomes a backup or async mirror member, mirror journal files received from the primary
are written to the configured journal directory along with the local instance’s standard journal files, and a
copy of the primary’s mirror journal log (mirrorjrn-mirror_name.log) is created in install-dir\Mgr and contin-
uously updated.

See Journaling for general information about journaling.

3.3 Automatic Failover Mechanics

Mirroring is designed to provide safe automatic failover to the backup when the primary fails or becomes unavailable. This
section describes the mechanisms that allow that to occur, including:

* Requirements for Safe Automatic Failover

» Automatic Failover Rules

* Mirror Response to Primary Outage Scenarios

» Locating the Arbiter to Optimize Mirror Availability

* Automatic Failover Mechanics Detailed

3.3.1 Requirements for Safe Automatic Failover

The backup InterSystems IRIS instance can automatically take over from the primary only if it can ensure that two conditions
are met:

» The backup instance has received the latest journal data from the primary.

This requirement guarantees that all durable updates made to mirrored databases on the primary before the outage have
been or will be made to the same databases on the backup, ensuring that no data will be lost.

High Availability Guide 13

Mirroring Architecture and Planning

» The primary instance is no longer operating as primary and cannot do so without manual intervention.

This requirement eliminates the possibility that both failover members will simultaneously act as primary, which could
lead to logical database degradation and loss of integrity.

3.3.2 Automatic Failover Rules

This section describes the rules that govern the automatic failover process and ensure that both automatic failover requirements
are met.

Note: The backup does not attempt to become primary under any circumstances unless the following is true:
» All databases for which Mount Required at Startup is selected, both mirrored and nonmirrored, are mounted.

e All mirrored database for which Mount Required at Startup is selected are activated and caught up (see Acti-
vating and Catching up Mirrored Databases).

For information on Mount Required at Startup, see Edit a Local Database’s Properties.

3.3.2.1 Backup Status and Automatic Failover

During normal mirror operation, the journal transfer status of the backup failover member is Active, meaning that it has
received all journal data from and is synchronized with the primary. (See Mirror Synchronization for information about
how the databases on the failover members are synchronized using journal data and related details; see Monitoring Mirrors
for information about monitoring the status of mirror members.) An active backup receives the current journal data as it is
written on the primary, and the primary waits for an active backup to acknowledge receipt of journal data before considering
that data to be durable. An active backup therefore satisfies the first condition for failover.

If an active backup does not acknowledge receipt of new data from the primary within the Quality of Service (QoS)
Timeout, the primary revokes the backup’s active status, disconnects the backup and temporarily enters the trouble state.
While in the trouble state, the primary does not commit any new journal data (perhaps causing a pause in the application),
allowing time for contact to be restored or for appropriate and safe failover decisions to take place without the two members
becoming unsynchronized.

When the backup reconnects to the primary, it first catches up by obtaining all of the most recent journal data from the
primary and then becomes active. When the backup has caught up by obtaining the most recent journal data from the primary
and acknowledging its receipt, its active status is restored.

3.3.2.2 Automatic Failover When the Backup is Active

When the backup is active, it is eligible to take over as primary if it can confirm the second condition for failover—that
the primary is not operating as primary and can no longer do so without human intervention. The backup can do this in one
of three ways:

* By receiving a communication from the primary requesting that it take over.

This happens during a normal shutdown of the primary instance or when the primary detects that it is hung. Once the
primary sends this message it can no longer act as primary and the active backup can safely take over. If the former
primary is hung, the new primary forces it down.

» By receiving information from the arbiter that it has lost contact with the primary.

The primary and backup InterSystems IRIS instances maintain continuous contact with the arbiter, which updates each
of them whenever contact with the other failover member is broken or restored. When a network event simultaneously
isolates the primary from both the backup and the arbiter, it enters the trouble state indefinitely. Thus, if an active
backup loses contact with the primary and learns from the arbiter that it too has lost contact with the primary, the
backup can safely take over, because the primary must either have failed or be isolated and in a trouble state and thus

14 High Availability Guide

Automatic Failover Mechanics

can no longer act as primary. When connectivity is restored, if the former primary is hung, the new primary forces it
down.

* By receiving information from the primary system’s ISCAgent that the primary instance is down or hung.

When the arbiter is unavailable or no arbiter is configured, an active backup that has lost contact with the primary
instance can attempt to contact the primary’s ISCAgent (this is possible only when the primary’s host system is still
operating) to confirm that the primary instance is down, or to force it down if it is hung. Once the agent confirms that
the primary can no longer act as primary and failover is therefore safe, the backup takes over.

When the primary is isolated from an active backup by a network event but the backup cannot confirm safe failover conditions
in one of these ways, the backup is no longer active and is subject to the failover mechanics described in the following
section.

Important: When the primary is forced down, it will remain down until a person manually restarts the instance.

3.3.2.3 Automatic Failover When the Backup is Not Active

A backup that is not active can attempt to contact the primary’s ISCAgent to confirm that the primary instance is down or
force it down if it is hung, and to obtain the primary’s most recent journal data from the agent. If successful on both counts,
the backup can safely take over as primary.

A backup that is not active and cannot contact the primary’s ISCAgent has no way to ensure that the primary can no longer
act as primary and that it has the latest journal updates from the primary, and therefore cannot take over.

The arbiter plays no role in failover mechanics when the backup is not active.

3.3.3 Mirror Response to Various Outage Scenarios

This section summarizes the mirror’s response to outages of the failover members and arbiter in different combinations.

Note: It is possible for an operator to temporarily bring the primary system down without causing a failover to occur
(see Avoiding Unwanted Failover During Maintenance of Failover Members). This can be useful, for example,
in the event the primary system needs to be brought down for a very short period of time for maintenance. After
bringing the primary system back up, the default behavior of automatic failover is restored.

Several of the scenarios discussed here refer to the option of manually forcing the backup to become primary.
For information about this procedure, see Unplanned Outage of Primary Failover Member Without Automatic
Failover.

3.3.3.1 Automatic Failover in Response to Primary Outage Scenarios

While circumstances and details vary, there are several main primary outage scenarios under which an active backup failover
member automatically takes over, as follows:

1. A planned outage of the primary, for example for maintenance purposes, is initiated by shutting down its InterSystems
IRIS instance.

Automatic failover occurs because the active backup is instructed by the primary to take over.
2. The primary InterSystems IRIS instance hangs due to an unexpected condition.
Automatic failover occurs because the primary detects that it is hung and instructs the active backup to take over.

3. The primary InterSystems IRIS instance is forced down or becomes entirely unresponsive due to an unexpected condition.

High Availability Guide 15

Mirroring Architecture and Planning

Under this scenario, the primary cannot instruct the backup to take over. However, an active backup takes over either
after learning from the arbiter that it has also lost contact with the primary or by contacting the primary’s ISCAgent
and obtaining confirmation that the primary is down.

4. The primary’s storage subsystem fails.

A typical consequence of a storage failure is that the primary instance hangs due to I/O errors, in which case the primary
detects that it is hung and instructs the active backup to take over (as in scenario 2). Under some circumstances, however,
the behavior described under scenario 3 or scenario 5 may apply.

5. The primary’s host system fails or becomes unresponsive.
Automatic failover occurs if the active backup learns from the arbiter that it has also lost contact with the primary.

If no arbiter is configured or if the arbiter became unavailable prior to the primary host failure, automatic failover is
not possible; under these circumstances, manually forcing the backup to become primary may be an option.

6. A network problem isolates the primary.

If an arbiter is configured and both failover members were connected to it at the time of the network failure, the primary
enters the trouble state indefinitely.

» Ifthe active backup learns from the arbiter that it has also lost contact with the primary, automatic failover occurs.

» Ifthe backup loses contact with the arbiter at the same time as it loses contact with the primary, automatic failover
is not possible. If both failover members are up, when the network is restored the backup contacts the primary,
which then resumes operation as primary. Alternatively, a primary can be designated manually.

If no arbiter is configured or one of the failover members disconnected from it before the network failure, automatic
failover is not possible and the primary continues running as primary.

A backup that is not active (because it is starting up or has fallen behind) can take over under scenarios 1 through 4 above
by contacting the primary’s ISCAgent and obtaining the most recent journal data. A backup that is not active cannot take
over under scenarios 5 and 6 because it cannot contact the ISCAgent; under these circumstances; manually forcing the
backup to become primary may be an option.

3.3.3.2 Effect of Arbiter Outage

An outage of the arbiter has no direct effect on the availability of the mirror. However, if primary outage scenarios 5 or 6
in Automatic Failover in Response to Primary Outage Scenarios occur before the arbiter is restored, the backup cannot take
over automatically.

3.3.3.3 Effect of Backup Outage

Some applications may experience a brief pause (approximately the QoS timeout) before the primary can resume processing.
If no arbiter is configured, or if the arbiter became unavailable prior to the backup outage, the pause experienced may be
slightly longer (about three times the QoS timeout). If a primary outage occurs before the backup is restored, the result is
a total mirror outage.

3.3.3.4 Effect of Combined Primary and Arbiter Outage

The consequences of this scenario are covered in Automatic Failover in Response to Primary Outage Scenarios. In brief,
if the backup can contact the primary’s ISCAgent, it takes over; if not, the result is a total mirror outage, and manual
intervention to force the backup to become primary may be an appropriate option.

16 High Availability Guide

Automatic Failover Mechanics

3.3.3.5 Effect of Combined Backup and Arbiter Outage

If the backup and arbiter become unavailable simultaneously (or nearly simultaneously), the primary remains in trouble
state indefinitely, because it assumes it is isolated and the backup could therefore have become primary. The result is a
total mirror outage. When the backup becomes available again it contacts the primary, which then resumes operation as
primary. Alternatively, the primary can be forced to resume through manual intervention. If the backup and arbiter fail in
sequence, the primary continues operating as primary, after the brief pause described in Effect of Backup Outage, because
it knows the backup cannot have become primary.

3.3.3.6 Effect of Combined Primary and Backup Outage

The result of this combination is always a total mirror outage. See Unplanned Outage of Both Failover Members for
available options in this situation.

3.3.4 Locating the Arbiter to Optimize Mirror Availability

Together, the failover members and arbiter provide the mirroring high availability solution (with the arbiter playing the
least significant role). The arbiter is not a quorum mechanism, but rather supports each failover member in arbitrating
automatic failover by providing context when it loses contact with the other failover member; as long as both failover
members are in contact with the arbiter immediately prior to a primary outage of any kind and the backup remains in contact
with the arbiter, automatic failover can occur. While failure of the arbiter does eliminate the possibility of automatic failover
under some circumstances, it does not prevent the mirror from operating while a replacement is configured, or from providing
automatic failover under many primary outage scenarios, for example scenarios 1 through 4 in Automatic Failover in
Response to Primary Outage Scenarios.

For these reasons, the arbiter need not be any more highly available than either of the failover members are independently,
but only located and configured so that the risk of unplanned simultaneous outage of the arbiter and a single failover
member is minimized. (If both failover members fail, the mirror fails and the status of the arbiter does not matter, so risk
of simultaneous outage of all three is not a consideration.)

Based on this requirement, InterSystems recommends that, in general, the arbiter be separated from the failover members
to the same extent to which they are separated from each other. Specifically,

» If the failover members are located in one data center, the arbiter can be placed in the same data center. Within that
data center, the arbiter should have the same physical separation from the failover members as they have from each
other; for example, if you have placed the failover members in separate server racks to avoid power or network problems
in one rack affecting both members, you should locate the arbiter separately from those two racks.

If the data center uses an internal network for communication within the mirror, the arbiter should be placed on the
public side of the network so that failure of the internal network does not isolate the failover members from the arbiter
in addition to each other.

« Ifthe failover members are located in separate data centers, the arbiter should be placed in a third location. This could
be another data center, a location hosted by another party, or a public or private cloud service. Placing the arbiter in a
location that is representative of the user community supports optimal mirror response to network outages.

A single system can be configured as arbiter for multiple mirrors, provided its location is appropriate for each; simply
specify its host and port number, as described in Creating a Mirror , when creating or editing each mirror for which it will
server as arbiter.

The arbiter need not be hosted on a newly deployed or dedicated system; in fact, an existing host of well-established relia-
bility may be preferable. A reporting async mirror member (see Reporting Asyncs) can serve as a suitable host. Hosting
on a DR async, however, should be avoided, as promotion of the DR async (see Promoting a DR Async Member to Failover
Member) under a maintenance or failure scenario could lead to the arbiter being hosted on a failover mirror member, an
incorrect configuration.

High Availability Guide 17

Mirroring Architecture and Planning

Note: Asnoted in Installing the Arbiter, any system with a running ISCAgent can be configured as arbiter, including
one that hosts one or more instance of InterSystems IRIS. However, a system hosting one or more failover or DR
async members of a mirror should not be configured as arbiter for that mirror.

3.3.5 Automatic Failover Mechanics Detailed

This section provides additional detail on the mechanics of failover.

The mirror’s response to loss of contact between the failover members or between a failover member and the arbiter is
supported by the use of two different mirror failover modes, as follows:

» Agent controlled mode

e Arbiter controlled mode

3.3.5.1 Agent Controlled Mode

When a mirror starts, the failover members begin operation in agent controlled mode. If the arbiter is not available or no
arbiter is configured, they remain in this mode. When in agent controlled mode, the failover members respond to loss of
contact with each other as described in the following.

Primary’s Response to Loss of Contact

If the primary loses its connection to an active backup, or exceeds the QoS timeout waiting for it to acknowledge receipt

of data, the primary revokes the backup’s active status and enters the trouble state, waiting for the backup to acknowledge
that it is no longer active. When the primary receives acknowledgement from the backup or the trouble timeout (which is
two times the QoS timeout) expires, the primary exits the trouble state, resuming operation as primary.

If the primary loses its connection to a backup that is not active, it continues operating as primary and does not enter the
trouble state.

Backup’s Response to Loss of Contact

If the backup loses its connection to the primary, or exceeds the QoS timeout waiting for a message from the primary;, it
attempts to contact the primary’s ISCAgent. If the agent reports that the primary instance is still operating as primary, the
backup reconnects. If the agent confirms that the primary is down or that it has forced the primary down, the backup behaves
as follows:

» If the backup is active and the agent confirms that the primary is down within the trouble timeout, the backup takes
over as primary.

» Ifthe backup is not active, or the trouble timeout is exceeded, the backup takes over if the agent confirms that the primary
is down and if it can obtain the latest journal data from the agent.

Whether it is active or not, the backup can never automatically take over in agent controlled mode unless the primary itself
confirms that it is hung or the primary’s agent confirms that the primary is down (possibly after forcing it down), neither
of which can occur if the primary’s host is down or network isolated.

Note: When one of the failover members restarts, it attempts to contact the other's ISCAgent and its behavior is as
described for a backup that is not active.

3.3.5.2 Arbiter Controlled Mode

When the failover members are connected to each other, both are connected to the arbiter, and the backup is active, they
enter arbiter controlled mode, in which the failover members respond to loss of contact between them based on information
about the other failover member provided by the arbiter. Because each failover member responds to the loss of its arbiter

18 High Availability Guide

Automatic Failover Mechanics

connection by testing its connection to the other failover member, and vice versa, multiple connection losses arising from
a single network event are processed as a single event.

In arbiter controlled mode, if either failover member loses its arbiter connection only, or the backup loses its active status,
the failover members coordinate a switch to agent controlled mode and respond to further events as described for that mode.

If the connection between the primary and the backup is broken in arbiter controlled mode, each failover member responds
based on the state of the arbiter connections as described in the following.

Primary Loses Connection to Backup

If the primary loses its connection to an active backup, or exceeds the QoS timeout waiting for it to acknowledge receipt
of data, and learns from the arbiter that the arbiter has also lost its connection to the backup or exceeded the QoS timeout
waiting for a response from the backup, the primary continues operating as primary and switches to agent controlled mode.

If the primary learns that the arbiter is still connected to the backup, it enters the trouble state and attempts to coordinate a
switch to agent controlled mode with the backup through the arbiter. When either the coordinated switch is accomplished,
or the primary learns that the backup is no longer connected to the arbiter, the primary returns to normal operation as primary.

If the primary has lost its arbiter connection as well as its connection to the backup, it remains in the trouble state indefinitely
so that the backup can safely take over. If failover occurs, when the connection is restored the primary shuts down.

Note: The trouble timeout does not apply in arbiter controlled mode.

Backup Loses Connection to Primary

If the backup loses its connection to the primary, or exceeds the QoS timeout waiting for a message from the primary, and
learns from the arbiter that the arbiter has also lost its connection to the primary or exceeded the QoS timeout waiting for
a response from the primary, the backup takes over as primary and switches to agent controlled mode. When connectivity
is restored, if the former primary is not already down, the new primary forces it down.

If the backup learns that the arbiter is still connected to the primary, it no longer considers itself active, switches to agent
controlled mode, and coordinates with the primary’s switch to agent controlled mode through the arbiter; the backup then
attempts to reconnect to the primary.

If the backup has lost its arbiter connection as well as its connection to the primary, it switches to agent controlled mode
and attempts to contact the primary’s ISCAgent per the agent controlled mechanics.

Mirror Responses to Lost Connections

The following table describes the mirror’s response to all possible combinations of lost connections in arbiter controlled
mode. The first three situations represent network failures only, while the others could involve, from a failover member’s
viewpoint, either system or network failures (or a combination). The descriptions assume that immediately prior to the loss
of one or more connections, the failover members and arbiter were all in contact with each other and the backup was active.

Note: The mirror's response to most combinations of connection losses in arbiter controlled mode is to switch to agent
controlled mode. Therefore, once one failure event has been handled, responses to a subsequent event that occurs
before all connections are reestablished are the same as those described for agent controlled mode rather than the
responses described in the table.

High Availability Guide 19

Mirroring Architecture and Planning

Table 3-1: Mirror Responses to Lost Connections in Arbiter Mode

20 High Availability Guide

Automatic Failover Mechanics

All three systems connected:

* Mirror enters arbiter controlled mode (if not already in arbiter
controlled mode)

Backup loses connection to arbiter, still connected to primary:
» Mirror switches to agent controlled mode
* Primary continues operating as primary

» Backup attempts to reconnect to arbiter

Primary loses connection to arbiter, still connected to backup:
* Mirror switches to agent controlled mode
* Primary continues operating as primary

* Primary attempts to reconnect to arbiter

Failover members lose connection to each other, still connected to arbiter:
e Mirror switches to agent controlled mode
e Primary continues operating as primary

* Backup attempts to reconnect to primary

Arbiter failed or isolated — failover members lose connections to arbiter, still
connected to each other:

» Mirror switches to agent controlled mode
e Primary continues operating as primary

* Both failover members attempt to reconnect to arbiter

Backup failed or isolated — primary and arbiter lose connections to backup,
still connected to each other:

* Primary switches to agent controlled mode and continues oper-
ating as primary

e Backup (if in operation) switches to agent controlled mode and
attempts to reconnect to primary

Primary failed or isolated — backup and arbiter lose connections to primary,
still connected to each other:

» Primary (if in operation) remains in arbiter controlled mode and
trouble state indefinitely

» Backup takes over as primary, switches to agent controlled mode,
and forces primary down when connectivity is restored

High Availability Guide

21

Mirroring Architecture and Planning

All three connections lost:

- » Primary (if in operation) remains in arbiter controlled mode and
trouble state indefinitely; if contacted by backup, switches to
agent controlled mode and resumes operation as primary

» Backup (if in operation) switches to agent controlled mode and
attempts to reconnect to primary

Note: Loss of all connections due to a single event (or multiple
simultaneous events) is rare. In most cases the mirror has
switched to agent controlled mode before all connections
are lost, in which case:

e Primary (if in operation) continues operating as primary

e Backup (if in operation) attempts to reconnect to primary

3.4 Preventing Automatic Failover

If you want to prevent a mirror from automatically failing over under any circumstances, the best approach is to configure
a single failover member with one or more DR asyncs (see Async Mirror Members). A DR async never takes over automat-
ically but can easily be promoted to failover member, including to primary when desired (see Promoting a DR Async
Member to Failover Member).

To temporarily prevent automatic failover to backup during maintenance activity, you can temporarily demote the backup
to DR async or use the nofailover option; both are described in Planned Outage Procedures, which provides procedures for
performing maintenance on failover members without disrupting mirror operation.

If you require application intervention at various points in the automatic failover process, see Using the ~ZMIRROR Routine.

3.5 Mirroring Communication

This section discusses the details of communication between mirror members, including:
» Network configuration considerations

» Network latency considerations

e Mirror Traffic Compression

e Mirror member network addresses

3.5.1 Network Configuration Considerations
The following general network configuration items should be considered when configuring the network between two
failover members:

* Reliability — For maximum reliability, an isolated (private) network should be configured for mirror communication
between the two failover members (as illustrated in Sample Mirroring Architecture and Network Configurations).

22 High Availability Guide

Mirroring Communication

Additionally, this network should be configured in a redundant fashion (multiple NICs with failover-bonded ports,
multiple redundant switches, and so on).

» Bandwidth — Sufficient bandwidth must be available to transfer the volume of journal data generated by the application.

» Latency — Network latency between the failover members is an important factor in application performance; see
Network Latency Considerations for more information.

Mirror synchronization occurs as part of the journal write cycle on the primary failover member. It is important to allow
the journal write cycle and, therefore, the mirror synchronization process to complete as soon as possible. Any delays in
this process can result in performance degradation.

Note: See Configuring a Mirror Virtual IP (VIP) for important networking requirements and considerations when using
aVIP.

3.5.2 Network Latency Considerations

There is no hard upper limit on network latency between failover members. The impact of increasing latency differs by
application. If the round trip time between the failover members is similar to the disk write service time, no impact is
expected. Round trip time may be a concern, however, when the application must wait for data to become durable (sometimes
referred to as a journal sync). In nonmirrored environments, the wait for data to become durable includes a synchronous
disk write of journal data; in mirrored environments with an active backup, it also includes a network round trip between
the failover members. Many applications never wait for data to become durable, while others wait frequently.

The mechanisms by which an application waits can include the following:
» Transaction commit in synchronous commit mode (nondefault).
* The Sync() method of %SYS.Journal.System.

» Adistributed cache cluster data server waiting for durability before responding to common requests from applications
running on application servers (as part of application synchronization actions, such as locks and $increment).

» Business Services SyncCommit capability (default)

Whether the round trip time, even if relatively large, negatively affects application response time or throughput depends
on the frequency with which the above occur within the application, and whether the application processes such activity
in serial or in parallel.

When network latency between mirror members becomes an issue, you may be able to reduce it by fine-tuning the operating
system TCP parameters that govern the maximum values of SO_SNDBUF and SO_RCVBUF, allowing the primary and
backup/asyncs to establish send and receive buffers, respectively, of appropriate size, up to 16 MB. The buffer size required
can be calculated by multiplying the peak bandwidth needed (see Incoming Journal Transfer Rate) by the round trip time,
and roughly doubling the product for protocol overhead and future growth. For example, suppose the following conditions
apply:

» Traffic between the primary mirror site and a DR site is 60 MB per second of journal data at peak,

e Compression is used to reduce the bandwidth required to about 33% of the journal rate.

» The round trip time is 50 milliseconds (typical for a distance of 1000 miles).

In this case, 60 MB * 0.05 * .33 * 2 = 2 MB minimum buffer size. There is little reason to keep the buffer size as low as
possible, so an even larger minimum could be tried in this situation without concern.

High Availability Guide 23

Mirroring Architecture and Planning

3.5.3 Mirror Traffic Compression

When creating or editing a mirror (see Create a mirror and configure the first failover member or Editing or Removing a
Failover Member, respectively), you can select the compression mode for mirror traffic from the primary to the backup
and from the primary to async members, as follows:

» System Selected — Use a compression strategy that is optimal for most environments. When transmitting to the backup
member, this means assuming a high-bandwidth, low-latency connection and optimizing for response time; that is,
journal data is compressed before transmission when this will reduce the time required to synchronize the failover
members. When transmitting to async members, it means optimizing for network utilization. System Selected is the
default for both the failover members and asyncs.

Currently, for transmission to the backup, this setting causes LZ4 compression to be used only when the mirror requires
TLS, as described in Securing Mirror Communication with TLS Security; for transmission to asyncs, Zstd compression
is always used. Over time this behavior may change based on improved mechanisms for analyzing the network envi-
ronment and optimizing compression behavior.

* Uncompressed — Never compress mirror traffic.

» Compressed — Always compress mirror traffic. When you select this setting, you must select one of the three com-
pression types: zlib (the default), Zstd, or LZ4.

When Zstd or LZ4 compression is in use due to either System Selected mode or user choice in Compressed mode, and the
receiving system does not support that type, zlib compression is used instead.

Choosing Uncompressed is desirable if the vast majority of the volume of database updates consist of data that is already
highly compressed or encrypted, where the overall efficacy of compression is expected to be very low. In that case, CPU
time may be wasted on compression. Examples include compressed images, other compressed media, or data that is encrypted
before it is set into the database (using InterSystems IRIS data-element encryption or another encryption methodology).
Use of InterSystems IRIS database encryption or journal encryption is not a factor in selecting compression.

Both compression and TLS encryption introduce some computational overhead that affects both throughput and latency.
The overhead introduced by each is similar, but when TLS encryption is used, the addition of compression can actually
reduce that overhead and improve performance by reducing the amount of data that needs to be encrypted. The specifics
vary by operating system, CPU architecture, and the compressibility of application data. More specifically:

» Use of compression and/or TLS encryption can limit the transfer rate due to the computation time required to compress
the data; the maximum transfer rate is limited to the maximum compression rate. For most configurations, the maximum
transfer rate imposed by compression and TLS encryption is much higher than the actual maximum throughput required
by mirroring. As an example, on a typical system as of this writing, the computational rate to compress and encrypt
may be in the range of 100 MB per second, which is several times greater than the peak journal creation rate for a large
enterprise application.

» Use of compression and/or TLS encryption introduces a “computational latency” that gets added to the network latency
(see Network Latency Considerations). This is negligible for most applications. If a configuration requires higher
throughput than can be achieved with compression and/or TLS encryption enabled, then they must be disabled (TLS
can still be used for authentication) and sufficient bandwidth for peak transfer without compression must be provided.

3.5.4 Mirror Member Network Addresses

Mirror members use several network addresses to communicate with each other. These are described in this section and
referred to in Sample Mirroring Architecture and Network Configurations. Note that the same network address may be
used for some or all of the mirror addresses described here.

e Mirror private address

24 High Availability Guide

Mirroring Communication

When an InterSystems IRIS instance is running as the primary failover member, each of the other mirror members
uses the mirror private address to establish its mirror data channel, the channel over which it receives journal data
from the primary and the most heavily used mirror communication channel. A second failover member attempting to
become the backup must connect to this address. This applies to a DR async that is promoted to failover member; if
the promoted DR does not have access to the other failover member’s private address, it can still become primary when
the other failover member is down, but cannot become backup.

The primary may also use the mirror private address to monitor async members.

Async members attempt to connect to the primary’s mirror private address, but fall back to the primary’s superserver
address if they cannot reach the primary at the mirror private address. Because of this and because an ISCAgent can
send journal data to other mirror members, journal data does travel over networks other than the mirror private network
in some cases.

Note: When adding an async member to a mirror using the Management Portal (see Configure async mirror members),
you enter an Async Member Address; the address you provide at this prompt becomes the async member’s
mirror private address and superserver address. If you want these to be different, you can update the async’s
addresses on the primary after adding it to the mirror.

» Superserver address/port

External mirror-aware systems can connect to the primary using this address. Currently the only such external systems
are application servers in a mirrored distributed cache cluster (see Redirecting Application Connections Following
Failover or Disaster Recovery), although in the future this may extend to other connections. Other mirror members
may also make connections to a member's superserver address for certain control and monitoring purposes; for example,
the primary may use this address to monitor async members. An async member attempts to establish its data channel
to the primary using this address if the primary’s mirror private address is not accessible, which means that journal
data may travel over this network.

» Agent address/port

When attempting to contact this member’s agent, other members try this address first. Critical agent functions (such
as those involved in failover decisions) will retry on the mirror private and superserver addresses (if different) when
this address is not accessible. Because the agent can send journal data to other members, journal data may travel over
this network.

e Virtual IP (VIP) address

If you are using a virtual IP (VIP) address as described in Planning a Mirror Virtual IP (VIP), you must enter the VIP
address when creating or editing the primary failover member. The primary registers itself with this address dynamically
as part of becoming primary; the two failover members must be on the same subnet of the network associated with the
VIP so that the backup can acquire the VIP during failover. Administrators typically give the VIP address a DNS name
on the DNS server. This address should never be used elsewhere in the mirroring configuration (nor as an address for
application servers to connect to; ECP has its own mechanism of finding the primary using superserver addresses).

» Arbiter address/port (outgoing)

The address used by the failover members to connect to the arbiter; this address is configured when creating or editing
the primary failover member. See Locating the Arbiter to Optimize Mirror Availability for important information about
the network location of the arbiter.

While it is optional to configure TLS for mirror communication between the addresses described here, it is highly recom-
mended, because sensitive data passes between the failover members, and TLS provides authentication for the ISCAgent,
which provides remote access to journal files and can force down the system or manipulate its virtual IP address. If an
instance has journal encryption enabled and you make it the primary failover member of a mirror, you must configure the
mirror to use TLS. For more information, see Securing Mirror Communication with TLS Security.

High Availability Guide 25

Mirroring Architecture and Planning

3.6 Sample Mirroring Architecture and Network
Configurations

This section describes and illustrates several sample mirroring architectures and configurations.

« Mirroring Configurations within a Single Data Center, Computer Room, or Campus

» Mirroring Configurations For Dual Data Centers and Geographically Separated Disaster Recovery

Some diagrams depict a disaster recovery (DR) async member and a reporting async member in variety of locations. One

or both may be omitted, multiples of each are allowed, and in general the locations depicted in different diagrams may be
combined.

For purposes of illustration, sample IPv4 addresses on the organization's internal network are shown. Assume that subnets
are specified by 24 bits (that is, CIDR notation a.b.c.d/24 or netmask 255.255.255.0) so addresses that are depicted on the
same subnet will differ only in the fourth dot-delimited portion.

Equivalent DNS names may also be specified in place of IP addresses in the mirror configuration, except for the mirror
virtual IP (VIP) address, which must be an IP address.

3.6.1 Mirroring Configurations within a Single Data Center, Computer Room,
or Campus

The following diagrams illustrate a variety of mirroring configurations typical within a data center, computer room, or
campus. Each diagram describes the appropriate network topology, and the relationship to the network addresses specified
in the mirror configuration. Variations are described, and may be particularly applicable when mirror members reside in
multiple locations within the campus.

26 High Availability Guide

Sample Mirroring Architecture and Network Configurations

3.6.1.1 Simple Failover Pair

Campus LAN / WAN Accessible to Users and Other Systems

10.1.41.9

Mirror Virtual IP ? ? !

10.1.20.100 '
Arhiter
10.1.20.11 10.1.20.12

\ » o /
Failover Members -—
10.0.8.11

Data Center Private LAN for Mirror Communication 4

This is the simplest mirror configuration. The failover members communicate with each other over a private network while
external connections to them are made over a public network, optionally through a mirror virtual IP (VIP). The arbiter is
on the external network (as recommended in Locating the Arbiter to Optimize Mirror Availability), but since it is always
the failover members that initiate connections to the arbiter, the VIP is not involved in these connections.

The following IP addresses are used in this configuration:

Virtual IP Address 10.1.20.100

Arbiter Address 10.1.41.9

Member-Specific Mirror IP Addresses for Member A B

SuperServer Address 10.1.20.11 10.1.20.12

Mirror Private Address 10.0.8.11 10.0.8.12

Agent Address 10.1.20.11 10.1.20.12

Notes:
1. AVIP requires both failover members to be on the same subnet.

2. While not required for mirroring, the separate, private LAN for mirror communication depicted here is recommended
for optimal control of network utilization. If such a LAN is not used, the mirror private addresses in the mirror config-
uration should be changed to use the addresses depicted on green backgrounds. Although the mirror private addresses
as shown imply that the members are on the same subnet of this network, this is not required.

High Availability Guide 27

Mirroring Architecture and Planning

3.6.1.2 Failover Pair with DR and Reporting Ayncs Homogeneously Connected

& e e

Campus LAN / WAN Accessible to Users and Other Systems

. 10.1.41.9

¥

] Arbiter

10.1.20.11 ; 10.1.20.13 |

DR Async

/ Members v U

et 10.0.8.13
10.0.8.11 10.0.8.12 =

Data Center Private LAN for Mirror Communication 2

10.1.20.14

Reporting
Async

ol

10.0.8.14

This configuration allows maximum functional flexibility for the DR async, allowing it to be promoted to replace a failover
member that is down for maintenance or repair, in addition to providing disaster recovery capability. The promoted DR
can function fully as backup or primary and participates in the VVIP. The failover members and DR are on the same public-
facing subnet for the VIP. Their private network addresses, if used, are accessible to one another (if not the same subnet,
then by routing). Network topology and latency may place constraints on the physical separation possible between the DR

and the two failover members.

The following IP addresses are used in this configuration:

Virtual IP Address

10.1.20.100

Arbiter Address

Member-Specific Mirror IP Addresses for Member A B

Notes:

SuperServer Address | Lol 10.1.20.12
Mirror Private Address 10.0.8.11 10.0.8.12
Agent Address 10.1.20.11 10.1.20.12

10.1.41.9

1. All members that may hold or acquire the VIP must be on the same subnet.

C

D

10.1.20.13 10.1.20.14
10.0.8.13 10.1.20.14 3

10.1.20.13 10.1.20.14

2. Aseparate, private LAN for mirror communication as depicted here is not required for mirroring, but is recommended
for optimal control of network utilization. If such a LAN is not used, the mirror private addresses should be changed
in the mirror configuration to use the addresses depicted in green. Although the depicted mirror private addresses imply
that the members are on the same subnet of this network, this is not required.

3. Since reporting members can never become primary, they make only outgoing connections on the mirror private network.
Therefore that address need not be separately specified in the mirror configuration.

28

High Availability Guide

Sample Mirroring Architecture and Network Configurations

3.6.1.3 Failover Pair with DR and Reporting Anywhere on Campus

55 sl ?;I.I
4
el
el
el

10.1.22.35 Wy 10.1.24.56

Reporting
Async

F

DR Async

Failover
Members

10.0.8.11 10.0.8.12

Data Center Private LAN for Mirror Communication 2

This configuration allows maximum flexibility in the locations of async members and the network connecting them. Since
the DR in this configuration is not assumed to be on the VIP subnet, some alternative means must be used to redirect user
connections to the DR during disaster recovery; for example, manually updating the DNS name to point to the DR async’s
IP instead of the VIP, or configuring one of the mechanisms discussed in Redirecting Application Connections Following
Failover. Additionally, since the DR member is not assumed to have connectivity to the mirror private network (if used),
it can be promoted only when no failover member is in operation, and only to become primary.

The following IP addresses are used in this configuration:

Virtual IP Address 10.1.20.100

Arbiter Address 10.1.41.9

Member-Specific Mirror IP Addresses for Member A B E F

SuperServer Address 10.1.20.11 10.1.20.12 10.1.22.35 10.1.24.56

Mirror Private Address 10.0.8.11 10.0.8.12 10.1.22.35 10.1.24.56

Agent Address 10.1.20.11 10.1.20.12 10.1.22.35 10.1.24.56

Notes:
1. Any member that is to acquire the Virtual IP must be on the same subnet.

2. A separate, private LAN for mirror communication is depicted here but not required. If such a LAN not used, the
mirror private addresses should be changed in the mirror configuration to use the addresses depicted in green. Although

the depicted mirror private addresses imply that the failover members are on the same subnet of this network, this is
not required.

High Availability Guide 29

Mirroring Architecture and Planning

3.6.1.4 Mirroring for Disaster Recovery and Reporting Only

Campus LAN / WAN Accessible to Users and Other Systems

10.1.20.11 10.1.20.13 10.1.20.14

Reporting
DR Async
v Async

_ Failover @ '
L _/ Member -

10.0.8.11 10.0.8.13 10.0.8.14 2

Data Center Private LAN for Mirror Communication 2

This configuration uses mirroring to provide DR and/or reporting capabilities only. High availability is provided for the
single failover member using OS failover clustering, virtualization HA or other infrastructure-level options as described
in Failover Strategies for High Availability. Since mirroring is not used for automatic failover in this configuration, no VIP
is depicted. If desired, a VIP can be configured for use during disaster recovery, but this requires the DR member to be on
the same subnet as the failover member. Otherwise, alternative technology or procedures such as those discussed in Redi-

recting Application Connections Following Failover must be used to redirect user connections to the DR during disaster
recovery.

The following IP addresses are used in this configuration:

Virtual IP Address Mot Depicted

Arbiter Address Not Used

Member-Specific Mirror IP Addresses for Member A C D

SuperServer Address | 10 10.1.20.13 10.1.20.14

Mirror Private Address 10.0.8.11 10.0.8.13 10.1.20.14 2

Agent Address | [0l 10.1.20.13 10.1.20.14

Notes:

1. A separate, private LAN for mirror communication is depicted here but not required. If such a LAN is not used, the
mirror private addresses should be changed in the mirror configuration to use the addresses depicted in green. Although

the depicted mirror private addresses imply that the failover members are on the same subnet of this network, this is
not required.

2. Since reporting members can never become primary, they make only outgoing connections on the mirror private network.
Therefore that address need not be separately specified in the mirror configuration.

30 High Availability Guide

Sample Mirroring Architecture and Network Configurations

3.6.1.5 Mirroring in a Distributed Cache Cluster

¢ g8

Campus LAN / WAN Accessible to Users and Other Systems

ECP Application |4 10.1.41.9
Servers P
AT 2
Data Center Private LAN for ECP Communication 2 Arbiter

Mirror Virtual IP 2
10.1.20.100 A L/
10.1.20.12 10.1.20.13 i
- 100413 | =

10.0.4.12

Reporting

oL

10.0.8.14 2

DR Async

Failover v wl—

Members

10.0.8.11 10.0.8.12

Data Center Private LAN for Mirror Communication 2

10.0.8.13

This diagram depicts application servers added to a mirrored environment. While increasing complexity, the application
server tier allows horizontal scalability and preserves user sessions across database server failover. For information about
distributed caching and distributed cache clusters, see Horizontally Scaling Systems for User Volume with Distributed
Caching.

The following IP addresses are used in this configuration:

Virtual IP Address 10.1.20.100?

Arbiter Address 10.1.41.9

Member-Specific Mirror IP Addresses for Member A B C D

SuperServer Address 10.0.4.11 10.0.4.12 10.0.4.13 10.1.20.14

Mirror Private Address 10.0.8.11 10.0.8.12 10.0.8.13 10.1.20.14 3

Agent Address | [of bl 10.1.20.12 10.1.20.13 10.1.20.14

Notes:

1. Application servers do not use the VIP and will connect to any failover member or promoted DR member that becomes
primary, so the VIP is used only for users' direct connections to the primary, if any. A VIP requires both failover
members to be on the same subnet. In order for the DR member to acquire the VIP when promoted, it must also reside
on the same subnet; if it does not, see Redirecting Application Connections Following Failover.

2. The private LANSs for both ECP and mirror communication shown here, while not required, are recommended for both
optimal control of network utilization and ECP data privacy. Configurations with fewer networks are possible by col-
lapsing one of the networks into another. Although the private addresses shown imply that the members are on the
same subnets of these networks, the only requirement is that the addresses are routable between one another.

When considering network layout, bear in mind that all async members require connectivity to the primary on either
the primary's mirror private address or its superserver address. Thus in the depicted configuration, an async member
that has access only to the green user network will not function.

High Availability Guide 31

Mirroring Architecture and Planning

3. Since reporting members can never become primary, they make only outgoing connections on the mirror private network.
Therefore that address need not be separately specified in the mirror configuration.

3.6.2 Mirroring Configurations For Dual Data Centers and Geographically
Separated Disaster Recovery

The following diagrams depict HA and DR configurations utilizing geographical separation for recovery from disasters
affecting a data center, campus, or geographic region. Reporting members are omitted from these diagrams for simplicity
of illustration, but may be added in either of the locations just as depicted in the single campus configurations.

All of the following configurations require a strategy for redirecting connections to the primary when a member in the other
location becomes primary. For geographically separated locations, a VIP may be difficult or impossible to configure because
it requires the subnet to be stretched between the two locations. Even if configured, it may not be sufficient, as described
in the paragraphs that follow. Alternative technology, hardware, or procedures, such as those discussed in Redirecting
Application Connections Following Failover, provide other means of redirecting connections. Whether utilizing a stretched
subnet or not, a VIP is extremely useful for automatic failover between two members within a single data center, and its
use is depicted in these diagrams for that purpose.

A stretched subnet for VIP is typically useful for internal intranet applications. With it, users and systems with a connection,
or VPN access, to the LAN/WAN depicted in green can access the primary in either location over its VIP.

For Internet-facing applications, on the other hand, a stretched subnet for VVIP does not provide a solution for connectivity
in a disaster. The main data center’s DMZ presents the application's Internet-facing IP address and/or DNS names as a
proxy for the internal mirror VIP; in the event of a disaster, they may need to be externally transferred to the other data
center. Solutions involve either sophisticated external routing or one of the techniques described in Redirecting Application
Connections Following Failover, any one of which obviates the need for a stretched subnet.

3.6.2.1 Failover Pair with Local DR and Geographically Separated DR

Main Data Center or Campus Internet

§ i § 1S ¢ 1

LANs & WAN Accessible to the Entire Organization

Arbiter

? ! Virtual IP may or may not
= be used in the DR site. !

Failover
Members
10.0.8.11 10.0.8.12 10.0.8.13 10.0.11.21 2

Private LAN / WAN for Mirror Communication 2

32 High Availability Guide

Sample Mirroring Architecture and Network Configurations

The local DR async provides contingency for events affecting one or both of the failover members. The local DR can be
promoted to replace one of the failover members that is down for maintenance or repair, or to recover from a disaster
affecting both failover members. The geographically separated DR is used to recover from disasters affecting the entire

main data center or campus.

The following IP addresses are used in this configuration:

Virtual IP Address

10.1.20.100

Arbiter Address
Member-Specific Mirror IP Addresses for Member
SuperServer Address

Mirror Private Address

Agent Address

Notes:

1. See preceding discussion of VIP.

10.1.41.9

A B = J

10.1.20.11 10.1.20.12 10.1.20.13 10.1.20.21

10.0.8.11 10.0.8.12 10.0.8.13 10.0.11.21 2

10.1.20.11 10.1.20.12 10.1.20.13

10.1.20.21

2. When possible, making the mirror private network (if used at all) accessible to the DR data center through the data
center interconnect (WAN) offers some additional functional flexibility for member J. This does not require stretching
the subnet, only that the traffic on this network is routed between the data centers. In this configuration, when J is
promoted, it can connect as backup to the primary in the main data center. If the DR does not have access to the mirror
private network, it can be promoted only to function as primary, and that only when no failover member is in operation.
The flexibility mentioned here is primarily useful in configurations in which the VIP is stretched and the application
is not substantially impacted by latency between the data centers.

3.6.2.2 Failover Pair with Geographically Separated, Fully Redundant DR Environment

Data Center 1 3

LANs & WAN Accessible to

+/ Failover
Members

10.0.8.11 10.0.8.12

Private LAN / WAN for

° Internet

the Entire Organization

A common Virtual IP address
may or may not be shared
between the two sites.

10.5.10.21 10.5.10.22

e T

10.0.11.21 10.0.11.22

Mirror Communication 2

In the event of disaster affecting Data Center 1, two DR members in Data Center 2 are promoted, providing a completely
redundant alternate HA environment. The following IP addresses are used in this configuration:

High Availability Guide

33

Mirroring Architecture and Planning

Virtual IP Address

10.1.20.100 ?

Arbiter Address

Member-Specific Mirror IP Addresses for Member
SuperServer Address

10.1.41.9 3

A B 1

10.1.20.11 10.1.20.12 10.5.10.21

Mirror Private Address

10.0.8.11 10.0.8.12 10.0.11.21

Agent Address

10.5.10.21

10.1.20.11

10.1.20.12

Notes:

K

10.5.10.22
10.0.11.22
10.5.10.22

1. See preceding discussion of VIP. This illustration does not assume a stretched subnet; instead, upon transitioning to
Data Center 2, the mirror is to be reconfigured to use a different VIP for subsequent automatic failovers within that
data center. External technology, hardware, or procedures, as discussed in Redirecting Application Connections Fol-
lowing Failover, are then used to redirect connections to the new VIP address.

2. When possible, giving both data centers access to the mirror private network (if used) through the data center interconnect
(WAN) adds functional flexibility. This does not require stretching the subnet, only that the traffic on this network is
routed between the data centers. In that configuration, a promoted DR member in one data center can connect as backup
to the primary in the other. This is useful mainly in configurations in which the VIP is stretched and the application is
not substantially impacted by latency between the data centers. (If the DR has no access to the mirror private network,
it can be promoted only to function as primary, and that only when no failover member is operating.)

3. Inthe event that Data Center 1 is completely offline and members J and K are promoted to failover members, a new
arbiter can be made available in Data Center 2 and the mirror configuration can be updated with the IP address of the
new arbiter. The depicted configuration is not intended to operate for extended periods with two failover members in
opposite data centers; if operated in this manner, an arbiter in a separate, third location (the Internet in this depiction)

is recommended. See Locating the Arbiter to Optimize Mirror Availability for more details.

3.6.2.3 Geographically Separated Failover Pair

I

LANs & WAN Accessible to
10.1.20.11

Failover
Member

A

10.0.8.11

Private WAN for

Internet

111

Arbiter ? @’u

203.0.113.46

Data Center 2

the Entire Organization

g lli[;

53

. 10.5.10.23

&
Failover
Member

10.0.11.23

Mirror Communication 2

34

High Availability Guide

Redirecting Application Connections Following Failover or Disaster Recovery

This configuration utilizes two machines in separate locations to achieve both high availability and disaster recovery needs
with minimal hardware. Network latency between the failover members is an important consideration, but its impact, if
any, depends on the application; see Network latency considerations for more information.

Mirroring does not prefer one failover member over another to act as primary, and a failover may occur as a result of any
type of outage, even if the problem on the primary turns out to have been transient. Therefore, this configuration is best
used with no implicit preference for the primary running in a particular data center.

Use of a VIP may or may not be possible in this configuration for reasons described in the preceding discussion. Since
failover between the two data centers happens automatically, any alternative strategy employed must provide rapid and
automatic redirection of users to the new primary; strategies that require manual intervention are typically not sufficient.

The following IP addresses are used in this configuration:

Virtual IP Address Not Depicted

Arbiter Address 203.0.113.46 1

Member-Specific Mirror IP Addrasses for Member

SuperServer Address

Mirror Private Address 10.0.8.11 10.0.11.23

Agent Address

Notes:

1. The arbiter is best placed in a third location in this configuration. See Locating the Arbiter to Optimize Mirror Avail-
ability for more details.

2. A private network for mirror communication running over a data center interconnect (WAN) is depicted here but not
required.

3.7 Redirecting Application Connections Following
Failover or Disaster Recovery

When the backup failover member becomes primary through automatic failover or a DR async is manually promoted to
primary as part of disaster recovery, some mechanism for redirecting application connections to the new primary is required.
There are numerous ways to accomplish this, some of which are discussed in detail on this page. One solution may apply
to both automatic failover and DR promotion, or solutions may be combined, for example a mirror VIP for automatic
failover and DNS update for DR promotion.

e Built-in Mechanisms
» External Technologies

* Planning a Mirror Virtual IP (VIP)

3.7.1 Built-in Mechanisms

The following mechanisms can be included in the mirror configuration, as shown in Sample Mirroring Architecture and
Network Configurations, to address application redirection:

* Mirror virtual IP address (VIP)

High Availability Guide 35

Mirroring Architecture and Planning

When a mirror VIP is in use (see Planning a Mirror Virtual IP (VIP)) and a member becomes primary, the VIP is
automatically bound to a local interface on the new primary, allowing external clients to continue to connect to the
same IP address. The use of a VIP requires that members eligible to become primary be on the same subnet, as described
in Sample Mirroring Architecture and Network Configurations.

Note: Typically, aVIP cannot be used in cloud environments; for information on alternatives and other considerations
when mirroring in the cloud, see Mirroring in a Cloud Environment.

Distributed cache cluster

In a mirrored distributed cache cluster (see Configuring Application Server Connections to a Mirror), the failover
members are configured as data servers and all application server connections are configured specifically as mirror
connections. Following failover, application servers reestablish their connections to the new primary failover member
and continuing to process their in-progress workload. During the failover process, users connected to the application
servers may experience a momentary pause before they are able to resume work. For information about ECP recovery,
see ECP Recovery and ECP Recovery Process, Guarantees, and Limitations .

Bear in mind that the primary purpose of distributed caching is horizontal scaling; deploying a cluster simply as a
component of your HA strategy can add costs, such as increased complexity and additional points of failure, as well
as benefits.

Web Gateway

When a Web Gateway Server Access entry is configured to be mirror aware, the Gateway is initially configured to
connect to one of the failover members, from which it obtains a list of the failover and DR async members in the mirror.
The Gateway identifies and connects to the current primary based on this list. If the mirror fails over, the Gateway
changes the connection to the new primary. If no primary can be found among the failover members, the Gateway
attempts to find one among the DR asyncs in the list, which enables it to reestablish the connection when a DR async
is promoted to primary. A mirror aware Gateway connection uses the superserver addresses to contact the mirror
members (see Mirror Member Network Addresses).

Generally, if you have enabled another method of redirecting application connections to the primary (such as a VIP),
the best practice is to configure a standard Web Gateway connection to that mechanism, and not a mirror aware con-

nection. A mirror aware Web Gateway connection should be used only as the principal means of redirecting application
connections.

By default, Server Access entries are not mirror aware, as it is not appropriate for many Gateway server configurations,
including those supporting the InterSystems IRIS Management Portal. See Configuring Server Access for more infor-
mation about mirror aware Web Gateway connections.

3.7.2 External Technologies

The following mechanisms can be implemented in conjunction with mirroring to address application redirection:

Hardware load balancers and site selectors

Redirection of application traffic at the network level can be implemented using mechanisms such as hardware-based
site selectors.

DNS update

Automatic and manual options are available; some may be too slow for use with automatic failover.

Application programming

Individual applications can be adapted to maintain knowledge of mirror members and connect to the current primary.

User-level procedures

36

High Availability Guide

Mirroring in a Virtualized Environment

Users can be provided with the means to connect to multiple mirror members, for example a second icon for connection
to the disaster recovery site.

3.7.3 Planning a Mirror Virtual IP (VIP)

As described in Built-in Mechanisms, when a mirror VIP is in use and a member becomes primary, the VIP is reassigned
to the new primary, which allows all external clients and connections to interact with a single static IP regardless of which
failover member is currently serving as primary.

During the failover process, connected clients that experience a network disconnect are able to reconnect once the backup
has become primary. If a VIP is configured, the backup completes the failover only if it is successfully able to assign the
VIP; otherwise, the failover process is aborted and the mirror requires manual intervention.

In preparing to set up a mirror VIP, consider the following:

e To use a mirror VIP, both failover members must be configured in the same subnet, and the VIP must belong to the
same subnet as the network interface that is selected on each system. A DR async member must have a network interface
on the same subnet to be able to acquire the VIP when promoted to primary as part of disaster recovery; if this is not
the case, an alternative redirection mechanism must be incorporated into disaster recovery procedures.

* When failover and/or DR async members are in separate data centers, a VLAN subnet can be extended across the data
centers to continue supporting the same VIP address. This requires Layer 2 connectivity between the two sites and
may not be sufficient for all cases; see the discussion in Mirroring Configurations For Dual Data Centers and Geograph-
ically Separated Disaster Recovery.

* You should assign a DNS name for the VIP on your DNS server for use by connecting clients.

» IfaVIPisin use and a failover member is removed from the VVIP subnet, that member must be demoted to DR async
(see Demoting the Backup to DR Async) or removed from the mirror, or the VIP configuration must be removed from
both failover members. Otherwise, when the failover member attempts to take over as primary it will fail to acquire
the VIP and therefore fail to become primary.

Important: If one or more of a mirror’s members is a nonroot InterSystems IRIS instance on a UNIX® or Linux system,
as described in InterSystems IRIS Nonroot Installation, a mirror VIP cannot be used.

3.8 Mirroring in a Virtualized Environment

The use of mirroring in a virtualized environment, in which the InterSystems IRIS instances constituting a mirror are
installed on virtual hosts, creates a hybrid high availability solution combining the benefits of mirroring with those of vir-
tualization. While the mirror provides the immediate response to planned or unplanned outages through automatic failover,
virtualization HA software automatically restarts the virtual machine hosting a mirror member following an unplanned
machine or OS outage. This allows the failed member to quickly rejoin the mirror to act as backup (or to take over as primary
if necessary).

When a mirror is configured in a virtualized environment, the following recommendations apply:
» The failover members’ virtual hosts should be configured so that they will never reside on the same physical host.

» Toavoid a single point of storage failure, the storage used by the InterSystems IRIS instances on the failover members
should be permanently isolated in separate datastores on separate disk groups or storage arrays.

» Some operations performed on the virtualization platform level, such as backup or migration, can cause the failover
members to be unresponsive for long enough to result in unwanted failover or an undesirable frequency of alerts. To
address this problem, you can increase the QoS timeout setting (see Quality of Service (QoS) Timeout).

High Availability Guide 37

Mirroring Architecture and Planning

When conducting planned maintenance operations that cause interruptions in failover member connectivity, you can
temporarily stop mirroring on the backup to avoid unwanted failover and alerts.

Snapshot management must be used very carefully on mirror members, as reverting a member to an earlier snapshot
erases both the most recent status of the member—which may, for example, have been changed from primary to backup
since the snapshot was taken—and journal data that is still possessed by other members. In particular,

— A failover member that has been reverted to an earlier snapshot should be resumed only from a powered-off state;
resuming it from a powered-on state creates the possibility of both failover members simultaneously acting as
primary.

— If afailover member that was reverted to an earlier snapshot becomes primary without obtaining all of the journal
data created since the snapshot—for example, because it is forced to become primary—all other mirror members
must be rebuilt (as described in Rebuilding a Mirror Member).

3.9 Mirroring in a Cloud Environment

When InterSystems IRIS is deployed on a public cloud platform, mirroring can provide robust high availability and disaster
recovery solutions. While the specifics of your deployment will vary depending on your application requirements, some
general considerations are:

It is best practice to split the failover members between two availability zones within the same region. This configuration
balances latency and resiliency considerations.

If your application has exceptionally high update workloads or uses synchronous commit transactions, you might
consider further reducing latency at the expense of resiliency by deploying using proximity placement groups. These
placement groups physically place the virtual machine instances close to each other within a single availability zone
which allows for the lowest latency. This configuration is less resilient and should be considered only if exceptionally
low latency is necessary for your application.

To maximize resiliency, DR async members should be located in a separate region from the failover members.

Typically, aVIP cannot be used in cloud environments. Alternatives are available, however. Network traffic management
appliances such as load balancers (physical or virtual) can be used to achieve the same level of transparency as a VIP,
presenting a single address to the client applications or devices. Depending on the platform, it may also be possible to
establish a VIP using a special-purpose configuration. For detailed information about these options for configuring
application redirection following failover in a cloud environment, please see Database Mirroring without a Virtual IP
Address and VIP on AWS on InterSystems Developer Community.

The arbiter should generally be placed in the same network tier as web servers or wherever the ingress point to the
cloud-based InterSystems IRIS deployment will be. If there are no web or application servers, then the arbiter can be
placed in the same tier or security group as the mirror members themselves.

In deployments with two availability zones, the arbiter can be placed in either zone. If you already have a third zone
deployed for other purposes, then it can be advantageous to locate the arbiter in that zone. Deploying a third zone
specifically for the arbiter generally incurs added cost and management overhead incommensurate with any advantage.
For more information, see Locating the Arbiter to Optimize Mirror Availability.

Encryption is highly recommended when mirroring in the cloud. It is best practice to use encryption on all mirror
members, not just the primary member. Database encryption protects the data on the storage volume, but not in trans-
mission between mirror members. To protect data in transmission journal encryption should be configured as well.
Public cloud platforms also offer database encryption which may need to be specified when configuring storage volumes.
For general information on encryption, see the Encryption Guide.

38

High Availability Guide

https://community.intersystems.com/post/database-mirroring-without-virtual-ip-address
https://community.intersystems.com/post/database-mirroring-without-virtual-ip-address
https://community.intersystems.com/post/vip-aws

Limiting Access to the Backup Failover Member

3.10 Limiting Access to the Backup Failover Member

While the system hosting the backup failover member of a mirror may have unused resources or capacity, or you may want
to run read only queries on its mirrored databases, InterSystems recommends the best practice of dedicating the host to its
role as backup mirror member only. Any mirror-related or nonmirror use of the backup can have the following effects:

» Ifareduction in the backup’s performance causes it to be slow to acknowledge receipt of journal data from the primary,
users of applications accessing mirrored databases on the primary may experience reduced performance. Any application
interaction that must wait for acknowledgement by the primary, including those that involve an explicit journal syn-
chronizations as well as synchronous commit transactions and ECP activity, may be affected in this manner.

« Ifacknowledgement by the backup is delayed enough to prevent it from happening within the QoS timeout, the primary
revokes the backup’s active status, causing automatic failover to become more difficult or impossible, depending on
the nature of the primary outage.

» If automatic failover does occur, the backup is now supporting both its existing resource usage and the primary’s user
application resource usage. If this is a possibility, the backup host must have the capacity to handle both of these loads.

For these reasons, an async member, not the backup, should be used if user activity must be offloaded from the primary.

3.11 Installing Multiple Mirror Members on a Single Host

The InterSystems IRIS instances that make up a mirror are typically installed on separate physical or virtual hosts, but this
is not a requirement. Assuming the capacity of the system is sufficient to handle the resource loads involved without
incurring reduced performance, multiple mirror members, including multiple mirrors in their entirety, can be installed on
the same host; individual circumstances will determine whether this is feasible, and how many mirrors or mirror members
can be cohosted.

When cohosting multiple failover members, bear in mind that failover mirroring assumes that the members are coequal;
there is no preferred primary member. For this reason, the best practice when placing failover member instances on separate
hosts is to make the hosts as similar as possible and roughly equal in capacity. Cohosting failover members has the potential
to go outside the bounds of this model. For example, if five mirrors are created on five separate hosts and then five Inter-
Systems IRIS instances on one host are added to the mirrors as second failover members, the mirrors may initially operate
with primaries on separate hosts and all backups cohosted on a single system. But if there are two simultaneous or nearly
simultaneous outages resulting in failover, the single system is now hosting two primaries and three backups, which may
be too large a load for it to handle with adequate performance.

When multiple InterSystems IRIS instances belonging to one or more mirrors are cohosted, they share a single ISCAgent.
When cohosting multiple mirror members, bear in mind the following networking considerations:

* You must ensure that each mirror uses a unique set of ports on each machine (see Mirror Member Network Addresses),
and ensure that other mirror members that are not cohosted, if any, use the same ports. For example, two primaries
running on two separate hosts might both use port 1972, but if they can both potentially be replaced by cohosted DR
asyncs, as described in the previous item, the new primaries (the former DR asyncs) will have conflicting port assign-
ments. If one primary uses port 1972 and another 1973 and these same ports are configured on the asyncs, the asyncs
are ready for simultaneous promotion, and when it happens client can access the mirror using the same ports as before
the outages.

e The failover and DR async members of each mirror (whether entirely or partially cohosted with other mirrors or their
members) must have its own subnet, and each mirror its own VIP (if VIPs are used). This may be more or less complex,
depending on the environment involved, and requires the node cohosting the mirror members to have multiple NICs

High Availability Guide 39

Mirroring Architecture and Planning

to support the multiple subnets. For important information about mirror network configuration and VVIPs , see Mirroring
Communication, Sample Mirroring Architecture and Network Configurations, and Planning a Mirror Virtual IP (VIP),
and Configuring a Mirror Virtual IP (VIP).

» The cohosting of mirror members has no impact on the network location of the arbiter for each mirror, as described in
Locating the Arbiter to Optimize Mirror Availability. The mirrors involved can share an arbiter or use separate arbiters,
as long as the failover members and arbiter(s) are appropriately located.

40 High Availability Guide

Configuring Mirroring
This topic provides information and procedures for setting up, configuring and managing mirrors and mirror members.

4.1 Automated Deployment Methods for Mirrors

This topic provides procedures for creating a mirror and configuring existing instances as members using the Management
Portal. InterSystems IRIS® data platform also provides several methods for automated deployment of mirrors that are fully
operational following deployment.

4.1.1 Deploy Mirrors Using InterSystems Cloud Manager (ICM)

InterSystems recommends using InterSystems Cloud Manager (ICM) to deploy InterSystems IRIS, including mirrored
configurations. By combining plain text declarative configuration files, a simple command line interface, and InterSystems
IRIS deployment in Docker containers, ICM provides you with a simple, intuitive way to provision cloud or virtual
infrastructure and deploy the desired InterSystems IRIS architecture on that infrastructure, along with other services. ICM
can significantly simplify the deployment process, especially for complex horizontal cluster configurations.

In addition to deploying standalone mirrored instances, ICM can deploy distributed cache clusters with mirrored data servers
and sharded clusters with mirrored data nodes.

For more information on using ICM to deploy InterSystems IRIS in mirrored configurations, see Using ICM and ICM
Cluster Topology and Mirroring.

4.1.2 Deploy Mirrors Using the InterSystems Kubernetes Operator (IKO)

Kubernetes is an open-source orchestration engine for automating deployment, scaling, and management of containerized
workloads and services. You define the containerized services you want to deploy and the policies you want them to be
governed by; Kubernetes transparently provides the needed resources in the most efficient way possible, repairs or restores
the deployment when it deviates from spec, and scales automatically or on demand. The InterSystems Kubernetes Operator
(IKO) extends the Kubernetes API with the IrisCluster custom resource, which can be deployed as an InterSystems IRIS
sharded cluster, distributed cache cluster, or standalone instance, all optionally mirrored, on any Kubernetes platform.

The IKO isn’t required to deploy InterSystems IRIS under Kubernetes, but it greatly simplifies the process and adds Inter-
Systems IRIS-specific cluster management capabilities to Kubernetes, enabling tasks like adding nodes to a cluster, which
you would otherwise have to do manually by interacting directly with the instances.

For more information on using the IKO, see Using the InterSystems Kubernetes Operator.

High Availability Guide 41

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO31

Configuring Mirroring

4.1.3 Deploy Mirrors Using Configuration Merge

The configuration merge feature, available on Linux and UNIX® systems, lets you vary the configurations of InterSystems
IRIS containers deployed from the same image, or local instances installed from the same kit, by applying the desired
declarative configuration merge file to each instance in the deployment. This merge file, which can also be applied when
restarting an existing instance, updates an instance’s configuration parameter file (CPF), which contains most of its config-
uration settings; these settings are read from the CPF at every startup, including the first one after an instance is deployed.
When you apply configuration merge during deployment, you in effect replace the default CPF provided with the instance
with your own updated version.

Using configuration merge, you can deploy (or configure from existing instances) one or more mirrors, including their
mirrored databases, by applying separate merge files to the different mirror roles, sequentially deploying or configuring
the first failover member(s), then the second failover member(s), then DR async members. (Reporting async members must
be manually added to the mirror after it is deployed or configured.) You can also automatically deploy multiple failover
pairs, or deploy multiple backups for existing primaries, if the deployment hosts have names matching a specific pattern.
In this case you can use a single merge file for both primaries and backups, then use a separate merge file for any DR async
members following automatic deployment of the failover pairs.

You can also use the configuration merge feature to deploy distributed cache clusters with mirrored data servers and sharded
clusters with mirrored data nodes.

The IKO, described above, incorporates the configuration merge feature.

For information about using configuration merge in general and to deploy mirrors in particular, see Automating Configuration
of InterSystems IRIS with Configuration Merge.

4.2 Mirror Configuration Guidelines

In order to provide a robust, economical HA solution, mirroring is designed to be adaptable to a wide range of system
configurations and architectures. However, InterSystems recommends that you adhere to the following general configuration
guidelines:

» InterSystems IRIS instance and platform compatibility — Before identifying the systems to be added to a mirror, be
sure to review the requirements described in InterSystems IRIS Instance Compatibility and Member Endianness Con-
siderations.

» Coequality of failover members — The two failover members in a mirror are assumed to be coequal. There is no way
to configure a preference for one to be primary, and the primary and backup roles are reversed as circumstances require.
For this reason, the best practice is for the failover system hosts to be as similar to each other as possible, in particular
to be configured with similar computing resources; that is, the CPU and memory configuration as well as the disk
configuration on the two systems should be comparable.

» Primary instance configuration and security settings — The configurations of such elements as users, roles, namespaces,
and mappings (including global mappings and package mappings) on the primary failover member are not replicated
by the mirror on other mirror members. Therefore, any settings required to enable the backup failover members or DR

42 High Availability Guide

Mirror Configuration Guidelines

async members to effectively take over from the primary must be manually replicated on those members and updated
as needed.

CAUTION: If you choose to export the security settings for users who have been configured to use time-based
one-time passwords (TOTP), you must also treat the security export file with the same considerations
you would for the TOTP secret key. In particular, do not transmit the security export file in an unsecured
environment. Out-of-band transmission is preferable to transmission even on a secure network. (The
secret key contained in it gives an end-user the means to log in to InterSystems IRIS or an InterSystems
IRIS application. If you and your end-users do not ensure the secret key’s safety, then an attacker may
gain access to it, which renders it useless for security.)

* Unmirrored data — Only data in mirrored databases on the primary failover member is replicated and synchronized
on the backup failover member and async members. Therefore, any files required to enable the backup or a DR async
to effectively take over from the primary (including, for example, those related to SQL gateway and web server con-
figuration) must be manually copied to those members and updated as needed.

Note: A mirrored database’s file streams, located by default in the stream subdirectory of the database directory,
are not mirrored. (For information about file streams, see Working with Streams.)

e ICMP — Do not disable Internet Control Message Protocol (ICMP) on any system that is configured as a mirror
member; mirroring relies on ICMP to detect whether or not members are reachable.

* Network — InterSystems recommends that you use a high-bandwidth, low-latency, reliable network between the two
failover members. If possible, it is desirable to create a private subnet for the two failover members such that the data
and control-channel traffic can be routed exclusively on this private network. A slow network could impact the perfor-
mance of both the primary and the backup failover members, and could directly impact the ability of the backup failover
member to take over as primary in the event of a failover. See Network Configuration Considerations and Network
Latency Considerations for further discussion of networking requirements and configuration. See also Configuring a
Mirror Virtual IP (VIP) for important networking requirements and considerations when using a VIP.

» Disk subsystem — In order for the backup failover member to keep up with the primary system, the disk subsystems
on both failover members should be comparable; for example, if configuring a storage array on the first failover
member, it is recommended that you configure a similar storage array on the second failover member. In addition, if
network-attached storage (NAS) is used on one or both systems, it is highly recommended that separate network links
be configured for the disk 1/0 and the network load from the mirror data to minimize the chances of overwhelming
the network.

» Journaling performance and journal storage — As journaling/dejournaling is the core of mirror synchronization, it is
essential to monitor and optimize the performance of journaling on the failover members. In particular, InterSystems
recommends that you increase the shared memory heap (gmheap) size on all mirror members. In the interests of both
performance and recoverability, InterSystems also recommends placing the primary and alternate journal directories
on storage devices that are separated from the devices used by databases and the write image journal (W1J), as well as
separated from each other. For details, see Journaling Best Practices and Restore Journal Files.

* Virtualization — While using mirroring in a virtualized environment provides a hybrid high availability solution that
combines the benefits of both, important recommendations apply; see Mirroring in a Virtualized Environment for more
information.

e Task scheduling — When you create a task on a mirror member using the task manager, you must specify whether the
task can run on the primary only, any member other than the primary, or any mirror member. Tasks intended to be run
on more than one mirror member must be either created separately on the members or exported from the Task Manager
on one member and imported on the others. For more information on creating, importing, and exporting tasks, see
Using the Task Manager.

High Availability Guide 43

Configuring Mirroring

e Startup — On the primary failover member, you may want to move code from an existing *%ZSTART routine to the
NZMIRROR routine so that it is not executed until the mirror is initialized. See Using the ~ZMIRROR Routine for
more information.

4.3 Installing the Arbiter

To extend automatic failover to the widest possible range of outage scenarios, as described in Automatic Failover
Mechanics, InterSystems recommends that you configure an arbiter for each mirror. As detailed in Locating the Arbiter to
Optimize Mirror Availability, the recommended network location for the arbiter depends on the locations of the failover
members. A single system can be configured as arbiter for multiple mirrors, provided its location is appropriate for each;
simply specify its host and port number, as described in Creating a Mirror , when creating or editing each mirror for which
it will server as arbiter.

To act as arbiter, a system must have a running ISCAgent process. Because the ISCAgent is installed with InterSystems
IRIS, any system that hosts one or more instances of InterSystems IRIS meets this requirement and can be configured as
arbiter without further preparation; however, a system hosting one or more failover or DR async members of a mirror
should not be configured as arbiter for that mirror.

Systems that do not host an InterSystems IRIS instance can be prepared to act as arbiter in either of these ways:
» Install the ISCAgent using a kit.

To prepare such a system, download the ISCAgent installation kit appropriate to your arbiter system’s platform from
InterSystems and then, to install the ISCAgent:

— On Windows systems, simply execute the installation file, for example ISCAgent-2018.1.0.540.0-win_x64.exe.
You can also install using command-line options for logging and unattended install. See Unattended Installation
Procedure for details on using command-line options.

— OnUNIX®, Linux, and macOS systems, unpack the single file installation Kit if necessary, then execute agentinstall
at the top level of the installation kit, /ISCAgent. For example:

[root@arbiterhost home]# gunzip 1SCAgent-2020.1.0.540.0-Inxrhx64.tar.gz
[root@arbiterhost home]# tar -xf ISCAgent-2020.1.0.540.0-Inxrhx64.tar
[root@arbiterhost home]# ./1SCAgent/agentinstall

You can perform this installation as an unattended installation by setting 1SC_PACKAGE_MODE to unattended.
For example:

[root@arbiterhost home]# 1SC_PACKAGE_MODE="unattended" ./1SCAgent/agentinstall

» Deploy the ISCAgent in a container.

A containerized ISCAgent can be deployed on any Linux system to act as arbiter. For information about obtaining and
using the ar bi t er image provided by InterSystems, see Mirroring with InterSystems IRIS Containers.

Important: Ensure that the ISCAgent process on the arbiter system is configured to start at system startup; see Starting
and Stopping the ISCAgent for more information.

For other ISCAgent options, such as setting the port, see Customizing the ISCAgent.

44 High Availability Guide

Starting the ISCAgent

Note: There are ISCAgent installation kits for all platforms on which InterSystems IRIS is supported; see Inter Systems
Supported Platforms.

The ISCAgent serving as arbiter need not be of the same InterSystems IRIS version as the members of a mirror
for which it is configured. However, InterSystems recommends that you upgrade the arbiter when you upgrade
the mirror so that you can be sure of having the latest version of the ISCAgent.

4.4 Starting the ISCAgent

An InterSystems IRIS instance cannot be added to a mirror as a failover or DR async member unless the ISCAgent process
is running on its host system. The ISCAgent must be configured to start automatically at system startup; see Starting and
Stopping the ISCAgent for more information.

4.5 Securing Mirror Communication with TLS Security

To provide security within a mirror, you can configure its members to use TLS when communicating with each other.
When you require the use of TLS when creating the mirror, all members must use TLS for all communication between
them.

See Creating a Mirror for information about creating a mirror with TLS security; see Editing or Removing a Failover
Member for information about adding TLS security to an existing mirror.

For a single, comprehensive step-by-step guide to creating a mirror with TLS security, written by an InterSystems Senior
Support Specialist, see Creating SSL-Enabled Mirror on InterSystems IRIS Using Public Key Infrastructure (PKI) on
InterSystems Developer Community.

Important: Use of TLS with mirroring is highly recommended. Disabling TLS for a mirror is strongly discouraged.

If an instance has journal encryption enabled and you make it the primary failover member of a mirror,
you must configure the mirror to use TLS.

The use of TLS for mirror communication by a mirror member requires proper TLS setup on the system hosting the mirror
member instance; see Configuring InterSystems IRIS to Use TLS with Mirroring for more information.

The use of encrypted journal files in mirroring also requires preparation; for detailed information about journal encryption,
see Activating Journal Encryption in a Mirror and Encryption Guide .

4.6 Using the “MIRROR Routine

Most mirroring configuration, management and status operations are available in the Management Portal and also in the
~MIRROR routine, which is executed in the %SYS namespace. However, some operations are available only in the
~MIRROR routine, including forcing the backup failover member to become the primary failover member (see Unplanned
Outage of Primary Without Automatic Failover). The procedures provided on this page describe the Management Portal
operation if available, but the "MIRROR option providing the equivalent operation is always noted.

High Availability Guide 45

https://community.intersystems.com/post/creating-ssl-enabled-mirror-intersystems-iris-using-public-key-infrastructure-pki

Configuring Mirroring

4.7 Creating a Mirror

Creating a mirror involves configuring the primary failover member, typically a backup failover member (although this is
not required), and optionally one or more async members. After the mirror is created, you can add databases to the mirror.

Important: Before you can add an InterSystems IRIS instance to a mirror as failover member or async, you must ensure
that the ISCAgent process has been started as described in Starting and Stopping ISCAgent.

The procedure for adding backup and async members requires an additional step if, as recommended by InterSystems, you
configure the mirror to use TLS (see Securing Mirror Communication with TLS Security). When this is the case, each new
member must be approved on the primary before joining the mirror.

To create and configure a mirror, use the following procedures:
Create a mirror and configure the first failover member
Configure the second failover member
Authorize the second failover member (TLS mirrors only)

1
2
3
4. Review failover member status in the Mirror Monitor
5. Configure async mirror members

6

Authorize new async members (TLS mirrors only)

After you have created the mirror and configured the failover members and optionally one or more async members, add
databases to the mirror using the procedures in Adding databases to a mirror.

Important: When you add a system task to an instance using the Task Manager (see Using the Task Manager), the
How should task run for Mirror setting determines which mirror members the task runs on, as follows:

* Runs on the primary failover member only

e Runs on the backup failover member and async members only (all members except the primary)
* Runs on all mirror members (primary, backup, and asyncs)

If the instance is not a mirror member, this setting has no effect. On a mirror member, however, if this

setting is not specified for a user-defined task, the task will not run, and adding an instance to a mirror
does not automatically update the setting.

Therefore you must do one of the following:

» Always set How should task run for Mirror when you create a task, even if the instance is not (yet) in
a mirror.

» Make sure you review all user-defined tasks when an instance is added to a mirror and set How should
task run for Mirror.

4.7.1 Create a Mirror and Configure the First Failover Member

The following procedure describes how to create a mirror and configure the first failover member.

1. On the first failover member, navigate to the Create Mirror page of the Management Portal (System Administration >
Configuration > Mirror Settings > Create a Mirror) and click Create a Mirror. If the option is not active, mirroring has
not been enabled; first click Enable Mirror Service, then select the Service Enabled check box and click save, then select
the Create a Mirror option.

46 High Availability Guide

Creating a Mirror

2. On the Create Mirror page, enter the following information in the Mirror Information section:

a.

Mirror Name — Enter a name for the mirror.

Note: Valid names must be from 1 to 15 alphanumeric characters; lowercase letters are automatically replaced
with uppercase equivalents.

Require SSL/TLS — Specify whether or not you want to require TLS security for all communication within the
mirror (as recommended) by selecting or clearing the check box. If you select Require SSL/TLS and the instance
does not already have a valid TLS configuration for mirroring, before completing the procedure you must click
the Set up SSL/TLS link and create the needed TLS configuration on this member. (Instructions for creating the
TLS configuration are contained in Create and Edit a TLS Configuration for a Mirror.) You can also cancel the
Create Mirror procedure and navigate to the TLS Configurations page (System Administration > Security > SSL/TLS
Configurations). If the instance does have a valid TLS configuration for mirroring, the link is Edit SSL/TLS instead,
and you need not use it when selecting Require SSL/TLS unless you want to modify that configuration.

Use Arbiter — Specify whether or not you want to configure an arbiter (as recommended) to enable automatic
failover for the widest possible range of outage scenarios, as described in Automatic Failover Mechanics. If you
select Use Arbiter, you must supply the hostname or IP address of the system you want to configure as arbiter and
the port used by its ISCAgent process (2188 by default). See Locating the Arbiter to Optimize Mirror Availability
and Installing the Arbiter for additional information about the arbiter.

Use Virtual IP — Specify whether or not you want to use a Virtual IP address by selecting or clearing the check
box. If you select Use Virtual IP, you are prompted for an IP address, Classless Inter-Domain Routing (CIDR)
mask, and network interface.

Important: See Configuring a Mirror Virtual IP (VIP) for requirements and important considerations before
configuring a VIP.

Compression Mode for Failover Members, Compression Mode for Async Members — Specify whether to compress
journal data before transmission from the primary to the backup and to async members, respectively, and which
compression type to use for each; see Mirror Traffic Compression for more information. The default setting for
both is System Selected, which optimizes for response time between the failover members and for network utilization
between the primary and asyncs.

3. Enter the following information in the Mirror Failover Information Section:

Mirror Member Name — A name for the failover member you are configuring on this system (defaults to a combi-
nation of the system host name and the InterSystems IRIS instance name). Mirror member names cannot contain
spaces, tabs, or the punctuation characters that follow:

[1# =N~

Alphabetic characters are converted to uppercase before saving. The maximum length of a mirror member name
is 32 characters.

Superserver Address — The IP address or host name that external systems can use to communicate with this
failover member; typically you can accept the default. For information on the Superserver address, see Mirror
Member Network Addresses and Updating Mirror Member Network Addresses.

Agent Port — The port number of the ISCAgent on this failover member; accept the installed agent’s port as provided
at the prompt. For information on the agent port, see Configuring the ISCAgent.

4. Click Advanced Settings to display and edit additional mirror settings, as follows:

Quiality of Service Timeout (msec) — The maximum time, in milliseconds, that a failover member waits for a
response from the other failover member before taking action; also applies to the arbiter’s wait for a failover

High Availability Guide 47

Configuring Mirroring

5.

Note:

member’s response. For information about the QoS timeout, see Configuring the Quality of Service (QoS) Timeout
Setting.

Allow Parallel Dejournaling — Change the setting that specifies whether to enable parallel dejournaling for the
failover members and DR asyncs (the default), all members including reporting asyncs, or the failover members
only. Parallel dejournaling increases mirror throughput, but may slightly increase the chances of inconsistent
results from queries or reports involving multiple databases; see Configuring Parallel Dejournaling for more
information.

Mirror Private Address — Enter the IP address or host name that the other failover member can use to communicate
with this failover member; see Mirror Member Network Addresses and Updating Mirror Member Network
Addresses.

Agent Address — Enter the address that other mirror members attempting to contact this member’s 1ISCagent will
try first; see Mirror Member Network Addresses and Updating Mirror Member Network Addresses.

Click save.

You can also use the “MIRROR routine (see Using the “MIRROR Routine) to create a mirror. When you execute
~MIRROR on an InterSystems IRIS instance without an existing mirror configuration, the Enable Mirror Service
option is available if mirroring is not yet enabled. Once mirroring is enabled, the Create a Mirror option is available
and provides an alternative means of creating a mirror and configuring the instance as the primary failover
member. The SYS.Mirror.CreateNewMirrorSet() mirroring APl method can also be used for this purpose.

4.7.2 Configure the Second Failover Member

Follow this procedure to configure the second failover member of the mirror.

1. On the second failover member, navigate to Join Mirror as Failover page (System Administration > Configuration >
Mirror Settings > Join as Failover). If the Join as Failover option is not available, mirroring has not been enabled; first
click Enable Mirror Service, then select the Service Enabled check box and click Save, then select the Join as Failover
option.

2. On the Join Mirror as Failover page, in the Mirror Information section, enter the mirror name you specified when you
configured the first failover member.

3. Enter the following information in the Other Mirror Failover Member’s Info section:

* Agent Address on Other System — Enter the Superserver Address you specified when you configured the first
failover member.

* Agent Port — Enter the port of the ISCAgent you specified when you configured the first failover member.

* InterSystems IRIS Instance Name — Enter the name of the InterSystems IRIS instance configured as the first
failover member.

4. Click Next to retrieve and display information about the mirror and the first failover member. In the Mirror Failover
Member Information section:

* Mirror Member Name — Specify a name for the failover member you are configuring on this system (defaults to
a combination of the system host name and the InterSystems IRIS instance name). Mirror member names cannot
contain spaces, tabs, or the punctuation characters that follow:

[1# 1 *=N~,
Alphabetic characters are converted to uppercase before saving. The maximum length of a mirror member name
is 32 characters.

48 High Availability Guide

Creating a Mirror

Superserver Address — Enter the IP address or host name that external systems can use to communicate with this
failover member; see Mirror Member Network Addresses and Updating Mirror Member Network Addresses for
information.

Agent Port — Enter the port number of the ISCAgent on this failover member; accept the installed agent’s port
as provided at the prompt. For information on the agent port, see Configuring the ISCAgent.

Network Interface for Virtual IP — Displays the network interface you specified when you configured the first
failover member; this setting cannot be changed on the second failover member.

SSL/TLS Requirement — Displays the setting you specified when you configured the first failover member. This
setting cannot be changed on the second failover member.

If the mirror requires TLS and the instance does not already have a valid TLS configuration for mirroring, before
completing the procedure you must click the Set up SSL/TLS link and create the needed TLS configuration on this
member. (Instructions for creating the TLS configuration are contained in Create and Edit a TLS Configuration
for a Mirror). You can also cancel the Join as Failover procedure and navigate to the TLS Configurations page of
the Management Portal (System Administration > Security > SSL/TLS Configurations).

If the instance does have a valid TLS configuration for mirroring, the link is Edit SSL/TLS instead, and you need
not use it when TLS is required unless you want to modify that configuration.

Mirror Private Address — Enter the IP address or host name that the other failover member can use to communicate
with this failover member; see Mirror Member Network Addresses and Updating Mirror Member Network
Addresses.

Agent Address — Enter the address that other mirror members attempting to contact this member’s 1ISCagent will
try first; see Mirror Member Network Addresses and Updating Mirror Member Network Addresses.

5. Click Advanced Settings to display the Quality of Service Timeout setting you specified when you configured the first
failover member; this setting cannot be changed on the second failover member.

6. Click save.

If you configured the mirror to require TLS, you are reminded that you must complete the process of adding the second
failover member to the mirror by authorizing the second failover member on the first failover member, as described in the
following section.

Note:

You can also use the "MIRROR routine (see Using the “MIRROR Routine) to configure the second failover
member. When you execute “MIRROR on an InterSystems IRIS instance without an existing mirroring config-
uration, the Enable Mirror Service option is available if mirroring is not yet enabled. Once mirroring is enabled,
the Join Mirror as Failover Member option is available and provides an alternative means of both configuring the
backup failover member and adding it to the mirror. The SYS.Mirror.JoinMirrorAsFailoverMember() mirroring
API method can also be used for this purpose.

4.7.3 Authorize the Second Failover Member or Async (TLS Mirrors Only)

If you configured the mirror to require TLS, an additional step is needed after you configure the second failover member
or configure an async member. On the system on which you created the mirror and configured the first failover member,
you must authorize the new mirror member, as follows:

1. Navigate to the Edit Mirror page (System Administration > Configuration > Mirror Settings > Edit Mirror).

2. At the bottom of the page, a Pending New Members area lists members that have been added to the mirror. Select the
members you want to authorize, click Authorize, and confirm. (The TLS certificate of the second failover member is
automatically verified when the member is added.)

High Availability Guide 49

Configuring Mirroring

3. Theinformation in the Mirror Member Information section of the Edit Mirror page now includes the members you added.
(See Mirror Member Network Addresses for information about the addresses displayed in this list.)

Note: The Authorize/Reject Pending New Members option on the Mirror Configuration menu of the "MIRROR routine
on the first failover member can be also used to authorize new failover or async members in a mirror configured
to require TLS.

The SYS.Mirror.AddFailoverMember() mirroring APl method can be used to authorize the second failover
member in a mirror configured to require TLS, and the Config.MapMirrors.Create() APl method can be used
to create an authorized member (failover or backup). The SYS.Mirror.VerifyMirrorSSL Certificates() can be
used to verify mirror member TLS certificates.

For information about authorizing X.509 DN updates on members of a mirror requiring TLS (for example when a member’s
certificate is replaced), see Authorizing X.509 DN Updates (TLS Only).

4.7.4 Review Failover Member Status in the Mirror Monitor

As described in Monitoring Mirrors, you can use the Mirror Monitor to see information about the failover members in a
mirror, including their current status (role) in the mirror. Use the mirror monitor to confirm that your mirror and its failover
members are now set up as intended, as follows:

1. On the first failover member you configured, display the Mirror Monitor page (System Operation > Mirror Monitor).

2. Inthe Mirror Failover Member Information area, the mirror member names and network address of the two failover
members are listed.

3. The Mirror Member Status area should show the first failover member you configured as Primary in the Status column,
and the second as Backup. As discussed in Mirror Member Journal Transfer and Dejournaling Status, the Journal
Transfer status of the backup should be Active, and its Dejournaling status should be Caught up.

4. Inthe Arbiter Connection Status area, if you configured an arbiter, its network address and agent port number are dis-
played. Failover Mode should be Arbiter Controlled and Connection Status should be Both failover members are connected
to the arbiter; if this is not the case, the arbiter may not have been correctly installed, its ISCAgent process may not be
running, or the network address or port number you supplied may be incorrect. A network problem preventing contact
with the arbiter by one or both failover members could also cause the Failover Mode to be Agent Controlled.

The same information is displayed in the Mirror Monitor on the backup failover member.

4.7.5 Configure Async Mirror Members

For each async member you want to configure, use the following procedure. A mirror with a failover pair can include up
to 14 reporting or disaster recovery (DR) async members. A single InterSystems IRIS instance can be a reporting async
member of up to 10 mirrors, but an instance can be a DR async in one mirror only. Once you have configured an instance
as either a read-only or a read-write reporting async, it can be added to other mirrors only as a reporting async member of
that type. (A reporting async member’s type can be changed for all mirrors to which it belongs, however, as described in
Editing the Mirror Configuration on an Async Member.)

Note: The procedure for adding an instance to a mirror as a reporting async member is the same whether you are using
the Join as Async option as described here or the Join a Mirror button on the Edit Async Configurations page as
described in Editing the Mirror Configuration on an Async Member, except that the Join a Mirror button on the
Edit Async Configurations page can be used only on reporting async members, as a DR async can belong to one
mirror only.

1. Navigate to the Join Mirror as Async page (System Administration > Configuration > Mirror Settings > Join as Async);
if the Join as Async option is not available, choose Enable Mirror Service and enable the service.

50 High Availability Guide

Creating a Mirror

2. On the Join Mirror as Async page, enter the mirror name you specified when you created the mirror at the Mirror Name
prompt.

3. Select either the primary or the backup failover member, and in the Mirror Failover Member’s Info section, enter the
information for the member you selected at each of the following prompts:

a. Agent Address on Failover System — Enter the Superserver Address you specified when you configured the
selected failover member.

b. Agent Port — Enter the ISCAgent port you specified for the selected failover member.

C. InterSystems IRIS Instance Name — Enter the name of the InterSystems IRIS instance you configured as the
selected failover member.

4. Click Next to verify the failover member’s information and move to the Async Member Information section. In this
section, enter the following information;

a. Async Member Name — Specify a name for the async member you are configuring on this system (defaults to a
combination of the system host name and the InterSystems IRIS instance name). Mirror member names can contain
alphanumeric characters, underscores, and hyphens.

Note: The mirror member name cannot be changed, and will therefore be used when a reporting async member
joins additional mirrors in the future.

b. Async Member Address — Enter the IP address or host name that external systems can use to communicate with
this async member.

Note: The Async Member Address You provide becomes the async member’s superserver address and mirror
private address (see Mirror Member Network Addresses). If you want these to be different, for example
when you want to place a DR async’s mirror private address on the mirror private network while leaving
its superserver address on the external network, you can update the async’s addresses on the primary
after adding it to the mirror; see Updating Mirror Member Network Addresses for more information.

C. Agent Address — Enter the address that other mirror members attempting to contact this member’s ISCagent will
try first; see Mirror Member Network Addresses and Updating Mirror Member Network Addresses.

d. Async Member System Type — Select one of the following types from the drop-down list. A single InterSystems
IRIS instance can be a reporting async member of multiple mirrors, but can be a DR async member of only one
mirror.

» Disaster Recovery (DR) — This option is for a system on which read-only copies of all of the mirrored databases
in a single mirror are maintained, making it possible to promote the DR async member to failover member
when one of the failover members fails. See Promoting a DR Async Member to Failover Member for more
information about DR async promotion.

Important: When the mirror is configured to use VIP, a disaster recovery async member must have direct
TCP/IP connectivity to the failover members; see Configuring a Mirror Virtual IP (VIP) for
more information.

* Read-Only Reporting — This option is used to maintain read-only copies of the mirrored databases (or a subset
of the mirrored databases) from one or more mirrors for purposes of enterprise reporting and data mining in
which there is no requirement for data to be modified or added.

e Read-Write Reporting — This option is used to maintain read-write copies of the mirrored databases (or a
subset of the mirrored databases) from one or more mirrors as data sources for reporting/business intelligence
operations in which data modification or the addition of data during analysis must be enabled.

High Availability Guide 51

Configuring Mirroring

e. Setup SSL/TLS — If the mirror requires TLS and the instance does not already have a valid TLS configuration
for mirroring, an error message and this link are included. Before completing the procedure, you must click the
link and create the needed TLS configuration on this member. (Instructions for creating the TLS configuration
are contained in Create and Edit a TLS Configuration for a Mirror). You can also cancel the Join as Async procedure
and navigate to the TLS Configurations page of the Management Portal (System Administration > Security >
SSL/TLS Configurations).

f. Edit SSL/TLS — If the mirror requires TLS and the instance does have a valid TLS configuration for mirroring,
this link is displayed instead of Set up SSL/TLS; you can use it to edit the existing TLS configuration if you wish.
The instance’s X.509 Distinguished Name is also displayed.

5. Click save.

If you configured the mirror to require TLS, you are reminded that you must complete the process of adding the async
member to the mirror by authorizing the async member on the first failover member, as described in Authorize the Second
Failover Member or Async (TLS Only).

Note: You can also use the "MIRROR routine (see Using the “MIRROR Routine) to configure async mirror members.
When you execute “MIRROR on an InterSystems IRIS instance for which mirroring is enabled, the Join Mirror
as Async Member (Or Join Another Mirror as Async Member) option on the Mirror Configuration menu is available
and provides an alternative means of configuring an async member and adding it to the mirror. The
SYS.Mirror.JoinMirrorAsAsyncMember() mirroring API method can also be used to configure an async
member.

After an instance has been added to one mirror as an async member using the procedure described in this section, you can
use the Join a Mirror button on the Edit Async page (see Editing the Mirror Configuration on an Async Member) to add it
to additional mirrors, but as the same type of async only.

4.8 Adding Databases to a Mirror

Only a local database on the current primary failover member can be added to a mirror; it is added on the primary first,
then on the backup, and then on any desired async members. All mirrored databases must be journaled.

You must add the same set of mirrored databases to both the primary and backup failover members, as well as to any DR
async members; which mirrored databases you add to reporting async members depends on your reporting needs. The
namespaces and global/routine/package mappings associated with a mirrored database must be the same on all mirror
members, including all async members on which the database exists. The mirrored databases on the backup failover
member must be mounted and caught up (see Activating and Catching up Mirrored Databases) to be able to take over as
the primary in the event of a failover; the mirrored databases on a DR async member must be mounted and caught up to
make it suitable for promotion to failover member.

The procedure for creating a mirrored database (that is, adding a new database containing no data) is different from that
for adding an existing database to the mirror. Global operations on a database created as a mirrored database are recorded
in mirror journal files from the beginning, and the mirror therefore has access to all the data it needs to synchronize the
database across mirror members. But global operations on an existing database before it was added to a mirror are contained
in nonmirror journal files, to which the mirror does not have access. For this reason, an existing database must be backed
up on the primary failover member after it is added to the mirror and restored on the backup failover member and on any
async members on which it is to be located. Once this is done, you must activate and catch up the database to bring it up
to date with the primary.

e Mirrored database considerations

e Create a mirrored database

52 High Availability Guide

Adding Databases to a Mirror

Add an existing database to the mirror

Activate/catch up a mirrored database

4.8.1 Mirrored Database Considerations

Bear the following points in mind when creating and adding mirrored databases:

Only data in IRIS.DAT files can be mirrored. Data that is external (that is, stored on the file system) cannot be mirrored
by InterSystems IRIS (for more information, see Mirror Configuration Guidelines).

System databases (IRISSYS, IRISLIB, IRISLOCALDATA, IRISTEMP, IRISAUDIT, and ENSLIB) cannot be mirrored.

If you are running InterSystems IRIS for Health™" or HealthShare® Health Connect:
— Do not mirror HSLIB.
— You must mirror HSSYS.

— You can mirror HSCUSTOM to help keep custom code in sync.

Important: If you mirror HSCUSTOM, when you perform an upgrade, temporarily remove this database from
the mirror during the upgrade and add it back to the mirror afterwards. Otherwise it will not be
possible to update the HSCUSTOM after the upgrade process.

Because more database directory information is stored for mirrored databases, they reduce the maximum number of
databases that can be configured within an InterSystems IRIS instance. For more information, see Configuring Databases.

The mirror automatically and continually synchronizes the following properties of a mirrored database on a backup or
async with the properties of the database on the primary:

— Maximum Size

Expansion Size
— Resource Name

Collation

For example, when the Maximum Size of a mirrored database is increased on the primary, it is automatically increased
for that database on the other members to match the primary, if necessary; if Maximum Size is then reduced on an async,
synchronization automatically increases it to the value on the primary. If database properties are changed on either the
primary or another mirror member while that member is disconnected, they are automatically synchronized when the
member reconnects to the mirror. There are two exceptions to automatic synchronization of these database properties,
as follows:

— The values of the Maximum Size and Expansion Size properties on an async can be increased by synchronization,
but never reduced. For example, if the Maximum Size of a database on the primary is reduced, the value of this
property is reduced on the backup, but not on any asyncs belonging to the mirror; if the Maximum Size of a database
on an async is increased to be larger than on the primary, it is not reduced by synchronization to the value on the
primary.

— The Resource Name property of a database is synchronized with the primary on any mirror member who has the
given database marked as a failover database. In practice, this generally means that the Resource Name is synchro-
nized to all mirror members except for read-write reporting async members.

Important: If you are running InterSystems IRIS for Health™ or HealthShare® Health Connect, see Mirroring
Considerations for Healthcare Products for additional database considerations.

High Availability Guide 53

Configuring Mirroring

See Edit Mirrored Local Database Properties for information about mirrored database properties.

4.8.2 Create a Mirrored Database

To create a mirrored database, follow this procedure.

Note: You can also use the "DATABASE routine to create mirrored databases; see Creating a Mirrored Database Using
the "DATABASE Routine.

1. On the current primary failover member, navigate to the Local Databases page of the Management Portal (System
Administration > Configuration > System Configuration > Local Databases), and click the Create New Database button.

2. Follow the procedure in Create a Local Database. On the second panel, select Yes for Mirrored database? and enter a
name for the database within the mirror; the default is the local database name you provided. The leading character of
the mirror database name must be alphabetic or an underscore, and the rest must be alphanumeric characters, hyphens
and underscores. Mirror database names are case-insensitive, thus two names cannot differ only in case; if you enter
a mirror database name that is already included in the mirror, the new database cannot be added to the mirror and must
be deleted. (Names of mirrored databases created under earlier versions of InterSystems IRIS may be stored in lowercase
or mixed case, but the addition of databases with duplicate uppercase names is still precluded.)

On an async member that belongs to more than one mirror, you must also select the mirror the database will belong
to.

Note: When you select Yes for Mirrored database, Journal globals is automatically locked to Yes.

3. Confirm the procedure to create the database and add it to the mirror on the primary.

4. On the backup failover member, and on each async member to which you want to add the mirrored database, follow
the previous three steps, taking care to enter the correct mirror database name from the primary as the mirror database
name on each of the other members. (The local database names do not have to match.)

Note: If you attempt to add a new database to the mirror on a nonprimary member that was not created as a mirrored
database on the primary, but rather added to the mirror after it was created, an error message notes this and
you cannot complete the operation.

Important: If the first mirror journal file for a mirrored database has been purged from the primary, the database can
no longer be created as a mirrored database on another member; instead, you must make a backup on the
primary and restore it on the backup or async, as described in Add an Existing Database to the Mirror. For
this reason, it is best to create the database on the backup and async members as soon as possible after
creating it on the primary. (For information about when mirror journal files are purged on the primary, see
Purge Journal Files.)

4.8.3 Add an Existing Database to the Mirror

Use the procedure that follows to add one or more existing databases to a mirror.

Note: The SYS.Mirror.AddDatabase() mirroring APl method provides an alternative means of adding existing databases
to a mirror.

1. On the current primary failover member, navigate to the Local Databases page of the Management Portal (System
Administration > Configuration > System Configuration > Local Databases) and click the Add to Mirror button.

2. From the listed databases (honsystem databases not already in the mirror) select those you want to add and click Add.
You must enter a name for each database within the mirror; the default is the local database name you provided. The

54 High Availability Guide

Adding Databases to a Mirror

leading character of the mirror database name must be alphabetic or an underscore, and the rest must be alphanumeric
characters, hyphens and underscores. Mirror database names are case-insensitive, thus two names cannot differ only
in case; if you enter a mirror database name that is already included in the mirror, the operation fails. (Names of mirrored
databases created under earlier versions of InterSystems IRIS may be stored in lowercase or mixed case, but the addition
of databases with duplicate uppercase names is still precluded.)

To run the task in the background, select Run add in the background; if you select five or more databases, the task is
automatically run in the background. Confirm the procedure to add the selected databases to the mirror on the primary.

You can also add an individual database to the mirror by clicking its name to edit its properties and clicking the Add
to Mirror <mirrorname> link, then clicking Add and confirming the procedure. (If journaling is not enabled on the
database, Databases must be journaled to be mirrored is displayed in place of this link; to enable it, select Yes from the
Global Journal State drop-down list.) Alternatively, the Add Mirrored Database(s) option on the Mirror Management
menu of the "MIRROR routine also lets you add an individual database. In either case, you can accept the default of
a mirror database name the same as the local name, or enter a different one.

Note: If a backup failover member or async member has a different endianness than the primary failover member,
you must use the procedure described in Member Endianness Considerations to add the database to the backup
or async member after adding it to the primary, rather than adding it on that member as described in the fol-
lowing steps.

3. Once the database has been added to the mirror, back it up on the primary failover member. Review Backup Strategies,
Restoring from Backup, and Mirrored Database Considerations for information about different backup techniques and
the corresponding restore procedures.

Important: If the database you are copying is encrypted on the primary, the key with which it is encrypted must
also be activated on the backup (and asyncs, if any), or the database must be converted to use a key
that is activated on the destination system, as described in Convert an Encrypted Database to Use a
New Key.

Ensuring that a mirrored database is synchronized after it is restored from backup (see the following
step) requires that the journal files from the time of the backup on the primary failover member are
available and online; for example, if the relevant journal files have been purged, you must make and
restore a more up to date backup. For general information about restoring mirror journal files see
Restoring Mirror Journal Files; for information about purging mirror journal files see Purge Journal
Files.

4. On the backup failover member and each connected async member, do the following:

a. If alocal database with the same local name and database directory as the mirrored database you just added on
the primary failover member does not already exist, create it.

b. Restore the backup you made of the mirrored database on the primary, overwriting the existing database. The
procedure for this depends on the restore method you are using, as follows:

« online backup restore ("\DBREST routine) — This routine automatically recognizes, activates and catches
up a mirrored database on the backup and async members. For more information see Mirrored Database
Considerations.

Note: When a mirrored database is restored on a nonprimary member, the data to begin the automatic
synchronization process may not have been sent yet. If the required data does not arrive within 60
seconds, the process begins anyway; those databases may not catch up if the data does not arrive
before it is required, however, in which case a message regarding the database(s) that had the problem
is logged in the messages.log file. (During database creation this process would affect only one
database, but it also applies to catching up in other situations in which multiple databases are
involved.)

High Availability Guide 55

Configuring Mirroring

» External backup restore or cold (offline) backup restore — Both of these methods require that you manually
activate and catch up the mirrored databases after they are restored and mounted on the backup failover
member or async member, as described in Activating and Catching up Mirrored Databases, immediately fol-
lowing.

As an alternative to the previous procedure, after adding an existing database to the mirror on the primary, you can copy
the databases’s IRIS.DAT file from the primary to the backup and async members instead of backing up and restoring the
database. To do so, use this procedure:

1. Ensure that there is a placeholder target database on the backup and each async member.

2. On both failover members and each aysnc member, make sure the source and target databases are not mounted (see
Maintaining Local Databases).

3. Copy the mirrored IRIS.DAT file from the primary failover member to the database directory of the placeholder target
database on the backup and each async member, overwriting the existing IRIS.DAT file.

Note: If the database you are copying is encrypted on the primary, the key with which it is encrypted must also be
activated on the backup (and asyncs, if any), or the database must be converted to use a key that is activated
on the destination system, as described in Convert an Encrypted Database to Use a New Key.

4. Mount the database on the all members.

5. Activate and catch up the mirrored databases on the backup failover member and async member(s) as described in
Activating and Catching up Mirrored Databases.

Note: When you are adding an existing mirrored database to an async member, you can back up the database on (or
copy the IRIS.DAT file from) the backup failover member or another async member, assuming it is fully caught
up, instead of the primary. This may be more convenient, for example if the primary is in a different data center
than the async on which you will be restoring the backup. Do not use a member as the source, however, unless
you have a high degree of confidence in the consistency of its databases.

4.8.4 Activating and Catching Up Mirrored Databases

You can activate and/or catch up mirrored databases on the backup failover member and async members using the Mirror
Monitor.

As noted in Add an Existing Database to a Mirror, a newly added mirrored database containing data can be automatically
synchronized with the primary through use of the "DBREST routine to restore the backup from the primary failover
member. If some other method is used, it must be activated and caught up on the backup failover member and async
members.

To activate and catch up mirrored databases, do the following on the backup failover member and async members:
1. Navigate to the Mirror Monitor page (System Operation > Mirror Monitor).

2. Onan async member, click the Details link for the mirror containing the database(s) you want to take action on, if
necessary.

3. The Mirrored databases list shows the status of each database, as described in Using the Mirror Monitor. Among other
possible statuses, Needs Catchup indicates that the Catchup operation is needed, Needs Activation indicates that both
the Activate and Catchup operations are needed, and Catchup Running shows that the Catchup operation is currently
running on the database.

4. Select the Activate or Catchup link to perform an operation on a single database, or select Activate or Catchup from
the Select an action drop-down and click Go to open a dialog in which you can select multiple databases from a list of

56 High Availability Guide

Removing (Deleting) a Mirror

all those for which the action is appropriate to apply it to all of them at once. When you do this, the Activate and Catchup
tasks are run in the background. When you select Catchup, databases of both Needs Activation and Needs Catchup
status are displayed; both Activate and Catchup are applied to any Needs Activation databases you select.

You can also use the Mirrored databases list to mount or dismount one or more mirrored databases, or to remove one or
more databases from the mirror as described in Removing Mirrored Databases from a Mirror.

Note:

If a mirrored database cannot be caught up due to an error in the database, the affected database will not be active
if its host member becomes primary; as described in Automatic Failover Rules, if the database is marked Mount
Required at Startup, this will prevent that member from becoming primary.

The Activate or Catchup mirrored database(s) option on the Mirror Management menu in the "MIRROR routine
and the SYS.Mirror.ActivateMirroredDatabase() and SYS.Mirror.CatchupDB() mirroring APl methods
provide alternative means of activating/catching up mirrored databases.

When you use the Mirrored databases list, the Databases page of the Management Portal (see the “Managing

Local Databases” chapter of the System Administration Guide), or the ~"DATABASE routine (see Command-

Line Security Management Utilities) to mount a mirrored database, you can choose whether or not to catch up
the database following the mount operation.

When parallel dejournaling (see Configuring Parallel Dejournaling) is enabled and supported by available resources,
it is used when catching up mirrored databases.

4.9 Removing (Deleting) a Mirror

To permanently remove a mirror and return the mirrored databases on the primary to nonmirrored status, do the following:

1. Remove the async members of the mirror one by one, as described in step 2 of Editing or Removing an Async Member,
including using the provided options to remove the mirror attribute from the mirrored databases and remove the
instance’s mirror TLS configuration. After you have restarted the instance and have backed up the databases if desired,
delete or relocate them to ensure that there is no confusion regarding the location of the working unmirrored database,
which will be on the former primary.

2. Remove the current backup failover member, as described in step 2 of Editing or Removing a Failover Member,
including using the provided options to remove the mirror attribute from the mirrored databases and remove the
instance’s mirror TLS configuration. After you have restarted the instance and have backed up the databases if desired,
delete or relocate them to ensure that there is no confusion regarding the location of the working unmirrored database,
which will be on the former primary.

3. Remove the primary failover member, as described in step 3 of Editing or Removing a Failover Member, including
using the provided options to remove the mirror attribute from the mirrored databases and remove the instance’s mirror
TLS configuration. If the former mirrored databases are not to be retained as working databases on that instance, after
using the Remove Mirror Configuration for the second time, back them up if desired and then delete or relocate them.

Important: If you remove a mirror containing a distributed cache cluster data server, changing it from mirrored to

nonmirrored, you must remove it as a remote data server on all application servers and then add it again
with the Mirror Connection check box cleared. Likewise, if you create a mirror to change a data server
from nonmirrored to mirrored, you must do the same, but add it again with the Mirror Connection check
box selected. For more information, see Configuring Application Server Connections to a Mirror.

High Availability Guide 57

Configuring Mirroring

4.10 Editing or Removing Mirror Members

The following procedures describe how to edit or remove the mirror configuration on a mirror member, including removing
a mirror altogether, and how to remove databases from a mirror when you are not removing a mirror configuration.

» Clearing the FailoverDB Flag on Reporting Async Mirror Members

» Removing the Mirrored Database Attribute When Removing a Mirror Member
» Editing or Removing an Async Member

» Editing or Removing a Failover Member

» Removing Mirrored Databases from a Mirror

Note: Several options on the Mirror Configuration menu of the "MIRROR routine provide alternative means for editing
mirror configurations. The specific options available depend on whether the routine is used on a failover member
or async member.

4.10.1 Clearing the FailoverDB Flag on Reporting Async Mirror Members

As described in Async Mirror Members, there are three types of async member:

» Disaster Recovery (DR)—Maintains read-only copies of all mirrored databases on the primary; eligible to be promoted
to failover member (see Promoting a DR Async to Failover Member for more information).

» Read-Only Reporting—Maintains read-only copies of mirrored databases; not eligible to be promoted to failover
member.

» Read-Write Reporting—Maintains read-write copies of mirrored databases; not eligible to be promoted to failover
member.

When a mirrored database is added to a DR or read-only reporting async, it is mounted as Read-Only, and the FailoverDB
flag, which is set when the database is created on the primary, remains set on the async’s copy to

» Ensure that the database remains read-only and therefore an exact mirror of the database on the primary (assuming
dejournaling is caught up).

« Indicate that the database can become the primary copy in the mirror in the event that a DR async member is promoted
to failover member. A DR async member can be promoted only if includes all of the databases in the mirror and all of
those databases have the FailoverDB flag set.

When a mirrored database is added to a read-write reporting async, on the other hand, the FailoverDB flag is cleared to
allow Read-Write mounting of the database. A mirrored database with the FailoverDB flag cleared can never be used as the
mirror’s primary copy.

On a DR async, the FailoverDB flag can never be cleared. The flag can be manually cleared on reporting asyncs, however.

On a read-only reporting async, clearing the FailoverDB flag changes the database to read-write, which is typically not
desirable. In most cases, therefore, including when you change the async type from Disaster Recovery (DR) t0 Read-Only
Reporting (see Editing or Removing an Async Member), you can leave the FailoverDB flag set on all databases on a read-
only reporting async.

When you change an async member’s type from Disaster Recovery (DR) Or Read-Only Reporting t0 Read-Write Reporting,
you are offered the option of clearing all the FailoverDB flags. Because the FailoverDB flag on a mirrored database requires
it to remain read-only, you will typically want to use this option. If you want to keep one or more mirrored databases read-

58 High Availability Guide

Editing or Removing Mirror Members

only on the read-write reporting async, however, you can use the individual Clear Flag links in the Mirrored Databases list
to make individual databases read-write and leave the rest as read-only.

Databases added to an async member after you change its type are mounted and flagged according to the member’s new
type, as previously described. The Clear FailoverDB Flags button always allows you to clear the flag from all databases at
any time on either type of reporting async.

You cannot manually set the FailoverDB flag; this flag is set only when a mirrored database is added to a DR or read-only
reporting async.

4.10.2 Removing the Mirrored Database Attribute When Removing a Mirror
Member

When you remove a member from a mirror, you are always given the option of removing the mirror attribute from the
mirrored databases belonging to the mirror. The consequences are as follows:

* If you retain the mirror attribute and later restore the InterSystems IRIS instance to the mirror, the databases are auto-
matically added to the mirror but must be activated before they can be caught up and then synchronized (see Activating
and Catching Up Mirrored Databases).

However, if you retain the mirror attribute, you cannot delete that databases unless you first do one of the following:

— Restore the member to the same mirror you removed it from. (If the member was the primary failover member,
this is not an option, as the mirror no longer exists.) You can then remove one or more of the databases from the
mirror (see Removing Mirrored Databases from a Mirror) and delete them if you wish.

— Use the Remove one or more mirrored databases option of the "MIRROR routine (see Using the "MIRROR
Routine) to remove the mirror attribute from one or more databases, then delete them if you wish.

« If you remove the mirror attribute, the databases become permanently unmirrored and can be used like any local
database; if you want to return them to the mirror after the instance rejoins as a mirror member, you must use the pro-
cedure for adding them to the mirror as existing databases for the first time.

When you remove an individual database from the mirror on a backup or async member, the mirrored database attribute
is automatically removed.

4.10.3 Editing or Removing an Async Member

1. Navigate to the Edit Async Configurations page (System Administration > Configuration > Mirror Settings > Edit Async).

2. Use the Remove Mirror Configuration button to remove a DR async from its mirror or a reporting async from all mirrors
to which it belongs and remove the instance’s mirror configuration entirely. (To remove a reporting async from a single
mirror, use the Leave mirror link described later in this procedure.)

You are given the option of removing the mirror attribute from the mirrored databases on the member; see Removing
the Mirrored Database Attribute When Removing a Mirror Member for information about this decision.

You are also given the option of removing the instance’s TLS configuration (see Securing Mirror Communication with
TLS Security).

After using the Remove Mirror Configuration button to remove the instance’s mirror configuration entirely, you must
restart InterSystems IRIS.

Note: The Remove Mirror Configuration option on the Mirror Configuration menu of the "MIRROR routine (see
Using the "MIRROR Routine) and the SYS.Mirror.RemoveMirrorConfiguration() API call provide
alternative options for removing an async member’s mirror configuration entirely.

High Availability Guide 59

Configuring Mirroring

3. Use the Join a Mirror button to add a reporting async member to another mirror (it can belong to a maximum of 10);
the procedure is the same as that described in Configure Async Mirror Members for adding an async member to its
first mirror, except that the member name and async type (read-only or read-write) cannot be changed. This button is
not available on a DR async member; to join another mirror, you must first change the Async Member System Type as
described in a later step.

4. As described in Clearing the FailoverDB Flag on Reporting Async Mirror Members, you can use the Clear FailoverDB
Flags button to clear the FailoverDB flag on all mirrored databases on a read-only reporting async, or after you change
the async system type from Disaster Recovery (DR) t0 Read-Write Or Read-Only Reporting.

5. The following settings in the Mirror Member Information section can be modified for the async member you are editing
except the mirror member name. After you have changed one or more, click Save.

e Mirror Member Name — The name provided when the async member joined its first mirror; cannot be changed.

e Async Member System Type — You can change the type of an async member using this drop down. The following
conditions apply:

— Ifyou change from Disaster Recovery (DR) t0 Read-Write Reporting, you are prompted to clear the FailoverDB
flag for all mirrored databases, as described in Clearing the FailoverDB Flag on Reporting Async Mirror
Members.

— When you change from Read-Write Reporting t0 Read-Only Reporting or the reverse, the change is made for
all mirrors to which the reporting async member belongs.

— You cannot change from Read-Write Or Read-Only Reporting to Disaster Recovery (DR) unless all of the fol-
lowing are true:

» If journal encryption is in use, the async is using the same journal encryption key as the failover members
(see Activating Journal Encryption in a Mirror).

» The FailoverDB is set on all mirrored databases. (Once cleared, this flag cannot be reset. To address this,
you can substitute a copy of the database taken from another member on which FailoverDB is set.)

e The member does not belong to any other mirror.
» The ISCAgent is running (see Starting and Stopping the ISCAgent).

If a dejournaling filter is set on the async (see Using a Dejournal Filter on a Reporting Async), it is removed
when you change the Async Member System Type t0 Disaster Recovery (DR).

Important: Before converting a reporting async to DR async, ensure that the member is prepared to
become a failover member should a disaster occur that calls for it to be promoted (see Pro-
moting a DR Async Member to Failover Member). This includes confirming the following:

e |t has all of the mirrored databases.

e All other members are able to connect to it (as described in Mirroring Communication
and Sample Mirroring Architecture and Network Configurations).

» It has the resources required to operate as primary.

* Mirror Journal File Retention (reporting asyncs only) — Whether mirror journal files are purged immediately after
they are dejournaled or according to the instance’s local purge policies. This setting is available for reporting
asyncs only. For information about how mirror journal files are purged, see Purging Mirror Journal Files.

e SSL/TLS Configuration — If TLS is required (see Securing Mirror Communication with TLS Security) the X.509
Distinguished Name (DN) is displayed, as well as the verify SSL button, which lets you verify the TLS certificates
of all current mirror members that can be contacted by the async you are editing. If any certificate is not valid, an
informational message is displayed. (Certificates can also be verified using the ~“Mirror routine.)

60 High Availability Guide

Editing or Removing Mirror Members

If the mirror does not use TLS, the ssL/TLS link is available, allowing you to configure TLS if you intend to add
it to the mirror (see Editing or Removing a Failover Member).

Note: The SYS.Mirror.UpdateMirrorSSL() mirroring APl method and the ~SECURITY routine can also
be used to update a mirror’s member’s TLS settings.

6. The Mirrors this async member belongs to list shows you all the mirrors the instance belongs to as an async member.
Each entry provides three links for changes.

* Mirror Name — Click the name of the mirror shown in the Name column to open the Edit Mirror dialog, showing
the instance directories and network addresses (see Mirror Member Network Addresses) of all members of the
mirror.

If the async is currently connected to the mirror, you cannot change any of the network information displayed
except the async’s Superserver port; if the async member is disconnected and the network information for the
primary has changed, you can update the primary’s information here so that the async can reconnect when desired.
See Updating Mirror Member Network Addresses for important information about updating the network addresses
of mirror members.

e Leave Mirror — Removes the async member from the mirror for which you clicked the link, and from that mirror
only. (In the case of a DR async, this would be the only mirror it belongs to.)

You are given the option of removing the mirror attribute from the mirrored databases on the async member; see
Retaining or Removing the Mirrored Database Attribute for information about this decision.

Note: The Remove This Member From a Mirror option on the Mirror Configuration menu of the "MIRROR
routine (see Using the "MIRROR Routine) and the SYS.Mirror.RemoveOneMirrorSet() API call
provide alternative options for removing an async member from a mirror. You can also use the Remove
Other Mirror Member button on the Edit Mirror page on a failover member to remove an async member
from the mirror.

On any async member, you can temporarily stop mirroring (for an individual mirror if a reporting async
belongs to more than one); see Stopping Mirroring on Backup and Async Members for more information.

» Edit Dejournal Filter (reporting asyncs only) — Lets you set or remove a dejournal filter on the async; see Using
a Dejournal Filter on a Reporting Async for more information.

7. The Mirrored Databases list shows you all mirrored databases on the async member. If the instance is a DR async
member, these should include all mirrored databases on the mirror’s failover members, and the FailoverDB should be
set on each.

8. Inamirror that uses TLS, select Authorize Pending DN Updates (if it appears) to authorize pending DN updates from
the primary so that the async can continue to communicate with the primary. See Authorizing X.509 DN Updates (TLS
Only) for information about authorizing DN updates.

4.10.4 Editing or Removing a Failover Member

1. Navigate to the Edit Mirror page (System Administration > Configuration > Mirror Settings > Edit Mirror).

2. Use the Remove Mirror Configuration button on the backup failover member to remove it from the mirror and remove
the InterSystems IRIS instance’s mirror configuration entirely.

When removing a failover member from the mirror, you are given the option of removing the mirror attribute from
the mirrored databases on the member; see Removing the Mirrored Database Attribute When Removing a Mirror
Member for information about this decision. This is especially significant when you are removing the primary failover
member, thereby permanently deleting the mirror.

High Availability Guide 61

Configuring Mirroring

On the backup, you are also given the option of removing the instance’s TLS configuration (see Securing Mirror
Communication with TLS Security).

You can also use the Remove Other Mirror Member button on the primary to remove the backup or an async from the
mirror. You can use the Remove Other Mirror Member button on the backup to remove an async from the mirror.

After using the Remove Mirror Configuration button or the Remove Other Mirror Member button to remove an async or
backup member’s mirror configuration entirely, you must restart InterSystems IRIS.

Note: The Remove Mirror Configuration option on the Mirror Configuration menu of the "MIRROR routine (see
Using the "MIRROR Routine) and the SYS.Mirror.RemoveMirrorConfiguration() API call provide
alternative options for removing a failover member’s mirror configuration entirely.

You can temporarily stop mirroring on the backup failover member; see Stopping Mirroring on Backup and
Async Members.

To remove the primary failover member from the mirror and remove the mirror entirely (which you can do only if the
primary is the last member remaining in the mirror), use this procedure:

a. Use the Remove Mirror Configuration button on the Edit Mirror page; a dialog displays that lets you clear the Join-
Mirror flag from the instance.

b. After clearing the flag, restart the instance.

c. Navigate to the Edit Mirror page and use the Remove Mirror Configuration button again.

Important: For important information about removing a mirror containing a distributed cache cluster data
server, see Removing (Deleting) a Mirror.

In the Mirror Information section, you cannot edit the Mirror Name; the remaining settings can be modified on the primary
failover member only.

* UseSsL/TLS — If you did not select TLS security when you created the mirror (see Securing Mirror Communication
with TLS Security), you can add TLS security to the mirror by following this procedure:

a. Oneach mirror member, including the primary, the backup, and all asynchs if any, edit the mirror, click the
Set Up SSL/TLS link to the right of the Use SSL/TLS check box, and follow the instructions in Create and Edit
a TLS Configuration for a Mirror to create a mirror TLS configuration on the member. (If the link is Edit
SSL/TLS instead of Set Up SSL/TLS, the configuration already exists and you do not need to create it on that
member.)

b. Edit the mirror on the primary and click the Verify SSL button, which lets you verify the certificates of all
current mirror members that can be contacted by the failover member you are editing. (Certificates can also
be verified using the "MIRROR routine.) If any certificate is not valid, an informational message is displayed;
check the configurations and replace certificates if necessary. Otherwise, proceed to the next step.

c. Select the Use SSL/TLS check box and click the Save button.

d. Authorize the backup and any async members as described in Authorize the Second Failover Member or
Async Member (TLS only).

Note: The mirror does not have to be running when you add TLS security using this procedure.
The SYS.Mirror.UpdateMirrorSSL() mirroring API method and the ~SECURITY routine can also
be used to update a mirror’s member’s TLS settings.

e Use Arbiter — If you did not configure an arbiter when creating the mirror, you can do so by selecting this setting
on the primary and entering the hostname or IP address of the system you want to configure as arbiter and the port

62

High Availability Guide

Editing or Removing Mirror Members

used by its ISCAgent process (2188 by default). See Automatic Failover Mechanics, Locating the Arbiter to
Optimize Mirror Availability, and Installing the Arbiter for additional information about the arbiter.

* Use Virtual IP — Change whether or not you want to use a Virtual IP address by selecting or clearing this check
box on the primary. If you select Use Virtual IP, you must provide (or can change if already provided) an IP address,
Classless Inter-Domain Routing (CIDR) mask, and network interface.

Important: See Configuring a Mirror Virtual IP (VIP) for requirements and important considerations before
configuring a VIP.

e Quality of Service Timeout (msec) — The maximum time, in milliseconds, that a failover member waits for a
response from the other failover member before taking action; also applies to the arbiter’s wait for a failover
member’s response. See Configuring the Quality of Service (QoS) Timeout Setting for more information. This
setting can be changed on the primary failover member only.

* Compression Mode for Failover Members, Compression Mode for Async Members — Change the settings that
specify whether to compress journal data before transmission from the primary to the backup and to async members,
respectively, and which compression type to use for each; see Mirror Traffic Compression for more information.
When you change one or both compression settings, the mirror connections of all affected members (backup and/or
asyncs) are restarted so the new compression mode can be used immediately.

* Allow Parallel Dejournaling — Change the setting that specifies whether to enable parallel dejournaling for the
failover members and DR asyncs (the default), all members including reporting asyncs, or the failover members
only. Parallel dejournaling increases mirror throughput, but may slightly increase the chances of inconsistent
results from queries or reports involving multiple databases; see Configuring Parallel Dejournaling for more
information.

5. The Mirror Member Information section lists the member name and type, instance directory, and network addresses of
each mirror member. On the primary, click a member name to update that member’s network information (except for
the member’s Superserver port, which must be updated locally; see Updating Mirror Member Network Addresses).

If the backup is currently connected to the mirror, you cannot change any network information except the backup’s
Superserver port; if the backup is disconnected and network information for the primary has changed, you can update
the primary’s information here so that the backup can reconnect when desired. See Updating Mirror Member Network
Addresses for important information about updating the network addresses of mirror members.

6. On the primary in a mirror that uses TLS, select the Authorize/Reject Pending New Members link (if it appears) to
authorize new members so they can join the mirror, or the Authorize/Reject Pending DN Updates link (if it appears) to
authorize DN updates on other members so that mirror communication can continue. On the backup, select Authorize
Pending DN Updates (if it appears) to authorize pending DN updates from the primary so that the backup can continue
to communicate with the primary. See Authorizing X.509 DN Updates (TLS Only) for information about authorizing
DN updates.

7. Click save.

Note: The Add New Async Member button on the Edit Mirror page on the primary is reserved for use with other Inter-
Systems products. Do not use this button in this version of InterSystems IRIS.

4.10.5 Remove Mirrored Databases from a Mirror

You can convert a database from mirrored to unmirrored, local use by removing it from the mirror, which you do through
the Mirror Monitor (see Monitoring Mirrors for more information about the Mirror Monitor).

High Availability Guide 63

Configuring Mirroring

Note: Alternatively, you can remove mirrored databases from a mirror by selecting the Remove mirrored database(s)
option from the Mirror Management main menu list of the "MIRROR routine (see Using the "MIRROR Routine),
or by using the SYS.Mirror.RemoveMirroredDatabase() API call.

When you remove a database from a mirror on an async, the failover members are unaffected; the database remains a part
of the functioning mirror. Once you have removed it from a failover member, however, it must be removed from the other
failover member and any async members on which it is mirrored. To entirely remove a database from a mirror, start by
removing it from the primary failover member, then the backup failover member, then any async members.

Important: Removing a database from a mirror on the primary is a permanent action. Once a mirrored database is
removed on the primary, returning it to the mirror later will require the procedures used for adding an
existing database to the mirror for the first time.

To remove a database from a mirror, do the following on either failover system:
1. Navigate to the Mirror Monitor page (System Operation > Mirror Monitor) on the primary failover member.
2. Inthe Mirrored databases list, click Remove in the row of the database you wish to remove from the mirror.

If you want to remove more than one database at a time, select Remove from the Select an action drop-down and click
Go to open a dialog in which you can select multiple mirrored databases and remove all of them at once.

4.11 Using Managed Key Encryption in a Mirror

As described in Encryption Guide, you can secure individual InterSystems IRIS databases by encrypting them. You can
also activate encryption of journal files on any InterSystems IRIS instance. The following sections explain how to use these
features in a mirror:

» Encrypting Mirrored Databases

e Activating Journal Encryption in a Mirror

4.11.1 Encrypting Mirrored Databases

While database encryption on a mirror member requires preparation as on any system, there are no specific mirroring-
related requirements for database encryption. For the greatest possible security, however, InterSystems recommends that
a mirrored database that is encrypted on the primary also be encrypted on all mirror members. For this reason, when you
add a mirrored database that is encrypted on the primary to another member without encrypting it, a security warning is
sent to the messages log.

Based on the best practice of coequality of failover members, as described in Mirror Configuration Guidelines, a given
database is typically encrypted using the same encryption key on both failover members and on any DR async members
that may be promoted to failover.

When at least one encryption key is activated, you have the option of encrypting any new databases you create. Therefore,
when using the procedure in Create a Mirrored Database, select the encryption option when you create the database on
each mirror members. If you add an existing database to a mirror on the primary, as described in Add an existing database
to the mirror, and that database is encrypted, you must either activate the key with which it was encrypted on each member
you add it to, or convert the database to a new key after adding it on the each mirror members. For the procedure for doing
the latter, see Convert an Encrypted Database to Use a New Key. (You can also use this procedure to switch one or more
existing encrypted mirrored databases to a hew encryption key, or to remove encryption from a database.)

64 High Availability Guide

Using Managed Key Encryption in a Mirror

To encrypt one or more unencrypted mirrored databases on the failover members of an existing mirror, use the following

procedure:

1. Load and activate the encryption key(s) to be used on both failover members, as described in Manage Keys in Key
Files.

2. On the backup, do the following
a. Stop mirroring, as described in Stopping Mirroring on Backup and Async Members.
b. Encrypt each database as described in Convert an Unencrypted Database to Be Encrypted.
c. Start mirroring.
d. Go to the Mirror Monitor page (System Operation > Mirror Monitor) and wait until the status of all mirrored

databases is Dejournaling, as described in Mirrored Database Status, before proceeding.

3. Gracefully shut down the primary using the iris stop command (see Controlling InterSystems IRIS Instances) so that
the mirror fails over and the backup becomes the new primary.

4. Restart the primary; when it becomes backup, follow the steps described for the original backup in an earlier step to
encrypt the same databases using the same keys.

5. Shut down the current backup so that the original primary once again becomes primary.

6. Restart the original backup so that it once again becomes backup.

To encrypt mirrored databases on an async member, follow the steps described for the backup in the previous procedure
— stop mirroring, encrypt the databases, and start mirroring. Remember that the best practice is to use the key(s) used on
the failover members on any DR async that may be promoted to failover.

4.11.2 Activating Journal Encryption in a Mirror

When activating journal encryption on mirror members, bear in mind three important considerations:

You cannot activate journal file encryption on the failover members and DR asyncs unless the mirror requires TLS
security.

If journal encryption is activated on the primary, it must be activated on any reporting asyncs belonging to the mirror.
In addition, it is a best practice to activate journal encryption on the backup and on any DR asyncs as well, so that in
the event of failover or DR promotion journal encryption will continue to be in force.

Journal encryption among failover members and DR asyncs requires that the encryption key used for journal encryption
on one member be activated (although not necessarily used for journal encryption) on others, to be used to decrypt
received journal files as needed. Specifically,

— Ifjournal encryption is activated on the primary, the key used for journal encryption on the primary must be loaded
and activated on the backup and all DR asyncs. (If a reporting async that does not have the primary’s journal
encryption key activated is changed to DR async, a warning is generated; the async can remain temporarily connected
to the mirror, but will not be able to reconnect the next time this is required unless the key has been activated.)

— If journal encryption is activated on the backup or a DR async, the key used for journal encryption on that member
must be loaded and activated on the primary.

Again, as a best practice in preparation for failover or promotion, if any member that is (primary, backup) or may
become (DR async) a failover member has a journal encryption key designated, this key should be loaded on all other
such members, including multiple DR asyncs.

High Availability Guide 65

Configuring Mirroring

Note: If you activate journal encryption on reporting ayncs only, the mirror does not need to require TLS security,
and the only encryption key requirement is that a key be selected for journal encryption on each reporting
async for which it is activated.

The following procedure describes the steps for activating journal encryption on a mirror consisting of failover members
A (current primary) and B (current backup), DR async D, and reporting async R:

1. If the mirror does not currently require TLS security (see Securing Mirror Communication with TLS Security), configure
it to do so using the procedure described in Editing or Removing a Failover Member.

2. Select the encryption key or keys that will be used to encrypt journal files on A, B, and D. These can all be different
if desired.

3. Oneachof A, B, and D, and optionally on R if it may be converted to a DR async, perform the following steps:

a. Load and activate all keys that will be used to encrypt journal files on A, B, and D (and optionally R), if they are
not already activated.

b. Select the desired key for journal encryption on the instance as described in Specify the Default Database
Encryption Key or Journal Encryption Key for an Instance.

4. If you did not already do so in the previous step, load, activate, and select a journal encryption key on R.
5. OnA, B, D, and R, in that order, activate journal encryption as described in Configure Encryption Startup Settings.

When you activate journal encryption on an instance, encryption begins after the instance is restarted or the next journal
switch, whichever comes first. To make the change immediate without restarting mirror members, you can manually
switch journal files on each member, as described in Switch Journal Files.

Note: The ~JOURNAL routine (see Journaling) includes an option you can use to activate/deactivate journal
encryption instead of using the Management Portal. When you activate encryption using this option, the
instance immediately switches to an encrypted journal file, and sets the encryption startup setting to Interactive.

To switch journal encryption keys on an instance, load, activate, and select the new key, which will be used for encryption
after the instance is restarted or the next journal switch, whichever comes first.

When adding a DR async to the mirror after journal encryption is activated, ensure that the journal encryption key or keys
inuse on A, B and D are activated on the new DR async before it is added.

4.12 Configuring Application Server Connections to a
Mirror

When you deploy a distributed cache cluster with a mirrored data sever using one of the methods described in Automated
Deployment Methods for Mirrors, all of the needed configuration is automated. When you deploy a cluster using the
Management Portal, you must indicate that the data server is a mirror when adding it to each application server. When the
data server is configured as a mirror connection by any method, each application server regularly collects updated information
about the mirror from the primary, automatically detecting failover and redirecting connections to the new primary as
needed.

For information about configuring a mirrored data server using an automated deployment method, see the documentation
listed in Automated Deployment Methods for Mirrors. To manually configure a mirror as the data server in a distributed
cache cluster, use the following procedure:

66 High Availability Guide

Configuring Application Server Connections to a Mirror

1. Prepare both of the failover members and any DR async members as data servers as described in Preparing the Data
Server. All of these instances must be configured with the same Maximum number of application servers setting.

2. On each application server, do the following:

» Add the data server as described in Configuring an Application Server, being sure to select the Mirror Connection
check box and entering the DNS name or IP address of the current primary failover member for Host DNS Name
or IP Address, not the virtual IP address (VIP) of the mirror (if it has one).

» Create one or more namespaces mapped to one or more remote databases on the data server, as described in
Configuring an Application Server. You can select both mirrored databases (databases listed as
:mirror:mirror_namemirror_DB_name) and nonmirrored databases (databases listed as :ds:DB_name); only mirrored
databases remain accessible to the application server in the event of mirror failover. When the data server is a
failover member, mirrored databases are added as read-write, and nonmirrored databases are added as read-only,
if journaled, or read-write, if not journaled; when the data server is a DR async member, all databases are added
as read-only.

Note: A mirrored database path in the format :mirror:mirror_name:mirror_DB_name: can also be used in an implied
namespace extended global references (see Extended Global References).

Important: A failover mirror member does not accept ECP connections that are not configured as mirror connections
as described in the foregoing, while a data server that is not a mirror member does not accept ECP connec-
tions that are configured as mirror connections. This means that if you change the mirror status of a data
server, you must do the following:

e Ifan existing nonmirrored data server is configured as a failover member of a mirror, the data server
must be removed as a remote data server on all application servers and added again with the Mirror
Connection check box selected, as described in the procedure above.

» If the mirror containing a data server is removed, converting the former primary to a nonmirrored
instance, it must be removed as a remote data server on all application servers and added again with
the Mirror Connection check box cleared.

After configuring application servers to connect to a mirror, perform redirection tests by gracefully shutting
down the current primary to ensure that the application servers connect to the intended mirror member.

You can also identify a data server as a mirror connection while restricting the connection to the designated mirror member
specified by the Address and Port properties of the application server’s ECPServer definition. This means that the application
server does not redirect connections, even when the designated member is not primary. When you configure the connection
in this way, the following rules apply:

» If the designated member is primary, it accepts the connection from the application server as normal. If the member
is a failover member but not primary (as when a former primary is restarted and becomes backup), it accepts the con-
nection when it becomes primary.

» If the designated member was formerly primary, and is restarted and becomes primary again, the application server’s
connection to the member is recovered. If the member is a failover member but not primary, it does not accept the
connection until it becomes primary.

» If the designated member is a DR async, it accepts the connection and provides the application server with read-only
access to mirrored databases (and to any other databases configured as remote databases on the application servers).

Restricting the connection to a designated mirror member is useful in certain special configurations when redirecting con-
nections to other members is not desired, such as when this would entail high-latency ECP connections. Two examples of
its use are as follows:

High Availability Guide 67

Configuring Mirroring

» Suppose your mirror primary is in data center A (DCA) and a backup or DR async is in remote data center B (DCB).
Each member has its own bank of application servers configured. Network load balancers direct connections to the
correct data center. But if the primary becomes unavailable and the member in DCB becomes primary through failover
or promotion, you do not want the application servers in DCA connecting to the member in DCB, which would lead
to high-latency connections between DCA and DCB. In this situation, on the application servers in DCA, you would
restrict the mirror connection to the primary, so that in the event of failover, so that they do not redirect to DCB and
their connections can be recovered when the member in DCA becomes primary again.

» Suppose your primary and backup are in DCA and a DR async, with its own application servers for use in the event
of a disaster, in remote DCB. On the application servers in DCA, the primary would be configured with a standard
mirror connection, since you want the connections to be redirected within DCA in the event of failover. On the appli-
cation servers in DCB, however, the mirror connection would be restricted to the DR async. That way, you can test
the mirror connection on a read-only basis either as part of disaster recovery preparation or before cutting over during
an actual disaster. After the DR async is promoted, the application servers in DCA could redirect connections to the
new primary in DCB (unless prevented at the network level), but if they are not already down they can be brought
down to prevent this.

You cannot restrict the application server’s connection to a designated mirror member using the Management Portal. Instead,
do the following:

1. If you have not already done so, use the procedure described earlier in this section to prepare the failover members
and any DR asyncs as data servers, and to configure a connection to the data server on each application server.

2. Use the Config.ECPServer class to modify the application server’s MirrorConnection property, giving it a value of -1.
You can also edit the application server instance’s iris.cpf file. In the [ECPServers] section of the file, change the third
parameter from 0 to -1; see ECPServers for more information.

Once you have modified the MirrorConnection property in one of these ways, you must not use the Management Portal
to change the setting of the Mirror Connection check box.

4.13 Configuring a Mirror Virtual IP (VIP)

As described in Planning a Mirror Virtual IP (\VIP), you can configure a mirror virtual address that allows external applications
to interact with the mirror using a single address, ensuring continuous access on failover.

After configuring InterSystems IRIS for the mirror VIP and then configuring the mirror VIP, perform failover tests by
gracefully shutting down the current primary (as described in Planned Outage Procedures) to ensure that applications can
continue to connect to the mirror regardless of which failover member is primary.

Important: Before configuring a mirror VIP on a Linux platform, ensure that the arping command is available by
installing the appropriate package (for example, the Debian iputils-arping package).

If one or more of a mirror’s members is a nonroot InterSystems IRIS instance on a UNIX® or Linux system,
as described in InterSystems IRIS Nonroot Installation, a mirror VIP cannot be used.

Note: See Promoting a DR Async Member to Failover Member for important information about promoting a DR async
to primary when a VIP is in use.

68 High Availability Guide

https://packages.debian.org/search?keywords=iputils-arping

Configuring a Mirror Virtual IP (VIP)

4.13.1 Configuring InterSystems IRIS for a Mirror VIP

To ensure that the Management Portal and Studio can seamlessly access the mirror regardless of which failover member
is currently the primary, it is recommended that the failover members be configured to use the same superserver port
number.

The application servers in a distributed cache cluster with mirrored data server do not use a mirror’s VIP. When adding a
mirror as a data server (see Configuring Application Server Connections to a Mirror), do not enter the virtual IP address
(VIP) of the mirror, but rather the DNS name or IP address of the current primary failover member. Because the application
server regularly collects updated information about the mirror from the specified host, it automatically detects a failover
and switches to the new primary failover member. For this reason, both failover members and any DR async members must
be prepared a data servers with the same Maximum number of application servers setting; see Configuring Application
Server Connections to a Mirror for further distributed caching considerations.

When configuring one or both failover members as license servers, as described in Managing InterSystems IRIS Licensing,
specify the actual hostname or IP address of the system you are configuring as the Hostname/IP Address; do not enter the
VIP address.

4.13.2 Configuring a Mirror VIP

To configure a mirror VIP, you must enter the following information:

» Anavailable IP address to be used as the mirror VIP. It is important to reserve the VIP so that other systems cannot
use it; for example, in a Dynamic Host Configuration Protocol (DHCP) network configuration, the VIP should be
reserved and removed from the DNS tables so that it is not allocated dynamically to a host joining the network.

» Anappropriate network mask, which you must specify in Classless Inter-Domain Routing (CIDR) notation. The format
for CIDR notation isip_address/CIDR_mask, where ip_address is the base IP address of system, and CIDR_mask is
platform-dependent, as follows:

— macOS — must be /32.

— All other platforms — must match the mask of the IP address assigned to the base interface. For example:

bash-2.05b# uname -a
AIX apis 3 5 00COB33E4C00
bash-2.05b# ifconfig enl
enl:
flags=5e080863,cO<UP ,BROADCAST ,NOTRAILERS ,RUNNING, SIMPLEX ,MULTICAST,
GROUPRT, 64BIT,CHECKSUM_OFFLOAD(ACTIVE) ,PSEG, LARGESEND , CHAIN>
inet 10.0.2.11 netmask OxFFFFFf00 broadcast 10.0.2.255
tcp_sendspace 131072 tcp_recvspace 65536 rfcl323

In this example, the en1 interface has a base address of 10.0.2.11 with a netmask of OxffFfff00, which
translates to /24. Therefore, to assign 10.0.2.100 as the VIP to the en1 interface, you specify the network mask
as follows (in CIDR notation): 10.0.2.100/24.

» Anavailable network interface on each of the failover members. The interfaces selected on the two systems must be
on the same subnet as the VIP.

When selecting a network interface, the following platform-specific rules must be followed to ensure correct behavior:

— IBMAIX®, Linux (Red Hat, SUSE, Ubuntu), Apple macOS, and Windows — An existing physical network
interface must be provided during VIP configuration. On these platforms, IP address aliasing is used to bind an
IP address (that is, the VIP) to an existing physical network interface. This platform allows a single physical network
interface to host multiple IP addresses.

High Availability Guide 69

Configuring Mirroring

4.14 Configuring the ISCAgent

The ISCAgent runs securely on a dedicated, configurable port (2188 by default) on each mirror member. When the agent
receives an incoming network connection which directs it to a mirrored instance, it executes irisuxagent in that instance
to escalate to the privileges necessary to administer the mirror member. If the mirror is configured to require TLS, the
incoming connection is authenticated before any actions are performed.

When multiple InterSystems IRIS instances belonging to one or more mirrors are hosted on a single system, they share a
single ISCAgent.

This section provides information on managing the ISCAgent in the following ways:
» Starting and Stopping the ISCAgent
e Customizing the ISCAgent

4.14.1 Starting and Stopping the ISCAgent

The ISCAgent, which is installed when you install or upgrade InterSystems IRIS, runs as user iscagent and as a member
of the iscagent group by default. To acquire the group privilege, which is necessary to execute the irisuxagent utility that
provides it with access to an InterSystems IRIS instance (as described in ISCAgent), the ISCAgent must be started automat-
ically during system startup or by a user with root privileges. Once it has assigned itself the needed user and group privileges,
the ISCAgent discards all root privileges.

The ISCAgent must be configured to start automatically when the system starts on each failover and DR async mirror
member. InterSystems provides platform-specific control scripts that can be added to the initialization process by a system
administrator, as described in the following sections. (Consult your operating system documentation for detailed system
startup configuration procedures.)

e Starting the ISCAgent on UNIX® and macOS Systems

» Starting the ISCAgent on Linux Systems

o Starting the ISCAgent for Nonroot Instances on UNIX®/Linux and macOS Systems
e Starting the ISCAgent on Microsoft Windows Systems

4.14.1.1 Starting the ISCAgent on UNIX® and macOS Systems

On UNIX® and macOS platforms, run the ISCAgent start/stop script, which is installed in the following locations,
depending on the operating system:

¢ IBM AIX®: /etc/rc.d/init.d/ISCAgent

e macOS: /Library/Startupltems/ISCAgent/ISCAgent

For example, to start the ISCAgent on the IBM AIX® platform, run the following command as root: /etc/rc.d/init.d/ISCAgent
start; to stop it, run the command /etc/rc.d/init.d/ISCAgent stop.

Additional ISCAgent considerations on UNIX®/Linux platforms include the following:

e As previously noted, the ISCAgent must be started automatically at system startup on each failover and DR async
mirror member. There may also be times at which it is useful to have a user start, stop, or restart the agent. This can
be done in the following ways:

— Directly, by the root user, as described in the preceding.

70 High Availability Guide

Configuring the ISCAgent

— Using the agentctrl executable in the InterSystems IRIS instance’s /bin directory, by any user who is able to start
and stop the InterSystems IRIS instance. For example, to start the agent, execute the following command:

/iris/bin$./agentctrl start

The command also takes the arguments stop and restart.

» InterSystems IRIS uses the iscagent.status file, located in the directory specified by the IRISSYSenvironment variable
(see Installation Directory) or in fvar/run if IRISSYSis not defined, to track the status of the ISCAgent. Because the
agent must be able to gain an exclusive lock on this file, if the iscagent.status file is located in /var/run and /var/run is
on an NFS-mounted filesystem, the NFS configuration must support fcntl file locking.

» Asdescribed earlier, the ISCAgent obtains the privileges it needs to administer InterSystems IRIS instances using
irisuxagent. By default, the agent has the privileges required (iscagent user/iscagent group) to execute irisuxagent,
and under typical configurations, no change is necessary.

Depending on your system’s security configuration, however, instances at your site may require additional privileges
to navigate to the /bin directory of the mirrored instance in order to execute irisuxagent. If so, you must ensure that
the ISCAgent’s privileges are sufficient to execute the command. To do so, you can modify the agent’s privileges using
the following procedure:

1. Create the file /etc/iscagent/iscagent.conf, or edit it if it already exists (for example, because you previously created
it to customize the ISCAgent port number or interface).

2. Toadd group privileges, add the following line, specifying one or more groups that are required to execute
irisuxagent:

privileges.group=iscagent,<gr oupname>[, <gr oupname>[,...]]

Typically, adding group privileges is sufficient. Under some configurations, however, you may need to run the
ISCAgent as a different user. This can also be done in /etc/iscagent/iscagent.conf, as follows:

privileges.user= <user nane>

Note: Because irisuxagent requires iscagent group privileges, iscagent must remain in the groups list.

» The ISCAgent writes messages to the operating system’s system error log, for example /var/log/messages on Linux.

4.14.1.2 Starting the ISCAgent on Linux Systems

On Linux systems supporting systemd (such as SUSE Linux Enterprise Server 12, SP1 or later), the
letc/systemd/system/ISCAgent.service file is installed, providing support for management of the ISCAgent using systemd.
On any such system, the following commands can be used to start, stop and display the status of the ISCAgent:

systemctl start ISCAgent.service
systemctl stop ISCAgent.service
systemctl status ISCAgent.service

To control whether the ISCAgent starts on system boot on a system that supports systemd, use the following commands:

Important: If you are using SUSE Linux, the insserv-compat package is required.

sudo systemctl enable ISCAgent.service
sudo systemctl disable I1SCAgent.service

By default, systemd services are disabled. You can use systemctl to start and stop the service on demand, even when it is
disabled.

High Availability Guide 71

https://software.opensuse.org/package/insserv-compat

Configuring Mirroring

The ISCAgent.service file does not read the location of the InterSystems IRIS registry and shared support files from the
IRISSYSenvironment variable (see Installation Directory), but instead is installed with /usr/local/etc/irissys as the location.
You can edit ISCAgent.service to specify a different registry directory if required.

On all Linux systems, the ISCAgent start/stop script described in Starting the ISCAgent on UNIX® and macOS Systems
is installed in /etc/init.d/ISCAgent. If systemd is not supported, use the commands described in that section to start and stop
the ISCAgent.

The remainder of the information provided in Starting the ISCAgent on UNIX® and macOS Systems also applies to Linux
systems supporting systemd.

Important: Although it is possible to use either the systemctl commands or the /etc/init.d/ISCAgent script on a Linux
system that supports systemd, you must choose one method and use it exclusively, without switching back
and forth. The ISCAgent should always be stopped using the method with which it was started.

When you upgrade InterSystems IRIS on such a Linux system, a running ISCAgent is automatically
restarted using systemd. If you are using the /etc/init.d/ISCAgent script to manage the ISCAgent, stop the
agent before performing the upgrade so that it is not automatically restarted, then restart it using the script
after the upgrade.

When changing from using the /etc/init.d/ISCAgent script to using systemctl commands, before starting
the agent with systemctl for the first time, do the following as root:

1. Run the command the following command:

systemctl status ISCAgent

2. If the output from the command contains this warning:

Warning: Unit file changed on disk, "systemctl daemon-reload®” recommended.

run the following command:

systemctl daemon-reload

3. When the previous command has completed, run systemctl status ISCAgent again to confirm that
the warning does not appear.

4.14.1.3 Starting the ISCAgent for Nonroot Instances on UNIX®/Linux and macOS Systems

Although InterSystems IRIS is typically installed as root, on UNIX®/Linux and macOS Systems it is possible for an instance
to be installed and run by another user. Nonroot installation is described in InterSystems IRIS Nonroot Installation.

The ISCAgent for a nonroot instance is started by the installing user running the ISCAgentUser script, located in the directory
defined by the IRISSYSenvironment variable, in the background, for example:

nohup <IRISSYS directory>/1SCAgentUser &

While it may not be possible to configure the ISCAgent to start automatically when the system starts, this remains the first
choice if it can be achieved. When the mirror includes two failover members, the best practice is to start the agent as soon
as possible after the system boots, even if you do not intend to start InterSystems IRIS; this aids in recovery in certain situ-
ations, such as that described in Unplanned Outage of Both Failover Members.

4.14.1.4 Starting the ISCAgent on Microsoft Windows Systems

On Microsoft Windows systems, start the ISCAgent process as follows:

1. Inthe Microsoft Windows Control Panel, double-click to enter the System and Security menu.

72 High Availability Guide

Configuring the ISCAgent

Within System and Security, double-click on the Administrative Tools menu, and select Services from the submenu
that appears.

Within Services, double-click on ISCAgent to display the ISCAgent Properties window.
On the General tab, select Automatic from the Startup type drop-down list.

On the General tab, click Start to start, or Stop to stop, the ISCAgent.

4.14.2 Customizing the ISCAgent

You can customize the following ISCAgent attributes:

Port Number

As described earlier on this page, the default ISCAgent port is 2188. While this is typically all that is needed, you can
change the port number if required.

Interface

The ISCAgent binds to the default (or configured) port on all available interfaces. While this is typically all that is
needed, you can change the ISCAgent to bind to the interface serving a specific address if required.

SYSLOG severity level

By default, the ISCAgent sends all log messages to the InterSystems IRIS system error log, also known as SYSLOG
(see InterSystems IRIS System Error Log). If desired, you can configure a minimum severity setting, so that messages
below this severity are not passed to the system error log.

To customize the ISCAgent, do the following:

1.

Create the iscagent.conf file, or edit it if it already exists:

e UNIX/Linux/macOS: /etcliscagent/iscagent.conf

* Windows: windir\system32\iscagent.conf (where windir is the system root directory).

To customize the port, add the following line, replacing <port> with the desired port number:
application_server.port=<port>

To customize the interface, add the following line, replacing <ip_address> with the address served by the desired
interface:

application_server.interface_address=<ip_address>

To explicitly bind to all available interfaces (the default), specify * as the IP address.

To customize the SYSLOG severity level, add the following line, replacing <sever ity> with the desired minimum
severity level where 1=warning, 2=severe, and 3=fatal:

logging.-minimum_severity=<severity>

High Availability Guide 73

Configuring Mirroring

4.15 Configuring the Quality of Service (QoS) Timeout
Setting

The Quality of Service Timeout (Q0S timeout) setting plays an important role in governing failover member and arbiter
behavior by defining the range of time, in milliseconds, that a mirror member waits for a response from another mirror
member before taking action. The QoS timeout itself represents the maximum waiting time, while the minimum is one half
of that. A larger QoS timeout allows the mirror to tolerate a longer period of unresponsiveness from the network or a host
without treating it as an outage; decreasing the QoS allows the mirror to respond to outages more quickly. Specifically, the
QoS timeout affects the following situations:

« If the backup failover member does not acknowledge receipt of data from the primary within the range defined by the
QoS timeout, the primary disconnects the backup and acts in accord with a possible outage of the backup.

» Ifthe backup receives no message from the primary within the range defined by the QoS timeout, the backup disconnects
and acts in accord with a possible outage of the primary.

» If the arbiter does not receive a response from a failover member within the range defined by the QoS timeout, it con-
siders its connection with that failover member to be lost.

« If operations performed on a failover member’s host cause the host to be entirely unresponsive for a period within the
range defined by the QoS timeout, unwanted failover or alerts may result. This is a particular concern where virtualization
platform operations such as backup or migration are involved; see Mirroring in a Virtualized Environment for more
information

See Automatic Failover Mechanics for complete and detailed information about the role the QoS timeout plays in the
behavior of the failover members and the arbiter.

The default QoS is 8 seconds (8000 ms) to allow for several seconds of intermittent unresponsiveness that may occur on
some hardware configurations. Typically, deployments on physical (nonvirtualized) hosts with a dedicated local network
can reduce this setting if a faster response to outages is required.

The Quality of Service Timeout Setting can be adjusted on the Create Mirror page or the primary failover member’s Edit
Mirror page.

Note: The QoS timeout can also be adjusted using the Adjust Quality of Service Timeout parameter option on the Mirror
Configuration menu of the “MIRROR routine (see Using the “MIRROR Routine).

4.16 Configuring Parallel Dejournaling

As described in Mirror synchronization, the mirrored databases on the backup failover member and any async members of
a mirror are kept synchronized with the primary through dejournaling, which is the application of database updates made
on the primary and recorded in the primary’s journal files to the corresponding databases on the other members. If there
are sufficient computing and memory resources available, up to 16 dejournaling jobs can perform the updates in parallel
within a single dejournaling operation (see System Requirements for Parallel Dejournaling). Called parallel dejournaling,
this feature increases the throughput of mirrors, especially those that have a typically high rate of database updates. For
information about parallel dejournaling, which is also used in journal restores, see Restore Globals From Journal Files
Using NJRNRESTO.

Parallel dejournaling is always enabled for the failover members of a mirror, and thus is used when the needed resources
are available. By default, it is also enabled for DR async members. You can either enable it for reporting asyncs as well

74 High Availability Guide

Using the ~ZMIRROR Routine

(that is, for all members) or restrict it to the failover members only by changing the Allow Parallel Dejournaling setting when
configuring the first failover member (see Create a Mirror and Configure the First Failover Member) or editing the mirror
on the primary (see Editing or Removing a Failover Member). When enabled (and supported by available resources), par-
allel dejournaling is used when catching up multiple databases in one operation, as described in Activating and Catching
Up Mirrored Databases.

While enabling parallel dejournaling for reporting asyncs is advantageous for performance, it may increase the occurrence
of unexpected results in queries or reports. This is because databases or globals within a database being updated by separate
dejournaling jobs are likely to be at slightly different places in the dejournaling sequence. For example, database A may
contain updates made on the primary at 11:45:30 when database B is only up to the updates from 11:45:28; by the same
token, one global may be updated to the former time while another in the same database may only be updated to the latter.
However, the uncertainty introduced by parallel dejournaling is similar to the uncertainty that is always present when running
reports or queries against changing data that is in the process of being dejournaled. InterSystems therefore expects most
reporting applications to run against mirrored databases for which parallel dejournaling is enabled with negligible impact.
Note that all updates to a single global within a database are always applied by a single dejournaling job, and those updates
are applied in order.

4.17 Using the *2ZMIRROR Routine

The user-defined ~ZMIRROR routine allows you to implement your own custom, configuration-specific logic and
mechanisms for specific mirroring events, such as a failover member becoming primary.

The ~ZMIRROR routine contains the following entry points. All provide appropriate defaults if they are omitted.

* $$CanNodeStartToBecomePrimary*ZMIRROR() — This procedure is called when an instance has determined
that

— The other failover member is not currently acting as primary and cannot become primary without manual interven-
tion.

— The local member is eligible to become primary and is about to begin the process of taking over.

CanNodeStartToBecomePrimary provides an entry point for logic to block failover members from automatically
becoming the primary (either at startup or when connected as the backup) to provide manual control over failover, and
is not part of most "ZMIRROR routines.

When CanNodeStartToBecomePrimary returns 1, the local instance is fully initialized as the primary failover
member and can continue the process of becoming primary: all mirrored databases are read-write, ECP sessions have
been recovered or rolled back, and local transactions (if any) from the former primary have been rolled back. No new
work has been done because users are not allowed to log in, superserver connections are blocked, and ECP is still in
a recovery state.

If this entry point returns O (False), the instance enters a retry loop in which it continues to call
CanNodeStartToBecomePrimary every 30 seconds until

— CanNodeStartToBecomePrimary returns 1 and the local member continues the process of becoming primary.
— The instance detects that the other failover member has become primary (which must be through manual interven-
tion), at which point the local member becomes backup.
* $$CheckBecomePrimaryOK"ZMIRROR() — This procedure is called after CanNodeStartToBecomePrimary
returns 1 (True).

If CheckBecomePrimaryOK exists and returns 1, the mirror resumes operation with the local member as primary;
this is the point at which you can start any local processes or do any initialization required to prepare the application

High Availability Guide 75

Configuring Mirroring

environment for users. Bear in mind, however, that only the process running CheckBecomePrimaryOK can actually
write to mirrored databases until after it returns 1, at which point the mirrored databases are updated for general use.

As with CanNodeStartToBecomePrimary, if CheckBecomePrimaryOK returns O (False), the instance aborts the
process of becoming primary and retries CheckBecomePrimaryOK every 30 seconds until

— The entry point returns 1 and the mirror resumes operation with the local member as primary.

— The instance detects that the other failover member has become primary (which must be through manual interven-
tion), at which point the local member becomes backup.

In general CheckBecomePrimaryOK is successful; if there are “common cases” in which a node does not become
the primary member, they should be handled by CanNodeStartToBecomePrimary rather than
CheckBecomePrimaryOK.

If you move code from an existing “%ZSTART routine on the primary to *ZMIRROR so that it is not executed until
the mirror is initialized, CheckBecomePrimaryOK is the best location for it. However, if you use the job command
to start other jobs, those jobs should wait until $SYSTEM.Mirror.IsPrimary() returns true, which will happen after
CheckBecomePrimaryOK returns 1; alternatively, you can start the jobs in $$NotifyBecomePrimary*ZMIRROR()
instead.

Note: If CheckBecomePrimaryOK returns False, ECP sessions are reset. When a node succeeds in becoming the
primary, the ECP client reconnects and ECP transactions are rolled back (rather than preserved). Client jobs
receive <NETWORK> errors until a TRollback command is explicitly executed (see ECP Rollback Only
Guarantee).

* $$NotifyBecomePrimary*ZMIRROR() — This procedure is called for informational purposes at the very end of
the process of becoming the primary failover member (that is, after users have been allowed on and ECP sessions, if
any, have become active). This entry point does not return a value. You can include code to generate any notifications
or enable application logins if desired.

Note: $$NotifyBecomePrimaryZMIRROR() runs after productions are set to auto-start, so adding failover logic
to this entry point can cause timeout errors, preventing successful failover. Best practice is to add failover
logic to $$CheckBecomePrimaryOK, which runs before productions auto-start.

* $$NotifyBecomePrimaryFailed*ZMIRROR() — This procedure is called for informational purposes when

— A failover member starts up and fails to become the primary or backup member.

— The backup detects that the primary has failed and attempts to become primary but fails.

This entry point is called only once per incident; once it is called, it is not called again until the member either becomes
primary or the primary is detected.

4.18 Configuring Mirroring for Healthcare Products

There are a few special considerations when you are setting up and managing mirroring with InterSystems IRIS for Health™

and HealthShare® Health Connect. Note that other HealthShare products have their own mirroring documentation; the
following considerations do not necessarily apply to those products.

If you are mirroring your InterSystems IRIS for Health or HealthShare Health Connect system, you must select the Mirror
Database option when you set up your Foundation namespace as described in “Using the Installer Wizard” in the Inter Sys-
tems IRISfor Health Installation Guide or the HealthShare Health Connect Installation Guide.

76 High Availability Guide

Configuring Mirroring for Healthcare Products

You must also configure a mirror VIP and set this VIP as the network host name for your system. To set the network host
name within the Management Portal: navigate to Health > Installer Wizard > Configure Network Name, input your VIP as
the new network host name, and then select Save.

Finally, you must ensure that the password for the HS_Services interoperability credential within the HSSYS namespace
matches the password for the HS_Services. To update this interoperability credential within the Management Portal:
switch to the HSSYS namespace, navigate to Interoperability > Configure > Credentials, select the HS_Services credential
from the table, enter a new Password, and select Save.

As you mirror databases, keep the following in mind:
* Do not mirror HSLIB.
* You must mirror HSSYS.

* You can mirror HSCustom to help keep custom code in sync.

High Availability Guide 7

Managing Mirroring

This page covers topics related to managing and maintaining operational InterSystems IRIS® data platform mirrors.

Note that for an instance to be able to monitor mirror members, it must be able to contact the ISCAgent processes of those
mirror members. Make sure that any firewall is configured to permit this communication; see Customizing the ISCAgent
for information on the default port used by ISCAgent.

5.1 Monitoring Mirrors

You can monitor the operation of an existing mirror using one of two methods:

* The Mirror Monitor page of the Management Portal

e The Status Monitor option of the "MIRROR routine

Both methods display information about the operating status of a mirror and its members and the incoming journal transfer

rate, as well as about mirrored database status. In addition, the Mirror Monitor lets you perform several operations on the
mirrored databases.

Monitoring Mirroring Communication Processes describes the mirror communication processes that run on mirror members.

Note: Basic mirror member information, including a link to the Mirror Monitor, also appears in the Management Portal
home page message pane (see Management Portal Message Pane.

Many database and mirror-related actions, such as mounting or dismounting a database and adding a database to
or removing it from a mirror, are logged in the messages log (see Monitoring Log Files).

5.1.1 Using the Mirror Monitor

To display the Mirror Monitor, navigate to the System Operation > Mirror Monitor page on any mirror member.
On a failover member, the Mirror Monitor contains the following buttons and sections:

» The View Mirror Journal Files button lets you view and search through the member’s mirror journal files or nonmirror
journal files; see View Journal Files for more information.

» The Stop Mirror On This Member button (backup only) temporarily stops mirroring on the backup, as described in
Stopping Mirroring on Backup and Async Members.

e One of two buttons to demote the backup to DR async, leaving the mirror with a single failover member; see Demoting
the Backup to DR Async for more information.

High Availability Guide 79

Managing Mirroring

Mirror Failover Member Information lists the member name, superserver address and mirror private address of each
failover member (see Mirror member network addresses for information about these addresses).

Arbiter Connection Status shows the address (hostname and port) of the arbiter if one is configured, the current failover
mode, and the status of the member’s arbiter connection, as follows:

— Both failover members are connected to the arbiter
— Only this member is connected to the arbiter

— This member is not connected to the arbiter (if the connection has been lost or no arbiter is configured)

See Automatic Failover Mechanics for information about the arbiter and the meaning of this connection information.

Note: When a failover member loses contact with the arbiter a severity 2 message is sent to the messages log. If
the member fails to rebuild the connection to the arbiter, another severity 2 message is logged.

Mirror Member Status provides the member type and status, journal transfer status, dejournaling status of each mirror
member, as described in Mirror Member Journal Transfer and Dejournaling Status. This table also shows the X.509
DNs of members if configured.

Mirrored Databases lists information about each mirrored database on the current member, including its name and
directory as well as its status and dejournaling status, as described in Mirrored Database Status. Mirrored Databases
also lets you perform several operations on one or more databases.

Note: The Mirrored Databases list includes only databases that are included in the mirror on the current member.
For example, the databases listed on different reporting async members may be different as they may have
different sets of mirrored databases.

On an async member, the Mirror Monitor contains the following buttons and sections:

The View Journal Files button (DR asyncs only) lets you view and search through the member’s mirror journal files or
nonmirror journal files; see View Journal Files for more information.

The Stop Mirror On This Member button (DR asyncs only) temporarily stops mirroring on the async, as described in
Stopping Mirroring on Backup and Async Members.

The Promote to Failover Member button (DR asyncs only) promotes a DR async to failover member; see Promoting a
DR Async Member to Failover Member for information about this operation and its uses.

The section below the buttons displays the member name, async type, and X.509 DN (if configured) of the member.

Mirrors this async member belongs to provides information about each mirror a reporting async member belongs to
and the member’s status, journal transfer status, and dejournaling status in that mirror, as described in Mirror Member
Journal Transfer and Dejournaling Status. Each line includes a Details link to display information about the members
of that mirror and a Stop Mirroring On This Member link to cause the async member to stop mirroring for that mirror,
as described in Stopping Mirroring on Backup and Async Members

Mirror Member Status provides the type, status, journal transfer latency, and dejournal latency of all members of the
mirror selected in Mirrors this async member belongs to, including the current async member.

If the async member belongs to a single mirror (which is the case with all DR asyncs), that mirror is displayed in this
section by default; if the member belongs to more than one mirror, this section and the Mirrored Databases for MIRROR
section below it do not appear until you click the Details link for one of the mirrors listed in Mirrors this async member
belongs to section.

Mirrored Databases for MIRROR section is as described for failover members, with the same operations available. For
reporting asyncs, the databases displayed are those in the mirror selected in Mirrors this async member belongs to and
displayed in Mirror Member Status.

80

High Availability Guide

Monitoring Mirrors

5.1.1.1 Mirror Member Journal Transfer and Dejournaling Status

When an InterSystems IRIS instance belongs to a mirror, its member type and status, journal transfer status, and dejournaling
status are displayed by the Mirror Monitor and the *MIRROR routine Status Monitor option, as described in Monitoring
Mirrors.

The following tables describe the possible types and statuses displayed; the first shows statuses specific to particular
member types, while the statuses in the second apply to all member types.

Type Status Description

Failover Primary Current primary.

Failover Backup Connected to primary as backup.

Failover In Trouble | As primary, in a trouble state due to lost connection with the backup; see

Automatic Failover Mechanics for complete information about the varying
circumstances under which the primary can enter a temporary or indefinite
trouble state.

Disaster Connected | Connected to primary as async.

Recovery

Read-Only Connected | (as above)

Reporting

Read-Write Connected | (as above)

Reporting

Indeterminate Not ed The member is not initialized (the mirror configuration is not yet loaded).
Initialize

High Availability Guide 81

Managing Mirroring

Status (any
type)

Transition

Synchronizing

Waiting

Stopped

Crashed

Error

Down

Description

In a transitional state that will soon change when initialization or another operation com-
pletes; this status prompts processes querying a member’s status to query again shortly.

When there is no operating primary, a failover member can report this status for an
extended period while it retrieves and applies journal files in the process of becoming
primary; if there is another failover member that is primary, the status is Synchronizing
instead.

Starting up or reconnecting after being stopped or disconnected, retrieving and applying
journal files in order to synchronize the database and journal state before becoming
Backup Or Connected.

Unable to complete an action, such as becoming Primary, Backup, Or Connected; will retry
indefinitely, but user intervention may be required. See messages log for detalils.

Mirroring on member stopped indefinitely by user and will not start automatically; see
messages log for details.

Mirror no longer running due to unexpected condition; see messages log for details.

An unexpected error occurred while fetching the member’s status.

Displayed on other members for a member that is down or inaccessible.

Note: Mirror member Type and Status can also be obtained using the $SYSTEM.Mirror.GetMemberType() and
$SYSTEM.Mirror.GetMemberStatus() methods. Some combinations of Type and Status not listed above are
reported by these calls, as follows:

e Not Member and Not Initialized—Instance is configured as not a mirror member.

e Read-Only or Read-Write Reporting and M/N Status—Instance is an async member of several mirrors; supply
the mirrorname argument to get Status for a particular mirror.

For backup and async mirror members, Journal Transfer indicates whether a mirror member has the latest journal data
from the primary and, if not, how far behind journal transfer is, while Dejournaling indicates whether all of the journal
data received from the primary has been dejournaled (applied to the member’s mirrored databases) and, if not, how, how
far behind dejournaling is. The following tables describe the possible statuses for these fields displayed by the Mirror
Monitor and “MIRROR. (These fields are always N/A for the primary.)

82

High Availability Guide

Monitoring Mirrors

Journal Transfer

Active (backup only)

Caught up

time behind

Disconnected on time

Dejournaling

Caught up

time behind

Disconnected on time

Warning! Some
databases need attention.

Warning! Dejournaling is
stopped.

Description

The backup has received the latest journal data from and is synchronized with
the primary. (See in Backup Status and Automatic Failover for more information
about Active backup status.) Note that the backup can be Active even if its
Dejournaling Status is not Caught up; as long as the backup has all the needed
journal files, they can be dejournaled even after it has lost its connection to the
primary.

On the backup, indicates that the backup has received the latest journal data
from the primary, but is not fully synchronized in that the primary is not waiting
for it to acknowledge receipt of journal data. This status is often transient, as
when the backup reconnects to the mirror.

On an async, indicates that the async has received the latest journal data from
and is synchronized with the primary.

The member is a specific amount of time behind the primary, with time represent-
ing the amount of time elapsed between the timestamp of the last journal block
the member received and the current time.

The member was disconnected from the primary at the specified time.

Description
All journal data received from the primary has been dejournaled (applied to the
member’s mirrored databases).

Some journal data received from the primary has not yet been dejournaled, with
time representing the amount of time elapsed between the timestamp of the last
dejournaled journal block and the last journal block received from the primary.

The member was disconnected from the primary at the specified time.

At least one mirrored database is not in a normal state; databases should be
checked.

Dejournaling has been stopped by an operator or because of an error; see Man-
aging Database Dejournaling.

As noted, Active in the Journal Transfer field indicates that the backup has received all journal data from and is synchronized
with the primary, and is therefore capable of taking over from the primary during failover without contacting the primary’s
ISCAgent to obtain additional journal data.

Caught Up in the Dejournaling field for an Active backup failover member or Caught Up in both the Dejournaling field and
the Journal Transfer field for an async member indicates that the member has received the most recent journal data from
the primary and applied the most recent global operations contained in that data. If the member is not caught up, the amount
of time elapsed since generation of the most recent journal data or writing of the most recent operation on the primary is

displayed instead.

High Availability Guide

83

Managing Mirroring

5.1.1.2 Incoming Journal Transfer Rate

Below the mirror member status list on backup and async members, the rate at which journal data has arrived from the
primary since the last time the Mirror Monitor was refreshed is displayed under Incoming Journal Transfer Rate for This

Member.

When the Mirror Monitor page is first loaded, this area displays the text --- (will be displayed on refresh). When the page is
next refreshed, the information displayed depends on whether the incoming journal data is compressed (see Mirror Traffic

Compression), as follows:

» If the journal data is not compressed, the incoming journal data rate is provided in kilobytes (KB) per second, for

example:

42345 KB/s (22s interval)

« If the incoming journal data is compressed, the display includes the incoming compressed data rate, the incoming
journal (uncompressed) data rate, and the ratio of the latter to the former, for example:

14288 KB/s network; 39687 KB/s journal; ratio 2.78:1 (143s interval)

5.1.1.3 Mirrored Database Status

Important: On backup and DR async members, the Missing Mirrored Databases Report on the Mirror Monitor page
alerts you to any mirrored databases that are present on the primary but not on the current member. This
is very important, as the backup, or a DR async if promoted to backup, cannot successfully take over in
the event of a primary outage if it does not have the full set of mirrored databases. The full mirror database
name of each missing database is listed. The Missing Mirrored Databases Report is not displayed if there
are no missing databases.

On all members, the Mirrored Databases list on the Mirror Monitor page displays one of the following statuses for each

database listed:

Status

Normal (primary only)

Dejournaling (backup and
async)

Needs Catchup

Needs Activation

Catchup Running
Dejournaling Stopped

Database Dismounted

Orphaned (backup and
async)

Obsolete

Description

The mirrored database is writable (if not a read-only database) and global updates
are being journaled.

The database has been activated and caught up and the mirror is applying journal
data to the database.

The database has been activated but not caught up yet; the user-initiated Catchup
operation is needed.

The database has not been activated yet; the user-initiated Activate and Catchup
operations are needed.
The user-initiated Catchup operation is running on the database.

Dejournaling has been stopped by an operator or an error; see Stopping Mirroring
on Backup and Async Members and Managing Database Dejournaling.

The database is dismounted.

The mirrored database does not exist on the primary.

The mirrored database is obsolete and should be removed from the mirror.

84

High Availability Guide

Monitoring Mirrors

On the primary, the Next Record to Dejournal column contains N/A if the status of the database is Normal. Otherwise, the
column includes the following:

* Time is the timestamp at the beginning of the next journal record to be applied to the database, or Current if this matches
the primary's current journal position.

* FileName is the name of the mirror journal file containing the next journal record to be applied.

e Offset is position within the journal file of the beginning of the next journal record to be applied.

The status of a database and the operations related to it (Activate and Catchup) are discussed in Activating and Catching
Up Mirrored Databases; the operations are available in the drop-down below the list. You can also use the dropdown to
mount dismounted databases (but not to dismount mounted databases). You can use the Remove link or select Remove from
the drop-down to remove a listed database from the mirror; see Remove Mirrored Databases from a Mirror for more
information.

5.1.2 Using the “MIRROR Status Monitor

The "MIRROR routine provides a character-based mirror status monitor. The "MIRROR Status Monitor option displays
the status of the mirror members including type, status, journal transfer latency and dejournal latency (see Mirror Member
Journal Transfer and Dejournaling Status). The monitor can be run on any mirror member, but running it on a failover
member provides information about the arbiter configuration and about all connected async members, which running it on
an async member does not.

To start the status monitor, open a Terminal window, run the "MIRROR routine (see Using the “MIRROR Routine) in
the %SYS namespace, and select Status Monitor from the Mirror Status menu. The following is a sample of output from the
monitor when run on a failover member:

Status of Mirror MIR25FEB at 17:17:53 on 02/27/2018

Member Name+Type Status Journal Transfer Dejournaling
MIR25FEB_A

Failover Primary N/A N/A
MIR25FEB_B

Failover Backup Active Caught up
MIR25FEB_C

Disaster Recovery Connected Caught up Caught up
MIR25FEB_D

Read-Only Reporting Connected Caught up Caught up

Arbiter Connection Status:
Arbiter Address: 127.0.0.1]2188
Failover Mode: Arbiter Controlled
Connection Status: Both failover members are connected to the arbiter

Press RETURN to refresh, D to toggle database display, Q to quit,
or specify new refresh interval <60>

When you run the status monitor on an async member, only the failover members and that async are listed, and the status
of dejournaling on the async (running or stopped) is also shown, for example:

Status of Mirror MIR25FEB at 17:17:53 on 02/27/2018

Member Name+Type Status Journal Transfer Dejournaling
MIR25FEB_A

Failover Primary N/A N/A
MIR25FEB_B

Failover Backup Active Caught up
MIR25FEB_C

Disaster Recovery Connected Caught up Caught up

Dejournal Status: running (process id: 12256)

Press RETURN to refresh, D to toggle database display, Q to quit,
or specify new refresh interval <60>

High Availability Guide 85

Managing Mirroring

By default, information about mirrored databases is not displayed. Enter d at the prompt to list information about each
database in the mirror, including name, directory, status, and next record to dejournal as described in Using the Mirror
Monitor, for example:

Mirror Databases:
Last Record
Name Directory path Status Dejournaled

MIR25FEB_DB1 C:\InterSystems\20182209FEB25A\Mgr\MIR25FEB_DB1\
Active
Current,c:\intersystems\20182209feb25a\mgr\journal\MIRROR-MIR25FEB-20180227 .001,40233316
MIR25FEB_DB2 C:\InterSystems\20182209FEB25A\Mgr\MIR25FEB_DB2\
Active
Current,c:\intersystems\20182209feb25a\mgr\journal\MIRROR-MIR25FEB-20180227.001,40233316

5.1.3 Monitoring Mirroring Communication Processes

There are processes that run on each system (primary and backup failover members, and each connected async member)
that are responsible for mirror communication and synchronization.

For more information, see the following topics:
* Mirroring Processes on the Primary Failover Member

e Mirroring Processes on the Backup Failover Member/Async Member

5.1.3.1 Mirroring Processes on the Primary Failover Member

Running the system status routine (~%SS) on the primary failover member reveals the processes listed in the following
table.

Note: The CPU, Glob, and Pr columns have been intentionally omitted from the ~%SS output in this section.

Table 5-1: Mirroring Processes on Primary Failover Member

Device Namespace Routine User/Location
/devinull %SYS MIRRORMGR Mirror Master
MDB2 %SYS MIRRORCOMM Mirror Primary*
192.168.1.1 %SYS MIRRORCOMM Mirror Svr:Rd*

The processes are defined as follows:

e Mirror Master: This process, which is launched at system startup, is responsible for various mirror control and management
tasks.

* Mirror Primary: This is the outbound data channel; it is a one-way channel. There is one job per connected system
(backup failover or async member).

* Mirror Svr:Rd*: This is the inbound acknowledgment channel; it is a one-way channel. There is one job per connected
system (backup failover or async member).

Each connected async member results in a new set of Mirror Master, Mirror Primary, and Mirror Svr:Rd* processes on the
primary failover member.

86 High Availability Guide

Updating Mirror Member Network Addresses

5.1.3.2 Mirroring Processes on the Backup Failover/Async Member

Running the system status routine (*%6SS) on the backup failover/async member reveals the processes listed in the following
table.

Table 5-2: Mirroring Processes on Backup Failover/Async Member

Device Namespace Routine User/Location
/dev/null %SYS MIRRORMGR Mirror Master
/dev/null %SYS MIRRORMGR Mirror Dejour
/dev/null %SYS MIRRORMGR Mirror Prefet*
/dev/null %SYS MIRRORMGR Mirror Prefet*
MDB1 %SYS MIRRORMGR Mirror Backup
/dev/null %SYS MIRRORMGR Mirror JrnRead

The processes identified in this table also appear on each connected async member:

* Mirror Master: This process, which is launched at system startup, is responsible for various mirror control and management
tasks.

* Mirror JrnRead (Mirror Journal Read): This process reads the journal data being generated on the backup into memory
and queues up these changes to be dejournaled by the dejournal job.

e Mirror Dejour (Mirror Dejournal): This is the dejournal job on the backup failover member; it issues the sets and Kills
from the received journal data to the mirrored databases.

» Mirror Prefet* (Mirror Prefetch): These processes are responsible for pre-fetching the disk blocks needed by the
dejournal job into memory before the dejournal job actually attempts to use them. This is done to speed up the
dejournaling process. There are typically multiple Mirror Prefetch jobs configured on the system.

* Mirror Backup: This process is a two-way channel that writes the journal records received from the primary into the
backup’s mirror journal files and returns acknowledgment to the primary.

5.2 Updating Mirror Member Network Addresses

When one or more of the network addresses of one or more mirror members (including the primary) must be updated, as
described in Editing or Removing a Failover Member, this information is generally changed on the primary. When you
save your changes, the primary propagates them to all connected mirror members (and to disconnected members when they
reconnect). You cannot change any mirror member network addresses on a connected backup or async member, as mirror
members must receive all such information from the primary. There are a few exceptions to the general case, however, as
follows:

» Because the Superserver port of an InterSystems IRIS instance is part of its general configuration, it must be changed
locally. Thus the Superserver port of a mirror member is the only mirror network information that is always updated
on the member itself. To change the primary’s Superserver port, go to the Edit Mirror page on the primary, to change
the backup’s, go to the Edit Mirror page on the backup, and so on.

High Availability Guide 87

Managing Mirroring

Note: When you click the Edit Port link for the local member’s Superserver port in the Edit Network Address dialog,
a dialog containing the Memory and Startup page of the Management Portal appears so you can change the
port number. Do not, however, go directly to this page to change the Superserver port of a mirror member;
always use the Edit Mirror or Edit Async Configurations page and the Edit Network Address dialog to make
this change.

When a failover member or async member is disconnected and the primary’s network addresses have changed, you
must first ensure that all mirror network addresses are correct on the current primary, then update the primary’s network
addresses on the disconnected member or members (see Editing or Removing a Failover Member or Editing or
Removing an Async Member). It may be necessary to restart a disconnected member after updating the primary’s
network information before the member can reconnect to the mirror.

In some cases in which neither failover member is operating as primary, you may need to update the network addresses
on one of the failover members before it can become primary. Once it becomes primary, it propagates these addresses
to other members as they connect. It may be necessary to restart the member after updating the network addresses
before the member can become primary.

Note: As described in Configure Async Mirror Members, the Async Member Address you provide when an async

member joins a mirror becomes the async’s superserver address and mirror private address (see Mirror Member
Network Addresses). If you want these to be different, for example when you want to place a DR async’s mirror
private address on the mirror private network while leaving its superserver address on the external network, after
adding the async to the mirror you can update its addresses as described here.

5.3 Resolving Network Address Validation Errors

When a mirror member is started, the mirror initialization procedure verifies that the instance can be reached at the mirror
private address or Superserver address (see Mirror Member Network Addresses) configured for it on the primary. If this
does not succeed, validation fails, and the member is prevented from joining the mirror. There are two situations that cause
network address validation errors:

The instance contacted at the configured mirror private address of the local instance is not the local instance. This is
very likely because the local instance was copied from a different host, for example through backup and restore or
cloning of a VM.

No instance can be contacted at the configured mirror private address of the local instance. This can occur for either
of the following reasons:

— The network configuration of the mirror member host has changed, for example its IP address has been changed.
In this case, you can update the configured addresses of the member on the primary as described in Updating
Mirror Member Network Addresses, then restart the local instance.

— The host at the configured address is down. When this is the case, the previous problem (address mismatch) is
very likely to occur when it comes back online.

When one of these validation errors occurs, an appropriate message is displayed in the messages log, and the validation
problem is described on the Mirror Monitor page and the Edit Mirror page. Both pages provide two links you can use to
resolve the situation, as follows:

Use the Remove the local mirror configuration link to remove the local (invalid) mirror configuration, as described in
Editing or Removing Mirror Configurations.

Use the Join the mirror as a new member link to add the instance to the mirror as a new member, as describe in Creating
a Mirror; this replaces the invalid local mirror configuration with a valid one.

88

High Availability Guide

Authorizing X.509 DN Updates (TLS Only)

When a validation error of this nature occurs, the dialogs that display when you choose one of these options also include
information describing the problem and instructions regarding its resolution.

An additional option is to do nothing for the time being. You might choose this while you investigate the problem, or update
the configured network addresses of the mirror member.

Note: You can also resolve network address validation errors using the ~Mirror routine (see Using the "MIRROR
Routine).

5.4 Authorizing X.509 DN Updates (TLS Only)

When you configure a mirror to use TLS, you must authorize the newly-added second failover member and each new async
member on the first failover member before it can join the mirror, as described in Authorize the Second Failover Member
or Async Member (TLS only). For similar reasons, when a member of a mirror using TLS updates its X.509 certificate and
DN, this update must be propagated to and authorized on other members in one of the following ways:

* An X.509 DN update on the primary is automatically propagated to and authorized on other mirror members that are
connected to the primary at the time the update is made.

» Ifabackup or async member is not connected to the primary when the primary updates its X.509 DN, the update is
added to that member’s Authorize Pending DN Updates list the next time it connects to the primary. To enable the
member to continue as part of the mirror, the update must be authorized by clicking the Authorize Pending DN Updates
link on the Edit Mirror page (backup) or Edit Async Configurations page (async) of the Management Portal. A backup
or async member cannot reject an X.509 DN update from the primary.

» An X.509 DN update on a backup or async member appears in the primary’s Authorize/Reject Pending DN Updates list
immediately, if the member is connected to the primary, or the next time the member connects to the primary. To
enable the member to continue as part of the mirror, the update must be authorized by clicking the Authorize/Reject
Pending DN Updates link on the Edit Mirror page on the primary and selecting Authorize.

Note: The Authorize/Reject Pending DN Updates option (primary) or the Authorize Pending DN Updates option (backup
or async) on the Mirror Configuration menu of the "MIRROR routine can be also used to authorize X.509 DN
updates, as can the SYS.Mirror.AuthorizePendingMembers() API call.

5.5 Promoting a DR Async Member to Failover Member

A disaster recovery (DR) async mirror member can be promoted to failover member, replacing a current failover member
if two are configured or joining the current member if there is only one. For example, when one of the failover members
will be down for a significant period due to planned maintenance or following a failure, you can temporarily promote a
DR async to take its place (see Temporary Replacement of a Failover Member with a Promoted DR Async). During true
disaster recovery, when both failover members have failed, you can promote a DR to allow it to take over production as
primary failover member, accepting the risk of some data loss; see Manual Failover to a Promoted DR Async During a
Disaster for more information.

When a DR async is promoted to failover member, it is paired, if possible, with the most recent primary as failover partner;
when this cannot be done automatically, you are given the option of choosing the failover partner. Following promotion,
the promoted member communicates with its failover partner's ISCAgent as any failover member does at startup, first to
obtain the most recent journal data, then to become primary if the failover partner is not primary, or to become backup if

High Availability Guide 89

Managing Mirroring

the failover partner is primary. The promoted member cannot automatically become primary unless it can communicate
with its failover partner to obtain the most recent journal data.

When promoting a DR async to failover member, there are several important considerations to bear in mind:

» Depending on the location of the DR async, network latency between it and the failover partner may be unacceptably
high. See Network Latency Considerations for information about latency requirements between the failover members.

e When the DR async becomes a failover member, the failover member compression setting is applied, rather than the
async member compression setting as before the promotion (see Mirror Traffic Compression for information about
these settings). Depending on the network configuration, you may need to adjust the failover member compression
setting, as described in Editing or Removing a Failover Member, for optimal mirror function.

* When a mirror private network is used to connect the mirror private addresses of the failover members, as described
in Sample Mirroring Architecture and Network Configurations, a DR async that is not connected to this network should
be promoted only to function as primary, and this should be done only when no other failover member is in operation.
If a DR async is promoted when a primary is in operation but does not have access to the primary’s mirror private
address, it cannot become backup; it will, however, be able to obtain journal data from the primary’s agent and become
primary with the most recent journal data when the primary is shut down.

* Ifamirror VIP is in use, and the promoted DR async is not on the VVIP subnet, some alternative means must be used
to redirect user connections to the promoted DR should it become primary; for example, manually updating the DNS
name to point to the DR async’s IP instead of the VIP, or configuring one of the mechanisms discussed in Redirecting
Application Connections Following Failover.

In some disaster recovery situations, however, the promoted DR async cannot contact any existing failover member’s agent.
When this is the case, you have the option of promoting the DR with no failover partner, as described under Promotion
With Partner Selected by User in this section. This means that the DR can become primary only, using only the journal
data it already has and any more recent journal data that may be available on other connected mirror members, if any. When
this happens, the new primary may not have all the journal data that has been generated by the mirror, and some application
data may be lost. If you restart a former failover partner while a DR async promoted in this manner is functioning as primary,
it may need to be rebuilt; see Rebuilding a Mirror Member for more information. Be sure to see the DR promotion procedure
later in this section for details.

Note: When the primary InterSystems IRIS instance is in an indefinite trouble state due to isolation from both the backup
and the arbiter in arbiter controlled mode, as described in Automatic Failover Mechanics Detailed, you cannot
promote a DR async to failover member.

Promotion With Partner Selected Automatically
When possible, the promoted DR async’s failover partner is selected automatically, as follows:

» Whenthere is a running primary failover member, the primary is automatically selected as failover partner; the promoted
member obtains the most recent journal data from it and becomes the backup. If InterSystems IRIS is running on the
current backup, that member is simultaneously demoted to DR async; if it is not, the member is demoted to DR async
when InterSystems IRIS is restarted.

* When InterSystems IRIS is not running on any failover member but the ISCAgents on both failover members (or one
if there is only one) can be contacted, the most recent primary is automatically selected as failover partner and the
promoted member obtains the most recent journal data from it and becomes the primary. When InterSystems IRIS is
restarted on the former primary, it automatically becomes the backup; when InterSystems IRIS is restarted on the former
backup, it automatically becomes a DR async.

Promotion With Partner Selected by User

When InterSystems IRIS is not running on any failover member and at least one ISCAgent cannot be contacted, the promotion
procedure informs you of which agents cannot be contacted and gives you the option of choosing a failover partner. To

90 High Availability Guide

Promoting a DR Async Member to Failover Member

avoid the possibility of data loss, you should select the failover member that was last primary, even if its agent cannot be
contacted. The results differ depending on the selection you make and ISCAgent availability, as follows:

If the agent on the partner you select can be contacted, the promoted DR async obtains the most recent journal data
from it and then becomes primary. When InterSystems IRIS is restarted on the partner, it automatically becomes
backup.

If the agent on the partner you select cannot be contacted, the promoted DR async does not become primary until the
partner’s agent can be contacted and the most recent journal data obtained. At any time before the partner’s agent
becomes available, however, you can, force the promoted member to become primary (as described in Manual Failover
to a Promoted DR Async During a Disaster) without obtaining the most recent journal data; some application data may
be lost as a consequence.

If you choose no failover partner, the promoted DR async attempts to obtain the most recent available journal data
from all other connected async mirror members before becoming primary. Because there may not be any connected
members with more recent journal data than the promoted DR async, some application data may be lost.

When you make this choice, you have the option of setting the no failover state on the promoted DR async so that it
will prepare to become primary, including obtaining journal data from other connected members, but not become primary
until you clear no failover. This allows you to perform any additional verification you wish and to bring additional
members online, if possible, to potentially make more journal data available before allowing the promoted DR async
to become primary.

Note: Messages about successful and unsuccessful attempts to contact mirror members to review their journal data,
as well as successful and unsuccessful attempts to retrieve recent data when it is identified, are posted in the
messages log.

CAUTION: Do not restart InterSystems IRIS on a former failover member whose ISCAgent was down when the
DR async was promoted until you have set Val idatedMember=0 in the [Mi rrorMember] section
of the Configuration Parameter File for the InterSystems IRIS instance, as described in the DR promo-
tion procedure that follows.

When the failover partner is not selected automatically, the following rules apply:

Any former failover member that is not selected as partner becomes a DR async member when InterSystems IRIS is
restarted.

On any former failover member whose agent could not be contacted at the time the DR async was promoted, you must
at earliest opportunity and before restarting InterSystems IRIS instance set Val idatedMember=0 in the
[MirrorMember] section of the Configuration Parameter File for the InterSystems IRIS instance (see [MirrorMember]).
This instructs the InterSystems IRIS instance to obtain its new role in the mirror from the promoted DR async, rather
than reconnecting to the mirror in its previous role. The "MIRROR routine lists the failover member(s) on which this
change is required.

CAUTION: If the promoted DR async becomes primary or is forced to become primary without obtaining the most

recent journal data, some global update operations may be lost and the other mirror members may need to
be rebuilt (as described in Rebuilding a Mirror Member). Under some disaster recovery scenarios, however,
you may have no alternative to promoting a DR async to primary without obtaining journal data. If you
are uncertain about any aspect of the promotion procedure, InterSystems recommends that you contact the
InterSystems Worldwide Response Center (WRC) for assistance.

To promote a DR async member to failover member, do the following:

1.

On the DR async member that you are promoting to failover member, navigate to the System Operation > Mirror Mon-
itor page to display the Mirror Monitor.

High Availability Guide 91

https://www.intersystems.com/support-learning/support/

Managing Mirroring

2. Click the Promote to Failover Member button at the top of the page.

3. Follow the instructions provided by the resulting dialog boxes. In the simplest case, this involves only confirming that
you want to proceed with promotion, but it may include selecting a failover partner or no partner, as described earlier
in this section.

4. If a VIP is configured for the mirror, the promoted DR async must have a network interface on the VIP’s subnet to be
able to acquire the VIP in the event of becoming primary (due to manual failover or to a later outage of the primary
while operating as backup).

» If the DR async has exactly one interface on the VIP’s subnet, the procedure automatically selects this interface.
» If the DR async has more than one interface on the VIP’s subnet, the procedure asks you to choose an interface.

» If the DR async does not have an interface on the VIP’s subnet, the promotion procedure warns you that this is
the case and asks you to confirm before proceeding. If you go ahead with the procedure and promote the DR async,
you will have to make take manual steps to allow users and applications to connect to the new primary, for
example updating the DNS name to point to the DR async’s IP instead of the VIP.

5. When a former failover member’s agent is available at the time a DR async is promoted, it automatically sets
Val idatedMember=0 in the [MirrorMember] section of the Configuration Parameter File for the InterSystems
IRIS instance (see [MirrorMember]). This instructs the InterSystems IRIS instance to obtain its new role in the mirror
from the promoted DR async, rather than reconnecting to the mirror in its previous role.

If a former failover member’s agent cannot be contacted at the time of promotion, this change cannot be made automat-
ically. Therefore, at the earliest opportunity and before InterSystems IRIS is restarted on any former failover member
whose agent could not be contacted at the time of promotion, you must manually set Val i datedMember=0 by editing
the Configuration Parameter File for the InterSystems IRIS instance. The instructions list the former failover member(s)
on which this change must be made.

CAUTION: Restarting InterSystems IRIS on a mirror member whose agent was down at the time of DR async
promotion without first setting Val idatedMember=0 may result in both failover members simulta-
neously acting as primary.

Note: The SYS.Mirror.Promote(), SYS.Mirror.PromoteWithPartner(), SYS.Mirror.PromoteWithNoPartner(),
and SYS.Mirror.PromoteWithSelectedPartner() mirroring API methods provide alternative means of promoting
a DR async to failover member.

5.6 Demoting the Backup to DR Async

In addition to promoting a DR async to failover member, you can do the reverse — demote the failover member that is not
the current primary to DR async, so the mirror is left with a single failover mirror. This is useful in planned outage situations
when you do not want a failover member to respond to temporary changes in the mirror’s configuration. For example:

* When you have shut down the backup failover member and its host system for maintenance and the InterSystems IRIS
instance on the primary is restarted (for whatever reason), it cannot become primary after the restart because it cannot
contact the backup instance or its ISCAgent and thus has no way of determining whether it was the most recent primary.
However, if you demote the backup to DR async before bringing it down, as described in Maintenance of Backup
Failover Member, you avoid this risk, as the primary knows there is no current backup and that it can therefore become
primary after a restart. You can then promote the demoted DR async to backup (as described in Promoting a DR Async
Member to Failover Member) after you restart it,

92 High Availability Guide

Rebuilding a Mirror Member

* When you are testing your disaster recovery capability by deliberately failing over to a DR async, as described in
Planned Failover to a Promoted DR Async, and shut down the primary instance to trigger failover, you may want to
restart it to keep it synchronized without it automatically becoming backup (since in a real disaster it is not likely to
be available). In this case, you can demote it to DR async (through its ISCAgent) before restarting it, and then later
promote it to failover member when you are ready.

To demote a failover member, navigate to the Mirror monitor page (Home > System Operation > Mirror Monitor) on one of
the failover members, as described in Using the Mirror Monitor. Then:

* On the backup, use the Demote to DR Member button to demote the backup to DR async. (You would use this method
in the first of the preceding examples.)

» On the primary, use the Demote Other Member button to demote the backup to DR async. (You would use this method
in the second of the preceding examples.) Demotion succeeds only if the current member is primary and either the
backup instance or its ISCAgent is reachable.

Note: You cannot demote the current primary when no failover is set, as described in Avoiding Unwanted Failover
During Maintenance of Failover Members.

The Demote Backup member to Async DR member option on the Mirror Management menu in the ~"MIRROR
routine and the SYS.Mirror.Demote() and SYS.Mirror.DemotePartner() mirroring APl methods provide
alternative means of demoting the backup to DR async.

5.7 Rebuilding a Mirror Member

Under some circumstances following an outage or failure, particularly if manual procedures are used to return a mirror to
operation, a member’s mirrored databases may no longer be synchronized with the mirror. For example, when a backup
that did not automatically take over following a primary outage is forced to become primary without the most recent journal
data (see Manual Failover When the Backup Is Not Active), one or more of the mirrored databases on the former primary
may be inconsistent with the new primary’s databases.

In some cases the mirror is able to reconcile the inconsistency, but in others it cannot. When a mirror member whose data
is irreparably inconsistent with the mirror is restarted and attempts to rejoin the mirror, the process is halted and the following
severity 2 message is written to the messages log:

This member has detected that its data is inconsistent with the mirror MIRRORNAME. If the primary is
running and has the correct mirrored data, this member, including its mirrored databases, must be
rebuilt.

This message is preceded by a severity 1 message providing detail on the inconsistency.
When this message appears in the messages log, take the following steps:

1. Confirm that the functioning mirror has the desired version of the data, and that the member reporting the inconsistency
should therefore be rebuilt. This will likely be true, for example, in any case in which this message appears when you
are restarting the former primary after having chosen to manually cause another member to become primary without
all of the most recent journal data. If this is the case, rebuild the inconsistent member using the steps that follow.

If you conclude instead that the member reporting the inconsistency has the desired version of the data, you can adapt
this procedure to rebuild the other members.

If you are not certain which version of the data to use or whether it is desirable to rebuild the inconsistent member,
contact the InterSystems Worldwide Response Center (WRC) for help in determining the best course of action.

High Availability Guide 93

https://www.intersystems.com/support-learning/support/

Managing Mirroring

2. Back up the mirrored databases on a member of the functioning mirror. You can also use an existing backup created
on a member of the mirror, if you are certain that

» the backup was created before the outage or failure that led to the data inconsistency.

» the current primary has all of the journal files going back to when the backup was created.

3. Remove the inconsistent member from the mirror as described in Editing or Removing Mirror Configurations, retaining
the mirrored DB attribute on the mirrored databases.

4. Add the member to the mirror using the appropriate procedure, as described in Configure the second failover member
or Configure async mirror members.

5. Restore the mirrored databases on the member from the backup you created or selected, as described in Add an existing
database to the mirror.

5.8 Stopping Mirroring on Backup and Async Members

You can temporarily stop mirroring on the backup or an async member. For example, you may want to stop mirroring on
the backup member for a short time for maintenance or reconfiguration, or during database maintenance on the primary,
and you might temporarily stop mirroring on a reporting async member to reduce network usage. To do so, do the following:

1. Navigate to the System Operation > Mirror Monitor page for the member on which you want to stop mirroring
2. If the member is the backup failover member, click the Stop Mirroring On This Member button.

3. If the member is an async, click the Stop Mirroring On This Member link in the row for the mirror you want the async
to stop mirroring. (Stopping mirroring of one mirror does not affect others a reporting async belongs to.)

The operation takes a few seconds. When you refresh the Mirror Monitor, the Stop Mirroring On This Member is replaced
by Start Mirroring On This Member, which you can use to resume mirroring.

Important: When you stop mirroring on a member, mirroring remains stopped until you explicitly started it again as
described in the preceding. Neither reinitialization of the mirror or a restart of the member starts mirroring
on the member.

Note: You can also use the mirroring SYS.Mirror.StopMirror() andSYS.Mirror.StartMirror() APl methods or the
~MIRROR routine (see Using the "MIRROR Routine) to perform these tasks.

5.9 Managing Database Dejournaling

As described in Mirror Synchronization, dejournaling is the process of synchronizing mirrored databases by applying
journal data from the primary failover member to the mirrored databases on another mirror member. Although dejournaling
is an automatic process during routine mirror operation, under some circumstances you may need or want to manage
dejournaling using options provided by the "MIRROR routine (see Using the “MIRROR Routine). Because of the differences
in purpose between the backup failover member, DR async members, and reporting async members, there are also some
differences in dejournaling and dejournaling management, specifically in regard to interruptions in dejournaling, whether
deliberate or caused by error. In addition, a user-defined filter can be applied to dejournaling for one or more of the mirrors
a reporting async belongs to.

* Managing Dejournaling on the Backup or a DR Async

94 High Availability Guide

Managing Database Dejournaling

» Managing Dejournaling on a Reporting Async

» Using a Dejournal Filter on a Reporting Async

Note: All types of mirror members continue to receive journal data even when dejournaling of one or all mirrored
databases is paused.

The SYS.Mirror.AsyncDejournalStatus(), SYS.Mirror.AsyncDejournalStart(),
SYS.Mirror.AsyncDejournalStop(), and SYS.Mirror.DejournalPauseDatabase() mirroring APl methods can
also be used to manage dejournaling.

5.9.1 Managing Dejournaling on the Backup or a DR Async

Because mirrored databases on the backup failover member and DR async members should always be as close as possible
to caught up to support potential takeover as primary or use in disaster recovery, respectively, dejournaling is paused by
error for only the affected mirrored database, while it continues for others.

For example, when there is a database write error such as <FILEFULL> on the backup or a DR async member, dejournaling
of the database on which the write error occurred is automatically paused, but dejournaling of other mirrored databases
continues. Dismount the database and correct the error, then remount the database and resume dejournaling by selecting
the Activate or Catchup mirrored database(s) option from the Mirror Management menu of the *MIRROR routine or
catching up the database using the Management Portal (see Activating and Catching Up Mirrored Databases).

On a DR async, you also have the option of pausing dejournaling for all mirrored databases on the member using the
Manage mirror dejournaling on async member option on the Mirror Management menu of the "MIRROR routine. (This
option is disabled on backup members.) You can use this following a dejournaling error or for maintenance purposes. For
example, if you prefer to pause dejournaling for all databases in the mirror when a dejournaling error causes dejournaling
to pause for one database only, you can do the following:

1. Select Manage mirror dejournaling on async member option from the Mirror Management menu of the "MIRROR
routine to pause dejournaling for all databases.

2. Dismount the problem database, correct the error, and remount the database.

3. Select Manage mirror dejournaling on async member option from the Mirror Management menu of the "MIRROR
routine to restart dejournaling for all databases. (This option automatically activates the database that had the error and
catches it up to the same point as the most up to date database in the mirror.)

Note: When you pause dejournaling on a DR async member using the Manage mirror dejournaling on async member
option, dejournaling does not restart until you use the option again to restart it.

5.9.2 Managing Dejournaling on a Reporting Async

As described in Async Mirror Members, a reporting async member can belong to multiple mirrors. For each of these mirrors,
you may want dejournaling of the databases to be continuous or you may want dejournaling to be conducted on a regular
schedule, depending on the ways in which the databases are being used. For example, for a given mirror you may want to
dejournal between midnight and 4:00am, allowing the databases to remain static for stable report generation over the rest
of the day.

In addition, you may want different behavior for different mirrors when dismounting a database for maintenance or
encountering an error during dejournaling. For one mirror, it may be most important that the database for which dejournaling
is paused not fall behind the other databases in the mirror, in which case you will prefer to pause dejournaling for the entire
mirror; for another, it may be most important that the databases in the mirror stay as up to date as possible, in which case
you will want to pause only the database involved.

High Availability Guide 95

Managing Mirroring

When you want to pause dejournaling for one or more mirrors on a reporting async as a one-time operation or on a regular
basis, you can select the Manage mirror dejournaling on async member option from the Mirror Management menu of the
~MIRROR routine to pause dejournaling for all databases in any mirror you wish. When you want to restart dejournaling,
use the Manage mirror dejournaling on async member option again. (This option is not available on backup members.)

Unlike backup and DR async members, when there is an error during dejournaling of a database on a reporting async
member, dejournaling is automatically paused for all databases in that mirror. Depending on your needs and policies, you
can either:

» Dismount the database that encountered the error, select the Manage mirror dejournaling on async member option from
the Mirror Management menu of the "MIRROR routine to restart dejournaling for all other databases in the mirror,
correct the error and mount the database, then resume dejournaling for that database by selecting the Activate or Catchup
mirrored database(s) option from the Mirror Management menu of the "MIRROR routine or catching up the database
using the Management Portal (see Activating and Catching Up Mirrored Databases).

» Allow dejournaling to remain paused for the entire mirror while you correct the error and remount the database, then
use the Manage mirror dejournaling on async member option to restart dejournaling for the entire mirror (This option
automatically activates the database that had the error and catches it up to the same point as the most up to date database
in the mirror.)

When you want to perform maintenance on a mirrored database on a reporting async member, you can simply dismount
the database, then mount the database again after maintenance and use the Activate or Catchup mirrored database(s) option
or the Management Portal to catch up the database. (If the maintenance involves several such databases, use the Mirror
Monitor to perform the operation on all of them at once, as described in Activating and Catching Up Mirrored Databases.
This is more efficient and less time-consuming than catching up the databases individually.)

Note: When dejournaling pauses for a mirror on a reporting async member due to an error, the member attempts to
restart dejournaling for the mirror the next time its connection to the primary is rebuilt. When you pause dejour-
naling for a mirror on an async member using the Manage mirror dejournaling on async member option, dejournaling
for the mirror does not restart until you use the option again to restart it.

5.9.3 Using a Dejournal Filter on a Reporting Async

On a reporting async only, you can set a user-defined dejournal filter on a given mirror, letting you execute your own code
for each journal record to determine which records are applied to the Read-Write databases in that mirror. Once you have
defined a filter, you can set it on as many mirrors as you want, and you can set, change and remove filters at any time.

Important: This functionality is intended only for highly specialized cases. Alternatives should be carefully considered.
For controlling which globals are replicated to mirror members, global mapping to nonmirrored databases
provides a much simpler, lightweight solution. For monitoring updates to application databases, solutions
built at the application level are typically more flexible.

A dejournal filter allows a reporting async to skip dejournaling of some of the records in a journal file received from the
primary. However, this applies to Read-Write databases only—databases originally added to the mirror on a read-write
reporting async, or from which the FailoverDB flag has been cleared since the database was added to the mirror as Read-
Only. (See Clearing the FailoverDB Flag on Reporting Async Mirror Members for a detailed explanation of the FailoverDB
flag and the mount status of mirrored databases on reporting asyncs.) If the FailoverDB flag is set on a database, which
means that the database is mounted as Read-Only, the dejournal filter code still executes, but all records are always
dejournaled on that database, regardless of what the filter code returns.

Important: Setting a dejournal filter slows dejournaling for the mirror it is set on; this effect may be significant,
depending on the contents of the filter.

96 High Availability Guide

General Mirroring Considerations

To create a dejournal filter, extend the superclass SYS.MirrorDejournal to create a mirror dejournal filter class. The class
name should begin with z or z, so that it is preserved during an InterSystems IRIS upgrade.

To set a dejournal filter on a mirror on a reporting async, navigate to the Edit Async Configurations page (System Admin-
istration > Configuration > Mirror Settings > Edit Async), click the Edit Dejournal Filter link next to the desired mirror in the
Mirrors this async member belongs to list, enter the name of a mirror dejournal filter class, and click Save. To remove a
filter, do the same but clear the entry box before clicking save. Whenever you add, change, or remove a journal filter on a
mirror, dejournaling is automatically restarted for that mirror so the filter can be applied. However, if you modify and
recompile a mirror dejournal filter class, you must manually stop and restart dejournaling on all mirrors it is set on using
the Manage mirror dejournaling on async member option on the Mirror Management menu of the “MIRROR routine.

5.10 General Mirroring Considerations

This section provides information to consider, recommendations, and best-practice guidelines for mirroring. It includes the
following subsections:

* Mirror APIs
» External Backup of Primary Failover Member

* Upgrading InterSystems IRIS on Mirror Members

5.10.1 Mirror APIs

The SYS.Mirror class provides methods for programmatically calling the mirror operations available through the Management
Portal and the "MIRROR routine (see Using the "MIRROR Routine), as well as many queries. For example, the
SYS.Mirror.CreateNewMirrorSet() method can be used to create a mirror and configure the first failover member, while
the SYS.Mirror.MemberStatusL.ist() query returns a list of mirror members and the journal latency status of each. See
the SYS.Mirror class documentation for descriptions of these methods.

If you use an external script to perform backups, you can use the $SYSTEM.Mirror class methods to verify whether a system
is part of a mirror and, if so, what its role is:

$System.Mirror. IsMember()
$System.Mirror.IsPrimary()
$System._Mirror.IsBackup()
$System.Mirror. I1sAsyncMember()
$System.Mirror.MirrorName()

where $SYSTEM.Mirror.IsMember() returns 1 if this system is a failover member, 2 if this is an async mirror member,
or 0 if this is not a mirror member; $SYSTEM.Mirror.IsPrimary() returns 1 if this system is the primary failover member,
or 0 if it is not; $SYSTEM.Mirror.IsBackup() returns 1 if this system is the backup failover member, or 0 if it is not;
$SYSTEM.Mirror.IsAsyncMember () returns 1 if this system is an async member, or 0 if it is not;
$SYSTEM.Mirror.MirrorName() returns the name of the mirror if the instance is configured as a failover mirror member
or NULL if it is not.

You can also use $SYSTEM.Mirror.GetMemberType() and $SYSTEM.Mirror.GetMemberStatus() to obtain information
about the mirror membership (if any) of the current instance of InterSystems IRIS and its status in that role; see Mirror
Member Journal Transfer and Dejournaling Status for more information.

5.10.2 External Backup of Primary Failover Member

When using the Backup.General.ExternalFreeze() method to freeze writes to a database on the primary failover member
so an external backup can be performed, as described in Backup and Restore, ensure that the external freeze does not suspend

High Availability Guide 97

Managing Mirroring

updates for longer than the specified External FreezeTimeOut parameter of Backup.General.ExternalFreeze(). If this
happens, the mirror may fail over to the backup failover member, thereby terminating the backup operation in progress.

5.10.3 Upgrading InterSystems IRIS on Mirror Members

To review options and considerations for upgrading InterSystems IRIS on a mirror member, see Minimum Downtime
Upgrade with Mirroring.

Important: Release 2023.3 uses a newer, more compact version of the journal file format compared to previous releases,

and this affects the order in which you need to perform upgrades on a mirrored system. Specifically, when
upgrading from a release prior to 2023.3, you must follow the best practice of upgrading backup members
before upgrading the primary.

5.11 Database Considerations for Mirroring

This section provides information to consider when configuring and managing mirrored databases:

InterSystems IRIS Instance Compatibility

Member Endianness Considerations

Creating a Mirrored Database Using the "DATABASE Routine

Recreating an Existing Mirrored Database Using the "DATABASE Routine
Mounting/Dismounting Mirrored Databases

Copying Mirrored Databases to Nonmirrored Systems

5.11.1 InterSystems IRIS Instance Compatibility

The InterSystems IRIS instances in a mirror must be compatible in several ways, as follows:

1.

All InterSystems IRIS instances in a mirror must:
e Use the same character width (8-bit or Unicode; see Character Width Setting).

e Use the same locale (see Using the NLS Settings Page of the Management Portal).

Note: The one exception to these requirements is that an 8-bit instance using a locale based on the 1SO 8859 Latin-
1 character set is compatible with a Unicode instance using the corresponding wide character locale. For
example, an 8-bit primary instance using the enus locale is compatible with a Unicode backup instance using
the enuw locale. However, an 8-bit primary instance using the heb8 locale is not compatible with a Unicode
backup instance using the hebw locale, as these locales are not based on ISO 8859 Latin-1.

The failover members must have the same database block sizes enabled (see Large Block Size Considerations). Addi-
tionally, the sizes enabled on the failover members must be enabled on async members. If the block size of a mirrored
database that is added to the primary is not enabled on another member, the database cannot be added to the mirror on
that member,

The failover members and any DR async member must be of the same InterSystems IRIS version; they can differ only
for the duration of one of the upgrade procedures described in Minimum Downtime Upgrade with Mirroring in the
“Upgrading InterSystems IRIS” chapter of the Installation Guide. Once an upgraded member becomes primary, you

98

High Availability Guide

Database Considerations for Mirroring

cannot make use of the other failover member and any DR async members (and in particular cannot allow them to
become the primary) until the upgrade is completed.

Mirroring does not require reporting async members to be of the same InterSystems IRIS version as the failover
members, although application functionality may require it.

5.11.2 Member Endianness Considerations

e Mixed endianness is not supported for the members of a mirrored data server in a distributed cache cluster (for example,
a mirror set serving as an ECP data server). When the failover members are temporarily mixed — for example, when
migrating the server from one endianness to another — ECP sessions do not recover following failover.

* When creating a mirrored database or adding an existing database to a mirror, if a backup failover member or async
member has a different endianness than the primary failover member, you cannot use the backup and restore procedure
described in Add an existing database to the mirror; you must instead use the procedure in that section involving
copying the database’s IRIS.DAT file. Additionally, when using that procedure, insert the following step after copying
the IRIS.DAT file to all nonprimary members and before mounting the database on those members:

— On the backup failover member and each async member, convert the copied IRIS.DAT files as described in Using
cvendian to Convert Between Big-endian and Little-endian Systems.

5.11.3 Creating a Mirrored Database Using the “"DATABASE Routine

You can create mirrored databases on mirror members using the “"DATABASE routine. (See “"DATABASE.) You must
create the new mirrored database on the primary member before creating it on other mirror members. To create a mirrored
database:

1. Runthe "DATABASE routine, and select the 1) Create a database option.
2. Enter the directory path at the Database directory? prompt.

3. Enter yes at the Change default database properties? prompt.
4

Enter 3 (Mirror DB Name:) at the Field number to change? prompt, and enter a mirror name for the mirrored database
at the Mirror DB Name? prompt.

Note: If the member on which you are creating the mirrored database is a member of multiple mirrors and you are
creating a mirrored database that is in a mirror that is different from the one that is listed by default, Enter
(Mirror Set Name:) at the Field number to change? prompt, and choose the correct mirror name from the list.
If the member on which you are running the routine is a member of only one mirror, this field cannot be
changed.

5. Modify other fields as necessary for your database, then when you have finished making changes, press Enter at the
Field number to change? prompt without specifying any option.

6. Enter the dataset name of the database at the Dataset name of this database in the configuration: prompt. This is the
name that is displayed in the Management Portal.

7. Enter responses to the remaining prompts until the mirrored database is created.

When you create the mirrored databases on the backup and async members, they automatically catch up with the database
you created on the primary member.

Note: You cannot add an existing nonmirrored database to a mirror using the "DATABASE routine; see Adding
Databases to Mirror for the required procedure.

High Availability Guide 99

Managing Mirroring

5.11.4 Recreating an Existing Mirrored Database Using the ~"DATABASE Routine

The 10) Recreate a database option of "DATABASE routine lets you clear the data in an existing database without
changing the database’s name or size. (See "DATABASE for information about the routine.) You can use this option with
a mirrored database, but you must use it on every mirror member on which the database appears, and in the same order in
which you use the Create a database option to create a new mirrored database—on the primary first, then the backup, then
any asyncs on which the database is part of the mirror.

CAUTION: If you use the 10) Recreate a database option to recreate a database on the primary, you must repeat the
operation on the backup and any DR asyncs in the mirror; if you do not, the database may become obsolete
in the event of failover or disaster recovery. You are strongly encouraged to repeat the recreate operation
on reporting asyncs as well.

5.11.5 Mounting/Dismounting Mirrored Databases

Mirrored databases can be mounted/dismounted on either failover member. If dismounted on the backup failover member,
however, the database remains in a “stale” state until it is remounted, after which mirroring attempts to catch up the
database automatically. If the required journal files are available on the primary failover member, the automatic update
should succeed, but if any of the required journal files on the primary member have been purged, you must restore the
database from a recent backup on the primary member.

5.11.6 Copying Mirrored Databases to Nonmirrored Systems

You can copy a mirrored database to a nonmirrored system and mount it read-write on that system by doing the following:

1. Back up the mirrored database on the primary or backup failover member and restore it on the nonmirrored system
using the procedure described in Add an Existing Database to the Mirror (omit the step of manually activating and
catching up the database following external backup restore or cold backup restore). Once restored, the database is still
marked as mirrored and is therefore read-only.

2. On the nonmirrored system, use the “MIRROR routine (see Using the "MIRROR Routine) to remove the database
from the mirror by selecting Remove one or more mirrored databases and following the instructions. Following this
procedure the database is mounted read-write.

5.12 Production Considerations for Mirroring

This section discusses additional considerations that apply to InterSystems IRIS productions, including:
* How InterSystems IRIS Handles Interoperability-Enabled Namespaces with Mirrored Data
» Recommended Mirroring Configuration for InterSystems IRIS Productions

e How Production Autostart Works in a Mirrored Environment

5.12.1 How InterSystems IRIS Handles Interoperability-Enabled Namespaces
with Mirrored Data

InterSystems IRIS examines the mappings in an interoperability-enabled namespace and determines whether that namespace
contains any mappings from a mirrored database, with the following results:

100 High Availability Guide

Mirroring Considerations for Healthcare Products

* When you start or upgrade a mirror member containing an interoperability-enabled namespace, productions are started
on the primary only.

* When you upgrade InterSystems IRIS, certain tasks require write access to the database; those tasks are performed
only on the primary mirror member.

» Ifafailover occurs and a member becomes the primary mirror member, any tasks that were skipped when it was
upgraded (because it was not primary at the time) are performed before productions are started.

5.12.2 Recommended Mirroring Configuration for InterSystems IRIS Productions

Mirroring is intended to be a high availability solution and there should thus be minimal extraneous activity on either of
the mirror instances. That is, you should mirror all databases on any mirrored instances.

Customers sometimes choose to have “less critical ” productions running on either node without having that data mirrored.
Such a configuration, however, creates operational complexity that may prove difficult to maintain. Consequently, Inter-
Systems strongly recommends that you avoid such configurations and that you instead mirror all the databases.

5.12.3 How Production Autostart Works in a Mirrored Environment

When a mirror system starts up (at which point no member has yet become the primary failover member):

1. InterSystems IRIS does not start any production that accesses mirrored data even if the production is specified in
AEns.AutoStart. If the member becomes the primary instance, these productions will be started at that time.

2. InterSystems IRIS determines if there are any namespaces on the instance that do not access mirrored data. As described
previously, InterSystems recommends that only mirrored productions be installed on a mirror member. If you have,
however, installed any production with nonmirrored databases, InterSystems IRIS starts the production specified in
AEns.AutoStart. (This logic ensures that if you have installed a nonmirrored namespace on a mirror member, it is started
on InterSystems IRIS startup.)

Later, when the member becomes the primary failover member, InterSystems IRIS finds the namespaces that do reference
mirrored data so that it can start the productions in these namespaces. If you follow InterSystems recommendations, no
production accessing mirrored data should be running before an instance becomes the primary mirror member. InterSystems
IRIS first checks to see if a production is already running before starting it, specifically:

1. InterSystems IRIS determines whether the production is already running by counting the jobs that are running as the
_Ensemble user in the namespace. If there are more than two such jobs, indicating that the production is already running,
InterSystems IRIS logs a warning to the messages log and does not attempt to start the production.

2. If, as expected, the production is not running, InterSystems IRIS automatically starts the production specified in
Ens.AutoStart.

For complete information about starting and stopping productions, see Starting and Stopping Productions.

5.13 Mirroring Considerations for Healthcare Products

When you are setting up and managing mirroring with InterSystems IRIS for Health™ and HealthShare® Health Connect,
you must use a virtual IP and configure a Network Host Name in the Installer Wizard. For details about these tasks, see
Configuring Monitoring for Healthcare Products. Note that other HealthShare products have their own mirroring documen-
tation; the following considerations do not necessarily apply to those products.

High Availability Guide 101

Managing Mirroring

When mirroring IRIS for Health or Health Connect systems, you always need to manually schedule a mirror task in the
HSSYS namespace of the backup member. Scheduling this task ensures that the Mirror Monitor Agent is running. This
agent runs on the backup mirror instance to sync items stored in IRISSY'S (which is not mirrored) between the primary and
the backup. To schedule the mirror task, open a Terminal for the backup member and enter:

do #class(HS. Util.Mirror.Task).Schedule("HSSYS")

For IRIS for Health, the HS_Services username must also be enabled on each mirror member.

102 High Availability Guide

Mirror Outage Procedures

Due to planned maintenance or to unplanned problems, the InterSystems IRIS® data platform instance on one or both of
the failover members in a mirror may become unavailable. When a failover member’s InterSystems IRIS instance is
unavailable, its ISCAgent may continue to be available (if the host system is still operating), or may also be unavailable
(as when the host system is down). This section provides procedures for dealing with a variety of planned and unplanned
outage scenarios involving instance outages or total outages of one or both failover members.

As noted in Automatic Failover Mechanics, there are two requirements for safe and successful failover from the primary
failover member to the backup failover member:

» Confirmation that the primary instance is actually down, and not isolated by a temporary network problem.

e Confirmation that the backup has the most recent journal data from the primary, either because it was active when the
primary failed (see Mirror Synchronization) or because it has been manually caught up (see Unplanned Outage of
Primary Without Automatic Failover).

In reading and using this material, you may want to refer to Automatic Failover Rules to review the rules governing automatic
failover.

For information about using the Mirror Monitor to determine whether a backup failover member is active or a DR async
is caught up, see Mirror Member Journal Transfer and Dejournaling Status and Monitoring Mirrors.

This topic covers the following procedures:
» Planned outage procedures
— Maintenance of backup failover member
— Maintenance of primary failover member
— Avoiding unwanted failover during maintenance of failover members

— Upgrade of intersystems iris instances in a mirror

» Unplanned outage procedures
— Unplanned outage of backup failover member
— Unplanned outage of primary failover member with automatic failover
— Unplanned outage of primary failover member when automatic failover does not occur
— Unplanned isolation of primary failover member

— Unplanned outage of both failover members

» Disaster recovery procedures

High Availability Guide 103

Mirror Outage Procedures

— Manual failover to a promoted dr async during a disaster
— Planned failover to a promoted dr async

— Temporary replacement of a failover member with a promoted dr async

6.1 Planned Outage Procedures

To perform planned maintenance, you may need to temporarily shut down the InterSystems IRIS instance on one of the
failover members, or the entire system hosting it. Situations in which you might do this include the following:

* Maintenance of Backup Failover Member
» Maintenance of Primary Failover Member
» Avoiding Unwanted Failover During Maintenance of Failover Members

In this section, the term graceful shutdown refers to the use of the iris stop command. For information about the iris command,
see Controlling InterSystems IRIS Instances.

Note: In addition to the iris stop command, the SYS.Mirror APl and the “MIRROR routine can be used to manually
trigger failover.

For information on shutting down the primary without triggering automatic failover, see Avoiding Unwanted
Failover During Maintenance of Failover Members.

When there is no backup failover member available due to planned or unplanned failover member outage, you can promote
a DR async member to failover member if desired, protecting you from interruptions to database access and potential data
loss should a primary failure occur. See Temporary Replacement of a Failover Member with a Promoted DR Async for
information about temporarily promoting a DR async member to failover member.

6.1.1 Maintenance of Backup Failover Member

When you need to take down the backup failover member InterSystems IRIS instance, you can perform a graceful shutdown
on the backup instance. This has no effect on the functioning of the primary. When the backup instance is restarted it
automatically rejoins the mirror as backup.

However, if the primary’s InterSystems IRIS instance is restarted (for whatever reason) while the backup’s host is shut
down and the backup’s ISCAgent therefore cannot be contacted, the primary cannot become primary after the restart,
because it has no way of determining whether it was the most recent primary. When you need to shut down the backup’s
host system, you can eliminate this risk using the following procedure:

1. On the backup, demote the backup to DR async as described in Demoting the Backup to DR Async.

2. Shut down the former backup instance and its host system, complete the maintenance work, and restart the member
as a DR async.

3. Promote the former backup from DR async to failover member, as described in Promoting a DR Async Member to
Failover Member, to restore it to its original role.
If the primary is restarted after the backup has been demoted, it automatically becomes (remains) primary.

If you do not demote the backup before shutting it down, and find you do need to restart the primary InterSystems IRIS
instance while the backup’s agent is unavailable, follow the procedures in Unplanned Outage of Both Failover Members.

104 High Availability Guide

Unplanned Outage Procedures

6.1.2 Maintenance of Primary Failover Member

When you need to take down the primary failover member InterSystems IRIS instance or host system, you can gracefully
fail over to the backup first. When the backup is active (see Mirror Synchronization), perform a graceful shutdown on the
primary InterSystems IRIS instance. Automatic failover is triggered, allowing the backup to take over as primary.

When maintenance is complete, restart the former primary InterSystems IRIS instance or host system. When the InterSystems
IRIS instance restarts, it automatically joins the mirror as backup. If you want to return the former primary to its original
role, you can repeat the procedure—perform a graceful shutdown on the backup InterSystems IRIS instance to trigger
failover, then restart it.

6.1.3 Avoiding Unwanted Failover During Maintenance of Failover Members

You may want to gracefully shut down the primary failover member without the backup member taking over as primary,
for example when the primary will be down for only a very short time, or prevent the backup from taking over in the event
of a primary failure. You can do this in any of three ways:

» Demote the backup failover member as described in Maintenance of Backup Failover Member.

» Gracefully shut down the primary InterSystems IRIS instance using the command iris stop /nofailover; the /nofailover
argument is used as a precaution to avoid triggering failover.

» Set no failover by clicking Set No Failover at the top of the Mirror Monitor page on either the primary or the backup.
When no failover is set, the button says Clear No Failover and the Status Monitor options of the Mirror Status menu of
the "MIRROR routine indicate that this is the case. (See Monitoring Mirrors for more information about the Status
Monitor option.)

Click clear No Failover on either failover member to clear the no failover state and enable failover. The no failover
state is automatically cleared when the primary is restarted.

6.1.4 Upgrade of InterSystems IRIS Instances in a Mirror

To upgrade InterSystems IRIS across a mirror, see the procedures described in Minimum Downtime Upgrade with Mirroring
in the “Upgrading InterSystems IRIS™ chapter of the Installation Guide.

To upgrade InterSystems IRIS across a mirror, see the procedures described in Minimum Downtime Upgrade with Mirroring.

To upgrade InterSystems IRIS across a mirror, see the procedures described in Minimum Downtime Upgrade with Mirroring.

6.2 Unplanned Outage Procedures

When a failover member unexpectedly fails, the appropriate procedures depend on which InterSystems IRIS instance has
failed, the failover mode the mirror was in (see Automatic Failover Mechanics Detailed), the status of the other failover
member instance, the availability of both failover member’s ISCAgents, and the mirror’s settings.

e Unplanned Outage of Backup Failover Member

* Unplanned Outage of Primary Failover Member With Automatic Failover

* Unplanned Outage of Primary Failover Member When Automatic Failover Does Not Occur
* Unplanned Isolation of Primary Failover Member

* Unplanned Outage of Both Failover Members

High Availability Guide 105

Mirror Outage Procedures

In reading and using this section, you may want to review Mirror Response to Various Outage Scenarios, which discusses
the details of the backup’s behavior when the primary becomes unavailable.

6.2.1 Unplanned Outage of Backup Failover Member
When the backup failover member’s InterSystems IRIS instance or its host system fails, the primary continues to operate
normally, although some applications may experience a brief pause (see Effect of Backup Outage for details).

When an unplanned outage of the backup occurs, correct the conditions that caused the failure and then restart the backup
InterSystems IRIS instance or host system. When the backup InterSystems IRIS instance restarts, it automatically joins the
mirror as backup.

Note: If the backup fails in agent controlled mode (see Automatic Failover Rules) and the backup’s ISCAgent cannot
be contacted, the primary’s InterSystems IRIS instance cannot become primary after being restarted, because it
has no way of determining whether it was the most recent primary. Therefore, if you need for any reason to restart
the primary InterSystems IRIS instance while the backup host system is down, you must use the procedure
described in Maintenance of Backup Failover Member to do so.

6.2.2 Unplanned Outage of Primary Failover Member With Automatic Failover
As described in Automatic Failover Rules, when the primary InterSystems IRIS instance becomes unavailable, the backup
can automatically take over as primary when
» The backup is active and

— receives a communication from the primary requesting that it take over.

— receives information from the arbiter that it has also lost contact with the primary.

— ifthe arbiter is unavailable or no arbiter is configured, contacts the primary’s ISCAgent to confirm that the primary

instance is down or hung.

» The backup is not active but can contact the primary’s ISCAgent to confirm that the primary instance is down or hung
and obtain the primary’s most recent journal data from the ISCAgent.

See Automatic Failover in Response to Primary Outage Scenarios for a detailed discussion of the situations in which
automatic failover can take place.

When the backup has automatically taken over following an unplanned primary outage, correct the conditions that caused
the outage, then restart the former primary InterSystems IRIS instance or host system. When the InterSystems IRIS instance
restarts, it automatically joins the mirror as backup. If you want to return the former primary to its original role, perform a
graceful shutdown on the backup InterSystems IRIS instance to trigger failover, then restart it, as described in Maintenance
of Primary Failover Member.

6.2.3 Unplanned Outage of Primary Failover Member When Automatic Failover
Does Not Occur

As described in Automatic Failover Rules, the backup InterSystems IRIS instance cannot automatically take over from an
unresponsive primary instance when the primary’s host system, including its ISCAgent, is unavailable, and any of the fol-
lowing is true:

e The backup was not active.

» The backup is prevented from taking over by an error.

106 High Availability Guide

Unplanned Outage Procedures

* The backup cannot verify that the primary is down, either because no arbiter is configured or because it lost contact
with the arbiter before or at the same time as it lost contact with the primary InterSystems IRIS instance and its
ISCAgent.

Under this scenario, there are three possible situations, each of which is listed with possible solutions in the following:
1. The primary host system has failed but can be restarted. You can do either of the following:

» Restart the primary host system without restarting the primary InterSystems IRIS instance. When the primary’s
ISCAgent becomes available, the backup obtains the most recent journal data from it if necessary and becomes
primary.

* Restart the primary host system including the primary InterSystems IRIS instance. The failover members negotiate
until one becomes primary, with the other becoming backup.

2. The primary host system has failed and cannot be restarted. You can manually force the backup to take over. The
procedures for this vary depending on whether or not the backup was active when it lost its connection the primary;
there is some risk of data loss, as described in the following sections.

3. The primary host system is running but is network isolated from the arbiter as well as the backup; see Unplanned Iso-
lation of Primary Failover Member for procedures.

6.2.3.1 Manually Forcing a Failover Member to Become Primary

When a failover member cannot become primary you can force it to do so, but there is a risk of data loss if you do this in

any situation in which the last primary could have more recent journal data than the member you are forcing. The following
procedures describe how to determine and manage that risk. If you force a member to become the primary when you cannot
confirm that it has the most recent journal data, the other mirror members may be unable to rejoin the mirror and therefore
need to be rebuilt (as described in Rebuilding a Mirror Member).

CAUTION: Before proceeding, confirm that the primary is down and will remain down during this procedure. If you
cannot confirm that, it is best to abort this procedure in order to avoid the risk that the original primary
becomes available again, resulting in both members simultaneously acting as primary. If you are uncertain
whether this procedure is appropriate, contact the InterSystems Worldwide Response Center (WRC) for
assistance.

6.2.3.2 Determining Whether the Backup Was Active Before Manually Failing Over

Assume two failover members called InterSystems IRIS A and InterSystems IRIS B. If the "MIRROR routine confirms
that the backup (InterSystems IRIS B) was active at the time contact with the primary (InterSystems IRIS A) was lost, and
therefore has the most recent journal data from InterSystems IRIS A, you can manually fail over using a single procedure.
When the connection was lost due to the primary failure, this poses no risk of data loss. However, when multiple failures
occur, it is possible that an active backup does not have all of the latest journal data from the primary because the primary
continued operating for some period after the connection was lost.

Determine whether the backup was active using this procedure:

1. Confirm that both the InterSystems IRIS instance and the ISCAgent on InterSystems IRIS A are actually down (and
ensure that they stays down during the entire manual failover procedure).

2. On InterSystems IRIS B, run the "MIRROR routine (see Using the "MIRROR Routine) in the %SYS namespace in
Terminal.

High Availability Guide 107

https://www.intersystems.com/support-learning/support/

Mirror Outage Procedures

3. Select Mirror Management from the main menu to display the following submenu:

1) Add mirrored database(s)

2) Remove mirrored database(s)

3) Activate or Catchup mirrored database(s)
4) Change No Failover State

5) Try to make this the primary

6) Connect to Mirror

7) Stop mirroring on this member

8) Modify Database Size Field(s)

9) Force this node to become the primary

10) Promote Async DR member to Failover member
11) Demote Backup member to Async DR member
12) Mark an inactive database as caught up

13) Manage mirror dejournaling on async member (disabled)
14) Pause dejournaling for database(s)

4. Select the Force this node to become the primary option. If the backup was active at the time contact was lost, a message
like the following is displayed:

This instance was an active backup member the last time it was
connected so if the primary has not done any work since that time,
this instance can take over without having to rebuild the mirror
when the primary reconnects. If the primary has done any work
beyond this point (file #98),

C:\InterSystems\My IRIS\mgr\journal\MIRROR-GFS-20180815.009
then the consequence of forcing this instance to become the primary is
that some operations may be lost and the other mirror member may need
to be rebuilt from a backup of this node before it can join as
a backup node again.
Do you want to continue? <No>

If you have access to the primary’s journal files, you can confirm that the cited file is the most recent before proceeding.

If the backup was not active at the time contact with the primary was lost, a message like the following is displayed:

Warning, this action can result in forcing this node to become
the primary when it does not have all of the journal data which
has been generated in the mirror. The consequence of this is that
some operations may be lost and the other mirror member may need
to be rebuilt from a backup of this node before it can join as

a backup node again.

Do you want to continue? <No>

6.2.3.3 Manual Failover To An Active Backup

If the Force this node to become the primary option of the “MIRROR routine confirms that the backup was active when
it lost its connection to the primary, complete the manual failover procedure as follows:

1. EnteryattheDo you want to continue? promptto continue with the procedure. The Force this node to become
the primary option waits 60 seconds for the mirror member to become the primary. If the operation does not successfully
complete within 60 seconds, “MIRROR reports that the operation may not have succeeded and instructs you to check
the messages log to determine whether the operation failed or is still in progress.

2. Once the "MIRROR routine confirms that the backup has become primary, restart InterSystems IRIS A when you
can do so. InterSystems IRIS A joins the mirror as backup when the InterSystems IRIS instance restarts.

6.2.3.4 Manual Failover When the Backup Is Not Active

Even when the *MIRROR routine does not confirm that the backup (InterSystems IRIS B) was active at the time it lost
its connection with the primary (InterSystems IRIS A), you can still continue the manual failover process using the following
procedure, but there is some risk of data loss if you do. This risk can be minimized by copying the most recent mirror
journal files from InterSystems IRIS A, if you have access to them, to InterSystems IRIS B before manual failover, as
described in this procedure.

108 High Availability Guide

Unplanned Outage Procedures

1. If you have access to the primary’s mirror journal files, copy the most recent files to InterSystems IRIS B, beginning
with the latest journal file on InterSystems IRIS B and including any later files from InterSystems IRIS A. For example,
if MIRROR-MIRRORA-20180220.001 is the latest file on InterSystems IRIS B, copy MIRROR-MIRRORA-20180220.001
and any later files from InterSystems IRIS A. Check the files’ permissions and ownership and change them if necessary
to match existing journal files.

2. If you accept the risk of data loss, confirm that you want to continue by entering y at the prompt; the backup becomes
primary. The Force this node to become the primary option waits 60 seconds for the mirror member to become the
primary. If the operation does not successfully complete within 60 seconds, "MIRROR reports that the operation may
not have succeeded and instructs you to check the messages log to determine whether the operation failed or is still in
progress.

3. Once the "MIRROR routine confirms that the backup has become primary, restart InterSystems IRIS A when you
can do so.

» If InterSystems IRIS A joins the mirror as backup when the InterSystems IRIS instance restarts, no further steps
are required. Any journal data that was on the failed member but not on the current primary has been discarded.

e If InterSystems IRIS A cannot join the mirror when the InterSystems IRIS instance restarts, as indicated by the
messages log message referring to inconsistent data described in Rebuilding a Mirror Member, the most recent
database changes on InterSystems IRIS A are later than the most recent journal data present on InterSystems IRIS
B when it was forced to become the primary. To resolve this, rebuild InterSystems IRIS A as described in that
section.

6.2.4 Unplanned Isolation of Primary Failover Member

As described in Automatic Failover Mechanics, when the primary simultaneously loses contact with both the backup and
the arbiter, it goes into an indefinite trouble state and can no longer operate as primary. Typically, when this occurs, the
backup takes over and becomes primary. When the primary’s connection to the backup is restored, the backup forces the
primary down; alternatively, you can force the primary down yourself before restoring the connection.

However, if a network event (or series of network events) causes the failover members and arbiter to all lose contact with
each other simultaneously (or nearly simultaneously), there can be no primary because the backup cannot take over and
the primary is no longer operating as primary. This situation is shown as the final scenario in the table Mirror Responses
to Lost Connections in Arbiter Mode in the section Automatic Failover Mechanics Detailed. A similar situation can occur
when the primary becomes isolated and the backup cannot take over because of an error.

When these circumstances occur, you have the following options:

» Restore the connection between the failover members; when the former primary is contacted by the former backup,
the members negotiate and one becomes primary, the other backup.

» Without restoring the connection, if you can open a Terminal window on the primary, do so and run the "MIRROR
routine (see Using the "MIRROR Routine) on the primary. The routine confirms that the primary instance is in an
indefinite trouble state, and gives you two options:

— If you confirm that the other failover member is down (possibly because you shut it down), that it never became
primary, and that it did not create a mirror journal file later than the latest one on the primary, you can force the
member to resume operation as primary. Once it has done so, and you restore the connection between the primary
and the backup, the backup resumes operation as backup.

— If you cannot confirm these conditions, you can shut the primary down. You can then manually fail over to the
backup using one of the procedures described in Unplanned Outage of Primary Failover Member When Automatic
Failover Does Not Occur.

High Availability Guide 109

Mirror Outage Procedures

» If you cannot open a Terminal window on the primary, but can confirm that the other failover member is down, that
it never became primary, and that it did not create a mirror journal file later than the latest one on the primary, you can
restart the primary InterSystems IRIS instance and force it to become primary using the Force this node to become the
primary option of the "MIRROR routine. Alternatively, if you cannot confirm these conditions, you can ensure that
the primary InterSystems IRIS instance is down and will stay down, then manually fail over to the backup using one
of the procedures described in Unplanned Outage of Primary Failover Member When Automatic Failover Does Not
Occur.

CAUTION: If you force the primary to resume operation as primary without confirming the listed conditions, you run
the risk of data loss or both failover members simultaneously acting as primary. If you are uncertain whether
this procedure is appropriate, contact the InterSystems Worldwide Response Center (WRC) for assistance.

6.2.5 Unplanned Outage of Both Failover Members

When both failover members unexpectedly fail, due the same event or different events, the appropriate procedures depends
on whether you can restart either or both of the failover members within the limits of your availability requirements. The
longer the mirror can be out of operation, the more options you are likely to have.

» Ifyou can restart both agents and at least one InterSystems IRIS instance, the failover members will negotiate with
each other and automatically select which of them is to act as primary, returning the mirror to operation with no risk
of data loss.

* If you know with certainty which of the failover members was the last primary and you can restart it, it will not auto-
matically become primary if it cannot communicate with the other failover member’s InterSystems IRIS instance or
agent (because they are down), but you can manually force it to become primary, with no risk of data loss, using the
Force this node to become the primary option of the "MIRROR routine (as described in Unplanned Outage of Primary
Failover Member Without Automatic Failover).

» If you can restart only one of the failover members but don’t know whether it was last primary, you can use the Force
this node to become the primary option of the "MIRROR routine to manually force it to become primary with some
risk of data loss.

CAUTION: If you force a backup that was not active to become the primary, some global update operations may
be lost, and the other mirror members may need to be rebuilt (as described in Rebuilding a Mirror
Member). If you are uncertain whether this procedure is appropriate, contact the InterSystems
Worldwide Response Center (WRC) for assistance.

« Ifyou cannot restart either of the failover members, proceed to Disaster Recovery Procedures.

6.3 Disaster Recovery Procedures

As described in Async Mirror Members, a disaster recovery (DR) async member maintains read-only copies of the mirrored
databases, making it possible for the DR async to be promoted to failover member should the need arise. The procedure
for promoting a DR async is described in Promoting a DR Async Member to Failover Member. This section discusses three
scenarios in which you can use DR async promaotion:

e Manual Failover to a Promoted DR Async During a Disaster
e Planned Failover to a Promoted DR Async

» Temporary Replacement of a Failover Member with a Promoted DR Async

110 High Availability Guide

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Disaster Recovery Procedures

In the procedures in this section, InterSystems IRIS A is the original primary failover member, interSystems IRIS B is the
original backup, and InterSystems IRIS C is the DR async to be promoted.

6.3.1 Manual Failover to a Promoted DR Async During a Disaster

When the mirror is left without a functioning failover member, you can manually fail over to a promoted DR async. The
following procedures covers scenarios under which this is an option:

* DR Promotion and Manual Failover with No Additional Journal Data
e DR Promotion and Manual Failover with Journal Data from Primary’s ISCAgent

* DR Promotion and Manual Failover with Journal Data from Journal Files

CAUTION: If you cannot confirm that the primary failover member InterSystems IRIS instance is really down, and
there is a possibility that the instance will become available, do not manually fail over to another mirror
member. If you do manually fail over and the original primary becomes available, both failover members
will be simultaneously acting as primary.

Note: When the primary InterSystems IRIS instance is in an indefinite trouble state due to isolation from both the backup
and the arbiter in arbiter controlled mode, as described in Automatic Failover Mechanics Detailed, you cannot
promote a DR async to failover member.

6.3.1.1 DR Promotion and Manual Failover with No Additional Journal Data

In a true disaster recovery scenario, in which the host systems of both failover members are down and their journal files
are inaccessible, you can promote the DR async member to primary without obtaining the most recent journal data from
the former primary. This is likely to result in some data loss. If the host systems of the failover members are accessible,
use one of the procedures in DR Promotion and Manual Failover with Journal Data from Primary’s ISCAgent or DR Pro-
motion and Manual Failover with Journal Data from Journal Files instead, as these allow the promoted DR async to obtain
the most recent journal data before becoming primary, minimizing the risk of data loss.

Once you have promoted a DR async that is not participating in the mirror VIP to primary, you must make any needed
changes to redirect users and applications to the new primary (see Redirecting Application Connections Following Failover
or Disaster Recovery) before completing the procedures provided in this section.

Note: A promoted DR async does not attempt to become primary unless all mirrored databases marked Mount Required
at Startup (see Edit a Local Database’s Properties) are mounted, activated, and caught up, and therefore ready for
use on becoming primary.

CAUTION: Promoting a DR async to primary without the most recent journal data from the former primary is likely
to result in the loss of some global update operations, and the other mirror members may need to be rebuilt
(as described in Rebuilding a Mirror Member). If you are uncertain whether this procedure is appropriate,
contact the InterSystems Worldwide Response Center (WRC) for assistance.

To promote a DR async (InterSystems IRIS C) to primary without obtaining the most recent journal data, do the following.

1. Promote InterSystems IRIS C to failover member without choosing a failover partner. InterSystems IRIS C becomes
the primary without any additional journal data.

2. When the host systems of the former failover members (InterSystems IRIS A and InterSystems IRIS B) become
operational, at earliest opportunity and before restarting InterSystems IRIS, set Val idatedMember=0 in the
[MirrorMember] section of the Configuration Parameter File for the InterSystems IRIS instance on each member
(see [MirrorMember]). This instructs the InterSystems IRIS instance to obtain its new role in the mirror from the pro-

High Availability Guide 111

https://www.intersystems.com/support-learning/support/

Mirror Outage Procedures

moted DR async, rather than reconnecting in its previous role. The promotion instructions note that this change is
required.

CAUTION: Failure to set ValidatedMember=0 may result in two mirror members simultaneously acting as
primary.

3. Restart InterSystems IRIS on each former failover member.

a. If the member joins the mirror as DR async when InterSystems IRIS restarts, no further steps are required. Any
journal data that was on the failed member but not on the current primary has been discarded.

b. If the member cannot join the mirror when InterSystems IRIS restarts, as indicated by the messages log message
referring to inconsistent data described in Rebuilding a Mirror Member, the most recent database changes on the
member are later than the most recent journal data present on InterSystems IRIS C when it became primary. To
resolve this, rebuild InterSystems IRIS A as described in that section.

4. After InterSystems IRIS A and InterSystems IRIS B have rejoined the mirror, you can use the procedures described
in Temporary Replacement of a Failover Member with a Promoted DR Async to return all of the members to their
former roles. If either InterSystems IRIS A or InterSystems IRIS B restarted as backup, start with a graceful shutdown
of InterSystems IRIS C when the backup is active to fail over to the backup; if InterSystems IRIS A and InterSystems
IRIS B both restarted as DR async, promote one of them to backup and then perform the graceful shutdown on Inter-
Systems IRIS C. Promote the other former failover member to backup, then restart InterSystems IRIS C as DR async.

6.3.1.2 DR Promotion and Manual Failover with Journal Data from Primary’s ISCAgent

If the host system of InterSystems IRIS A is running, but the InterSystems IRIS instance is not and cannot be restarted,
you can use the following procedure to update the promoted InterSystems IRIS C with the most recent journal data from
InterSystems IRIS A after promotion through InterSystems IRIS A’s ISCAgent.

1. Promote InterSystems IRIS C, choosing the InterSystems IRIS A as failover partner. InterSystems IRIS C is promoted
to failover member, obtains the most recent journal data from InterSystems IRIS A’s agent, and becomes primary.

2. Restart the InterSystems IRIS instance on InterSystems IRIS A, which rejoins the mirror as backup.

3. After InterSystems IRIS A has rejoined the mirror and become active, you can use the procedures described in Temporary
Replacement of a Failover Member with a Promoted DR Async to return all of the members to their former roles,
starting with a graceful shutdown of InterSystems IRIS C, followed by setting Val idatedMember=0 in the
[MirrorMember] section of the Configuration Parameter File for InterSystems IRIS B (see [MirrorMember]),
restarting InterSystems IRIS B as DR async, promoting InterSystems IRIS B to backup, and restarting InterSystems
IRIS C as DR async.

Note: If InterSystems IRIS A’s host system is down, but InterSystems IRIS B’s host system is up although its InterSystems
IRIS instance is not running, run the "MIRROR routine on InterSystems IRIS B as described in Manual Failover
To An Active Backup to determine whether InterSystems IRIS B was an active backup at the time of failure. If
s0, use the preceding procedure but select InterSystems IRIS B as failover partner during promotion, allowing
InterSystems IRIS C to obtain the most recent journal data from InterSystems IRIS B’s ISCAgent.

6.3.1.3 DR Promotion and Manual Failover with Journal Data from Journal Files

If the host systems of both InterSystems IRIS A and InterSystems IRIS B are down but you have access to InterSystems
IRIS A’s journal files, or InterSystems IRIS B’s journal files and messages log are available, you can update InterSystems
IRIS C with the most recent journal data from the primary before promotion, using the following procedure.

1. Update InterSystems IRIS C with the most recent journal files from InterSystems IRIS A or InterSystems IRIS B as
follows:

112 High Availability Guide

Disaster Recovery Procedures

» If InterSystems IRIS A’s journal files are available, copy the most recent mirror journal files from InterSystems
IRIS A to InterSystems IRIS C, beginning with the latest journal file on InterSystems IRIS C and including any
later files from InterSystems IRIS A. For example, if MIRROR-MIRRORA-20180220.001 is the latest file on
InterSystems IRIS C, copy MIRROR-MIRRORA-20180220.001 and any later files from InterSystems IRIS A.

« If InterSystems IRIS A’s journal files are not available but InterSystems IRIS B’s journal files and messages log
are available:

a. Confirm that InterSystems IRIS B was very likely caught up, as follows:

1. Confirmthat InterSystems IRIS B disconnected from InterSystems IRIS A at the same time as InterSystems
IRIS A and its agent became unavailable. You can check the time that InterSystems IRIS B disconnected
by searching for a message similar to the following in its messages.log file (see Monitoring InterSystems
IRIS Using the Management Portal):

MirrorClient: Primary AckDaemon failed to answer status request

2. Confirm that InterSystems IRIS B was an active backup at the time it disconnected by searching for a
message similar to the following in its messages.log file:

Failed to contact agent on former primary, can"t take over

CAUTION: A message like the following in the messages.log file indicates that InterSystems IRIS
B was not active when it disconnected:

nonactive Backup is down

Forcing a promoted DR async to become the primary when you cannot confirm that it
was caught up may result in its becoming primary without all the journal data that has
been generated by the mirror. As a result, some global update operations may be lost
and the other mirror members may need to be rebuilt from a backup. If you are uncertain
whether this procedure is appropriate, contact the InterSystems Worldwide Response
Center (WRC) for assistance.

b. If you can confirm that InterSystems IRIS B was active, copy the most recent mirror journal files from Inter-
Systems IRIS B to InterSystems IRIS C, beginning with the latest journal file on InterSystems IRIS C and
including any later files from InterSystems IRIS B. For example, if MIRROR-MIRRORA-20180220.001 is the
latest file on InterSystems IRIS C, copy MIRROR-MIRRORA-20180220.001 and any later files from InterSystems
IRIS C. Check the files” permissions and ownership and change them if necessary to match existing journal
files.

2. Promote InterSystems IRIS C to failover member without choosing a failover partner. InterSystems IRIS C becomes
the primary.

3. When the problems with InterSystems IRIS A and InterSystems IRIS B have been fixed, at earliest opportunity and
before restarting InterSystems IRIS, set Val idatedMember=0 in the [Mi rrorMember] section of the Configuration
Parameter File for the InterSystems IRIS instance on each member (see [MirrorMember]). The promotion instructions
note that this change is required. Once you have done this, restart InterSystems IRIS on each member, beginning with
InterSystems IRIS A (the member that was most recently the primary).

a. If the member joins the mirror as backup or DR async when InterSystems IRIS restarts, no further steps are
required. Any journal data that was on the failed member but not on the current primary has been discarded.

b. If the member cannot join the mirror when the InterSystems IRIS instance restarts, as indicated by the messages
log message referring to inconsistent data described in Rebuilding a Mirror Member, the most recent database
changes on the member are later than the most recent journal data present on InterSystems IRIS C when it became
the primary. To resolve this, rebuild the member as described in that section.

High Availability Guide 113

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Mirror Outage Procedures

4. Inmost cases, the DR async system is not a suitable permanent host for the primary failover member. After InterSystems
IRIS A and InterSystems IRIS B have rejoined the mirror, use the procedures described in Temporary Replacement
of a Failover Member with a Promoted DR Async to return all of the members to their former roles. If either InterSystems
IRIS A or InterSystems IRIS B restarted as backup, start with a graceful shutdown of InterSystems IRIS C when the
backup is active to fail over to the backup; if InterSystems IRIS A or InterSystems IRIS B both restarted as DR async,
promote one of them to backup and then perform the graceful shutdown on InterSystems IRIS C. Promote the other
former failover member to backup, then restart InterSystems IRIS C as DR async.

6.3.2 Planned Failover to a Promoted DR Async

If you have included one or more DR asyncs in a mirror to provide disaster recovery capability, it is a good idea to regularly
test this capability through a planned failover to each DR async. To perform this test, or when you want to fail over to a
DR async for any other reason (such as a planned power outage in the data center containing the failover members), use
the following procedure:

1. Promote InterSystems IRIS C to failover member; because InterSystems IRIS A is available, you are not asked to
choose a failover partner. InterSystems IRIS C becomes backup and InterSystems IRIS B (if it exists) is demoted to
DR async.

Note: If the mirror contains only one failover member to start with, the procedure is the same; you are not asked
to choose a failover partner, and InterSystems IRIS C becomes backup, so that the mirror now has two failover
members.

2. When InterSystems IRIS C becomes active (see Backup Status and Automatic Failover), perform a graceful shutdown
on InterSystems IRIS A. Automatic failover is triggered, allowing InterSystems IRIS C to take over as primary.

3. Afterany testing you might want to perform on InterSystems IRIS C, restart InterSystems IRIS A, which automatically
joins the mirror as backup.

Alternatively, if you want to restart the primary to keep it synchronized without it automatically becoming backup,
since in a real disaster it is not likely to be available, you can demote it to DR async (through its ISCAgent) before
restarting it, and then later promote it to failover member when you are ready. For information on doing this, see
Demoting the Backup to DR Async.

4. When InterSystems IRIS A becomes active as backup, perform a graceful shutdown on InterSystems IRIS C to fail
over to InterSystems IRIS A.

5. Promote InterSystems IRIS B (if it exists) to failover member; it becomes backup.

6. Restart the InterSystems IRIS instance on InterSystems IRIS C, which automatically joins the mirror in its original
role as DR async.

A DR async that does not have network access to the mirror private addresses of the failover members, as described in
Sample Mirroring Architecture and Network Configurations, can be promoted only to function as primary, and this should
be done only when no other failover member is in operation. When this is the case, therefore, the preceding procedure is
not appropriate. Instead, follow this procedure:

1. Perform a graceful shutdown on InterSystems IRIS B, if it exists, so that only InterSystems IRIS A is functioning as
failover member (primary).

2. When InterSystems IRIS C is caught up (see Mirror Member Journal Transfer and Dejournaling Status), perform a
graceful shutdown on InterSystems IRIS A.

3. Promote InterSystems IRIS C to primary, as described in DR Promotion and Manual Failover with Journal Data from
Primary’s ISCAgent. The new primary contacts former primary’s ISCAgent to confirm that it has the most recent
journal data during this procedure.

114 High Availability Guide

Disaster Recovery Procedures

After any testing you might want to perform on InterSystems IRIS C, shut it down.
Restart InterSystems IRIS A; it automatically becomes primary.
Restart InterSystems IRIS B (if it exists); due to InterSystems IRIS C’s promotion, it joins as DR async.

Promote InterSystems IRIS B to backup.

© N o o

Restart InterSystems IRIS C, which automatically joins the mirror in its original role as DR async.

Note: In both of the procedures in this section, if InterSystems IRIS B does not exist, that is, the mirror consists of primary
and asyncs only, InterSystems IRIS C when restarted becomes backup. Demote it to DR async as described in
Maintenance of Backup Failover Member.

6.3.3Temporary Replacement of a Failover Member with a Promoted DR Async

Some of the procedures described in Planned Outage Procedures and Unplanned Outage Procedures involve temporary
operation of the mirror with only one failover member. While it is not necessary to maintain a running backup failover
member at all times, it does protect you from interruptions to database access and potential data loss should a primary
failure occur. For this reason, when only the primary is available due to planned or unplanned failover member outage, you
can consider temporarily promoting a DR async member to backup failover member. Before doing so, however, consider
the following:

» Ifthe DR async is in a separate data center at significant distance from the failover members, there may be substantial
network latency between them. When a DR member is promoted and becomes an active failover member, this round-
trip latency becomes part of the synchronous data replication between the primary and the backup (see Mirror Synchro-
nization) and can negatively affect the performance of applications accessing the mirror (see Network Latency Consid-
erations).

« Ifthe DR async does not have network access to the mirror private addresses of the failover members, as described in
Sample Mirroring Architecture and Network Configurations, it cannot be used in these procedures, as it can be promoted
only to function as primary, and this should be done only when no failover member is in operation.

» If the mirror uses a VIP for automatic redirection of users and applications (see Redirecting Application Connections
Following Failover or Disaster Recovery) and the DR async cannot acquire the mirror VIP because it is on a different
subnet, these procedures typically should not be used.

Note: Before using this option, review the discussion of failover partner selection and the requirement to set
Val idatedMember=0 on former failover members whose agent cannot be contacted at the time of promotion
in Promoting a DR Async Member to Failover Member.

If you need to perform planned maintenance on InterSystems IRIS B, the current backup failover member (see Maintenance
of Backup Failover Member), you can do the following:

1. Promote InterSystems IRIS C, a DR async that is caught up (see Mirror Member Journal Transfer and Dejournaling
Status). InterSystems IRIS C automatically becomes backup, and InterSystems IRIS B is demoted to DR async.

2. Shut down InterSystems IRIS B’s InterSystems IRIS instance or host system and complete the planned maintenance.
3. Restart InterSystems IRIS B, which joins the mirror as DR async.
4. When InterSystems IRIS B is caught up, promote it to failover member, returning it to its original role as backup.

InterSystems IRIS C is automatically demoted to DR async, its original role.

If you need to perform planned maintenance on InterSystems IRIS A, the current primary failover member (See Maintenance
of Primary Failover Member), you can do the following:

High Availability Guide 115

Mirror Outage Procedures

1. When InterSystems IRIS B is active (see Mirror Synchronization), perform a graceful shutdown on InterSystems IRIS
A. Automatic failover is triggered, allowing InterSystems IRIS B to take over as primary.

Promote InterSystems IRIS C, a DR async that is caught up. InterSystems IRIS C automatically becomes backup.
Complete the planned maintenance on InterSystems IRIS A, shutting down and restarting the host system if required.

Restart the InterSystems IRIS instance on InterSystems IRIS A, which joins the mirror as DR async.

a w DN

When InterSystems IRIS A is caught up, promote it to failover member; it becomes backup, and InterSystems IRIS C
is automatically demoted, returning it to its original role.

6. When InterSystems IRIS A becomes active, perform a graceful shutdown on InterSystems IRIS B. Automatic failover
is triggered, returning InterSystems IRIS A to its original role.

7. Restart the InterSystems IRIS instance on InterSystems IRIS B, which joins the mirror in its original role.

If you have had an unplanned outage of InterSystems IRIS B, or automatically or manually failed over to InterSystems IRIS
B due to an unplanned outage of InterSystems IRIS A (see Unplanned Outage Procedures), you can do the following:

1. Promote InterSystems IRIS C, a DR async that is caught up. InterSystems IRIS C automatically becomes backup.

2. Restart the failed failover member. If the failed member’s ISCAgent could not be contacted when the DR async was
promoted, you must at earliest opportunity and before restarting InterSystems IRIS set Val idatedMember=0 in the
[MirrorMember] section of the Configuration Parameter File for the InterSystems IRIS instance (see [MirrorMember]).
The promotion instructions note that this change is required. When you restart the former failover member’s InterSystems
IRIS instance, it joins the mirror as DR async.

3. When the restarted failover member is caught up, promote it to failover member; it becomes backup, and InterSystems
IRIS C is automatically demoted to DR async, its original role.

4. If you want the failover members to exchange their current roles, when the backup becomes active perform a graceful
shutdown on the current primary, triggering automatic failover. Restart the other failover member; it joins the mirror
as backup.

116 High Availability Guide

	Table of Contents
	1 Failover Strategies for High Availability
	1.1 No Failover Strategy
	1.2 Failover Cluster
	1.3 Virtualization HA
	1.4 InterSystems IRIS Mirroring
	1.5 Using Distributed Caching with a Failover Strategy

	2 Mirroring Overview
	3 Mirroring Architecture and Planning
	3.1 Mirror Components
	3.1.1 Failover Mirror Members
	3.1.2 Async Mirror Members
	3.1.3 ISCAgent
	3.1.4 Arbiter

	3.2 Mirror Synchronization
	3.3 Automatic Failover Mechanics
	3.3.1 Requirements for Safe Automatic Failover
	3.3.2 Automatic Failover Rules
	3.3.3 Mirror Response to Various Outage Scenarios
	3.3.4 Locating the Arbiter to Optimize Mirror Availability
	3.3.5 Automatic Failover Mechanics Detailed

	3.4 Preventing Automatic Failover
	3.5 Mirroring Communication
	3.5.1 Network Configuration Considerations
	3.5.2 Network Latency Considerations
	3.5.3 Mirror Traffic Compression
	3.5.4 Mirror Member Network Addresses

	3.6 Sample Mirroring Architecture and Network Configurations
	3.6.1 Mirroring Configurations within a Single Data Center, Computer Room, or Campus
	3.6.2 Mirroring Configurations For Dual Data Centers and Geographically Separated Disaster Recovery

	3.7 Redirecting Application Connections Following Failover or Disaster Recovery
	3.7.1 Built-in Mechanisms
	3.7.2 External Technologies
	3.7.3 Planning a Mirror Virtual IP (VIP)

	3.8 Mirroring in a Virtualized Environment
	3.9 Mirroring in a Cloud Environment
	3.10 Limiting Access to the Backup Failover Member
	3.11 Installing Multiple Mirror Members on a Single Host

	4 Configuring Mirroring
	4.1 Automated Deployment Methods for Mirrors
	4.1.1 Deploy Mirrors Using InterSystems Cloud Manager (ICM)
	4.1.2 Deploy Mirrors Using the InterSystems Kubernetes Operator (IKO)
	4.1.3 Deploy Mirrors Using Configuration Merge

	4.2 Mirror Configuration Guidelines
	4.3 Installing the Arbiter
	4.4 Starting the ISCAgent
	4.5 Securing Mirror Communication with TLS Security
	4.6 Using the ^MIRROR Routine
	4.7 Creating a Mirror
	4.7.1 Create a Mirror and Configure the First Failover Member
	4.7.2 Configure the Second Failover Member
	4.7.3 Authorize the Second Failover Member or Async (TLS Mirrors Only)
	4.7.4 Review Failover Member Status in the Mirror Monitor
	4.7.5 Configure Async Mirror Members

	4.8 Adding Databases to a Mirror
	4.8.1 Mirrored Database Considerations
	4.8.2 Create a Mirrored Database
	4.8.3 Add an Existing Database to the Mirror
	4.8.4 Activating and Catching Up Mirrored Databases

	4.9 Removing (Deleting) a Mirror
	4.10 Editing or Removing Mirror Members
	4.10.1 Clearing the FailoverDB Flag on Reporting Async Mirror Members
	4.10.2 Removing the Mirrored Database Attribute When Removing a Mirror Member
	4.10.3 Editing or Removing an Async Member
	4.10.4 Editing or Removing a Failover Member
	4.10.5 Remove Mirrored Databases from a Mirror

	4.11 Using Managed Key Encryption in a Mirror
	4.11.1 Encrypting Mirrored Databases
	4.11.2 Activating Journal Encryption in a Mirror

	4.12 Configuring Application Server Connections to a Mirror
	4.13 Configuring a Mirror Virtual IP (VIP)
	4.13.1 Configuring InterSystems IRIS for a Mirror VIP
	4.13.2 Configuring a Mirror VIP

	4.14 Configuring the ISCAgent
	4.14.1 Starting and Stopping the ISCAgent
	4.14.2 Customizing the ISCAgent

	4.15 Configuring the Quality of Service (QoS) Timeout Setting
	4.16 Configuring Parallel Dejournaling
	4.17 Using the ^ZMIRROR Routine
	4.18 Configuring Mirroring for Healthcare Products

	5 Managing Mirroring
	5.1 Monitoring Mirrors
	5.1.1 Using the Mirror Monitor
	5.1.2 Using the ^MIRROR Status Monitor
	5.1.3 Monitoring Mirroring Communication Processes

	5.2 Updating Mirror Member Network Addresses
	5.3 Resolving Network Address Validation Errors
	5.4 Authorizing X.509 DN Updates (TLS Only)
	5.5 Promoting a DR Async Member to Failover Member
	5.6 Demoting the Backup to DR Async
	5.7 Rebuilding a Mirror Member
	5.8 Stopping Mirroring on Backup and Async Members
	5.9 Managing Database Dejournaling
	5.9.1 Managing Dejournaling on the Backup or a DR Async
	5.9.2 Managing Dejournaling on a Reporting Async
	5.9.3 Using a Dejournal Filter on a Reporting Async

	5.10 General Mirroring Considerations
	5.10.1 Mirror APIs
	5.10.2 External Backup of Primary Failover Member
	5.10.3 Upgrading InterSystems IRIS on Mirror Members

	5.11 Database Considerations for Mirroring
	5.11.1 InterSystems IRIS Instance Compatibility
	5.11.2 Member Endianness Considerations
	5.11.3 Creating a Mirrored Database Using the ^DATABASE Routine
	5.11.4 Recreating an Existing Mirrored Database Using the ^DATABASE Routine
	5.11.5 Mounting/Dismounting Mirrored Databases
	5.11.6 Copying Mirrored Databases to Nonmirrored Systems

	5.12 Production Considerations for Mirroring
	5.12.1 How InterSystems IRIS Handles Interoperability-Enabled Namespaces with Mirrored Data
	5.12.2 Recommended Mirroring Configuration for InterSystems IRIS Productions
	5.12.3 How Production Autostart Works in a Mirrored Environment

	5.13 Mirroring Considerations for Healthcare Products

	6 Mirror Outage Procedures
	6.1 Planned Outage Procedures
	6.1.1 Maintenance of Backup Failover Member
	6.1.2 Maintenance of Primary Failover Member
	6.1.3 Avoiding Unwanted Failover During Maintenance of Failover Members
	6.1.4 Upgrade of InterSystems IRIS Instances in a Mirror

	6.2 Unplanned Outage Procedures
	6.2.1 Unplanned Outage of Backup Failover Member
	6.2.2 Unplanned Outage of Primary Failover Member With Automatic Failover
	6.2.3 Unplanned Outage of Primary Failover Member When Automatic Failover Does Not Occur
	6.2.4 Unplanned Isolation of Primary Failover Member
	6.2.5 Unplanned Outage of Both Failover Members

	6.3 Disaster Recovery Procedures
	6.3.1 Manual Failover to a Promoted DR Async During a Disaster
	6.3.2 Planned Failover to a Promoted DR Async
	6.3.3 Temporary Replacement of a Failover Member with a Promoted DR Async

	Index

