InterSystems-

IRIS Data Platform

Automating Configuration of
InterSystems IRIS with
Configuration Merge

Version 2024.1
2024-07-02

Automating Configuration of InterSystems IRIS with Configuration Merge
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

Automating Configuration of Inter Systems |RISwith Configuration Merge.........ccoceceervncncnnene 1
1 What is cONfiguration MEITE? ...cvcicieeeeeesese e ste e sttt s e e a e e e e eneere s e s sesresreseesaesreseeneens 1
2 How is InterSystems IRIS CONFIQUIBA?vcviiiiiiiircre e 1
3 How does configuration MErge WOIK?ciceeieiieeieieee ettt ste e e e st eeae e eesreens 2
4 Can configuration merge customize more than the configuration?cccocceeeiiinininininienens 2
5 How can | use configuration MEIJE?coierieerieerieeniee ettt ettt 3
6 Configuration merge in deplOYMENTcoiiiieiieee e 4
6.1 Deploying an InterSystems IRIS container with a merge fileccccoovveveievccciccecrcen, 4
6.2 Installing InterSystems IRIS from a kit with a merge fileccccevvivviiiiivinirie e, 6
6.3 Using a merge file when deploying with the InterSystems Kubernetes Operator 6
7 Reconfigure an existing instance using configuration MErgecccoverereereiereieneieseie e 6
8 Managing configuration CRANGESceiririierieireere bbbt 8
9 Useful parameters in automated deployYMENtcovoiriiiriiniiiiecee s 8
9.1 UPAALE PAIAMELEISviiviiiesiesiesieiesiestesieeese e eses e ssesre e s e saestesteseestestesee s ense e e e eneesenseaneanenees 9
9.2 ACHION PAFAMELELS ...cveveieiieieiieieite sttt ettt sb e bbbt sttt ne st et 10
9.3 Create, Modify and Delete Security ODJECESccoccveiiiieiicice e 11
9.4 Create, Modify, and Delete Database ODJECESccccevvreeieriierieeree e 13
9.5 Deploy a Distributed Cache Cluster (NONMIrrored)coveevreerenenensenseneeeseeseenes 14
9.6 Mirror the CIUSIEr’S DAta SEIVETcceiveieeeieeeeee et esee e e e sie e e e eressesnesreneas 15
List of Figures
Figure 1: Merge File Updates Memory Settings During Deploymentccocevvveriennienniennennns 2
Figure 2: Automated Deployment of a Sharded Cluster Using Configuration Mergec.co..... 4
List of Tables
Table 1: PaSSWOIT PAGMELETcviieeieieieeii ettt sttt sttt ettt e be bbb sbesbe st see e enseseeneeneas 9
Table 2: MEmMOrY ParGMELELScc.ciiiiiiiiiiieisieieie sttt bbbttt sbe s 10
Table 3: Sample Security Object Creation Parametersc.ccccvvierereererereereeesiesiesesesesseseeseeseens 11
Table 4: Sample Database and Namespace Action Parametersccccecvveerereresesienieseesseneereenens 13
Table 5: Mirror Deployment By HOSINAMEccuooiiiiiiiiiieiceiee e e 17
Table 6: Mirror Deployment by Hostname with Ordinalcccoeoiiiiinnnineeseces 18
Table 7: CoNfIGMIITOr ATGUIMENTSc.viveiiteieteriete ettt sttt ettt 19

Automating Configuration of InterSystems IRIS with Configuration Merge

Automating Configuration of InterSystems
IRIS with Configuration Merge

This document explains how to use configuration merge to deploy or reconfigure InterSystems IRIS® data platform.

1What is configuration merge?

The configuration merge feature lets you make as many changes as you wish to the configuration of any InterSystems IRIS
instance in a single operation. To use it, you simply record the changes you want to make in a declarative configuration
merge file and apply that file to the instance, when it is deployed or at any later point. Configuration merge can easily be
used to automatically deploy multiple instances with varying configurations from the same container image or kit, as well
as to simultaneously reconfigure multiple running instances, enabling automated reconfiguration of clusters or other multi-
instance deployments. Configuration merge can be used in deployment of any InterSystems IRIS instance, containerized
or locally installed, on any supported UNIX® or Linux platform, including Linux cloud nodes. You can reconfigure running
instances using configuration merge on both UNIX/Linux and Windows platforms.

For examples of configuration merge files used to deploy containers, see Useful Parameters in Automated Deployment.
The Configuration Parameter File Reference contains a comprehensive description of all InterSystems IRIS configuration
parameters.

2 How is InterSystems IRIS configured?

The configuration of an InterSystems IRIS instance is determined by a file in its installation directory named iris.cpf, which
contains configuration parameters as name/value pairs. Every time the instance starts, including for the first time after it is
deployed, it reads this configuration parameter file, or CPF, to obtain the values for these settings. This allows you to
reconfigure an instance at any time by modifying its CPF and then restarting it.

For example, the globals setting in the [config] section of the CPF determines the size of the instance’s database cache.
The setting in the CPF of a newly installed instance specifies an initial cache size equal to 25% of total system memory,
which is not intended for production use. To change the size of the database cache, you can open the instance’s CPF in any
text editor and specify the desired cache size as the value of globals, then restart the instance. Most parameters can be
changed using other methods; for example, you can also modify the value of globals using the Management Portal or using
the methods in the persistent class Config.config. Updating an instance’s CPF, however, is the only general mechanism
that lets you make multiple configuration changes to an instance in a single operation and automate the simultaneous con-
figuration of multiple instances.

For an overview of the use and contents of the CPF, see the Configuration Parameter File Reference.

Automating Configuration of InterSystems IRIS with Configuration Merge 1

How does configuration merge work?

3 How does configuration merge work?

A configuration merge fileis a partial CPF that contains any desired subset of InterSystems IRIS configuration parameters
and values. When a merge file is applied to an instance with configuration merge, those settings are merged into the
instance’s CPF, replacing the values, as if you had edited the CPF and changed the values manually. If a parameter in the
merge file is not present in the original CPF, it is simply added in the appropriate place.

For example, the data and compute nodes in a sharded cluster typically require with a database cache that is much larger
than that generally configured for other purposes, and have more shared memory configured as well. To configure an
instance to have a larger database cache and more shared memory when deployed, or to reconfigure an existing instance
this way, you can apply a configuration merge file that includes the globals parameter (which specifies the size of the
database cache) and the gmheap parameter (which specifies the amount of shared memory) with the desired values; these
replace the default values in the CPF of the instance. The following illustrates the use of a merge file to update both the
parameters when deploying an instance:.

Figure 1: Merge File Updates Memory Settings During Deployment

default iris.cpf merge file deployed iris.cpf

— \\
‘___/

4 Can configuration merge customize more than the
configuration?

In addition to changing the values of configuration parameters, configuration merge can create, modify, and delete dozens
of different InterSystems IRIS objects, such as namespaces and databases; users, roles, and resources; and mirrors and

mirror members. This is done using the parameters in the [Actions] section, which is valid only in a merge file and does
not appear in (and cannot be added to) an instance’s CPF. For example, to add a global mapping to an instance, you would

2 Automating Configuration of InterSystems IRIS with Configuration Merge

How can | use configuration merge?

include in the merge file an [Actions] section containing the CreateMapGlobal parameter. The parameters in this
section, which create, modify, and delete system objects, are sometimes called action parameters, to distinguish them from
those that update parameter values, which are known as update parameters.

Action parameters can be used to manage objects on both new and existing instances. The operations specified by action
parameters are idempotent, meaning that they are executed only if they would result in a change. More specifically:

» A Create action is not executed if the specified object exists.

* A Modify action is not executed if the specified object does not exist. (If the object exists but the action does not add
to/modify the properties of the object, the action is executed but to no effect.)

» A Delete action is not executed if the specified object does not exist.

» A Config action is not executed if the object exists and the action does not add to/modify the properties of that object;
if the object does not exist, or it exists and the action adds to/modifies its properties, the action is executed.

Action parameters are very useful in deployment, for example to configure several deployed instances as a mirror using
the ConfigMirror action and the MirrorSetName and MirrorDBName properties of the CreateDatabase action,
enabling the new mirror to be fully operational, with mirrored databases in place, immediately following deployment. On
the other hand, when used in reconfiguring an existing instance with the iris merge command, action parameters can enable
you to immediately make changes that would otherwise require a Management Portal procedure or a class method call;
notable examples are adding an arbiter to an existing mirror with adding a new database to an existing mirror using the
MirrorSetName and Mi rrorDBName properties of the Modi fyDatabase action, , which must be done on the running
primary instance.

The operations performed by action parameters are effected by calling methods of classes in the Config and Security classes
and in the SYS.Database and %SYSTEM.SQL.Security classes, as well as two SQL commands.

For examples of the use of action parameters, see Useful Parameters in Automated Deployment.

For lists of action parameters by object managed, by corresponding class, and in order of processing, as well as by name,
see [Actions] Parameter Reference.

5 How can | use configuration merge?

There are two primary uses for configuration merge:
» Configuring multi-instance topologies and stand-alone instances during deployment

» Reconfiguring deployed multi-instance topologies and stand-alone instances

Regardless of the specific application of the configuration merge feature, InterSystems recommends keeping the merge
files involved under version control to provide a record of all configuration changes, from deployment forward, over the
life of an instance or a multi-instance topology.

When you incorporate configuration merge into your automated deployment or reconfiguration process, you can update
the process by simply updating the merge files applied. Even in the case of individual instances used for purposes such as
development and testing, users can be required get the latest version of the appropriate merge file before deploying or
reconfiguring an instance, ensuring that its configuration matches a central specification. With version control, they can
even return to an older configuration by selecting a previous version of the merge file.

Automating Configuration of InterSystems IRIS with Configuration Merge 3

Configuration merge in deployment

6 Configuration merge in deployment

Applying a configuration merge file during deployment lets you modify the default configurations of the deployed instance
before it starts for the first time. This enables you to deploy containers with varying configurations from the same image,
or install differently-configured instances from the same Kit, directly into a multi-instance topology, rather than having to
configure the instances into the desired topology after deployment. For example, in automated containerized deployment
of a sharded cluster with compute nodes, you can apply different merge files for data node 1, the remaining data nodes,
and the compute nodes in that order, as shown in the following illustration; when all of the instances are up and running,
s0 is the sharded cluster.

Figure 2: Automated Deployment of a Sharded Cluster Using Configuration Merge

compute nodes ‘

@

InterSystems
IRIS image

configuration
merge files

data node 1 remaining data nodes

In similar fashion, when deploying a mirror, you would apply different configuration merge files for the primary, backup,
and async members. Even a mirrored sharded cluster is easily deployed using this approach.

Activating configuration merge during deployment requires only that the location of the merge file be specified by the
environment variable | SC_CPF_MERGE_FI LE, or by the field used for that purpose in the InterSystems Kubernetes
Operator (IKO). For example, in manual or scripted deployment:

1SC_CPF_MERGE_FILE=/home/user/mergefiles/cmf_090821.cpf

The specific manner in which you specify the merge file depends on the deployment mechanism you are using and whether
the instance is containerized or noncontainerized.

» Deploying an InterSystems IRIS container
* Installing InterSystems IRIS from a kit
¢ Deploying with the InterSystems Kubernetes Operator

6.1 Deploying an InterSystems IRIS container with a merge file

When deploying an InterSystems IRIS container, the environment variable and merge file can be included in the following
ways:

4 Automating Configuration of InterSystems IRIS with Configuration Merge

Configuration merge in deployment

* Include them in the script or docker-compose.ymil file you are using for deployment.

In the following sample deployment script, the merge file specified by | SC_CPF_MERGE_FI LE, as well as the license
key, are staged on the external volume specified for durable %SYS by | SC_DATA DI RECTORY so they are accessible
inside the container.

#1/bin/bash
script for quick demo and quick InterSystems IRIS image testing

Definitions to toggle
container_image="intersystems/iris: latest-em”

the docker run command

docker run -d
-p 9091:1972
-v /data/durable263:/durable
-h iris
--name iris
--cap-add IPC_LOCK
--env ISC_DATA DIRECTORY=/durable/irisdata
--env ISC_CPF_MERGE_FILE=/durable/merge/CMF.cpf
$container_image
--key /durable/key/iris._key

Note: The image tags shown in this document are examples only. Please go to the InterSystems Container Registry
(ICR) to browse current repositories and tags.

This sample docker-compose.yaml file contains the same elements as the deployment script.

version: "3.2"

services:
iris:
image: intersystems/iris:latest-em
command: --key /durable/key/iris._key
hostname: iris

ports:
1972 is the superserver default port
- '"9091:1972"

volumes:
- /data/durable263:/durable

environment:
- ISC_DATA DIRECTORY=/durable/irisdata
- ISC_CPF_MERGE_FILE=/durable/merge/CMF._cpf

e Include the merge file in the container image and the environment variable in the script or Docker compose file used
in deployment.

When creating a custom InterSystems IRIS container image by starting with an InterSystems IRIS image from Inter-
Systems and adding your own code and dependencies, you can execute the iris merge command in the Dockerfile to
reconfigure the InterSystems IRIS instance contained in the image. For example, you can run the iris merge command
with a merge file with [Actions] parameters to add namespaces and databases to the instance, which will then be
present on the instance in every container created from your custom image. This method is explained and illustrated
in Creating InterSystems IRIS Images in Running Inter Systems Products in Containers.

If you want the containerized instances to continue to use the merge file you placed in the container, you can set

| SC_CPF_MERGE_FI LE in your script or compose file to the location of this file. You can also run an additional,
separate merge during deployment using a merge file positioned on the durable SYS volume, as illustrated above; if
you plan to do this, add a command in the Dockerfile to remove the included merge file after it has been applied to the
instance.

For examples of use cases for automated deployment using configuration merge, see Useful parameters in automated
deployment.

Automating Configuration of InterSystems IRIS with Configuration Merge 5

https://containers.intersystems.com/contents

Reconfigure an existing instance using configuration merge

6.2 Installing InterSystems IRIS from a kit with a merge file

To apply a merge file when installing InterSystems IRIS from a kit, manually or in a script, you must separate installation
from startup, using the steps below.

On UNIX® or Linux system:

1. Install the instance without starting it by preceding the irisinstall or irisinstall_silent script with the
| SC_PACKAGE_STARTI RI S parameter, as follows:

1SC_PACKAGE_INSTANCENAME=""IR1S27"" 1SC_PACKAGE_STARTIRIS="N" /tmp/iriskit/irisinstall
2. Start the instance with the iris start command, preceding it with the | SC_CPF_MERGE_FI LE variable, as follows:

ISC_CPF_MERGE_FILE=/tmp/iriskit/CMF/merge.cpf iris start IRIS27

On a Windows system:

1. Install and start the instance, for example:
IR1S-2023.2.0.227.0-win_x64.exe /Zinstance IRIS27 INSTALLDIR=C:\InterSystems\IRIS27

2. When the instance is fully started, use the irismerge command (as described in Reconfigure an existing instance using
configuration merge) to apply your merge file:

iris merge IR1S27 C:\InterSystems\IRIS27\merge.cpf

6.3 Using a merge file when deploying with the InterSystems Kubernetes
Operator

Kubernetes is an open-source orchestration engine for automating deployment, scaling, and management of containerized
workloads and services. The InterSystems Kubernetes Operator (IKO) extends the Kubernetes API with the IrisCluster
custom resource, which can be deployed as an InterSystems IRIS sharded cluster, distributed cache cluster, or standalone
instance (all optionally mirrored) on any Kubernetes platform. The IKO also adds InterSystems IRIS-specific cluster
management capabilities to Kubernetes, enabling automation of tasks like adding nodes to a cluster, which you would
otherwise have to do manually by interacting directly with the instances.

When deploying with the IKO, you use a Kubernetes ConfigMap to integrate one or more merge files into the deployment
process. For detailed information, see Create configuration files and provide a config map for them in Using the Inter Systems
Kubernetes Operator.

7 Reconfigure an existing instance using configuration
merge

By automating application of the same merge file to multiple running instances, you can simultaneously reconfigure all of
those instances in the same way, applying the same set of configuration changes across your application or cluster. You
can avoid updating settings that may have been customized on a per-instance basis and should not be modified simply by
omitting these from the merge file, while including only those you know it is safe and desirable to change. A single automated
program can of course apply different merge files to different groups of instances (such as different mirror member or
cluster nodes types) as described in the previous section.

6 Automating Configuration of InterSystems IRIS with Configuration Merge

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO
https://kubernetes.io/docs/concepts/configuration/configmap/
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=AIKO_clusterdef_configSource

Reconfigure an existing instance using configuration merge

Applying all configuration changes with a merge file helps you streamline the process of making changes and maintain
greater control over the instance’s configuration. Rather than making numerous individual changes from the Terminal, on
multiple pages of the Management Portal, or by editing an instance’s CPF manually, you can execute all the changes at
once using identical syntax in a merge file. By keeping your merge files under version control, you ensure the availability
of configuration history and the option of restoring a previous configuration.

The irismerge command, which can be used on both UNIX/Linux and Windows systems, applies a merge file to a running
instance. For Windows operating systems, it requires OS authentication to execute. It is executed as follows:

iris merge instance [nerge-file] [target-CPF]

where:
» instanceis the name of the InterSystems IRIS instance.

« mergefileis the absolute or relative path to the merge file, including the filename. If merge-file is not specified, the
value of the | SC_CPF_MERCE_FI LE environment variable is used, if it is set.

» target-CPF is the absolute or relative path to the active CPF for instance instance, which is assumed to be named
iris.cpf. If target-CPF is not specified, the defaults are as follows:

— For noncontainerized instances, the iris.cpf file located in the directory specified by the
| SC_PACKAGE | NSTALLDI Renvironment variable, if it is set. For most existing instances, this variable is not
set, and you must explicitly specify the location of the target CPF.

— For containerized instances, the iris.cpf file located in the directory specified by the | SC_DATA DI RECTORY
environment variable or, if it is not set (because durable %SYS is not in use), the | SC_PACKAGE | NSTALLDI R
environment variable, which is always set in an InterSystems IRIS container.

— Iftheenvironment variables | SC_DATA DI RECTORY and | SC_PACKAGE | NSTALLDI Rare not set and target-CPF
is not specified, InterSystems IRIS checks for the location of target-CPF in the operating system registry.

No merge is performed if:

» The specified merge file is not present, or the merge-file argument is omitted and | SC_CPF_MERGE_FI LE does not
exist.

» There is no CPF in the specified target location or all three of the following conditions: 1) the target location is not
specified, 2) neither | SC_DATA_DI RECTORY or | SC_PACKAGE_I| NSTALLDI Rexist and 3) the operating system
registry does not have the path for target-CPF defined.

After entering the command, an InterSystems IRIS terminal prompts for you to supply a username and password (if OS
authentication is not enabled). Only once authentication succeeds does the command complete execution. On an unsuccessful
merge, the terminal indicates which line the merge failed on and you can press any key to close the window. On a successful
merge, the success message displays for three (3) seconds before the window closes automatically.

Some changes merged into a CPF will not take effect immediately, but require a restart. For example, a change in the value
of the gmheap parameter, which determines the size of the instance’s shared memory heap, does not take effect until the
instance is restarted. When your merge file contains one or more such parameters, you may need to apply the merge file
as part of a restart, as in the following sample script excerpt:

restart instance with the necessary parameters (all on one line)
sudo ISC_CPF_MERGE_FILE=/net/merge_Tfiles/config_merge.cpf iris stop IRIS restart

On the other hand, applying a merge file with the iris merge command lets you immediately change settings that do not
require a restart, including those that cannot be set during instance startup; an example, as noted in Can configuration merge
customize more than the configuration?, is adding a database to an existing mirror.

Automating Configuration of InterSystems IRIS with Configuration Merge 7

Managing configuration changes

Important: When a container is deployed with configuration merge (as described in Deploying an InterSystems IRIS
container with a merge file), the merge file specified by | SC_CPF_MERGE_FI LE (which is persistent in
the container) is continuously monitored for updates as long as the container is running, with updates
immediately merged by an iris merge command when they occur. This means that you can update the
configuration of a containerized instance at any time by updating its merge file, making it easier to automate
reconfiguration of containerized instances and clusters.

8 Managing configuration changes

In addition to the use of configuration merge in deployment or with an existing instance through the iris merge command
or during a restart, an instance’s CPF can be altered using the Management Portal, the Config.* classes, or a text editor.
These methods are generally used for modifying individual settings on individual instances as needed, rather than reconfig-
uring multiple instances. If you use configuration merge to automatically deploy and/or reconfigure multiple instances, the
strongly recommended best practice is to confine all configuration changes to this method — even when this means, for
example, using iris merge merge to change just one or two parameters on one instance. That way, assuming you version
and store the merge files you employ, you can maintain a record of the configuration of each instance through time and
avoid the possibility of configuration merge overwriting changes made by other means.

In a container, the potential for the latter is very great due to the continuous monitoring and merging of the merge file
identified by the | SC_CPF_MERGE_FI LE variable, as described in the previous section. This allows you to use configuration
merge and a central repository of merge files to apply further changes to existing instances simply by updating their merge
files at any time. However, if the configuration parameters included in the merge file have been changed on the instance
in the container by another method since deployment, the update merge can erase those changes, of which there may not
be any record. Confining all configuration changes to configuration merge avoids this. (If the merge file does not exist,
startup displays an error message and continues.)

If you do not confine changes to configuration merge, you can avoid the possibility of configuration merge making unwanted
changes by including in your automation (using, for example, the iris-main --after option) the scripting of either or both
of the following after instance startup:

e The deletion of the | SC_CPF_MERGE_FI LE environment variable in each deployed container. (If the merge file does
not exist, startup displays an error message and continues.)

e The replacement of the merge file in each container with an empty file.

9 Useful parameters in automated deployment

The configuration merge feature can be used to update any combination of settings in an instance’s CPF and execute certain
operations on the instance as specified in the [Actions] section. Several automated deployment use cases that you may
find useful and make good examples of the power of the configuration merge feature, along with the parameters involved,
are discussed in this section, including:

Update parameters

e Change the default password

» Configure and allocate memory

» Configure SQL and SQL Shell options and map SQL datatypes

» Update parameters example

8 Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

Action parameters

» Create, modify and delete security objects
» Create, modify, and delete database objects
» Deploy a distributed cache cluster

e Mirror the cluster’s data server

9.1 Update Parameters

The parameters described in the following sections are among those used to modify values in the deployed instance’s CPF
before the instance is started, thereby updating the default CPF in the deployment source (installation kit or container).
Each parameter name provided is linked to its listing in the Configuration Parameter File Reference so you can easily
review a parameter’s purpose and details of its usage.

9.1.1 Change the Default Password

As described in Authentication and Passwords in Running Inter Systems Products in Containers, you can use the
PasswordHash setting in the [Startup] section to customize the default password of the predefined accounts on an
instance at deployment, which eliminates the serious security risk entailed in allowing the default password of SYS to
remain in effect. (The password of each predefined account should be individually changed following deployment.)

Table 1: Password Parameter

[Startup] Specifies
Parameter
PasswordHash Default password for the predefined user accounts based on a cryptographic hash of the

value and its salt

Note: The [Actions]/CreateUser parameter also takes a PasswordHash argument that is equivalent to the
parameter (see [Actions] Parameter Reference).

9.1.2 Configure and Allocate Memory

There are a number of parameters affecting an InterSystems IRIS instance’s memory usage, the optimal value of which
can depend on the physical memory available, the instance’s role within the cluster, the workload involved, and performance
requirements.

For example, the optimal size of an instance’s database cache, which can be specified using the globals parameter, can vary
greatly depend on the instance’s role; as noted above, sharded cluster data nodes typically require a relatively large cache.
But even within that role, the optimal size depends on the size of the cluster’s sharded data set, and the implemented size
may be smaller than optimal due to resource constraints. (For more information, see Planning an InterSystems IRIS Sharded
Cluster in the Scalability Guide.) Further, because the database cache should be carefully sized in general, the default
database cache setting (the value of globals in the iris.cpf file provided in the container) is intentionally unsuitable for any
production environment, regardless of the instance’s role.

Some of the memory usage settings in the [ConFfig] section of the CPF that you might want to update as part of deployment
are listed in the following table:

Automating Configuration of InterSystems IRIS with Configuration Merge 9

Useful parameters in automated deployment

Table 2: Memory Parameters

[Config] Specifies

Parameter

bbsiz Maximum process private memory per process

globals Shared memory allocated to the database cache (not from shared memory heap)
routines Shared memory allocated to the routine cache (not from shared memory heap)
gmheap Shared memory configured as the shared memory heap

jrnbufs Shared memory allocated to journal buffers from the shared memory heap

locksiz Maximum shared memory allocated to locks from the shared memory heap

For more detail on these and other memory-related parameters, see System Resource Planning and Management, Memory
and Startup Settings, Configuring Journal Settings, and Monitoring Locks.

9.1.3 Configure SQL and SQL Shell Options and Map SQL Datatypes

You can specify the SQL and SQL Shell settings for instances you are deploying by merging one or more of the parameters
in the [SQL] section of the CPF. In the Management Portal these settings can be reviewed and modified on the SQL page
(System Administration > Configuration > SQL and Object Settings > SQL). You can map SQL system data types and SQL
user data types to their InterSystems SQL equivalents on deployed instances using the [SqlSysDatatypes] and
[SglUserDatatypes] sections of the CPF, respectively. For more detail on SQL Shell setting and datatype mapping,
see Configuring the SQL Shell and Data Types (SQL), respectively.

9.1.4 Update Parameter Example

The following sample CPF merge file includes some of the update parameters discussed in the preceding sections. The
SystemMode parameter specifies a label that is displayed at the top of the Management Portal.

[Startup]
SystemMode=TEST
PasswordHash=FBFE8593AEFA510C27FD184738D6E865A441DE98 , u4ocm4qgh

[config]

bbsiz=-1
globals=0,0,900,0,0,0
routines=64
gmheap=256000
Jrnbufs=96
locksiz=1179648

[sQL]
DefaultSchema=user
TimePrecision=6

[SqlSysDatatypes]
TIMESTAMP=%Library.PosixTime

9.2 Action Parameters

The parameters described in the following sections are among those that can be included in the [Actions] section to
create, modify, or delete different types of objects on an instance as part deployment (or reconfiguration), including databases,
namespaces, and mappings; users, roles, and resources; and many more. The use of action parameters (often simply called
actions) is described in Can configuration merge customize more than the configuration?, which includes additional con-
figuration merge file examples, and they are comprehensively listed in [Actions] Parameter Reference.

For comprehensive lists of all of the [Actions] parameters, see [Actions] Parameter Reference.

10 Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

9.3 Create, Modify and Delete Security Objects

Include the operations described in the following table in the [Actions] section to create and modify security objects as
part of deployment or reconfiguration

Table 3: Sample Security Object Creation Parameters

[Actions] Parameter

CreateUser

CreateRole

CreateResource

GrantAdminPrivilege,
GrantPrivilege

ModifyService

CreateApplication

CreateSSLConfig

CreatelLDAPConfig

CreateEvent

Specifies

The name and properties of the user account to be created. You can also use
ModifyUser and DeleteUser.

The name and properties of the role to be created. You can also use ModifyRole
and DeleteRole.

The name and properties of the resource to be created. You can also use
ModifyResource and DeleteResource.

The user account to grant SQL privileges and SQL admin privileges to, the
privileges to be granted, and the namespace to grant them in. You can also use
RevokeAdminPrivlege and RevokePrivilege.

The service to enable or disable.

The name and properties of the application to be created. You can also use
ModifyApplication and DeleteApplication.

The name, location, and properties of the TLS/SSL configuration to be created.
You can also use ModifySSLConfig and DeleteSSLConfig.

The name and properties of the LDAP configuration to be created. You can also
use Modi fyLDAPConfig and DeletelLDAPConfig.

The name, properties and status of the system audit event to be created. You
can also use ModifyEvent and DeleteEvent.

To illustrate the use of action parameters with security objects, suppose you wanted to add to deployed instances a predefined
account for a SQL administrator user who:

* Has SQL access through the %Service_Bindings service (%SQL role).

* Can read from or write to the USER database (%DB_USER role).

« Cancreate and drop tables, views, procedures, functions, methods, queries, and triggers (%DB_OBJECT_DEFINITION
privilege) and use the BUILD INDEX command (%BUILD_INDEX privilege) in the USER namespace.

To do this, you could use the CreateUser parameter to create the user account with password and assign it the needed
roles, and the GrantAdminPrivi lege parameter to grant it the needed SQL privileges, as follows:

[Actions]

CreateUser :Name=SQLAdmin,

PasswordHash=""cec6638a357e7586fddfb15c0e7dd5719a1964e774cd37466Ffb0c49c05,
323ch89148c887166dd2be61c107710539af2c01b43F07dccc8d030ac2cla8cf7c5ace4a00d57e3780F,10000,SHAS12,

Roles="%SQL ,%DB_USER"*

GrantAdminPrivilege:Grantee=SQLAdmin,Namespace=USER,AdminPriv="%DB_OBJECT_DEFINITION,%BUILD_INDEX"

For information about the operations performed by these action parameters and the values of their properties, see Authen-
tication and Passwords, About InterSystems Authorization, and SQL Users, Roles, and Privileges.

Automating Configuration of InterSystems IRIS with Configuration Merge 11

Useful parameters in automated deployment

9.3.1 Security Macros

InterSystems IRIS supports a set of macros that you can use in the [Actions] section of the CMF. These macros relate
to the AutheEnabled property for the Security. Applications, Security.Services, Security.System, and Security.Users classes
as well as the LDAPFlags property in the Security.LDAPConfigs class. Supported macros are listed below.

AutheEnabled macros:

AutheK5CCache — Enables Kerberos credential cache authentication.

AutheK5Prompt — Enables Kerberos password prompt authentication.

AutheK5AP1 — Enables Kerberos username and password authentication.

AutheK5KeyTab — Enables Kerberos keytab file authentication.

AutheOS — Enables operating system authentication.

AuthePassword — Enables password authentication.

AutheUnauthenticated — Enables unauthenticated access.

AutheKB — Enables Kerberos base connection security level.

AutheKBEncryption — Enables Kerberos with Encryption connection security level.
AutheKBIntegrity — Enables Kerberos with Packet Integrity connection security level.

AuthelLDAP — Enables LDAP authentication.

AuthelLDAPCache — Enables LDAP cached credentials for LDAP authentication.

AutheDelegated — Enables delegated authentication.

AuthelLoginToken — Enables creation of Login Cookies.

AutheKerberosDelegated — Enables using Kerberos for authentication then uses delegated authorization.
AutheOSDe legated — Enables using the operating system to authenticate the user then uses delegated authorization.
AutheOSLDAP — Enables Operating Systems authentication then LDAP authorization.
AutheTwoFactorSMS — Enables SMS two factor authentication for a user.

AutheTwoFactorPW — Enables one-time password two factor authentication for a user.

AutheAlwaysTryDelegated — Enables using delegated authentication code for users authenticating with instance
authentication.

AutheMutual TLS — Enables mutual TLS when modifying %Ger vi ce_\WebGat eway.

LDAPFlags macros:

LDAPActiveDirectory — Indicates that the LDAP server is a Windows Active Directory server.
LDAPTLSConnection — Enables use of TLS for LDAP sessions.

LDAPATI 1owISCLDAPCONFIGURATION — Enables use of the ISC_LDAP_CONFIGURATION environment variable
if using OS-based LDAP and multiple domains to determine which LDAP configuration to use for authentication.

LDAPUseGroups — Enables using LDAP groups for Roles/Routine/Namespace.
LDAPUseNestedGroups — Enables searching to return all of a user's nested LDAP groups.

LDAPUniversalGroups — Enables searches using attributes on the LDAP server that are relevant for all InterSystems
IRIS instances.

LDAPEnabled — Enables the LDAP configuration.

12

Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

* LDAPKerberosOnly — Enables use of Kerberos only for an LDAP configuration.

Example of enabling password authentication and unauthenticated access for %Ser vi ce_ConPor t :

[Actions]
ModifyService:Name=%Service_ComPort,AutheEnabled=$$$AuthePassword+$$$AutheUnauthenticated

Example of using some LDAPFlags macros to create a new LDAP configuration. Note that the values for LDAPBaseDN
and LDAPBaseDNFor Groups contain “=", so the values must be enclosed in quotes.

[Actions]
icHURD I o) [AeEa

C=

9.4 Create, Modify, and Delete Database Objects

Include the operations described in the following table in the [Actions] section to create databases (both local and
remote), namespaces, and mappings as part of deployment or reconfiguration.

Table 4: Sample Database and Namespace Action Parameters

[Actions] Specifies
Parameter

CreateDatabase | The database’s name and properties to be registered in InterSystems IRIS and the location
on the host file system of the database file to be created. You can also use
ModifyDatabase and DeleteDatabase.

CreateDatabaseFile | The location on the host file system of the database file to be created (without registering
the database in InterSystems IRIS). You can also use ModifyDatabaseFile and
DeleteDatabaseFile.

CreateNamespace | The name and properties of the namespace to be created in InterSystems IRIS. You can
also use Modi fyNamespace and DeleteNamespace.

ModifyNamespace | The name of the existing InterSystems IRIS namespace and its properties to be modified.
You can also use CreateNamespace and DeleteNamespace.

CreateMapGlobal | The namespace to create the mapping in, the specification of the global to be mapped,
and the database in which that global resides. You can also use ModifyMapGlobal and
DeleteMapGlobal. In addition, you can use Create/Modify/DeleteMapRoutine and
Create/Modify/DeleteMapPackage to create, modify, and delete routine and package
mappings.

To illustrate the use of action parameters with database-related objects, suppose you wanted to:

» Create a database and a resource for it, then modify an existing namespace to make the database you created its global
database and enable interoperability.

» Create a second database with resources, then create an interoperability-enabled namespace with the database as its
default global database.

Automating Configuration of InterSystems IRIS with Configuration Merge 13

Useful parameters in automated deployment

The following example shows how you could do this with a merge file:

[Actions]

CreateResource:Name=%DB_%APPA,Description="APPA database"
CreateDatabase:Name=APPA,Directory=/dat abase- pat h/APPA
ModifyNamespace :Name=APPA,Globals=APPA, Interop=1
CreateResource:Name=%DB_%APPB,Description="APPB database"

CreateDatabase :Name=APPB,Directory=/dat abase- pat h/APPB
CreateNamespace :Name=APPB,Globals=APPB, Interop=1

Suppose that at a later point you wanted to add mappings of globals and routines in database APPA to namespace APPB.
You could do this with a merge file like the following:

[Actions]
CreateMapGlobal :Name="gl obal - nanme (1) : (101)",Namespace=APPB,Database=APPA
CreateMapRoutine:Namespace=APPB,Name=r out | ne- spec ,Database=APPA

For information about the operations performed by these action parameters and the values of their properties, see Create/Mod-
ify a Namespace, Create a Local Database, and Add Global, Routine, and Package Mapping to a Namespace.

9.5 Deploy a Distributed Cache Cluster (Nonmirrored)

With a few simple changes to the merge file example in the previous section, you can create merge files to deploy a distributed
cache cluster.

Deploy the Data Server

The merge file below would be used to deploy the nonmirrored data server. In addition to creating the application databases
and their associated resources and hamespaces, it does the following:

e Enables the ECP service with an action parameter.

» Uses an update parameter to set the maximum number of concurrent application server connections the data server
can accept to 16.

Differences from the previous sample merge file are emphasized.

nonmirrored data server merge file

[Config]

MaxServerConn=16

[Actions]

ModifyService:Name=%service_ecp,Enabled=1
CreateResource:Name=%DB_%APPA,Description="APPA database"
CreateDatabase:Name=APPA,Directory=/dat abase- pat h/APPA
CreateNamespace :Name=APPA,Global s=APPA
CreateResource:Name=%DB_%APPB,Description="APPB database"

CreateDatabase :Name=APPB,Directory=/dat abase- pat h/APPB
CreateNamespace :Name=APPB,Global s=APPB

Deploy the Application Servers
This merge file, which would be used to deploy all of the application servers, does the following:
* Adds the data server as a remote server with an update parameter

* Modifies the CreateDatabase actions above by adding the Server and LogicalOnly properties and updating
the Directory argument to point to existing databases on the remote server, rather than a local directory in which
to create a local database.

14 Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

Differences from the sample merge file in the previous section are emphasized.

app servers merge file
[ECPServers]
dataAB=dataserver-address,port,0
[Actions]

CreateResource:Name=%DB_%APPA,Description="APPA database"
CreateDatabase:Name=APPA, Server=dataAB,Directory=/dat abase- pat h-on-dataserver-dataAB/APPA ,ResourceName=%DB_%APPA,

LogicalOnly=1,
CreateNamespace :Name=APPDBA,Global s=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"
CreateDatabase :Name=APPB, Server=dataAB ,Di rectory=/dat abase- pat h-on-dataserver-dataAB/APPB , ResourceName=%DB_%APPB,

LogicalOnly=1
CreateNamespace :Name=APPB,Globals=APPB

For information about the operations performed by these action parameters and the values of their properties, see Remote
Databases and Deploying a Distributed Cache Cluster.

9.6 Mirror the Cluster’s Data Server

To deploy one or more InterSystems IRIS mirrors, you can use separate configuration merge files, each containing the
ConfigMirror action parameter, for the different mirror roles, sequentially deploying the first failover member(s), then
the second failover member(s), then DR async members, then any reporting async members if desired.

You can also deploy using a single merge file and hostname matching, which determines which member to deploy on each
of a set of hosts the names of which match the required pattern.

This section provides examples of each approach and a table listing the commonly-used properties of the ConfigMirror
parameter.

For detailed information about mirror configuration, see Mirroring Architecture and Planning and Creating a Mirror. Be
sure to read Mirroring with InterSystems IRIS Containers before planning containerized deployment of mirrors, or recon-
figuring existing containerized instances into mirrors. Among other important considerations, you must ensure that the
ISCAgent starts whenever the container for a failover or DR async mirror member starts.

9.6.1 Deploy the Mirror Using Separate Merge Files

In planning deployment using separate merge files it is important to bear in mind that the instance configured as the mirror
primary must be running before other members can be added, so you must ensure that this instance is deployed and success-
fully started before other instances are deployed as the remaining members.

Deploy the Data Server Mirror Members

The following merge files deploy the distributed cache cluster’s data server as a mirror with a DR async member by doing
the following:

* Including the ConfigMirror action parameter to create the mirror and add members.

» On the primary, adding the created databases to the mirror (they will be automatically added on the other members).

Automating Configuration of InterSystems IRIS with Configuration Merge 15

Useful parameters in automated deployment

Differences from the corresponding merge file in the previous section are emphasized.

mirrored data server primary merge file

[Config]
MaxServerConn=16

[Actions]
ModifyService:Name=%service_ecp,Enabled=1

ConfigMirror:Name=CLUSTERAB,SSLDir=ss| - di r ect ory- pat h,
Member=primary,Primary=localhost,ArbiterURL=addr ess:por t

CreateResource:Name=%DB_%APPA,Description="APPA database"

CreateDatabase :Name=APPA,Directory=/ddat abase- pat h/APPA,
MirrorSetName=CLUSTERAB,MirrorDBName=APPA

CreateNamespace:Name=APPA,Global s=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"

CreateDatabase:Name=APPB,Directory=/ddat abase- pat h/APPB,
MirrorSetName=CLUSTERAB,MirrorDBName=APPB

CreateNamespace :Name=APPB,Global s=APPB

mirrored data server merge file to add backup, DR async, read-only reporting async, or read-write
reporting async;
for ConfigMirror Member argument enter either =backup, =drasync, =rorasync, or =rwrasync as appropriate

[Config]
MaxServerConn=16

[Actions]
ModifyService:Name=%service_ecp,Enabled=1

ConfigMirror:Name=CLUSTERAB,SSLDir=ss!| - di r ect ory- pat h,
Member=backup|drasync|rorasync|rwrasync,Primary=pr i mary- addr ess - ArbiterURL=addr ess:port

CreateResource:Name=%DB_%APPA,Description="APPA database"

CreateDatabase :Name=APPA,Directory=/ddat abase- pat h/APPA,
MirrorSetName=CLUSTERAB,MirrorDBName=APPA

CreateNamespace :Name=APPA,Global s=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"

CreateDatabase:Name=APPB,Directory=/ddat abase- pat h/APPB,
MirrorSetName=CLUSTERAB,MirrorDBName=APPB

CreateNamespace :Name=APPB,Global s=APPB

Note: To copy existing databases to the mirror created by the ConfigMirror action instead of creating empty ones,
you could use the Seed parameter of the CreateDatabase action to specify the path names of the databases
to copy, as shown in this modified excerpt from either section (primary or backup/DR async) of the previous
example:

ConfigMirror:Name=CLUSTERAB,SSLDir=ssl -di rectory-path,
Member=backup|drasync,Primary=pri mary- addr ess:,ArbiterURL=addr ess:port

CreateResource:Name=%DB_%APPA,Description="APPA database"
CreateDatabase:Name=APPA,Directory=/ddat abase- pat h/APPA,

MirrorSetName=CLUSTERAB,MirrorDBName=APPA Seed=/mnt/databases/DB1
CreateNamespace :Name=APPA,Globals=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"
CreateDatabase:Name=APPB,Directory=/ddat abase- pat h/APPB,

MirrorSetName=CLUSTERAB,MirrorDBName=APPB,Seed=/mnt/databases/DB2
CreateNamespace :Name=APPB,Globals=APPB

Deploy the Application Servers with Mirrored Data Server

16 Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

This merge file alters the application server merge file previously shown only by changing the O at the end of the remote
server definition action in [ECPServers] to 1, as emphasized, to indicate that the remote server is a mirror, which allows
application connections to transparently switch to the new primary after failover.

app servers merge file
[ECPServers]
dataAB=dataserver-address,port,1
[Actions]

CreateResource:Name=%DB_%APPA,Description="APPA database"

CreateDatabase :Name=APPA,Directory=/dat abase- pat h- on- dat aser ver - dat aAB/APPA,ResourceName=%DB_%APPA,
Server=dataAB,LogicalOnly=1

CreateNamespace :Name=APPDBA,Global s=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"

CreateDatabase:Name=APPB,Directory=/dat abase- pat h- on- dat aserver-dataAB/APPB/ ,ResourceName=%DB_%APP ,B
Server=dataAB,LogicalOnly=1

CreateNamespace :Name=APPB,Global s=APPB

9.6.2 Deploy the Mirror Using Hostname Matching

You can automatically deploy one or more mirrors from a single merge file if the deployment hosts have names ending in
-number (or, as a regular expression, .*-[0-9]+$), for example iris-000, iris-001, iris-002 ..., or in -number-number, for example
iris-0-0, iris-0-1, iris-1-0, iris-1-1 You do this by

» Setting the Map argument (not used with the separate merge file approach) to the pattern you want (it is
primary,backup by default, but can also contain up to 14 DR async members as in
primary,backup,drasync,...)

e Setting the Member and Primary arguments to auto.

For example, if you used the following ConfigMirror action parameter, mirror members would be deployed on appro-
priately named hosts as shown in the table after the example:

ConfigMirror:Name=AUTOMIRROR,SSLDir=ssl -directory-path,
Map="primary,backup,drasync”,
Member=auto,Primary=auto,ArbiterURL=addr ess:port

Table 5: Mirror Deployment by Hostname

Single-number hostnames Double-number hostnames Mirror member role
m rror-000 mrror-0-0 primary
mrror-001 mrror-0-1 backup

m rror-002 mrror-0-2 DR async
mrror-003 mrror-1-0 primary
mrror-004 mrror-1-1 backup
mrror-005 mrror-1-2 DR async

To allow multiple independent InterSystems IRIS clusters to communicate without mirror member name collisions, you
can offset the hostnames of one of the clusters by a number to prevent overlap using the optional Ordinal property. For
example, if Ordinal is set to 100, then the corresponding hostnames are iris-100, iris-101, iris-102 ...

Automating Configuration of InterSystems IRIS with Configuration Merge 17

Useful parameters in automated deployment

As another example, if you used the following ConfigMirror action parameter, mirror members would be deployed on
appropriately named hosts as shown in the table after the example:

ConfigMirror:Name=AUTOMIRROR,SSLDir=ssl - directory-path,
Map=""primary,backup,drasync”,
Member=auto,Primary=auto,ArbiterURL=addr ess:port
Ordinal=100

Table 6: Mirror Deployment by Hostname with Ordinal

Single-number hostnames Double-number hostnames Mirror member role
mrror-100 m rror-0-100 primary
mrror-101 mrror-0-101 backup
mrror-102 mrror-0-102 DR async
mrror-103 mrror-1-100 primary
mrror-104 mrror-1-101 backup
mrror-105 mrror-1-102 DR async

Deploy Mirror Members by Hostname

Incorporating a ConfigMirror action like the one above, you could use hostname matching to deploy a three-member
mirrored data server using the following single merge file on three sequentially named hosts such as iris-001, iris-002, and
iris-003 rather than three merge files as shown in the previous section.

mirrored data server using single merge file and hostname mapping

[Config]
MaxServerConn=16

[Actions]
ModifyService:Name=Y%service_ecp,Enabled=1

ConfigMirror:Name=CLUSTERAB,SSLDir=ssl| -directory-path,
Map=""primary,backup,drasync”,Member=auto,
Primary=auto,ArbiterURL=addr ess:port

CreateResource:Name=%DB_%APPA,Description="APPA database"

CreateDatabase:Name=APPA,Directory=/ddat abase- pat h/APPA,
MirrorSetName=CLUSTERAB,MirrorDBName=APPA

CreateNamespace :Name=APPA,Global s=APPA

CreateResource:Name=%DB_%APPB,Description="APPB database"
CreateDatabase :Name=APPB,Directory=/ddat abase- pat h/APPB,

MirrorSetName=CLUSTERAB,MirrorDBName=APPB
CreateNamespace :Name=APPB,Globals=APPB

9.6.3 ConfigMirror Arguments

The following table shows the most commonly used arguments of the ConfigMirror action parameter. In previous
releases of InterSystems IRIS, most of these were parameters in the [Startup] section of the CPF; accordingly, the name
of the corresponding former [Startup] parameter is shown in the table.

18 Automating Configuration of InterSystems IRIS with Configuration Merge

Useful parameters in automated deployment

Table 7: ConfigMirror Arguments

Argument

Name (formerly

[StartupMirrorSeth\ame)

Map

Member (formerly

[Startup]MirrorVerber)

Primary (formerly

[Sartp]MirrorPrimary)

SSLDir (formerly
[Startup]MirrorSSLDir)

ArbiterURL (formerly
[Startupl/ArbiterURL)

Ordinal

Deploying using separate merge files

Name of the new mirror (when deploy-
ing a primary) or the mirror to join (when
deploying a backup or DR async)

(not used)

Mirror member role at deployment
(primary, backup, or drasync)

Name or IP address of the primary’s
host

Location on the host of the mirror
TLS/SSL configuration for the instance,
a directory containing the required
Certificate Authority certificate
(CAFile.pem), local certificate
(CertificateFile.pem), and private key file
(PrivateKeyFile.pem).

Host (hostname or IP address) and port
of the arbiter to be configured for the
mirror (when deploying the primary) or
configured for existing primary (when
deploying a backup or DR async)

(not used)

Deploying using a single merge file and
hostname mapping

Name of mirror

Sets the pattern used to match mirror
members with hostnames; default is
Map=""primary,backup"

Set to auto to automatically match mirror
members to hostnames

Set to auto to automatically match mirror
members to hostnames

(see previous column; TLS configurations
must be identically located on all hosts)

Host (hostname or IP address) and port
of the arbiter configured for the mirror

Integer offset used to prevent overlap in
hostnames between independent clusters;
default is O (zero)

In addition to the arguments in the preceding table, you can use any property in the inventory of the Mi rror Info param-
eter of the SYS.Mirror.CreateNewMirrorSet()method. For example, you can require TLS encryption for a mirror by
including UseSSL=1, or turn on parallel dejournaling by including Al lowParallelDejournaling=2.

Automating Configuration of InterSystems IRIS with Configuration Merge

19

	Table of Contents
	1 What is configuration merge?
	2 How is InterSystems IRIS configured?
	3 How does configuration merge work?
	4 Can configuration merge customize more than the configuration?
	5 How can I use configuration merge?
	6 Configuration merge in deployment
	6.1 Deploying an InterSystems IRIS container with a merge file
	6.2 Installing InterSystems IRIS from a kit with a merge file
	6.3 Using a merge file when deploying with the InterSystems Kubernetes Operator

	7 Reconfigure an existing instance using configuration merge
	8 Managing configuration changes
	9 Useful parameters in automated deployment
	9.1 Update Parameters
	9.2 Action Parameters
	9.3 Create, Modify and Delete Security Objects
	9.4 Create, Modify, and Delete Database Objects
	9.5 Deploy a Distributed Cache Cluster (Nonmirrored)
	9.6 Mirror the Cluster’s Data Server

	Index

