
Using IntegratedML

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using IntegratedML
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Introduction to IntegratedML ... 1
1.1 Purpose ... 1
1.2 Introduction to Machine Learning .. 1

2 IntegratedML Basics .. 3
2.1 Creating Model Definitions .. 5

2.1.1 Examples — CREATE MODEL .. 5
2.1.2 Preparing Data for your Model .. 6
2.1.3 See More .. 6

2.2 Training Models ... 6
2.2.1 Examples — TRAIN MODEL ... 6
2.2.2 Adding Training Parameters (the USING clause) .. 7
2.2.3 See More .. 8

2.3 Validating Models ... 8
2.3.1 Examples — VALIDATE MODEL .. 8
2.3.2 See More .. 9

2.4 Making Predictions .. 9
2.4.1 PREDICT ... 9
2.4.2 PROBABILITY .. 10
2.4.3 SELECT WITH PREDICTIONS ... 11

2.5 Walkthrough ... 11

3 Providers .. 13
3.1 AutoML .. 13

3.1.1 Training Parameters — AutoML .. 13
3.1.2 Feature Engineering ... 15
3.1.3 Model Selection ... 15
3.1.4 Platform Support and Known Issues .. 15
3.1.5 See More .. 15

3.2 H2O .. 16
3.2.1 Training Parameters — H2O .. 16
3.2.2 Model Selection ... 16
3.2.3 Training Log Output ... 16
3.2.4 Known Issues ... 16
3.2.5 See More .. 17

3.3 DataRobot ... 17
3.3.1 Training Parameters — DataRobot .. 17

3.4 PMML .. 17
3.4.1 How PMML Models work in IntegratedML .. 17
3.4.2 How to import a PMML Model ... 18
3.4.3 Examples .. 18
3.4.4 Additional Parameters .. 19

4 ML Configurations ... 21
4.1 Creating ML Configurations .. 21

4.1.1 Creating ML Configurations using the System Management Portal 21
4.1.2 Creating ML Configurations using SQL .. 22

4.2 Setting the ML Configuration .. 22
4.2.1 Setting ML Configuration for the Given Process using SQL .. 23

Using IntegratedML iii

4.2.2 Setting the System Default ML Configuration using the System Management Portal ... 23
4.3 Maintaining ML Configurations .. 23

4.3.1 Altering ML Configurations ... 23
4.3.2 Deleting ML Configurations .. 24

5 Model Maintenance .. 27
5.1 Viewing Models .. 27

5.1.1 ML_MODELS ... 27
5.1.2 ML_TRAINED_MODELS .. 28
5.1.3 ML_TRAINING_RUNS .. 28
5.1.4 ML_VALIDATION_RUNS ... 29
5.1.5 ML_VALIDATION_METRICS ... 29

5.2 Altering Models .. 30
5.3 Deleting Models ... 31

iv Using IntegratedML

List of Figures

Figure 1–1: Traditional Programming vs. Machine Learning ... 2
Figure 2–1: IntegratedML Workflow .. 3

Using IntegratedML v

1
Introduction to IntegratedML

IntegratedML is a feature within InterSystems IRIS® data platform which allows you to use automated machine learning
functions directly from SQL to create and use predictive models.

1.1 Purpose
Successful organizations recognize the need to develop applications that effectively harness the massive amounts of data
available to them. These organizations want to use machine learning to train predictive models from large datasets, so that
they can make critical decisions based on their data. This places organizations without the in-house expertise to build
machine learning models at a significant disadvantage. For this reason, InterSystems has created IntegratedML.

IntegratedML enables developers and data analysts to build and deploy machine learning models within a SQL environment,
without any expertise required in feature engineering or machine learning algorithms. Using IntegratedML, developers can
use SQL queries to create, train, validate, and execute machine learning models.

IntegratedML considerably reduces the barrier to entry into using machine learning, enabling a quick transition from having
raw data to having an implemented model. It is not meant to replace data scientists, but rather complement them.

1.2 Introduction to Machine Learning
To understand IntegratedML, you need an introductory understanding of several commonly used terms:

• Machine learning

• Models

• Regression versus classification

• Training

• Features and labels

• Model validation

What is Machine Learning?
Machine learning is the study of computer algorithms that identify and extract patterns from data in order to build and use
predictive models.

Using IntegratedML 1

Figure 1–1:Traditional Programming vs. Machine Learning

In traditional programming, a program is manually developed that, when executed on input data, generates the desired
output. In machine learning, the computer takes sample data and its known (or expected) output to develop a program (in
this case, a predictive model), which can in turn be executed on further data.

Training a Model
The training process is how a machine learning algorithm develops a predictive model. The algorithm uses sample data,
or training data, to identify patterns that map the inputs to the desired output. These inputs (or features) and outputs (or
labels) are columns in the data set. A trained machine learning model has an algorithmically derived relationship between
the features and the resulting label.

Validating a Model
After training a model, but before deployment, you can validate your model to confirm that is useful on data aside from
the data that was used to train it. Model validation is the process of evaluating a model’s predictive performance by com-
paring the model’s output to the results of real data. While training data was used to train the model, testing data is used to
validate it. In the simplest case, the testing dataset is data from an original dataset that is set aside from the training data.

Using a Model
A trained machine learning model is used to make predictions on new data. This data contains the same features as the
training and testing data, but without the label column; the label is the output of the model.

Regression versus Classification
A regression model is used to predict continuous numeric values, such as cost, lab result, and so on, and may therefore
output a label value (for example, $12.52) that does not appear in the training data. A classification model is used to predict
discrete values such as true/false, country name, and so on, where possible label values are defined by those that appear in
the training data; for example, if the label is country name, predicted values are restricted to the country names that actually
appear in the training data. When using a classification model you can also output the probability of a specified value being
the label value for each prediction, allowing you to evaluate the relative strength of predictions of that value.

2 Using IntegratedML

Introduction to IntegratedML

2
IntegratedML Basics

IntegratedML is a feature within InterSystems IRIS® data platform which allows you to use automated machine learning
functions directly from SQL to create and use predictive models.

Figure 2–1: IntegratedML Workflow

1. To use IntegratedML, you begin by specifying a model definition, which contains metadata about the input fields
(features), predicted field (label), and the data types of these fields. Only the structure of the data is stored within the
model definition, not the data itself.

Using IntegratedML 3

• Optional — You can select the ML configuration, which specifies a provider to perform training. You can customize
this configuration before training, or use the system-default configuration without any action needed.

2. You train the model on data, using the provider specified in the active ML configuration. The provider uses a structured
process to compare the performance of different machine learning model types (linear regression, random forest, etc.)
with the dataset and return the appropriate model. This process varies by the provider.

• Optional — After training the model, you can validate the model using test data to evaluate the predictive perfor-
mance of the model.

3. Your trained model can now be invoked by SQL functions to make predictions on data.

Definitions
See below for definitions of IntegratedML-specific terms:

Models

Models are the primary objects used in IntegratedML. There are two types of model entities:

• Model Definitions — With IntegratedML, models are part of the database schema, like tables or indexes. The
CREATE MODEL statement introduces a new model definition into the schema. This model definition
specifies the features, labels, and data types, along with the ML configuration to be used for training.

• Trained Models— The TRAIN MODEL command uses a model definition to train a model with a provider
specified by your configuration. This trained model is used to make predictions on data.

Providers

Several organizations offer ML-as-a-Service, supplying the tools and computational power to develop machine
learning models based on datasets supplied by customers. These automated solutions often come in standalone
applications, with no framework that connects directly to your datasets. You are then burdened with exporting
your data to other workflows, subject to conditions that vary based on the machine learning framework.

IntegratedML addresses these issues by bringing automated machine learning capabilities directly inside the
InterSystems IRIS® data platform, facilitating the connection between your data in InterSystems IRIS and these
automated workflows. Providers are powerful machine learning frameworks that are accessible in a common
interface in IntegratedML. The following providers are available:

• AutoML — a machine learning engine developed by InterSystems, housed in InterSystems IRIS

• H2O — an open-source automated machine learning platform

• DataRobot — an advanced enterprise automated machine learning platform

ML Configurations

An ML configuration is a collection of settings that IntegratedML uses to train a model. Primarily, a configuration
specifies a machine learning provider that will perform training. Depending on the provider, the configuration
may also specify requisite information for connection such as a URL and/or an API token. A default ML configu-
ration is immediately active upon installation, requiring no adjustment in a simplest case. Optionally, you can
create and select additional configurations to suit individual needs.

4 Using IntegratedML

IntegratedML Basics

2.1 Creating Model Definitions
Important: Time series models are available in InterSystems IRIS 2023.2 as an Experimental Feature. This means

they are not supported for production environments. However, the feature is well-tested and InterSystems
believes it can add significant value to customers.

Before you can train a model, you must use the CREATE MODEL statement to specify a model definition. A model
definition is a template that IntegratedML uses to train models; it contains metadata about the input fields (features), predicted
field (label), and the data types of these fields. Only the structure of the data is stored within the model definition, not the
data itself.

IntegratedML can be used to create three kinds of models: regression, classification, and time series. The syntax for creating
models for regression or classification tasks differs from the syntax for creating models for time series tasks. You can refer
to these varying syntaxes on the CREATE MODEL reference page.

2.1.1 Examples — CREATE MODEL

The following examples highlight use of different clauses for your CREATE MODEL statements. The first three examples
outline various options when creating a regression or classification model, while the last example shows how to create a
time series model.

Selecting Feature Columns with FROM

The following command creates a model definition HousePriceModel. The label column, or the column to be
predicted, is Price. The columns of the HouseData table are implicitly sourced as the feature columns of the
model definition by using a FROM clause:

SQL

CREATE MODEL HousePriceModel PREDICTING (Price) FROM HouseData

Important: If you do not use FROM in your CREATE MODEL statement for a classification or regression
model, FROM is required in your TRAIN MODEL statement.

Selecting Feature Columns with WITH

The following command creates the same model definition as above, HousePriceModel, but uses a WITH
clause to explicitly name the feature columns and their data types:

SQL

CREATE MODEL HousePriceModel PREDICTING (Price) WITH (TotSqft numeric, num_beds integer, num_baths
 numeric)

Selecting Training Parameters with USING

The following command uses the optional USING clause to specify parameters for the provider to train with. See
Adding Training Parameters (the USING clause) for further discussion of the USING clause.

SQL

CREATE MODEL HousePriceModel PREDICTING (Price) FROM HouseData USING {"seed": 3}

Using IntegratedML 5

Creating Model Definitions

Creating a Time Series Model

As opposed to the other examples, which create models used for regression or classification tasks, this example
creates a time series model that predicts subsequent rows at 3 steps into the future.

SQL

CREATE TIME SERIES MODEL ForecastModel PREDICTING (*) BY (date) FROM WeatherData USING
{"FORWARD":3 }

2.1.2 Preparing Data for your Model

Before creating a model definition, you should consider the following items to prepare your dataset:

• Organize your data into a singular view or table.

• Evaluate your features:

– If you have a column that is missing values for several rows, or contains NULL values for several rows, you may
want to remove the column as this could adversely affect your trained model. You can also consider using a CASE
expression to replace NULLs in your columns however you like.

– Text-heavy data makes model training much slower.

2.1.3 See More

You can view model definitions in the INFORMATION_SCHEMA.ML_MODELS view.

See Model Maintenance for more operations you can perform with your model definitions.

For complete information about the CREATE MODEL statement, see the InterSystems SQL Reference.

2.2 Training Models
After creating a model definition, you can use the TRAIN MODEL statement to train a predictive model. IntegratedML
trains this model using the provider specified by your ML configuration. The provider uses a structured process to compare
the performance of different machine learning model types (linear regression, random forest, etc.) with the data and return
the appropriate model.

Refer to the TRAIN MODEL reference page for a syntax overview and full description.

2.2.1 Examples — TRAIN MODEL

The following examples highlight use of different clauses for your TRAIN MODEL statements:

Simplest Syntax

The following command trains a model with the HousePriceModel model definition:

SQL

TRAIN MODEL HousePriceModel

Important: If you did not use FROM in your CREATE MODEL statement, FROM is required in your
TRAIN MODEL statement.

6 Using IntegratedML

IntegratedML Basics

Selecting Training Data with FROM

The following command trains a model with the HousePriceModel model definition and HouseData as
training data:

SQL

TRAIN MODEL HousePriceModel FROM HouseData

Naming the Training Run with AS

The following command trains a model with the HousePriceModel model definition. This trained model is
saved with the name HousePriceModelTrained

SQL

TRAIN MODEL HousePriceModel AS HousePriceModelTrained FROM HouseData

Matching Feature Columns with WITH

The following command trains a model with the HousePriceModel model definition, and uses the FOR and
WITH clauses to explicitly match the label and feature columns, respectively, between the training set and the
model definition:

SQL

TRAIN MODEL HousePriceModel FOR house_price WITH (TotSqft = house_area, num_beds = beds, num_baths
 = bathrooms) FROM OtherHouseData

Selecting Training Parameters with USING

The following command uses the optional USING clause to specify parameters for the provider to train with. See
Adding Training Parameters (the USING clause) for further discussion of the USING clause.

SQL

TRAIN MODEL HousePriceModel USING {"seed": 3}

2.2.2 Adding Training Parameters (the USING clause)

The USING clause allows you to specify values for parameters that affect how your provider trains models. Machine
learning experts can use this feature to fine-tune training runs to their needs.

For example:

TRAIN MODEL my-model USING {"seed": 3}

You can use the USING clause to pass provider-specific training parameters. This clause accepts a JSON string containing
key-value pairs of parameter names and parameter values. These value pairs are case insensitive.

You can pass a USING clause in your CREATE MODEL and TRAIN MODEL statements, as well as in your ML con-
figurations. They resolve as follows:

• Any parameters you specify with a USING clause in your TRAIN MODEL command override values for the same
parameters you may have specified in your CREATE MODEL command or in your default ML configuration.

• Any parameters you specify with a USING clause in your CREATE MODEL command are implicitly used for your
TRAIN MODEL command, and override values for the same parameters you may have specified in your default ML
configuration.

Using IntegratedML 7

Training Models

• If you do not specify a USING in your CREATE MODEL or TRAIN MODEL commands, your model uses the
USING clause specified by your default ML configuration.

All parameter names must be passed as strings, and the values must be passed in the type specific to the parameter. Lists
should be input in the form of a string with commas as delimiters.

See below for information about the parameters available to each of the following providers:

• AutoML

• H2O

• DataRobot

2.2.3 See More

You can view trained models and the results of training runs in the INFORMATION_SCHEMA.ML_TRAINED_MODELS
view and INFORMATION_SCHEMA.ML_TRAINING_RUNS view, respectively. Trained models are associated with
the model definition from which they were trained.

See Model Maintenance for more operations you can perform with your trained models.

For complete information about the TRAIN MODEL statement, see the InterSystems SQL Reference.

2.3 Validating Models
While training, the provider performs validation throughout the process of outputting a trained model. IntegratedML supplies
the VALIDATE MODEL statement so that you can perform your own validation on a model. VALIDATE MODEL
returns simple metrics for regression, classification, and time series models based on the provided testing set.

Refer to the VALIDATE MODEL reference page for a syntax overview and full description.

2.3.1 Examples — VALIDATE MODEL

The following examples highlight use of different clauses for your VALIDATE MODEL statements:

Simplest Syntax

The following command validates the trained HousePriceModel using HouseTesting as a testing data set:

SQL

VALIDATE MODEL HousePriceModel From HouseTesting

Naming the Validation Run with AS

The following command validates the trained HousePriceModel and saves the validation run as
HousePriceValidation using HouseTesting as a testing data set:

SQL

VALIDATE MODEL HousePriceModel AS HousePriceValidation From HouseTesting

8 Using IntegratedML

IntegratedML Basics

Matching Feature Columns with WITH

The following command validates the trained HousePriceModel and uses a WITH clause to explicitly match
feature columns from the testing data set, HouseTesting:

SQL

VALIDATE MODEL HousePriceModel WITH (TotSqft = area, num_beds = beds, num_baths = baths) From
HouseTesting

2.3.2 See More

You can see validation runs and their results in the INFORMATION_SCHEMA.ML_VALIDATION_RUNS view and
INFORMATION_SCHEMA.ML_VALIDATION_METRICS view, respectively

For complete information about the VALIDATE MODEL statement and validation metrics, see the InterSystems SQL
Reference.

2.4 Making Predictions
Each trained model has a specialized function, PREDICT, that calls on the provider to predict the result for each row in
the applicable row-set. Classification models additionally have the PROBABILITY function, that calls on the provider to
return the probability that the specified value is the correct result for the model.

These are scalar functions. and can be used anywhere in a SQL query and in any combination with other fields and functions.

2.4.1 PREDICT

You can use the PREDICT function to return the estimated (for regression models) or most likely (for classification
models) value for the label column, by applying the given model (and hence provider) to each row in the applicable row-
set. Each row provides the input columns (feature columns), from which the model returns the output (label). A row-set
can be any set of rows that includes the required feature columns and the label column.

Syntax
The PREDICT function has the following syntax:

SQL

PREDICT(model-name [USE trained-model-name] [WITH feature-column-clause])

Examples
The following statements use the specialized PREDICT function of the model HousePriceModel in various forms:

SQL

SELECT *, PREDICT(HousePriceModel) FROM NewHouseData

SQL

SELECT * FROM NewHouseData WHERE PREDICT(HousePriceModel) > 500000

You can use the WITH clause to make a prediction based on specified values corresponding to columns in the trained
model, rather than a full dataset. Arguments must be ordered exactly as specified in your CREATE MODEL statement;

Using IntegratedML 9

Making Predictions

missing arguments can be indicated by empty commas. For example, the following statement makes predictions based on
two sets of column data:

SQL

SELECT PREDICT(HousePriceModel WITH ({4200, 5, 4},{3800, , 3)))

You can also use WITH to specify the mapping of columns between the model and a dataset different from the one it was
created on. The following statement maps three feature columns from the model to columns in the alternate dataset:

SQL

SELECT PREDICT(HousePriceModel WITH (TotSqft = house_area, num_beds = beds, num_baths = bathrooms) FROM
 OtherHouseData

See More
For complete information about the PREDICT function, see the InterSystems SQL Reference.

2.4.2 PROBABILITY

When using classification models, which predict discrete values such as true/false or country name (as opposed to regression
models, which predict continuous numeric values such as cost or lab result), you can use the PROBABILITY function to
return for each row the probability that the specified label value is the predicted label value. This allows you to evaluate
the relative strength of predictions of that value.

Syntax
The PROBABILITY function has the following syntax:

SQL

PROBABILITY(model-name [USE trained-model-name] FOR label-value [WITH feature-column-clause])

Examples
The following statements use the specialized PROBABILITY function of the model Iris_model in various forms:

SQL

SELECT *, PROBABILITY(Iris_Model FOR 'iris-setosa') FROM Iris_Flower_Set

SQL

SELECT * FROM Iris_Flower_Set WHERE PROBABILITY(Iris_Model FOR 'iris-setosa') < 0.3

The following statement uses the specialized PROBABILITY function of the model EmailFilter. Since this is a binary
classification model, with boolean values of 0 or 1 as the sole output, it can use the implicit FOR value of 1 to omit the
FOR clause:

SQL

SELECT * EmailData WHERE PROBABILITY(EmailFilter) > 0.7

See More
For complete information about the PROBABILITY function, see the InterSystems SQL Reference.

10 Using IntegratedML

IntegratedML Basics

2.4.3 SELECT WITH PREDICTIONS

Since time series models predict rows of data, rather than specific elements, you must execute a SELECT statement to see
a model’s predictions.

Syntax
A SELECT WITH PREDICTIONS command has the following syntax:

SQL

SELECT WITH PREDICTIONS(model-name) columns FROM table-name

Examples
The following example selects all rows and columns from a table:

SQL

SELECT WITH PREDICTIONS(WeatherModel) * FROM Weather.Data

The following example selects only the rows after a certain date, allowing you to view a section of the table, such as the
set of predicted rows:

SQL

SELECT WITH PREDICTIONS(WeatherModel) * FROM Weather.Data WHERE Date > 20220101

See More
For complete information about selecting with predictions, see the InterSystems SQL Reference.

2.5 Walkthrough
This walkthrough illustrates the simple and powerful syntax IntegratedML offers through application to a real world scenario.
Using a small number of SQL queries, the user develops a validated predictive model using their data.

Administrators in a health system have grown concerned about the increasing readmission rate for patients. Clinicians could
be more cautions across the board when evaluating patient systems, but there are no defined criteria that would inform
them of what to look for. Before investing fully into a new analytical solution, they task their data analyst with quickly
developing a model to find trends in the profiles of patients that are readmitted. With their data stored on the InterSystems
IRIS® data platform database platform, the analyst knows that using IntegratedML would be far faster than any other
solution that requires manually formatting and moving their data outside the platform.

Preparing the Data
Before using IntegratedML, the analyst prepares the data to make sure it is clean and ready for training. Any data the analyst
needs from multiple tables are put into a singular view, for ease of use. In this example, the view is named
Hospital.PatientDataView.

Customizing the Configuration
The analyst chooses to go with the default configuration for using IntregratedML. While the analyst is aware of the different
providers they could use to train the model, for speed and ease of use they have gone with the default configuration with
no additional syntax required.

Using IntegratedML 11

Walkthrough

Creating the Model
Data in hand, organized into a singular view, the analyst creates the model definition to be trained by an automated machine
learning function. This definition, named PatientReadmission, specifies IsReadmitted as the label column to be
predicted:

SQL

CREATE MODEL PatientReadmission PREDICTING (IsReadmitted) FROM Hospital.PatientDataView

Training the Model
The analyst now trains the model:

SQL

TRAIN MODEL PatientReadmission

The analyst does not need to specify any customized parameters for training.

Validating the Model
The analyst validates the model using a testing dataset they prepared (Hospital.PatientDataViewTesting), to get
metrics on performance, and views these metrics:

SQL

VALIDATE MODEL PatientReadmission FROM Hospital.PatientDataViewTesting
SELECT * FROM INFORMATION_SCHEMA.ML_VALIDATION_METRICS

Making Predictions with the Model
With the model trained and validated, the analyst can now apply the model to make predictions on different datasets with
the same schema. The analyst applies the model to Hospital.NewPatientDataView, a dataset containing information
for patients that have been admitted in the past week, to see if any are susceptible for readmission:

SQL

SELECT ID FROM Hospital.NewPatientDataView WHERE PREDICT(PatientReadmission) = 1

Summary
In total, the analyst entered the following SQL queries to go from raw data to an active predictive model:

SQL

CREATE MODEL PatientReadmission PREDICTING (IsReadmitted) FROM Hospital.PatientDataView
TRAIN MODEL PatientReadmission
VALIDATE MODEL PatientReadmission FROM Hospital.PatientDataViewTesting
SELECT * FROM INFORMATION_SCHEMA.ML_VALIDATION_METRICS
SELECT ID FROM Hospital.NewPatientDataView WHERE PREDICT(PatientReadmission) = 1

12 Using IntegratedML

IntegratedML Basics

3
Providers

Providers are powerful machine learning frameworks that are accessible in a common interface in IntegratedML. To choose
a provider for training, select an ML configuration which specifies the desired provider.

You can pass additional parameters specific to these providers with a USING clause. See Adding Training Parameters (the
USING clause) for further discussion.

3.1 AutoML
AutoML is an automated machine learning system developed by InterSystems, housed within InterSystems IRIS® data
platform. IntegratedML, AutoML trains models quickly to produce accurate results. Additionally, AutoML features basic
natural language processing (NLP), allowing the provider to smartly incorporate feature columns with unstructured text
into machine learning models.

%AutoML is the system-default ML configuration for IntegratedML, and points to AutoML as the provider.

3.1.1 Training Parameters — AutoML

You can pass training parameters with a USING clause. For example:

SQL

TRAIN MODEL my-model USING {"seed": 3}

With AutoML, you can pass the following parameters into your training queries:

Using IntegratedML 13

DescriptionTraining Parameter

A seed to initialize the random number generator.You can manually
set any integer as the seed for reproducibility between training runs.
By default, seed is set to “None ” .

seed

Determines how verbose the output of each training run is.This output
can be found in the ML_TRAINING_RUNS view.You can specify any
of the following options for verbosity:

verbosity

• 0 — Minimal/no output.

• 1 — Moderate output.

• 2 — Full output. This is the default setting for verbosity.

Determines the model selection metric for classification models.You
can specify one of the following options for TrainMode:

TrainMode

• “TIME ” — Model selection prioritizes faster training time.

• “BALANCE ” — Model selection compares models by an equal
proportion of each model’s respective score and training time.

• “SCORE ” — Model selection does not factor training run time at all.
This is the default setting for TrainMode.

See the AutoML Reference for more information about these different
modes.

The number of minutes allotted for initiating training runs. This does
not necessarily limit training time. For example, if the MaxTime is set
to 3000 minutes and there are 2 minutes remaining after a model is
trained, another model could still be trained. By default, MaxTime is
set to 14400 minutes.

MaxTime

Note: This parameter is only applicable if TrainMode is set to
“TIME ” .

The minimum score to allow for classification model selection,
irrespective of the training mode selected.You can set any value
between 0 and 1. By default, MinimumDesiredScore is set to 0.

MinimumDesiredScore

Note: This parameter is only applicable if TrainMode is set to
“TIME ” .

If the trained logistic regression or random forest classifier
model exceeds the MinimumDesiredScore, then AutoML
does not train the neural network model. See the AutoML
Reference for more information about the different models
used for classification models.

14 Using IntegratedML

Providers

3.1.2 Feature Engineering

AutoML uses feature engineering to modify existing features, create new ones, and remove unnecessary ones. These steps
improve training speed and performance, including:

• Column type classification to correctly use features in models

• Feature elimination to remove redundancy and improve accuracy

• One-hot encoding of categorical features

• Filling in missing or null values in incomplete datasets

• Creating new columns pertaining to hours/days/months/years, wherever applicable, to generate insights in your data
related to time.

3.1.3 Model Selection

If a regression model is determined to be appropriate, AutoML uses a singular process for developing a regression model.

For classification models, AutoML uses the following selection process to determine the most accurate model:

1. If the dataset is too large, AutoML samples down the data to speed up the model selection process. The full dataset is
still used for training after model selection.

2. AutoML determines if the dataset presents a binary classification problem, or if multiple classes are present, to use the
proper scoring metric.

3. Using Monte Carlo cross validation, AutoML selects the model with the best scoring metrics for training on the entire
dataset.

Note: A more detailed description of this model selection process can be found in the AutoML Reference.

3.1.4 Platform Support and Known Issues

The AutoML provider is not supported on any IBM AIX® platform, Red Hat Enterprise Linux 8 for ARM, or Ubuntu
20.04 for ARM.

AutoML is implemented using Python, which may lead to improper isolation between AutoML Python packages and
Embedded Python packages. As a result, AutoML may be unable to find packages it needs to work correctly. To avoid this
issue, add <path to instance>/lib/automl to the Python sys.path within your instance of InterSystems IRIS. To do so, open a
Python shell with %SYS.Python.Shell() and enter the following commands:

Python

import sys
sys.path.append("<path to instance>\\lib\\automl")

3.1.5 See More

For more information about how AutoML works, see the AutoML Reference.

Using IntegratedML 15

AutoML

3.2 H2O
You can specify H2O as your provider by setting %H2O as your ML configuration.

You can also create a new ML configuration where PROVIDER points to H2O.

Note: The H2O provider does not support the creation of time series models.

3.2.1 Training Parameters — H2O

You can pass training parameters with a USING clause. For example:

SQL

TRAIN MODEL my-model USING {"seed": 3}

See the H2O documentation for information regarding expected input and how these parameters are handled. Unknown
parameters result in an error during training.

When training a model using the H2O provider, the max_models parameter is set to 5 by default.

3.2.2 Model Selection

To make a selection on which model type to use, the system looks at the number of unique values in the column and compares
that to the total number of values in the column. If there are a relatively small number of unique values, the system uses
an H2O classification model. If there are a relatively large number of unique values, the system uses an H2O regression
model.

If you want to force a column to be trained by H2O as a regression model, you can manually add the key value pair:
"model_type":"regression" to your USING clause. For example:

SQL

TRAIN MODEL h2o-model USING {"model_type": "regression"}

3.2.3 Training Log Output

You can query the LOG column of the INFORMATION_SCHEMA.ML_TRAINING_RUNS view after training models
using H2O.

3.2.4 Known Issues

• When training with the H2O provider, you may see the following error message:

LogMessage: %ML Provider '%ML.H2O.Provider' is not available on this instance
 > ERROR #5002: ObjectScript error: <READ>%GetResponse+4^%Net.Remote.Object.1

If you do, you can address this issue by performing the following:

1. Log in to the Management Portal.

2. Go to System Administration > Configuration > Connectivity > External Language Servers.

3. Select the server named %IntegratedML Server.

16 Using IntegratedML

Providers

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html#optional-miscellaneous-parameters

4. Add the following to the JVM arguments field:

-Djava.net.preferIPv6Addresses=true -Djava.net.preferIPv4Addresses=false

• Setting the seed parameter with a USING clause for the H2O provider does not guarantee reproducible training runs.
This is because the default training settings for H2O include the parameter max_models being set to 5, which triggers
an early stopping mode. Reproducibility for the Gradient Boosting Model algorithm in H2O is a complex topic, as
documented by H2O.

3.2.5 See More

For more information about H2O, see their documentation.

3.3 DataRobot
Important: You must have a business relationship with DataRobot to use their AutoML capabilities.

DataRobot clients can use IntegratedML to train models with data stored within InterSystems IRIS® data platform.

You can specify DataRobot as your provider by selecting a DataRobot configuration as your default ML configuration:

SET ML CONFIGURATION datarobot_configuration

where datarobot_configuration is the name of an ML configuration where PROVIDER points to DataRobot.

3.3.1 Training Parameters — DataRobot

You can pass training parameters with a USING clause. For example:

SQL

TRAIN MODEL my-model USING {"seed": 3}

IntegratedML uses the DataRobot API to make an HTTP request to start modeling. Please consult their documentation for
information regarding expected input and how these parameters are handled. Unknown parameters result in an error during
training.

When training a model using the DataRobot provider, the quickrun parameter is set to true by default.

3.4 PMML
IntegratedML supports PMML as a PMML consumer, making it easy for you to import and execute your PMML models
using SQL.

3.4.1 How PMML Models work in IntegratedML

As with any other provider, you use a CREATE MODEL statement to specify a model definition, including features and
labels. This model definition must contain the same features and label that your PMML model contains.

Using IntegratedML 17

DataRobot

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.28.0/autodoc/api_reference.html

The TRAIN MODEL statement operates differently. Instead of “ training” data, the TRAIN MODEL statement imports
your PMML model. No training is necessary because the PMML model exhibits the properties of a trained model, including
information on features and labels. The model is identified by a USING clause.

Important: The feature and label columns specified in your model definition must match the feature and label columns
of the PMML model.

While you still require a FROM clause in either your CREATE MODEL or TRAIN MODEL statement,
the data specified is not used whatsoever.

Using your “ trained” PMML model to make predictions works the same as any other trained model in IntegratedML. You
can use the PREDICT function with any data that contains feature columns matching your PMML definition.

3.4.2 How to import a PMML Model

Before you can use a PMML model, set %PMML as your ML configuration, or select a different ML configuration where
PROVIDER points to PMML.

You can specify a PMML model with a USING clause. You can choose one of the following parameters:

By Class Name
You can use the "class_name" parameter to specify the class name of a PMML model. For example:

SQL

USING {"class_name" : "IntegratedML.pmml.PMMLModel"}

By Directory Path
You can use the "file_name" parameter to specify the directory path to a PMML model. For example:

SQL

USING {"file_name" : "C:\temp\mydir\pmml_model.xml"}

3.4.3 Examples

The following examples highlight the multiple methods of passing a USING clause to specify a PMML model.

Specifying a PMML Model in an ML Configuration
The following series of statements creates a PMML configuration which specifies a PMML model for house prices by file
name, and then imports the model with a TRAIN MODEL statement.

SQL

CREATE ML CONFIGURATION pmml_configuration PROVIDER PMML USING {"file_name" :
"C:\PMML\pmml_house_model.xml"}
SET ML CONFIGURATION pmml_configuration
CREATE MODEL HousePriceModel PREDICTING (Price) WITH (TotSqft numeric, num_beds integer, num_baths
numeric)
TRAIN MODEL HousePriceModel FROM HouseData
SELECT * FROM NewHouseData WHERE PREDICT(HousePriceModel) > 500000

Specifying a PMML Model in the TRAIN MODEL Statement
The following series of statements uses the provided %PMML configuration, and then specifies a PMML model by class
name in the TRAIN MODEL statement.

18 Using IntegratedML

Providers

SQL

SET ML CONFIGURATION %PMML
CREATE MODEL HousePriceModel PREDICTING (Price) WITH (TotSqft numeric, num_beds integer, num_baths
numeric)
TRAIN MODEL HousePriceModel FROM HouseData USING {"class_name" : "IntegratedML.pmml.PMMLHouseModel"}
SELECT * FROM NewHouseData WHERE PREDICT(HousePriceModel) > 500000

3.4.4 Additional Parameters

If your PMML file contains multiple models, IntegratedML uses the first model in the file by default. To point to a different
model within the file, use the model_name parameter in your USING clause:

SQL

TRAIN MODEL my_pmml_model FROM data USING {"class_name" : my_pmml_file, "model_name" : "model_2_name"}

Using IntegratedML 19

PMML

4
ML Configurations

An ML configuration is a collection of settings that IntegratedML uses to train a model. Primarily, a configuration specifies
a machine learning provider that will perform training. Depending on the provider, the configuration may also specify
requisite information for connection such as a URL and/or an API token.

You can use IntegratedML without any adjustment to your ML configuration necessary, as %AutoML is set as the system-
default ML configuration upon installation.

4.1 Creating ML Configurations
While you can use the system-default ML configuration upon installation, you can also create new ML configurations for
model training.

4.1.1 Creating ML Configurations using the System Management Portal

To create an ML configuration:

1. Log in to the Management Portal.

2. Go to System Administration > Configuration > Machine Learning Configurations.

3. Select Create New Configuration and enter the following values for fields:

• Name — The name of your ML configuration.

• Provider — The machine learning provider your ML configuration connects to.

If you select DataRobot, you must enter values for the following additional fields:

– URL — The URL of a DataRobot endpoint

– API Token — The API token of a DataRobot account

• Description — Optional. A text description for your ML configuration.

• Using Clause — Optional. A default USING clause for your ML configuration. See Adding Training Parameters
(the USING clause) for further discussion.

• Owner — The owner of this ML configuration.

4. Select Save to save this new ML configuration.

Using IntegratedML 21

To set this new ML configuration as the system-default, see Setting the System Default ML Configuration.

4.1.2 Creating ML Configurations using SQL

You can create a new configuration using the CREATE ML CONFIGURATION command.

Syntax
The CREATE ML CONFIGURATION statement has the following syntax:

SQL

CREATE ML CONFIGURATION ml-configuration-name PROVIDER provider-name [%DESCRIPTION description-string
] [USING json-object-string] provider-connection-settings

Examples
The following examples highlight use of different clauses for your CREATE ML CONFIGURATION statements:

Simplest Syntax

The following command creates an ML Configuration, H2OConfig, that uses the H2O provider. No provider
connection settings are needed when connecting to H2O:

SQL

CREATE ML CONFIGURATION H2OConfig PROVIDER H2O

Selecting Training Parameters with USING

The following command creates an ML Configuration, H2OConfig, that uses the H2O provider and specifies a
default USING clause:

SQL

CREATE ML CONFIGURATION H2OConfig PROVIDER H2O USING {"nfolds": 4}

See More
To set this new ML configuration as the system-default, see Setting the System Default ML Configuration.

For complete information about the CREATE ML CONFIGURATION command, see the InterSystems SQL Reference.

4.2 Setting the ML Configuration
IntegratedML provides the following configurations for immediate use:

• %AutoML

• %H2O

• %PMML

Upon installation, %AutoML is set as the system-default ML configuration. You can use IntegratedML without any
adjustment to your configuration necessary. If you would like to specify a different ML configuration to use for your
TRAIN MODEL statements, you can do so in one of the following methods:

• SQL — you can set the ML configuration for your given process

22 Using IntegratedML

ML Configurations

• System Management Portal — you can adjust the system-default ML configuration

You can see which ML configuration was used for your training run(s) by querying the INFORMA-
TION_SCHEMA.ML_TRAINING_RUNS view.

4.2.1 Setting ML Configuration for the Given Process using SQL

You can use the SET ML CONFIGURATION statement to specify the ML configuration for your given process.

Syntax
The SET ML CONFIGURATION statement has the following syntax:

SQL

SET ML CONFIGURATION ml-configuration-name

See More
See the InterSystems SQL Reference for more information about the SET ML CONFIGURATION statement.

4.2.2 Setting the System Default ML Configuration using the System
Management Portal

You can set the system-default ML configuration in the Machine Learning Configurations page in the System Management
Portal.

To set the system-default ML configuration:

1. Log in to the Management Portal

2. Go to System Administration > Configuration > Machine Learning Configurations

3. Next to System Default ML Configuration, select the ML configuration of your choice.

Note: Setting the system-default ML configuration in this manner does not go into effect until you have started a new
process.

4.3 Maintaining ML Configurations
You can perform the following operations to maintain your ML configurations:

• Altering ML Configurations

• Deleting ML Configurations

You can see which ML configuration was used for your training run(s) by querying the INFORMA-
TION_SCHEMA.ML_TRAINING_RUNS view.

4.3.1 Altering ML Configurations

You can modify the properties of existing ML configurations.

Using IntegratedML 23

Maintaining ML Configurations

4.3.1.1 Altering ML Configurations using the System Management Portal

To alter an ML configuration:

1. Log in to the Management Portal

2. Go to System Administration > Configuration > Machine Learning Configurations

3. Select the name of a listed ML configuration and adjust the values of your choice.

4. Select Save to save this altered ML configuration.

4.3.1.2 Altering ML Configurations using SQL

You can alter a configuration using the ALTER ML CONFIGURATION statement.

Syntax
The ALTER ML CONFIGURATION statement has the following syntax:

SQL

ALTER ML CONFIGURATION ml-configuration-name alter-options

Where alter-options is one, or more, of the following:

• PROVIDER provider-name

• %DESCRIPTION description-string

• USING json-object-string

• provider-connection-settings

See More
For complete information about the ALTER ML CONFIGURATION command, see the InterSystems SQL Reference.

4.3.2 Deleting ML Configurations

You can delete ML configurations.

4.3.2.1 Deleting ML Configurations using the System Management Portal

To delete an ML configuration:

1. Log in to the Management Portal

2. Go to System Administration > Configuration > Machine Learning Configurations

3. Find the row of the ML configuration you want to delete and select Delete.

4.3.2.2 Deleting ML Configurations using SQL

You can delete a configuration using the DROP ML CONFIGURATION statement.

Syntax
The DROP ML CONFIGURATION statement has the following syntax:

SQL

DROP ML CONFIGURATION ml-configuration-name

24 Using IntegratedML

ML Configurations

See More
For complete information about the DROP ML CONFIGURATION command, see the InterSystems SQL Reference.

Using IntegratedML 25

Maintaining ML Configurations

5
Model Maintenance

Model maintenance consists of viewing, altering, and deleting models.

5.1 Viewing Models
When IntegratedML performs training or validation, this process is known as a “ training run” or a “validation run.”

IntegratedML provides the following views, within the INFORMATION_SCHEMA class, that can be used to query
information about models, trained models, training runs, and validation runs:

• ML_MODELS

• ML_TRAINED_MODELS

• ML_TRAINING_RUNS

• ML_VALIDATION_RUNS

• ML_VALIDATION_METRICS

5.1.1 ML_MODELS

This view returns one row for each model definition.

INFORMATION_SCHEMA.ML_MODELS contains the following columns:

Using IntegratedML 27

DescriptionColumn Name

Time when the model definition was created (UTC)CREATE_TIME_STAMP

Default settings the model definition’s provider usesDEFAULT_SETTINGS

Default trained model name, if one has been trainedDEFAULT_TRAINED_MODEL_NAME

The FROM clause from the CREATE MODEL statement, if one was
used

DEFAULT_TRAINING_QUERY

Description of model definitionDESCRIPTION

Name of the model definitionMODEL_NAME

Name of the label columnPREDICTING_COLUMN_NAME

Type of the label columnPREDICTING_COLUMN_TYPE

Names of the feature columnsWITH_COLUMNS

See More
See Creating Model Definitions for information about model definitions.

5.1.2 ML_TRAINED_MODELS

This view returns one row for each trained model.

INFORMATION_SCHEMA.ML_TRAINED_MODELS contains the following columns:

DescriptionColumn Name

Model informationMODEL_INFO

Name of the model definitionMODEL_NAME

The model type (classification, regression, or time series)MODEL_TYPE

Provider used for trainingPROVIDER

Name of the trained modelTRAINED_MODEL_NAME

Time when the trained model was created (UTC)TRAINED_TIMESTAMP

See More
See Training Models for information about trained models.

See Providers for information about providers.

5.1.3 ML_TRAINING_RUNS

This view returns one row for each training run.

INFORMATION_SCHEMA.ML_TRAINING_RUNS contains the following columns:

DescriptionColumn Name

Time when the training run completed (UTC)COMPLETED_TIMESTAMP

Training log output from the providerLOG

28 Using IntegratedML

Model Maintenance

DescriptionColumn Name

Name of the ML configuration used for trainingML_CONFIGURATION_NAME

Name of the model definitionMODEL_NAME

Name of the provider used for trainingPROVIDER

Status of training runRUN_STATUS

Any settings passed by a USING clause for the training runSETTINGS

Time when the training run started (UTC)START_TIMESTAMP

Training error (if encountered)STATUS_CODE

Duration of training (in seconds)TRAINING_DURATION

Name of the training runTRAINING_RUN_NAME

Query used to source data from feature and label columns for trainingTRAINING_RUN_QUERY

See More
See Training Models for information about training runs.

5.1.4 ML_VALIDATION_RUNS

This view returns one row for each validation run.

INFORMATION_SCHEMA.ML_VALIDATION_RUNS contains the following columns:

DescriptionColumn Name

Time when the validation run completed (UTC)COMPLETED_TIMESTAMP

Validation log outputLOG

Name of the model definitionMODEL_NAME

Validation statusRUN_STATUS

Validation run settingsSETTINGS

Time when the validation run started (UTC)START_TIMESTAMP

Validation error (if encountered)STATUS_CODE

Name of the trained model being validatedTRAINED_MODEL_NAME

Validation duration (in seconds)VALIDATION_DURATION

Name of the validation runVALIDATION_RUN_NAME

Full query for dataset specified by FROMVALIDATION_RUN_QUERY

See More
See Validating Models for information about validation runs.

5.1.5 ML_VALIDATION_METRICS

This view returns one row for each validation metric of each validation run.

Using IntegratedML 29

Viewing Models

INFORMATION_SCHEMA.ML_VALIDATION_METRICS contains the following columns:

DescriptionColumn Name

Validation metric nameMETRIC_NAME

Validation metric valueMETRIC_VALUE

Model nameMODEL_NAME

Target value for validation metricTARGET_VALUE

Name of the trained model for this runTRAINED_MODEL_NAME

Name of the validation runVALIDATION_RUN_NAME

See More
For information about the validation metrics that populate METRIC_NAME and METRIC_VALUE, see the InterSystems
SQL Reference.

5.2 Altering Models
You can modify a model by using the ALTER MODEL statement.

Syntax
The ALTER MODEL statement has the following syntax:

SQL

ALTER MODEL model-name alter-action

Where alter-action can be one of the following:

• PURGE ALL

• PURGE integer DAYS

• DEFAULT preferred-model-name

Examples
This example uses the PURGE clause to delete all training run and validation run data associated with the model
WillLoanDefault:

SQL

ALTER MODEL WillLoanDefault PURGE ALL

This example uses the PURGE clause to delete training run and validation run data associated with the model
WillLoanDefault that is older than 7 days old:

SQL

ALTER MODEL WillLoanDefault PURGE 7 DAYS

See More
You can confirm that your alter statements succeeded by querying the views listed in Viewing Models.

30 Using IntegratedML

Model Maintenance

For complete information about the ALTER MODEL command, see the refernece.

5.3 Deleting Models
You can delete a model by using the DROP MODEL statement.

Syntax
The DROP MODEL statement has the following syntax:

SQL

DROP MODEL model-name

DROP MODEL deletes all training runs and validation runs for the associated model.

See More
You can confirm that your model has been deleted by querying the INFORMATION_SCHEMA.ML_MODELS view.

For complete information about the DROP MODEL command, see the InterSystems SQL Reference.

Using IntegratedML 31

Deleting Models

	Table of Contents
	1 Introduction to IntegratedML
	1.1 Purpose
	1.2 Introduction to Machine Learning

	2 IntegratedML Basics
	2.1 Creating Model Definitions
	2.1.1 Examples — CREATE MODEL
	2.1.2 Preparing Data for your Model
	2.1.3 See More

	2.2 Training Models
	2.2.1 Examples — TRAIN MODEL
	2.2.2 Adding Training Parameters (the USING clause)
	2.2.3 See More

	2.3 Validating Models
	2.3.1 Examples — VALIDATE MODEL
	2.3.2 See More

	2.4 Making Predictions
	2.4.1 PREDICT
	2.4.2 PROBABILITY
	2.4.3 SELECT WITH PREDICTIONS

	2.5 Walkthrough

	3 Providers
	3.1 AutoML
	3.1.1 Training Parameters — AutoML
	3.1.2 Feature Engineering
	3.1.3 Model Selection
	3.1.4 Platform Support and Known Issues
	3.1.5 See More

	3.2 H2O
	3.2.1 Training Parameters — H2O
	3.2.2 Model Selection
	3.2.3 Training Log Output
	3.2.4 Known Issues
	3.2.5 See More

	3.3 DataRobot
	3.3.1 Training Parameters — DataRobot

	3.4 PMML
	3.4.1 How PMML Models work in IntegratedML
	3.4.2 How to import a PMML Model
	3.4.3 Examples
	3.4.4 Additional Parameters

	4 ML Configurations
	4.1 Creating ML Configurations
	4.1.1 Creating ML Configurations using the System Management Portal
	4.1.2 Creating ML Configurations using SQL

	4.2 Setting the ML Configuration
	4.2.1 Setting ML Configuration for the Given Process using SQL
	4.2.2 Setting the System Default ML Configuration using the System Management Portal

	4.3 Maintaining ML Configurations
	4.3.1 Altering ML Configurations
	4.3.2 Deleting ML Configurations

	5 Model Maintenance
	5.1 Viewing Models
	5.1.1 ML_MODELS
	5.1.2 ML_TRAINED_MODELS
	5.1.3 ML_TRAINING_RUNS
	5.1.4 ML_VALIDATION_RUNS
	5.1.5 ML_VALIDATION_METRICS

	5.2 Altering Models
	5.3 Deleting Models

	Index

