InterSystems-

IRIS Data Platform

Persisting .NET Objects with
InterSystems XEP

Version 2024.1
2024-07-02

Persisting .NET Objects with InterSystems XEP

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

11Introduction t0 XEP fOF INET ..ottt st s e 1
1.1 Setup and CONFIGUIALIONcviiiiiiitiiecre bbbt 1
1.1.1 XEP CHENt ASSEMDIIES ...oviiiiieieirieieiiesieieee sttt st e e e e eneeseeneesenss 2

2 Using XEP Event Persistence With INET ...ccccceieeeeceeere st sae e s e e esessessesnssresees 3
2.1 Introduction t0 EVENT PEISISIENCEccvvirireieriireeerisreie st 3
2.1.1 Simple Applications to Store and Query Persistent EVENTSccccovivenienieneneneneniene 4

2.2 Creating and Connecting an EVENTPEISISTELccccuiiiiiiiirine et 7
2.3 IMPOITING @ SCNEMA ...cviieiiete e bbbttt 7
2.4 Storing and ModifYiNg EVENLSc.coiiriiiriiiieiieeie ettt 8
2.4.1 Creating and StOriNg EVENTScvcviiieiriese ettt s ens 9
2.4.2 ACCESSING STOTEA EVENTS ...cvviieceiciesiesiesie ettt e e ste et sttt sae e saeneeneeseeneenens 10
2.4.3 Controlling INdeX UPAtINGcoeieriirierieieeieieeeeeisiese sttt sne 11

2.5 USING QUETTES ..eeititeite sttt ettt ettt be b bt sb e s b e b e e e e b e b e e eaeeheeb e e meebeebesbeebesbesbesbesbe b ee 12
2.5.1 Creating and EXeCUtiNg 8 QUETYccruiiriiiriiisiiieieneete ettt 12
2.5.2 Processing QUETY DALAcoeviueiiiiiiiirieie ettt 13
2.5.3 Defining the FELC LEVEL ..c..ovcuiceieececse e 14

2.6 Schema Customization and MapPINgccceeererereereerieieeieee e s sae e e e e seeneens 15
2.6.1 Schema IMpPort MOGEISooiiiiiiier e e 15
2.6.2 USING ALIIDULES ..eviieeiieite ettt bbb et ene 16
2.8.3 USING TUKEYS ..eviectiieetieteeste ettt bbbttt ettt 19
2.6.4 Implementing an INterfaCeRESOIVEN ... 20
2.6.5 Schema Mapping RUIESccvieriieieeceese et nnen 21

3 Quick Reference for XEP .NET CIASSESccueiuriereeeriristeseseesseseseeseesseeesesessesessessessesssssessesseseens 23
3.1 XEP QUICK RETEIEINCE ...veveiie ettt ettt ettt te e s ae et e steeseestaeseenreens 23
3. 1.1 LiSt Of XEP METNOUS ...ttt st e 23
3.1.2 ClaSS PErSISIEIFACIONYcerueiirieierieieiteiete ettt ettt b e b e ene b 25

3. 1.3 ClaSS EVENTPEISISIENcveuverieiieeieiesesteste e see st see st sees e esnestestesnestesaesaenseeeneeneenens 25
3.1.4 ClASS EVENT .. 29
3.1.5 Class EVENTQUENYST S ...uiiiiiiiiiieiierieieieeieeeetes e ssessessestestestesseseessesaessessessesesssssessessessenees 31
3.1.6 Interface INterfaCERESOIVETccorviiiiiieeiecec e 33
3.1.7 Class XEPEXCEPLIONeiuiiuiiiiiiiniiieiieieiieieeie ettt sttt sttt sbesbe b b e 34

Persisting .NET Objects with InterSystems XEP

Introduction to XEP for .NET

See the Table of Contents for a detailed listing of the subjects covered in this document.

InterSystems IRIS® provides lightweight .NET SDKSs for easy database access via relational tables (ADO.NET and SQL),
objects, and multidimensional storage. See Using .NET with Inter Systems Software for relational table access with ADO.NET,
and Using the Native SDK for .NET for multidimensional storage access. This book describes how to use XEP for high
speed object persistence and retrieval.

XEP is optimized for transaction processing applications that require extremely high speed data persistence and retrieval.
It provides a high-performance Object/Relational Mapping (ORM) persistence framework for .NET object hierarchies.
XEP projects the data in .NET objects as persistent events (database objects mirroring the data structures in .NET objects)
in the InterSystems IRIS database.

The following topics are discussed in this document:
» Using XEP Event Persistence — describes XEP in detail and provides code examples.

* Quick Reference for XEP Classes — provides a quick reference for methods of the XEP classes.

Also see Setup and Configuration later in this section.

Related Documents
The following documents also contain related material:

e Using .NET with Inter Systems Software— explains how to access InterSystems IRIS from .NET ADO client applications.

» Using the Native SDK for .NET — describes how to use the .NET Native SDK to access resources formerly available
only through ObjectScript.

* Using XEP with .NET — is a quick tutorial with video and code.
» Stock Trading with .NET — demonstrates how to combine XEP with other InterSystems .NET client SDKSs.

1.1 Setup and Configuration

The XEP client assemblies can be copied to your local instance of InterSystems IRIS as part of the installation process:
* When installing InterSystems IRIS, select the Set up Type: Devel opnent option.

» If InterSystems IRIS has been installed with security option 2, open the Management Portal and go to System
Administration > Security > Services, select ¥Ser vi ce_Cal | | n, and make sure the Ser vi ce Enabl ed box is
checked.

Persisting .NET Objects with InterSystems XEP 1

https://learning.intersystems.com/course/view.php?id=971
https://learning.intersystems.com/course/view.php?id=1061

Introduction to XEP for .NET

If you installed InterSystems IRIS with security option 1 (minimal) it should already be checked.

You can run your XEP client applications either on the same machine as the instance of InterSystems IRIS, or on a remote
machine connected to an InterSystems IRIS server over TCP/IP. The remote machine does not require a local instance of
InterSystems IRIS, but must have a copy of the XEP client assemblies on a path accessible to the application, and must be
running a supported version of .NET or the .NET Framework.

In order to run XEP applications:
» The User namespace must exist on the machine running InterSystems IRIS, and must be writable.

» The PATH environment variable on the machine running InterSystems IRIS must include <install-dir>/bin (which contains
the main InterSystems IRIS executables). If the PATH includes multiple instances of <install-dir>/bin (for example, if
you have installed more than one instance of InterSystems IRIS) only the first one will be used, and any others will
be ignored.

1.1.1 XEP Client Assemblies

Your XEP application must include references to the XEP client assemblies. The assemblies come in multiple versions,
compiled under multiple supported versions of .NET. Use the file or files corresponding to the .NET version used to compile
your project:

* InterSystems.Data.IRISClient.dll — is always required, and is available for each supported version of .NET and the
.NET Framework.

* InterSystems.Data.XEP.dIl — is required only for applications using a version of the .NET Framework. .NET 5.0 and
later do not use this file.
In your instance of InterSystems IRIS, versions of these files are located in appropriately named subdirectories of

<install-dir>/dev/dotnet/bin. For example, the version for .NET 6.0 is located in <install-dir>/dev/dotnet/bin/net6.0.

For a list of currently supported versions, see Supported .NET Versions in Using .NET with I nter Systems Software.

2 Persisting .NET Objects with InterSystems XEP

Using XEP Event Persistence with .NET

XEP for .NET provides extremely rapid storage and retrieval of structured data. It provides ways to control schema gener-
ation for optimal mapping of complex data structures. Schemas for simpler data structures can often be generated automat-
ically and used without modification.

The following topics are discussed in this chapter:

» Introduction to Event Persistence — introduces persistent event concepts and terminology, and provides a simple
example of code that uses XEP.

» Creating and Connecting an EventPersister — describes how to create an instance of the EventPersister class and use
it to open, test, and close a database connection.

» Importing a Schema — describes the methods and attributes used to analyze a .NET class and generate a schema for
the corresponding persistent event.

» Storing and Modifying Events — describes methods of the Event class used to store, modify, and delete persistent
events.

» Using Queries — describes methods of the XEP classes that create and process query resultsets.

» Schema Customization and Mapping — provides a detailed description of how .NET classes are mapped to database
schemas, and how to generate customized schemas for optimal performance.

Note: Why “Persistent Event”?

The term persistent event originally referred to data acquired from real time events. The current implementation
of XEP is an advanced Object/Relational Mapping (ORM) framework that can do much more than high speed
event processing. XEP “persistent events” can be data objects of significant complexity, and can be persisted
from any available data source.

2.1 Introduction to Event Persistence

A persistent event is an InterSystems IRIS database object that holds a persistent copy of the data fields in a .NET object.
By default, XEP stores each event as a standard %Persistent object. Storage is automatically configured so that the data
will be accessible to InterSystems IRIS by other means, such as objects, SQL, or direct global access.

Before a persistent event can be created and stored, XEP must analyze the corresponding .NET class and import a schema,
which defines how the data structure of a .NET object is projected to a persistent object in the database. A schema can use
either of the following two object projection models:

Persisting .NET Objects with InterSystems XEP 3

Using XEP Event Persistence with .NET

» The default model is the flat schema, where all referenced objects are serialized and stored as part of the imported
class, and all fields inherited from superclasses are stored as if they were native fields of the imported class. This is
the fastest and most efficient model, but does not preserve any information about the original .NET class structure.

» Ifstructural information must be preserved, the full schema model may be used. This preserves the full .NET inheritance
structure by creating a one-to-one relationship between .NET source classes and InterSystems IRIS projected classes,
but may impose a slight performance penalty.

See “Schema Import Models™ for a detailed discussion of both models, and “Schema Mapping Rules” for detailed
information about how various datatypes are projected.

When importing a schema, XEP acquires basic information by analyzing the .NET class. You can supply additional infor-
mation that allows XEP to generate indexes (see “Using IdKeys™) and override the default rules for importing fields (see
“Using Attributes” and “Implementing an InterfaceResolver™).

Fields of a persistent event can be simple numeric types and their associated System types, strings, objects (projected as
embedded/serial objects), enumerations, and types derived from collection classes. These types can also be contained in
arrays, nested collections, and collections of arrays.

Once a schema has been imported, XEP can be used to store, query, update and delete data at very high rates. Stored events
are immediately available for querying, or for full object or global access. The EventPersister, Event, and EventQuery<T>
classes provide the main features of XEP. They are used in the following sequence:

» The EventPersister class provides methods to establish and control a database connection (see “Creating and Connecting
an EventPersister”).

» Once the connection has been established, other EventPersister methods can be used to import a schema (see
“Importing a Schema™).

e The Event class provides methods to store, update, or delete events, create a query, and control index updating (see
“Storing and Modifying Events™).

» The EventQuery<T> class is used to execute simple SQL queries that retrieve sets of events from the database. It provides
methods to iterate through the resultset and update or delete individual events (see “Using Queries™).

The following section describes two very short applications that demonstrate all of these features.

2.1.1 Simple Applications to Store and Query Persistent Events

This section describes two very simple applications that use XEP to create and access persistent events:

e The StoreEvents program — opens a connection to a namespace on the server, creates a schema for the events to be
stored, uses an instance of Event to store the array of objects as persistent events, then closes the connection and termi-
nates.

» The QueryEvents program — opens a new connection accessing the same namespace as StoreEvents, creates an instance
of EventQuery<T> to read and delete the previously stored events, then closes the connection and terminates.

Note: It is assumed that these applications have exclusive use of the system, and run in two consecutive processes.

Both programs use instances of xep.samples.SingleStringSample, which is one of the classes defined in the XEP
sample applications (see “XEP Sample Applications™ for details).

2.1.1.1The StoreEvents Program

In StoreEvents, a new instance of EventPersister is created and connected to a specific server namespace. A schema is
imported for the SingleStringSample class, and the test database is initialized by deleting all existing events from the extent
of the class. An instance of Event is created and used to store an array of SingleStringSample objects as persistent events.

4 Persisting .NET Objects with InterSystems XEP

Introduction to Event Persistence

The connection is then terminated. The new events will persist in the database, and will be accessed by the QueryEvents
program (described in the next section).

The StoreEvents Program: Creating a schema and storing events

usi ng System
usi ng | nter Syst ens. XEP;
usi ng xep.sanples; // conpiled XEPTest.csproj

public class StoreEvents {

private static String classNane = "xep. sanpl es. Si ngl eStri ngSanpl e";
private static SingleStringSanple[] eventltens = SingleStringSanpl e. generateSanpl eDat a(12);

public static void Main(String[] args) {

for (int i=0; i < eventltens.Length; i++) {
eventltens[i].name = "String event " + i;

}

try {

Consol e. WitelLine("Connecting and i nporting schema for " + classNane);

Event Persi ster myPersister = PersisterFactory. CreatePersister();

nyPer si ster. Connect ("127.0.0.1", 1972, "User", "_SYSTEM', "SYS");

try { // delete any existing SingleStringSanple events, then inport new ones
myPer si st er. Del et eExt ent (cl assNane) ;
nmyPer si ster. | nport Schema(cl assNane) ;

catch (XEPException e) { Console.WiteLine("inmport failed:\n" + €e); }
Event newEvent = myPersister. Get Event (cl assNang) ;
newEvent. Store(eventltens); // store array of events

//Print each itemin the resultset
Si ngl eStri ngSanpl e nySanpl e = xepQuery. Get Next () ;
while (nySanmple != null){

Consol e. Wit eLi ne(nySanpl e. nane) ;

nySanpl e = xepQuery. Get Next () ;

newkEvent . d ose();
nyPersi ster. Cl ose();

}
catch (XEPException e) { Console.WitelLine("Event storage failed:\n" + €e); }

} // end Main()

} /1l end class StoreEvents

Before StoreEvents.M ain() is called, the xep.samples.SingleStringSample.gener ateSampleData() method is called
to generate sample data array eventltems (see “XEP Sample Applications” for information on sample classes).

In this example, XEP methods perform the following actions:

PersisterFactory.CreatePer sister () creates myPersister, a new instance of EventPersister.
EventPersister.Connect() establishes a connection to the User namespace.
EventPersister.| mportSchema() analyzes the SingleStringSample class and imports a schema for it.

EventPersister.DeleteExtent() is called to clean up the database by deleting any previously existing test data
from the SingleStringSample extent.

EventPersister.GetEvent() creates newEvent, a new instance of Event that will be used to process
SingleStringSample events.

Event.Stor () accepts the eventltems array as input, and creates a new persistent event for each object in the
array. (Alternately, the code could have looped through the eventltems array and called Store() for each
individual object, but there is no need to do so in this example.)

Event.Close() and EventPersister.Close() are called for newEvent and myPersister after the events have been
stored.

All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister” for
information on opening, testing, and closing a connection. See “Importing a Schema” for details about schema creation.
See “Storing and Modifying Events” for details about using the Event class and deleting an extent.

Persisting .NET Objects with InterSystems XEP 5

Using XEP Event Persistence with .NET

2.1.1.2The QueryEvents Program

This example assumes that QueryEvents runs immediately after the StoreEvents process terminates (see “The StoreEvents
Program™). QueryEvents establishes a new database connection that accesses the same namespace as StoreEvents. An
instance of EventQuery<T> is created to iterate through the previously stored events, print their data, and delete them.

The QueryEvents Program: Fetching and processing persistent events

usi ng System
usi ng | nterSystens. XEP;
usi ng Singl eStringSanpl e = xep. sanpl es. Si ngl eStringSanple; // conpiled XEPTest. csproj

public class QueryEvents {
public static void Main(String[] args) {
Event Persi ster nyPersister = null;
Event Quer y<Si ngl eStri ngSanpl e> nyQuery = nul | ;
try {
/1 Open a connection, then set up and execute an SQL query
Consol e. WitelLi ne("Connecting to query SingleStringSanple events");
nmyPersi ster = PersisterFactory. CreatePersister();
nyPersi ster. Connect ("127.0.0. 1", 1972, "User","_SYSTEM', "SYS");

try {
Event newEvent = mnyPersister. Get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");
String sql = "SELECT * FROM xep_sanpl es. Si ngl eStri ngSanpl e WHERE % D BETWEEN 3 AND ?";

myQuery = newEvent. Creat eQuery<Si ngl eStri ngSanpl e>(sql);
newEvent . Cl ose();
myQuery. AddPar amet er (12); // assign value 12 to SQ paraneter

nmyQuery. Execut e();
}
catch (XEPException e) {Console. WitelLine("createQuery failed:\n" + e);}

/1 Iterate through the returned data set, printing and del eting each event
Si ngl eStri ngSanpl e current Event ;
current Event = nyQuery. GetNext(); // get first item
while (currentEvent !'= null) {
Consol e. WiteLine("Retrieved " + currentEvent. nane);
nmyQuery. Del eteCurrent ();
current Event = nmyQuery. GetNext(); // get next item

}
nyQuery. C ose();
nyPersi ster. C ose();

}
catch (XEPException e) {Console. WitelLine("QeryEvents failed:\n" + e);}
} // end Main()
} I/ end class QueryEvents

In this example, XEP methods perform the following actions:

* EventPersister.CreatePersister () and EventPersister.Connect() are called again (just as they were in
StoreEvents) and a new connection to the User namespace is established.

* EventPersister.GetEvent() creates newEvent, an instance of Event that will be used to create a query on the
SingleStringSample extent. After the query is created, newEvent will be discarded by calling its Close() method.

» Event.CreateQuery() creates myQuery, an instance of EventQuery<T> where T is target class
SingleStringSample. The SQL statement defines a query that will retrieve all persistent SingleStringSample
events with object IDs between 3 and a variable parameter value.

* EventQuery<T>.AddParameter () assigns value 12 to the SQL parameter.

* EventQuery<T>.Execute() executes the query. If the query is successful, myQuery will now contain a resultset
that lists the object IDs of all SingleStringSample events that match the query.

e EventQuery<T>.GetNext() is called to fetch the first item in the resultset and assign it to variable currentEvent.
* Inthe whi | e loop:
— The name field of currentEvent is printed

— EventQuery<T>.DeleteCurrent() deletes the most recently fetched event from the database.

6 Persisting .NET Objects with InterSystems XEP

Creating and Connecting an EventPersister

— EventQuery<T>.GetNext() is called again to fetch the next event and assign it to variable currentEvent.

If there are no more items, GetNext() will return nul | and the loop will terminate.

* EventQuery<T>.Close() and EventPersister.Close() are called for myQuery and myPersister after all events
have been printed and deleted.

All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister” for
information on opening, testing, and closing a connection. See “Using Queries” for details about creating and using an
instance of EventQuery<T>.

2.2 Creating and Connecting an EventPersister

The EventPersister class is the main entry point for XEP. It provides the methods for connecting to the database, importing
schemas, handling transactions, and creating instances of Event to access events in the database.

An instance of EventPersister is created and destroyed by the following methods:
e PersisterFactory.CreatePersister () — returns a new instance of EventPersister.

* EventPersister.Close() — closes this EventPersister instance and releases associated resources.

The following method is used to create a connection:

* EventPersister.Connect() — takes String arguments for namespace, username, password, and establishes a connection
to the specified namespace.

The following example establishes a connection;

Creating and Connecting an EventPersister: Creating a connection

/1 Open a connection

string host = "127.0.0.1";
int port = 1972;

string namespace = "USER';
string username = "_SYSTEM';

string password = "SYS";

Event Persi ster nyPersister = PersisterFactory. CreatePersister();
myPer si st er. Connect (host, port, namespace, user nane, password) ;

/] perform event processing here .

nyPersi ster. Cl ose();

The EventPersister.Connect() method establishes a connection to the specified port and namespace of the host
machine. If no connection exists in the current process, a new connection is created. If a connection already exists,
the method returns a reference to the existing connection object.

Note: Always call close() to release resources

Always call Close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.3 Importing a Schema

Before an instance of a .NET class can be stored as a persistent event, a schema must be imported for the class. The schema
defines the database structure in which the event will be stored. XEP provides two different schema import models: flat

Persisting .NET Objects with InterSystems XEP 7

Using XEP Event Persistence with .NET

schema and full schema. The main difference between these models is the way in which .NET objects are projected as
ObjectScript objects. A flat schema is the optimal choice if performance is essential and the event schema is fairly simple.
A full schema offers a richer set of features for more complex schemas, but may have an impact on performance. See
“Schema Customization and Mapping” for a detailed discussion of schema models and related subjects.

The following methods are used to analyze a .NET class and import a schema of the desired type:

e EventPersister.| mportSchema() — imports a flat schema. Takes an argument specifying a .dll file name, a fully qual-
ified class name, or an array of class names, and imports all classes and any dependencies found in the specified locations.
Returns a String array containing the names of all successfully imported classes.

* EventPersister.l mportSchemaFull() — imports a full schema. Takes the same arguments and returns the same class
list as ImportSchema(). A class imported by this method must declare a user-generated IdKey (see “Using IdKeys™).

e Event.IsEvent() — a static Event method that takes a .NET object or class name of any type as an argument, tests to
see if the specified object can be projected as a valid XEP event (see “Requirements for Imported Classes™), and
throws an appropriate error if it is not valid.

The import methods are identical except for the schema model used. The following example imports a simple test class
and its dependent class:

Importing a Schema: Importing a class and its dependencies

The following classes from namespace test are to be imported:

namespace test {
public class Miind ass {
public Maindass() {}
public String nyString;
public test.Address nyAddress;

public class Address {
public String street;
public String city;
public String state;

}
}
The following code uses | mportSchema() to import the main class, test.MainClass, after calling | sEvent() to
make sure it can be projected. Dependent class test.Address is also imported automatically when test.MainClass
is imported:

try {

Event.|sEvent ("test. MainC ass"); // throw an exception if class is not projectable
myPer si ster. | nport Schema("test. Mai nC ass");

}
catch (XEPException e) {Console. WiteLine("Inmport failed:\n" + e);}

In this example, instances of dependent class test.Address will be serialized and embedded in the same ObjectScript object
as other fields of test.MainClass. If ImportSchemaFull() had been used instead, stored instances of test.MainClass would
contain references to instances of test.Address stored in a separate database class extent.

2.4 Storing and Modifying Events

Once the schema for a class has been imported (see “Importing a Schema™), an instance of Event can be created to store
and access events of that class. The Event class provides methods to store, update, or delete persistent events, create queries
on the class extent, and control index updating. This section discusses the following topics:

8 Persisting .NET Objects with InterSystems XEP

Storing and Modifying Events

Creating and Storing Events — describes how to create an instance of Event and use it to store persistent events of the
specified class.

Accessing Stored Events — describes Event methods for fetching, changing, and deleting persistent events of the
specified class.

Controlling Index Updating — describes Event methods that can increase processing efficiency by controlling when
index entries are updated.

2.4.1 Creating and Storing Events

Instances of the Event class are created and destroyed by the following methods:

EventPersister.GetEvent() — takes a className String argument and returns an instance of Event that can store and
access events of the specified class. Optionally takes an indexMode argument that specifies the default way to update
index entries (see “Controlling Index Updating™ for details).

Note: Target Class

An instance of Event can only store, access, or query events of the class specified by the className argument
in the call to GetEvent(). In this chapter, class className is referred to as the target class. In the examples,
the target class is always SingleStringSample.

Event.Close() — closes the Event instance and releases the resources associated with it.

The following Event method stores .NET objects of the target class as persistent events:

Store() — adds one or more instances of the target class to the database. Takes either an event or an array of events
as an argument, and returns a long database ID (or O if the database id could not be returned) for each stored event.

Important: When an event is stored, it is not tested in any way, and it will never change or overwrite existing
data. Each event is appended to the extent at the highest possible speed, or silently ignored if an event
with the specified key already exists in the database.

The following example creates an instance of Event with SingleStringSample as the target class, and uses it to project an
array of .NET SingleStringSample objects as persistent events. The example assumes that myPersister has already been
created and connected, and that a schema has been imported for the SingleStringSample class. See “Simple Applications
to Store and Query Persistent Events” for an example of how this is done. See “ XEP Sample Applications” for information
on SingleStringSample and the sample programs that define and use it.

Storing and Modifying Events: Storing an array of objects

Singl eStringSanpl e[] eventltens = SingleStringSanpl e. gener at eSanpl eDat a(12) ;
try {
Event newEvent = nyPersister. Get Event ("xep. sanpl es. Si ngl eStri ngSanpl e") ;
long[] item dList = newkvent. Store(eventltens); // store all events
int 1tenCount = O;
for (int i=0; i < itenmdList.Length; i++) {
if (itemdList[i]>0) itenCount++;

Consol e. WiteLine("Stored " + itenCount + " of " + eventltens.Length + " events");
newkvent . C ose();

}
catch (XEPException e) { Console. WiteLine("Event storage failed:\n" + e); }

» The generateSampleData() method of SingleStringSample generates twelve SingleStringSample objects and
stores them in an array named eventltems.

» The EventPersister.GetEvent() method creates an Event instance named newEvent with SingleStringSample
as the target class.

Persisting .NET Objects with InterSystems XEP 9

Using XEP Event Persistence with .NET

* The Event.Store() method is called to project each object in the eventltems array as a persistent event in the
database.

The method returns an array named itemldList, which contains a long object ID for each successfully stored
event, or O for an object that could not be stored. Variable itemCount is incremented once for each 1D greater
than 0 in itemldList, and the total is printed.

» When the loop terminates, the Event.Close() method is called to release associated resources.

Note: Always call Close() to release resources

Always call Close() on an instance of Event before it goes out of scope to ensure that all locks, licenses, and other
resources associated with the connection are released.

2.4.2 Accessing Stored Events

Once a persistent event has been stored, an Event instance of that target class provides the following methods for reading,
updating, deleting the event:

» DeleteObject() — takes a database object ID or IdKey as an argument and deletes the specified event from the database.
» GetObject() — takes a database object ID or 1dKey as an argument and returns the specified event.

» UpdateObject() — takes a database object ID or IdKey and an Object of the target class as arguments, and updates
the specified event.

If the target class uses a standard object ID, it is specified as a long value (as returned by the Store() method described in
the previous section). If the target class uses an IdKey, it is specified as an array of Object where each item in the array is
a value for one of the fields that make up the IdKey (see “Using IdKeys™).

In the following example, array itemldList contains a list of object 1D values for some previously stored SingleStringSample
events. The example arbitrarily updates the first six persistent events in the list and deletes the rest.

Note: See “Creating and Storing Events” for the example that created the itemldList array. This example also assumes
that an EventPersister instance named myPersister has already been created and connected to the database.

Storing and Modifying Events: Fetching, updating, and deleting events

/1 itemdList is a previously created array of SingleStringSanple event |Ds
try {
Event newEvent = nyPersister. Get Event ("xep. sanpl es. Si ngl eStri ngSanpl e") ;
int itenCount = O;
for (int i=0; i < itemdList.Length; i++) {
try { // arbitrarily update events for first 6 Ids and del ete the rest
Si ngl eStri ngSanpl e event Obj ect = (Si ngl eStringSanpl e) newkEvent. Get Cbj ect (i tem dList[i]);

if (i<6) {
event Obj ect. nane = event Obj ect.name + " (id=" + itemdList[i] + ")" + " updated!";
newEvent . Updat eQbj ect (item dList[i], event(Object);
i t emCount ++;
} else {
newEvent . Del etebject (item dList[i]);

}

}
catch (XEPException e) {Console. WiteLine("Failed to process event:\n" + e);}

}
Consol e. WitelLine("Updated " + itemCount + " of " + item dList.Length + " events");
newkEvent . d ose();

catch (XEPException e) {Console. WitelLine("Event processing failed:\n" + e);}

» The EventPersister. GetEvent() method creates an Event instance hamed newEvent with SingleStringSample
as the target class.

10 Persisting .NET Objects with InterSystems XEP

Storing and Modifying Events

» Array itemldList contains a list of object ID values for some previously stored SingleStringSample events (see
“Creating and Storing Events” for the example that created itemldList).

In the loop, each item in itemldList is processed. The first six items are changed and updated, and the rest of
the items are deleted. The following operations are performed:

— The Event.GetODbject() method fetches the SingleStringSample object with the object ID specified in
item dList[i],and assigns it to variable eventObject.

— The value of the eventObject name field is changed.
— If the eventObject is one of the first six items in the list, Event.UpdateObject() is called to update it in
the database. Otherwise, Event.DeleteObject() is called to delete the object from the database.
» Afterall of the IDs in itemldList have been processed, the loop terminates and a message displays the number

of events updated.

» The Event.Close() method is called to release associated resources.

See “XEP Sample Applications” for information on the sample programs that define and use the SingleStringSample class.
See “Using Queries™ for a description of how to access and modify persistent events fetched by a simple SQL query.

Deleting Test Data

When initializing a test database, it is frequently convenient to delete an entire class, or delete all events in a specified
extent. The following EventPersister methods delete classes and extents from the database:

» DeleteClass() — takes a className string as an argument and deletes the specified ObjectScript class.
» DeleteExtent() — takes a className string as an argument and deletes all events in the extent of the specified class.

These methods are intended primarily for testing, and should be avoided in production code. See “Classes and Extents”
in the Orientation Guide for Server-Sde Programming for a detailed definition of these terms.

2.4.3 Controlling Index Updating

By default, indexes are not updated when a call is made to one of the Event methods that act on an event in the database
(see “Accessing Stored Events™). Indexes are updated asynchronously, and updating is only performed after all transactions
have been completed and the Event instance is closed. No uniqueness check is performed for unique indexes.

Note: This section only applies to classes that use standard object IDs or generated 1dKeys (see “Using IdKeys”).
Classes with user-assigned IdKeys can only be updated synchronously.

There are a number of ways to change this default indexing behavior. When an Event instance is created by
EventPersister.GetEvent() (see “Creating and Storing Events™), the optional indexMode parameter can be set to specify
a default indexing behavior. The following options are available:

* Event.| NDEX_MODE_ASYNC ON— enables asynchronous indexing. This is the default when the indexMode parameter
is not specified.

» Event.| NDEX_MODE_ASYNC_OFF — no indexing will be performed unless the Startl ndexing() method is called.

e Event.| NDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be inefficient
for large numbers of transactions. This index mode must be specified if the class has a user-assigned IdKey.

The following Event methods can be used to control asynchronous index updating for the extent of the target class:

e StartIndexing() — starts asynchronous index building for the extent of the target class. Throws an exception if the
index mode is Event.| NDEX_MODE_SYNC.

Persisting .NET Objects with InterSystems XEP 11

GORIENT_persistence_sql_projection_extents

Using XEP Event Persistence with .NET

» Stoplndexing() — stops asynchronous index building for the extent. If you do not want the index to be updated when
the Event instance is closed, call this method before calling Event.Close().

e WaitForlndexing() — takes an int timeout value as an argument and waits for asynchronous indexing to be completed.
The timeout value specifies the number of seconds to wait (wait forever if - 1, return immediately if 0). It returnst r ue
if indexing has been completed, or f al se if the wait timed out before indexing was completed. Throws an exception
if the index mode is Event.| NDEX_MODE_SYNC.

2.5 Using Queries

The Event class provides a way to create an instance of EventQuery<T>, which can execute a limited SQL query on the
extent of the target class. EventQuery<T> methods are used to execute the SQL query, and to retrieve, update, or delete
individual items in the query resultset.

The following topics are discussed:
» Creating and Executing a Query — describes how use methods of the EventQuery<T> class to execute queries.
» Processing Query Data — describes how to access and modify items in an EventQuery<T> resultset.

» Defining the Fetch Level — describes how to control the amount of data returned by a query.

Note: The examples in this section assume that EventPersister object myPersister has already been created and connected,
and that a schema has been imported for the SingleStringSample class. See “Simple Applications to Store and
Query Persistent Events” for an example of how this is done.

2.5.1 Creating and Executing a Query

The following methods create and destroy an instance of EventQuery<T>:

» Event.CreateQuery() — takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<T>, where parameter T is the target class of the parent Event.

* EventQuery<T>.Close() — closes this EventQuery<T> instance and releases the resources associated with it.
Queries submitted by an instance of EventQuery<T> will return .NET objects of the specified generic type T (the target

class of the Event instance that created the query object). Queries supported by the EventQuery<T> class are a subset of
SQL select statements, as follows:

e Queries must consist of a SELECT clause, a FROMclause, and (optionally) standard SQL clauses such as WHERE and
CORDER BY.

» The SELECT and FROMclauses must be syntactically legal, but they are actually ignored during query execution. All
fields that have been mapped are always fetched from the extent of target class T.

e SQL expressions may not refer to arrays of any type, nor to embedded objects or fields of embedded objects.

* The system-generated object ID may be referred to as %ID. Due to the leading %, this will not conflict with any field
called id in a .NET class.

The following EventQuery<T> methods define and execute the query:

e AddParameter () — binds a parameter for the SQL query associated with this EventQuery<T>. Takes Object value as
the argument specifying the value to bind to the parameter.

12 Persisting .NET Objects with InterSystems XEP

Using Queries

» Execute() — executes the SQL query associated with this EventQuery<T>. If the query is successful, this EventQuery<T>
will contain a resultset that can be accessed by the methods described later (see “Processing Query Data™).

The following example executes a simple query on events in the xep.samples.SingleStringSample extent (see “ XEP Sample
Applications” for information on the sample programs that define and use the SingleStringSample class.).

Using Queries: Creating and executing a query

Event newEvent = myPersister. Get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");
Event Quer y<Si ngl eStri ngSanpl e> nyQuery = nul | ;
String sql =

"SELECT * FROM xep_sanpl es. Si ngl eStri ngSanpl e WHERE % D BETWEEN ? AND ?";

myQuery = newEvent. Creat eQuery<Si ngl eStri ngSanpl e>(sql);
myQuery. AddParaneter(3); // assign value 3 to first SQL paraneter

myQuery. AddPar ameter (12); // assign value 12 to second SQ paraneter
myQuery. Execute(); Il get resultset for |1 Ds between 3 and 12

The EventPersister. GetEvent() method creates an Event instance named newEvent with SingleStringSample as the
target class.

The Event.CreateQuery() method creates an instance of EventQuery<T> named myQuery, which will execute the
SQL query and hold the resultset. The sgl variable contains an SQL statement that selects all events in the target
class with IDs between two parameter values.

The EventQuery<T>.AddParameter () method is called twice to assign values to the two parameters.

When the EventQuery<T>.Execute() method is called, the specified query is executed for the extent of the target
class, and the resultset is stored in myQuery.

By default, all data is fetched for each object in the resultset, and each object is fully initialized. See “Defining the Fetch
Level” for options that limit the amount and type of data fetched with each object.

2.5.2 Processing Query Data
After a query has been executed, the following EventQuery<T> methods can be used to access items in the query resultset,
and update or delete the corresponding persistent events in the database:

e GetNext() — returns the next object of the target class from the resultset. Returns nul | if there are no more items in
the resultset.

» UpdateCurrent() — takes an object of the target class as an argument and uses it to update the persistent event most
recently returned by GetNext().

» DeleteCurrent() — deletes the persistent event most recently returned by GetNext() from the database.

» GetAll() — uses GetNext() to get all items from the resultset, and returns them in a List. Cannot be used for updating
or deleting. GetAll() and GetNext() cannot access the same resultset — once either method has been called, the other
method cannot be used until Execute() is called again.

See “Accessing Stored Events” for a description of how to access and modify persistent events identified by Id or 1dKey.

Persisting .NET Objects with InterSystems XEP 13

Using XEP Event Persistence with .NET

Using Queries: Updating and Deleting Query Data

nmyQuery. Execut e(); /1 get resultset
Si ngl eStringSanpl e current Event = myQuery. Get Next () ;
while (currentEvent !'= null) {
if (currentEvent.nane.StartsWth("finished")) {
myQuery. Del eteCurrent(); /1 Delete if already processed

} else {
current Event.name = "in process: " + currentEvent. naneg;
myQuery. Updat eCurrent (current Event) ; /'l Update if unprocessed

current Event = nmyQuery. Get Next ();
}
myQuery. d ose();

In this example, the call to EventQuery<T>.Execute() is assumed to execute the query described in the previous
example (see “Creating and Executing a Query™), and the resultset is stored in myQuery. Each item in the
resultset is a SingleStringSample object.

The first call to GetNext() gets the first item from the resultset and assigns it to currentEvent.
In the whi | e loop, the following process is applied to each item in the resultset:

e IfcurrentEvent.namestarts with the string " f i ni shed", DeleteCurrent() deletes the corresponding persistent
event from the database.

» Otherwise, the value of currentEvent.name is changed, and UpdateCurrent() is called. It takes currentEvent
as its argument and uses it to update the persistent event in the database.

» The call to GetNext() returns the next SingleStringSample object from the resultset and assigns it to
currentEvent.

After the loop terminates, Close() is called to release the resources associated with myQuery.

Note: Always call Close() to release resources

Always call Close() on an instance of EventQuery<T> before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.5.3 Defining the Fetch Level

The fetch level is an Event property that can be used to control the amount of data returned when running a query. This is
particularly useful when the underlying event is complex and only a small subset of event data is required.

The following EventQuery<T> methods set and return the current fetch level:

GetFetchL evel() — returns an int indicating the current fetch level of the Event.

SetFetchL evel () — takes one of the values in the Event fetch level enumeration as an argument and sets the fetch level
for the Event.

The following fetch level values are supported:

Event.OPTI ON_FETCH_LEVEL_ALL — This is the default. All data is fetched, and the returned event is fully initialized.

Event.OPTI ON_FETCH_LEVEL_DATATYPES_ONLY — Only datatype fields are fetched. This includes all simple
numeric types and their associated System types, strings, and enumerations. All other fields are set to nul | .

Event.OPTI ON_FETCH_LEVEL_NO ARRAY_TYPES — All types are fetched except arrays. All fields of array types,
regardless of dimension, are set to null. All datatypes, object types (including serialized types) and collections are
fetched.

Event.OPTI ON_FETCH LEVEL_NO COLLECTI ONS — All types are fetched except implementations of collection
classes.

14

Persisting .NET Objects with InterSystems XEP

Schema Customization and Mapping

e Event.OPTI ON_FETCH LEVEL_NO OBJECT_TYPES — All types are fetched except object types. Serialized types
are also considered object types and are not fetched. All datatypes, array types and collections are fetched.

2.6 Schema Customization and Mapping

This section provides details about how a .NET class is mapped to an InterSystems IRIS event schema, and how a schema
can be customized for optimal performance. In many cases, a schema can be imported for a simple class without providing
any meta-information. In other cases, it may be necessary or desirable to customize the way in which the schema is imported.
The following sections provide information on customized schemas and how to generate them:

» Schema Import Models — describes the two schema import models supported by XEP.

e Using Attributes — XEP attributes can be added to a .NET class to specify the indexes that should be created. They
can also be added to optimize performance by specifying fields that should not be imported or fields that should be
serialized.

» Using IdKeys — Annotations can be used to specify IdKeys (index values used in place of the default object 1D),
which are required when importing a full schema.

* Implementing an InterfaceResolver — By default, a flat schema does not import fields declared as interfaces. Imple-
mentations of the InterfaceResolver interface can be used to during schema import to specify the actual class of a field
declared as an interface.

» Schema Mapping Rules — provides a detailed description of how .NET classes are mapped to InterSystems IRIS event
schemas.

2.6.1 Schema Import Models

XEP provides two different schema import models: flat schema and full schema. The main difference between these models
is the way in which .NET objects are projected to ObjectScript objects.

» The Embedded Object Projection Model (Flat Schema) — imports a flat schema where all objects referenced by the
imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. All data for an instance of the class is stored as a single
%Library.Persistent object, and information about the original .NET class structure is not preserved.

» The Full Object Projection Model (Full Schema) — imports a full schema where all objects referenced by the imported
class are projected as separate %Persistent objects. Inherited fields are projected as references to fields in the ancestor
classes, which are also imported as %Persistent classes. There is a one-to-one correspondence between .NET source
classes and ObjectScript projected classes, so the .NET class inheritance structure is preserved.

Full object projection preserves the inheritance structure of the original .NET classes, but may have an impact on performance.
Flat object projection is the optimal choice if performance is essential and the event schema is fairly simple. Full object
projection can be used for a richer set of features and more complex schemas if the performance penalty is acceptable.

2.6.1.1The Embedded Object Projection Model (Flat Schema)

By default, XEP imports a schema that projects referenced objects by flattening. In other words, all objects referenced by
the imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. The corresponding ObjectScript object extends %Library.Persistent,
and contains embedded serialized objects where the original .NET object contained references to external objects.

Persisting .NET Objects with InterSystems XEP 15

Using XEP Event Persistence with .NET

This means that a flat schema does not preserve inheritance in the strict sense on the InterSystems IRIS side. For example,
consider these three .NET classes:

class A {
String a;

class B: class A {
String b;

class C: class B {
String c;

Importing class C results in the following ObjectScript class:

Class C: Yersistent ... {
Property a As %tring;
Property b As ¥string;
Property ¢ As ¥string;

No corresponding ObjectScript objects will be generated for the A or B classes unless they are specifically imported.
ObjectScript object C does not extend either A or B. If imported, A and B would have the following structures:

Class A: %ersistent ... {
Property a As ¥%string;

}

Class B: %ersistent ... {
Property a As ¥%string;
Property b As %string;

All operations will be performed only on the corresponding ObjectScript object. For example, calling Store() on objects
of type C will only store the corresponding C ObjectScript objects.

If a .NET child class hides a field of the same name that is also declared in its superclass, the XEP engine always uses the
value of the child field.

2.6.1.2 The Full Object Projection Model (Full Schema)

The full object model imports a schema that preserves the .NET inheritance model by creating a matching inheritance
structure in the database class. Rather than serializing all object fields and storing all data in a single ObjectScript object,
the schema establishes a one-to-one relationship between the .NET source classes and projected ObjectScript classes. The
full object projection model stores each referenced class separately, and projects fields of a specified class as references to
objects of the corresponding ObjectScript class.

Referenced classes must include an attribute that creates a user-defined IdKey (either [Id] or [Index] — see “Using IdKeys™).
When an object is stored, all referenced objects are stored first, and the resulting IdKeys are stored in the parent object. As
with the rest of XEP, there are no uniqueness checks, and no attempts to change or overwrite existing data. The data is
simply appended at the highest possible speed. If an 1dKey value references an event that already exists, it will simply be
skipped, without any attempt to overwrite the existing event.

The [Embedded] class level attribute can be used to optimize a full schema by embedding instances of the marked class as
serialized objects rather than storing them separately.

Note: See the FlightLog sample program (listed in “XEP Sample Applications™) for a demonstration of how to use the
full object model.

2.6.2 Using Attributes

The XEP engine infers XEP event metadata by examining a .NET class. Additional information can be specified in the
.NET class via attributes, which can be found in the Intersystems.XEP.attributes namespace. As long a .NET class conforms

16 Persisting .NET Objects with InterSystems XEP

Schema Customization and Mapping

to the definition of an XEP persistent event (see “Requirements for Imported Classes™), it is projected as an ObjectScript
class, and there is no need to customize it.

Some attributes are applied to individual fields in the class to be projected, while others are applied to the entire class:
» Field Attributes — are applied to a field in the class to be imported:

— [Id] — specifies that the field will act as an IdKey.

— [Serialized] — indicates that the field should be stored and retrieved in its serialized form.

— [Transient] — indicates that the field should be excluded from import.

» ClassAttributes— are applied to the entire class to be imported:

— [Embedded] — indicates that a field of this class in a full schema should be embedded (as in a flat schema) rather
than referenced.

— [Index] — declares an index for the class.

[Id] (field level attribute)

The value of a field marked with [1 d] will be used as an IdKey that replaces the standard object ID (see “Using
IdKeys™). Only one field per class can use this attribute, and the field must be a String, int, or long (double is per-
mitted but not recommended). To create a compound IdKey, use the [Index] attribute instead. A class marked with
[1d] cannot also declare a compound primary key with [| ndex] . An exception will be thrown if both attributes
are used on the same class.

The following parameter must be specified:
* gener at ed — a bool specifying whether or not XEP should generate key values.

— generated = true— (the default setting) key value will be generated by the server and the field
marked as [| d] must be Int64. This field is expected to be null prior to insert/store and will be filled
automatically by XEP upon completion of such an operation.

— gener at ed=f al se — the user-assigned value of the marked field will be used as the 1dKey value.
Fields can be String, int, Int32, long or Int64.

In the following example, the user-assigned value of the ssn field will be used as the object ID:

using Id = InterSystens. XEP. Attri butes.|d;
public class Person {

[1d(generat ed=f al se)]

Public String ssn;

public String nane;

Public String dob;
}

[Serialized] (field level attribute)
The[Seri al i zed] attribute indicates that the field should be stored and retrieved in its serialized form.

This attribute optimizes storage of serializable fields (including arrays, which are implicitly serializable). The XEP
engine will call the relevant read or write method for the serial object, rather than using the default mechanism
for storing or retrieving data. An exception will be thrown if the marked field is not serializable.

Persisting .NET Objects with InterSystems XEP 17

Using XEP Event Persistence with .NET

Example:

using Serialized = InterSystens. XEP. Attri butes. Seri alized;
public class Myd ass {

[Serialized]

public xep.sanples. Serialized serialized;
[Serialized]

public int[,,,] quadl nt Array;
[Serialized]

public String[,] doubl eStringArray;

}

/1 xep.sanples. Serialized:

[Serializable]

public class Serialized {
public String nane;
public int val ue;

[Transient] (field level attribute)

The [Transi ent] attribute indicates that the field should be excluded from import. The marked field will not
be projected to the ObjectScript class, and will be ignored when objects are stored or loaded.

Example:

using Transient = InterSystens. XEP. Attri butes. Transient;
public class Myd ass {

/1 this field will NOT be projected:

[Transi ent]

public String transientField;

/1 this field WLL be projected:
public String projectedField;
}

[Embedded] (class level attribute)

The [Enbedded] attribute can be used when a full schema is to be generated (see “Schema Import Models™).
It indicates that a field of this class should be serialized and embedded (as in a flat schema) rather than referenced
when projected to an ObjectScript class.

Examples:

usi ng Enbedded = InterSystens. XEP. Attri butes. Enbedded;
[Embedded]
public class Address {

String street;

String city;

String zip;

String state;

[Index] (class level attribute)

The [I ndex] attribute can be used to declare one or more composite indexes.

Arguments must be specified for the following parameters:

* name — a String containing the name of the composite index

» fiel ds —anarray of String containing the names of the fields that comprise the composite index

* type — the index type. The xep.attributes.IndexType enumeration includes the following possible types:

IndexType.none — default value, indicating that there are no indexes.

IndexType.bi t map — a bitmap index (see “Bitmap Indexes” in Using Inter Systems SQL).

IndexType.bi t sl i ce — a bitslice index (see “Overview” in Using Inter Systems SQL).

IndexType.si npl e — a standard index on one or more fields.

18

Persisting .NET Objects with InterSystems XEP

GSOD_indexes_bitmap
GSOD_indexes_overview

Schema Customization and Mapping

— IndexType.i dkey — an index that will be used in place of the standard ID (see *“Using IdKeys™).

Example:

using I ndex = InterSystens. XEP. Attri butes. | ndex;
usi ng | ndexType = InterSystens. XEP. Attri butes. | ndexType;
[I ndex(name="i ndexCOne", fi el ds=new string[]{"ssn", "dob"}, type=I ndexType. i dkey)]
public class Person {
public String nane;
public String dob;
public String ssn;

2.6.3 Using IdKeys

IdKeys are index values that are used in place of the default object ID. Both simple and composite IdKeys are supported
by XEP, and a user-generated IdKey is required for a .NET class that is imported with a full schema (see “Importing a
Schema™). IdKeys on a single field can be created with the [Id] attribute. To create a composite IdKey, add an [Index]
attribute with IndexType i dkey. For example, given the following class:

cl ass Person {
String naneg;
int id;
String dob;

the default storage structure uses the standard object ID as a subscript:
~PersonD(1) =$LB(" John", 12, "1976- 11- 11")

The following attribute uses the name and id fields to create a composite IdKey named newldKey that will replace the
standard object ID:

[I ndex(name="new dKey", fields=new String[]{"name","id"},type=IndexType.idkey)]
This would result in the following global structure:
APersonD("John", 12) =$LB("1976- 11- 11")

XEP will also honor 1dKeys added by other means, such as SQL commands (see “Using the Unique, PrimaryKey, and
IDKey Keywords with Indexes” in Using Inter Systems SQL). The XEP engine will automatically determine whether the
underlying class contains an IdKey, and generate the appropriate global structure.

There are a number of limitations on IdKey usage:

e AnldKey value must be unique. If the IdKey is user-generated, uniqueness is the responsibility of the calling application,
and is not enforced by XEP. If the application attempts to add an event with a key value that already exists in the
database, the attempt will be silently ignored and the existing event will not be changed.

» Aclass that declares an 1dKey cannot be indexed asynchronously if it also declares other indexes.

» There is no limit of the number of fields in a composite IdKey, but the fields must be String, int, or long, or their corre-
sponding System types. Although double can also be used, it is not recommended.

» There may be a performance penalty in certain rare situations requiring extremely high and sustained insert rates.

See “Accessing Stored Events” for a discussion of Event methods that allow retrieval, updating and deletion of events
based on their IdKeys.

Persisting .NET Objects with InterSystems XEP 19

GSOD_indexes_std_unique
GSOD_indexes_std_unique

Using XEP Event Persistence with .NET

See “SQL and Object Use of Multidimensional Storage” in Using Globals for information on IdKeys and the standard
InterSystems storage model. See “Define and Build Indexes” in Using Inter Systems SQL for information on IdKeys in
SQL.

Sample programs IdKeyTest and FlightLog provide demonstrations of IdKey usage (see “XEP Sample Applications™ for
details about the sample programs).

2.6.4 Implementing an InterfaceResolver

When a flat schema is imported, information on the inheritance hierarchy is not preserved (see “Schema Import Models™).
This creates a problem when processing fields whose types are declared as interfaces, since the XEP engine must know
the actual class of the field. By default, such fields are not imported into a flat schema. This behavior can be changed by
creating implementations of Intersystems.XEP.InterfaceResolver to resolve specific interface types during processing.

Note: InterfaceResolver is only relevant for the flat schema import model, which does not preserve the .NET class
inheritance structure. The full schema import model establishes a one-to-one relationship between .NET and
ObjectScript classes, thus preserving the information needed to resolve an interface.

An implementation of InterfaceResolver is passed to EventPersister before calling the flat schema import method,
ImportSchema() (see “Importing a Schema”). This provides the XEP engine with a way to resolve interface types during
processing. The following EventPersister method specifies the implementation that will be used:

e EventPersister.Setl nter faceResolver () — takes an instance of InterfaceResolver as an argument. When I mportSchema()
is called, it will use the specified instance to resolve fields declared as interfaces.

The following example imports two different classes, calling a different, customized implementation of InterfaceResolver
for each class:

Schema Customization: Applying an InterfaceResolver

try {
myPer si ster. SetlnterfaceResol ver(new test. MFirstlnterfaceResolver());
nyPersi ster. | nportSchema("test. MyMai nCl ass");

myPer si ster. SetlnterfaceResol ver(new test. MG herl nterfaceResol ver());
nyPersi ster. | nportSchema("test. MyQt her Cl ass");

}
catch (XEPException e) {Console. WiteLine("Inport failed:\n" + e);}

The first call to SetlnterfaceResolver () sets a new instance of MyFirstinterfaceResolver (described in the next
example) as the implementation to be used during calls to the import methods. This implementation will be used
in all calls to I mportSchema() until Setl nterfaceResolver () is called again to specify a different implementation.

The first call to ImportSchema() imports class test. MyMainClass, which contains a field declared as interface
test.MyFirstinterface. The instance of MyFirstinterfaceResolver will be used by the import method to resolve the
actual class of this field.

The second call to SetInterfaceResolver () sets an instance of a different InterfaceResolver class as the new
implementation to be used when ImportSchema() is called again.

All implementations of InterfaceResolver must define the following method:

* InterfaceResolver.GetlmplementationClass() returns the actual type of a field declared as an interface. This method
has the following parameters:

— interfaceClass — the interface to be resolved.
— declaringClass — class that contains a field declared as interfaceClass.

— fieldName — string containing the name of the field in declaringClass that has been declared as an interface.

20 Persisting .NET Objects with InterSystems XEP

GGBL_sqlobj
GSOD_indexes

Schema Customization and Mapping

The following example defines an interface, an implementation of that interface, and an implementation of InterfaceResolver
that resolves instances of the interface.

Schema Customization: Implementing an InterfaceResolver
In this example, the interface to be resolved is test.MyFirstinterface:

namespace test {
public interface MyFirstinterface{ }

The test.MyFirstimpl class is the implementation of test.MyFirstinterface that should be returned by the
InterfaceResolver:

namespace test {

public class MyFirstl npl M/Firstinterface {
public MyFirstinpl () {}
public MyFirstlnmpl (String s) { fieldOne = s; }
public String fieldOne;

}

The following implementation of InterfaceResolver returns class test.MyFirstimpl if the interface is
test.MyFirstinterface, or nul | otherwise:

usi ng | ntersystens. XEP;
nanespace test {
public class M/FirstlnterfaceResolver : |InterfaceResolver {
public MyFirstlnterfaceResolver() {}
public Type Getlnpl ementati onType(Type decl ari ngC ass,
String fieldName, Type interfaceC ass) {
if (interfaceC ass == typeof(test. M/Firstinterface)) {
return typeof (test. MyFirstlnpl);

return null;

}

When an instance of MyFirstinterfaceResolver is specified by SetlnterfaceResolver (), subsequent calls to
ImportSchema() will automatically use that instance to resolve any field declared as test.MyFirstinterface. For
such each field, the Getl mplementationClass() method will be called with parameter declaringClass set to the
class that contains the field, fieldName set to the name of the field, and interfaceClass set to test.MyFirstinterface.
The method will resolve the interface and return either test.MyFirstimpl or nul | .

2.6.5 Schema Mapping Rules

This section provides details about how an XEP schema is structured. The following topics are discussed:

» Requirements for Imported Classes — describes the structural rules that a .NET class must satisfy to produce objects
that can be projected as persistent events.

» Naming Conventions — describes how .NET class and field names are translated to conform to InterSystems naming
rules.

2.6.5.1 Requirements for Imported Classes

The XEP schema import methods cannot produce a valid schema for a .NET class unless it satisfies the following require-
ments:

» If the imported InterSystems IRIS class or any derived class will be used to execute queries and access stored events,
the .NET source class must explicitly declare an argumentless public constructor.

Persisting .NET Objects with InterSystems XEP 21

Using XEP Event Persistence with .NET

» The .NET source class cannot contain fields declared as Object, or arrays or collections that use Object as part of their
declaration. An exception will be thrown if the XEP engine encounters such fields. Use the [Tr ansi ent] attribute
(see “Using Attributes™) to prevent them from being imported.

The Event.I sEvent() method can be used to analyze a .NET class or object and determine if it can produce a valid event in
the XEP sense. In addition to the conditions described above, this method throws an XEPException if any of the following
conditions are detected:

» acircular dependency

* anuntyped collection

» aDictionary key value that is not a String, a simple numeric type or its associated System type, or an enumeration.
Fields of a persistent event can be simple numeric types or their associated System types, objects (projected as embedded/serial

objects), enumerations, and types derived from collection classes. These types can also be contained in arrays, nested col-
lections, and collections of arrays.

By default, projected fields may not retain all features of the .NET class. Certain fields are changed in the following ways:

« Although the .NET class may contain static fields, they are excluded from the projection by default. There will be no
corresponding ObjectScript class properties. Additional fields can be excluded by using the [Tr ansi ent] attribute
(see “Using Attributes™).

» Inaflat schema (see “Schema Import Models™), all object types, including inner (nested) .NET classes, are projected
as %SerialObject classes in the database. The fields within the objects are not projected as separate ObjectScript prop-
erties, and the objects are opaque from the viewpoint of ObjectScript.

» Aflat schema projects all inherited fields as if they were declared in the child class.

2.6.5.2 Naming Conventions

Corresponding ObjectScript class and property names are identical to those in .NET, with the exception of two special
characters allowed by .NET but not InterSystems:

* $ (dollar sign) is projected as a single " d" character on the InterSystems IRIS side.

* _ (underscore) is projected as a single " u" character on the InterSystems IRIS side.

Class names are limited to 255 characters, which should be sufficient for most applications. However, the corresponding
global names have a limit of 31 characters. Since this is typically not sufficient for a one-to-one mapping, the XEP engine
transparently generates unique global names for class names longer than 31 characters. Although the generated global
names are not identical to the originals, they should still be easy to recognize. For example, the
xep.samples.SingleStringSample class will receive global name xep. sanpl es. Si ngl eSt ri nASBFD.

22 Persisting .NET Objects with InterSystems XEP

Quick Reference for XEP .NET Classes

This chapter is a quick reference for members of the InterSystems.XEP namespace, which contains the public classes
described in Using XEP Event Persistence.

Note: This is not the definitive reference for XEP. For the most complete and up-to-date information, see the help file,
located in <install-dir>/dev/dotnet/help/IrisXEP.chm.

3.1 XEP Quick Reference

This section is a reference for XEP classes (namespace InterSystems.XEP). See Using XEP Event Persistence for more
details and examples. XEP provides the following classes and interfaces:

» Class PersisterFactory — provides a factory method to create EventPersister objects.

» Class EventPersister — encapsulates an XEP database connection. It provides methods that set XEP options, establish
aconnection or get an existing connection object, import schema, produce XEP Event objects, and control transactions.

» Class Event— encapsulates a reference to an XEP persistent event. It provides methods to store or delete events, create
a query, and start or stop index creation.

» Class EventQuery<T> — encapsulates a query that retrieves individual events of target class T from the database for
update or deletion.

» Interface InterfaceResolver — resolves the actual type of a property during flat schema importation if the property was
declared as an interface.

» Class XEPException — is the exception thrown by most XEP methods.

3.1.1 List of XEP Methods

The following XEP classes and methods are described in this reference:
PersisterFactory

» CreatePersister() — creates a new EventPersister object.

EventPersister

e Close() — releases all resources held by this instance.

Persisting .NET Objects with InterSystems XEP 23

Quick Reference for XEP .NET Classes

Commit() — commits one level of transaction.

Connect() — connects to InterSystems IRIS using the arguments specified.

DeleteClass() — deletes an InterSystems IRIS class.

DeleteExtent() — deletes all objects in the given extent.

GetAdoNetConnection() — returns the underlying ADO.NET connection.

GetEvent() — returns an event object that corresponds to the class name supplied.
GetlnterfaceResolver () — returns the currently specified instance of InterfaceResolver.
GetTransactionL evel () — returns the current transaction level (or 0 if not in a transaction).
ImportSchema() — imports a flat schema.

ImportSchemaFull() — imports a full schema.

Rollback() — rolls back the specified number of transaction levels, or all levels if no level is specified.

SetlnterfaceResolver () — specifies the InterfaceResolver object to be used.

Event

e Close() — releases all resources held by this instance.

e CreateQuery() — creates an EventQuery<T> instance.

+ DeleteObject() — deletes an event given its database Id or ldKey.

* GetObject() — returns an event given its database 1d or 1dKey.

» IsEvent() — checks whether an object (or class) is an event in the XEP sense.

» StartIndexing() — starts index building for the underlying class.

» Stoplndexing() — stops index building for the underlying class.

» Store() — stores the specified object or array of objects.

* UpdateObject() — updates an event given its database Id or 1dKey.

* WaitForIndexing() — waits for asynchronous indexing to be completed for this class.
EventQuery<T>

* AddParameter () — binds a parameter for this query.

» Close() — releases all resources held by this instance.

» DeleteCurrent() — deletes the event most recently fetched by GetNext().

» Execute() — executes this XEP query.

» GetAll() — fetches all events in the resultset as an array.

e GetFetchLevel() — returns the current fetch level.

» GetNext() — fetches the next event in the resultset.

» SetFetchLevel() — controls the amount of data returned.

* UpdateCurrent() — updates the event most recently fetched by GetNext()
24 Persisting .NET Objects with InterSystems XEP

XEP Quick Reference

InterfaceResolver

» GetlmplementationClass() — if a property was declared as an interface, an implementation of this method
can be used to resolve the actual property type during schema importation.

3.1.2 Class PersisterFactory
Class InterSystems.XEP.PersisterFactory creates a new EventPersister object.
PersisterFactory() Constructor

Creates a new instance of PersisterFactory.

Per si st er Factory()

CreatePersister()

PersisterFactory.CreatePer sister () returns an instance of EventPersister.
static EventPersister CreatePersister()

see also:

Creating and Connecting an EventPersister

3.1.3 Class EventPersister

Class InterSystems.XEP.EventPersister is the main entry point for the XEP module. It provides methods that can be used
to control XEP options, establish a connection, import schema, and produce XEP Event objects. It also provides methods
to control transactions and perform other tasks.

Close()

EventPersister.Close() releases all resources held by this instance. Always call Close() on the EventPersister object
before it goes out of scope to ensure that all locks, licenses, and other resources associated with the connection
are released.

voi d d ose()
Commit()
EventPersister. Commit() commits one level of transaction
void Commit ()
Connect()
EventPersister.Connect() establishes a connection to the specified InterSystems IRIS namespace.
voi d Connect(string host, int port, string nmspace, string usernane, string password)
parameters:
* nnmepace — namespace to be accessed.
* user name — username for this connection.

» passwor d — password for this connection.

e host — host address for TCP/IP connection.

Persisting .NET Objects with InterSystems XEP 25

Quick Reference for XEP .NET Classes

e port — port number for TCP/IP connection.

If the host address is 127. 0. 0. 1 or | ocal host, the connection will default to a shared memory connection,
which is faster than the standard TCP/IP connection (see *Shared Memory Connections” in Using the InterSystems
Managed Provider for .NET).

see also:

Creating and Connecting an EventPersister

DeleteClass()

EventPersister.DeleteClass() deletes an InterSystems IRIS class definition. It does not delete objects associated
with the extent (since objects can belong to more than one extent), and does not delete any dependencies (for
example, inner or embedded classes).

voi d Del eted ass(string cl assNane)

parameter:

* ¢l assNanme — name of the class to be deleted.

If the specified class does not exist, the call silently fails (no error is thrown).
see also:

“Deleting Test Data” in Accessing Stored Events

DeleteExtent()

EventPersister.DeleteExtent() deletes the extent definition associated with a .NET event, but does not destroy
associated data (since objects can belong to more than one extent). See “Extents” in Defining and Using Classes
for more information on managing extents.

voi d Del eteExtent (string cl assNane)

* ¢l assName — name of the extent.

Do not confuse this method with the deprecated Event.DeleteExtent(), which destroys all extent data as well as
with the extent definition.

see also:

“Deleting Test Data” in Accessing Stored Events

GetAdoConnection()
EventPersister. GetAdoNetConnection() returns the ADO.NET connection underlying an EventPersister connection.
Syst em Dat a. Conmon. DbConnecti on Get AdoNet Connecti on()

see also:

Creating and Connecting an EventPersister

Important: The ADO.NET connection is also used by the XEP engine, so the users should be careful not to close or
corrupt the connection obtained by this method as that might cause the XEP engine to fail.

26 Persisting .NET Objects with InterSystems XEP

GOBJ_model_inheritance_extents

XEP Quick Reference

GetEvent()

EventPersister.GetEvent() returns an Event object that corresponds to the class hame supplied, and optionally
specifies the indexing mode to be used.

Event Get Event(string cl assNane)
Event Get Event(string classNane, int indexMWbde)

parameter:
» ¢l assNane — class name of the object to be returned.

e indexMde — indexing mode to be used.

The following indexMode options are available:

* Event.| NDEX_MODE_ASYNC_ON— enables asynchronous indexing. This is the default when the indexMode
parameter is not specified.

e Event.| NDEX _MODE_ASYNC OFF — no indexing will be performed unless the StartIndexing() method is
called.

» Event.| NDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be
inefficient for large numbers of transactions. This index mode must be specified if the class has a user-assigned
IdKey.

The same instance of Event can be used to store or retrieve all instances of a class, so a process should only call
the GetEvent() method once per class. Avoid instantiating multiple Event objects for a single class, since this can
affect performance and may cause memory leaks.

see also:

Creating Event Instances and Storing Persistent Events, Controlling Index Updating

GetInterfaceResolver()

EventPersister.Getl nter faceResolver () — returns the currently set instance of InterfaceResolver that will be used
by ImportSchema() (see “Implementing an InterfaceResolver™). Returns nul | if no instance has been set.

I nterfaceResol ver GetlnterfaceResol ver ()
see also:
SetlnterfaceResolver (), ImportSchema()
GetTransactionLevel()
EventPersister.GetTransactionL evel () returns the current transaction level (0 if not in a transaction)

int GetTransactionLevel ()

ImportSchema()

EventPersister.| mportSchema() produces a flat schema (see “Schema Import Models™) that embeds all referenced
objects as serialized objects. The method imports the schema of each event declared in the class or a .dll file
specified (including dependencies), and returns an array of class hames for the imported events.

string[] InportSchema(string classO DLLNan®e)
string[] |nportSchema(string[] classes)

parameters:

Persisting .NET Objects with InterSystems XEP 27

Quick Reference for XEP .NET Classes

* cl asses — an array containing the names of the classes to be imported.
* ¢l assO DLLNane — a class hame or the name of a .dIl file containing the classes to be imported. If a .dll
file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .dll file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the .NET schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

ImportSchemaFull()

EventPersister.| mportSchemaFull() — produces a full schema (see “Schema Import Models™) that preserves
the object hierarchy of the source classes. The method imports the schema of each event declared in the class or
.dil file specified (including dependencies), and returns an array of class names for the imported events.

string[] I nportSchemaFull (string classO DLLNane)
string[] |nportSchemaFull (string[] classes)

parameters:
» cl asses — an array containing the names of the classes to be imported.
* cl assO DLLNane — a class hame or the name of a .dIl file containing the classes to be imported. If a .dll

file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .dll file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the .NET schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

Rollback()

EventPersister.Rollback() rolls back the specified number of levels of transaction, where level is a positive integer,
or roll back all levels of transaction if no level is specified.

voi d Rol | back()
voi d Rol | back(int |evel)

parameter:

* | evel — optional number of levels to roll back.

This method does nothing if level is less than 0, and stops rolling back once the transaction level reaches O if level
is greater than the initial transaction level.

28 Persisting .NET Objects with InterSystems XEP

XEP Quick Reference

SetInterfaceResolver()

EventPersister.Setl nter faceResolver () — sets the instance of InterfaceResolver to be used by I mportSchema()
(see “Implementing an InterfaceResolver™). All instances of Event created by this EventPersiser will share the
specified InterfaceResolver (which defaults to nul I if this method is not called).

voi d SetlnterfaceResol ver(InterfaceResol ver interfaceResol ver)

parameters:

* interfaceResol ver — an implementation of InterfaceResolver that will be used by ImportSchema() to
determine the actual type of properties declared as interfaces. This argument can be nul | .

see also:

GetlnterfaceResolver (), Impor tSchema()

3.1.4 Class Event

Class InterSystems.XEP.Event provides methods that operate on XEP events (storing events, creating a query, indexing
etc.). It is created by the EventPersister. GetEvent() method.
Close()

Event.Close() releases all resources held by this instance. Always call Close() on the Event object before it goes
out of scope to ensure that all locks, licenses, and other resources associated with the connection are released.

voi d O ose()

CreateQuery()

Event.CreateQuery() takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<T>, where parameter T is the target class of the parent Event.

Event Quer y<T> CreateQuery(string sql Text)

parameter:
* sql Text — text of the SQL query.

see also:

Creating and Executing a Query

DeleteObject()
Event.DeleteObject() deletes an event identified by its database object ID or 1dKey.

voi d Del eteChject(long id)
voi d Del etehj ect (object[] idkeys)

parameter:
* i d— database object ID

» i dkeys — an array of objects that make up the IdKey (see “Using IdKeys™). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid

type.

see also:

Persisting .NET Objects with InterSystems XEP 29

Quick Reference for XEP .NET Classes

Accessing Stored Events

GetObject()

Event.GetObject() fetches an event identified by its database object ID or IdKey. Returns nul | if the specified
object does not exist.

obj ect Get Object(long id)
obj ect Get Obj ect (obj ect[] idkeys)

parameter:
e i d— database object ID

» idkeys — an array of objects that make up the IdKey (see “Using IdKeys™). An XEPException will be
thrown if the underlying class has no 1dKeys or if any of the keys supplied is equal to null or of an invalid

type.

see also:

Accessing Stored Events

IsEvent()

Event.| sEvent() throws an XEPException if the object (or class) is not an event in the XEP sense (see “Requirements
for Imported Classes™). The exception message will explain why the object is not an XEP event.

static void | sEvent(object objectOC ass)

parameter:
* obj ect O d ass — the object to be tested.

Startindexing()

Event.Startlndexing() starts asynchronous index building for the extent of the target class. Throws an exception
if the index mode is Event.] NDEX_MODE_SYNC (see “Controlling Index Updating™).

voi d Startl ndexing()

StopIndexing()

Event.Stopl ndexing() stops asynchronous index building for the extent. If you do not want the index to be updated
when the Event instance is closed, call this method before calling Event.Closg().

voi d Stopl ndexi ng()

see also:

Controlling Index Updating

Store()
Event.Store() stores a .NET object or array of objects as persistent events. Returns a long database ID for each
newly inserted object, or O if the ID could not be returned or the event uses an I1dKey.
| ong Store(object obj)
long[] Store(object[] objects)
parameters:
30 Persisting .NET Objects with InterSystems XEP

XEP Quick Reference

* obj — .NET object to be added to the database.
* obj ects — array of .NET objects to be added to the database. All objects must be of the same type.

UpdateObject()
Event.UpdateObject() updates an event identified by its database ID or IdKey.

voi d Updat eQbj ect(long id, object obj)
voi d Updat eCbj ect (obj ect[] idkeys, object obj)

parameter:
e i d— database object ID

» idkeys — an array of objects that make up the IdKey (see “Using IdKeys™). An XEPException will be
thrown if the underlying class has no 1dKeys or if any of the keys supplied is equal to null or of an invalid

type.
e obj — new object that will replace the specified event.

see also:

Accessing Stored Events

WaitForindexing()

Event.WaitFor I ndexing() waits for asynchronous indexing to be completed, returning t r ue if indexing has been
completed, or f al se if the wait timed out before indexing was completed. Throws an exception if the index mode
is Event.| NDEX_MODE_SYNC.

bool Wit Forl ndexing(int timeout)
parameter:

e timeout — number of seconds to wait before timing out (wait forever if - 1, return immediately if 0).

see also:

Controlling Index Updating

3.1.5 Class EventQuery<T>

Class InterSystems.XEP.EventQuery<T> can be used to retrieve, update and delete individual events from the database.

AddParameter()

EventQuery<T>.AddParameter () binds the next parameter in sequence for the SQL query associated with this
EventQuery<T>.

voi d AddPar anet er (obj ect val)
parameter:

* val — the value to be used for the next parameter in this query string.

see also:

Creating and Executing a Query

Persisting .NET Objects with InterSystems XEP 31

Quick Reference for XEP .NET Classes

Close()

EventQuery<T>.Close() releases all resources held by this instance. Always call Close() before the EventQuery<T>
object goes out of scope to ensure that all locks, licenses, and other resources associated with the connection are
released.

voi d d ose()

DeleteCurrent()

EventQuery<T>.DeleteCurrent() deletes the event most recently fetched by GetNext().
voi d Del eteCurrent()

see also:

Processing Query Data

Execute()

EventQuery<T>.Execute() executes the SQL query associated with this EventQuery<T>. If the query is successful,
this EventQuery<T> will contain a resultset that can be accessed by other EventQuery<T> methods.

voi d Execute()

see also:

Creating and Executing a Query

GetAll()

EventQuery<T>.GetAll() returns objects of target class T from all rows in the resultset as a single list.
System Col | ecti ons. Generic. Li st<T> GetAll ()

Uses GetNext() to get all target class T objects in the resultset, and returns them in a List. The list cannot be used
for updating or deleting (although Event methods UpdateObject() and DeleteObject() can be used if you have
some way of obtaining the Id or IdKey of each object). GetAll() and GetNext() cannot access the same resultset
— once either method has been called, the other method cannot be used until Execute() is called again.

This method is more resource-intensive than a loop that explicitly calls GetNext() for each item, since there is a
high cost associated with maintaining a list of objects.

see also:

Processing Query Data, Event.UpdateObject(), Event.DeleteObject()

GetFetchLevel()

EventQuery<T>.GetFetchL evel () returns the current fetch level (see “Defining the Fetch Level”).

int GetFetchLevel ()

GetNext()

EventQuery<T>.GetNext() returns an object of target class T from the next row of the resultset. Returns nul | if
there are no more items in the resultset.

E Get Next ()

see also:

32

Persisting .NET Objects with InterSystems XEP

XEP Quick Reference

Processing Query Data

SetFetchLevel()

EventQuery<T>.SetFetchL evel () controls the amount of data returned by setting a fetch level (see *Defining the
Fetch Level ™).

For example, by setting the fetch level to Event . FETCH_LEVEL_DATATYPES_ONLY, objects returned by this
query will only have their datatype properties set, and any object type, array, or collection properties will not get
populated. Using this option can dramatically improve query performance.

voi d Set FetchLevel (int |evel)

parameter:

* | evel — fetch level constant (defined in the Event class).

Supported fetch levels are:

 Event.FETCH LEVEL_ALL —default, all properties populated

e Event.FETCH LEVEL_ DATATYPES ONLY —only datatype properties filled in
 Event.FETCH LEVEL_NO ARRAY_TYPES —all arrays will be skipped

e Event.FETCH LEVEL_NO OBJECT_TYPES —all object types will be skipped
 Event.FETCH LEVEL_NO COLLECTI ONS —all collections will be skipped

UpdateCurrent()
EventQuery<T>.UpdateCurrent() updates the object most recently fetched by GetNext().

voi d UpdateCurrent (T obj)
parameter:

e obj —the .NET object that will replace the current event.

see also:

Processing Query Data

3.1.6 Interface InterfaceResolver

By default, properties declared as interfaces are ignored during schema generation. To change this behavior, an implemen-
tation of InterfaceResolver can be passed to the | mportSchema() method, providing it with information that allows it to
replace an interface type with the correct concrete type.

GetlmplementationClass()

InterfaceResolver.Getl mplementationClass() returns the actual type of a property declared as an interface. See
“Implementing an InterfaceResolver” for details.

Type Getlnpl enentati onType(Type decl aringC ass, string fieldName, Type interfaceC ass)

parameters:
» decl ari ngd ass — class where fieldName is declared as interfaceClass.

e fi el dName — name of the property in declaringClass that has been declared as an interface.

Persisting .NET Objects with InterSystems XEP 33

Quick Reference for XEP .NET Classes

e interfaced ass — the interface to be resolved.

3.1.7 Class XEPException

Class InterSystems.XEP.XEPException implements the exception thrown by most methods of Event, EventPersister, and
EventQuery<T>. This class inherits methods and properties from System.SystemException.

34 Persisting .NET Objects with InterSystems XEP

	Table of Contents
	1 Introduction to XEP for .NET
	1.1 Setup and Configuration
	1.1.1 XEP Client Assemblies

	2 Using XEP Event Persistence with .NET
	2.1 Introduction to Event Persistence
	2.1.1 Simple Applications to Store and Query Persistent Events

	2.2 Creating and Connecting an EventPersister
	2.3 Importing a Schema
	2.4 Storing and Modifying Events
	2.4.1 Creating and Storing Events
	2.4.2 Accessing Stored Events
	2.4.3 Controlling Index Updating

	2.5 Using Queries
	2.5.1 Creating and Executing a Query
	2.5.2 Processing Query Data
	2.5.3 Defining the Fetch Level

	2.6 Schema Customization and Mapping
	2.6.1 Schema Import Models
	2.6.2 Using Attributes
	2.6.3 Using IdKeys
	2.6.4 Implementing an InterfaceResolver
	2.6.5 Schema Mapping Rules

	3 Quick Reference for XEP .NET Classes
	3.1 XEP Quick Reference
	3.1.1 List of XEP Methods
	3.1.2 Class PersisterFactory
	3.1.3 Class EventPersister
	3.1.4 Class Event
	3.1.5 Class EventQuery<T>
	3.1.6 Interface InterfaceResolver
	3.1.7 Class XEPException

	Index

