
Running InterSystems Products
in Containers

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Running InterSystems Products in Containers
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Running InterSystems Products in Containers... 1

1 Why Containers? ... 1
2 The Docker Container Platform .. 2
3 InterSystems IRIS in Containers ... 2
4 Container Basics .. 3

4.1 Container Contents .. 3
4.2 The Container Image ... 4
4.3 Running a Container ... 4

5 Using InterSystems IRIS Containers ... 5
5.1 Automated Deployment of InterSystems IRIS Containers ... 5
5.2 Using InterSystems IRIS Images ... 6
5.3 The iris-main Program .. 14
5.4 Durable %SYS for Persistent Instance Data ... 16
5.5 Web Access Using the Web Gateway Container ... 21
5.6 Running InterSystems IRIS Containers .. 29
5.7 Upgrading InterSystems IRIS Containers ... 33
5.8 Creating InterSystems IRIS Images .. 35
5.9 InterSystems IRIS Containerization Tools .. 36

6 Additional Docker/InterSystems IRIS Considerations .. 38
6.1 Locating Image Storage on a Separate Partition ... 38
6.2 Accessing Endpoints Elsewhere on the Host from Within a Container 39
6.3 Docker Bridge Network IP Address Range Conflict .. 39

List of Figures
Figure 1: File System Objects Cloned by Durable %SYS ... 20
Figure 2: A single Web Gateway container directs application connections and Management Portal
requests to multiple InterSystems IRIS containers .. 22
Figure 3: An application Web Gateway container for application requests and dedicated Web Gateway
containers for Management Portal requests ... 23
Figure 4: Containerized distributed cache cluster with application connections directed differentially
and dedicated Web Gateways .. 25

List of Tables
Table 1: Installation Parameters Required as Environment Variables for Containerization 37

Running InterSystems Products in Containers iii

Running InterSystems Products in
Containers

This document explains the benefits of deploying software using containers and provides the information you need to
deploy InterSystems IRIS® and InterSystems IRIS-based applications in containers, using the images provided by Inter-
Systems.

To learn how to quickly get started running an InterSystems IRIS container, including downloading the needed image, see
InterSystems IRIS Basics: Run an InterSystems IRIS Container; for a quick, online hands-on exercise, see Deploying and
Customizing InterSystems IRIS Containers.

You can get a container image for InterSystems IRIS Community Edition, which comes with a free temporary license, from
the InterSystems Container Registry or Docker Hub; for more information, see Deploying InterSystems IRIS Community
Edition on Your Own System.

1 Why Containers?
Containers package applications into platform-independent, fully portable runtime solutions, with all dependencies satisfied
and isolated, and thereby bring the following benefits:

• Containers cleanly partition code and data, providing full separation of concerns and allowing applications to be easily
deployed and upgraded.

• Containers are very efficient; an application within a container is packaged with only the elements needed to run it and
make it accessible to the required connections, services, and interfaces, and the container runs as a single operating
system process that requires no more resources than any other executable.

• Containers support clean movement of an application between environments — for example, from development to test
and then to production — thereby reducing the conflicts typical of departments with different objectives building in
separate environments. Developers can focus on the latest code and libraries, quality developers on testing and defect
description, and operations engineers on the overall solution infrastructure including networking, high availability,
data durability, and so on.

• Containers provide the agility, flexibility, and repeatability needed to revolutionize the way many organizations respond
to business and technology needs. Containers clearly separate the application provisioning process, including the build
phase, from the run process, supporting a DevOps approach and allowing an organization to adopt a uniform more
agile delivery methodology and architecture (microservices).

These advantages make containers a natural building block for applications, promoting application delivery and deployment
approaches that are simpler, faster, more repeatable, and more robust.

For an introduction to containers and container images from an InterSystems product manager, see What is a Container?
and What is a Container Image? on InterSystems Developer Community.

Running InterSystems Products in Containers 1

https://learning.intersystems.com/course/view.php?name=DeployingCustomizingContainers
https://learning.intersystems.com/course/view.php?name=DeployingCustomizingContainers
https://community.intersystems.com/post/container-what-container
https://community.intersystems.com/post/container-what-container-image

2 The Docker Container Platform
Docker containers, specifically, are ubiquitous; they can be found in public and private clouds and are supported on virtual
machines (VMs) and bare metal. Docker has penetrated to the extent that all major public cloud "infrastructure as a service"
(IaaS) providers support specific container services for the benefit of organizations reducing system administration costs
by using Docker containers and letting the cloud provider handle the infrastructure.

InterSystems has been supporting InterSystems IRIS in Docker containers for some time and is committed to enabling its
customers to take advantage of this innovative technology.

For technical information and to learn about Docker technology step-by-step from the beginning, please see the Docker
documentation site.

3 InterSystems IRIS in Containers
Because a container packages only the elements needed to run a containerized application and executes the application
natively, it provides standard, well-understood application configuration, behavior, and access. If you are experienced with
InterSystems IRIS running on Linux, it doesn’t matter what physical, virtual, or cloud system and distribution your Linux-
based InterSystems IRIS container is running on; you interact with it in the same way regardless, just as you would with
traditional InterSystems IRIS instances running on different Linux systems.

For detailed information about deploying and using InterSystems IRIS in containers, see Using InterSystems IRIS Containers.
Some notable features of containerized InterSystems IRIS are briefly described in the following:

• InterSystems-provided images — A container image is the executable package, while a container is a runtime instance
of an image. InterSystems provides a range of images containing a fully-installed instance of InterSystems IRIS, as
described in Using InterSystems IRIS Images; this includes images for InterSystems IRIS with IntegratedML and
InterSystems IRIS for Health, as well as free Community Edition instances. You can also use an InterSystems IRIS
image from InterSystems as the basis for an image containing your InterSystems IRIS-based application; for more
information, see Creating InterSystems IRIS Images.

• Secure containers — All InterSystems IRIS images contain a nonroot instance, which means that it was installed by
user irisowner, which does not have root privileges and holds all ownership; nothing is therefore owned by root,
or owned or run as any user but irisowner. When deploying InterSystems IRIS under the strictest security, you can
use a locked down image to deploy a containerized instance that in addition to being nonroot was installed with Locked
Down security. For more information, see Security for InterSystems IRIS Containers.

• The iris-main program — The iris-main program enables InterSystems IRIS and other products to satisfy the require-
ments of applications running in containers. The entrypoint application, the main process started when a container is
started, is required to block (that is, wait) until its work is complete, but the command starting InterSystems IRIS does
not run as a blocking process. The iris-main program solves this by starting InterSystems IRIS and then continuing
to run as the blocking entrypoint application. The program also offers a number of options to help tailor the behavior
of InterSystems IRIS within a container. For more information about iris-main, see The iris-main Program.

• The durable %SYS feature — Because a containerized application is isolated from the host environment, it does not
write persistent data; whatever it writes inside the container is lost when the container is removed and replaced by a
new container. Therefore, an important aspect of containerized application deployment is arranging for data to be
stored outside of the container and made available to other and future containers.

The durable %SYS features enables persistent storage of instance-specific data — such as user definitions, audit records,
and the log, journal, and WIJ files — when InterSystems IRIS is run in a container, allowing a single instance to run
sequentially in multiple containers over time. For example, if you run an InterSystems IRIS container using durable

2 Running InterSystems Products in Containers

The Docker Container Platform

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/

%SYS, you can upgrade the instance by stopping the original container and running a new one that uses the instance-
specific data created by the old one. For information about upgrading, see Upgrading InterSystems IRIS Containers;
for detailed information on durable %SYS, see Durable %SYS for Persistent Instance Data.

• Container image catalog — In addition to InterSystems IRIS images, InterSystems provides the following associated
images:

– webgateway — Deploys both the InterSystems Web Gateway and a web server, providing a web server component
for containerized deployments of InterSystems IRIS-based applications; for more information, see Web Access
Using the Web Gateway Container.

– arbiter — Deploys an arbiter node as part of mirrored deployments; for more information, see Mirroring with
InterSystems IRIS Containers.

– iris-operator — Deploys the InterSystems Kubernetes Operator (IKO), which extends the open-source
Kubernetes container orchestration engine with a custom resource called IrisCluster, representing an InterSystems
IRIS sharded cluster, distributed cache cluster, or standalone instance.

– iam — Deploys InterSystems API Manager (IAM).

– sam — Deploys InterSystems System Alerting and Monitoring (SAM).

– iscreports_server — Deploys InterSystems Reports Server.

– passwordhash — Converts a plain-text password to the hashed version, with salt, required to use the InterSystems
IRIS PasswordHash configuration parameter; for more information, see Authentication and Passwords.

For a description of the InterSystems Container Registry and information about listing and downloading the images it
contains, see Using the InterSystems Container Registry.

4 Container Basics
This section covers the important basic elements of creating and using Docker containers.

• Container Contents

• The Container Image

• Running a Container

4.1 Container Contents

In essence, a Docker container runs a single primary process, which can spawn child processes; anything that can be managed
by a single blocking process (one that waits until its work is complete) can be packaged and run in a container.

A containerized application, while remaining wholly within the container, does not run fully on the operating system (OS)
on which the container is running, nor does the container hold an entire operating system for the application to run on.
Instead, an application in a container runs natively on the kernel of the host system, while the container provides only the
elements needed to run it and make it accessible to the required connections, services, and interfaces — a runtime environment
(including file system), the code, libraries, environment variables, and configuration files.

Because it packages only these elements and executes the application natively, a container is both very efficient (running
as a discrete, manageable operating system process that takes no more memory than any other executable) and fully portable
(remaining completely isolated from the host environment by default, accessing local files and ports only if configured to
do so), while at the same time providing standard, well-understood application configuration, behavior, and access.

Running InterSystems Products in Containers 3

Container Basics

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_iko
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_apimgr
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_sam
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=GISR_server
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_containerregistry

The isolation of the application from the host environment is a very important element of containerization, with many sig-
nificant implications. Perhaps most important of these is the fact that unless specifically configured to do so, a containerized
application does not write persistent data, because whatever it writes inside the container is lost when the container is
removed and replaced by a new container. Because data persistence is usually a requirement for applications, arranging for
data to be stored outside of the container and made available to other and future containers is an important aspect of con-
tainerized application deployment.

4.2 The Container Image

A container image is the executable package, while a container is a runtime instance of an image — that is, what the image
becomes in memory when actually executed. In this sense an image and a container are like any other software that exists
in executable form; the image is the executable and the container is the running software that results from executing the
image.

A Docker image is defined in a Dockerfile, which begins with a base image providing the runtime environment for whatever
is to be executed in the container. For example, InterSystems uses the Ubuntu operating system as a base for its InterSystems
IRIS images, so the InterSystems IRIS instance in a container created from an InterSystems image is running in an Ubuntu
environment. Next come specifications for everything needed to prepare for execution of the application — for example,
copying or downloading files, setting environment variables, and installing the application. The final step is to define the
launch of the application.

The image is created by issuing a docker build command specifying the Dockerfile’s location. The resulting image is
placed in the image registry of the local host, from which it can be copied to other image registries.

4.3 Running a Container

To execute a container image and create the container — that is, the image instance in memory and the kernel process that
runs it — you must execute three separate Docker commands, as follows:

1. docker pull — Downloads the image from the registry.

2. docker create — Defines the container instance and its parameters.

3. docker start — Starts (launches) the container.

For convenience, however, the docker run command combines these commands, which it executes in sequence, and is the
typical means of creating and starting a container.

The docker run command has a number of options, and it is important to remember that the command that creates the
container instance defines its characteristics for its operational lifetime; while a running container can be stopped and then
restarted (not a typical practice in production environments), the aspects of its execution determined by the docker run
command cannot be changed. For instance, a storage location can be mounted as a volume within the container with an
option in the docker run command (for example, --volume /home/storage:/storage3), but the volumes mounted in this
fashion in the command are fixed for that instantiation of the image; they cannot be modified or added to.

When a containerized application is modified — for example, it is upgraded, or components are added — the existing
container is removed, and a new container is created and started by instantiating a different image with the docker run
command. The new container itself has no association with the previous container, but if the command creating and starting
it publishes the same ports, connects to the same network, and mounts the same external storage locations, it effectively
replaces the previous container. (For information about upgrading InterSystems IRIS containers, see Upgrading InterSystems
IRIS Containers.)

CAUTION: A container’s host machine must satisfy the minimum supported CPU requirement for InterSystems
products. If the host machine does not meet this requirement, the InterSystems IRIS container does not
start.

4 Running InterSystems Products in Containers

Container Basics

Important: InterSystems does not support mounting NFS locations as external volumes in InterSystems IRIS containers,
and iris-main issues a warning when you attempt to do so.

Note: As with other UNIX® and Linux commands, options to docker commands such as docker run can be specified
in their long forms, in which case they are preceded by two hyphens, or their short form, preceded by one. In this
document, the long forms are used throughout for clarity, for example --volume rather than -v.

5 Using InterSystems IRIS Containers
This section describes what you need to do to run InterSystems IRIS containers using InterSystems images or images you
have created, including the following topics:

• Automated Deployment of InterSystems IRIS Containers

• Using InterSystems IRIS Images

• The iris-main Program

• Durable %SYS for Persistent Instance Data

• Web Access Using the Web Gateway Container

• Running InterSystems IRIS Containers

• Upgrading InterSystems IRIS Containers

• Creating InterSystems IRIS Images

• InterSystems IRIS Containerization Tools

5.1 Automated Deployment of InterSystems IRIS Containers

Containers lend themselves to automated deployment in many ways. InterSystems IRIS data platform provides two methods
for automated deployment of multicontainer topologies (such as sharded clusters, distributed cache clusters, and mirrors)
that are fully operational following deployment. Advanced methods include the following:

• The InterSystems Kubernetes Operator

Kubernetes is an open-source orchestration engine for automating deployment, scaling, and management of containerized
workloads and services. You define the containerized services you want to deploy and the policies you want them to
be governed by; Kubernetes transparently provides the needed resources in the most efficient way possible, repairs or
restores the deployment when it deviates from spec, and scales automatically or on demand. The InterSystems
Kubernetes Operator (IKO) extends the Kubernetes API with the IrisCluster custom resource, which can be deployed
as an InterSystems IRIS sharded cluster, distributed cache cluster, or standalone instance (all optionally mirrored) on
any Kubernetes platform. The IKO also adds InterSystems IRIS-specific cluster management capabilities to Kubernetes,
enabling automation of tasks like adding nodes to a cluster, which you would otherwise have to do manually by inter-
acting directly with the instances.

For more information on using the IKO, see Using the InterSystems Kubernetes Operator.

• Configuration merge

The configuration merge feature, available on Linux and UNIX® systems, lets you vary the configurations of InterSys-
tems IRIS containers deployed from the same image (or local instances installed from the same kit) by simply applying
the desired declarative configuration merge file to each instance in the deployment.

Running InterSystems Products in Containers 5

Using InterSystems IRIS Containers

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO

This merge file, which can also be applied to an existing instance, updates an instance’s configuration parameter file
(CPF), which contains most of its configuration settings; these settings are read from the CPF at every startup,
including the first one after an instance is deployed. When you apply configuration merge during deployment, you in
effect replace the default CPF provided with the instance with your own updated version. This enables you to deploy
containers with varying configurations from the same image, or install differently-configured instances from the same
kit, directly into a multi-instance topology, rather than having to configure the instances into the desired topology after
deployment. For example, in automated containerized deployment of a sharded cluster with compute nodes, you can
apply different merge files for data node 1, the remaining data nodes, and the compute nodes in that order; when all
of the instances are up and running, so is the sharded cluster. In similar fashion, when deploying a mirror, you would
apply different configuration merge files for the primary, backup, and async members. Even a mirrored sharded cluster
is easily deployed using this approach.

The IKO, described in the preceding sections, incorporates the configuration merge feature.

For information about using configuration merge, including examples of use cases for automated deployment using
configuration merge, see Automating Configuration of InterSystems IRIS with Configuration Merge.

Important: When a container is deployed with configuration merge using the ISC_CPF_MERGE_FILE environment
variable to specify the merge file, that file is continuously monitored for updates, which are immediately
merged when they occur, as long as the container is running. This means that you can update the
configuration of a containerized instance at any time simply by updating the merge file. For more
information, see How do I reconfigure an existing instance using configuration merge? in Automating
Configuration of InterSystems IRIS with Configuration Merge.

5.2 Using InterSystems IRIS Images

The following sections cover several important issues concerning the use of InterSystems IRIS images provided by Inter-
Systems, including:

• Container Deployment Platforms Supported by InterSystems

• Installing Docker

• Downloading the InterSystems IRIS Image

• Discovering Defaults in InterSystems Images

• License Keys for InterSystems IRIS Containers

• Security for InterSystems IRIS Containers

• Mirroring with InterSystems IRIS Containers

5.2.1 Container Deployment Platforms Supported by InterSystems

Container images from InterSystems comply with the Open Container Initiative (OCI) specification and are therefore sup-
ported on any OCI-compliant runtime engine on Linux-based operating systems, both on premises and in public clouds.

6 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://opencontainers.org/

Note: The specific instructions and procedures in this document are intended to be used with Docker on Linux. Rather
than executing containers as native processes, as on Linux platforms, Docker Desktop (for Windows and macOS)
creates Linux VMs, running under the respective platform virtualizers, to host containers. These additional layers
add complexity that prevents InterSystems from supporting Docker Desktop at this time.

We understand, however, that for testing and other specific purposes, you may want to run InterSystems IRIS-
based containers from InterSystems on Windows or macOS. For information about the differences between Docker
for Windows and Docker for Linux that InterSystems is aware of as they apply to working with InterSystems-
provided container images, see Using InterSystems IRIS Containers with Docker for Windows on InterSystems
Developer Community; for general information about using Docker for Windows, see Getting started with Docker
for Windows in the Docker documentation.

5.2.2 Installing the Container Runtime Engine

Install the container runtime engine(s) on which you intend to deploy InterSystems containers, such as Docker or Podman,
on your servers.

5.2.3 Downloading the InterSystems IRIS Image

The InterSystems Container Registry (ICR) at https://containers.intersystems.com/ includes repositories for all images
available from InterSystems, including InterSystems IRIS images. Using the InterSystems Container Registry describes
the images available from the ICR and explains how to use your WRC credentials to authenticate to the registry so you can
download them.

Note: You can also download an InterSystems IRIS Community Edition image, which comes with a free built-in 13-
month license (as well as some limitations), from the ICR without authenticating. The Community Edition image
is also available on Docker Hub. For more information, see Deploying InterSystems IRIS Community Edition
on Your Own System in Deploy and Explore InterSystems IRIS.

Your organization may already have an InterSystems IRIS image available for your use in its own private image registry;
if so, obtain the location and the credentials needed to authenticate from the responsible administrator. Once you are logged
in to either the ICR or your organization’s registry, you can use the docker pull command to download the image; the
following example shows a pull from the ICR.

$ docker login containers.intersystems.com
Username: pmartinez
Password: **********
$ docker pull containers.intersystems.com/intersystems/iris:latest-em
5c939e3a4d10: Pull complete
c63719cdbe7a: Pull complete
19a861ea6baf: Pull complete
651c9d2d6c4f: Pull complete
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
containers.intersystems.com/intersystems/iris 2023.2.0.299.0 15627fb5cb76 1 minute ago 1.39GB
containers.intersystems.com/intersystems/sam 1.0.0.115 15627fb5cb76 3 days ago 1.33GB
acme/centos 7.3.1611 262f7381844c 2 weeks ago 192MB
acme/hello-world latest 05a3bd381fc2 2 months ag 1.84kB

Note: The image tags shown in this document are examples only. Please go to the InterSystems Container Registry
(ICR) to browse current repositories and tags.

5.2.4 Discovering Defaults in InterSystems Images

Default values in InterSystems containers are exposed through the standard label mechanism so that needed information
can be discovered using the docker inspect command, as shown in the following example. Users familiar with InterSystems

Running InterSystems Products in Containers 7

Using InterSystems IRIS Containers

https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://containers.intersystems.com/
https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_containerregistry#PAGE_containerregistry
https://hub.docker.com/repository/docker/intersystems/iris-community
https://containers.intersystems.com/contents

technology will recognize the typical default ports and other useful information. (For information about formatting the
output of this command, see Format command and log output in the Docker documentation.)

$ docker inspect -f {{json .Config.Labels}} intersystems/iris:latest-em
 "Labels": {
 "com.intersystems.adhoc-info": "",
 "com.intersystems.platform-version": ":2023.2.0.299.0",
 "com.intersystems.ports.default.arbiter": "2188",
 "com.intersystems.ports.default.license-server": "4002",
 "com.intersystems.ports.default.superserver": "1972",
 "com.intersystems.product-name": "IRIS",
 "com.intersystems.product-platform": "dockerubuntux64",
 "com.intersystems.product-timestamp": "Wed May 16 2022 00:37:59 EST",
 "com.intersystems.product-timestamp.iso8601": "2023-08-16T05:37:59Z",
 "maintainer": "InterSystems Worldwide Response Center <support@intersystems.com>",
 "org.opencontainers.image.created": "2023-08-16T07:57:10Z",
 "org.opencontainers.image.documentation": "https://docs.intersystems.com/",
 "org.opencontainers.image.title": "intersystems/iris",
 "org.opencontainers.image.vendor": "InterSystems",
 "org.opencontainers.image.version": "2023.2.0.299.0"
 }

5.2.5 License Keys for InterSystems IRIS Containers

Like any InterSystems IRIS instance, an instance running in a container requires a license key (typically called iris.key).
For general information about InterSystems IRIS license keys, see Managing InterSystems IRIS Licensing.

The InterSystems IRIS Community Edition image described in the previous section comes with a special free temporary
license. Generally, however, license keys are not included in an InterSystems IRIS container image. Instead, you must stage
a license key in a storage location accessible to the container, typically a mounted volume, and provide some mechanism
for copying it into the container, where it can be activated for the InterSystems IRIS instance running there.

The iris-main program, which runs as the blocking entrypoint application of an InterSystems IRIS container, offers an
option for handling the license key that can be used in a docker start or docker run command starting an InterSystems
IRIS container. The --key option copies the license key from the location you specify to the mgr/ directory of the InterSystems
IRIS instance, which means that it is automatically activated when the instance starts. The license key must not be located
on the local file system inside the container; typically, it is on a storage location mounted as a volume by the container with
the --volume option of the docker run command, often the durable %SYS volume. The syntax of the option is as follows:

--key <key_path>

where key_path is the path to the license key from within the container. For example, if you mount as /external an external
storage location that includes a license key in a directory called license/, the --key option would look like this:

--key /external/license/iris.key

The --key option allows you to update an instance’s license without having to upgrade the container. When the option is
used in a docker run or docker start command with an InterSystems IRIS image, iris-main continuously monitors the
staged license key for changes (assuming it remains in its original location); if any change in the file is detected, it is copied
to the current mgr/ directory and a %SYSTEM.License.Upgrade() API call is made.

See The iris-main Program for a list of iris-main options, and Running InterSystems IRIS Containers for examples of using
the --key option.

Important: When using core-based IRIS licenses, the number of cores your container runtime engine makes available
to your InterSystems IRIS container must be equal to or less than the number of cores in your license. If
your host has more cores, you must restrict the CPUs used by the container when you start it using the
--cpuset-cpus and --cpus options. For an example involving InterSystems IRIS Community Edition instances,
the free license for which is limited to 20 cores, see Deploy InterSystems IRIS Community Edition on
Your Own System.

8 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://docs.docker.com/config/formatting/
https://docs.docker.com/config/containers/resource_constraints/#configure-the-default-cfs-scheduler

5.2.6 Security for InterSystems IRIS Containers

When working with InterSystems IRIS images from InterSystems it is important to understand the security-related mechanisms
and options, including:

• Ownership and directories

• Authentication and passwords

• Locked down InterSystems IRIS container

Important: While InterSystems IRIS security is comprehensive and container images from InterSystems are engineered
to support the strictest security requirements, there are some important security practices designed for
noncontainerized instances to which containerized instances present a challenge. In particular, operations
requiring human intervention are not suitable for automated containerized deployment and operation. For
example, startup with interactive key activation (which is the default behavior for an instance with a
database encryption key activated) interrupts startup with a prompt for the location of the key, to which
an operator must respond. Other tasks, such as configuring an instance to use delegated authorization, are
typically done using the interactive ^SECURITY routine.

The configuration merge feature can help in some cases by allowing you to automatically deploy container-
ized instances with any desired configuration, but some security tasks are best addressed by using the
features of container orchestrators such as Kubernetes, which rely on security mechanisms designed for
containerized software. For example, secrets are a widely used mechanism in which a small amount of
sensitive information is placed in an object that can then be provided by the platform when needed, letting
you avoid the inclusion of confidential data in application code; this would be a suitable and safe means
of providing an encryption key to a containerized InterSystems IRIS instance configured for startup with
unattended key activation, which does not require human intervention. In addition, third-party tools, such
as Hashicorp’s Vault, work with Kubernetes and other platforms to provide additional support for managing
and safeguarding sensitive data with policies and multiple options to fit a range of needs.

Note: For important information about security for Web Gateway containers, see Web Gateway Container Security.

Ownership and Directories
The InterSystems IRIS instance in a container created from an InterSystems image is always named IRIS and is nonroot,
meaning it was installed and is owned by a user account, irisowner (UID 51773), which does not have root privileges.
All file system entities comprising the instance are owned by irisowner, and nothing is therefore owned by root. Oper-
ating system-based authentication is enabled on the instance, which means that an irisowner process or client authenticated
on another system can connect to the instance without authentication. Because commands issued from outside the container
using docker exec are executed inside the container as irisowner, you can use this command to conveniently connect
to the instance without authentication. For example, to open the InterSystems Terminal for an instance in a container named
iris273 without being prompted for credentials, you could use the following command:

docker exec -it iris273 iris terminal IRIS

The installation directory (containing the mgr/ subdirectory) within the container is /usr/irissys/. The working directory
(containing files such as iris-main.log) is /home/irisowner/, while the registry directory is /home/irisowner/irissys/.

For information about the installation parameters used to specify these configuration details, see Required Environment

Variables. For more information on these general installation-related topics, see Install on UNIX®, Linux, and macOS.

InterSystems provides tools that allow you to determine these configuration details for InterSystems IRIS-based images
that you create, as described in InterSystems IRIS Containerization Tools.

Running InterSystems Products in Containers 9

Using InterSystems IRIS Containers

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.docker.com/engine/reference/commandline/exec/
https://learning.intersystems.com/course/view.php?id=1433

Important: When using the durable %SYS feature to provide a containerized InterSystems IRIS instance with persistent
storage, the host file system location mounted and specified for this purpose must be writable by user
51773. (You will most likely need root privileges to effect this.)

When using durable %SYS with an InterSystems IRIS container deployed with the Pod Manager tool
(podman), you must do the following:

• Issue the following command before starting the container:

podman unshare chown 51773:51773 $INSTANCEDIR

where $INSTANCEDIR is the host file system location that will contain the durable %SYS directory.

• If Red Hat Security-Enhanced Linux (SELinux) is active, include the --privileged=true flag when
creating the container.

When using durable %SYS on Kubernetes without the InterSystems Kubernetes Operator, you must include
the following security context setting in the pod specification:

securityContext:
 fsGroup: 51773

Before upgrading an InterSystems IRIS container that uses durable %SYS to version 2021.2 or later, you
must make the existing durable directory writable by user 51773.

Note: If the irisowner user account is not defined in the /etc/passwd file on the system hosting the container, it is
represented by its UID (51773) on that system.

Authentication and Passwords
OS-based authentication (see Operating System–Based Authentication) is enabled for the InterSystems IRIS instance in a
container created from an InterSystems image, and password authentication is disabled for the owner (irisowner).

InterSystems IRIS is installed with several predefined user accounts, including the _SYSTEM account (see Predefined User
Accounts). The default password for the predefined accounts is SYS. For effective security, it is important that this default
password be changed immediately upon deployment of your container, which can be done using one of the following
approaches. Any of these methods can be incorporated into automated deployment.

CAUTION: If you do not use one of the methods listed here to modify the default password, it is critical that you either
log in to each predefined account and change the password or disable the accounts as soon as possible.

Only the iris-main --password-file option, described below, changes the password (SYS) for the predefined
CSPSystem account, which is often configured in the InterSystems Web Gateway as the account used to
authenticate to the InterSystems IRIS instances in its server access profiles. If you do not use the
--password-file option in particular to change the default password, you must log in to the CSPSystem

account and change the password as soon as possible after deployment. For more information about con-
figuring Web Gateway authentication, see Web Gateway Container Security.

Important: Once the instance is deployed and running with the new default password, you should log in to each of the
predefined accounts, which are configured to require a password change on first login, so that they are all
secured with new individual passwords of your choosing rather than sharing a password; as an alternative,
you can also disable one or more of them.

Note: To avoid the expiration of passwords 90 days after an InterSystems IRIS image is built, which would occur using
the default settings, a containerized instance is configured so that the passwords of the instance owner and the
predefined accounts do not expire.

10 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

• The PasswordHash CPF setting

During automated deployment of InterSystems IRIS on UNIX and Linux platforms, you can change the default password
for one or more instances before they are first started using the configuration parameter file (CPF) PasswordHash setting
in conjunction with the configuration merge feature.

Rather than recording the plain-text password for each account (a security risk), InterSystems IRIS stores only an
irreversible cryptographic hash of that password; when the user logs in, the password value entered is hashed using
the same algorithms, and the two versions are compared to authenticate the user. For more information about the stored
password hash, see Instance Authentication.

You can set or change the stored password hash (and thus the password) for all of a newly-deployed instance’s predefined
accounts (enabled user accounts that have at least one assigned role) using the PasswordHash setting, which is in the
[Startup] section of the CPF. When included in a configuration merge file at deployment (on UNIX® and Linux systems
only), this setting customizes the default password of the predefined accounts on the instance (except CSPSystem,
which does not have an assigned role), replacing SYS with the password of which the provided value is a hash.

Immediately after deployment, as noted above, you should individually change the passwords of the predefined accounts
from the new default password set by PasswordHash. The PasswordHash parameter works just once for a given instance,
and can therefore be left in an instance’s CPF without having any effect.

The arguments to the PasswordHash parameter are a hashed password and its salt, and optionally the hashing algorithm
and work factor used to hash the password (the defaults for the latter are SHA512 and 10000, respectively). All of
these arguments are shown in the following example:

[Startup]
PasswordHash=0fad6b1a565e04efb5fe9259da8457456883e0a3a42c1a34acec49cbbc1fb8c4c40f1846559ce180c103898db836,dd0874dc346d23679ed1b49dd9f48baae82b9062,10000,SHA512

A description of the algorithms used to convert a plain-text password to these values is contained in Instance Authen-
tication, and tools for applying them are available in the %SYSTEM.Encryption API. However, undertaking this conversion
as a manual procedure is not recommended, as it is likely to be error-prone and time-consuming. For your convenience,
the InterSystems Container Registry (described in Downloading the InterSystems IRIS Image) provides the image for
a nanocontainer, passwordhash, that does this conversion for you and displays the result in the context of the Pass-
wordHash parameter. You can optionally specify the workfactor and algorithm you want to use; if not, the default are
used. The following is an example of using this container:

$ docker run --rm -it containers.intersystems.com/intersystems/passwordhash:1.1 -algorithm SHA512
 -workfactor 10000
Enter password:
Enter password again:
PasswordHash=0fad6b1a565e04efb5fe9259da8457456883e0a3a42c1a34acec49cbbc1fb8c4c40f1846559ce180c103898db836,dd0874dc346d23679ed1b49dd9f48baae82b9062,10000,SHA512

You would then copy and paste the output and place it in the [Startup] section of your configuration merge file as
shown above. After deployment, the default password for the predefined accounts (other than CSPSystem) is what
you entered at the prompts.

Note: You can display usage information using the iris-main --help option as shown:

$ docker run containers.intersystems.com/intersystems/passwordhash:1.1 --help
Usage of /passwordhash:
 -algorithm string
 Pseudorandom function to use (default "SHA512")
 -workfactor int
 PBKDF2 Work Factor (default 10000)

You can also provide the password to be hashed as input in the command, for example:

$ echo **** | docker run --rm -i containers.intersystems.com/intersystems/passwordhash:1.1

Running InterSystems Products in Containers 11

Using InterSystems IRIS Containers

Important: The PasswordHash property can be used just once on any given InterSystems IRIS instance, and only
if the default password has not yet been changed for any of the predefined accounts. Because allowing
the default password to remain unchanged following deployment is a serious security risk, the
PasswordHash setting should be used in a configuration merge operation to change the default password
during deployment and not later. (For information on how to change an individual user’s password,
see Edit an Existing User Account.)

Note: Blank passwords cannot be used with the PasswordHash setting.

• The iris-main --password-file option

This option to the iris-main entrypoint application changes the default password of an InterSystems IRIS instance’s
predefined accounts, including the CSPSystem account, to the contents of a user-provided file during its initial startup
in the container, then deletes the password file and creates a sentinel file that prevents it from running again, so that
the option will not be invoked every time the container is started. In details, the following steps are taken:

– If a sentinel file exists in the directory containing the specified password file, the script exits without attempting
to change the password.

– If a sentinel file does not exist, the script

1. Reads the new password from the specified file.

2. Shuts down the instance if it is running.

3. Makes an API call to change the password of all enabled user accounts with at least one role, effectively
changing the default password of the instance.

4. On successful completion of the password change, makes another API call to change the password of the
predefined CSPSystem account (as described earlier in this section).

5. If the password file is writeable, the script:

• Deletes the password file.

• Creates a sentinel file.

If the password file is read-only, no sentinel file is created; this provides compatibility with Docker Secrets,
Kubernetes Secrets, and similar technologies.

The iris-main --password-file option invokes a script, changePassword.sh, which can be found in
dev/Container/ under the InterSystems IRIS installation directory on Linux platforms (including within an
InterSystems-provided iris container). You can call this script in other ways in order to integrate it into
your own tools.

For information about the --password-file option, see The iris-main Program.

• The SYS.Container API

InterSystems IRIS is distributed with an API call, SYS.Container.ChangePassword(), that is also useful in scripts
and other automation. SYS.Container.ChangePassword() changes the password of all of an instance’s enabled user
accounts that have at least one assigned role to the contents of a user-provided file. (The option of specifying a read-
only password file is provided for compatibility with Docker Secrets, Kubernetes Secrets, and similar technologies.)
The change is made during the instance’s first startup, before login is possible, and is called by the changePassword.sh

script and thus by the iris-main --password-file option. When using it, bear in mind the risks of committing the password
to a file for any significant length of time.

12 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

The API also includes the SYS.Container.ChangeGatewayMgrPassword() call (also called by the script) which
changes the password of the CSPSystem account on both the InterSystems IRIS instance and the local Web Gateway,
if any.

For information about the SYS.Container API, see SYS.Container API.

Locked Down InterSystems IRIS Container
To support the strictest security requirements, InterSystems provides an image named iris-lockeddown, from which
you can deploy a highly secure InterSystems IRIS container. The differences between containers from this image and those
from the standard iris image are detailed here.

Note: The characteristics of the iris-lockeddown image are subject to change as best practices evolve. We may
add, remove, or change features in response to our best understanding of current security practices and the
requirements of the production container orchestrators in use by our customers.

• The instance in a locked down InterSystems IRIS container was installed with Locked Down security, as opposed to
the Normal security installation of an instance in the standard InterSystems IRIS container. For details on the differences
between Locked Down and Normal security, see Prepare for InterSystems Security in Securing Your Instance.

• If InterSystems System Alerting and Monitoring (SAM) is deployed with the instance, you must give it access to the
instance by changing the Allowed Authentication Method setting of the /api/monitor web application from Password to
Unauthenticated. To do this, on the Web Applications page of the Management Portal (System Administration >

Security > Applications > Web Applications), click /api/monitor in the left-hand column to display the Edit Web Appli-
cation page, make the needed change in the Security Settings section, and click Save.

• In addition to the environment variables defined in the standard container, as listed in the following section, the
SYS_CONTAINER_LOCKEDDOWN variable is defined as 1 in a locked down container.

5.2.7 Mirroring with InterSystems IRIS Containers

InterSystems IRIS instances deployed in containers can be configured as mirrors the same way you would configure those
deployed from a kit, using the procedures described in Configuring Mirroring. However, there are a few points to bear in
mind:

• The arbiter configured for the mirror (as strongly recommended by InterSystems) can be deployed from the arbiter

image provided by InterSystems, which you can download using the same procedures described for the InterSystems
IRIS image. (Note that this is a nonroot image, as described in Security for InterSystems IRIS Containers.) You can
also use a noncontainerized InterSystems IRIS instance or an arbiter installed from a kit.

• When you deploy the InterSystems IRIS and arbiter containers, you must ensure that you publish the ports used by the
mirror members, their ISCAgents, and the arbiter to communicate with each other, as described in Mirror Member
Network Addresses.

• The ISCAgent on each failover and DR async mirror member must be configured to start automatically before Inter-
Systems IRIS starts. This is the default behavior for InterSystems IRIS images. When running an InterSystems IRIS
container, you can use the following iris-main ISCAgent options:

--ISCAgent true|false

If true, the ISCAgent starts when the container starts on the on the default ISCAgent port, 2188. (This is the default
behavior if the option is omitted.) If false, the ISCAgent does not start, and the --ISCAgentPort option is ignored.

--ISCAgentPort NNNN

Specifies the port to start the ISCAgent on. (The default, if the option is omitted, is 2188.) This option can be used
together with --ISCAgent true. If the value provided isn’t a valid port number (for example, if it is not an integer),
or the indicated port is in use, the ISCAgent fails to start.

Running InterSystems Products in Containers 13

Using InterSystems IRIS Containers

https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_sam

• Be sure to review Mirroring Communication, Sample Mirroring Architecture and Network Configurations, and
Locating the Arbiter to Optimize Mirror Availability to ensure that your deployment addresses all of the needed net-
working considerations.

5.3 The iris-main Program

There are several requirements an application must satisfy in order to run in a container. The iris-main program was
developed by InterSystems to enable InterSystems IRIS and its other products to meet these requirements.

The main process started by the docker run command, called the entrypoint, is required to block (that is, wait) until its
work is complete. In the case of a long-running entrypoint application, this process should block until it's been intentionally
shut down.

InterSystems IRIS is typically started using the iris start command, which spawns a number of InterSystems IRIS processes
and returns control to the command line. Because it does not run as a blocking process, the iris command is unsuitable for
use as the Docker entrypoint application.

The iris-main program solves this problem by starting InterSystems IRIS and then continuing to run as the blocking
entrypoint application. The program also gracefully shuts down InterSystems IRIS when the container is stopped, and has
a number of useful options.

To use it, add the iris-main binary to a Dockerfile and specify it as the entrypoint application, for example:

ADD host_path/iris-main /iris-main
ENTRYPOINT ["/iris-main"]

Important: The iris-main program confirms that certain Linux capabilities required by the InterSystems IRIS container
— for example, CAP_SETUID and CAP_SETGID — before starting InterSystems IRIS. Those that are
always required are typically granted by default in container runtime environments; a few that are required
only in some circumstances may not be. If one or more capabilities are not present, iris-main logs an error
and exits without starting the instance. This capability check can be disabled by including the iris-main
option --check-caps false.

Docker imposes these additional requirements on the entrypoint application:

• Graceful shutdown with docker stop

Docker expects the main container process to shut down in response to the docker stop command.

The default behavior of docker stop is to send the SIGTERM signal to the entrypoint application, wait 10 seconds,
and then send the SIGKILL signal. Kubernetes operates in a similar fashion. The iris-main program intercepts SIGTERM
and SIGINT and executes a graceful shutdown of the instance.

Important: If the instance is particularly busy when the docker stop command is issued, 10 seconds may not be
long enough to bring it to a complete stop, which may result in Docker sending a SIGKILL. SIGKILL
cannot be trapped or handled, and is similar to powering off a machine in terms of program interruption
and potential data loss. If your InterSystems IRIS container receives a SIGKILL, on the next start it
will engage in normal InterSystems IRIS crash recovery procedures. To prevent this, use the --time
option with your docker stop command, or the terminationGracePeriodSeconds value in your Kubernetes
configuration, to specify a wait time longer than 10 seconds.

• Graceful startup with docker start

When a container is stopped by means other than the docker stop command, for example when the Docker daemon
is restarted or the host is rebooted, the entrypoint application must carry out whatever tasks are required to bring the
container back up to a stable running state in response to the docker start command. As of this writing, iris-main
does not have any special handling for an InterSystems IRIS instance that was brought down ungracefully, and instead

14 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

relies on existing InterSystems IRIS functionality; it does, however, execute all operations specified using the --before
and --after options (see the table that follows).

• Logging to standard output for capture by docker logs

Docker expects the entrypoint application to send output to the container’s standard output so the docker logs command
can display it. The iris-main program adheres to this by default, sending all InterSystems IRIS log content to standard
output. If you wish, you can instead direct the output of a different file in the container — for example, your application’s
log — to container output using the -log option, for example:

docker run iris --log /myapp/logs/myapp.log

When a fatal error occurs, iris-main directs you to the messages log (see Log Files in the install-dir/mgr Directory)
for more information about the error.

Note: The iris-main program is configured to append its logging output to previous output, which ensures that
when the InterSystems IRIS container is restarted, some record of how and why it shut down remains available.

In addition to addressing the issues discussed in the foregoing, iris-main provides a number of options to help tailor the
behavior of InterSystems IRIS within a container. The options provided by iris-main are shown in the list that follows;
examples of their use are provided in Running InterSystems IRIS Containers.

Options for iris-main appear after the image name in a docker run command, while the Docker options appear before it.
As with the docker command, the options have a long form in which two hyphens are used and a short form using only
one.

DefaultDescriptionOption

IRISSets the name of the InterSystems IRIS instance to start or stop. (The
instance in a container distributed by InterSystems is always named IRIS.)

-i instance,
--instance instance

trueStops InterSystems IRIS (using iris stop) on container shutdown-d true|false,
--down true|false

trueStarts InterSystems IRIS (using iris start) on container startup-u true|false,
--up true|false

falseStarts InterSystems IRIS in single-user access mode-s true|false,
--nostu true|false

noneCopies the specified InterSystems IRIS license key (see License Keys for
InterSystems IRIS Containers) to the mgr/ subdirectory of the install
directory.

-k key_file,
--key key_file

noneSpecifies a log file to redirect to standard output for monitoring using the
docker logs command.

-l log_file,
--log log_file

noneSets the executable to run (such as a shell script) before starting
InterSystems IRIS

-b command,
--before command

noneSets the executable to run after starting InterSystems IRIS-a command,
--after command

noneSets the executable to run after stopping InterSystems IRIS-e command,
--exit command

Running InterSystems Products in Containers 15

Using InterSystems IRIS Containers

DefaultDescriptionOption

noneExecute a custom shell command before any other arguments are pro-
cessed

-c command

--create command

noneExecute a custom shell command after any other arguments are processed-t command

--terminate command

noneChange the default password for the predefined InterSystems IRIS accounts
to the string contained in the file, and then delete the file.

Important: This option, which is described in Authentication and Pass-
words, is useful in scripts and other automation; when using
it, bear in mind the risks of committing the password to a
file for any significant length of time. Even when the default
password has been changed, the first manual login to each
predefined account after the container starts includes a
mandatory default password change.

-p password_file,
--password-file
password_file

trueStarts the ISCAgent on the default ISCAgent port, 2188, on container
startup. If false, the ISCAgent does not start, and the --ISCAgentPort option
is ignored.

--ISCAgent true|false

2188Specifies the port to start the ISCAgent on. Can be used together with
--ISCAgent true.

--ISCAgentPort NNNN

trueDisables automatic Linux capability check before InterSystems IRIS is
started.

--check-caps false

N/APrints the iris-main version--version

N/ADisplays usage information and exits-h,
--help

5.4 Durable %SYS for Persistent Instance Data

This section describes the durable %SYS feature of InterSystems IRIS, which enables persistent storage of instance-specific
data and user-created databases when InterSystems IRIS is run within a container, and explains how to use it.

5.4.1 Overview of InterSystems IRIS Durable %SYS

Separation of code and data is one of the primary advantages of containerization; a running container represents "pure
code" that can work with any appropriate data source. However, all applications and programs generate and maintain
operating and historical data — such as configuration and language settings, user records, and log files — which must be
retained beyond the life of a single container to enable upgrades. For this reason, containerization typically must address
the need to persist program-related data, including application databases, on durable data storage. This requires a mechanism
that identifies the data to be retained and its persistent location, and can direct the new container to it following an upgrade
or a failure of the previous container.

The durable %SYS feature does this for an InterSystems IRIS container by cloning the needed instance-specific data (such
as log, journal, and WIJ files and system databases such as IRISSYS) to a chosen location on the file system of the container’s
host and resetting the instance to use the data in the new (cloned) location. To use durable %SYS, you must mount the

16 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

chosen location as a volume within the container and identify it in an environment variable specified when the container
is started. While the InterSystems IRIS instance remains containerized, its instance-specific data exists outside the container,
just like the databases in which application data is stored, persisting it across container and instance restarts and making it
available for upgrading the instance. (For more information on upgrading, see Upgrading InterSystems IRIS Containers.)

Important: To maintain separation of code and data, InterSystems recommends creating all InterSystems IRIS databases
on a mounted external volume, either from within InterSystems IRIS or by using the iris merge command
to add them when building a custom InterSystems IRIS image from an InterSystems-supplied image, as
described in Creating InterSystems IRIS Images, so that they are cloned to durable storage by durable
%SYS.

5.4.2 Contents of the Durable %SYS Directory

The durable %SYS directory, as created when a container is first started, contains a subset of the InterSystems IRIS install
tree, including but not limited to:

• The configuration parameter file (CPF), which is named iris.cpf. Additional versions of the file (older versions and
LastGood.cpf) are created as with any InterSystems IRIS instance. (Automating Configuration of InterSystems IRIS
with Configuration Merge, Configuration Parameter File Reference)

• The /csp directory, containing the Web Gateway configuration and log files. (Web Gateway Guide)

Note: Web Gateway containers have a similar durable storage feature, and when this is in use (see Options for
Running Web Gateway Containers) the directory is located on its own persistent storage.

• The file /dist/install/misc/buildver, which contains the instance’s version, for example 2023.2.0.299.0.

• The file /httpd/httpd.conf, the configuration file for the instance web server. (See Supported Web Servers)

• The /mgr directory, containing the following:

– The IRISSYS system database, comprising the IRIS.DAT and iris.lck files and the stream directory, and the iristemp,
irisaudit, iris and user directories containing the IRISTEMP, IRISAUDIT, IRIS and USER system databases. (System-
Supplied Databases and Custom Items in IRISSYS)

– The write image journaling file, IRIS.WIJ (which may be relocated to achieve file system separation). (Write Image
Journaling and Recovery)

– The /journal directory containing journal files (which may be relocated to achieve file system separation). (See
Journaling; see also Separating File Systems for Containerized InterSystems IRIS)

– The /temp directory for temporary files.

– Log files including messages.log, journal.log, and SystemMonitor.log. Additional logs may be present initially and
some are created as needed, for example backup and mirror journal logs. (Monitoring InterSystems IRIS Logs.)

Note: Durable %SYS activity is logged in the messages.log file; if you have any problems in using this feature,
examine this log for information that may help. For information about how to read this log from outside
the container, see The iris-main Program. For information about accessing the Management Portal of a
containerized InterSystems IRIS instance, see Web Access Using the Web Gateway Container.

– The InterSystems IRIS license key file, iris.key, either at container start if it is included in the InterSystems IRIS
image or when a license is activated while the container is running. (Activating a License Key)

– Several InterSystems IRIS system files.

• All databases defined on the instance, beyond the standard InterSystems IRIS databases listed in the first bullet above,
that are not read-only. This is to ensure that databases added to the instance in a user-created image based on an

Running InterSystems Products in Containers 17

Using InterSystems IRIS Containers

InterSystems-supplied image, as described in Creating InterSystems IRIS Images, are included in the durable data. If
a database directory is underneath the install directory in the container, for example if it is under /usr/irissys/mgr, it is
copied to the corresponding location in the durable %SYS directory. If one or more database directories are not
underneath the install directory, a new folder db is created in the install directory and they are copied there.

5.4.3 Locating the Durable %SYS Directory

When selecting the location in which this system-critical instance-specific information is to be stored, bear in mind the
following considerations:

• The availability of appropriate backup and restore procedures (Backup and Restore).

• Any high availability mechanisms you have in place (High Availability Guide) .

• Available storage space and room for expansion (Maintaining Local Databases).

There must be at least 200 MB of space available on the specified volume for the durable %SYS directory to initialize. For
various reasons, however, including operational files such as journal records and the expansion of system databases, the
amount of data in the directory can increase significantly.

InterSystems recommends specifying a subdirectory of a mounted volume, rather than the top level, as the durable %SYS
location. For example, if an external file system location is mounted as the volume /external in the container, /external

should not be specified as the durable %SYS location, but rather a directory on /external such as /external/durable.

Important: Because the instances in the iris and iris-lockeddown images were installed and are owned by user
irisowner (UID 51773), as described in Security for InterSystems IRIS Containers, the file system
location you specify for durable %SYS must first be made writable by irisowner, for example with this
command:

chown 51773:51773 root-of-durable-%SYS-directory

(You will probably need root privileges to effect this.

When using durable %SYS on Kubernetes without the InterSystems Kubernetes Operator, you must include
the following security context setting in the pod specification:

securityContext:
 fsGroup: 51773

5.4.4 Running an InterSystems IRIS Container with Durable %SYS

To use durable %SYS, include in the docker run command the following options:

--volume /volume-path-on-host:/volume-name-in-container
--env ISC_DATA_DIRECTORY=/volume-name-in-container/durable-directory

where volume-path-on-host is the pathname of the durable storage location to be mounted by the container,
volume-name-in-container is the name for the mounted volume inside the container, and durable_directory is the name of
the durable %SYS directory to be created on the mounted volume. For example:

docker run --detach
 --volume /data/dur:/dur
 --env ISC_DATA_DIRECTORY=/dur/iconfig
 --name iris21 intersystems/iris:latest-em

In this example, the durable %SYS directory would be /data/dur/iconfig outside the container, and /dur/iconfig inside the
container.

18 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Important: InterSystems strongly recommends using bind mounts, as illustrated in the preceding example, when
mounting external volumes for InterSystems IRIS containers on production systems. However, under some
circumstances, such as testing and creating demos or anything that you want to be portable to platforms
other than Linux, it is preferable to use named volumes, because they eliminate problems related to directory
paths, permissions, and so on. For detailed information about each method, see Manage data in Docker in
the Docker documentation.

InterSystems does not support mounting NFS locations as external volumes in InterSystems IRIS containers,
and iris-main issues a warning when you attempt to do so. A similar warning is issued if the specified
durable %SYS location is on a mounted volume that has a file system type of cifs or any type containing
the string fuse.

Note: The --publish option publishes the InterSystems IRIS instance’s superserver port (1972) to the host, so that outside
entities (including those in other containers) can connect to the instance. To avoid potential problems with the
Docker TCP stack, you can replace the --publish option with the --net host option, which lets the container
publish its default socket to the host network layer. The --net host option can be a simpler and faster choice when
the InterSystems IRIS container you are running will be the only such on the host. The --publish option may be
more secure, however, in that it gives you more control over which container ports are exposed on the host.

When you run an InterSystems IRIS container using these options, the following occurs:

• The specified external volume is mounted.

• The InterSystems IRIS installation directory inside the container is set to read-only.

• If the durable %SYS directory specified by the ISC_DATA_DIRECTORY environment variable, iconfig/ in the preceding
example, already exists and contains a /mgr subdirectory, all of the instance’s internal pointers are reset to that directory
and the instance uses the data it contains. If the InterSystems IRIS version of the data does not match the version of
the instance, an upgrade is assumed and the data is upgraded to the instance’s version as needed. (For information on
upgrading, see Upgrading InterSystems IRIS Containers.)

• If the durable %SYS directory specified by ISC_DATA_DIRECTORY does not exist, or exists and is empty:

– The specified durable %SYS directory is created if necessary.

– The directories and files listed in Contents of the Durable %SYS Directory are copied from their installed locations
to the durable %SYS directory (the originals remain in place).

– All of the instance’s internal pointers are reset to the durable %SYS directory and the instance uses the data it
contains.

If for any reason the process of copying the durable %SYS data and resetting internal pointers fails, the durable %SYS
directory is marked as incomplete; if you try again with the same directory, the data in it is deleted before the durable
%SYS process starts.

• If the durable %SYS directory specified by the ISC_DATA_DIRECTORY environment variable already exists and contains
data (file or subdirectories) but does not contain a /mgr subdirectory, no data is copied; the container does not start,
and the reason (data other than durable %SYS in the directory) is logged to standard output by iris-main, as described
in The iris-main Program.

In the case of the example provided, the InterSystems IRIS instance running in container iris21 is configured to use the
host path /data/dur/iconfig (which is the path /dur/iconfig inside the container) as the directory for persistent storage of all
the files listed in Contents of the Durable %SYS Directory. If durable %SYS data does not already exist in the host directory
/data/dur/iconfig (container directory /dur/iconfig) it is copied there from the installation directory. Either way, the instance’s
internal pointers are set to container directory /dur/iconfig.

See Running InterSystems IRIS Containers for various examples of launching an InterSystems IRIS container with durable
%SYS.

Running InterSystems Products in Containers 19

Using InterSystems IRIS Containers

https://docs.docker.com/storage/

The following illustration shows the relationship between the InterSystems IRIS installation directory and user databases
within a container and on the mounted external storage to which they were cloned by durable %SYS (as specified by the
options shown). Note that the three application databases outside of the install directory have been cloned to
/data/dur/iconfig/db, whereas the LOCALDB database, which is within the install directory under /mgr, is cloned to the same
location (/data/dur/iconfig/mgr/localdb).

Figure 1: File System Objects Cloned by Durable %SYS

5.4.5 Identifying the Durable %SYS Directory Location

When you want to manually verify the location of the durable %SYS directory or pass this location programmatically, you
have three options, as follows:

• Open a shell inside the container, for example with docker exec -it container_name bash, and do either of the following:

echo $ISC_DATA_DIRECTORY

iris list

Note: For detailed information on the iris command, see Controlling InterSystems IRIS Instances.

• Within InterSystems IRIS, call $SYSTEM.Util.InstallDirectory() or
$SYSTEM.Util.GetEnviron(‘ISC_DATA_DIRECTORY’).

5.4.6 Ensuring that Durable %SYS is Specified and Mounted

When a container is run with the ISC_DATA_DIRECTORY environment variable, pointers are set to the durable %SYS files
only if the specified volume is successfully mounted.

• If ISC_DATA_DIRECTORY is specified but the needed --volume /external_host:/durable_storage option is omitted from
the docker run command, the instance fails to start and an error message is generated.

20 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

• If the --volume option is included but Docker cannot successfully mount the specified volume, it creates the external
storage directory and the volume within the container; in this case, the instance data is copied to the durable %SYS
directory, as described under "If the durable %SYS directory specified by ISC_DATA_DIRECTORY does not exist" in
Running an InterSystems IRIS Container with Durable %SYS.

If ISC_DATA_DIRECTORY is not specified, the InterSystems IRIS instance uses the instance-specific data within the container,
and therefore cannot operate as an upgrade of the previous instance.

To use durable %SYS, you must therefore ensure that all methods by which your InterSystems IRIS containers are run
incorporate these two options.

5.4.7 Separating File Systems for Containerized InterSystems IRIS

In the interests of performance and recoverability, InterSystems recommends that you locate the primary and secondary
journal directories of each InterSystems IRIS instance on two separate file systems, which should also be separate from
those hosting InterSystems IRIS executables, the instance’s system databases, and the IRIS.WIJ file, with the latter optionally
on a fourth file system. Following InterSystems IRIS installation, however, the primary and secondary journal directories
are set to the same path, install-dir/mgr/journal, and thus may both be set to /mgr/journal in the durable %SYS directory
when durable %SYS is in use.

You can configure separate file systems in deployment using a configuration merge file, as described in Automating Con-
figuration of InterSystems IRIS with Configuration Merge. After the container is started, you can reconfigure the external
locations of the primary and secondary directories using the Management Portal (see the following section) or by editing
the CPF (iris.cpf), as long as the volumes you relocate them to are always specified when running a new image to upgrade
the InterSystems IRIS instance.

Note: When the durable %SYS directory is in use, the IRIS.WIJ file and some system databases are already separated
from the InterSystems IRIS executables, which are inside the container. Under some circumstances, colocating
the IRIS.WIJ file with your application databases instead may improve performance.

For more information about separation of file systems for InterSystems IRIS, see File System Separation.

5.5 Web Access Using the Web Gateway Container

The InterSystems IRIS Web Gateway provides the communications layer between a hosting web server and InterSystems
IRIS for any web application, passing HTTP/HTTPS requests to InterSystems IRIS and returning the responses to be passed
to the request originators. The webgateway image available from InterSystems includes both the Web Gateway and a
web server, providing a containerized web server component for stand-alone InterSystems IRIS containers and containerized
InterSystems IRIS clusters.

Each InterSystems IRIS instance served by a Web Gateway is identified by a server access profile configured on the Web
Gateway; each application to which the Web Gateway sends requests is identified by an application access profile, which
is associated with an application path (such as /applications/appa) configured on the web server. The application access
profile determines whether requests for the associated application go to a specific InterSystems IRIS instance only, fail
over to another instance if the first is not available, or are load balanced across multiple instances.

Requests for the Management Portal and other built-in InterSystems IRIS applications, however, always involve the same
application path but are intended for a specific InterSystems IRIS instance. For this reason, a different mechanism must be
used to route them to the desired instance. For example, if you deploy a containerized distributed cache cluster with a web
server tier consisting of Web Gateway containers, each Web Gateway can be configured to load balance application con-
nections across all of the InterSystems IRIS containers serving as application servers, or across a specific subset, but any
of the Web Gateway instances must be able to send a Management Portal request to the intended instance.

There are two basic approaches to routing Management Portal and other built-in application requests to specific InterSystems
IRIS instances, as follow:

Running InterSystems Products in Containers 21

Using InterSystems IRIS Containers

• One-to-many: A single Web Gateway container to distribute both application connections and Management Portal
requests to multiple InterSystems IRIS containers.

This approach uses the instance prefix/CSPConfigName mechanism (described in Structure of an InterSystems Web
Application URL) to route requests for the Management Portal and other built-in applications to the desired instance
while distributing application connections based on the application path. For example, in the following illustration, a
single Web Gateway container, wg1, routes requests for /applications/appa to InterSystems IRIS container irisa and
for /applications/appb to container irisb based on their application paths, while routing Management Portal requests
prefixed by /irisa to irisa and those prefixed by /irisb to irisb — the instances in those container having had their
CSPConfigName properties set to irisa and irisb, respectively — even though the application path, /csp/sys, is
the same.

Figure 2: A single Web Gateway container directs application connections and Management Portal requests
to multiple InterSystems IRIS containers

• Many-to-many: One or more Web Gateway containers to distribute application connections to multiple InterSystems
IRIS containers and a dedicated Web Gateway container for each InterSystems IRIS container to handle Management
Portal requests.

22 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

In this approach, one or more Web Gateway containers serving as web server nodes distribute application connections
as desired, while Management Portal and other built-in application requests for each InterSystems IRIS instance are
handled by a Web Gateway container dedicated to that instance. For example, the following illustration shows one
Web Gateway container directing application connections as in the previous illustration, while InterSystems IRIS
containers irisa and irisb each have a dedicated Web Gateway container directing Management Portal requests
to them; the Management Portal URLs are distinguished by the dedicated Web Gateways’ published port numbers
(rather than URL prefixes based on CSPConfigName values, as in the first approach).

Figure 3: An application Web Gateway container for application requests and dedicated Web Gateway
containers for Management Portal requests

Important advantages of the many-to-many approach include:

• Separation of responsibilities.

• Optional customization of permissions and security for different use cases.

• Distribution of Management Portal requests using Docker hostnames assigned to the InterSystems IRIS instances in
deployment. This avoids the step of setting each InterSystems IRIS instance’s CSPConfigName property (as described
above) to a value unique within the configuration, which must be done following deployment, after the instance has
started inside the container.

The primary advantage of the one-to-many approach is that it is simpler and requires fewer containers, consuming fewer
resources and ports.

Running InterSystems Products in Containers 23

Using InterSystems IRIS Containers

A compromise solution might be a two-to-many approach, in which one Web Gateway container serves Management
Portal requests as in one-to-many, and another Web Gateway distributes application connections across the InterSystems
IRIS instances.

You can find examples of both approaches, including all the needed files and some useful scripts, at
https://github.com/intersystems-community/webgateway-examples.

Note: The IKO (see Automated Deployment of InterSystems IRIS Containers) deploys dedicated Web Gateway containers
for Management Portal access by including one as a sidecar container in each InterSystems IRIS pod; for more
information, see Using the InterSystems Kubernetes Operator.

The Web Gateway approach you take depends on the containerized configuration involved, the expected amount of appli-
cation traffic, the needs of your organization, and other factors. Generally speaking, the one-to-many approach works well
for less complex configurations and smaller organizations seeking simplicity and a minimal footprint. For larger enterprises
and more complex configurations with a focus on stability, resiliency, and availability and a need to separate instance-local
connections from the primary application traffic, the many-to-many approach may be preferable. As noted above, there are
also various possible combinations; for example, when using the one-to-many approach, you may want to include a dedicated
Web Gateway for a particular InterSystems IRIS instance that handles heavy traffic at peak to avoid increasing latency for
the others.

When Web Gateway nodes are used in a web server tier distributing application connections across multiple instances, the
manner of distribution can depend on the configuration. For example:

• The general best practice for sharded clusters is to distribute application connections equally across all data nodes (and
compute nodes if present) in the cluster, so in this case you would configure the application profile(s) to distribute all
application connections equally across all of the data node containers defined in the server profiles. Because Management
Portal connections to a sharded cluster are typically made only to node 1, however, these can easily be routed by the
web server tier without the need for any additional Web Gateway nodes.

• In a distributed cache cluster, on the other hand, you might want to maximize caching efficiency by directing requests
for different applications to different application servers; in such a case, the application paths would be configured to
distribute connections differentially. When this is done and large web server and application server tiers are involved,
the use of dedicated Web Gateways may be optimal. This is shown in the following simplified illustration, in which
the InterSystems IRIS containers (two application servers and one data server) each has a dedicated Web Gateway
container to handle Management Portal and other built-in application requests received over networks separate from
the one conveying application requests to the load balancer.

24 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://github.com/intersystems-community/webgateway-examples
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO

Figure 4: Containerized distributed cache cluster with application connections directed differentially and dedicated
Web Gateways

Note: For an important discussion of load balancing a web server tier distributing application connections across multiple
InterSystems IRIS instances, see Load Balancing, Failover, and Mirrored Configurations.

Important: In versions of InterSystems IRIS prior to 2023.2, the Web Gateway and a preconfigured private web server
were installed with InterSystems IRIS by default, including in containers. For this reason, if you are
upgrading from a pre-2023.2 version to the current version, you must update all deployment scripts and
tools to reflect the new deployment options described by this document. Further, 2023.2 and later InterSys-
tems IRIS containers should be used only with InterSytems Kubernetes Operator 3.6 and later.

For the convenience of those testing and evaluating InterSystems IRIS, the InterSystems IRIS Community
Edition image continues to include the Web Gateway and preconfigured web server; the web server can
be reached (to access the Management Portal, for example) at whatever host port is published for the con-
tainerized instance’s web server port, 52773.

Running InterSystems Products in Containers 25

Using InterSystems IRIS Containers

5.5.1 InterSystems Web Gateway Images

There are three types of webgateway images available from InterSystems, each of which provides a web server component
for containerized deployments:

• The webgateway image contains the following components, installed by root in the indicated locations within the
container:

– An InterSystems Web Gateway in /opt/webgateway.

– An Apache web server in /etc/apache2.

• The webgateway-nginx image contains the following components, installed by root:

– An InterSystems Web Gateway in /opt/webgateway.

– An Nginx web server in /opt/nginx.

• The webgateway-lockeddown image, designed to meet the strictest security requirements, contains the following
nonroot components installed, owned, and run by irisowner (UID 51773) :

– An InterSystems Web Gateway installed in /home/irisowner/webgateway with locked-down security.

– An Apache web server installed in /home/irisowner/apache and configured to use port 52773 instead of the standard
port 80.

Note: For details about nonroot installation and locked-down security, see Security for InterSystems IRIS Containers.

5.5.2 Configuring the Web Gateway

The Web Gateway is configured using the Web Gateway management pages, but the configuration is contained in the
CSP.ini file (much as an InterSystems IRIS instance’s configuration is contained in the iris.cpf file). The Web Gateway is
installed with a minimal default version of the CSP.ini file containing some basic settings. In Web Gateway containers only,
the CSP.conf file, which configures the web server to interact with the Web Gateway, is added to the web server’s config-
uration. For more information about the contents of the CSP.ini file, see Web Gateway Configuration File (CSP.ini)
Parameter Reference; for information about the contents of the CSP.conf files provided in Web Gateway containers, see
Recommended Option: Apache API Module without NSD and Using the NSD with Nginx.

All three webgateway images contain minimal default versions of both the CSP.ini file and an Apache or Nginx-specific
CSP.conf file (in the appropriate directory as indicated in the preceding list). However, you can provide your own version
of one or both files to overwrite these. There are multiple ways to prepare your initial version of the CSP.ini file. For
example, you might modify a file from an existing or previous Web Gateway deployment and use that for one or more
Web Gateway containers, or perhaps start in one container with either your own file or the basic default version provided,
use the management pages to modify the configuration as needed, then copy the updated file and use it with additional
containers. The Web Gateway Guide provides comprehensive information on Web Gateway configuration.

A Web Gateway container can optionally be run with a version of the durable %SYS feature, which creates a durable data
directory called webgateway within the container in which the Web Gateway’s configuration is stored (see Options for
Running Web Gateway Containers). If you use this option, the CSP.ini and CSP.conf files (default or user-provided) are
copied to that directory, as is the CSP.log log file; this enables you to upgrade the container without losing the existing
configuration, and to simultaneously update multiple Web Gateway configurations, as described in the following section.

5.5.3 Synchronized Reconfiguration of Multiple Web Gateway Containers

In the case of a dedicated Web Gateway container, the Web Gateway’s configuration is relatively simple, including as it
does a single server access profile for the InterSystems IRIS instance it is dedicated to and application access profiles for

26 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

only the applications that instance is serving. Therefore reconfiguring a dedicated Web Gateway can be as simple as
accessing its management pages and making the needed changes.

However, when you deploy multiple Web Gateway containers as part of the same cluster, as in a web server tier and for
shared Management Portal access, you will likely need a method for simultaneously updating their configurations, in par-
ticular their server access profiles and application access profiles, for example when you add an InterSystems IRIS node
or change an application path. The CSP.ini merge feature provides a convenient means of doing this. If you provide your
own CSP.ini file at container creation, staged on a mounted external volume as described in Options for Running Web
Gateway Containers, it is copied once to either the container’s file system or the durable data directory if it exists. Following
that, if the staged file remains in its original location and accessible to the Web Gateway containers, updates to the file are
automatically merged to each Web Gateway instance’s active CSP.ini file (in either location), along with the setting
[SYSTEM]/RELOAD=1, which causes the configuration to be reloaded by the Web Gateway within a minute. Therefore,
if you deploy multiple Web Gateway containers by mounting the same staged CSP.ini file on the same external volume for
all of them, you can reconfigure them all identically and simultaneously by updating the staged file. This approach works
equally well for reconfiguring a dedicated Web Gateway, a single Web Gateway distributing application connections to
multiple InterSystems IRIS containers, or a shared Web Gateway for management portal access.

When using this merge update approach, whatever the number of Web Gateway containers involved, it is important to takes
steps to avoid changing the instances’ CSP.ini files by other means (such as through the Web Gateway management pages)
or, if you do make such changes, do one of the following:

• Remove fields from the staged CSP.ini file that you have changed by other means, possibly by deleting everything
other than the fields you want to update.

• Apply updates you have made by other means to the staged file. For example, you might change the file using the
management pages, then copy the modified file to the staging location, overwriting the original staged file. If you are
using the staged file for multiple containers, this would allow you to test the changes you want to make on one instance
and then apply them to the rest through a merge update.

Note: The staged CSP.ini file is never merged unless it has been modified. When the durable data directory is in use, a
copy of the last merged file is kept in /webgateway/CSP.ini.last_merge in the durable %SYS directory.

Externally staging your own CSP.conf file allows you to keep the web servers in multiple Web Gateway contains updated
in the same fashion as described for CSP.ini, above. As long as the file remains in its original staged location and accessible
to the Web Gateway containers, it is monitored by each Web Gateway container for changes, and when these are detected
it is recopied to the appropriate directory and the web server reloads the configuration and restarts. This is especially helpful
when you update the Web Gateway server access profiles in the staged CSP.ini and need to update the application paths
configured on the web servers accordingly.

5.5.4 Web Gateway Container Security

Securing a Web Gateway instance involves two primary tasks:

• Securing the Web Gateway’s connections to the InterSystems IRIS instances configured in its server access profiles,
which entails, at a minimum, requiring authentication to InterSystems IRIS using an existing user account on the target
instance. However, InterSystems strongly recommends adding TLS encryption. This topic is covered in detail in Pro-
tecting Web Gateway Connections to InterSystems IRIS and Configuring the Web Gateway to Connect to InterSystems
IRIS Using TLS.

Note: InterSystems also strongly recommends securing connections between web clients and the web server with
TLS.

• Securing access to the Web Gateway’s management pages, which involves requiring authentication to the Web Gateway,
as well as limiting the hosts from which the management pages can be accessed. For information on this topic, see

Running InterSystems Products in Containers 27

Using InterSystems IRIS Containers

Overview of the Web Gateway Management Pages and “Security” in Configuring the Default Parameters for the Web
Gateway.

In the default CSP.ini in the Web Gateway container (and by default in locally installed Web Gateways), the CSPSystem

predefined user account is used for both purposes. You can, however, use any credentials you want for either purpose.
When securing connections to InterSystems IRIS instances, the credentials you configure in each server access profile must
be valid on that particular instance; otherwise there are no restrictions on either set of credentials, and using a purpose-made
account rather than CSPSystem allows you to more closely restrict information about the credentials.

When deploying a clustered configuration involving multiple Web Gateways interacting with multiple InterSystems IRIS
instances, as discussed in Synchronized Reconfiguration of Multiple Web Gateway Containers, using one set of credentials
for all connections to InterSystems IRIS and another set for management access to all Web Gateways is more convenient
(although using different sets enhances security by reducing credentials reuse). A reasonably convenient and (if other pre-
cautions are followed) reasonably secure approach to implementing this is as follows:

• Deploy the InterSystems IRIS containers using configuration merge [Actions] parameters (as described in Create,
Modify and Delete Security Objects in Automating Configuration of InterSystems IRIS with Configuration Merge) to
create an account specifically for Web Gateway authentication, with the password encrypted using the PasswordHash
parameter). Stage the merge file on a mounted external volume, as required for continuous monitoring and merging.

• Deploy the Web Gateway containers with a custom CSP.ini file that specifies:

– In the server access profiles, the Web Gateway access credentials created during InterSystems IRIS deployment.

– A different set of credentials for management pages access.

– A restricted set of IP addresses from which the management pages can be accessed.

Stage the CSP.ini file on a mounted external volumes, as required for continuous monitoring and merging.

Continuous monitoring and merging of the CPF merge and CSP.ini files enables you to use the CSP.ini merge feature for
later synchronized reconfiguration of the Web Gateway containers, including the security best practice of regular password
changes for both the server access credentials (in both the InterSystems IRIS containers and Web Gateway containers) and
the Web Gateway management credentials, or even regularly creating a new account on the InterSystems IRIS instances
and updating the CSP.ini accordingly.

28 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

Important: When deploying one or more Web Gateway containers with a custom CSP.ini file, three passwords in the
file should always be encrypted before deployment:

• [SYSTEM]/Password — The Web Gateway management access password.

• [<server>]/Password — The InterSystems IRIS authentication password (one in each server
access profile).

• [<server>]/SSLCC_Private_Key_Password — The TLS private key password, if TLS is in
use (one in each server access profile).

The Web Gateway management access password, [SYSTEM]/Password, must be encrypted before you
enter it into the CSP.ini file. For the two passwords in each server access profile, you have two options, as
follows:

1. Deploy a Web Gateway container with the CSP.ini you want to use.

2. For [<server>]/Password, [<server>]/SSLCC_Private_Key_Password, or both, enter
one of the following:

• A plain text password. When the Web Gateway starts up, or when it is reloaded while running
by the addition of the setting [SYSTEM]/RELOAD=1 to the CSP.ini file, the password is automat-
ically encrypted. (When using scripts and other automated methods, you can use the CSPpwd
utility to encrypt all plain text passwords in a CSP.ini file, but note the restrictions on password
decryption on Windows platforms.)

• On UNIX® and Linux systems, a command enclosed in braces, for example Password={sh
/tmp/PWretrieve.sh}. When the Web Gateway starts up or is reloaded, the command is
executed and the result is stored in memory only as the value of the field. This allows you to
retrieve passwords from sources such as cloud platform or third-party secret managers without
ever committing them in plain text to durable storage.

As described in Authentication and Passwords, you must change the default password for the predefined
accounts, including CSPSystem, on any InterSystems IRIS instance as part of deployment or immediately
after. If you do choose to make use of CSPSystem or one of the other predefined accounts in your CSP.ini

file, be sure to provide yourself with secure access to the encrypted post-deployment password so that you
can accurately add it to the CSP.ini file.

Note: When securing connections between a containerized Web Gateway and InterSystems IRIS instances with TLS
(as described in Protecting Web Gateway Connections to InterSystems IRIS and Configuring the Web Gateway
to Connect to InterSystems IRIS Using TLS) or using SSL mode to secure the Apache web server, the best practice
for providing a certificate is to generate a passwordless server key and mount both the key and the certificate as
Docker secrets (or Kubernetes secrets if applicable). When you need to update the certificate, you can simply
update the secrets. You can also create a server key with password and mount the password as a separate secret
from the key and certificate. This practice avoids having to manually provide a server key password, which
compromises resiliency, or recording the password so it can be automatically retrieved, which compromises
security.

5.6 Running InterSystems IRIS Containers

This section provides some examples of launching InterSystems IRIS containers with the Docker and iris-main options
covered in this document, including:

• Command line examples

• Script example

Running InterSystems Products in Containers 29

Using InterSystems IRIS Containers

https://docs.docker.com/engine/reference/commandline/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

• Docker Compose example

• Options for running Web Gateway containers

Note: The sample docker run commands in this section include only the options relevant to each example and omit
options that in practice would be included, as shown (for example) in the sample command in Running an Inter-
Systems IRIS Container with Durable %SYS.

Use of huge pages requires the IPC_LOCK kernel capability. Without this capability, huge pages cannot be allocated
when configured for InterSystems IRIS. Most container runtime engines do not grant containers this capability
unless it is specifically requested when the container is created. To add the IPC_LOCK capability to a container,
include the option --cap-add IPC_LOCK in the docker create or docker run command. This is illustrated in
the script example that follows.

The image tags in the examples in this document, for example 2023.2.0.299.0 in the following, may be out
of date. Before attempting to download an image, consult Using the InterSystems Container Registry for the
current image tags.

5.6.1 Running an InterSystems IRIS Container: docker run Examples

The following are examples of docker run commands for launching InterSystems IRIS containers using iris-main options.

• As described in License Keys for InterSystems IRIS Containers, the required InterSystems IRIS license key must be
brought into the container so that the instance can operate. The example shown below does the following:

– Publishes the instance’s superserver port (1972) to port 9092 on the host.

– Includes the needed options for durable %SYS (see Ensuring that Durable %SYS is Specified and Mounted).

– Uses the iris-main -key option, in which the license key is staged in the key/ directory on the volume mounted
for the durable %SYS directory — that is, /data/durable/key/ on the external storage, /dur/key/ inside the container
— and is copied to the mgr/ directory within the durable %SYS directory (/data/durable/iconfig/mgr/ on the external
storage, /dur/iconfig/mgr/ in the container) before the InterSystems IRIS instance is started. Because it is in the mgr/

directory, it is automatically activated when the instance starts.

docker run --name iris11 --detach --publish 9092:1972
 --volume /data/durable:/dur
 --env ISC_DATA_DIRECTORY=/dur/iris_conf.d
 intersystems/iris:latest-em --key /dur/key/iris.key

• This example adds a configuration merge file staged on the durable data volume, containing settings to be merged into
the InterSystems IRIS instance’s CPF (see Automated Deployment of InterSystems IRIS Containers) before it is first
started. You might use this, for example, to reconfigure the instance’s primary and alternate journal directories
([Journal]/CurrentDirectory and AlternateDirectory in the CPF), which by default are the same directory within the
durable %SYS tree, to be on separate file systems, as described in Separating File Systems for Containerized InterSystems
IRIS

docker run --name iris17 --detach --publish 9092:1972
 --volume /data/durable:/dur
 --env ISC_DATA_DIRECTORY=/dur/iris_conf.d
 --env ISC_CPF_MERGE_FILE=/dur/merge/merge.cpf intersystems/iris:latest-em
 --key /dur/key/iris.key

The staging directories, in this case both located on the volume mounted for durable %SYS, should be the same, or
contain the same licenses.

Note: Because the InterSystems IRIS Community Edition image described in Downloading the InterSystems IRIS Image
includes a free temporary license, the --key option should not be used with this image.

30 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://docs.intersystems.com/components/csp/docbook/Doc.View.cls?KEY=PAGE_containerregistry#PAGE_containerregistry

5.6.2 Running an InterSystems IRIS Container: Script Example

The following script was written to quickly create and start an InterSystems IRIS container for testing purposes. The script
incorporates the iris-main --key option to copy in the license key, as described in License Keys for InterSystems IRIS
Containers.

#!/bin/bash
script for quick demo and quick InterSystems IRIS image testing

Definitions to toggle___
container_image="intersystems/iris:latest-em"

the docker run command
docker run -d
 --name iris
 --hostname iris
expose superserver port
 -p 9091:1972
mount durable %SYS volume
 -v /data/durable:/dur
specify durable %SYS directory and CPF merge file
 --env ISC_DATA_DIRECTORY=/dur/iris_conf.d
 --env ISC_CPF_MERGE_FILE=/dur/merge/merge.cpf
enable allocation of huge pages
 --cap-add IPC_LOCK
 $container_image
 --key /dur/key/iris.key

5.6.3 Running an InterSystems IRIS Container: Docker Compose Example

Docker Compose, a tool for defining and running multicontainer Docker applications, offers an alternative to command-
line interaction with Docker. To use Compose, you create a docker-compose.yml containing specifications for the containers
you want to create, start, and manage, then use the docker-compose command. For more information, start with Overview
of Docker Compose in the Docker documentation.

The following is an example of a compose.yml file. Like the preceding script, it incorporates only elements discussed in
this document.

version: '3.2'

services:
 iris:
 image: intersystems/iris:latest-em
 command: --key /dur/key/iris.key
 hostname: iris
 ports:
 # the superserver port
 - "9091:1972"
 volumes:
 # the durable %SYS volume
 - /data/durable:/dur
 environment:
 # the durable %SYS directory
 - ISC_DATA_DIRECTORY=/dur/iris_conf.d
 # the CPF merge file
 - ISC_CPF_MERGE_FILE=/dur/merge/merge.cpf

5.6.4 Options for Running Web Gateway Containers

In production, the recommended method for deploying multicontainer InterSystems IRIS clusters including multiple Web
Gateway containers is the InterSystems Kubernetes Operator (IKO), described in Automated Deployment of InterSystems
IRIS Containers. Version 3.6 of the IKO deploys dedicated Web Gateway containers for Management Portal access (the
many-to-many approach) by including one as a sidecar container in each InterSystems IRIS pod; for more information, see
Using the InterSystems Kubernetes Operator.

For development and testing purposes, there are three basic methods for deploying InterSystems IRIS containers together
with Web Gateway containers, as follows:

• Docker Compose and other scripting tools

Running InterSystems Products in Containers 31

Using InterSystems IRIS Containers

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO

• Kubernetes

• A user-created InterSystems IRIS image containing a Web Gateway instance and a web server in addition to the
InterSystems IRIS instance. (For a general discussion of user-created InterSystems IRIS images, see Creating InterSys-
tems IRIS Images.)

You can find examples of these methods, including all the needed files and some useful scripts, at
https://github.com/intersystems-community/webgateway-examples/tree/master. The remainder of this section discusses
only the options available when running Web Gateway containers on the command line.

The only required option when creating and starting a Web Gateway container is publishing container ports 80 and 443 to
host ports so that other entities can contact the Web Gateway and the web server, as in the following command:

docker run -d --publish 8080:80 --publish 4443:443
 containers.intersystems.com/intersystems/webgateway:latest-em

The following are optional:

• Durable data directory — To create a durable data directory called webgateway within the container, in which the Web
Gateway’s configuration files are stored, as discussed in Configuring the Web Gateway, use the --volume option to
mount a persistent data volume and the ISC_DATA_DIRECTORY environment variable to specify a location on it for
the directory. For example, the following command would create a durable data directory at /dur/webgateway inside
the container and at/nethome/user21/dur/webgateway on the host’s file system.

docker run -d --name wg11 --publish 80:80 --publish 443:443
 --volume /nethome/user21/dur:/dur --env ISC_DATA_DIRECTORY=/dur
 containers.intersystems.com/intersystems/webgateway:latest-em

This is equivalent to the procedure for enabling the durable %SYS feature for InterSystems IRIS containers; for detailed
information about using these options and durable %SYS generally, see Durable %SYS for Persistent Instance Data.

Important: Because the webgateway-lockeddown image contains a Web Gateway instance and web server
installed and owned by user irisowner (UID 51773), the host file system location you specify for
the durable data directory of a locked down container must be writable by irisowner. (You will
most likely need root privileges to effect this.)

When you run a webgateway container with the durable data option, the following occurs:

– The specified external volume is mounted.

– If the webgateway directory does not exist in the location specified by ISC_DATA_DIRECTORY, it is created and
the configuration files are copied there for use by the Web Gateway, as follows:

• Configuration files you provide are copied to the webgateway directory, with links to their default locations
in the container.

• Configuration files you do not provide are copied from the default locations within the container, with links
to those locations.

– If the webgateway directory already exists in the location specified by ISC_DATA_DIRECTORY, it is assumed to
be the data directory for a previous webgateway container, and

• If it contains the expected Web Gateway configuration files, these are linked to their locations in the container
and are used by the Web Gateway; options specifying user-provided configuration files (as described below)
are ignored.

32 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://github.com/intersystems-community/webgateway-examples/tree/master

Important: Because you cannot provide your own configuration files (as described below) when
deploying a webgateway container using an existing durable webgateway directory, you
cannot upgrade and reconfigure a containerized Web Gateway in the same operation. Instead,
start by deploying a new version of the container using the previous container’s durable
webgateway directory, then reconfigure the Web Gateway as needed.

• If one or more of the expected Web Gateway configuration files are not present, the webgateway is assumed
to be corrupted; an error is logged and the container fails to start.

Important: When upgrading a webgateway container that uses a durable data directory to version 2021.2
or later using a webgateway-lockeddown image, you must make the existing durable directory
writable by user irisowner.

The default, if you do not use the ISC_DATA_DIRECTORY variable to specify a location on writeable persistent storage
accessible to the Web Gateway within the container, is to not create a durable data directory and maintain the configu-
ration files in their default locations (as previously described).

• User-defined configuration files — To provide your own CSP.ini file, use the --volume option to mount a persistent
data volume (separate from the durable data directory volume specified by ISC_DATA_DIRECTORY (if in use), stage
the file on that volume, and use the ISC_CSP_INI_FILE environment variable to indicate its location. If you also
create a durable webgateway directory, as described in the preceding, the file is copied to that directory and linked to
its original location within the container; if not, it is copied to the original location, overwriting the default file.

Important: If you want to use the merge update approach, as described in Configuring the Web Gateway, the
staged CSP.ini file must remain in place and accessible to the container.

To supply your own CSP.conf file, do the same and use the ISC_CSP_CONF_FILE environment variable to specify
its location. For example, to create a durable webgateway directory and provide your own CSP.ini and CSP.conf files
to be used for the Web Gateway’s configuration, you would use a command like the following:

docker run -d --name wg11 --publish 80:80 --publish 443:443
 --volume /nethome/user21/dur:/dur --env ISC_DATA_DIRECTORY=/dur
 --volume /nethome/user21/config:/config --env ISC_CSP_INI_FILE=/config/CSP.ini
 --env ISC_CSP_CONF_FILE=/config/CSP.conf
 containers.intersystems.com/intersystems/webgateway:latest-em

The default, if one of these variable is not specified, is to use the basic default file located within the container.

• To enable the Apache web server’s SSL module, add the --ssl entrypoint option (following the image specification).
The default, if the option is omitted, is not to enable the Apache SSL module.

• To identify the Web Gateway’s server to Apache, use the --server server-name entrypoint option. The default, if the
option is omitted, is to use the container’s ID (unless the Docker --hostname option is included, in which case the
value provided is used).

The following is an example of a docker run command using all the options described:

docker run -d --name wg11 --publish 80:80 --publish 443:443
 --volume /nethome/user21/dur:/dur --env ISC_DATA_DIRECTORY=/dur
 --env ISC_CSP_INI_FILE=/dur/CSP.ini --env ISC_CSP_CONF_FILE=/dur/CSP.conf
 containers.intersystems.com/intersystems/webgateway:latest-em
 --ssl --server webgateway11

5.7 Upgrading InterSystems IRIS Containers

When a containerized application is upgraded or otherwise modified, the existing container is removed or renamed, and a
new container is created and started by instantiating a different image with the docker run command. Although the purpose

Running InterSystems Products in Containers 33

Using InterSystems IRIS Containers

is to modify the application, as one might with a traditional application by running an upgrade script or adding a plug-in,
the new application instance actually has no inherent association with the previous one. Rather, it is the interactions established
with the environment outside the container — for example, the container ports you publish to the host with the --publish
option of the docker run command, the network you connect the container to with the --network option, and the external
storage locations you mount inside the container with the --volume option in order to persist application data — that
maintain continuity between separate containers, created from separate images, that represent versions of the same application.

Important: Before upgrading an InterSystems IRIS container that uses durable %SYS to version 2021.2 or later, you
must make the existing durable directory writable by user 51773, for example with this command.

chown -R 51773:51773 root-of-durable-%SYS-directory

You will most likely need root privileges to make this change,

For InterSystems IRIS, the durable %SYS feature for persisting instance-specific data is used to enable upgrades. As long
as the instance in the upgraded container uses the original instance’s durable %SYS storage location and has the same
network location, it effectively replaces the original instance, upgrading InterSystems IRIS. If the version of the instance-
specific data does not match the version of the new instance, durable %SYS upgrades it to the instance’s version as needed.
(For more information about Durable %SYS, see Durable %SYS for Persistent Instance Data.)

Before starting the new container, you must either remove or stop and rename the original container.

CAUTION: Removing the original container is the best practice, because if the original container is started following
the upgrade, two instances of InterSystems IRIS will be attempting to use the same durable %SYS data,
which will result in unpredictable behavior, including possible data loss.

Typically, the upgrade command is identical to the command used to run the original container, except for the image tag.
In the following docker run command, only the version_number portion would change between the docker run command
that created the original container and the one that creates the upgraded container:

$ docker stop iris
$ docker rm iris
$ docker run --name iris --detach --publish 9091:1972
 --volume /data/durable:/dur --env ISC_DATA_DIRECTORY=/dur/iconfig
 intersystems/iris:<version_number> --key /dur/key/iris.key

When durable %SYS detects that an instance being upgraded did not shut down cleanly, it prevents the upgrade from con-
tinuing. This is because WIJ and journal recovery must be done manually when starting such an instance to ensure data
integrity. To correct this, you must use the procedures outlined in Starting InterSystems IRIS Without Automatic WIJ and
Journal Recovery to start the instance and then shut it down cleanly. If the container is running, you can do this by executing
the command docker exec -it container_name bash to open a shell inside the container and following the outlined procedures.
If the container is stopped, however, you cannot start it without automatically restarting the instance, which could damage
data integrity, and you cannot open a shell. In this situation, use the following procedure to achieve a clean shutdown before
restarting the container:

1. Create a duplicate container using the same command you used to create the original, including specifying the same
durable %SYS location and the same image, but adding the iris-main -up false option (see The iris-main Program).
This option prevents automatic startup of the instance when the container starts.

2. Execute the command docker exec -it container_name bash to open a shell inside the container.

3. Follow the procedures outlined in Starting InterSystems IRIS Without Automatic WIJ and Journal Recovery.

4. When recovery and startup are complete, shut down the instance using iris stop instance_name. (The instance in a
container provided by InterSystems is always named IRIS.)

5. Start your original container. Because it uses the durable %SYS data that you safely recovered in the duplicate container,
normal startup is safe.

34 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

Note: For information about upgrading a Web Gateway container with a durable data directory, see Options for Running
Web Gateway Containers.

5.8 Creating InterSystems IRIS Images

For most use cases, the simplest and least error-prone approach to creating a custom Docker image for InterSystems IRIS
is to base the Dockerfile on an existing image from InterSystems, in which InterSystems IRIS is already installed with the
iris-main program as the entrypoint. You can then add the dependencies relevant to your own application solution and
start the InterSystems IRIS instance, optionally use the configuration merge feature to modify its configuration, and issue
other commands to it.

For example, suppose you want to create an InterSystems IRIS image that includes your application and the two predefined
databases it requires. You can create a Dockerfile to do the following (as illustrated in the example following the steps):

1. Start with an InterSystems IRIS image as base.

2. Switch to user root and upgrade the base’s third-party dependencies.

Important: Upgrading the packages in the base is a best practice that helps avoid security vulnerabilities.

3. Switch back to the instance owner user, irisuser/51773 (see Ownership and Directories).

4. Copy in a file containing the application code.

5. Copy in a configuration merge file to create the needed namespaces and application databases on the instance, change
the default password using the PasswordHash parameter as described in Authentication and Passwords, and make any
other desired configuration changes. Such a merge file might look like this:

[Startup]
PasswordHash=dd0874dc346d23679ed1b49dd9f48baae82b9062,10000,SHA512
[Actions]
CreateDatabase:Name=DB-A,Directory=/usr/irissys/mgr/DB=A,Size=5368,MaxSize=536871,ResourceName=%DB_%DB-A
CreateDatabase:Name=DB-B,Directory=/usr/irissys/mgr/DB=B,Size=5368,MaxSize=536871,ResourceName=%DB_%DB-B
CreateNamespace:Name=DB-A,Globals=DB-A,Routines=SYS
CreateNamespace:Name=DB-B,Globals=DB-B,Routines=SYS

6. Start the InterSystems IRIS instance.

7. Execute the iris merge command with the configuration merge file to reconfigure the instance, including creating the
databases.

8. Shut down the instance.

9. Copy in prepared IRIS.DAT database files, overwriting those created in the previous step.

10. Remove the merge file, unless you plan to specify it as the instance’s merge file going forwardusing the
ISC_CPF_MERGE_FILE

The following sample Dockerfile illustrates the above steps:

FROM intersystems/iris:latest-em

USER root

RUN apt-get update && apt-get -y upgrade \
 && apt-get -y install unattended-upgrades

USER 51773

COPY application.xml /

COPY merge.cpf /tmp/

RUN iris start IRIS \
 && iris merge IRIS /tmp/merge.cpf \
 && iris stop IRIS quietly

Running InterSystems Products in Containers 35

Using InterSystems IRIS Containers

COPY DB-A.DAT /usr/irissys/mgr/DB-A
COPY DB-B.DAT /usr/irissys/mgr/DB-B

RUN rm /tmp/merge.cpf

Important: Before attempting to build your own InterSystems IRIS image as described in this section, be sure to
familiarize yourself with the information in the three sections covering the iris-main program, the durable
%SYS feature, and the containerization tools provided with InterSystems IRIS.

Note: An important consideration when creating Docker images is image size. Larger images take longer to download
and require more storage on the target machine. A good example of image size management involves the Inter-
Systems IRIS journal files and write image journal (WIJ). Assuming that these files are relocated to persistent
storage outside the container (where they should be), as described in Durable %SYS for Persistent Instance Data,
you can reduce the size of an InterSystems IRIS or application image by deleting these files from the installed
InterSystems IRIS instance within the container.

To clone user-defined databases like those included in the example to the durable data location created by durable
%SYS, the database files you copy in must be writable.

If for any reason you want to remove the contents of the messages.log or console.log files after InterSystems IRIS
is installed, so that when the instance starts in the container one or both of these files is empty, do not delete the
file(s), because the iris-main program treats a missing log file as a fatal error. Instead, you can empty them,
reducing their size to zero.

In exploring this approach, you can use the InterSystems IRIS Community Edition image described in Downloading the
InterSystems IRIS Docker Image as a base image. Bear in mind, however, that it includes some functionality restrictions.

For an example of using this approach to create an InterSystems IRIS image that includes a Web Gateway instance and a
web server, go to https://github.com/intersystems-community/webgateway-examples/tree/master/demo-dockerfile

5.9 InterSystems IRIS Containerization Tools

InterSystems provides several containerization tools to aid you in creating your own InterSystems IRIS-based container
images. This sections discusses the following topics:

• Required environment variables

• SYS.Container API and image build script

5.9.1 Required Environment Variables

There are a number of installation parameters available for use in configuring unattended installation of InterSystems IRIS
instances on UNIX and Linux; their use is described and they are listed in Unattended InterSystems IRIS Installation. If
you install InterSystems IRIS instance from a kit in your Dockerfile, rather than using an InterSystems image as a base as
described in Creating InterSystems IRIS Images, the installation parameters that are required as environment variables in
the container runtime environment must also be built into the image; without them, container creation from the image will
fail. These variables are included in all images from InterSystems and are shown, with the values set by InterSystems, in
the following table:

36 Running InterSystems Products in Containers

Using InterSystems IRIS Containers

https://github.com/intersystems-community/webgateway-examples/tree/master/demo-dockerfile

Table 1: Installation Parameters Required as Environment Variables for Containerization

InterSystems ValueDescriptionParameter/Variable

IRISName of the instance to be installed.ISC_PACKAGE_INSTANCENAME

/usr/irissysDirectory in which the instance will
be installed.

ISC_PACKAGE_INSTALLDIR

irisownerEffective user for the InterSystems
IRIS superserver.

ISC_PACKAGE_IRISUSER

irisownerEffective user for InterSystems IRIS
processes.

ISC_PACKAGE_IRISGROUP

irisownerUsername of the installation owner.ISC_PACKAGE_MGRUSER

irisownerGroup that has permission to start
and stop the instance.

ISC_PACKAGE_MGRGROUP

Note: If you are building your own InterSystems IRIS image, you can optionally set the IRISSYS variable to specify
the registry directory. InterSystems sets it to /home/irisowner/irissys in all images. If you do not include this envi-
ronment variable, the registry directory is /usr/local/etc/irissys.

The environment variables discussed here are used to specify the configuration details described in Ownership
and Directories.

5.9.2 SYS.Container API

In building its InterSystems IRIS images, InterSystems uses the SYS.Container API to bring the installed InterSystems
IRIS instance into a state in which it can safely be serialized into a container image. The class contains several methods
that can be used individually, but one of these, SYS.Container.QuiesceForBundling(), calls all of the needed methods in
a single operation, and is used by InterSystems in creating its images. Using this approach is the recommended best practice,
because error-checking across the Linux shell/ObjectScript boundary is difficult and involves the risk of silent errors from
InterSystems IRIS; the fewer calls you make, the lower this risk is.

The SYS.Container code is included and fully visible in any InterSystems IRIS instance installed on Linux platforms; see
the class reference for documentation. The methods include the following:

• SYS.Container.QuiesceForBundling()

Calls all of the ObjectScript code necessary to get InterSystems IRIS into a state in which it can safely be serialized
into a container image.

• SYS.Container.ChangePassword()

Changes the password of all enabled user accounts with at least one role; called by the iris-main --password-file
option and the password change script, as described in Authentication and Passwords.

• SYS.Container.ChangeGatewayMgrPassword()

Changes the Web Gateway management password (see Overview of the Web Gateway Management Pages); called
by the iris-main --password-file option and the password change script, as described in Authentication and Passwords.

• SYS.Container.ForcePasswordChange()

Sets Change password on next login on user enabled accounts with at least one role (see User Account Properties).

Running InterSystems Products in Containers 37

Using InterSystems IRIS Containers

• SYS.Container.KillPassword()

Disables password-based login for a specified user; other forms of authentication (see Authentication: Establishing
Identity) remain enabled.

• SYS.Container.EnableOSAuthentication()

Enables OS-based authentication for the instance (see About Operating-System–Based Authentication).

• SYS.Container.SetNeverExpires()

Sets Account Never Expires for the specified user account; without this, user accounts will expire in images that are
more than 90 days old (see Properties of Users).

• SYS.Container.PreventFailoverMessage()

Prevents journal rollover messages from the instance in a newly started container.

• SYS.Container.PreventJournalRolloverMessage()

Prevents the instance from posting a warning because the name of the host it is running on is not the same as the
hostname stored from the last time it was running.

• SYS.Container.SetMonitorStateOK()

Clears level 1 and level 2 alerts from the System Monitor, generating an error if a level 3 is present (see Using System
Monitor.

Note: The methods listed here can be used to specify the configuration details described in Authentication and Passwords.

A common approach is to include these methods in a Dockerfile based on an InterSystems IRIS image from InterSystems
(as described in Creating InterSystems IRIS Images) by calling them through the iris terminal command at instance startup,
for example:

RUN iris start $ISC_PACKAGE_INSTANCENAME \
 && iris terminal $ISC_PACKAGE_INSTANCENAME -U %SYS
"##class(SYS.Container).PreventJournalRolloverMessage()"
 && iris terminal $ISC_PACKAGE_INSTANCENAME -U %SYS "##class(SYS.Container).SetMonitorStateOK()"
 && iris terminal $ISC_PACKAGE_INSTANCENAME -U %SYS "##class(SYS.Container).QuiesceForBundling()"
 && iris terminal $ISC_PACKAGE_INSTANCENAME quietly

6 Additional Docker/InterSystems IRIS Considerations
This section describes some additional considerations to bear in mind when creating and running InterSystems IRIS images
container images.

6.1 Locating Image Storage on a Separate Partition

The default storage location for Docker container images is /var/lib/docker. Because this is part of the root file system, you
might find it useful to mount it on a separate partition, both to avoid running out of storage quickly and to protect against
file system corruption. Both Docker and the OS might have trouble recovering when the above problems emerge. For
example, SUSE states: “It is recommended to have /var/lib/docker mounted on a separate partition or volume to not affect
the Docker host operating system in case of file system corruption.”

A good approach is to set the Docker Engine storage setting to this alternative volume partition. For example, on Fedora-
based distributions, edit the Docker daemon configuration file (see Configure and troubleshoot the Docker daemon in the
Docker documentation), locate the ExecStart= command line option for the Docker Engine, and add - as an argument.

38 Running InterSystems Products in Containers

Additional Docker/InterSystems IRIS Considerations

https://docs.docker.com/engine/admin/

6.2 Accessing Endpoints Elsewhere on the Host from Within a Container

The applications that you deploy on your containerized InterSystems IRIS instance may need to communicate with network
endpoints which are hosted elsewhere on the container’s host machine. (For example: perhaps you are running an OAuth
2.0 server in another container.)

Your containerized application cannot access any endpoints outside the container using the hostname localhost, because
the container serves as an isolated environment. For information about the mechanisms that Docker provides for networking
its containers, refer to the following Docker documentation pages:

• Docker: https://docs.docker.com/desktop/networking/#networking-features

• Docker Compose: https://docs.docker.com/compose/networking/

6.3 Docker Bridge Network IP Address Range Conflict

For container networking, Docker uses a bridge network (see Use bridge networks in the Docker documentation) on subnet
172.17.0.0/16 by default. If this subnet is already in use on your network, collisions may occur that prevent Docker from
starting up or generate network errors.

To resolve this, you can edit the bridge network’s IP configuration in the Docker configuration file to reassign the subnet
to a range that is not in conflict with your own IP addresses (your IT department can help you determine this value). To
make this change, add a line like the following to the Docker daemon configuration file, which is /etc/docker/daemon.json

by default:

"bip": "192.168.0.1/24"

Detailed information about the contents of the daemon.json file can be found in Daemon configuration file in the Docker
documentation; see also Configure and troubleshoot the Docker daemon.

Running InterSystems Products in Containers 39

Additional Docker/InterSystems IRIS Considerations

https://docs.docker.com/desktop/networking/#i-want-to-connect-from-a-container-to-a-service-on-the-host
https://docs.docker.com/compose/networking/
https://docs.docker.com/network/bridge/
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/admin/

	Table of Contents
	1 Why Containers?
	2 The Docker Container Platform
	3 InterSystems IRIS in Containers
	4 Container Basics
	4.1 Container Contents
	4.2 The Container Image
	4.3 Running a Container

	5 Using InterSystems IRIS Containers
	5.1 Automated Deployment of InterSystems IRIS Containers
	5.2 Using InterSystems IRIS Images
	5.3 The iris-main Program
	5.4 Durable %SYS for Persistent Instance Data
	5.5 Web Access Using the Web Gateway Container
	5.6 Running InterSystems IRIS Containers
	5.7 Upgrading InterSystems IRIS Containers
	5.8 Creating InterSystems IRIS Images
	5.9 InterSystems IRIS Containerization Tools

	6 Additional Docker/InterSystems IRIS Considerations
	6.1 Locating Image Storage on a Separate Partition
	6.2 Accessing Endpoints Elsewhere on the Host from Within a Container
	6.3 Docker Bridge Network IP Address Range Conflict

	Index

