InterSystems-

IRIS Data Platform

Monitoring Guide

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Monitoring Guide

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Monitoring Inter Systems IRI S Using the Management Portalcoeveieinininininenenenenene 1
1.1 Monitoring System Dashboard INAICALOrScoeireireiineireeresee e 1

1.2 Monitoring System Usage and PErformManceccoeereereeneieneieneiesieesie et 4
1.2.1 System USage Table ...cocviiiieieceeee e re s 4

1.2.2 Shared Memory Heap USAJEcccceieierieiieieieeeetesiesestesestesreste e stessessesaessensessssesssssenses 5

1.2.3 MoNitoring SQL ACHIVITYeciuiiieeieiieiisie sttt a ettt ste st sneene e 6

1.2.4 Interoperability USAQEcceiereriirie ettt sttt sb et 7

1.3 MONITOTING LOCKS ...ttt sttt sttt sttt 8

1.4 Monitoring INterSYSteMS IRIS LOUS ...vcvviveerreirieinieesie sttt 9
1.4.1 Log Files in the install-dimgr DIreCIOIYc.coviovivrierieiese e 9

1.4.2 Application and Database DriVEr EFTOr LOGSccveveveerreeensesesesesiesiesieseeeesesesseenens 10

1.4.3 InterSystems IRIS SYStem ErrOr LOG ...occcvevviiiieeiiisiiie sttt sae s 10

2 Using the Inter Systems DiagnoStic REPOITocviuiieiiiiiieeeeeiere et 11
2.1 Running the DiagnostiC REPOIT TASKcvevirieeirieirieiirieie sttt 11

2.2 Configuring Diagnostic REPOIT SELHNGScervevirieiriiiriiiriesie et 12

2.3 Diagnostic REPOIT CONLENLSccveviieieeee et resre e sresre e nrenes 13
2.3.1 BaSIC INFOMMALION ...vvveiiiiieieeee s 13

2.3.2 Advanced INFOrMALIONc.cvriiiricireirer s 15

RS T [o [o e 1Y/ Koo 11 o OO 17
3.1 System MONIOrING TOOIS ..ottt 17

3.2 LOG MONITOT OVEIVIBW ...ttt ettt ettt sb et b et sb e bt eb e et et nn et e b e 17

3.3 Configuring the LOg IMONITOTecveiverieieieece ettt resresnesresresrennens 18
3.3.1 Start/Stop/Update MONILOTccveveeeeeeeese et e s e re e sre e e srees 19

3.3.2 Manage MONItOr OPLIONScceeeiiiiiiieierie ettt et be e s sb e e 19

3.3.3 Manage EMail OPLIONSccoiieiiiirieniesiese et e 20

3.4 Log MONItOr Errors and TIaPSccvoeeeeriererietireeiesieie sttt sr e sne e bbb e b snenesneseenas 21

4 Introduction to SyStem MONITOr TOOISc..cceiuieriiririirirereeeree e 23
N oo 1WA VAS) = 1Y/ (o) o RSP 23

4.2 SEE AISO .ottt R ARt enas 23

B USING SYSLEM M ONITOE ...viiieiiieieseete sttt res e sae s saa et es et e eatesseenseereesesneessesnnessesneessenn 25
5.1 The SyStem IMONITOr PIrOCESSccuertiiteriirieriiriesieseeseeieeieee et sie sttt sbe b sbe b st sbe e see e enee e e e e 25

5.2 Tracking System Monitor NOTIfiICAtIONSccurveiirireirees e 26

5.3 System Monitor Status and RESOUICE IMELIICScoeireirieinieieese e 27

5.4 System Monitor Health Statecccvevirieii i 30

5.5 System MONItOr DEFAUILScccieiiiiccieer st 31
5.5.1 Default System Monitor COMPONENTSccerereerierieieieiieeeie e 31

5.5.2 Default System Monitor NaMESPACEcoverveerieeeeiirieriesie sttt e snens 32

5.5.3 Default System MONItor SEIINGScoervererieririeirieireereer s 32

5.6 Using the 2"%SYSMONMGR ULHHLYccooviiriiiiiiieiieiee e 32
5.6.1 Start/Stop SYSEM MONITOLccvieverererceee e ere e 34

5.6.2 Set System MONItOr OPLIONS ...cc.civeeveieieeereesese s re e e sreneas 34

5.6.3 Configure System Monitor COMPONENTSccirirerirerierienee e 34

5.6.4 View SYStem MONITOr STALEcceoeiiiiriiiie e 36

5.6.5 Manage Application MONITOTcciiveirieirieineeseese e 36

5.6.6 Manage Health MONITOTcc.ciiiiiiiieeeee e 36

Monitoring Guide

5.6.7 VIEW SYSEEM DALA ...c.veivieiiiiiciie ettt te e ste e s te e s te et esteenenne e 36

5.7 Defining System Monitor COMPONENTSc.eeveiuerieieieieeeeieeere st see e e eenens 36
5.7.1 SENSOF CIASSES ..veveieiterteriesiestesie st steste e seest et s testesbesbesbesbesbesbesbebesee e enseseeseeseebesbessesreneas 36
5.7.2 SUDSCIIDET CIASSES ...uvevvereeieeeieiesiesie st ste e e et e e e stestesaeste st seesaentesee e eneeneens 37
5.7.3 NOLIFIEI CIASSES ..viviriitiriitiietereeie ettt sttt sttt b e 37

5.8 SEE AISO .ottt bbbttt b e e b e e bbb b e b e ere e 37

6 USING HEAITN MONITOT ...ttt st ae et e e ena e ne e e e sneennas 39

6.1 Health MONITOr OVEIVIBWciuiiiiiiiieieeeeeie ettt sttt st bbb b e 39
6.1.1 Health Monitor Process DeSCIIPLIONccucereereeirieirieirieisieesiee s 40
6.1.2 Sensors and SeNSOr ODJECESciueiiiiiiiie et 40
B.1.3 PEITOUS ...ttt ettt ettt b et b et b et bttt 45
B. 1.4 CRAS ©tiiteieiteiiteeste ettt et b e et r e b rene 45
6.1.5 NOLITICALION RUIES ...ttt bbbt 47
B.1.6 EXAMPIES ..ot b b a e ettt ene 48

6.2 Using “"%SYSMONMGR to Manage Health MONItorcccooiriiniineneencenecseeseenen 48
I 1= Y N 1= & S o] o T 49
6.2.2 Configure Health MoNItOr CIASSESciviveirieieiisesestesesesteseee e saesesae e sne e e sne e 49
6.2.3 Set Health MONItOr OPLIONScvcveeciciresese et 50

8.3 SO AISD .ttt bbb e E b e e ek e ettt b e ene e b e 50

7 USING APPHICALION M ONITOT ...ttt et b b sae bbb e e et e e ene s 53

T L OVEIVIBW ettt ettt sttt sttt st e s et se bt e b e bt e bt et e eb e ebenbesb e sa e b et e e eneeseeseaneenenbenbennens 53

7.2 Using "%SYSMONMGR to Manage Application MONItor ... 54
7.2.1 Manage ApPlication MONITOTccvciiiieiese et 54
7.2.2 Manage MONITOT CIASSEScuvcvvieireriereriesiesieseeseeieseeseeseetestesresresresressesseseessessesseseesessenses 55
7.2.3 Change Default Notification Methodcccovviiiiiiie i 57
7.2.4 Manage EMail OPLIONScoiiiiiiiiieie et e 57
7.2.5 MANAGJE ALBTES ..ottt bbbttt b e er e 58

7.3 ApPlication MONITOT IMIELIICSo.viviieeiieierieie sttt sne e 61
7.3.1 GENErating IMIELIICS ...vcuvevveieieesiese s ettt ettt st na e eneeneenesrenes 62
7.3.2 VIEWING MELICS DALA ...cvvevveereiiieiesie e st e ettt st sn e e e e eneens 62

7.4 Writing User-Defined Application Monitor CIASSESccevveeeieirienieninene e 63

7.5 SO AISO .ttt bbb b bbb e bR e et e Rt bt be e aeebe b e 66

8 Gathering Global Activity StatisticsUSiNg "GLOSTAT ..o, 69

8.1 RUNNING NGLOSTAT .ottt ittt sttt sttt b et sb et b et eb et b ek ne ekt se bbb e nb e sbe e sne e 69

8.2 Overview Of AGLOSTAT SEAISTICS .vveviveirieriiierisienise et 70

8.3 Examples of "GLOSTAT OULPUL ..ocveiveieirieieieeeeee st esie st ste e ste e sae st a e esessesnessenes 71
B3 L EXAMPIE A et bbbttt b et beere e 71
8.3 2 EXAMPIE B ..ottt bbb bbbttt b bbb e 71
8.3 EXAMPIE € .ot 72

9 Monitoring System Performance Using "PERFMONcccccoiuiiiiiiiniinc e 73

L TB(I oo [N Tox o] o OSSOSO 73

9.2 USING "PERFIMION ..ottt sttt sttt st ettt ettt sttt ne et nb et nbe e nnas 73
9.2.1 Running "PERFMON INtEraCtiVEIYcccccvvieeiiiiieiieiese e 74

SR - 4 TSRO P UPTUPTPROPRTPRTPRORON 75

0.4 SEOP vttt e et 75

0.5 PAUSE ...ttt ettt st b et he et Re et R e nEeeReeeReeR e e bt eR e eReenbeeReentenneeteaneens 76

0.6 RESUIMIE ..ttt ettt h bbbt bt b e bt e bR ne R e et e s e e b e e b e bt b e R neenenrs 76

AT 1aa] o] [T O 1 (=Y S 76

0.8 CHBAT ettt b bbbt b e R h b b ne et e bt et bt be b ere s 77

Monitoring Guide

IR T o Lo ¢ A TSSOSO UT PR PRTPRTPRPRN 77

0.010 COHBLE ettt ettt bbbt b bbbt b bbb bRt b bbb s 78
9.11 REPOIT EXAMPIES ..ottt sttt 79
TR =T N £ S 80

10 Monitoring Routine Performance USiNg "PROFILEccoovoeoerine et 81
10.2 USING MPROFILE ..ottt 81
10.2 APROFILE EXAMPIE ..ottt 84

11 Examining Routine Performance Using "% SYSIMONLBLccooiiiiiniiieeeeeeee e 87
11.1 Invoking the Line-by-line Monitoring ROULINGcccoveiiiiiiieniienseseee e 87
11.1.2 SEArt IMONITOTING ©.veveiiiieiiiteeitereete ettt b ettt se et et sn et snenea 88

11.1.2 Estimate Memory REQUITEMENESccvevververieriereeiesieeseesesessesreseeseeseesseseeseenseseesessessens 90

11.2 Line-by-line MoNitoring OPLIONSccveveiiiiiesisese e eee e e e re e e e seenes 91
11.2.1 Report Line-by-1iNe STAtiSTICSccccveiririiirire st 91

11.3 Sample Line-by-line Detail REPOITcooiiiiiiiiie e e 92
11.4 Sample Line-by-line SUMMAry REPOIcouriiiiiriiseeerees e 93
11.5 Sample Line-by-line Delimited OUIPUL REPOITcceiieiiieriieiie e 94
11.6 Sample Line-by-line Procedure Level REPOItccvcvvvieiese st 95
11.7 Metrics ShOWN iN ThESE REPOISveivviverierieriisieiestesiete e e e ettt st sn e neens 96
11.8 Line-by-line Monitor Programming INTErfacecccccevivvieieiieiicie s 98

12 Tracing Process Performance With A TRACE ... e 99
12,2 USING NTRACE ...tttk b bbbt b bbbt e 99

13 Monitoring Performance Using " SystemPerforMmancecoceeeeereeneenieeneeneeseseesiens 101
13,0 BASICS vuvveieerereierese sttt R 101
13.2 Stopping ASYSEMPEITOIMANCE ...c.vcveurevieeie e s ettt e sae e e re e re st e sresre e s 102
13.3 Functions in ASystemMPErfOrMAaNCEc.cceiveieiiciese e 103
13.4 Generating "SystemPerformance Performance RepOItScccooeievriciinieninine e 104
13.5 Scheduling the ~SystemPerformance Utility with Task Managerc.ccccovevreninenneninenn. 105
13.6 Changing the OULPUL DIFECIONYcovcuiriieirieirieiiriesie sttt 106
13.7 Getting Version INFOrMALtIONcccvieiiriere e e ne e eneas 106
13.8 Manipulating ProfileSceieieiieicicieee st enes 107
13.8.1 Create NEW Profiles ..ot 107

13.8.2 EAIt PrOfilES ...ttt bbbt 108

13.8.3 COPY PrOTIES ..ottt 109

13.8.4 Delete ProfilES ..oovieieieeeee sttt 109

13.9 Performance RepOrt DELAILSccccviiieiiiiie e 109
13,00 SEE AISO .ttt 118

14 Monitoring Performance Using AMgStalccccooecieiiiiiciicecce s 119
14. 1 RUNNING MMGSTAL ..ottt b e b e bbb et e e e et e bt e besbesbesbesbeneens 119
14.2 Data Provided DY MMOSTALeoviverieieiieieese e 120
14.3 Considering Seizes, ASEIZeS, N0 NSEIZESccccvrvrrrirenererieeereee e 122
14,4 SR AISO ..ot 123

15 HiSLOrY MONITOE .ucueeiiieseeiee ettt r bttt r e 125
15.1 BASE IMEIIICS ..vvvireiieeicne sttt 125
15.2 COIECHING DALAeeueetieieiie ettt ettt st b e bt bbb et st sn et e e e e e e eneas 126
15.3 SUMMAITES .veuvetiteteteiet ettt sttt b ettt e b e e e et e s e e s e e st e b e et e s beabesbesbesbenbenbese e e ense e eneens 126
15.4 ACCESSING thE DALA ...eveueiveriitiiiteietereet ettt bbb 127
15.5 Adding USer-Defined MELIICScccviiviiiirireiisieeieeieeesese sttt s sae e enesne e snens 127

16 Monitoring Block Collisions USINg "BLKCOL ... 129

Monitoring Guide

16.1 USING "BLKCOL ..ottt 129

16.2 NBLIKCOL OUPUL 1.vivvitiictiieie sttt sttt sa sttt saesasaes e ssesessesessessasesassessssessnsenes 130

17 Monitoring Processes USINg "PERFSAMPLE ...ttt 133
17.1 COlIECtING SAMPIES ..ottt bbbttt 133
17.2 Examining and AnalyzZing SAMPIESccevverveiereeieese e st see e sresre e 134
17.2.1 Predefined Analysis EXAMPIEcvcveviiiiiiiese e 135

17.2.2 Creating @ CUSLOM ANAIYSIS ...ccveieeieiie et sre e ste e sreanne s 136

17.2.3 ANAlYSIS DIMENSIONS ...cueiviiiiitiitirie ettt st bbb b e 137

17.3 SAVE ANAIYSIS .ottt ettt e bbb h bbb ek b e b anas 138
T N Lo RSSO 139
Appendix A: Monitoring Inter Systems IRISUSING SNMP ..o 141
A.1 Using SNMP with InterSystems IRIScccooeiiieieieciceese e 141
A.2 InterSystems IRIS @S @ SUDAJENTccouviieiiiiee e 141
A.3 Managing SNMP in INterSystems IRIS ... e 142
A4 SNMP TroubIESNOOTING ..c.ecveveiiieiiiteiisiee bbb 143
AL L AT SYSTEIMS <.ttt ettt ettt b et b bbbt bbb 143

AL 2 WINAOWS SYSTEIMS ..vevvereieieriereeieeresrisestestestesreste s e stestes e saeseessensesesssesessessessessessessessessenes 143

A3 UNDX® SYSIEIMS ..oveveieieiieierieiesiee ettt sttt st st sttt b s bbbt sttt e e 144

A.4.4 Linux and macOS With NEt-SNIMIPccoiiiiiiiiiie e e 144

A5 InterSystems IRIS MIB STIUCTUIEoouiiiiiiiiieeeee et 144
A.5.1 Extending the InterSystems IRIS MIB ... 145

A.5.2 InterSystems RIS SNMP Trapsccveveieiriiiiine st 146

A.6 Sample User-Defined SNMP MONItOr CIasscccoveveieieneiisnse e seesees e seeseenseseeeenens 147
Appendix B: Monitoring Inter Systems RIS USINg WD ServiCesccvvvvirvinnineieneenieeniens 151
B.1 Overview of InterSystems IRIS Support for WS-MOoNitoringcccceeerereneneieeiicinencenns 151

B.2 SUPPOIT DELAILS ...ttt bbb bbb ettt be b e e 152

B.3 URL for the Monitoring Web SEIVICEccoeiriiiiiiiisiesese e 153

B.4 Web Methods of the Monitoring Web SErVICecoccoviiriiineieneieee e 153

B.5 Monitoring WED CHENT ...c.eoueeeicice e st 155

B.6 PrOCESSING EVENTSoeuvieiciicieciectcce ettt sttt sae s be st sa et et sn e e eneeneeneens 156
B.6.1 Using the Sample Event Sink Web SErviCecccooeiiiriiiinieiiiere e 156

B.6.2 Creating Your Own Event Sink Web Service ... 157
Appendix C: Monitoring Inter Systems IRISVIa RESTcoooiiiiiiirincese e 159
C.1 Introduction to /api/MONITOr SEIVICEccveveieieieeieese st see e 159

C.2 [apI/MONILOIIMELIICS ..euveviiteiiiieiiiteeete ettt et ettt et e b nbene s 159
C.2.1 MELriC DESCIIPLIONSviveieierieiesieiesiee et sttt sttt sttt b e sae e b e 160

C.2.2 Interoperability IMEBLIICScovooviieieeeieeieeer s 165

C.2.3 Create APPlCAtION MELIICSeieieiiirieriesierie ettt bbb 170

C.3 /aPI/MONITOITAIEITS ...evieiieie ettt bbbt et et eneeneenens 172

(O T L [T USSR 172
Appendix D: Monitoring Inter Systems IRIS Using theirisstat Utilitycococovvevicninncnncnenes 173
D.1 Basics Of RUNNING IFISSALeveviiveiiiiiriiisiisene sttt 173
D.1.1 Running irisStat 0N WINAOWScoiiiiiiinieniiieieeee e 174

D.1.2 Running irisstat 0N UNIX®ccciiiiiiiiiieiiieie e 174

D.2 Running irisstat With OPLIONScoiiiiirinie et 174

D.3 VIeWiNg irSSTAt OULPULeiveiiiiiiitiiitieee s 182
D.3.1ISSEAL TEXE FIIE 1.vcviieeiiiieeciese bbb 182

D.3.2 DIagnostiC REPOI TASK ...cvcuveeiiciicire sttt s 182

vi

Monitoring Guide

D.3.3 IRISHUNQG SCIIPL .ttt st 183
D.3.4 "SystemPerformance ULHILYcccoeiriiniireseeeee e 183

Monitoring Guide vii

List of Tables

Table 1-1: System Performance INAICAIOLScouiiiirireiiiere e 1
Table 1-2: ECP INGICALOIS ...veiuiitirieiieitisiesie sttt ettt sttt st sttt se et e e s et e st st e e besbesbesbeseesneneas 2
Table 1-3: System Time INAICAIOTScc.cviieiiiiieiite bbb ettt 2
Table 1-4: System Usage INAICALONSvivieieriirierieriiieee e e e ste s sre s eseeseeaesaesessessessessessens 2
Table 1-5: Errors and AIErts INAICAIOISevirrrieiiirreeireseeee s 3
Lo] FoR e o I o=t Y g To T [o [o L o] SR 3
Table 1-7: Task Manager UPCOMING TASKSciueruiriirieieieieeeeeiesies ettt 4
Table 1-8: SyStem USage STALISTICSceivevirieririeiirieiirieisietsi ettt 4
Table 1-9: Shared Memory HEap USAJEcovviiiiiiiiiirieienieie et 5
Table 1-10: Selected Statement detailSccovvreririrrrireieree e 7
Table 1-11: EXECULION SLALISTICS ...vevvvrvirereirisieeeircnrereeese et 7
Table 1-12: Interoperability USage TaDIEcoiiiiiiieieee e 7
Table 5-1: System Monitor Status and Resource NOTIfiCAtIONSc.coovereiereineinecre e 28
Table 5-2: System Monitor Health STAte ... 30
Table 6-1: Health Monitor SENSOr ODJECEScviueiiiiiiiiee e 41
Table 6-2: Default Health MONItOr PEIIOGSccvviviiiririerceiseeeses s 45
Table 7-1: ResponSes t0 AIBIt PrOMPLS ...ccviiieieiirieiieieeieeiee e ste e e ettt st sn et e e e e s eseesesnesnens 60
Table 8-1: Statistics Produced DY NGLOSTATocviiiceece ettt sreesae e e 70
Table 13-1: InterSystems IRIS Performance Data Report for Microsoft Windows Platforms 110
Table 13-2: InterSystems IRIS Performance Data Report for Apple macOS Platforms 113
Table 13-3: InterSystems IRIS Performance Data Report for IBM AIX® Platformscocee.ee.. 114
Table 13-4: InterSystems IRIS Performance Data Report for Linux Platformsccccccevvvvccvennnnnn 116
Table 1-1: InterSystems IRIS SNMP Notification ObJects (Traps)covevververeeereseseseresesesseseenens 146
Table 1-2: InterSystems IRIS-specific Auxiliary Objects Sent in Trapsccoeeeereeieeienienesisesesiens 147
Table 111-1: Basic Interoperability IMELIICScooiieiiieiiieseree e 167
Table H1-2: ACtiVity VOIUME IMETIICSoviuiiiieieieiee e 168
I o T e T o I I AV 1= T 169
Table IV=L1: I1iSSTAt OPLIONSc.veieeieeeeeie e se e e e e testesresrestesaesresaeseesee s enaenneneens 175

viii Monitoring Guide

Monitoring InterSystems IRIS Using the
Management Portal

You can monitor many aspects of your InterSystems IRIS® data platform instance starting at the System Dashboard of the
Management Portal. From the dashboard you can view performance indicators and then, for selected indicators, navigate
to more detailed information.

For an overview of general InterSystems IRIS monitoring tools, see System Monitoring Tools.

Note: To access the System Operation tools described on this page, a user must be a member of a role with privileges
to the %Admi n_Oper at e resource. For more information, refer to this section of our guide to using the Management
Portal.

1.1 Monitoring System Dashboard Indicators

The System Operation > System Dashboard page of the Management Portal groups the status of key system performance
indicators into the following categories. Each category is described in one of the tables that follow.

» System Performance Indicators

e ECP Indicators

e System Time Indicators

e System Usage Indicators

e Errors and Alerts Indicators

» Licensing Indicators

» Task Manager Indicators

In most cases, you can click an indicator listed in one of these categories to display a description of the indicator in the
bottom detail box at the lower left corner of the page.

Table 1-1: System Performance Indicators

Indicator Definition

Globals/Second Most recently measured number of global references per second.

Monitoring Guide 1

Monitoring InterSystems IRIS Using the Management Portal

Indicator Definition

Global Refs Number of global references since system startup.

Global Sets Number of global Set and Kill operations since system startup.

Routine Refs Number of routine loads and saves since system startup.

Logical Requests Number of logical block requests since system startup.

Disk Reads Number of physical block read operations since system startup.

Disk Writes Number of physical block write operations since system startup.

Cache Efficiency Most recently measured cache efficiency (Global references / (physical reads +
writes)).

Click the ... more details link in the bottom detail box to display the System Operation > System Usage page. See Monitoring
System Performance for details.

Table 1-2: ECP Indicators

Indicator Definition

Application Servers Summary status of ECP (Enterprise Cache Protocol) application servers connected
to this system.

Application Server Most recently measured ECP application server traffic in bytes per second.

Traffic

Data Servers Summary status of ECP data servers to which this system is connected.

Data Server Traffic Most recently measured ECP data server traffic in bytes per second.

For more information on the ECP indicators, see Horizontally Scaling Systems for User Volume with InterSystems Distributed
Caching.

Table 1-3: System Time Indicators

Indicator Definition
System Up Time Elapsed time since this system was started.
Last Backup Date and time of last system backup.

You can run backups or view the backup history from the System Operation > Backup page. For more information on
developing a backup plan, see Backup and Restore.

Table 1-4: System Usage Indicators

Indicator Definition

Database Space Indicates whether there is a reasonable amount of disk space available for database
files. Clicking ... more details displays the System Operation > Databases page.

Database Journal Indicates the current status of the database journal. Clicking ... more details displays
the System Operation > Journals page.

Journal Space Indicates whether there is a reasonable amount of disk space available for journal
files. Clicking ... more details displays the System Operation > Journals page.

Journal Entries Number of entries written to the system journal. Clicking ... more details displays the
System Operation > Journals page.

2 Monitoring Guide

Monitoring System Dashboard Indicators

Indicator

Lock Table

Write Daemon

Transactions

Processes

Web Sessions

Most Active Processes

Definition

Current status of the system Lock Table. Clicking ... more details displays the System
Operation > Locks > Manage Locks page.

Current status of the system Write daemon.

Current status of open local and remote (ECP) transactions. If there are no open
transactions, status is Normal; status may also be warning (if the duration of the longest
open local or remote transaction is greater than 10 minutes) and Troubled (if greater
than 20 minutes). Clicking ... more details displays the Transactions page (System
Operation > Transactions).

Most recent number of running processes. Clicking ... more details displays the
Processes page (System Operation > Processes).

Most recent number of web sessions. Clicking ... more details displays the Web Sessions
page (System Operation > Web Sessions).

Running processes with highest amount of activity (number of commands executed).
Clicking ... more details displays the Processes page (System Operation > Processes).

For more information on any of these topics, click the Help link on the Portal page displayed when you click the ... more

details link.

Table 1-5: Errors and Alerts Indicators

Indicator

Serious Alerts

Application Errors

Definition

Number of serious alerts that have been raised. Clicking ... more details displays the
View Messages Log page (System Operation > System Logs > Messages Log).

Number of application errors that have been logged. Clicking ... more details displays
the View Application Error Log page (System Operation > System Logs > Application Error

Log).

See Monitoring Log Files for more details.

Table 1-6: Licensing Indicators

Indicator
License Limit
Current License Use

Highest License Use

Definition
Maximum allowed license units for this system.
License usage as a percentage of available license units.

Highest license usage as a percentage of available license units.

Click the ... more details link in the bottom details box to display the System Operation > License Usage page. For more
information on licensing, see Managing InterSystems IRIS Licenses.

Monitoring Guide

Monitoring InterSystems IRIS Using the Management Portal

Table 1-7: Task Manager Upcoming Tasks

Indicator Definition

Upcoming Tasks Lists the next five tasks scheduled to run.

Task Name of the upcoming task.

Time Time the task is scheduled to run.

Status Task status—one of: scheduled, completed, running.

Click the ... more details link in the bottom details box to display the System Operation > Task Manager > Upcoming Tasks
page. For details on the Task Manager, see Using the Task Manager.

1.2 Monitoring System Usage and Performance

System performance metrics are described in the following tables:
e System Usage Table
e Shared Memory Heap Usage

e Interoperability Usage

1.2.1 System Usage Table

To view the system usage statistics, navigate to the System Usage page (System Operation > System Usage).

Table 1-8: System Usage Statistics

Statistic Definition

Global references (all) Logical count of accesses to globals, including Sets, Kills, $Data, $Order,
$Increment, $Query, and global references in expressions.

Global update references | Logical count of global references that are Set, Kill, or $Increment operations.
Routine calls Number of calls to a routine.

Routine buffer loads and | Total number of routine loads and saves as a result of ZLoad, ZSave, and running

saves routines. (In a well-tuned environment, this number increases slowly, since most
routine loads are satisfied by the routine cache memory without accessing the disk.
Each routine load or save transfers up to 32 KB of data (64 KB for Unicode).)

Logical block requests Number of database blocks read by the globals database code. (In a well-tuned
environment, many of these reads are satisfied without disk access.)

Block reads Number of physical database blocks read from disk for both global and routine
references.

Block writes Number of physical database blocks written to disk for both global and routine
references.

WIJ writes Number of blocks written to the write image journal file.

4 Monitoring Guide

Monitoring System Usage and Performance

Statistic

Journal entries

Journal block writes
Routine lines

Last update

Definition

Number of journal records created—one for each database modification (Set , Kill,
etc.) or transaction event (TStart, TCommit) or other event that is saved to the
journal.

Number of 64-KB journal blocks written to the journal file.
Number of routine lines executed since system startup.

Date and time stamp of the displayed statistics.

See Gathering Global Activity Statistics with "GLOSTAT for an alternative method of monitoring these statistics.

1.2.2 Shared Memory Heap Usage

To view the InterSystems IRIS’s shared memory heap (gmheap) usage, navigate to the System Usage page (System
Operation > System Usage), and click the Shared Memory Heap Usage link.

Note:

To learn how to change the size of the shared memory heap (gmheap), see gmheap.

The column headings in the table on this page refer to the following:

Description — Purpose for which shared memory is allocated.

Allocated SMH/ST — Total shared memory heap (gmheap) and string table memory allocated to the purpose.

SMH/ST Available — Shared memory heap (gmheap) and string table memory allocated to the purpose that is still

available.

SMH/ST Used — Shared memory heap (gmheap) and string table memory allocated to the purpose that is in use.

SMT Used — Static memory table memory in use by the purpose.

GST Used — General string table memory in use by the purpose.

All Used — Total combined memory in use by the purpose.

Table 1-9: Shared Memory Heap Usage

Identifier

Miscellaneous

Audit System
Classes Instantiated

Database Encryption Key
Change

Semaphore Objects
Event System

Global Mapping

License Upgrade

Lock Table

Definition

Shared memory allocated for the static memory table (SMT) and general string table
(GST).

Shared memory used for system auditing.
Shared memory allocated/available/used for the class hash table and control blocks.

Shared memory allocated/available/used for database encryption key changes.

Shared memory allocated/available/used for semaphore objects.
Shared memory allocated/available/used for the event system.

Shared memory allocated/available/used for global mapping and subscript-level
mapping (SLM).

Shared memory allocated/available/used for license upgrades.

Shared memory allocated/available/used for the lock system.

Monitoring Guide

Monitoring InterSystems IRIS Using the Management Portal

Identifier

National Language
Support

Performance Monitor
Process Table

Routine Buffer in Use
Table

Security System
Shared Library

TTY Hash Table

DB Name & Directory

iKnow Language Model
Data

ECP
Expand Daemon

Total

Available SMT & GST

Total SMT & GST
Allocated

Total SMH Pages

Definition

Shared memory allocated/available/used for National Language Support (NLS)
tables.

Shared memory allocated/available/used for the Performance Monitor (*PERFMON).
Shared memory allocated/available/used for the Process ID (PID) table.

Shared memory allocated/available/used for routine buffer-in-use tables.

Shared memory allocated/available/used for the security system.

Shared memory allocated/available/used for shared libraries.

Shared memory allocated/available/used for TTY hash tables.

Shared memory allocated/available/used for database names and directories.

Shared memory allocated/available/used for iKnow language models.

Shared memory allocated/available/used for ECP.
Shared memory allocated/available/used for expanding daemons.

Total memory for each column.

Note: Hover over the column headings for a description of each column.

Available memory in the static memory table (SMT) and general string table (GST).

Total used and available memory in the static memory table (SMT) and general string
table (GST).

Total directly allocated shared memory heap (SMH) and string table allocated Shared

Allocated memory, together with the total used/available memory in the static memory table
(SMT) and the general string table (GST); the number of 64-KB pages is displayed
parenthetically.

1.2.3 Monitoring SQL Activity

To inspect the SQL statements currently running on your IRIS system, navigate to the SQL Activity page (System Operation
> SQL Activity). This page provides a table with the following information about each active SQL statement;

the Process ID associated with it

the ID of the User executing it

the Namespace containing the table or tables which the statement is querying

the statement’s Type (e.g. DynamicQuery for a Dynamic SQL query)

the Elapsed time since the statement began its execution

an excerpt from the text of the Statement itself.

Selecting any of the rows in this table reveals two further tables, which provide the following additional details about the
corresponding SQL statement:

Monitoring Guide

Monitoring System Usage and Performance

Table 1-10: Selected statement details

Row label Value

Process The ID of the process associated with the statement. This field links to the Process
Details page for this process.

Transaction? Whether or not the statement is active as part of an SQL transaction.

Start time The time at which the statement began its execution.

Parameters Where applicable, the first ten parameters that the statement is acting upon. For a

Dynamic SQL query, this is a list of the literal values input as parameters into the
query, replacing occurrences of the “?” character in the order listed. For commands
such as INSERT or UPDATE, this is a list of values for the fields being inserted or
updated for a record.

Statement The full text of the statement. Where applicable, this field also includes a link to the
SQL Statement Details page for this statement.

Cached Query Where applicable, the name of the routine within which the statement is cached.

Table 1-11: Execution statistics

Row label Value (overall and over the last week)

Times executed The number of times the statement has been executed.

Average rowcount The average number of rows the statement has returned upon each execution.

Average runtime The average runtime for this statement.

Standard deviation A measure of the degree of variation in runtimes for executions of the statement over
the given interval.

1.2.4 Interoperability Usage

This page displays the number of different interfaces run by your system in the given namespace during the time span from
Start Date to End Date. For example, if a specific business service is run multiple times, that counts as one inbound interface,
while two business operations running once each count as two outbound interfaces.

Each row in the table represents a different type of interface.

Table 1-12: Interoperability Usage Table

Column Description

Start Date The beginning of the date range. Defaults to the first day of the current month.
End Date The end of the date range. Defaults to the currrent date.

Type The type or category of interface. Categories include Inbound (business services),

Outbound (business operations), and Web API.

Total The number of unique interfaces of the specified type that have run during the
specified time range.

Monitoring Guide 7

Monitoring InterSystems IRIS Using the Management Portal

1.3 Monitoring Locks

InterSystems IRIS locks are created when an InterSystems IRIS process issues a LOCK command on an ObjectScript local
variable or global variable, as long as the entity is not already locked by another process. Entities need not exist in the
database to lock them. See Locking and Concurrency Control.

To display locks system-wide, navigate to the View Locks page (System Operation > Locks > View Locks). To delete selected
locks system-wide, navigate to the Manage Locks page (System Operation > Locks > Manage Locks). In both cases, the
displayed lock table lists one row for each held lock and for each waiting lock request, identifying the owner. A single row
may identify multiple locks held by an owner on the same entity. For example, holding an incremented lock or holding
both a Shared lock and an Exclusive lock. If more than one process holds a lock on the same entity, each owner has its own
row.

Optionally select either or both of the following check boxes at the top of this page, to include additional information if
needed. This information is not included by default, for performance reasons:

* Owner’s routine information. This option adds the Routine column to the display.

e SQL table name. This option adds the SQL table name column to the display.

The Lock Table has the following column entries.

Column Heading Definition

Owner The process ID of the process holding or waiting for the lock. Contains the client
system name if it is a remote lock.

OS User Name Username assigned to the process holding or waiting for this lock.

Mode count Lock mode and lock increment count. If the lock count is 1 the count is not displayed.
For a list of ModeCount values, refer to Lock Management.

Reference Lock reference string of the lock item (does not include the database name).

SQL table name The name of the SQL table, if any, associated with the lock reference. To see this
column, you must select the SQL table name check box.

Directory The database location of the lock item.

System The system name of where the lock is located. If it is the local system the column is
blank.

Routine The routine line currently being executed by the process holding or waiting for the

lock. To see this column, you must select the Owner’s routine information check box.

Remove Manage Locks only: If this lock is removable, this option along with the Remove all
locks for process option (for local locks) or the Remove all locks from remote client option
(for remote locks) appears in the row. Click the appropriate option to remove the
lock. remove all locks for the process, or remove all locks from the remote client. If
a lock you are removing is part of an open transaction, you are warned before
confirming the removal.

In most cases, the only time you need to remove locks is as a result of an application problem.
For a more in-depth description of the LOCK command and its features, see LOCK.

You may need to enlarge the size of the lock table if your system uses a large number of locks. You can do this using the
Management Portal; for instructions, see locksiz.

8 Monitoring Guide

Monitoring InterSystems IRIS Logs

For more detailed information and alternative ways to manage locks, see Lock Management.

1.4 Monitoring InterSystems IRIS Logs

InterSystems IRIS provides the following logs for monitoring various aspects of its operation:

» Several log files are available in the install-dir\mgr directory; two can be viewed using the Management Portal.

* You can view the application error log or driver error log using the Management Portal

e The contents of the InterSystems IRIS system error log, or syslog, can be reviewed using one of several methods.

You can also enable structured logging, which will write the same messages seen in messages.log to a machine-readable
file that can be ingested by your choice of monitoring tool. See Setting Up Structured Logging.

1.4.1 Log Files in the install-dinmgr Directory

The following log files are available in the install-dir\mgr directory. They are saved as plain text files and can be viewed
using any text editor or viewer. The messages log and System Monitor log can be viewed using the Management Portal.

alerts log

Log Monitor scans the messages log at regular intervals for entries of the configured minimum severity and gen-
erates corresponding notifications, which it writes to the alerts log, install-dir\mgnalerts.log, by default. Log
Monitor can be configured to send email notifications instead; see Using Log Monitor.

initialization log

The initialization log, iboot.log, contains information about the initialization of the InterSystems IRIS instance.

journal history log

The journal history log, journal.log, contains a list of all journal files maintained by the InterSystems IRIS instance
and is used by all journal-related functions, utilities, and APIs to locate journal files. See Journaling.

messages log

InterSystems IRIS reports a variety of messages to the messages log file (messages.log), including: general mes-
sages; startup/shutdown, license, and network errors; certain operating system errors; and the success or failure
of jobs started remotely from other systems. System Monitor also writes notifications to the messages log. The
directory for messages.log can be configured (see console), but the default location is install-dir\mgr.

On Windows-based platforms, all console messages are sent to the messages log file, messages.log. On
UNIX®/Linux platforms, you can configure console messages to be sent to the messages log file, the console
terminal, or both.

The size of the messages.log file is monitored by System Monitor. The file grows until it reaches the configured
maximum size, at which point InterSystems IRIS saves the file and starts a new one. See MaxConsoleLogSize for
information about configuring the maximum messages log size.

You can view the messages log from the View Messages Log page of the Management Portal (System Operation
> System Logs > Messages Log). If the messages log is larger than 1 MB, only the most recent 1 MB portion is
displayed by the Management Portal. Click the Show entire file link to display the entire file, which may require
some time if the file is very large.

Monitoring Guide 9

Monitoring InterSystems IRIS Using the Management Portal

Note: If you have trouble starting InterSystems IRIS, use any text editor or text viewer to view the messages
log.

System Monitor log

Status messages about the functioning of System Monitor (see Using System Monitor) are written to the System
Monitor log, install-dir\mgr\SystemMonitor.log.

The size of the SystemMonitor.log file is monitored by System Monitor. The file grows until it reaches the maximum
size of 5 MB, at which point it is renamed to SystemMonitor.log.old, overwriting any existing SystemMonitor.log.old
file, and a new SystemMonitor.log is created. The maximum number of megabytes used by the System Monitor
log is therefore 10 MB.

You can view the messages log from the System Monitor Log page of the Management Portal (System Operation
> System Logs > System Monitor Log). If the System Monitor log is larger than 1 MB, only the most recent 1 MB
portion is displayed by the Management Portal. Click the Show entire file link to display the entire file, which may
require some time if the file is very large.

1.4.2 Application and Database Driver Error Logs
The View Application Error Log page (System Operation > System Logs > Application Error Log) allows you to view appli-
cation errors.

Likewise, the xDBC Error Log page (System Operation > System Logs > xDBC Error Log) allows you to view database driver
errors.

1.4.3 InterSystems IRIS System Error Log

InterSystems IRIS sets aside a small portion of its shared memory to log items of interest. This table, which can contain
important diagnostic information, is referred to by several different names, including the InterSystems IRIS system error
log, errlog, SYSLOG, and the syslog table.

By default, the system error log contains the 500 most recent log items. For information about configuring the number of
items in the system error log, see errlog.

To view the system error log, choose one of the following methods:

e Open the Terminal, enter set $namespace="%SYS' to switch to the %SYS namespace, and enter do *SY SLOG.
You can also enter do FILTER”SY SLOG, which has options to limit the output based on specific error codes or
process ID.

* Runadiagnostic report, as described in Using the Diagnostic Report.
* Runthe irisstat command with the —el option, as described in Running irisstat with Options.
* Runthe IRISHung script, as described in IRISHung Script.

You can configure InterSystems IRIS to write the system error log to the messages log during shutdown using the Shut-
DownLogErrors setting (see ShutDownLogErrors).

10 Monitoring Guide

Using the InterSystems Diagnostic Report

InterSystems provides a mechanism to run a Diagnostic Report on your InterSystems IRIS® data platform instance. The
Diagnostic Report is a snapshot of information about an instance that should be run and sent to the InterSystems Worldwide
Response Center (WRC) to help diagnose system problems. For more details on the type of information collected, see the
Diagnostic Report Contents section.

This topic describes how to configure and run the Diagnostic Report as a task from the Management Portal. For more
information on this task, see the %SYS.Task.DiagnosticReport entry in the Inter Systems Class Reference.

2.1 Running the Diagnostic Report Task

The most direct way to generate the report is by going to the Diagnostic Report page (System Operation > Diagnostic Reports)
of the Management Portal and entering the appropriate information for the Diagnostic Report task. You can edit this
information at any time by returning to this page. If you do not wish to edit any of the fields, click Run to generate the
report using the current settings.

If you do not enter any information and click Run, the task generates a detailed report and places it in the manager’s
directory of the InterSystems IRIS instance (install-dir\mgr) as an HTML file. The file name is in
CustomerNameYYYYMMDDHHMM.html format.

For example, on September 24, 2023 at 8:46 p.m., running the Diagnostic Report task with a license key issued to
MyCompany on an instance installed in C:\MyInstallDir generates the following report file:

C:\MylInstallDimgr\MyCompany201909242046.html

There are several fields on the page you can set that affect when the task runs, where the file is saved, and whether or not
to send the file to the WRC. Configuring Diagnostic Report Settings describes these settings. If you click Close, your
changes are discarded and the report task does not run.

Viewing the Diagnostic Report Task History

Click Task History at the top of the Diagnostic Report page to display the history for the Diagnostic Report task. (See Using
the Task Manager for information about tasks and task history.)

Monitoring Guide 11

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Using the InterSystems Diagnostic Report

2.2 Configuring Diagnostic Report Settings

The InterSystems IRIS installation contains a predefined on-demand Diagnostic Report task. The first time you go to the
Diagnostic Report page, fill in the pertinent information to update the settings for this task. Depending on which fields you
enter, you have the following choices of what to do with the Diagnostic Report:

1. To save the report to a specific archive directory other than the manager’s directory, enter a directory name.
2. To send the report to the WRC, enter information in the outgoing mail fields.

3. To both save and send the report, enter the information from the two previous options.

4

To run the report automatically on a regular schedule, enable WRC HealthCheck.

The following list contains the settings for the Diagnostic Report and a description of each:

» Directory for archived reports — location to store the reports. Defaults to the manager’s directory, install-dir\mgr, if
you do not enter any information on the page. If you leave this setting blank and enter outgoing mail settings the report
is not saved in the manager’s directory. Click Browse to select an existing directory.

Information required to send the report directly to the WRC — if you enter the outgoing mail settings, the report is sent to
WRCHealthCheck@I nter Systems.com.

* Existing WRC issue number — WRC problem number (6 digits) related to this run of the Diagnostic Report. To enter
a new problem, contact the WRC or enter your problem into WRC Direct.

The task runs with the WRC issue number only once and then clears this setting.

* Name of IP address of server for outgoing mail — address of your outgoing SMTP (Simple Mail Transfer Protocol)
mail server.

* Username for authenticated SMTP and Password — only required for SMTP authentication with the SMTP server. See
RFC 2554 for details.

* Address for the “From:” field in outgoing mail — email address to appear in the sender field. Required if you enter
SMTP server information; defaults to DefaultDiagnosti cReport@I nter Systems.com.

e Address for the “Reply-To:” field in outgoing mail — a valid email address at your company able to receive automated
configuration messages from InterSystems.

* Addresses for the “CC:” field in outgoing mail — additional email addresses to receive the report.

* Enable automatic WRC HealthCheck updates — select this check box to send periodic reports to the WRC. InterSystems
highly recommends that you enable the WRC HealthCheck feature. If selected, the Diagnostic Report task runs at
regular intervals and sends the report to the WRC. These regular reports allow the WRC to better assist you. Selecting
this feature requires you to enter the SMTP server information.

Important: The report includes private application information. InterSystems keeps all data strictly confidential.

* Run the automatic WRC HealthCheck updates every number of days at this time — if you enable WRC HealthCheck,
the task manager saves the frequency (defaults to 7 days) and time (defaults to the InterSystems IRIS installation time)
information for when to run the Diagnostic Report.

Additional information for the WRC:

* Primary purpose of this instance — choose whether you use this instance of InterSystems IRIS for development, testing,
quality assurance, or production.

12 Monitoring Guide

https://wrc.intersystems.com
https://www.faqs.org/rfcs/rfc2554.html

Diagnostic Report Contents

* Any Ad Hoc content applied that is not in $zV — enter ad hoc content you have applied that does not appear in the
$ZVersion special variable.

* The type and number of CPUs present
* The total amount of physical memory — enter the amount of physical memory on the machine.
* Other details of the hardware this system uses

e Method used to back up this system (InterSystems, OS, External, other) — enter the methods you use to back up your
system.

* Other relevant information about this instance — enter any special notes you want to include with the report.

The Diagnostic Report task retains the information you enter in all but one of the settings; the task runs with the WRC issue
number only once and then clears it. You cannot edit task settings while the report is running.

2.3 Diagnostic Report Contents

When the Diagnostic Report task runs, it creates an HTML log file containing both basic and advanced information, which
is used by the WRC to resolve issues. The following sections describe the sections of the report:

e Basic Information

e Advanced Information

Note: On Microsoft Windows 32-bit systems the report uses the following third-party utilities developed by Sysinternals
Software:

e PsInfo.Exe — Displays extended system information

e PsList.Exe — Displays process information at the operating system level

2.3.1 Basic Information
The basic information includes the following categories:

General
Displays the following information:
» Full host name (with domain)
e IP address
* User name
» Date and time report was created
e InterSystems IRIS version string ($ZVersion)
e InterSystems IRIS objects version string
* InterSystems ODBC/JDBC server version information
» National Language Support (NLS) information

* Free block count information

Monitoring Guide 13

Using the InterSystems Diagnostic Report

» Operating system version (uname -a on UNIX® systems)

» Extended system information (only on Windows systems if the Psinfo.Exe utility is in the InterSystems IRIS
Bin directory).

Key File
Displays active license information including the location of the license key file, the contents of the license key,
and license availability ($System.License.CKEY () output).

License Counts

Displays license usage information ($System.License.ShowCounts() output).

%SS

Displays system status information (% SS output — two snapshots taken thirty seconds apart).

Operating System Processes List
Displays operating system process information (only on Windows systems if the PsList.Exe utility is in the Inter-
Systems IRIS Bin directory).

Spin Counts

Displays spin count information.

CPF File

Displays the contents of the active InterSystems IRIS configuration file (iris.cpf).

SysLog
Displays the contents of the InterSystems IRIS system error log; see InterSystems IRIS System Error Log for more
information.
Security
Displays a listing of the following security information:
» Security parameters
* Services
* Resources
* Roles
» Applications
e System users
* Current login failures
» Domains

e SSL configurations

Audit

Displays audit information including a listing of events and the contents of the audit log database.

14 Monitoring Guide

Diagnostic Report Contents

messages

Displays the contents of the messages.log (if its size does not exceed 5SMB).

Note: To produce a report that contains only the basic information:

1. Navigate to the View Task Schedule page (System Operation > Task Manager > View Task Schedule).

2. Inthe Diagnostic Report row, click Details.

3. On the Task Details page (System Operation > Task Manager > View Task Schedule > Task Details), click Edit.
4. On the Task Scheduler Wizard page, clear the AdvancedReport check box, and click Finish.
5

On the Task Details page (System Operation > Task Manager > View Task Schedule > Task Details), in the
Diagnostic Report row, click Run.

o

On the Run Task page, click Perform Action Now.

7. Click Close.

2.3.2 Advanced Information
The advanced information includes the following categories:

irisstat Snapshot #1
Displays output of the InterSystems statistics utility (irisstat) run with the following options:

irisstat -e2 -m-1 -n3 -j5 -g1 -m3 -L1 -u-1 -v1 -p-1 -c-1 -g1 -w2 -S-1 -E-1 -N65535 -s<mgr_dir>
For more information about the irisstat utility, see Monitoring InterSystems IRIS Using the irisstat Utility.

irisstat Snapshot #2
Displays the output of the irisstat utility run with the same options as the first snapshot one minute later.

If the irisstat output files are too large, they are saved to a separate file and not sent with the report. If separate
files were created, a message similar to the following is posted in the irisstat section of the Diagnostic Report:

File firis/iristestsys/mgrfirisstat201103151102.html is too big to be appended to
the Log File. A copy has been left in the Directory.

Although these files have an html extension, they are plain text and should be viewed in a text editor rather than
a browser.
Network Status
Displays network information — output of the following utilities:
» ipconfig/all (only Windows systems)
* netstat -an

* netstat -s

Dump License

Displays local license table entries and key information ($System.License.DumpL ocall nUse() and
$System.License.DumpKeys() output).

Monitoring Guide 15

Using the InterSystems Diagnostic Report

Dump Files in Manager’s Directory

Displays a list of core or *.dmp files, if any.

GloStat

Displays global statistic information (*GL OSTAT output —ten snapshots taken every ten seconds).

16 Monitoring Guide

Using Log Monitor

Log Monitor monitors the InterSystems IRIS® data platform instance’s messages log for errors and traps reported by
InterSystems IRIS daemons and user processes; and generates corresponding notifications, including email if configured.
You can manage Log Monitor using the *M ONM GR utility.

3.1 System Monitoring Tools

InterSystems IRIS provides three sets of tools for general monitoring of InterSystems IRIS instances, as follows:

» The Management Portal provides several pages and log files that let you monitor a variety of system indicators, system
performance, InterSystems IRIS locks, and errors and traps, as described in Monitoring InterSystems IRIS Using the
Management Portal. Of these, the messages log is the most comprehensive, containing general messages,
startup/shutdown, license, and network errors, certain operating system errors, and indicators of the success or failure
of jobs started remotely from other systems, as well as alerts, warnings and messages from System Monitor.

» Log Monitor, as described in this topic, generates notifications for messages log entries of a configured minimum
severity and either writes them to the alerts log or emails them to specified recipients. This allows messages log alerts
of all types to be extracted and brought to the attention of system operators. You can configure Log Monitor using the
A"MONMGR utility.

« System Monitor generates alerts and warnings related to important system status and resource usage indicators and
also incorporates Application Monitor and Health Monitor, which monitor system and user-defined metrics and generate
alerts and warnings when abnormal values are encountered. System Monitor and Health Monitor alerts and warnings
are written to the messages log; Application Monitor alerts can be sent by email or passed to a specified notification
method. You can manage System Monitor (including Application Monitor and Health Monitor) using the
"% SY SMONMGR utility. See System Monitor.

3.2 Log Monitor Overview

Log Monitor scans the messages log at regular intervals for entries of the configured severity level and generates corre-
sponding notifications. These notifications are either written to the alerts log or sent by email to specified recipients.

The messages log contains useful information about the InterSystems IRIS instance, ranging from general messages to
errors and traps to System Monitor alerts and warnings. By generating notifications based on messages log contents, Log
Monitor raises the visibility of alerts for system operators.

Monitoring Guide 17

Using Log Monitor

Note: Log Monitor does not generate a notification for every messages log entry of the configured severity. When there
is a series of entries from a given process within less than about an hour of each other, a notification is generated
for the first entry only. For this reason, you should immediately consult the messages log (and view System
Monitor alerts, if applicable) on receiving a single notification from Log Monitor. However, the messages log
entries listed in Log Monitor Errors and Traps always generate notifications.

Log Monitor operates with the following settings by default:

» Log Monitor is continuously running when the instance is running.

» The messages log is scanned every 10 seconds.

* Notifications are generated for messages log entries of severity 2 (severe) and 3 (fatal).

» Notifications are written to the alerts log.

Note: Log Monitor creates the alerts log the first time it generates a notification. The alerts log, or alerts.log, is
located in the<install-dir>/mgr directory.

You can configure Log Monitor using the interactive *M ONM GR utility, described in the following section.

3.3 Configuring the Log Monitor

The Log Monitor Manager utility, "M ONM GR, allows you to configure and manage Log Manager. You can stop and
start Log Monitor, change the default settings, and configure email notifications.

To start the Log Monitor Manager:

1. Enter the following command in the Terminal. *M ONM GR must be executed in the %SYS namespace.

%SYS>do ~MONMGR

2. The main menu appears. Enter the number of your choice or press Enter to exit the Log Monitor Manager:

1) Start/Stop/Update MONITOR
2) Manage MONITOR Options

3) Exit

Option?

The options in the main menu let you manage Log Monitor as described in the following table:

Option

1) Start / Stop /
Update Monitor

2) Manage MONITOR
Options

3) Exit

Description

Displays the Start/Stop/Update Monitor submenu which lets you manage Log Monitor
and the alerts log.

Displays the Manage Monitor Options submenu which lets you manage Log Monitor
notification options (sampling interval, severity level, email).

Exits from the Log Monitor Manager.

18

Monitoring Guide

Configuring the Log Monitor

3.3.1 Start/Stop/Update Monitor

This submenu lets you manage the operation of the Log Monitor Manager. Enter the number of your choice or press Enter

to return to the main menu:
Option? 1

1) Update MONITOR

2) Halt MONITOR

3) Start MONITOR

4) Reset Alerts

5) Exit

Option?
The options in this submenu let you manage the operation of Log Monitor as described in the following table:

Option Description

1) Update MONITOR | Dynamically restarts Log Monitor based on the current settings (interval, severity
level, email) in Manage Monitor Options.

2) Halt MONITOR Stops Log Monitor. The messages log is not scanned until Log Monitor is started.

3) Start MONITOR Starts Log Monitor. The messages log is monitored based on the current settings
(interval, severity level, email) in Manage Monitor Options.

4) Reset ALERTS Deletes the alerts log (if it exists).

5) Exit Returns to the main menu.

3.3.2 Manage Monitor Options

This submenu lets you manage Log Monitor’s scanning and notification options. Enter the number of your choice or press
Enter to return to the main menu:

Option? 2

1) Set Monitor Interval
2) Set Alert Level

3) Manage Email Options
4) Exit

Option?

The options in this submenu let you manage the operation of Log Monitor as described in the following table:

Option Description
1) Set Monitor Lets you change the interval at which the messages log is scanned. InterSystems
Interval recommends an interval no longer than the default of 10 seconds.

2) Set Alert Level | Lets you set the severity level of messages log entries generating notifications, as
follows:

* 1 -—warning, severe and fatal
* 2 -—severe and fatal

» 3 -—fatal only

3) Manage Email Lets you configure Log Monitor email notifications using the Manage Email Options
Options submenu.

Monitoring Guide 19

Using Log Monitor

Option Description

4) Exit Returns to the main menu.

Note: Because Log Monitor generates a notification only for the first in a series of messages log entries from a given
process within about an hour, setting the alert level to 1 could mean that when a warning has generated an alerts
log entry or email message, a subsequent severity 2 alert from the same process does not generate a notification.

3.3.3 Manage Email Options

The options in this submenu let you configure and enable/disable email. When email is enabled, Log Monitor sends notifi-
cations by email; when it is disabled, notifications are written to the alerts log. Enter the number of your choice or press
Enter to return to the Manage Monitor Options submenu:

Option? 3

1) Enable/Disable Email
2) Set Sender

3) Set Server

4) Manage Recipients
5) Set Authentication
6) Test Email

7) Exit

Option?
The options in this submenu let you manage the email notifications for Log Monitor as described in the following table:

Option Description

1) Enable / Enabling email causes Log Monitor to:

Disable Email * send an email notification for each item currently in the alerts log, if any

* delete the alerts.log file (if it exists)

» send email notifications for messages log entry of the configured severity from
that point forward

Disabling email causes Log Monitor to write entries to the alerts log.

Note: Enabling/disabling email does not affect other email settings; that is, it is
not necessary to reconfigure email options when you enable/disable email.

2) Set Sender Select this option to enter text that indicating the sender of the email, for example
Log Monitor.The text you enter does not have to represent a valid email account.
You can set this field to NULL by entering - (dash).

3) Set Server Select this menu item to enter the name and port number (default 25) of the email
server that handles email for your site. Consult your IT staff to obtain this information.
You can set this field to NULL by entering - (dash).

4) Manage This option displays a submenu that lets you list, add, or remove the email addresses
Recipients to which each natification is sent:

Note: Each valid email address must be added individually; when you select 2)
Add Recipient, do not enter more than one address when responding
to the Email Address? prompt.

20 Monitoring Guide

Log Monitor Errors and Traps

Option

5) Set
Authentication

6) Test Email

7) Exit

Description

Lets you specify the authentication username and password if required by your
email server. Consult your IT staff to obtain this information. If you do not provide
entries, the authentication username and password are set to NULL. You can set
the User field to NULL by entering - (dash).

Sends a test message to the specified recipients using the specified email server.

Returns to the Manage Monitor Options submenu.

3.4 Log Monitor Errors and Traps

The following messages log errors always generate Log Monitor notifications:

Process halt due to segment violation (access violation).

<FILEFULL>in database %

AUDIT: ERROR: FAILED to change audit database to '%. Still auditing to '%.

AUDIT: ERROR: FAILED to set audit database to '%.

Sync failed during expansion of sfn #, new map not added

Sync failed during expansion of sfn #, not all blocks added

WRTDMN failed to allocate wdglist...freezing system

WRTDMN: CP has exited - freezing system

write daemon encountered serious error - System Frozen

Insufficient global buffers - WRTDMN in panic mode

WRTDMN Panic: SFN x Block y written directly to database

Unexpected Write Error: dkvolblk returned %d for block #%d in %

Unexpected Write Error: dkswrite returned %d for block #%d in %

Unexpected Write Error: %d for block #%d in %.

Cluster crash - All Cache systems are suspended

System is shutting down poorly, because there are open transactions, or ECP failed to preserve its state

SERIOUS JOURNALING ERROR: JRNSTOP cannot open %.* Stopping journaling as cleanly as possible, but you
should assume that some journaling data has been lost.

Unable to allocate memory for journal translation table

Journal file has reached its maximum size of %u bytes and automatic rollover has failed

Write to journal file has failed

Failed to open the latest journal file

Sync of journal file failed

Journaling will be disabled in %d seconds OR when journal buffers are completely filled, whichever comes first. To
avoid potential loss of journal data, resolve the cause of the error (consult the InterSystems IRIS system error log, as
described in InterSystems IRIS System Error Log) or switch journaling to a new device.

Monitoring Guide

21

Using Log Monitor

Error logging in journal

Journaling Error x reading attributes after expansion

ECP client daemon/connection is hung

Cluster Failsoft failed, couldn't determine locksysid for failed system - all cluster systems are suspended
engpijstop failed, declaring a cluster crash

engpijchange failed, declaring a cluster crash

Failure during WI1J processing - Declaring a crash

Failure during P1J processing - Declaring a crash

Error reading block — recovery read error

Error writing block — recovery write error

WIJ expansion failure: System Frozen - The system has been frozen because WIJ expansion has failed for too long.
If space is created for the WIJ, the system will resume otherwise you need to shut it down with irisforce

CP: Failed to create monitor for daemon termination

CP: WRTDMN has been on pass %d for %d seconds - freezing system. System will resume if WRTDMN completes
a pass

WRTDMN: CP has died before we opened its handle - Freezing system
WRTDMN: Error code %d getting handle for CP monitor - CP not being monitored
WRTDMN: Control Process died with exit code %d - Freezing system

CP: Daemon died with exit code %d - Freezing system

Performing emergency Cache shutdown due to Operating System shutdown

CP: All processes have died - freezing system

irisforce failed to terminate all processes

Failed to start auxiliary write daemon

ENQDMN exiting due to reason #

Becoming primary mirror server

22

Monitoring Guide

Introduction to System Monitor Tools

System Monitor is a flexible, user-extensible utility used to monitor an InterSystems IRIS® data platform instance and
generate notifications when the values of one or more of a wide range of metrics indicate a potential problem.

4.1 About System Monitor

System Monitor tools include the following monitoring tools:

» System Monitor monitors system status and resources, generating notifications (alerts and warnings) based on fixed
parameters and tracking overall system health.

» Health Monitor samples key system and user-defined metrics and compares them to user-configurable parameters and
established normal values, generating notifications when samples exceed applicable thresholds.

« Application Monitor samples significant system metrics, stores the values in the local namespace, and evaluates them
using user-created alert definitions. When an alert is triggered, it can either generate an email notification or call a
specified class method.

All three tools run in the %SYS namespace by default. Other than Health Monitor, you can run these tools in other namespaces
under namespace-specific configurations and settings. You can define and configure your own components to extend the
capabilities of System Monitor in each namespace as your needs require.

4.2 See Also

» Introduction to System Monitor
» Using Core System Monitor

e Using Health Monitor

e Application Monitor

e System Monitoring Tools

» Manage Email Options (information about generating email messages from notifications in the messages log, including
those generated by System Monitor)

» Monitoring Log Files (includes information on the log files generated by this tool)

Monitoring Guide 23

Using System Monitor

System Monitor samples important system status and resource usage indicators, such as the status of ECP connections and
the percentage of the lock table in use, and generates notifications—alerts, warnings, and “status OK” messages—based
on fixed statuses and thresholds. These notifications are written to the messages log, allowing Log Monitor to generate
email messages from them if configured to do so. System Monitor also maintains a single overall system health state.

System Monitor is managed using the *% SY SMONM GR utility.

System Monitor is part of the System Monitor tools.

5.1 The System Monitor Process

In each namespace in which it is configured to run, System Monitor gathers and delivers system metric information in three
stages using three types of classes (or System Monitor components). Sensor classes collect information, subscriber classes
evaluate the information to form notifications, and notifier classes post the notifications to the proper alerting systems. The
following describes the sequence in greater depth:

1.

Obtain metric information

Sensor classes incorporate methods for obtaining the values of system or application metrics. For example, the system
sensor class SYS.Monitor.SystemSensors includes the GetProcessCount() method, which returns the number of active
processes for the InterSystems IRIS instance, and the GetL ock Table() method, which returns the percentage of the
instance’s lock table that is in use.

At a fixed interval, System Monitor calls the GetSensor () method of each configured sensor class. A sensor class
may do one of the following:

e Return an array of sensor name/value pairs to be passed by System Monitor to subscriber classes (described in
stage 2)

» Evaluate the sensor values it obtains and return notifications to be posted by System monitor to notifier classes
(described in stage 3)

One of the sensor classes provided with System Monitor, SYS.Monitor.SystemSensors, returns a name/value array.

The other, % SY S.M onitor.AppM onSensor, performs its own evaluations and generates its own notifications.

Evaluate metric information

Subscriber classes incorporate methods for evaluating sensor values and generating notifications. After calling each
sensor class that returns a name/value array, System Monitor calls the Receive() method of each subscriber class,
populating the SensorReading property with the array. For each sensor name/value pair provided to its Receive()

Monitoring Guide 25

Using System Monitor

method, the subscriber class evaluates the value and if appropriate returns a notification containing text and a severity
code.

For example, when System Monitor passes the name/value array returned from SYS.Monitor.SystemSensors.GetSensors()
to subscriber classes:

» the system subscriber, SYS.Monitor.SystemSubscriber, may discover that the LockTablePercentFull value is over
85, its warning threshold for that sensor, and return a notification containing a severity code of 1 and appropriate
text.

e the Health Monitor subscriber, SYS.Monitor.Health.Control, may determine that the ProcessCount value is too
high, based on that sensor’s configured parameters and established normal values, and return a notification con-
taining a severity code of 2 and appropriate text.

3. Generate notifications

Notifier classesincorporate methods for passing notifications to one or more alerting systems. After calling each sensor
class and subscriber class, System Monitor calls the Post() method of each notifier class, populating the Notifications
property with the notifications returned by sensor or subscriber classes. The notifier class then passes each notification
to the desired alerting method; for example, when the system notifier receives the notifications returned by the system
subscriber for LockTablePercentFull and the Health Monitor subscriber for ProcessCount, it writes the severity code
and text to the messages log. This approach allows notifications to be passed to independent alerting systems such as
the interoperability production alert processors and those in TrakCare, as well as user-defined alerting systems.

System Monitor starts automatically when the instance starts and begins calling the configured sensor classes in each of
the configured startup namespaces, passing sensor values to configured subscriber classes and notifications to configured
notifier classes in turn. You can define and configure your own System Monitor sensor, subscriber and notifier classes on
a per-namespace basis. See the default classes in Default System Monitor Components.

Note: Inan emergency, System Monitor may need to be shut down. The class method % SY S.M onitor.Enabled([flag])
sets, clears, and reports the status of System Monitor. If flag is 0, System Monitor will not start.

5.2 Tracking System Monitor Notifications

Typically, any System Monitor alert (notification of severity 2) or sequence of System Monitor warnings (severity 1) should
be investigated. Health Monitor can also generate System Monitor alerts and warnings.

System Monitor alerts, warnings, and status messages (severity 0) are written to the messages log
(install-dinnmgrimessages.log). (All System Monitor and Health Monitor status messages are written to the System Monitor
log, install-dir\mgr\SystemMonitor.log. Application Monitor alerts are not written to logs, but can be sent by email or passed
to a specified notification method.)

To track System Monitor alerts and warnings, you can do the following:

e View System Monitor alerts using the *% SY SMONM GR utility. This option lets you display alerts for all sensors
or for a specific sensor and view all recorded alerts or only those occurring during a specified time period, but it does
not display warnings.

* Monitor the messages log (see Monitoring Log Files). Bear in mind that when a sequence of System Monitor alerts is
generated for a given sensor within a short period of time, only the first is written to the messages log.

Note: Inthe messages log, System Monitor status notifications are labeled with initial capitals, for example [System
Monitor] started in %SYS, whereas warnings, alerts and OK messages are labeled in uppercase, such
as [SYSTEM MONITOR] CPUusage Warning: CPUusage = 90 (Warnvalue is 85).

26 Monitoring Guide

System Monitor Status and Resource Metrics

» Configure Log Monitor to send email notifications of alerts (and optionally warnings) appearing in the messages log
(instead of writing them to the alerts log, the default). When relying on this method, keep in mind that Log Monitor
does not generate a notification for every messages log entry of the configured severity; when there is a series of entries
from a given process (such as System Monitor) within about one hour, a notification is generated for the first entry
only. For example, if a network problem causes multiple System Monitor alerts concerning ECP connections and open
transactions to be generated over a 15 minute period, Log Monitor generates only one notification (for whichever alert
was first). For this reason, on receiving a single System Monitor notification from Log Monitor you should immediately
view System Monitor alerts and consult the messages log.

5.3 System Monitor Status and Resource Metrics

The following table lists the system status and resource usage metrics sampled by System Monitor, and the notification
thresholds and rules for each that result in warnings (severity 1), alerts (severity 2), and “status OK” (severity 0) notifications.

Monitoring Guide 27

Using System Monitor

Table 5-1: System Monitor Status and Resource Notifications

28 Monitoring Guide

System Monitor Status and Resource Metrics

Metric

Disk Space

Journal Space

Paging

Lock Table

write daemon

ECP Connections

Shared Memory Heap
(Generic Memory Heap)

Open Transactions

License Expiration

SSL/TLS Certificate
Expiration

Description

Available space in a database
directory

Available space in the journal
directory

Percentage of physical memory
and paging space used

Percentage of the lock table in use

Status of the write daemon

State of connections to ECP
application servers or ECP data
servers

Status of shared memory heap
(SMH), also known as generic
memory heap (gmheap)

Duration of longest open local or

remote (ECP) transactions

Days until license expires

Days until certificate expires

Notification Rules

< 250MB — warning
< 50MB — alert
> 250MB (after warning/alert) — OK

< 250MB — warning
< 50MB — alert
> 250MB (after warning/alert) — OK

paging space > 30% — warning

(physical memory > 96%) + (paging
space > 50%) — alert

> 85% — warning
> 95% — alert

< 85% after warning/alert — OK

write daemon is awake and processing
its (non-empty) queue but has been on
one cycle at least 10 seconds longer
than the configured write daemon cycle
time (default 80 seconds) — alert

write daemon completes a pass after
alert — OK

state is Trouble for at least five (5) sec-
onds — alert

SMH (gmheap) status 1 — warning
SMH (gmheap) status 2 — alert

> 10 minutes — warning

> 20 minutes — alert

7 days — warning

5 days or fewer — alert (daily)

individual certificate expires within 30
days — warning (repeated daily)

one or more daily expiring certificate
warnings — alert (summary of warnings,
one per day)

Monitoring Guide

29

Using System Monitor

Metric

ISCAgent (mirror
members only)

Description

ISCAgent status .

Notification Rules

e Unresponsive for <1 minute — warning

5.4 System Monitor Health State

Unresponsive for >1 minute — alert

Based on notifications posted to the messages log (see Monitoring Log Files), including both system alerts generated directly
by the InterSystems IRIS instance and alerts and warnings generated by System Monitor and its Health Monitor component,
System Monitor maintains a single value summarizing overall system health in a register in shared memory.

At startup, the system health state is set based on the number of system (not System Monitor) alerts posted to the messages
log during the startup process. Once System Monitor is running, the health state can be elevated by either system alerts or
System Monitor alerts or warnings. Status is cleared to the next lower level when 30 minutes have elapsed since the last
system alert or System Monitor alert or warning was posted. The following table shows how the system health state is

determined.

Table 5-2: System Monitor Health State

State

GREEN (0)

YELLOW (1)

RED (2)

Set at startup when ...

no system alerts are
posted during startup

up to four system alerts
are posted during
startup

five or more system
alerts are posted during
startup

Set following startup when ...

30 minutes (if state was YELLOW)
or 60 minutes (if state was RED)
have elapsed since the last
system alert or System Monitor
alert or warning was posted

state is GREEN and
e one system alert is posted
OR

e one or more System Monitor
alerts and/or warnings are
posted, but not alerts suffi-
cient to set RED, as below

e state is YELLOW and one
system alert is posted

OR

e state is GREEN Or YELLOW
and during a 30 minute
period, System Monitor
alerts from at least five differ-
ent sensors or three System
Monitor alerts from a single
sensor are posted

Cleared to ...

n/a

GREEN when 30 minutes have
elapsed since the last system
alert or System Monitor alert or
warning was posted

YELLOW when 30 minutes have
elapsed since the last system
alert or System Monitor alert or
warning was posted

30

Monitoring Guide

System Monitor Defaults

Note: A fourth state, HUNG, can occur when global updates are blocked. Specifically, the following events change the
state to HUNG:

e The journal daemon is paused for more than 5 seconds or frozen (see Journal 1/O Errors).

« Any of switches 10, 11, 13, or 14 are set (see Using Switches).

« The write daemon is stopped for any reason or sets the updates locked flag for more than 3 seconds.

< The number of available global buffers (in the database cache) falls into the critical region and remains there
for more than 5 seconds.

When the health state changes to HUNG, the reason is written to the messages log.

You can view the System Monitor health state using:
» The View System Health option on the View System Data menu of *% SY SM ONM GR (which does not report HUNG).

e The $SYSTEM.Monitor API, which lets you access the system status directly. Use $SY STEM .M onitor.State() to return
the system status; see also the SetState, Clear, Alert, GetAlerts, and Clear Alerts methods.

* Theirislist and iris glist commands (which do not include health state on Windows).

Note: When System Monitor is not running, the System Monitor health state is always GREEN.

5.5 System Monitor Defaults

System Monitor calls a provided set of classes that can be augmented, runs in the %SYS namespace, and operates under
three default settings that can be changed.

5.5.1 Default System Monitor Components

Five classes are provided with InterSystems IRIS and configured in System Monitor in the %SYS namespace by default.
Sensor classes:
* SYS.Monitor.SystemSensors

System sensor class obtaining sensor values to be passed to configured subscriber classes, including the System Mon-
itor subscriber (SYS.Monitor.SystemSubscriber) and Health Monitor subscriber (SYS.Monitor.Health.Control).

* %SYS.Monitor.AppM onSensor

Class providing sensor, subscriber and notification services for Application Monitor; obtains sensor values and stores
them in the local namespace, evaluates the values based on user-defined alerts and either generates an email message
or calls a user-specified method when an alert is triggered, based on the alert definition.

Subscriber classes:

* SYS.Monitor.Health.Control

Subscriber class for Health Monitor; receives and evaluates statistical sensor values from SYS.Monitor.SystemSensors
and posts notifications to the system notifier.

* SYS.Monitor.SystemSubscriber

Monitoring Guide 31

Using System Monitor

System Monitor subscriber available to all sensor classes; contains all code required to monitor and analyze the sensors
in SYS.Monitor.SystemSensors. Generates System Monitor notifications and Health Monitor notifications for some
Sensors.

Notifier class:

* SYS.Monitor.SystemNotify

System notifier available to all subscriber classes. On receiving a notification from the system subscriber
(SYS.Monitor.SystemSubscriber) or Health Monitor subscriber (SYS.Monitor.Health.Control), writes it to the System
Monitor log, and to the messages log if it is of severity 2 (alert). (See Monitoring InterSystems IRIS Using the Man-
agement Portal for information on these log files.)

The system notifier also generates a single overall evaluation of system status that can be obtained using the
SYS.Monitor.State() method, which returns 0 (GREEN), 1 (YELLOW), or 2 (RED).

User-defined classes can be configured using % SY SMONM GR.

5.5.2 Default System Monitor Namespace

All System Monitor and Application Monitor configurations and settings are namespace-specific. By default, System
Monitor starts and runs only in the %SYS namespace. Additional startup namespaces for System Monitor and Application
Monitor can be configured using % SY SM ONM GR. Following any change you make to the System Monitor or Application
Monitor configuration for a namespace, you must restart System Monitor in the namespace for the change to take effect.

Health Monitor runs only in the %SYS namespace.

5.5.3 Default System Monitor Settings

By default, the System Monitor is always running when the instance is running; it can be stopped using *% SY SMONM GR
but will start automatically again when the instance next starts.

By default, the System Monitor:

» calls the GetSensor () method of each configured sensor class every 30 seconds.

» writes only alerts, warnings and messages to the System Monitor log, and does not write sensor readings.

» does not save sensor readings.

These settings can be changed using *% SY SMONMGR.

5.6 Using the "%SYSMONMGR Utility

The "% SY SMONMGR utility lets you manage and configure the System Monitor. The utility can be executed in any
namespace, and changes made with it affect only the namespace in which it is started. You must maintain a separate System
Monitor configuration for each startup namespace you configure by executing *% SY SM ONM GR in that namespace.
Following any change you make to the System Monitor configuration for a namespace, you must restart System Monitor
in the namespace for the change to take effect.

Important: All manual operations using the *% SY SMONM GR utility described in this section can be executed
programatically using the methods in the %Monitor.Manager API.

32 Monitoring Guide

Using the "%SYSMONMGR Utility

To manage the System Monitor, enter the following command in the Terminal:
do ~%SYSMONMGR

The main menu appears.

1) Start/Stop System Monitor

2) Set System Monitor Options
3) Configure System Monitor Classes

View System Monitor State

5) Manage Application Monitor

6) Manage Health Monitor

7) View System Data
8) Exit

Option?

Enter the number of your choice or press Enter to exit the utility.

The options in the main menu let you perform System Monitor tasks as described in the following table:

Option

1) Start/Stop
System Monitor

2) Set System
Monitor Options

3) Configure
System Monitor
Components

4) View System
Monitor State

5) Manage
Application
Monitor

6) Manage Health
Monitor

7) View System
Data

Description

Start System Monitor
Stop System Monitor

Set the sampling interval for configured sensor classes
Set the debugging level of information written to the System Monitor log
Enable saving of sensor readings and set number of days to save

Return sampling interval, debugging level, and sensor reading saving to their
defaults

Configure or remove user-defined sensor, subscriber and notifier classes

Configure startup namespaces

Display the operating status of System Monitor and its configured components

Display the Application Monitor submenu

Display the Health Monitor submenu (available only if "%SYSMONMGR is run
in the %SYS namespace)

View saved sensor readings
View the System Monitor health state

View past or current System Monitor alerts

Monitoring Guide

33

Using System Monitor

5.6.1 Start/Stop System Monitor

When an InterSystems IRIS instance starts, System Monitor starts automatically and begins calling configured classes in
each configured startup namespace; this cannot be changed. While the instance is running, however, you can stop System
Monitor, and must do so in order to change the configuration of Health Monitor. In addition, following any change you
make to the System Monitor configuration for a namespace, you must restart System Monitor in the namespace for the
change to take effect.

When you enter 1 at the main menu, the following menu is displayed:

1) Start System Monitor
2) Stop System Monitor
3) Exit

Enter 2 to stop System Monitor when it is running, and 1 to start it when it is stopped.

Note: System Monitor monitors the size of the messages log and rolls it over when required. When System Monitor is
stopped, the messages log may exceed the limit set by the MaxConsoleLogSize configuration setting until the
instance is restarted or the PurgeErrorsAndLogs task is run. See Monitoring Log Filesfor information about
the messages log.

5.6.2 Set System Monitor Options

To change global System Monitor settings or to return them to their default values, stop System Monitor if it is running
and then enter 2 at the main menu:

1) Set Sample Interval
2) Set Debugging Level
3) Reset Defaults

4) Manage Debug Data
5) Exit

Enter 1 to set the interval at which System Monitor calls each configured sensor class; the default is 30 seconds.

Enter 2 to set the debugging level. The defaultis 0 (base) which writes System Monitor and Health monitor status and
error messages to the System Monitor log, and does not save sensor readings. Debugging level 1 (log all sensors)
writes sensor readings to the System Monitor log along with messages and saves sensor readings, which can then be viewed
using the View Sensor Data option of the View System Data menu.

Enter 3 to reset the sample interval, debugging level, and saving of sensor readings to their default values.
Enter 4 to set the number of days for which sensor readings are saved; the default is 5.

Your changes take effect when you next start or restart System Monitor.

5.6.3 Configure System Monitor Components

As described in System Monitor, you can create your own sensor, subscriber and notifier classes by extending
%SYS.Monitor.AbstractSensor, %SYS.Monitor.AbstractSubscriber, and %SYS.Monitor.AbstractNotification, respectively, and
configure them in System Monitor to extend the capabilities of the provided classes described in Default System Monitor
Components. You can also add namespaces other than %SYS for System Monitor to start and run in.

34 Monitoring Guide

Using the "%SYSMONMGR Utility

5.6.3.1 Configure System Monitor Classes

When you enter 3 at the main menu, the following menu is displayed:

1) Configure Components
2) Configure Startup Namespaces
3) Exit

Enter 1 to display the options for configuring classes:

1) List Classes
2) Add Class

3) Delete Class
4) Exit

Enter 1 to list the currently configured classes for the namespace in which you started *% SY SMONM GR, including
provided system classes and those you have configured.

Enter 2 to configure a user-defined class for the namespace in which you started ~% SY SM ONM GR. The class you
specify must exist in the namespace and be recognized by System Monitor as a valid sensor, subscriber or notifier class.
You can also enter a description of the class.

Enter 3 to delete a user-defined class you have configured.

Note: Configuring or deleting a class affects only the namespace in which you started *% SY SMONMGR.

5.6.3.2 Configure System Monitor Namespaces

When an instance starts, System Monitor automatically starts as a separate process in each configured startup namespace
(by default %SYS only). All System Monitor configurations and settings are namespace-specific. When you make changes
using *% SY SM ONM GR, the changes affect only the namespace in which you started the utility.

Note: All instances of 2% SY SMONM GR write messages to the same System Monitor log. Startup namespaces can
be configured from any namespace.

When you enter 3 at the main menu, the following menu is displayed:

1) Configure Components
2) Configure Startup Namespaces
3) Exit

Enter 2 to display the options for configuring namespaces:

1) List Startup Namespaces
2) Add Namespace

3) Delete Namespace

4) Exit

Enter 1 to list the currently configured startup namespaces.
Enter 2 to add a startup namespace.

Enter 3 to delete a startup namespace. (You cannot delete %SYS.)

Monitoring Guide 35

Using System Monitor

5.6.4 View System Monitor State

Enter 4 at the main menu to display the status of System Monitor and its components in the namespace in which you started
0o SYSMONMGR, for example:

Component State
System Monitor OK
%SYS .Monitor.AppMonSensor None
SYS._Monitor.SystemSensors OK
SYS._Monitor.Health.Control Running: Period is Thursday 09:00 - 11:30
SYS.Monitor.SystemSubscriber OK
SYS_Monitor._SystemNotifier OK

In this example, System Monitor and its system sensor, subscriber and notifier classes are running normally, as is Health
Monitor’s subscriber class. However, none of Application Monitor’s classes are activated (see Manage Monitor Classes),
so it is not evaluating sensor samples or generating alerts.

5.6.5 Manage Application Monitor

See Using “"%SYSMONMGR to Manage Application Monitor.

5.6.6 Manage Health Monitor

See Using “"%SYSMONMGR to Manage Health Monitor.

5.6.7 View System Data

Enter 7 at the main menu (or 6 in namespaces other than %SYS) to display options for viewing System Monitor information
about the system.

1) View Sensor Data
2) View System Health
3) View Alerts

4) Exit

Enter 1 to view saved sensor readings, if you have enabled saving of sensor data using the Manage Debug Data option on
the Set System Monitor Options menu. You can display saved readings for all sensors or for a specific sensor, and you can
view all saved sensor readings or only those for a time period you specify.

Enter 2 to view the System Monitor health state, including all alerts between the previous GREEN state and the current
state, if not GREEN.

Enter 3 to view System Monitor alerts. You can display alerts for all sensors or for a specific sensor, and you can view all
alerts within the period you specified using the Manage Debug Data option on the Set System Monitor Options menu, or
only those for a time period you specify.

5.7 Defining System Monitor Components

The SYS.Monitor API lets define your own sensor, subscriber, and notifier classes.

5.7.1 Sensor Classes

Sensor classes extend %SYS.Monitor.AbstractSensor. The System Monitor controller initially calls each sensor class’s
Start() method; thereafter, on each cycle, it calls the GetSensor () method. The SetSensor () method is used within the

36 Monitoring Guide

See Also

sensor class to set sensor name/value pairs in the SensorReading property, which is returned by GetSensor s() and passed
to all subscriber classes.

A sensor class may also evaluate sensor readings and, as a result of its evaluation, call the %SYS.Monitor.Email class for
generating email messages from notifications or any user-defined alerting method.

5.7.2 Subscriber Classes

Subscriber classes extend %SYS.Monitor.AbstractSubscriber. The System Monitor controller initially calls each subscriber
class’s Start() method; thereafter, on each cycle, it calls the Receive() method once for each sensor class called in the cycle,
passing the SensorReading property with the sensor name/value pairs received from that sensor class. The subscriber class
may evaluate one or more of the name/value pairs and set notifications using the Notify() method, which populates the
Notifications property.

A subscriber class may also, as a result of its sensor evaluation, call the %SYS.Monitor.Email class for generating email
messages from notifications, or any user-defined alerting method.

%SYS.Monitor.SampleSubscriber is provided as a sample subscriber class.

5.7.3 Notifier Classes

Notifier classes extend %SYS.Monitor.AbstractNotification. The System Monitor controller initially calls each notifier class’s
Start() method; thereafter, on each cycle, it calls the Post() method once for each subscriber class called in the cycle,
passing the Notifications property with the notifications received from that subscriber. The notifier class calls then passes
the notifications to its alerting method(s), which may include the %SYS.Monitor.Email class for generating email messages
from notifications or any user-defined alerting method.

5.8 See Also

e Introduction to System Monitor
* Using Core System Monitor

e Using Health Monitor

» Application Monitor

» System Monitoring Tools

» Manage Email Options (information about generating email messages from notifications in the messages log, including
those generated by System Monitor)

e Monitoring Log Files (includes information on the log files generated by this tool)

Monitoring Guide 37

Using Health Monitor

Health Monitor monitors a running InterSystems IRIS instance by sampling the values of a broad set of key metrics during
specific periods and comparing them to configured parameters for the metric and established normal values for those periods;
if sampled values are too high, Health Monitor generates an alert (notification of severity 2) or warning (severity 1). For
example, if CPU usage values sampled by Health Monitor at 10:15 AM on a Monday are too high based on the configured
maximum value for CPU usage or normal CPU usage samples taken during the Monday 9:00 AM to 11:30 AM period,
Health Monitor generates a notification.

Health Monitor is part of the System Monitor tools.

6.1 Health Monitor Overview

Health Monitor uses a fixed set of rules to evaluate sampled values and identify those that are abnormally high. This design
is based on the approach to monitoring manufacturing processes described in the “Process or Product Monitoring and
Control” section of the NIST/SEMATECH e-Handbook of Statistical Methods, with deviation from normal values determined
using rules based on the WECO statistical probability rules (Western Electric Rules), both adapted specifically for InterSys-
tems IRIS monitoring purposes.

Health Monitor alerts (severity 2) and warnings (severity 1) are written to the messages log (install-dirimgrimessages.log).
See Tracking System Monitor Notifications for information about ways to make sure you are aware of these notifications.

Health Monitor status messages (severity 0) are written to the System Monitor log (install-dir\mgr\SystemMonitor.log).

Note: Unlike System Monitor and Application Monitor, Health Monitor runs only in the %SYS namespace.

The following subsections describe how Health Monitor works and contain information about configuring and extending
it in various ways:

» Health Monitor Process Description

» Sensors and Sensor Objects

* Periods

* Charts

* Notification Rules

Monitoring Guide 39

https://www.nist.gov/publications/handbook-151-nistsematech-e-handbook-statistical-methods
https://en.wikipedia.org/wiki/Western_Electric_rules

Using Health Monitor

6.1.1 Health Monitor Process Description

By default, Health Monitor does not start automatically when the instance starts; for this to happen, you must enable Health
Monitor within System Monitor using the % SY SMONM GR utility. (You can specify an interval to wait after InterSystems
IRIS starts before starting Health Monitor when it is enabled, allowing the instance to reach normal operating conditions
before sampling begins.) You can always use the utility to see the current status of Health Monitor. For more information,
see Using "%SYSMONMGR to Manage Health Monitor.

The basic elements of the Health Monitor process are described in the following:

» Health Monitor monitors a number of system sensors, which are represented as sensor objects. Every sensor object
has a base (minimum) value for sensor samples, and optionally includes two notification threshold values (one for
alerts, and the other for warnings) which can be set as absolute values or multipliers. These values determine when
Health Monitor sends notifications.

Sensors and Sensor Objects lists all the sensor objects.

» For the duration of a predefined period, each sensor is sampled every 30 seconds; samples below the base value are
discarded. By default there are 63 weekly periods (nine per day), but you can configure your own weekly, monthly,
quarterly, or yearly periods. Periods lists the default periods.

» For agiven sensor, unless the notification thresholds are set as absolute values, Health Monitor evaluates the sensor
readings based on a chart. If the necessary chart for the current period does not exist, Health Monitor places the sensor
in analysis mode to generate the chart.

You can edit or create a chart to calibrate how Health Monitor evaluates sensor readings. For more information, see
Charts.

» Ifasensor is not in analysis mode, it is in monitoring mode. In monitoring mode, sensor readings are evaluated by the
appropriate subscriber class. To ensure that notifications are not triggered by transient abnormal samples, every six
sample values are averaged together to generate one reading every three minutes, and it is these readings that are
evaluated.

* When a sequence of readings meets the criteria for a notification (as described in Notification Rules), the subscriber
class generates an alert or a warning by passing a notification containing text and a severity code to the system notifier,
SYS.Monitor.SystemNotify.

Note: Because no chart is required to evaluate readings from sensors whose sensor objects have maximum and
warning values specified, evaluation of these sensor readings and posting of any resulting notifications is
handled by the SYS.Monitor.SystemSubscriber subscriber class, rather than the SYS.Monitor.Health.Control
subscriber class (see Default System Monitor Components). As a result, notifications for these sensors are
generated even when Health Monitor is not enabled, as long as System Monitor is running.

If you want to generate notifications using absolute values for some sensors but using multipliers for others—for
example, using absolute values for DBLatency sensors for some databases but multipliers for others—you
can do so by setting multipliers in the sensor object and manually creating charts for those for which you
want to use absolute values; see Editing a Chart for more information.

6.1.2 Sensors and Sensor Objects

A Health Monitor sensor object represents one of the sensors in SYS.Monitor.SystemSensors. Each sensor object must
provide a base value, and can optionally provide a maximum (alert) threshold and a warnings threshold (either as absolute
values or multipliers); see Notification Rules for information about how these values are used in evaluating sensor readings.
The Health Monitor sensor objects are shown with their default parameters in the following table.

40 Monitoring Guide

Health Monitor Overview

Some sensors represent an overall metric for the InterSystems IRIS instance. These are the sensors which, in the following
table, have no value listed in the Sensor Item column. For example, the LicensePercentUsed sensor samples the percentage
of the instance’s authorized license units that are currently in use, while the JournalGrowthRate sensor samples the amount
of data (in KB per minute) written to the instance’s journal files.

Other sensors collect information about a specific sensor item (either a CSP server, a database, or a mirror). For example,
DBReads sensors sample the number of reads per minute from each mounted database. These sensors are specified as
<sensor_object> <sensor_item>; for example, the DBLatency install-din\iRIS\mgr\user sensor samples the time (in millisec-
onds) required to complete a random read on the USER database.

Sensor objects can be listed and edited (but not deleted) using the *% SY SMONM GR utility (as described in Configure
Health Monitor Classes). Editing a sensor object allows you to modify one or all of its values. You can enter a base value
only; a base, maximum (alert), and warning value; or a base value, maximum (alert) multiplier, and warning multiplier.

Table 6-1: Health Monitor Sensor Objects

Sensor Object Sensor Item Description Base Max Max Wam Wam

Val. Mult. Val. Mult

CPUUsage System CPU usage 50 85 — 75 —
(percent).

CSPSessions IP_address:port | Number of active web 100 — 2 — 1.6

sessions on the listed Web
Gateway server.

CSPActivity IP_address:port | Requests per minute tothe | 100 | — 2 — 1.6
listed Web Gateway server.

CSPActualConnections | IP_addressiport | Number of connections 100 — 2 — 1.6
created on the listed Web
Gateway server.

CSPInUseConnections | IP_address;port | Number of currently active 100 — 2 — 1.6
connections to the listed
Web Gateway server.

CSPPrivateConnections | IP_address:port | Number of private 100 — 2 — 1.6
connections to the listed
Web Gateway server.

CSPUrlLatency IP_address:port | Time (milliseconds) required | 1000 | 5000 | — 3000 —
to obtain a response from

IP_address:porticspisysiUtiHome.csp.

CSPGatewaylLatency IP_address:port | Time (milliseconds) required | 1000 | 2000 | — 1000 —
to obtain a response from
the listed Web Gateway
server when fetching the
metrics represented by the
CSP sensor objects.

DBLatency chigbese dredory | Milliseconds to complete a 1000 & 3000 | — 1000 —
random read from the listed
mounted database.

DBReads Oetebese diedory | Reads per minute from the | 1024 | — 2 — 1.6
listed mounted database.

Monitoring Guide 41

Using Health Monitor

Sensor Object Sensor Item Description Base Max Max Wam Wam
Val. Mult. Val. Mult

DBWrites Oetsbese diedory | Writes per minute to the 1024 | — 2 — 1.6
listed mounted database.

DiskPercentFull chisbese dredory | Disk percentage used forthe | 50 99 — 95 —
listed mounted database.

ECPAppSenerKBPerMinute KB per minute sent to the 1024 — 2 — 1.6
ECP data server.

ECPConnections Number of active ECP 100 | — 2 — 1.6
connections.

ECPDataSenerkBPerMinute KB per minute received as 1024 — 2 — 1.6
ECP data server.

ECPLatency Network latency 1000 & 3000 | — 3000 —
(milliseconds) between the
ECP data server and this
ECP application server.

ECPTransOpenCount Number of open ECP 100 — 2 — 1.6
transactions

ECPTransOpenSecsMax Duration (seconds) of 60 — 2 — 1.6
longest currently open ECP
transaction

GlobalRefsPerMin Global references per 1024 — 2 — 1.6
minute.

GlobalSetKillPerMin Global sets/kills per minute. | 1024 | — 2 — 1.6

JournalEntriesPerMin Number of journal entries 1024 — 2 — 1.6
written per minute.

JournalGrowthRate Number of KB per minute 1024 — 2 — 1.6
written to journal files.

LicensePercentUsed Percentage of authorized 50 — 15 — —
license units currently in use.

LicenseUsedRate License acquisitions per 20 — 15 — —
minute.

LockTablePercentFull Percentage of the lock table | 50 99 — 85 —
in use.

LogicaBlodkRequestsPerin Number of logical block 1024 — 2 — 1.6
requests per minute.

42 Monitoring Guide

Health Monitor Overview

Sensor Object Sensor Item Description Base Max Max Wam Wam
Val. Mult. Val. Mult
MimorDatabaselatencyBytes | mirror_name | On the backup failover 0’ | — 2 — 1.6

member of a mirror, number
of bytes of journal data
received from the primary
but not yet applied to
mirrored databases on the
backup (measure of how far
behind the backup’s
databases are).

MimorDatabaselLatencyHles | mirror_name | On the backup failover 3 — 2 — 1.6

member of a mirror, number

of journal files received from

the primary but not yet fully

applied to mirrored

databases on the backup

(measure of how far behind

the backup’s databases are).

MimorDatabaselatencyTime | mirror_name | On the backup failover 1000 | 4000 | — 3000 —
member of a mirror, time (in
milliseconds) between when
the last journal file was
received from the primary
and when it was fully applied
to the mirrored databases on
the backup (measure of how
far behind the backup’s
databases are).

MirrorJournalLatencyBytes | mirror_name | On the backup failover 0’ | — 2 — 1.6
member of a mirror, number
of bytes of journal data
received from the primary
but not yet written to the
journal directory on the
backup (measure of how far
behind the backup is).

MirrorJournalLatencyFiles | mirror_name | On the backup failover 3 — 2 — 1.6
member of a mirror, number
of journal files received from
the primary but not yet
written to the journal
directory on the backup
(measure of how far behind
the backup is).

Monitoring Guide 43

Using Health Monitor

Base Max
Val.

Wam Wam
Val. Mult.

Max
Mult.

Sensor Object Sensor Item = Description

1000 | 4000 | — 3000 —

MirrorJournalLatencyTime | mirror_name

PhysicalBlockReadsPerMin

PhysicalBlockWritesPerMiin

ProcessCount

RoutineCommandsPerMin

RoutineLoadsPerMin

RoutineRefsPerMin

SMHPercentFull

TransOpenCount

TransOpenSecondsMax

WDBuffers

WDCycleTime

WDWIJTime

On the backup failover
member of a mirror, time (in
milliseconds) between when
the last journal file was
received from the primary
and when it was fully written
to the journal directory on
the backup (measure of how
far behind the backup is).

Number of physical block
reads per minute.

Number of physical block
writes per minute.

Number of active processes
for the InterSystems IRIS
instance.

Number of routine
commands per minute.

Number of routine loads per
minute.

Number of routine
references per minute.

Percentage of the shared
memory heap (generic
memory heap) in use.

Number of open local
transactions (local and
remote).

Duration (seconds) of
longest currently open local
transaction.

Average number of database
buffers updated per write
daemon cycle.

Average number of seconds
required to complete a write
daemon cycle.

Average number of seconds
spent updating the write
image journal (WI1J) per
cycle.

1024

1024

100

1024

1024

1024

50

100

60

1024

60

60

98

85

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

44

Monitoring Guide

Health Monitor Overview

Sensor Object Sensor Item Description Base Max Max Wam Wam
Val. Mult. Val. Mult
WDWriteSize Average number of KB 1024 — 2 — 1.6
written per write daemon
cycle.

Note: Some sensors are not sampled for all InterSystems IRIS instances. For example, the ECP. . . sensors are sampled
only on ECP data and application servers.

When you are monitoring a mirror member (see Mirroring), the following special conditions apply to Health
Monitor:

* No sensors are sampled while the mirror is restarting (for example, just after the backup failover member has
taken over as primary) or if the member’s status in the mirror is indeterminate.

« Ifasensor is in analysis mode for a period and the member’s status in the mirror changes during the period,
no chart is created and the sensor remains in analysis mode.

e Only the MirrorDatabaseLatency* and MirrorJournalLatency* sensors are sampled on the backup failover
mirror member.

« All sensors except the MirrorDatabaseLatency* and MirrorJournalLatency* Sensors are sampled on the primary
failover mirror member.

6.1.3 Periods

By default there are 63 recurring weekly periods during which sensors are sampled. Each of these periods represents one
of the following specified intervals during a particular day of the week:

Table 6-2: Default Health Monitor Periods

00:15 a.m.—-02:45 a.m. 03:00 a.m.—06:00 a.m. 06:15 a.m. —08:45 a.m.
09:00 a.m.—11:30 a.m. 11:45 a.m. - 01:15 p.m. 01:30 p.m. — 04:00 p.m.
04:15 p.m. - 06:00 p.m. 06:15 p.m. - 08:45 p.m. 09:00 p.m. - 11:59 p.m.

You can list, add and delete periods using the Configure Periods option in the #% SY SMONM GR utility (see Configure
Health Monitor Classes). You can add monthly, quarterly or yearly periods as well as weekly periods.

Note: Quarterly periods are listed in three-month increments beginning with the month specified as the start month; for
example, if you specify 5 (May) as the starting month, the quarterly cycle repeats in August (8), November (11)
and February (2).

Descriptions are optional for user-defined periods.

6.1.4 Charts

If the notification threshold values for a sensor object are not given as multipliers (or not specified), Health Monitor requires
a chart to evaluate those sensor readings. Health Monitor generates the necessary charts by calculating the mean, standard
deviation, and maximum value from sample sensor readings. This section describes how Health Monitor generates charts
in analysis mode, and how to edit or create custom charts.

Monitoring Guide 45

Using Health Monitor

6.1.4.1 Analysis Mode

Before Health Monitor can evaluate sensor samples, it checks whether that sensor requires a chart. If a chart is required
but does not yet exist, Health Monitor automatically puts the sensor in analysis mode.

In analysis mode, Health Monitor simply records the samples it collects, and at the end of the period generates the required
chart for the sensor. To ensure that the chart is reliable, a minimum of 13 samples must be taken in analysis mode. Until
13 valid samples are taken within a single recurrence of a period, the sensor remains in analysis mode and no chart is gen-
erated for that period.

Note: Charts should always be generated from samples taken during normal, stable operation of the InterSystems IRIS
instance. For example, when a Monday 09:00 a.m. - 11:30 a.m. chart does not exist, it should not be generated
on a Monday holiday or while a technical problem is affecting the operation of the InterSystems IRIS instance.

When a period has recurred five times since a chart was generated for a sensor or sensor/item during that period, not
including those during which an alert was generated, the readings from these five normal period recurrences are evaluated
to detect a rising or shifted mean for the sensor. If the mean is rising or has shifted with 95% certainty, the chart is recali-
brated—the existing chart for the sensor during that period is replaced with a chart generated from the samples taken during
the most recent recurrence of the period. For example, if the number of users accessing a database is growing slowly but
steadily, the mean DBReads value for that database is likely to also rise slowly but steadily, resulting in regular chart
recalibration every five periods, which avoids unwarranted alerts.

Note that sensor object absolute and multiplier values cannot be automatically recalibrated in the same way, and should be
adjusted manually because automatic chart recalibration does not apply to such sensors. For example, if the number of
users accessing a database grows, the base, maximum (alert) value, and warning value for the DBLatency sensor object may
require manual adjustment.

6.1.4.2 Editing a Chart

The "% SYSMONMGR utility lets you display a list of all current charts, including the mean and sigma of each. You can
also display the details of a particular chart, including the individual readings and highest reading. To access these options
from the utility, select Configure Charts from the Configure Health Monitor Classes submenu .

The Configure Charts option also provides two ways to customize alerting by customizing charts:

* You can change the mean and/or sigma to whatever values you wish by editing an existing chart. The standard notifi-
cation rules apply, but using the values you have entered.

* You can create a chart, specifying an alert value and a warning value. Creating a chart is similar to setting an absolute
value for the notification threshold; alerts and warnings are generated based solely on the values you supply for the
chart.

Note: When listing, examining, editing, or creating charts, the item heading or prompt refers to a database (specified by
a directory path), a Web Gateway server (specified by an IP address), or a mirror (specified by the mirror name).
See Sensors and Sensor Objects for more information.

You can also programmatically build chart statistics based on a list of values with the following SYS.Monitor.Health.Chart
class methods:

e CreateChart() — Creates a chart for a specific period/sensor, evaluates the list of values, and sets the resulting mean
and sigma values.

» SetChartStats() — Evaluates the list of values and sets the resulting mean and sigma values for a specified
period/sensor.

For more information, see the SYS.Monitor.Health.Chart class documentation.

46 Monitoring Guide

Health Monitor Overview

Note:

A chart generated by Health Monitor, including one you have edited, can be automatically recalibrated as described

in Analysis Mode. In addition, all charts generated by Health Monitor, including those that have been edited, are
deleted when an InterSystems IRIS instance is upgraded.

A chart created using the Configure Charts submenu or the CreateChart() class method, however, is never
automatically recalibrated or deleted on upgrade. A user-created chart is therefore permanently associated with
the selected sensor/period combination until you select the Reset Charts option within the Reset Defaults option
of the Configure Health Monitor Classes submenu or select Recalibrate Charts within the Configure Charts option.

6.1.5 Notification Rules

Health Monitor generates an alert (notification of severity 2) if three consecutive readings of a sensor during a period are
greater than the sensor maximum threshold value, and a warning (notification of severity 1) if five consecutive readings
of a sensor during a period are greater than the sensor warning threshold value. The maximum and warning threshold values
depend on the settings in the sensor object and whether the applicable chart was generated by Health Monitor or created

by a user, as shown in the following table.

Note also that:

When a sensor object has maximum value and warning value set, no chart is required and therefore no chart is generated,
and notifications are generated even when Health Monitor is disabled.

When a sensor object has maximum multiplier and warning multiplier set, or base only, a chart is required; until sufficient
samples have been collected in analysis mode to generate the chart, no notifications are generated.

When a user-created chart exists, it does not matter what the sensor object settings are.

Sensor Object Settings

base, maximum value,
warning value

base, maximum
multiplier, warning
multiplier

base only

(n/a if user-created chart
exists)

Chart
Type

none

generated

usraesed

Sensor Maximum
Value

sensor object maximum
value

sensor object maximum
multiplier times greater
of:

e chart mean plus
three sigma

* highest chart value
plus one sigma

greater of:

e chart mean plus
three sigma

* highest chart value

chart alert value

Sensor Warning Value

sensor object warning
value

sensor object warning
multiplier times greatest
of:

* base

e chart mean plus two
sigma

* highest chart value

greater of:

e chart mean plus two
sigma

* highest chart value

chart warning value

Active When

System Monitor
running

System Monitor
running, Health
Monitor enabled

System Monitor
running, Health
Monitor enabled

System Monitor
running, Health
Monitor enabled

Monitoring Guide

47

Using Health Monitor

6.1.6 Examples

In this example, the chart for the DBReads install-dir\IRIS\mgr\user sensor during the Monday 09:00 a.m. - 11:30 a.m.
period indicates that the mean reads per minute from the USER database is 2145, with a sigma of 141 and maximum value
of 2327. The default notification threshold multipler for DBReads is 2. An alert is generated for this sensor when three
consecutive readings exceed the greater of the following two values:

e maximum multiplier * (chart mean + (3 * chart sigma))
2 * (2145 + (3 * 141)) = 5136
* maximum multiplier * (chart maximum value + chart sigma))

2 * (2327 + 141) = 4936

So, or this sensor during this period, an alert is generated if three consecutive readings are greater than 5136.

A sensor with no multipliers or maximum values is evaluated with a multiplier of 1. As an example, if the DBReads sensor
object were edited to remove the multipliers, leaving it with only a base, an alert is generated for DBReads
install-dinirRIS\mgriuser when three consecutive readings are greater than 2568, calculated as the greater of:

e maximum multiplier * (the chart mean + three times the sigma)
1* (2145 + (3 * 141)) = 2568
e maximum multiplier * (the highest value in the chart + one sigma)

1* (2327 + 141) = 2468

6.2 Using *%SYSMONMGR to Manage Health Monitor

As described in Using the *%SYSMONMGR Utility, the "% SY SMONM GR utility lets you manage and configure System
Monitor, including Health Monitor. To manage Health Monitor, change to the %SYS namespace in the Terminal, then enter
the following command:

%SYS>do ~%SYSMONMGR

1) Start/Stop System Monitor

2) Set System Monitor Options

3) Configure System Monitor Classes
4) View System Monitor State

5) Manage Application Monitor

6) Manage Health Monitor

7) View System Data

8) Exit

Option?

Note: Health Monitor runs only in the %SYS namespace. When you start *% SY SM ONM GR in another namespace,
option 6 (Manage Health Monitor) does not appear.

Enter 6 for Manage Health Monitor. The following menu displays:

1) Enable/Disable Health Monitor

2) View Alerts Records

3) Configure Health Monitor Classes
4) Set Health Monitor Options

5) Exit

Option?

48 Monitoring Guide

Using "%SYSMONMGR to Manage Health Monitor

Enter the number of your choice or press Enter to exit the Health Monitor utility.

The options in the main menu let you perform Health Monitor tasks as described in the following table:

Option Description

1) Enable/Disable « Enable Health Monitor (if it is disabled, as by default), so that it starts when
Health Monitor System Monitor starts. Health Monitor does not begin collecting sensor reading
until after the configured startup wait time is complete.

« Disable Health Monitor (if it is enabled), so that it does not start when System
Monitor starts.

2) View Alert * View alert records for one or all sensors objects over a specified date range.
Records

3) Configure Health | « List notification rules.

Monitor Classes e List and delete existing periods and add new ones.
» List, examine, edit, create and recalibrate charts.
« List sensor objects and edit their settings.

* Reset Health Monitor elements to their defaults.

4) Set Health e Set startup wait time.

Monitor Options e Specify when alert records should be purged.

Note: When the utility asks you to specify a single element such as a sensor, rule, period or chart, you can enter ?
(question mark) at the prompt for a numbered list, then enter the number of the element you want.

All output from the utility can be displayed on the Terminal or sent to a specified device.

6.2.1View Alerts Records

Choose this option to view recently generated alerts for a specific sensor, or for all sensors. You can examine the details
of individual alerts and warnings, including the mean and sigma of the chart and the readings that triggered the notification.
(Alert records are purged after a configurable number of days; see the Set Health Monitor Options for more information.)

6.2.2 Configure Health Monitor Classes

The options in this submenu let you customize Health Monitor, as described in the following table.

Note: You cannot use these options to customize Health Monitor while System Monitor is running; you must first stop
System Monitor, and then restart it after you have made your changes.

Option Description

1) Activate/ (not in use in this release)

Deactivate Rules

2) Configure List the currently configured periods and add and delete periods.
Periods

Monitoring Guide 49

Using Health Monitor

Option
3) Configure

Charts

4) Edit Sensor
Objects

5) Reset Defaults

Description

Lets you

List the mean and sigma of all existing charts, organized by period.

Examine individual charts in detail, including the readings on which the mean
and sigma are based, with the highest reading called out.

Change the mean and sigma of an existing chart using the Edit Charts option.
Create a chart, specifying alert and warning thresholds.

Manually recalibrate all charts (including user-created charts) or an individual
chart from the most recent data.

List the sensor objects representing the sensors in the SYS.Monitor.SystemSensors
class and modify their base, maximum, warning, maximum multiplier, and warning

multiplier values.

Lets you

Reset to the default period configuration and remove all existing charts,
returning every period to analysis mode (see Health Monitor Process Descrip-
tion).

Remove all existing charts (including user-created charts), returning every
period to analysis mode, without removing any user-defined period configuration.

Reset all sensor objects to their default values.

Reset the health monitor options (startup wait time and alert purge time) to their
defaults

6.2.3 Set Health Monitor Options

This submenu lets you set several Health Monitor options, as shown in the following table:

Option

1) Set Startup
Wait Time

2) Set Alert Purge
Time

Description

Configure the number of minutes System Monitor waits after starting, when Health
Monitor is enabled, before passing sensor readings to the Health Monitor subscriber,

SYS.Health.Monitor.Control. This allows InterSystems IRIS to reach normal operating
conditions before Health Monitor begins creating charts or evaluating readings.

6.3 See Also

Specify when an alert record should be purged (deleted); the default is five days
after the alert is generated.

Introduction to System Monitor

Using Core System Monitor

50

Monitoring Guide

See Also

e Application Monitor

» System Monitoring Tools

» Manage Email Options (information about generating email messages from notifications in the messages log, including
those generated by System Monitor)

» Monitoring Log Files (includes information on the log files generated by this tool)

Monitoring Guide 51

Using Application Monitor

Application Monitor monitors a user-extensible set of metrics, maintains a persistent repository of the data it collects, and
triggers user-configured alerts.

Application Monitor is part of the System Monitor tools.

7.1 Overview

Application Monitor is an extensible utility that monitors a user-selected set of system- and user-defined metrics in each
startup namespace configured in System Monitor. As described in Default System Monitor Components, when

% SY S.M onitor.AppMonSensor, the Application Monitor sensor class, is called by System Monitor, it samples metrics,
evaluates the samples, and generates its own notifications. (Unlike System Monitor and Health Monitor notifications, these
are not written to the messages log.) Specifically, Application Monitor does the following in each System Monitor startup
namespace:

1. Starts when System Monitor starts.
2. Lets you register the provided system monitor classes (they are registered in %SYS by default).

3. Lets you activate the system and user-defined classes you want to monitor. You can activate any registered system
class; you can activate any user-defined class that is present in the local namespace. For example, if you have created
a user-defined class only in the USER namespace, you can activate that class only in the USER namespace.

4. Monitors each active class by sampling the metrics specified by the class. These metrics represent the properties
returned by the sample class called by the GetSample() method of the monitor class. For example, the
%Monitor.System.LockTable class calls %Monitor. System.Sample.LockTable which returns (among others) the properties
TotalSpace, containing the total size of the lock table, and UsedSpace, containing the size of the lock table space in
use. The sampled data, along with monitor and class metadata, is stored in the local namespace and can be accessed
by all object and SQL methods.

5. Ifanalertis configured for a class and the class returns a property value satisfying the evaluation expression configured
in it, generates an email message or calls a class method, if one of these actions is configured in the alert. For example,
you can first configure email notifications to a list of recipients, then configure an alert for the %Monitor.System.LockTable
class, specifying that an email be sent when the ratio of the UsedSpace property of %Monitor.System.Sample.LockTable
to the TotalSpace property is greater than .9 (90% full).

Monitoring Guide 53

Using Application Monitor

Note: The %Monitor.System.HistorySys and %Monitor.System.HistoryPerf classes provided with Application Monitor,
when activated, create and maintain a historical database of system usage and performance metrics to help you
analyze system usage and performance issues over time. These classes and %Monitor.System.HistoryUser run only
in %SYS and cannot be registered in other namespaces. See History Monitor for more information about these
classes and the historical database.

7.2 Using *%SYSMONMGR to Manage Application Monitor

As described in Using the ~%SYSMONMGR Utility, the % SY SM ONM GR utility lets you manage and configure System
Monitor, including Application Monitor. The utility can be executed in any namespace, and changes made with it affect
only the namespace in which it is started. You must maintain a separate Application Monitor configuration for each startup
namespace you configure by starting *% SY SMONM GR in that namespace.

Note: Following any change you make to the Application Monitor configuration, such as activating a class, you must
restart System Monitor in the namespace in which you made the change for the change to take effect.

To manage Application Monitor, enter the following command in the Terminal:
%SYS>do ~%SYSMONMGR
then enter 5 for Manage Application Monitor. The following menu displays:

1) Set Sample Interval

2) Manage Monitor Classes

3) Change Default Notification Method
4) Manage Email Options

5) Manage Alerts

6) Debug Monitor Classes

7) Exit

Option?

Enter the number of your choice or press Enter to exit the Application Monitor utility.

7.2.1 Manage Application Monitor

The options in the main menu let you manage Application Monitor as described in the following table:

54 Monitoring Guide

Using "%SYSMONMGR to Manage Application Monitor

Option

1) Set Sample
Interval

2) Manage Monitor
Classes

3) Change Default
Notification
Method

4) Manage Email
Options

5) Manage Alerts

Description

Sets the interval at which metrics are sampled; the default is 30 seconds. This
setting can be overridden for an individual class by setting a class-specific interval
(using the Set Class Sample Interval option on the Manage Monitor Classes
submenu).

Note: if the System Monitor sampling interval (see Set Sample Interval inthe
Set System Monitor Options submenu) is longer than the sampling interval for an
Application Monitoring class, the longer of the two intervals is used. For example,
if the System Monitor interval is 30 and the Application Monitor interval is 120, all
active Application Monitor classes are sampled every 120 seconds; if the System
Monitor interval is 60 and the %Monitor.System.LockTable class interval is 20, the
class is sampled every 60 seconds.

Displays the Manage Monitor Classes submenu which lets you manage system-
and user-defined monitor classes in the namespace in which you are running the
Application Monitor Manager.

Lets you specify the default action for alerts when triggered. Any alerts you create
use this action unless you specify otherwise.

Displays the Monitor Email Options submenu which lets you enable and configure
email notifications so you can specify this action in alerts.

Displays Manage Alerts submenu which lets you create alerts for system and
user-defined monitor classes.

7.2.2 Manage Monitor Classes

This submenu lets you manage system and user-defined monitor classes. Enter the number of your choice or press Enter

to return to the main menu:

Option? 2

1) Activate/Deactivate Monitor Class

2) List Monitor Classes

3) Register Monitor System Classes
4) Remove/Purge Monitor Class
5) Set Class Sample Interval

6) Exit

Option?

This submenu displays a list of menu items that let you manage the system- and user-defined classes as described in the

following table:

Option

1) Activate /
Deactivate Monitor
Class

2) List Monitor
Classes

Description

Application Monitor samples active classes only. This option lets you activate an
inactive class, or deactivate an active one. You can display a numbered list of the
system and user-defined classes registered in the local namespace, including the
activation state of each, by entering ? at the Class? prompt, then enter either the
number or class name.

Displays a list of the system- and user-defined classes registered in the local
namespace, including the activation state of each.

Monitoring Guide

55

Using Application Monitor

Option Description

3) Register Registers all system monitor classes (except the %Monitor.System.HistorySys,
Monitor System %Monitor.System.HistoryPerf, and %Monitor.System.HistoryUser classes) and stores them
Classes in the local namespace. System classes must still be activated using option 1)

Activate/Deactivate Monitor Class on this menu for sampling to begin.

4) Remove/Purge Removes a monitor class from the list of classes in the local namespace. You can

Class display a numbered list of the system and user-defined classes registered in the
local namespace, including the activation state of each, by entering ? at the Class?
prompt, then enter either the number or class name.

Note: This option does not remove the class, but simply removes the name of
the class from the list of registered classes that can be activated. To reset
the list, choose option 3) Register Monitor System Classes on this

menu.
5) Set Class Lets you override the default Application Monitor sampling interval, specified by the
Sample Interval 1) Set Sample Interval option of the Manage Application Monitor menu, for

a single class. The default is 0, which means the class does not have a class-specific
sample interval.

See the description of the Set Sample Interval option for an explanation of
precedence between this setting, the Set Sample Interval setting, and the
System Monitor sample interval discussed in Set System Monitor Options.

6) Debug Monitor Displays Debug Monitor Classes menu which lets you enable and disable debugging
Classes as well as lists errors.

7.2.2.1 Debug Monitor Classes
This submenu lets you manage system debugging.

Debugging monitor classes adds the capability to capture any errors generated during the collection of sample values by
user-defined Application Monitor classes.

Enter the number of your choice or press Enter to return to the main menu:

Option? 6

1) Enable Debug
2) Disable Debug
3) List Errors
4) Exit

Option?

The options in this submenu let you manage debugging for Application Monitor as described in the following table:

Input Field Description

1) Enable Lets you enable debugging. If the class is not creating sample values, then you can
Debug check to see if errors are preventing the sample values from being saved.

2) Disable Lets you disable debugging.

Debug

56 Monitoring Guide

Using "%SYSMONMGR to Manage Application Monitor

Input Field Description
3) List Errors | Displays the definitions of all errors in the local namespace; for example:
%Save(), %New(), Initialize() and GetSample().

Enable debugging for the class using ~*%SYSMONMGR, and the System Monitor will
save the last error caught for specific methods within the class.

7.2.3 Change Default Notification Method

When you create an alert, you specify an action to be taken when it is triggered; the default choice for this action is the
default notification method, set using this option. Enter the number of your choice or press Enter to return to the main menu:

Option? 3

Notify Action (O=none,l=email,2=method)? 0 =>

The choice you make with this option is used when you configure an alert to use the default notification method, as described
in the following table:

Input Field Description
0 Do not take action when an alert is triggered.
1 Send an email message to the configured recipients when an alert is triggered. For

information about configuring email, see Manage Email Options.

2 Call a notification method when an alert is triggered. If you select this action, the method
is called with two arguments — the application name specified in the alert and a %List
object containing the properties returned to the monitor class by the sample class (as
described in Application Monitor Overview). When prompted, enter the full class name
and method, that is packagename.classname.method. This method must exist in the
local namespace.

7.2.4 Manage Email Options

The options in this submenu let you configure and enable email. When email is enabled, Application Monitor sends email
notifications when an alert configured for them is triggered. Enter the number of your choice or press Enter to return to the
main menu:

Option? 4

1) Enable/Disable Email
2) Set Sender

3) Set Server

4) Manage Recipients
5) Set Authorization

6) Test Email

7) Exit

Option?

The options in this submenu let you manage the email notifications for the Application Monitor as described in the following
table:

Monitoring Guide 57

Using Application Monitor

Option Description
1) Enable / Enabling email makes it possible for Application Monitor to send email notifications
Disable Email when alerts are triggered, if configured. Disabling email prevents Application Monitor

from sending email notifications when an alert is triggered.

Note: Itis not necessary to reconfigure email options when you disable and then
reenable email.

2) Set Sender This option is required. Enter text identifying the sender of the email. Depending
on the specified outgoing mail server, this may or may not have to be a valid email
account.

3) Set Server This option is required. Enter the name of the server that handles outgoing email
for your site. If you are not sure, your IT staff should be able to provide this informa-
tion.

4) Manage This option displays a submenu that lets you list, add, or remove valid email

Recipients addresses of recipients:

1) List Recipients
2) Add Recipient

3) Remove Recipient
4) Exit

When adding or removing recipients, email addresses must be entered individually,
one per line. Addresses of invalid format are rejected.

5) Set Lets you specify the authorization username and password if required by your email
Authorization server. Consult your IT staff to obtain this information. If you do not provide entries,
the authorization username and password are set to NULL.

6) Test Email Sends a test message to the specified recipients using the specified email server.
If the attempt fails, the resulting error message may help you fix the problem.

7.2.5 Manage Alerts

An alert specifies:

» acondition within the namespace that is of concern to you, defined by the values of properties sampled by a monitor
class.

* an action to be taken to notify you when that condition occurs.

To return to the previous example, you might create an alert specifying:

» Condition: The lock table is over 90% full, defined by the UsedSpace property (returned when the
%Monitor.System.LockTable class calls %Monitor.System.Sample.LockTable) being more than 90% of the TotalSpace
property.

» Action: Send an email notification.
The definition of a condition based on properties is called an evaluation expression; after specifying the properties of the

sample class you want to use, you specify the evaluation expression. Properties are indicated in the expression by place-
holders corresponding to the order in which you provide them; for example, if when creating the lock table alert you specify

58 Monitoring Guide

Using "%SYSMONMGR to Manage Application Monitor

the UsedSpace property first and then the TotalSpace property, you would enter the evaluation expressionas%d / %@ >
. 9, but if you enter the properties in the reverse order, the expression would be %2 / %1 > . 9.

When the alert menu displays, enter the number of your choice or press Enter to return to the main menu:

Option? 2

1) Create Alert
2) Edit Alert
3) List Alerts
4) Delete Alert

5) Enable/Disable Alert
6) Clear NotifyOnce Alert

7) Exit

Option?

The options in this submenu let you manage alerts for the Application Monitor as described in the following table:

Input Field

1) Create
Alert

2) Edit Alert

3) List Alerts

4) Delete
Alert

5) Enable /
Disable Alert

Description
Lets you define a new alert. For a description of the prompts and responses, see the
Responses to Alert Prompts. The newly created alert is enabled by default.

Lets you modify an existing alert. Enter the name of the alert to edit, or enter ? for a list
of existing alerts and then enter a number or name.

Note: You mustrespond to all prompts including those that you do not want to modify;
that is, you must re-enter information for fields that you do not want to modify
as well as the revised information for the fields you are modifying. For a
description of the prompts and responses, see Responses to Alert Prompts.

Displays the definitions of all alerts in the local namespace; for example:
Alert: LockTable90 USER

Action: email

Class: %Monitor.System.LockTable

Property: UsedSpace,TotalSpace

Expression: %1/%2>.9

Notify Once: True

Enabled: Yes

Lets you delete an existing alert. Enter the name of the alert to edit, or enter ? for a list
of existing alerts and then enter a number or name.

Note: Each alert must be entered individually; that is, you cannot specify a series or
range of alerts to delete.
Enabling an alert activates it. Disabling an alert deactivates it.

Note: Itis not necessary to reconfigure alert options when you disable and then
reenable an alert.

Monitoring Guide

59

Using Application Monitor

Input Field Description

6) Clear Lets you set an internal Notified flag for a specified Alert name when the Alert is trig-
NotifyOnce gered. When set, it will not post another Alert.

Alert

The following table describes the valid responses to Alert prompts:

Table 7-1: Responses to Alert Prompts

Input Field

Alert Name?

Application?

Action
(O=default,
1=email,
2=method)?

Raise this alert
during sampling?
or

Define a trigger
for this alert?

Description

Enter an alphanumeric name. To display a numbered list of alert names already
defined in the local namespace, enter ? at the Alert Name? prompt.

Enter descriptive text to be passed to the email message or notification method. This
text can include references to the properties you specify at the Property? prompt
later in the procedure in the form %N, where %1 refers to the first property in the list
of properties, %2 the second property, and so on.

Specifies the action to take when the alert is triggered. Enter one of the following
options:

e 0 —Use the notification method identified as the default method (none, email, or
class method). See Change Default Notification Method.

¢« 1 - Send an email message containing your descriptive text and the names and
values of the properties returned to the monitor class by the sample class (as
described in Application Monitor Overview) to the configured email recipients
when an alert is triggered. For information about configuring email, see Manage
Email Options.

e 2 —Call a specified notification method with two arguments — your descriptive
text and a %L.ist object containing the properties returned to the monitor class
by the sample class (as described in Application Monitor Overview).

When prompted, enter the full class name and method, that
ispackagename.classname.method. This method must exist in the local names-
pace.

The first prompt is displayed when are creating an alert; the send prompt is displayed
when you are editing an alert for which you entered No at the first prompt when cre-
ating it. Enter one of the following:

¢ Yes — Continues prompting for required information.

¢ No — Skips to the end, bypassing Class, Property and Evaluation
expression prompts

Class? Enter the name of a system or user-defined monitor class registered in the local
namespace. To display a numbered list of registered classes in the local namespace,
including its activation state, enter ? at the Class? prompt, then enter a number or
name.

Note: You can create an alert for an inactive class. An alert is not removed when
the class it is configured for is removed.
60 Monitoring Guide

Application Monitor Metrics

Input Field

Property?

Evaluation
expression?

Notify once only?

Description

Enter the name of a property defined in the class specified in the preceding prompt
that you are using in the evaluation expression, in the descriptive text, or in both.. To
display a numbered list of properties defined in the named class, enter ? at the
Property? prompt, then enter a number or name. Each property must be entered
individually. When you are done, press Enter at an empty prompt to display the list
of properties in the order in which you specified them.

Expression used to evaluate the properties specified at the Property? prompt. For
example,in (%4 = "User") && (%2 < 100), %1 refers to the first property in the
list of properties, %2 the second property, and so on.

Enter one of the following:

e Yes — Notify users only the first time an alert is triggered.

¢ No — Notify users every time an alert is triggered.

7.3 Application Monitor Metrics

The system monitor classes included with Application Monitor call various sample classes, as shown in the following table:

Sample Classes

Audit metrics

Client metrics

Web Gateway metrics

Disk space metrics
Free space metrics

Global metrics

History database metrics (see History Monitor) %Monitor.System.Sample.HistoryPerf,

Journal metrics
License metrics
Lock table metrics
Process metrics
Routine metrics

Server metrics

System activity metrics

Application Monitor System Classes

%Monitor.System.Sample.AuditCount and
%Monitor.System.Sample.AuditEvents

%Monitor.System.Sample.Clients
%Monitor.System.Sample.CSPGateway
%Monitor.System.Sample.Diskspace
%Monitor.System.Sample.Freespace

%Monitor.System.Sample.Globals

%Monitor.System.Sample.HistorySys,
%Monitor.System.Sample.HistoryUser

%Monitor.System.Sample.Journals
%Monitor.System.Sample.License
%Monitor.System.Sample.LockTable
%Monitor.System.Sample.Processes
%Monitor.System.Sample.Routines
%Monitor.System.Sample.Servers

%Monitor.System.Sample.SystemMetrics

For a list of properties corresponding to the sample metrics in each category, see the Inter Systems Class Reference.

Monitoring Guide

61

Using Application Monitor

Similar functions that control the MONITOR facility are available through the classes in the %Monitor.System package,
which also allows you to save the data as a named collection in a persistent object format. See the %Monitor.System.Sample
package classes and the %Monitor.System.SystemMetrics class documentation in the Inter Systems Class Reference for more
details.

7.3.1 Generating Metrics

The %Monitor.SampleAgent class does the actual sampling, invoking the I nitialize() and GetSample() methods of the
metrics classes.

The % M onitor.SampleAgent.% New() constructor takes one argument: the name of the metrics class to run. It creates an
instance of that class, and invokes the Startup() method on that class. Then, each time the % Monitor.SampleAgent.Collect()
method is invoked, the Sample Agent invokes the I nitialize() method for the class, then repeatedly invokes the Get Sample()
method for the class. On each call to GetSample(), %Monitor.SampleAgent creates a sample class for the metrics class. The
pseudocode for these operations is:

set sampler = ##class(%Monitor.SampleAgent) .%New("'"MyMetrics.Freespace')

/* at this point, the sampler has created an instance of MyMetrics.Freespace,
and invoked its Startup method */

for 1=1:1:10 { do sampler.Collect() hang 10 }

/* at each iteration, sampler calls MyMetrics.Freespace. Initialize(), then loops
on GetSample(). Whenever GetSample() returns $$$0K, sampler creates a new
MyMetrics.Sample.Freespace instance, with the sample data. When GetSample()
returns an error value, no sample is created, and sampler.Collect() returns. */

7.3.2Viewing Metrics Data

All metrics classes are CSP-enabled; the CSP code is generated automatically when the sample class is generated. Therefore,
the simplest way to view metrics is using a web browser. Based on the example in Generating Metrics, the CSP URL has
the following form, which uses the <baseURL> for your instance:
http://<baseURL>/csp/user/MyMetrics.Sample.Freespace.cls. The output displayed is similar to:

Monitor - Freespace c:\InterSystems\IRIS51\

Name of dataset: c:\InterSystems\IRIS51\
Current amount of Freespace: 8.2MB
Monitor - Freespace c:\InterSystems\IRIS51\mgr\

Name of dataset: c:\InterSystems\IRIS51\mgr\
Current amount of Freespace: 6.4MB

Alternatively, you can use the Display(metric_class) method of the %Monitor.View class; for example:

%SYS>set mclass=""Monitor.Test.Freespace"
%SYS>set col=##class(%Monitor.SampleAgent) .%New(mclass)
%SYS>write col.Collect()
1
%SYS>write ##class(®Monitor.View).Display(mclass)
Monitor - Freespace c:\InterSystems\IRIS51\
Name of dataset: c:\InterSystems\IRIS51\
Current amount of Freespace: 8.2MB
Monitor - Freespace c:\InterSystems\IRI1S51\mgr\

Name of dataset: c:\InterSystems\IRIS51\mgr\
Current amount of Freespace: 6.4MB

Note: The URL for a class with % (percent sign) in the name must use %25 in its place. For example, the URL for the
%Monitor.System.Freespace class has the following form, which uses the <baseURL> for your instance:

http://<baseURL>/csp/sys/%25Monitor.System.Freespace.cls

62 Monitoring Guide

Writing User-Defined Application Monitor Classes

7.4 Writing User-Defined Application Monitor Classes

In addition to the provided system classes, you can write your monitor and sample classes to monitor user application data
and counters.

A monitor class is any class that inherits from the abstract Monitor class, %Monitor.Adaptor; the %Monitor.System classes
are examples of such classes. To create your own user-defined monitor classes:

1. Run”~%MONAPPMGR in the namespace where you want to monitor data. Use option 2 to list monitor classes, and
within that menu, use option 3 to register monitor system classes.

SAVMPLES>d ~%MONAPPMGR

1) Set Sample Interval

2) Manage Monitor Classes

3) Change Default Notification Method
4) Manage Email Options

5) Manage Alerts

6) Exit

Option? 2

1) Activate/Deactivate Monitor Class
2) List Monitor Classes

3) Register Monitor System Classes
4) Remove/Purge Monitor Class

5) Set Class Sample Interval

6) Exit

Option? 3

Exporting to XML started on 06/21/2022 12:52:36
Exporting class: Monitor.Sample

Export finished successfully.

Load started on 06/21/2022 12:52:36

Loading file C:\InterSystems\SRCCTRL\mgr\Temp\tOjFhPgLkZoYAA._stream as xml
Imported class: Monitor.Sample

Compiling class Monitor.Sample

Compiling table Monitor._Sample

Compiling routine Monitor.Sample.1l

Load finished successfully.

1) Activate/Deactivate Monitor Class
2) List Monitor Classes

3) Register Monitor System Classes
4) Remove/Purge Monitor Class

5) Set Class Sample Interval

6) Exit

Option?

2. Write a class that inherits from %Monitor.Adaptor. The inheritance provides persistence, parameters, properties, code
generation, and a projection that generates the monitor metadata from your class definition. See the %Monitor.Adaptor
class documentation for full details on this class, as well as the code you must write.

3. Compile your class. Compiling classes that inherit from %Monitor.Adaptor generates new sample classes in a subpackage
of the users class called Sample. For example, if you compile A.B.MyMetric, a new class is generated in
A.B.Sample.MyMetric. You do not need to do anything with the generated class.

Important: When deleting application monitor classes, only the monitor class should be deleted; that is, do not
delete generated sample classes. Use the Management Portal to delete only the monitor class (for
example, A.B.MyMetric) from which the sample class (for example, A.B.Sample.MyMetric) is generated,;
this automatically deletes both the monitor class and generated sample class.

Monitoring Guide 63

Using Application Monitor

All sample classes are automatically CSP-enabled, so that sample data for the user's metrics may be viewed by pointing to
A.B.Sample.MyMetric.cls. Application Monitor automatically invokes this class and generates data and alerts, if the class
has been activated; for information about activating monitor classes, see Manage Monitor Classes.

Important: The SECURI TYRESOURCE parameter is empty in %Monitor.Adaptor, and therefore in user classes inheriting

from %Monitor.Adaptor unless explicitly modified. Code generation copies the SECURI TYRESOURCE value
from the user-defined class to the generated sample class.

The following simple example retrieves the free space for each dataset in an InterSystems IRIS instance.

Each sampling requests n instances of sample data objects, each instance corresponding to a dataset. In this example, each
instance has only a single property, the free space available in that dataset when the sample was collected.

1.

Create a class that inherits from %Monitor.Adaptor:

Class Definition

Class MyMetric.Freespace Extends %Monitor._Adaptor [ProcedureBlock]

}

Add properties that you want to be part of the sample data. Their types must be classes within the %Monitor package:
o Gauge

e Integer

* Numeric

e String
For example:

Class Definition

Class MyMetric.Freespace Extends %Monitor._.Adaptor [ProcedureBlock]

{
/// Name of dataset
Property DBName As %Monitor.String(CAPTION = *"Database Name');

/// Current amount of Freespace
Property FreeSpace As %Monitor.String;

Add an INDEX parameter that tells which fields form a unique key among the instances of the samples:
Class Member
Parameter INDEX = "'DBName';

Add control properties as needed, marking them [Internal] so they do not become part of the storage definition in
the generated class.

Class Member

/// Result Set for use by the class
Property Rspec As %SQL.StatementResult [Internal];

Override the Initialize() method. I nitialize() is called at the start of each metrics gathering run.

64

Monitoring Guide

Writing User-Defined Application Monitor Classes

Class Member

/// Initialize the list of datasets and freespace.
Method Initialize() As %Status

set stmt=##class(%SQL.Statement) .%New()

set status= stmt.%PrepareClassQuery(‘'SYS.Database", ' FreeSpace')
set ..Rspec = stmt.%Execute()

return $$$0K

6. Override the GetSample() method. GetSample() is called repeatedly until a status of O is returned. You write code to
populate the metrics data for each sample instance.

Class Member

/// Get dataset metric sample.

/// A return code of $$$0K indicates there is a new sample instance.
/// A return code of O indicates there is no sample instance.

Method GetSample() As %Status

{

// Get freespace data

set stat = ._.Rspec.%Next(.sc)
// Quit if we have done all the datasets
if “stat {

Quit O

// populate this instance
set ..DBName = ..Rspec.%Get(''Directory')
set ..FreeSpace = ..Rspec.%Get("Available'™)

// quit with return value indicating the sample data is ready
return $$$0K
3

7. Compile the class. The class is shown below:

Class Definition

Class MyMetric.Freespace Extends %Monitor.Adaptor
Parameter INDEX = 'DBName';

/// Name of dataset
Property DBName As %Monitor.String;

/// Current amount of Freespace
Property FreeSpace As %Monitor.String;

/// Result Set
Property Rspec As %SQL.StatementResult [Internal];

/// Initialize the list of datasets and freespace.
Method Initialize() As %Status

{
set stmt=##class(%SQL.Statement) .%New()
set status= stmt._%PrepareClassQuery("'SYS.Database", " FreeSpace')
set ..Rspec = stmt.%Execute()
return $$$0K
3

/// Get routine metric sample.

/// A return code of $$$0K indicates there is a new sample instance.
/// Any other return code indicates there is no sample instance.
Method GetSample() As %Status

// Get freespace data

set stat = ..Rspec.%Next(.sc)
// Quit if we have done all the datasets
if "stat {

Quit O

// populate this instance
set ..DBName = ._Rspec.%Get("'Directory'™)
set ..FreeSpace = ..Rspec.%Get("'Available'™)

Monitoring Guide 65

Using Application Monitor

// quit with return value indicating the sample data is ready
return $$$0K

}

Additionally, you can override the Startup() and Shutdown() methods. These methods are called once when sampling
begins, so you can open channels or perform other one-time-only initialization:

/// Open a tcp/ip device to send warnings
Property io As %Status;

Method Startup() As %Status

set ..io="|TCP|2"

set host="127.0.0.1"

open ..i1o:(host:"serverport:"M"):200
Method Shutdown() As %Status

close ..io

Compiling the class creates a new class, MyMetric.Sample.Freespace in the MyMetric.Sample package :

Class Definition

/// Persistent sample class for MyMetric.Freespace
Class MyMetric.Sample.Freespace Extends Monitor.Sample

{

Parameter INDEX = ''DBName';

Property Application As %String [InitialExpression = "MyMetric"];
/// Name of dataset

Property DBName As %Monitor.String(CAPTION = "'");

/// Current amount of Freespace

Property FreeSpace As %Monitor.String(CAPTION = ");

Property GroupName As %String [InitialExpression = "Freespace"];

Property MetricsClass As %String [InitialExpression = "MyMetric.Freespace"];

}

Note: You should not modify this class. You may, however, inherit from it to write custom queries against your
sample data.

Important: If you do modify and recompile an active user-defined Application monitor class, the class is deactivated

and the class-specific sample interval override, if any, is removed; to restore it, you must activate it,
reset the sample interval if desired, and restart of System Monitor.

7.5 See Also

Introduction to System Monitor
Using Core System Monitor
Using Health Monitor

System Monitoring Tools

66

Monitoring Guide

See Also

« Manage Email Options (information about generating email messages from notifications in the messages log, including
those generated by System Monitor)

» Monitoring Log Files (includes information on the log files generated by this tool)

Monitoring Guide 67

Gathering Global Activity Statistics Using
NGLOSTAT

InterSystems IRIS® data platform provides the *GL OSTAT utility, which gathers global activity statistics and displays
a variety of information about disk 1/0 operations.

You can also view the statistics reported by *GL OSTAT from the Management Portal. Log in to the Portal for the system
you are monitoring and navigate to the System Usage page (System Operation > System Usage).

8.1 Running "GLOSTAT

To run the "GLOSTAT routine you must be in the %SYS namespace. The name of the routine is case-sensitive. Type the
following command and press Enter:

ObjectScript
do ~GLOSTAT

The "GLOSTAT routine displays statistics, as seen in Example A. Each time InterSystems IRIS starts, it initializes the
NGLOSTAT statistical counters; the initial output of *GL OSTAT reflects operations since InterSystems IRIS has started.

The following prompt appears beneath the report:
Continue (c), Timed Stats (# sec > 0), Quit (9)?

You may enter one of the following:

Response Action

c Displays the report again with updated cumulative statistics since the last initialization.
o} Quits the "GLOSTAT routine.

(a positive integer Initializes statistics, counts statistics for the indicated number of seconds, and reports
indicating number of | statistics as an average per second (Example B).

seconds)

Monitoring Guide 69

Gathering Global Activity Statistics Using "GLOSTAT

8.2 Overview of "GLOSTAT Statistics

Each *GL OSTAT statistic represents the number of times a type of event has occurred since InterSystems IRIS has started,
or per second during a defined interval. You may run ~GL OSTAT at any time from the system manager’s namespace. In
most cases, you should run the utility on an active system, not an idle one.

If the InterSystems IRIS instance is a stand-alone configuration or an ECP data server, then the report displays only the
“Total” column. If it is an ECP application server (that is, it connects to a remote database) then three columns are shown:
“Local,” “Remote,” and “Total” (Example C).

The following table defines the *GL OSTAT statistics.
Table 8-1: Statistics Produced by "GLOSTAT

Statistic

Global references (all)

Global update
references

Private global
references

Private update
references

Routine calls

Routine buffer loads
and saves

Routine commands

Routine not cached

Logical block requests

Block reads

Block writes

WIJ writes

Cache Efficiency

Journal Entries

Journal Block Writes

Definition

Logical count of accesses to globals, including Sets, Kills, $Data, $Order,
$Increment, $Query, and global references in expressions.

Logical count of global references that are Sets, Kills, or $Increments.

The count of all process private global accesses.

The count of process private global references that are SETs or KILLSs, etc.

Number of calls to a routine.

Total number of routine loads and saves as a result of ZLoad, ZSave, and running
routines. (In a well-tuned environment, this number increases slowly, since most
routine loads are satisfied by the routine cache memory without accessing the disk.
Each routine load or save transfers up to 32 KB of data (64 KB for Unicode).)

Number of routine commands executed since system startup.

Number of routines not cached in memory. This information help you determine
whether or not the routine buffer cache is adequately sized.

Number of database blocks read by the globals database code. (In a well-tuned
environment, many of these reads are satisfied without disk access.)

Number of physical database blocks read from disk for both global and routine
references.

Number of physical database blocks written to disk for both global and routine
references.

Number of writes to the write image journal file.

Number of all global references divided by the number of physical block reads and
writes. Not a percentage.

Number of journal records created—one for each database modification (Set , Kill,
etc.) or transaction event (TStart, TCommit) or other event that is saved to the
journal.

Number of 64-KB journal blocks written to the journal file.

70

Monitoring Guide

Examples of "GLOSTAT Output

8.3 Examples of *GLOSTAT Output

The following output samples show the various options when running the *GL OSTAT utility routine:
e Example A — Initial running on a stand-alone or server configuration.
» Example B — Subsequent running at a timed interval.

» Example C — Initial running on a client configuration.

8.3.1 Example A

The following is sample output of the initial running of the *GL OSTAT routine. The InterSystems IRIS instance is either
a stand-alone configuration or a server.

%SYS>do "~GLOSTAT

Statistics Total
Global references (all): 530,801
Global update references: 175,073
Private global references: 160,267
Private update references: 76,739
Routine calls: 650,085
Routine buffer loads & saves: 570
Routine commands: 17,747,411
Routine not cached: 710
Logical block requests: 289,166
Block reads: 2,179
Block writes: 680
WI1J writes: 903
Cache Efficiency: 186
Journal Entries: 1,356
Journal Block Writes: 6

Continue (c), Timed Stats (# sec > 0), Quit (g)?

8.3.2 Example B

The following example shows *GL OSTAT statistics per second for a 30-second timed interval. The InterSystems IRIS
instance is either a stand-alone configuration or a server.

Continue (c), Timed Stats (# sec > 0), Quit (g)? 30
Counts per Second for 30 Seconds...

Statistics (per second) Total
Global references (all): 4.
Global update references: 2
Private global references: 2
Private update references: 0.
Routine calls: 8
Routine buffer loads & saves:
Routine commands: 222.
Routine not cached:
Logical block requests: 2.
Block reads:

Block writes:

WIJ writes:

Cache Efficiency:
Journal Entries:
Journal Block Writes:

>

o

N B o
QOO0 O0OO0OO0OWONOWOWOOO

Continue (c), Timed Stats (# sec > 0), Quit (9)?

Monitoring Guide 71

Gathering Global Activity Statistics Using "GLOSTAT

8.3.3 Example C

The following is sample output of the initial running of the *GL OSTAT routine. The InterSystems IRIS instance is a client.

%SYS>do ~GLOSTAT

Statistics

Global references (all):
Global update references:
Private global references:
Private update references:
Routine calls:

Routine buffer loads & saves:

Routine commands:
Routine not cached:
Logical block requests:
Block reads:

Block writes:

WIJ writes:

Cache Efficiency:
Journal Entries:
Journal Block Writes:

Continue (c), Timed Stats (# sec > 0), Quit (9)?

83,959
2,125
217
126

53

511

3

n/a

n/a
n/a
no gets
n/a
n/a

1,644
55,275
759
1,304,213
167
83,959
2,125

217

126

511
3

72

Monitoring Guide

Monitoring System Performance Using
"PERFMON

This page describes how to monitor system performance using the *PERFMON utility.

9.1 Introduction

APERFMON is an ObjectScript utility that controls the MONITOR facility.

The MONITOR facility provides performance data for the InterSystems IRIS® data platform system by collecting counts
of events at the system level and sorting the metrics by process, routine, global, and network nodes. Since there is some
overhead involved in collecting this data, you must specifically enable the collection of counters and collect data for a
specific number of processes, globals, routines, and network nodes. InterSystems IRIS allocates memory at MONITOR
startup to create slots for the number of processes, routines, globals, and nodes specified. The first process to trigger an
event counter allocates the first slot and continues to add to that set of counters. Once the facility allocates all the available
slots to processes, it includes any subsequent process counts in the Other slot. It follows the same procedure for globals,
routines, and nodes.

You can review reports of the data while collection is in progress. When you stop collection, memory is de-allocated and
the counter slots are gone. So, any retention of the numbers needs to be handled by writing the reports to a file (or a global).
Data is given as rates per second by default, although there is also an option for gathering the raw totals. There are also
functions which allow you to pause/resume the collection, and zero the counters.

The menu items available by running *PERFM ON correspond directly to functions available in the *PERFM ON routine,
and the input collected is used to directly supply the parameters of these functions.

Similar functions that control the same MONITOR facility are available through the classes in the %Monitor.System
package. For more information see Application Monitor and Examining Routine Performance Using ~%SYS.MONLBL.

9.2 Using “"PERFMON

You can run the ~PERFM ON routine in two ways: interactively in the InterSystems Terminal, or by individual calls to
its functions. All the options of *PERFM ON are available using either method.

"PERFMON contains the following functions:

Monitoring Guide 73

Monitoring System Performance Using "PERFMON

e Start

e Stop

e Pause

* Resume

» Sample Counters

e Clear
e Report
e Collect

Each function returns a status of success (1) or failure (a negative number, followed by a comma and a brief message).

Because “"PERFMON and the line-by-line monitor routine % SY SMONL BL share the same memory allocation, you
can only run one of them at a time on an InterSystems IRIS instance. You see the following message if you try to run
"PERFMON and *% SYS.MONLBL has started monitoring:

The Line-by-line Monitor is already enabled.
This must be stopped before "PERFMON can be used.

9.2.1 Running “PERFMON Interactively

The following is an example of running the *PERFM ON routine interactively from the Terminal:

1. Enter the following command from the %SYS namespace:

do ~PERFMON

2. The following menu appears. Enter the number of your choice, or press Enter to exit the routine.

. Start Monitor

Stop Monitor

Pause Monitor

Resume Monitor

Sample Counters

Clear Counters

Report Statistics

Timed Collect and Report

O~NOOUTRAWNE

Monitor is Stopped

Enter the number of your choice:

3. Each option corresponds directly to a "PERFMON function, and will prompt you for the necessary parameters. For
example, entering 1 corresponds to Start function:

Start Monitor

Stop Monitor

Pause Monitor

Resume Monitor

Sample Counters

Clear Counters

Report Statistics
Timed Collect & Report

O~NOUITRAWNE

Monitor is Stopped

Enter the number of your choice: 1

Processes <24>:
Routine <200>:
Globals <100>:
Databases <10>:
Network nodes <5>:

74 Monitoring Guide

Start

9.3 Start

Turns on collection of the statistics.

Format:

status = $$Start”"PERFMON(process,routine,global,database,network)

Parameters:

e process — number of process slots to reserve (default = $$pcount (the number of processes in the process table))
e routine— number of routine slots to reserve (default = 200)

e global — number of global slots to reserve (default = 100)

e database — number of database slots to reserve (default = 10)

» network — number of network node slots to reserve (default = 5)

If you are running "PERFMON interactively, it prompts you for each parameter value.

Satus Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-2 Monitor is already running
-3 Memory allocation failed
-4 Could not enable statistics collection

9.4 Stop

Stops collection of statistics.

Format:

status = $$StopPERFMONQ)

Satus Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-2 Monitor is not running

Monitoring Guide 75

Monitoring System Performance Using "PERFMON

9.5 Pause

Momentarily pauses the collection of statistics to allow a consistent state for viewing data.

Format:

status = $$Pause”PERFMONQ)

Satus Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-2 Monitor is not running
-3 Monitor is already paused

9.6 Resume

Resumes collection of statistics that you previously paused.

Format:

status = $$Resume”PERFMONQ)

Status Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-2 Monitor is not running
-3 Monitor is already running

9.7 Sample Counters

Starts a job to continuously Pause and Resume a collection, creating a periodic sampling of metrics. If wait_time = 0, the
background job is stopped and collection is Paused.

Format:
status = $$Sample”PERFMON(wait_time,sample_time)
Parameters:

» wait_time— number of seconds between collections (default = 10)

* sample_time— number of seconds a collection should last (default = 1)

76 Monitoring Guide

Clear

Satus Codes:
Status code Description
1 Successful
-2 Monitor is not running
-8 Sample job already running

9.8 Clear

Clears all metric counters.

Format:

status = $$Clear PERFMONQ)

Satus Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-2 Monitor is not running

9.9 Report

The report function gathers and outputs a report of metrics.

Format:
status = $$Report”PERFMON(report,sort,format,output, [list], [data])

Parameters:

* report — type of report to output; valid values are:
— G- for global activity
— R —for routine activity
— N -for network activity

— C—for acustom report where you select the metrics to report

» sort— grouping and sort order of report; valid values are:
— P —to organize the report by Process
— R -—to organize the report by Routine
— G —to organize the report by Global

— D -to organize the report by Database

Monitoring Guide

77

Monitoring System Performance Using "PERFMON

I — to organize the report by Incoming node

0 — to organize the report by Outgoing node

» format — output format; valid values are:

P — for a printable/viewable report (.txt file, no pagination)
D — for comma delimited data (.csv file) which can be read into a spreadsheet
X — for Microsoft Excel XML markup suitable for import into Excel (.xml file)

H — for an HTML page (.html file)

» output — enter a file name, Return to accept the default file name displayed, or O (zero) for output to the screen

e list— (for Customreport only) comma-separated list of metric numbers which specify what columns to include in the
report; input ? after specifying a custom report for a list of all possible metrics and their numbers.

The global, routine, and network activity reports (indicated by the report parameter) display a predefined subset of
this list.

» data— type of data to report; valid values are:

1 - for standard rates/second

2 — for raw totals

Satus Codes:
Status code Description
1 Successful
-1 Monitor is not running
-2 Missing input parameter
-3 Invalid report category
-4 Invalid report organization
-5 Invalid report format
-6 Invalid list for custom report
-7 Invalid data format

The Report Examples section shows how to enter different values for the input parameters.

9.10 Collect

The timed collect and report function provides a fast automated snapshot of system performance by collecting metrics for
a specified period (30 seconds by default), creating five basic reports and a process count, and formatting them together as
either an Excel spreadsheet or an HTML page.

Format:

status

= $$Col lectPERFMON(time,format,output)

78

Monitoring Guide

Report Examples

Parameters:

» time— number of seconds for data collection (default 30)

» format — output format; valid values are:
— XML - for Microsoft Excel XML markup suitable for import into Excel (.xml file)
— HTML - for an HTML page (.htm file)
- CSv

e output — enter a file name, Return to accept the default file name displayed, or O (zero) for output to the screen

Satus Codes:
Status code Description
1 Successful
-1 Somebody else is using Monitor
-3 Monitor is already running

9.11 Report Examples

The following is an example of running a report of global statistics, gathered and sorted by global name and output to a
file in the manager’s directory called perfmon.txt.

%SYS>Do ~PERFMON

Start Monitor

Stop Monitor

Pause Monitor

Resume Monitor

Sample Counters

Clear Counters

Report Statistics
Timed Collect & Report

O~NOOUTAWNE

Enter the number of your choice: 7

Category may be: G=Global, R=Routine, N=Network or C=Custom

Category ("G", "R", "N" or "C"): g

Sort may be: P=Process, R=Routine, G=Global, D=Database, I=Incoming or O=Outgoing node
Sort ("P", "R", "G", "D", "I" or "0"): g

Format may be: P=Print, D=Delimited data, X=Excel XML, H=HTML

Format (*P", "D, "X", "H™): p

File name: perfmon.txt

Press RETURN to continue ...

Monitoring Guide 79

Monitoring System Performance Using "PERFMON

The following is an example of running a custom report of statistics that correspond to metrics with the following numbers:
5,10,15,20,25,30,35,40,45,50. The counts are gathered and sorted by process ID and output to a file in the manager’s
directory called perfmonC.txt.

Start Monitor

Stop Monitor

Pause Monitor

Resume Monitor

Sample Counters

Clear Counters

Report Statistics
Timed Collect & Report

O~NOOUTAWNE

Enter the number of your choice: 7

Category may be: G=Global, R=Routine, N=Network or C=Custom

Category ("G", "R", "N" or "C"): c

List of field numbers: 5,10,15,20,25,30,35,40,45,50

Sort may be: P=Process, R=Routine, G=Global, D=Database, I=Incoming or O=Outgoing node
Sort ("P", "R", "G", "D, "I" or "0"): p

Format may be: P=Print, D=Delimited data, X=Excel XML, H=HTML

Format ("P", "D", "X", "H"): p

File name: perfmonC.txt

0.12 See Also

* 9%Monitor.System package
» Application Monitor
e Examining Routine Performance Using ~%SYS.MONLBL

80 Monitoring Guide

10

Monitoring Routine Performance Using
"PROFILE

The "PROFILE utility helps programmers analyze the performance of their application routines and classes. It accomplishes
this task in two phases:

1. It gathers data, sorted at the routine level, to help you identify which routines do the most “work.”

2. It lets you select routines for which you want to gather and display data (subroutines, procedures, and individual lines)
at line-level detail so that you can “drill down” into the individual routines that may be causing performance issues.

By default, "PROFI L E captures metrics for up to 5000 routines; if there is not enough shared memory available for the
maximum number of routines, the utility displays a message about the number of pages of memory required to monitor
this collection and the number of pages available. Then, the utility captures metrics for as many routines as possible.

10.1 Using “PROFILE

Invoke the (" PROFILE) utility from the %SYS namespace:
%SYS>do ~PROFILE
When you are prompted to start the collection of data, press Enter.

Note: When you are prompted for a response (other than Yes or No) you can enter ? to display online help.

By default, the profile displays a numbered list of routines with the following metrics; initially, the list is sorted by the
RtnLine metrics:

Column Title (Metric) = Description
RtnLine Number of routine lines of code executed. By default, it lists the value as a percent-
age of all lines of code executed.

Time Elapsed time used to execute the routine. By default, the time is listed as a percent-
age of the total time used by all routines.

CPU CPU time used to execute the routine. By default, the entry is listed as a percentage
of the total CPU time used by all routines.

Monitoring Guide 81

Monitoring Routine Performance Using “"PROFILE

Column Title (Metric) = Description
RtnLoad Number of times the routine is loaded. By default, the entry is listed as a percentage
of all routine loads.

GloRef Number of global references by the routine. By default, the entry is listed as a per-
centage of global references by all routines.

GloSet Number of global sets by the routine. By default, the entry is listed as a percentage
of global sets by all routines.

The name of the routine (INT or MVI file) and the namespace where it is executing is displayed on the second line of the
entry.

Follow the instructions that are displayed in the Terminal:

» When the list of routines is displayed at the profile level, you can specify any of the following:

Option Description

Flag the specified line(s) for detailed profile-level data collection.

Note: On each displayed page, you can enter single line numbers (#), a
comma-separated list (#,#,#), a range (#-#), or a combination
(#-#,4 71 H).

After you select the routines on any page, you can move to the next or previous
page to select other routines. After you select all the routines you want to
analyze, enter Q to start the detail level profile collection.

B Display the previous page of the list.

E Export the displayed collection of metrics.

N Display the next page of the list.

0] Re-sort the page based on different metrics (the selected metric is displayed

in the first column).

Q Exit from the “PROFILE utility.

Note: If you flagged routines that you want to analyze, this option lets you
choose between collecting subroutine- and line-level metrics or exit-

ing.
R Refresh the list with the most recent metrics.
X Clear all flags of selected routines (including those selected on other pages)

and refresh the collection of metrics.

* When the list of routines is displayed at the detailed profiling level, you can specify any of the following:

82 Monitoring Guide

Using "PROFILE

Option

Q

R

Description

The line number of the routine you want to analyze in more detail. After you
press Enter, the subroutine labels in the selected routine are displayed.

Display the previous page of the list.
Display the next page of the list.

Re-sort the page based on different metrics (the selected metric is displayed
in the first column).

Exit from the “"PROFILE utility.

Refresh the list with the most recent metrics.

e When the list of subroutine labels (and metrics for each label) are displayed, you can specify any of the following:

Option
#

Description

The line number of the subroutine label (in the code) you want to analyze in
more detail. After you press Enter, the code for the specified label is displayed.

Display the previous page of the list.

Switch to the line level display of the subroutine.
Display the next page of the list.

Exit the list, return to the previous level.

Refresh the list with the most recent metrics.

Note: If *Unknown™ is displayed in the listing, enter R.

* When lines of code are displayed, you are prompted to specify what you want to do next. Your options are:

Option
#

Description

The line number in the code you want to analyze in more detail. After you
press Enter, the code for the specified label is displayed.

Display the previous page of the list.

Switch code display between source code and intermediate (INT/MVI) code.
Change the page margin and length.

Display the next page of the list.

Re-sort the page based on different metrics.

Exit the list, returning to the previous level.

Monitoring Guide

83

Monitoring Routine Performance Using “"PROFILE

Option Description
R Refresh the list with the most recent metrics.
S Switch to the subroutine level display of the routine.

10.2 "PROFILE Example

Following is an example of running the ~PROFILE utility interactively (from the %SYS namespace) in the Terminal:

1. Enter the following command:
do ~PROFILE

2. The following message appears.

WARNING: This routine will start a system-wide collection of
data on routine activity and then display the results. There
may be some overhead associated with the initial collection,
and it could significantly affect a busy system.

The second phase of collecting line level detail activity
has high overhead and should ONLY BE RUN ON A TEST SYSTEM!

Are you ready to start the collection? Yes =>

3. Press Enter to start collecting metrics. Metrics similar to the following are displayed:

Waiting for initial data collection ...

RtnLine Time CPU RtnLoad

1. 41._48% 12.19% 0.00% 28.97%
%Library.ResultSet.1.INT (IRISLIB)

2. 35.09% 56.16% 65.22% 9.35%
SYS.Database.l1.INT (IRISSYS)

3. 10.75% 6.62% 0.00% 43.30%
Config.Databases.1.INT (IRISSYS)

4. 7.13% 3.22% 0.00% 6.23%
%Library.Persistent.1_INT (IRISLIB)

5. 1.26% 0.71% 0.00% 4.36%
PROFILE. INT (IRISSYS)

6. 1.20% 0.00% 0.00% 0.00%
%SYS .WorkQueueMgr . INT (IRISSYS)

7. 0.76% 15.08% 34.78% 0.00%
%SYS.API_.INT (IRISSYS)

8. 0.64% 1.05% 0.00% 0.00%
%Library.JournalState.1.INT (IRISLIB)

9. 0.61% 0.31% 0.00% 3.74%
%Library.IResultSet.1.INT (IRISLIB)

10. 0.28% 0.93% 0.00% 0.00%
%Library.Device.1.INT (IRISLIB)

11. 0.24% 0.71% 0.00% 0.62%

Config.CPF.1_INT (IRISSYS)

Select routine(s) or "?° for more options N =>

GloRef
10.65%

36.77%
22.68%
0.00%
4.12%
5.15%
0.00%
17.18%
0.00%
1.72%
0.00%

GloSet
0.00%

42 .55%
46.81%
0.00%
4.26%
6.38%

-00%

-00%

0
0
0.00%
0.00%
0

-00%

4. Enter the number(s) associated with the routines you want to analyze in more detail. For example, enter 2-3,5,7,10,
then enter N or B to display other pages so that you can select additional routines.

84

Monitoring Guide

APROFILE Example

5. After you select all the routines you want to analyze, enter Q to display a message similar to the following:

There are 2 routines selected for detailed profiling. You may now
end the routine level collection and start a detailed profiler collection.

WARNING 1!

This will have each process on the system gather subroutine level and line
level activity on these routines. Note that this part of the collection may
have a significant effect on performance and should only be run in a test
or development instance.

Are you ready to start the detailed collection? Yes =>
6. After you press Enter, a page similar to the following is displayed:

Stopping the routine level Profile collection ...
Loading ™Library.Persistent.1l in ™c:\intersystems\iris\mgr\irislib\

Detail level Profile collection started.

RtnLine Routine Name (Database)
1. 96.72% %Library.Persistent.1.INT (IRISLIB)
2. 3.28% Config.CPF_1.INT (IRISSYS)

Select routine to see details or "?° for more options R =>

7. After you select the routine whose code you want to analyze, the routine displays a page with information about the
code.

Monitoring Guide 85

11

Examining Routine Performance Using
NHSYS.MONLBL

The routine *% SY S.MONLBL provides a user interface to the InterSystems IRIS® data platform M ONITOR facility.
This utility provides a way to diagnose where time is spent executing selected code in routines, helping to identify lines of
code that are particularly resource intensive. It is an extension of the existing MONITOR utility accessed through
APERFM ON and the %Monitor.System package classes. Because these utilities share the same memory allocation, you
can only run one of them at a time on an InterSystems IRIS instance.

11.1 Invoking the Line-by-line Monitoring Routine

If the monitor is not running when you invoke ~% SY S.M ONL BL, the routine displays a warning message and gives you
the option to start the monitor or to check memory requirements. For example:

%SYS>Do ~%SYS.MONLBL

WARNING ! Starting the line-by-line monitor will enable the
collection of statistics for *every* line of code executed by
the selected routines and processes. This can have a significant
impact on the performance of a system, and it is recommended
that you do this on a "test® system.

The line-by-line monitor also allocates shared memory to track

these statistics for each line of each routine selected. This is

taken from the general shared memory already allocated and

should be considered if you are using "*" wildcards and trying to

analyze a large number of routines. ITf the monitor fails to start due

to a problem with memory allocation, you may need to increase the

Generic Memory Heap (gmheap) parameter in the system configuration. You may use
the “Memory Requirements® option to see how much memory a collection

would need (without starting the collection).

1.) Start Monitor
2.) Memory Requirements

Enter the number of your choice:
» Enter 1 to begin the dialog to provide the appropriate information to start monitoring.

e Enter 2 to calculate an estimate of how much memory a collection needs before actually starting the monitor. See
Estimate Memory Requirements for details.

» Press the Enter key to exit the routine.

Monitoring Guide 87

Examining Routine Performance Using "%SYS.MONLBL

11.1.1 Start Monitoring

You can select which routines and processes to monitor and which metrics to collect. These characteristics of the collection
remain until you stop the monitor. You provide monitoring collection information to the routine in the following order:

1. Routine Names - Enter a list of routine names to monitor. You can only select routines accessible from your current
namespace. Do not use the leading ~ when entering the routine name; the names are case-sensitive. You may use
asterisk (*) wild cards to select multiple routines. Press Enter twice after entering the last routine name to end the list.

2. Select Metrics to monitor — Enter the number of your choice of what type of metrics. The default is 1 for
minimal metrics.

Select Metrics to monitor
1) Monitor Minimal Metrics
2) Monitor Lines (Coverage)
3) Monitor Global Metrics
4) Monitor All Metrics
5) Customize Monitor Metrics

Enter the number of your choice: <1>

A description of what metrics are included for each option follows:

* Minimal metrics — Monitors the metrics described in the following table.

Metric Description

Metric#: 34 - RtnLine Number of times a routine line is executed

Metric#: 51 - Time Clock time spent in executing that line

Metric#: 52 - TotalTime Total clock time for that line including time spent in subroutines

called by that line

The time metrics are clock time and are measured in seconds.

Note: Total Time for Recursive Code
When a routine contains recursive code, the Total Time counter for the line which calls back into the
same subroutine only records the time of the outermost call, which should be, in most cases, the actual
time to run the recursive loop. Prior InterSystems IRIS releases accumulated the time for multiple iterations
of the same code reporting times that may have seemed too large.

» Lines— Monitors the number of times a routine line is executed (Metric#: 34 - RtnLine).
e Global metrics— Monitors several global metrics (Metric# 1-26,34-36,51,52).

e All metrics— Monitors all available metrics.

88 Monitoring Guide

Invoking the Line-by-line Monitoring Routine

* Customize metrics — Allows you to create a customized list of metrics to monitor. You can select any of the
standard performance metrics supported by the %Monitor.System package classes. Enter a question mark (?) when
prompted for the metric item number to see a list of available metrics. For example:

Enter the number of your choice: <1> 5
Enter metrics item number (press "Enter” to terminate, ? for list)
Metric#: ?

1.) GloRef: global refs
2.) GloSet: global sets

é4.) RtnLine: lines of ObjectScript

51.) Time: elapsed time on wall clock
52.) TotalTime: total time used (including sub-routines)
Metric#:

This example does not show the full list; it is best for you to retrieve the current list when you run the routine. See
Line-by-line Monitor Programming Interface for a method of retrieving the list.

Note: For all collections, the number of routine lines and time (minimal metrics) are always collected.

3. Select Processes to monitor — Enter the number of your choice as it appears in the menu. The default is 1
for all processes.

Select Processes to monitor
1.) Monitor All Processes
2.) Monitor Current Process Only
3.) Enter list of PIDs

Enter the number of your choice: <1>

06 SYS.MONLBL does not currently provide a list or a way to select PIDs; however, you can use the % SS utility
or the Processes page of the Management Portal (System Operation > Processes) to find specific process ID numbers.

Enter the number of your choice: <1> 3
Enter PID (press "Enter® to terminate)
PID: 1640

PID: 2452
PID:

Press Enter twice after entering the last process ID to end the list.

Once you provide the necessary information, % SY S.M ONL BL allocates a special section of shared memory for counters
for each line per routine, and notifies the selected processes that monitoring is activated.

Note: Since shared counters may be updated simultaneously by multiple processes and/or running processes may not
start counting at exactly the same moment, there may be a slight loss of precision in the counters, resulting in
counts being lower than expected.

Monitor started.

Press RETURN to continue ...

Monitoring Guide 89

Examining Routine Performance Using "%SYS.MONLBL

After starting the line-by-line monitor, the routine displays a more extensive menu. Line-by-line Monitoring Options
describes each option on this extended menu.

11.1.2 Estimate Memory Requirements

Before starting the monitoring process you can use this utility to estimate how much memory a collection requires. Typically,
there is sufficient shared memory available for monitoring a few routines. However, if you want to monitor hundreds or
more routines, use this option to help determine memory needs.

The routine and metrics prompts are identical to those for the Start Monitor choice. After you select the routines to
monitor and the metrics to gather, the utility displays the number of pages of memory required to monitor this collection
and the number of pages available. It also tells you to increase the size of the generic memory heap parameter if nec-
essary.

You can maintain the gmheap (generic memory heap) setting from the Advanced Memory Settings page of the Management
Portal (System Administration > Configuration > Additional Settings > Advanced Memory).

The following is an example that estimates the memory requirements for monitoring eight selected metrics for all routines
that begin with JRN:

Enter the number of your choice: 2

Enter routine names to be monitored on a line by line basis.
Patterns using "*" are allowed.

Enter "?L" to see a list of routines already selected.

Press "Enter® to terminate input.

Routine Name: JRN* (22 routines added to selection.)
Routine Name:

Select Metrics to monitor
1) Monitor Minimal Metrics
2) Monitor Lines (Coverage)
3) Monitor Global Metrics
4) Monitor All Metrics
5) Customize Monitor Metrics

Enter the number of your choice: <1> 5
Enter metrics item number (press "Enter® to terminate, ? for list)

Metric#: 1 - GloRef
Metric#: 2 - GloSet
Metric#: 3 - GloKill
Metric#: 25 - JrnEntry
Metric#: 34 - RtnLine
Metric#: 35 - RtnLoad
Metric#: 51 - Time
Metric#: 52 - TotalTime
Metric#:

9 page(s) of memory required.
82 page(s) of memory available.

The GenericHeapSize parameter can be increased if more memory is needed.
Pages are each 64kb of memory.

Press RETURN to continue ...

You may adjust your memory if that is required for your selected collection and then choose to start monitoring from the
original menu.

920 Monitoring Guide

Line-by-line Monitoring Options

11.2 Line-by-line Monitoring Options

If you invoke ~% SY S.MONL BL while the monitor is running you have the following menu options:

Line-by-Line Monitor

1.) Stop Monitor

2_) Pause Monitor / Resume Monitor
3.) Clear Counters

4_) Report - Detail

5.) Report - Summary

6.) Report - Delimited (CSV) Output
7.) Report - Procedure Level

Enter the number of your choice:

The first three options are fairly self-explanatory:

 Stop Monitor — Stops all % SY S.MONL BL monitoring; deallocates the counter memory and deletes collected
data.

e Pause Monitor — Pauses the collection and maintains any collected data. This may be useful when viewing collected
data to ensure that counts are not changing as the report is displayed. This option only appears if the monitor is running.

Resume Monitor — Resumes collection after a pause. This option only appears if you paused the monitor.

» Clear Counters — Clears any collected data, but continues monitoring and collecting new data.

The following subsections explain the four report options.

11.2.1 Report Line-by-line Statistics

When you choose to report the statistics of the metrics that have been collecting (options 4-7), you then provide information
about how you want the routine to report the statistics.

You have four types of reports to choose from:

* Detail — Generates a report of the selected metrics for each line in the selected routines. The report accumulates
and displays totals for each of the performance columns.

e Summary — Generates a report of summary information for each selected routine including coverage and time. The
report orders the routines by coverage percentage.

 Delimited (CSV) Output— Generates the same report information as the detail report, but presents it as comma-
delimited output facilitating its import into a spreadsheet.

* Procedure Level — Generates a report of selected metrics at a subroutine level within the selected routines.
InterSystems IRIS allows you to profile usage at the level of individual subroutines, procedures, and functions. You
can quickly see which subroutines are taking up the most time to run to analyze and improve performance.

Depending on which type of report you choose, you select how you want to display the information:

1. Ifyou choose the detail or summary report, you can also choose if you want to include a coverage analysis for the lines
executed in each routine you select. For example:

Enter the number of your choice: 4
Include Coverage Analysis summary (Y/N)? y

Monitoring Guide 91

Examining Routine Performance Using "%SYS.MONLBL

Next, for all but the summary report, select one or more routines from the list of monitored routines that have statistics
available; enter an asterisk (*) for all available routines. For example:

The following routines have been executed during the run,
and have detail statistics available for them.

1) JRNDUMP

2) JRNOPTS

3) JRNSTART

4) JRNSWTCH

5) JRNUTIL

6) JRNUTIL2

Enter list of routines, or * for all
Routine number (*=Al11)? * - All
If you are entering routine names, after entering the last routine, press Enter again to end the list. For example:

Enter list of routines, or * for all
Routine number (*=All1)? 1 - JRNDUMP
Routine number (*=Al1l1)? 2 - JRNOPTS
Routine number (*=Al1l1)? 5 - JRNUTIL
Routine number (*=All)?

FileName:

You can enter a file name or a full directory path for the output. You can instead enter nothing and press Enter to display
the report on your terminal.

If you enter a file name but not a path, % SYS.MONLBL creates the file in the directory of the current namespace’s
default database for globals. For example, if running % SY SMONLBL in the USER namespace:

FileName: monlbl_JRN_dtl._txt

Creates a file for the report in install-dir\mgr\user named monlbl_JRN_dtl.txt.

Press Enter to initiate the reporting of the metrics you are collecting in the format you have chosen.

11.3 Sample Line-by-line Detail Report

The following is an example of reporting the detail of the minimal metrics of selected journal utilities including the coverage
analysis. The report is sent to the monlbl_JRN_dtl.txt file, a portion of which is displayed.

ine-by-Line Monitor

Stop Monitor

Pause Monitor

Clear Counters

Report - Detail

Report - Summary

Report - Delimited (CSV) Output
Report - Procedure Level

Enter the number of your choice: 4
Include Coverage Analysis summary (Y/N)? y

The following routines have been executed during the run,
and have detail statistics available for them.

1) JRNDUMP

2) JRNOPTS

3) JRNSTART

4) JRNSWTCH

5) JRNUTIL

6) JRNUTIL2

Enter list of routines, or * for all
Routine number (*=All1)? 1 - JRNDUMP
Routine number (*=Al1l1)? 2 - JRNOPTS
Routine number (*=Al1l1)? 5 - JRNUTIL
Routine number (*=All)?

FileName: monlbl_JRN_dtl.txt

92

Monitoring Guide

Sample Line-by-line Summary Report

Press RETURN to continue ...

For each line of the selected routine(s), the report displays a line number, the counts for each metric, and the text of that
line of code (if source code is available). If you requested coverage analysis, it displays after each selected routine.

Routine ~JRNDUMP ...

Line RtnLine Time TotalTime

1 0O O 0 JRNDUMP ;dump the contents...

2 0O O 0 /*

85 0O O 0 n (I,usecluster)

86 3 0.000016 0.000016 i +$g(usecluster) d showlistclu(.l) g
87 3 0.000008 0.000008 s diroff=((3+12+1)+10+1)

88 3 0.000072 0.000072 s i="" f s i=$o(1(i)) qg:i="" d

89 11 0.001542 0.001542 . w /cup(i+3,1),?3,$S($FIC(I)," ;") -
90 11 0.028125 0.028220 . w ?(3+12+1),I1(i,"info"),?diroff.._.
91 11 0.000378 0.000895 . w $$GIrnPrefix(1(i))

92 3 0.000027 0.000027 q

93 0O ©O 0 listjrn(f,list,n) ;list at most...
Total 582 17.258963

Total Lines = 579
Total Lines Hit = 100
Coverage Percentage = 17.27%

This is a partial display of one selected routine.

11.4 Sample Line-by-line Summary Report

The following is an example of reporting a summary of the minimal metrics of selected journal utilities including the cov-
erage analysis. The report is sent to the monlbl_JRN_summ.txt file, a portion of which is displayed.

e-by-Line Monitor

Lin

1.) Stop Monitor

2.) Pause Monitor

3.) Clear Counters

4.) Report - Detail

5.) Report - Summary

6.) Report - Delimited (CSV) Output
7.) Report - Procedure Level

Enter the number of your choice: 5

Include Coverage Analysis summary (Y/N)? Y
FileName: monlbl_JRN_summ.txt

Press RETURN to continue ...

The report shows each selected routine with a summary of lines, coverage, and time. The routines with the highest coverage
percentage appear first in the list.

Routine Lines LinesHit Percent RtnLine Time
JRNOPTS 109 60 55.05% 155 14.172230
JRNSWTCH 249 58 23.29% 69 0.926131
JRNDUMP 579 100 17.27% 582 17.265002
JRNSTART 393 23 5.85% 23 0.005541
JRNUTIL 872 39 4_47% 39 0.116995
JRNUTIL2 276 8 2.90% 56 0.006056
JRNCHECK 18 0 0.00%

Monitoring Guide 93

Examining Routine Performance Using "%SYS.MONLBL

JRNCLFOR
JRNCLUREST
JRNCLUREST2
JRNINFO
JRNMARK
JRNRESTB
JRNRESTC
JRNRESTC2
JRNRESTCHELP
JRNRESTD
JRNRESTO
JRNROLL
JRNSTAT
JRNSTOP
JRNWUTL

TOTAL 22 rtns

This is the complete sample report.

416
193
229
263
195

1315
1245

540
122
445
859
827

62
119
235

9561

OO0O0000O0O0O0O0O0O00O00O

288

W 0000000000000 0O0O

-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%
-00%

.01%

924 31.591955

11.5 Sample Line-by-line Delimited Output Report

This example reports the delimited detail of the minimal metrics of selected journal utilities. The report is sent to the
monlbl_JRN_csv.txt file, a portion of which is displayed:

ine-by-Line Monitor

L

1.) Stop Monitor

2.) Pause Monitor
3.) Clear Counters
4_) Report - Detail
5 g Report - Summary
6

Report - Delimited (CSV) Output

7:) Report - Procedure Level

Enter the number of your choice: 6

The following routines have been executed during the run,
and have detail statistics available for them.

1) JRNDUMP
2) JRNOPTS
3) JRNSTART
4) JRNSWTCH
5) JRNUTIL
6) JRNUTIL2

Enter list of routines, or * for all

Routine number (*=Al11)? * - All
FileName: monlbl_JRN_csv.txt

Press RETURN to continue ...

94

Monitoring Guide

Sample Line-by-line Procedure Level Report

For each line of the selected routine(s), the report displays the row, routine name, line number, the counts for each metric,
and the text of that line of code (if source code is available) all delimited by a comma. The source code line is contained
within quotes.

Row,Routine,Line,RtnLine,Time,TotalTime,Code
1,JRNDUMP,1,0,0,0,"JRNDUMP ;dump the contents of a journal file ;
,2,0,0,0," /*"

85 JRNDUMP, 85,0
86,JRNDUMP, 86,3
87,JRNDUMP,87 3

," ' n (I,usecluster)"”

00016,0.000016," i

00008,0.000008," s
s

,0,0,"
,0.0 +$g(usecluster) d showlistclu(.1) g
0.0 diroff=((3+12+1)+10+1)"

,0 (0] ="
w

88, JRNDUMP . 88.3.0.000072,0.000072," " s i=so(l(i)) g:i=""
89, JRNDUMP,89.,11,0.001542,0.001542," . w /cup(i+3,1),?23 $S($F((i) Sl "") $E(I(),
90, JRNDUMP,90,11,0.028125,0.028220," . w ?(3+12+1),1(i, " info""),2di

91,JRNDUMP,91,11,0.000378,0.000895," . w $$GJrnPrefiX(I(i))"
92,JRNDUMP,92,3,0.000027,0.000027," "
93,JRNDUMP,93,0,0,0,"listjrn(f,list,n) ;list at most n journal files...

This is a partial display of one selected routine.

11.6 Sample Line-by-line Procedure Level Report

The following is an example of reporting the detail of the minimal metrics of selected journal utilities by subroutine function.
The report is sent to the monlbl_JRN_proc.txt file, a portion of which is displayed.

L

1.) Stop Monitor

2.) Pause Monitor

3.) Clear Counters

4.) Report - Detail

5.) Report - Summary

6.) Report - Delimited (CSV) Output
7.) Report - Procedure Level

Enter the number of your choice: 7

The following routines have been executed during the run,
and have detail statistics available for them.

1) JRNDUMP

2) JRNOPTS

3) JRNSTART

4) JRNSWTCH

5) JRNUTIL

6) JRNUTIL2

Enter list of routines, or * for all

Routine number (*=All1)? * - All
FileName: monlbl_JRN_proc.txt

Press RETURN to continue ...

Monitoring Guide 95

Examining Routine Performance Using "%SYS.MONLBL

For each subroutine of the selected routine(s), the report displays a tag number, the counts for each metric, and the subroutine
label (if source code is available).

Routine ~JRNDUMP ...

Tag RtnLine Time TotalTime

1 6 0.000154 0.000154 JRNDUMP

2 0 0 0 INT

3 0O O 0 getkeyl

4 0 0 0 progress

5 6 0.000050 0.000050 listhdr

6 21 0.000240 0.000322 showlist

7 20 0.136909 0.330301 listjrn

8 7 0.188435 0.188435 getjrninfo
9 0O O 0 guijrn

This is a portion of the report for one selected routine.

11.7 Metrics Shown in These Reports

These reports show the following metrics:

e GloRef — global references

e GloSet — global sets

e GloKill —global kills

e DirBIkRd — directory block reads

» UpntBIkRd — upper pointer block reads

* BpntBIkRd — bottom pointer block reads

+ DataBlkRd — data block reads

» BdataBIkRd — big data block reads

* MapBIkRd — map block reads

* OthBIkRd — other block reads

e DirBlkwt — directory block writes

* UpntBIkWt — upper pointer block writes

e BpntBIkWt — bottom pointer block write

* DataBIlkWt — data block writes

» BdataBIlkWt — big data block writes

* MapBIkWt — map block writes

* OthBIkWt — other block writes

» DirBIkBuf — directory block requests satisfied from a global

e UpntBIkBuf — upper pointer block requests satisfied from a global buffer
* BpntBIkBuf — bottom pointer block requests satisfied from a global buffer
» DataBIlkBuf — data block requests satisfied from a global buffer

96 Monitoring Guide

Metrics Shown in These Reports

» BdataBIlkBuf — big data block requests satisfied from a global buffer
» MapBIlkBuf — map block requests satisfied from a global buffer
» OthBIkBuf — other block requests satisfied from a global buffer
e JrnEntry — journal entries

* BIkAlloc — blocks allocated

e NetGloRef — network global refs

* NetGloSet — network sets

* NetGloKill — network kills

* NetReqgSent — network requests sent

* NCacheHit — network cache hits

* NCacheMiss — network cache misses

* NetLock — network locks

* RtnLine — lines of ObjectScript

* RtnLoad — routine loads

* RtnFetch — routine fetches

* LockCom — lock commands

* LockSucc — successful lock commands

* LockFail — failed lock commands

* TermRead — terminal reads

* TermWrite — terminal writes

* TermChRd — terminal read chars

* TermChWrt — terminal write chars

» SeqgRead — sequential reads

e SeqWrt — sequential writes

e 1JCMsgRd — local interjob communication (1JC) messages read
* 1JCMsgWt — local 1JC messages written

* 1JCNetMsg — network 1JC messages written

* Retransmit — network retransmits

* BuffSent — network buffers sent

e Time — elapsed time (sum of each time it is hit)

 TotalTime — total time used (including subroutines)

Monitoring Guide 97

Examining Routine Performance Using "%SYS.MONLBL

11.8 Line-by-line Monitor Programming Interface

Programmers can also interface with the InterSystems IRIS MONITOR facility through the %Monitor.System.LineByLine
class. Methods are provided for each menu option in % SY S.M ONLBL . For example, start monitoring by calling:

Set status=##class(%Monitor.System.LineByLine).Start(Routine,Metric,Process)

You can select which routines and processes to monitor. You may also select any of the other standard performance metrics
supported by the %Monitor.System classes. Use the M onitor.System.LineByL ine.GetMetrics() method to retrieve a list
of metric names:

Set metrics=##class(%Monitor.System.LineByLine).GetMetrics(3)

Selecting 3 as the parameter prints a list of all available metrics with a short description for each to the current device.
Stop monitoring by calling:

Do ##class(%Monitor.System.LineByLine).Stop()

You can retrieve the collected counts using the % M onitor.System.LineByL ine:Result query, where the counters for each
line are returned in $LIST format.

See %Monitor.System.LineByLine for more details.

98 Monitoring Guide

12

Tracing Process Performance with
"TRACE

The "TRACE utility offers functionality to trace the execution of InterSystems IRIS processes. Traced processes write
events to a trace file with information about the routine line, where it occurred and, if applicable, the global reference.

12.1 Using “TRACE

Note: The trace files may contain sensitive information such as global references or parameters passed to subroutines.
They will not contain the values of any globals.

The events available for tracing correspond to the metrics reported in performance monitoring tools (for example "PERFMON
or %SYS.MONLBL). Raw data is written to a trace file, iristrace_pid.txt, in a specified directory.

Note: The trace directory must be writable by the processes being traced.

Different sets of trace events can be selected to produce traces for different purposes. Highly detailed application execution
tracing can be achieved; this can include tracing all global references (GloRef), all application subroutine calls (RtnLoad),
or every line of application code executed (RtnLines). Alternatively, tracing can be limited to less common events such as
physical block reads (DataBIkRd, UpntBIkRd, etc), network cache misses (NCacheMiss), or block collisions (Blkwait), in
order to find all the locations in the application where these occurrences may be affecting performance.

Note: The ability to configure the trace, start tracing a process, or use the " TRACE utility requires
%Adm n_Manage: USE.

Monitoring Guide 99

13

Monitoring Performance Using
ASystemPerformance

This page describes the ~ SystemPer for mance utility, (previously named ~pButtons), a tool for collecting detailed perfor-
mance data about an InterSystems IRIS® data platform instance and the platform on which it is running. You can send the
resulting report to the InterSystems Worldwide Response Center (WRC) to help diagnose system problems.

A SystemPer for mance is similar to Diagnostic Reports (see Using the Diagnostic Report), but focuses on performance
data.

Note: This utility may be updated between releases. The latest version is available on the WRC distribution site under
Tools.

You can run the profiles in the Terminal or schedule runs in the Management Portal with Task Manager. In addition, you
can add, modify, and delete profiles using the API that is included with the utility.

Important: Before using * SystemPer for mance in any unattended way, use it interactively to be sure that you have
the appropriate privileges at the operating-system level. In particular, some environments require a UAC
login to get elevated privileges. In such a case, the utility will fail to capture data and will instead writes
the error

Error: Access is denied. You®re running with a restricted token, try running elevated.

If this occurs, you can open a Windows CMD as administrator, start an ObjectScript shell from there, and
then use * SystemPer for mance.

If you share the generated report with InterSystems, note that it includes private application information. InterSystems
keeps all data strictly confidential.

13.1 Basics

The ~ SystemPer for mance utility lets you select one or more profiles to run. (The profiles available vary depending on
the product version and any customization that has been performed.) Based on the selected profile(s), it generates a set of
log files, which are placed in the output directory. By default, the output directory is the install-dir\mgr directory of the
InterSystems IRIS instance, but you can change the output directory.

By default, * SystemPer for mance provides the following profiles:

* 12hours — 12-hour run sampling every 10 seconds

Monitoring Guide 101

https://www.intersystems.com/support-learning/support/
https://wrc.intersystems.com/wrc/coDistTools.csp

Monitoring Performance Using *SystemPerformance

* 24hours — 24-hour run sampling every 10 seconds
* 30mins — 30-minute run sampling every 1 second
* 4hours — 4-hour run sampling every 5 seconds

» 8hours — 8-hour run sampling every 10 seconds

* test— 5-minute TEST run sampling every 30 seconds

To run the ” SystemPer for mance utility:

1. Enter the following command, which is case-sensitive and must be run in the %SYS namespace, in the Terminal:
%SYS>do ~SystemPerformance

2. From the main menu that is displayed, enter the number of the profile you want to run, or press Enter to exit the utility:

Current log directory: c:\intersystems\iris\mgr\
Windows Perfmon data will be left in raw format.
Available profiles:

1 12hours - 12-hour run sampling every 10 seconds

2 24hours - 24-hour run sampling every 10 seconds

3 30mins - 30-minute run sampling every 1 second

4 4hours - 4-hour run sampling every 5 seconds

5 8hours - 8-hour run sampling every 10 seconds

6 test - 5-minute TEST run sampling every 30 seconds

select profile number to run:
3. After you enter the profile you want to run, the utility displays information about the data it is collecting:

select profile number to run: 1
Collection of this sample data will be available in 1920 seconds.
The runid for this data is 20111007_1041_30mins.

The generated log files are located in the output directory. The files are identified by the runid, which is uniquely named
as follows: YYYYMMDD_HHMM _profile_name.log, where YYYYMMDD_HHMM is the year, month, day, hour, and minute
the utility started to collect data; and profile_name is the name of the profile you selected.

After the utility finishes collecting data (that is, at the end of the period of time specified in the profile), you can generate
a readable performance report; see Generating the ~SystemPerformance Performance Reports.

13.2 Stopping *SystemPerformance

You can stop a running profile — stop the collection of data and optionally delete all .log files for the profile with the
$$Stop” SystemPer for mance(runid) command. For example, to abort the collection of data for a report identified by the
runid 20111220 1327_12hours and delete all .log files written so far, enter the following command in the Terminal in
the %SYS namespace:

do Stop”SystemPerformance(''20111220 1327_12hours')

To stop the job without deleting log files and produce an HTML performance report from those log files, enter:
do Stop”SystemPerformance(''20111220_1327_12hours',0)

For more information, see Functions in ~SystemPerformance.

Note: You must have permission to stop jobs and delete files.

102 Monitoring Guide

Functions in ~SystemPerformance

13.3 Functions in *SystemPerformance

The "~ SystemPerfor mance utility provides options for the start, collect, preview, and stop functions as described in the
following list:

Note: You can run multiple profiles concurrently.

$$r un”Syst enPer f or mance(" profile")

Starts the specified profile. If successful, returns the runid; if unsuccessful, returns 0.

$$l it erun”Syst enPer f ormance("profile")

Same as the preceding, except that it does not include operating-system data.

Note: This option is intended for servers that are running multiple instances of InterSystems IRIS, where the
operating-system data would be duplicated.

$$Col | ect ~Syst enPer f or mance(" runi d")

Produces a readable HTML performance report file for the specified runid. If successful, returns 1 and the report
filename; if unsuccessful, returns 0 followed by a carat and the reason for the failure.

If no runid is supplied, $$Col lect generates a report for each completed runid that does not yet have a report.

In this mode, the return value is the number of reports generated followed by a carat and the word “collected’. For
example 5~col lected if 5 reports were generated, or 0*col lected if none were. If run at a command prompt,
$$Col lect lists which profiles are still running, if any, and how much time remains for each.

Note: Itis not necessary to call $$Col lect as part of standard operations, because SystemPerfor mance
does so automatically. In unusual circumstances such as ~ SystemPer for mance being interrupted by an
instance restart, if the automatic mechanism does not execute, $$Col lect may be needed.

$$Previ ew*Syst enPer f or mance(" runi d")
Produces a readable HTML interim (incomplete) performance report file for the specified runid. If successful,
returns 1 followed by a carat and the file location. If unsuccessful, returns 0 followed by a carat and the reason
for the failure.

$$St op”~ Syst enPer f or mance(" runi d", [0])

Stops (aborts) ~ SystemPer for mance from collecting data for a specified runid and by default deletes the associated
Jlog files produced by the utility. To stop data collection without deleting the .log files and produce an HTML
performance report from those log files, include the 0 parameter following the runid.

If unsuccessful, the function returns 0 followed by a carat and the reason for the failure; if successful, it returns:
1:2:3:4 1:2:3:4. The successful status is made up of two parts separated by an underscore: OS-specific and
InterSystems IR1S-specific; within each part, colon-separated values specify:

1. Number of jobs successfully stopped
2. Number of jobs that failed to stop

3. Number of files successfully deleted
4

Number of files not deleted

Monitoring Guide 103

Monitoring Performance Using *SystemPerformance

$$wai t ti me”Syst enPer f or mance("runi d")

Reports the time until the final HTML file for the specified runid will be complete. If the runid is finished, returns
ready now, otherwise returns a string of the form XX hours YY minutes ZZ seconds.

do Enabl eEnsqcnt ~Syst enPer f or nance()

Enables the collection additional data for interoperability productions.

do Di sabl eEnsqcnt *Syst enPer f or mance()
Disables the collection of additional data for interoperability productions.

In the following example the runid, which is created by ~ SystemPerfor mance, is obtained programmatically, then tested
to determine if a full or interim report has been generated. A full report has not been created because the profile has not
finished (**0”~not ready"" is returned), but an interim report has been created (“1” is returned). Based on this information,
you know that an HTML file has been generated.

Terminal

%SYS>set runid=$$run”SystemPerformance("'30mins')

%SYS>set status=$$Collect”SystemPerformance(runid)
SystemPerformance run 20181004_123815_30mins is not yet ready for collection.

%SYS>write status
0”not ready

%SYS>set status=$$Preview SystemPerformance(runid)

%SYS>write status
1nc:\intersystems\iris\mgr\USER_IRIS_20181004_123815_30mins_P1_html
%SYS>

13.4 Generating ~SystemPerformance Performance
Reports

The "~ SystemPer for mance utility automatically generates a full (complete) readable HTML performance report from the
log files produced by the * SystemPerfor mance utility. You can also use the Preview” SystemPer for mance entry point
to produces an interim (incomplete) report using the data that is being collected by the profile you selected when you ran
the ~ SystemPer for mance utility.

The generated report files are located in the output directory which is, by default, the install-dir\mgr directory of the Inter-
Systems IRIS instance. The files are uniquely identified by names, which are in the following format:
hostname_instance_runid.html, where hostname is the hostname of the system on which the instance of InterSystems IRIS
is running; instance is the name of the instance for which performance data has been collected; and runid is the unique
identifier generated when the ~ SystemPer for mance utility was run. If the report is an interim report, _Pn is appended to
the file name, where P identifies it as a preliminary report and n is the number of the preliminary report.

104 Monitoring Guide

Scheduling the ~SystemPerformance Utility with Task Manager

13.5 Scheduling the *SystemPerformance Utility with
Task Manager

This section provides examples using the Task Manager in the Management Portal to schedule * SystemPer for mance to
run. For general instructions for how to schedule a task, see Schedule Task Manager.

Note: The examples describe only the fields that are required. You can edit other fields as desired.

Example 1: Weekly 24-Hour Run

In this example, a task is created to schedule the * SystemPer for mance utility to run a profile named 24hours (which collects
performance data for 24 hours) every Thursday at 09:00:

1. From the Task Manager page of the Management Portal (System Operation > Task Manager), choose the New Task
option to start the Task Scheduler Wizard. Then enter the following information in the specified fields:

* Task name — enter 24HourRun.

e Description — enter Start 24-hour "SystemPerformance Run.
* Namespace to run task in — select %SYs from the drop-down list.

* Task type — select RunLegacyTask from the drop-down list.

In the ExecuteCode text box, enter the following code:
do run”~SystemPerformance(''24hours')

* Output file — leave blank; the task has no output (see Changing the Output Directory for information on customizing
the output directory).
2. Click Next. Then enter the following information in the specified fields:
* How often ... — choose Weekly from the drop-down list.
Select the Thursday check box.
» Start Date — enter the start date in the text box.

Click Run once at this time: and enter 09:00:00 in the text box.
3. Click Finish.

Example 2: Daily 30-Minute Run

In this example, a task is created to schedule the * SystemPer for mance utility to run a profile named 30mins (which collects
performance data for 30 minutes) every day at 12:00:

1. From the Task Manager page of the Management Portal (System Operation > Task Manager), choose the New Task
option to start the Task Scheduler Wizard. Then enter the following information in the specified fields:

e Task name — enter 30MinRun.
* Description — enter Start 30-minute ~SystemPerformance Run.
e Namespace to run task in — select %SYs from the drop-down list.

* Task type — select RunLegacyTask from the drop-down list.

Monitoring Guide 105

Monitoring Performance Using *SystemPerformance

In the ExecuteCode text box, enter the following code:
do run”SystemPerformance(*'30mins'")

» Output file — leave blank; the task has no output (see Changing the Output Directory for information on customizing
the output directory).
2. Click Next. Then enter the following information in the specified fields:
* How often ... — choose Daily from the drop-down list.
» Start Date — enter the start date in the text box.

Click Run once at this time: and enter 12:00:00 in the text box.

3. Click Finish.

13.6 Changing the Output Directory

The default output directory for both the log files and the resulting HTML report file is the install-dir\mgr of the InterSystems
IRIS instance for which you are running the ~ SystemPer for mance utility. You can change the default directory using the
commands described in the following list.

Note: These commands do not affect currently running profiles, whether or not the HTML report files have been produced,;

that is, no files associated with currently running profiles are moved to the new output directory.

do setl ogdi r"Syst enPerformance("directory")
Sets the pathname of output directory to directory; if the directory does not exist, it is created.
Note: If you do not specify an absolute pathname (for example, C:\Reports), the directory is assumed to be

relative to the install-dir\mgr directory.

set x = $$getl ogdi r*Syst enPer f or mance()

Sets variable x equal to the output directory pathname.

do clrlogdir~SystenPerformance()

Resets the output directory pathname to the default directory (install-dir\mgr).

13.7 Getting Version Information

You can find the current version of the ~ SystemPer for mance utility using the following commands:
e write $$version”SystemPerformance()

 set ver=$$version”SystemPerformance()

106 Monitoring Guide

Manipulating Profiles

13.8 Manipulating Profiles

You can use the APIs described in the following sections to manipulate the profile definitions.
» Create New Profiles

» Edit Profiles

» Copy Profiles

e Delete Profiles

13.8.1 Create New Profiles

You can create a new profile with the following APl command:

set rc=$$addprofile”SystemPerformance(*'profil enane',""descri ption',interval ,count)

You must specify:

» profilename — A name for the profile, which must be unique and cannot contain spaces or whitespace characters.

e description — A description of the profile that is displayed in the * SystemPer for mance menu.

» interval — The frequency with which to run each sample, in seconds (in the range of 1 second to 300 seconds). An
interval of 1 second is only allowed if the profile duration is an hour or less.

e count — The number of times to run the profile.

The function returns 1 if successful and 0 if unsuccessful. This is followed by a carat and then the reason for any errors.

For example, to create a profile named 2minrun that runs a sampling every 10 seconds until it runs 12 samplings (for a total
of 120 seconds, or two minutes), enter the following:

set rc=$$addprofile~SystemPerformance("'2minrun’,"A 2-minute run sampling every 10 seconds',10,12)

The next time you run the * SystemPer for mance utility, the list of profiles includes the following profile name and
description:

2minrun A 2-minute run sampling every 10 seconds

13.8.1.1 Generate Profile

Alternatively, you can quickly generate new profiles (with a meaningful name and description) with the following API
command:

set rc=$$genprofile”SystemPerformance(''durati on"[,i nterval])
Where:

* duration — How long the profile should run. The valid formats are "hh:mm", "hh:", or mm

» interval (optional) — The frequency with which to run each sample, in seconds (in the range of 1 second to 300 seconds).
An interval of 1 second is only allowed if the profile duration is an hour or less.

The function returns 1 if successful. If unsuccessful, it returns 0 followed by a carat and the reason for any errors.

Monitoring Guide 107

Monitoring Performance Using *SystemPerformance

Note: The maximum duration is 24 hours (86400 seconds); if you specify a longer duration, * SystemPer for mance
reduces it to 24 hours. The duration must be double-quoted only if it contains a colon (:); the colon denotes hours.

The minimum interval, if specified, is 2 seconds, unless the duration (that is, interval * count) is less than one
hour, in which case the minimum interval is 1 second. If you specify an invalid interval, * SystemPer for mance
increases it to the required minimum. If the interval is not specified, it defaults to 10 seconds.

For example, to generate a profile named 12hours (with a generated profile name and description) that runs samples every
5 minutes (300 seconds) over 12 hours, enter the following:

set rc=$$genprofile~SystemPerformance(*'12:",300)
In addition, to generate a profile named 90mins that runs samples every 10 seconds for 90 minutes, enter the following:
set rc=$$genprofile~SystemPerformance(90)

The next time you run the ~ SystemPer for mance utility, the list of profiles includes the following profile names and
descriptions:

12hours 12 hour run sampling every 300 seconds
90mins A 90 minute run sampling every 10 seconds

13.8.2 Edit Profiles

You can edit an existing profile (except for the predefined “test” profile) with the following APl command:
set rc=$$editprofile~SystemPerformance("'profil ename","description",[i nterval J,[count])

Where:
» profilename — The name of the existing profile you want to edit.
e description — A description of the profile that is displayed in the * SystemPer for mance menu.

e interval (optional) — The frequency with which to run each sample, in seconds (in the range of 1 second to 300 seconds).
An interval of 1 second is only allowed if the profile duration is an hour or less.

e count (optional) — The number of times to run the profile.

The function returns 1 if successful and 0 if unsuccessful. This is followed by a carat and then the reason for any errors.

Note: The arguments are positional; if, for example, to edit the count argument (and keep the value specified in the
interval argument), you must include the comma separator, as follows: set
rc=$$editprofilenSystemPerformance("'2minrun™,”A 5-minute run sampling every 30
seconds™, ,50).

If the duration exceeds 24 hours (86400 seconds), it is automatically reduced to 24 hours.

For example, to modify the 2minrun profile to run a sampling every 30 seconds until it runs 10 samplings (for a total of 300
seconds, or five minutes), enter the following:

set rc=$$editprofile~SystemPerformance('2minrun’,”A 5-minute run sampling every 30 seconds',30,10)

The next time you run the ~ SystemPer for mance utility, the list of profiles includes the following profile name and
description:

2minrun A 5-minute run sampling every 30 seconds

108 Monitoring Guide

Performance Report Details

13.8.3 Copy Profiles

You can copy an existing profile to a file with a different name with the following APl command:
set rc=$$copyprofile”~SystemPerformance('sour ceprofil ename™,"t arget profil ename')

You must specify:

» sourceprofilename — The name of an existing profile

» targetprofilename — The name of the profile you want to create. This must be unique and cannot contain spaces or
whitespace characters. This must be double-quoted.

The function returns 1 if successful. If unsuccessful, it returns 0 followed by a carat and the reason for any errors.

For example, to make a copy of the 2minrun profile, enter the following:
set rc=$$copyprofile”SystemPerformance("'2minrun’,"5minrun')

The next time you run the * SystemPer for mance utility, the list of profiles includes the following profile names and
descriptions:

2minrun A 2-minute run sampling every 30 seconds
5minrun A 2-minute run sampling every 30 seconds

You can now edit the new profile as described in Edit Profiles.

13.8.4 Delete Profiles

You can delete existing profiles (except for the predefined “test” profile) with the following APl command:
set rc=$$delprofile”SystemPerformance(''profil enane')

You must specify profilename, the name of the profile you want to delete. This must be double-quoted.
The function returns 1 if successful. If unsuccessful, it returns 0 followed by a carat and the reason for any errors.

For example, to delete the 2minrun profile, enter the following:
set rc=$$delprofile~SystemPerformance("'2minrun')

The next time you run the ~ SystemPer for mance utility, the list of profiles does not include 2minrun profile.

13.9 Performance Report Details

The "~ SystemPer for mance utility generates platform-specific reports. The report is divided into sections, as illustrated in
the following listing:

Configuration
IRISTEST3 on machine testsystem

Customer: InterSystems Development
License : 123456

InterSystems IRIS Version String: InterSystems IRIS for Windows (x86-32) 2021 (Build 508) Fri Jan 26
2018 17:51:22 EDT

Profile

Monitoring Guide 109

Monitoring Performance Using *SystemPerformance

Profile run "test" started at 10:07 on Jun 01 2016.
Run over 10 intervals of 30 seconds.

license

Product=Enterprise

License Type=Concurrent User
Server=Multi
Platform=Heterogeneous
Licensed Users=1000

Licensed CPUs=16

End of InterSystems IRIS Performance Data Report

The tables in this section describe the sections of each platform-specific report. The sections are listed alphabetically in

each table to help you find a specific section more easily. Data that is collected only once is flagged with an asterisk (*).
The rest of the data is collected throughout the profile run.

For descriptions of the platform-specific data, see the following tables:

* InterSystems IRIS Performance Data Report for Microsoft Windows Platforms
» InterSystems IRIS Performance Data Report for Apple macOS Platforms

» InterSystems IRIS Performance Data Report for IBM AIX® Platforms

* InterSystems IRIS Performance Data Report for Linux Platforms

Note |n all of the following tables, data marked with " is collected once per run.

Table 13-1: InterSystems IRIS Performance Data Report for Microsoft Windows Platforms

Section Description
%SS Four samples taken over the course of the run using the ALL"%SS command.
InterSystems IRIS instance name and hostname from the server, the full Inter-

Systems IRIS version string, the licensed customer name, and the license order
number.

Configuration :

cpf file * A copy of the currently active configuration file.

110 Monitoring Guide

Performance Report Details

Section

irisstat -c

irisstat -D

. *
license

mgstat

Description

Four samples taken at even intervals over the course of the run using the com-
mand .\bin\irisstat -s -p-1 -c-1 -e1 -m8 -n2 -N127. Following is a brief description
of each argument:

* -p-1:samples the process table to include process and global state informa-
tion.

e -c-1: samples the Counters section of shared memory to display journal,
lock, disk, and resource usage statistics.

* -el:the SYSLOG error table.
« -m8: the file table, which includes all IRIS.DAT files and their attributes.

e -n2:the network structures table, including local-to-remote database map-
pings.
e -N127: ECP statistics for both client and server connections.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility.

Eight samples taken at even intervals over the course of the run using the
command irisstat cache --f1 -D10,100. Following is a brief description of each
argument:

e -fl: basic flags.
« -D10,100: sampling of block collisions every 100 milliseconds over a total
sample period of 10 seconds.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility. For information about monitoring block collisions using
the “BLKCOL utility, see Monitoring Block Collisions Using “BLKCOL.

InterSystems IRIS license usage information using Decode”%LICENSE and
counts™%LICENSE.

InterSystems IRIS-specific data taken over the course of the run using the
~mgstat utility. See Monitoring Performance Using “mgstat.

Monitoring Guide

111

Monitoring Performance Using *SystemPerformance

Section Description

perfmon Output from the Microsoft Windows perfmon utility.
The default presentation of Microsoft Windows perfmon data is raw format. The
format can be switched to processed, which removes the repeated server name
and splits the datetime column into separate columns, to improve readability.
The following functions allow the querying and updating of the flag that determines
whether the perfmon data is manipulated or not:
set rc=$$setperfmonpostproc”SystemPerformance(<onoroff>)
where onoroff can be 1 (on) or 0 (off), or the non-case-sensitive words *‘on*
or "off".
A return code of 1 indicates successful update of the flag, O indicates a failed
update, and -1 indicates a non-Windows platform.
To determine the current format (raw or processed):
set status=$$getperfmonpostproc”SystemPerformance()
A return code of 1 indicates processed format, O indicates raw format.
In addition, the current status of the flag is reported prior to the profile menu
display in the interactive run of ~*SystemPerformance.
By default, perfmon monitors the counter definitions specified in the default
pbctrs.txt file. To monitor previously defined perfmon counters, import the defini-
tion into ~SystemPerformance using:
write $$importctrs”SystemPerformance (W ndowsCt r Nanme
[,Syst enPer f or manceCt r Nane [,Syst enPer formanceFi | eNane]])
A return code of 0 indicates success and a negative number followed by a reason
string indicates failure. Duplicate SystemPerformance counter names are not
allowed. If necessary, “SystemPerformance generates both the internal counter
name and file name.
To change the default SystemPerformance counter definition to an exiting defi-
nition, use:
write $$setctrdefault(Syst enPerformanceCt r Nane)
Return code of 1 indicates success and 0 followed by a reason string indicates
failure. If an invalid counter is specified, the builtin defaualt is set.
To reset the default SystemPerformance counter definition, use:
do clrctrdefaul t"SystemPerformance()
To associate a specific SystemPerformance counter definition with an existing
profile, use:
write $$addctrtoprofile(Profil eNane,SystenPerfor manceCt r Nane)
Return code of 1 indicates success and O followed by a reason string indicates
failure. If either the profile or the counter definition do not exist, the command is
not run.

112 Monitoring Guide

Performance Report Details

Section

Profile :

tasklist

Windows info i

Description

Information about the ~SystemPerformance profile that created this log.

Four outputs of the tasklist -V command, taken at even intervals over the course
of the run. The tasklist -V command provides a list of all processes running on
the system.

Output from the systeminfo command, including the Windows version (excluding
hotfix information) and hardware information; for example, processor count,
memory installed, and memory used.

Table 13-2: InterSystems IRIS Performance Data Report for Apple macOS Platforms

Section

%SS

Configuration :

cpf file”

irisstat -c

Description
Four samples taken over the course of the run using the ALL"%SS command.
InterSystems IRIS instance name and hostname from the server, the full Inter-

Systems IRIS version string, the licensed customer name, and the license order
number.

A copy of the currently active configuration file.

Four samples taken at even intervals over the course of the run using the com-
mand irisstat cache -p-1 -c-1 -e1 -m8 -n2 -N127. Following is a brief description
of each argument:

* -p-1:samples the process table to include process and global state informa-
tion.

* -c-1: samples the Counters section of shared memory to display journal,
lock, disk, and resource usage statistics.

« -el:the SYSLOG error table.
* -m8: the file table, which includes all IRIS.DAT files and their attributes.

e -n2:the network structures table, including local-to-remote database map-
pings.
e -N127: ECP statistics for both client and server connections.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility.

Monitoring Guide

113

Monitoring Performance Using *SystemPerformance

Section Description

irisstat -D Eight samples taken at even intervals over the course of the run using the
command irisstat cache --f1 -D10,100. Following is a brief description of each
argument:

e -fl: basic flags.

* -D10,100: sampling of block collisions every 100 milliseconds over a total
sample period of 10 seconds.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility. For information about monitoring block collisions using
the “BLKCOL utility, see Monitoring Block Collisions Using "BLKCOL.

ipcs * Interprocess communication configuration information, including shared memory,
semaphores, and message queues; output from ipcs -a command.

license InterSystems IRIS license usage information using Decode”%LICENSE and
counts™%LICENSE.

macOS Info - OS version and hardware information. Output from the sw_vers, uname -a,
mount, and netstat commands.

mgstat InterSystems IRIS-specific data taken over the course of the run using the
~mgstat utility. See Monitoring Performance Using “mgstat.

Profile * Information about the ~SystemPerformance profile that created this log.

ps: Four samples taken at even intervals over the course of the run using the
command ps -eflv.

sar -d Disk (block) device throughput and latency statistics.

sar -g Page out rates.

sar -n DEV Network device throughput.

sar -n EDEV Network device error rates.

sar -p Page in and page fault rates.

sar -u CPU usage statistics.

sysctl a’ Kernel and system parameter settings.

vm stat” memory page information.

Table 13-3: InterSystems IRIS Performance Data Report for IBM AIX® Platforms

Section Description
%SS Four samples taken over the course of the run using the ALL"%SS command.
AIX info " Output from the oslevel. uname -a, prtconf, and Ispv commands

114 Monitoring Guide

Performance Report Details

Section

Configuration :

cpf file”

cpu type

irisstat -c

irisstat -D

*

df -k

filesystems ’

. *
100 -a

Description

InterSystems IRIS instance name and hostname from the server, the full Inter-
Systems IRIS version string, the licensed customer name, and the license order
number.

A copy of the currently active configuration file.

Information on processors installed and whether or not SMT is enabled; output
from Isattr -El procO.

Four samples taken at even intervals over the course of the run using the com-
mand irisstat cache -p-1 -c-1 -e1 -m8 -n2 -N127. Following is a brief description
of each argument:

* -p-1:samples the process table to include process and global state informa-
tion.

e -c-1: samples the Counters section of shared memory to display journal,
lock, disk, and resource usage statistics.

¢ -el:the SYSLOG error table.
« -m8: the file table, which includes all IRIS.DAT files and their attributes.

e -n2:the network structures table, including local-to-remote database map-
pings.
* -N127: ECP statistics for both client and server connections.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility.

Eight samples taken at even intervals over the course of the run using the
command irisstat cache --f1 -D10,100. Following is a brief description of each
argument:

o -fl: basic flags.
* -D10,100: sampling of block collisions every 100 milliseconds over a total
sample period of 10 seconds.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility. For information about monitoring block collisions using
the "BLKCOL utility, see Monitoring Block Collisions Using "BLKCOL.

Information about mounted file systems, including mount points, logical volumes,
and free space; output from df -k command.

Current /etcffilesystems file.
Current values of 1/0O tunable parameters; output from ioo -a command.

Included only if the user initiating the ~SystemPerformance profile run has root
access.

Monitoring Guide

115

Monitoring Performance Using *SystemPerformance

Section

iostat -DIT

*

ipcs

. *
license

*
mount

mgstat

Profile ~

ps:

sar -d

sar -r

sar -u

vmo —a

*
vmstat -s

vmstat -t

*
vmstat -v

Description

Long listing of extended disk/device statistics with sample time for IBM AIX®
5.3 and newer; output from iostat -DIT command.

Information varies for releases before IBM AIX® 5.3.

Interprocess communication configuration information, including shared memory,
semaphores, and message queues; output from ipcs -a command.

InterSystems IRIS license usage information using Decode”%LICENSE and
counts™%LICENSE.

Information on all file systems and their mount options.

InterSystems IRIS-specific data taken over the course of the run using the
~mgstat utility. See Monitoring Performance Using “mgstat.

Information about the ~SystemPerformance profile that created this log.

Four samples taken at even intervals over the course of the run using the
command ps aux.

Included only if the user initiating the"SystemPerformance profile run has root

access and /usr/sbin/sar exists.

Included only if the user initiating the”~SystemPerformance profile run has root
access and /usr/shin/sar exists.

CPU statistics that includes micropartitioning information if used.

Included only if the user initiating the~SystemPerformance profile run has root
access and /usr/shin/sar exists.

Current values of virtual memory tunable parameters; output from vmo -a com-
mand.

Included only if the user initiating the~SystemPerformance profile run has root

access.

Absolute counts of virtual memory statistics, including total page ins and page
outs.

Virtual memory and CPU (paging, queuing, and CPU) statistics with timestamps.

Samples virtual memory statistics, including free pages, pbuf usage, and fsbuf
usage.

Table 13-4: InterSystems IRIS Performance Data Report for Linux Platforms

Section Description
%SS Four samples taken over the course of the run using the ALL"%SS command.
116 Monitoring Guide

Performance Report Details

Section

Configuration :

cpf file”

irisstat -c

irisstat -D

*

df -m

free -m

iostat

. *
license

mgstat

Profile i

Description

InterSystems IRIS instance name and hostname from the server, the full Inter-
Systems IRIS version string, the licensed customer name, and the license order
number.

A copy of the currently active configuration file.

Four samples taken at even intervals over the course of the run using the com-
mand irisstat cache -p-1 -c-1 -e1 -m8 -n2 -N127. Following is a brief description
of each argument:

¢ -p-1:samples the process table to include process and global state informa-
tion.

* -c-1: samples the Counters section of shared memory to display journal,
lock, disk, and resource usage statistics.

+ -el:the SYSLOG error table.

* -m8: the file table, which includes all IRIS.DAT files and their attributes.

¢ -n2:the network structures table, including local-to-remote database map-
pings.

* -N127: ECP statistics for both client and server connections.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility.

Eight samples taken at even intervals over the course of the run using the
command irisstat cache --f1 -D10,100. Following is a brief description of each
argument:

« -fl: basic flags.

e -D10,100: sampling of block collisions every 100 milliseconds over a total
sample period of 10 seconds.

For more information about the irisstat utility, see Monitoring InterSystems IRIS
Using the irisstat Utility. For information about monitoring block collisions using
the "BLKCOL utility, see Monitoring Block Collisions Using "BLKCOL.

Information about mounted file systems, including mount points, logical volumes,
and free space; output from df -m command.

Memory usage statistics in MB (-m).
CPU and disk throughput.

InterSystems IRIS license usage information using Decode”%LICENSE and
counts™%LICENSE.

InterSystems IRIS-specific data taken over the course of the run using the
~mgstat utility. See Monitoring Performance Using “mgstat.

Information about the ~SystemPerformance profile that created this log.

Monitoring Guide

117

Monitoring Performance Using *SystemPerformance

Section
ps:

sar -d
sar -u

vmstat -n

cpu’

Linux info *

ipcs *

mount *

fdisk -l *

ifconfig *

sysctl -a *

13.10 See Also

e Using the Diagnostic Report

Description

Four samples taken at even intervals over the course of the run using the
command ps -efly.

Disk (block) device throughput and latency statistics.
CPU usage statistics include iowait percentage.
CPU, queuing, paging statistics. Only one header is printed (-n) .

Information gathered from Iscpu and /proc/cpuinfo

General OS and hardware information; includes output from uname -a,
Isb_release -a, id, and ulimit -a commands as well as information gathered from
/etc/issue.net, /proc/partitions, and /dev/mapper.

Interprocess communication configuration information, including shared memory,
semaphores, and message queues; output from ipcs -a command.

Information on all file systems and their mount options.

Partition tables for all devices mentioned in /proc/partitions.Included only if the
user initiating the ~SystemPerformance profile run has root access.

Status information of currently active network interfaces.

Kernel and system parameter settings.

* WRC distribution site (Tools)

118

Monitoring Guide

https://wrc.intersystems.com/wrc/coDistTools.csp

14

Monitoring Performance Using mgstat

This topic describes the *mgstat utility, a tool for collecting basic performance data.

Note: This utility may be updated between releases. Contact the InterSystems Worldwide Response Center (WRC) for
information about downloading newmgstat.xml from ftp:/ftp.intersys.com/pub/performance/.

14.1 Running “mgstat

You must call *mgstat in the %SYS namespace. You can use the following positional arguments:

1. sampletime— This argument specifies the frequency (in seconds) for sampling counters. If not specified, the default
is 2 seconds.

Note: If you specify a sample time greater than 10 seconds, *mgstat reduces it to 10 seconds. See the number of
samples argument in this table.

2. number of samples— This argument specifies the maximum number of samples to be obtained. If not specified, the
default is 10 iterations.

Note: If *mgstat reduces the sample time, it increases the specified number of samplesto ensure that the duration
(sample time * number of samples) of the run is effectively the same as it would have been if none of the
arguments were modified.

3. filename— This arguments specifies the filename for the . mgst file that *mgstat generates, relative to install-dir\mgr.
If not specified, the default filename is ServerName_InstanceName Date Time.mgst.

4. pagelength — If you run *mgstat interactively, this argument specifies the number of lines to display before the
header rows are repeated. The default is 0, which displays the header once at the beginning of the page; if you specify
a value less than 5 lines (other than 0), *mgstat increases it to 5.

Note: This argument is ignored when you run *mgstat as a background job.
For example, if running *mgstat as a background job, to specify that file samples be obtained every 5 seconds until 17280
samplings are obtained (in the Terminal, in the %SYS namespace), enter the following:

%SYS>JOB ~mgstat(5,17280)

Monitoring Guide 119

https://www.intersystems.com/support-learning/support/
ftp://ftp.intersys.com/pub/performance/

Monitoring Performance Using “mgstat

Alternatively, if running *mgstat interactively, to specify the same samplings redisplay the headings after each 10 rows
of data, enter the following:

%SYS>DO ~mgstat(5,17280,,10)

By default *mgstat generates a filename based on the server name, configuration name, and date and time, with the mgst
extension, which is recognized by an analyzer tool written in Microsoft Excel that aids graphing of the data. By default,
the file is located in the install-dir\mgr directory of the InterSystems IRIS® data platform instance; however, if the output
directory has been changed through the ~ SystemPer for mance utility (see Change Output Directory), “mgstat uses that
output directory.

Note: The .mgst file is also generated when you run the * SystemPer for mance utility and included in the HTML
performance report (see Monitoring Performance Using ~SystemPerformance).

To ensure minimal impact on system performance, the *mgstat utility extracts various counter information from shared
memory. If the utility is running and an apparent performance issue occurs, data is available to help you investigate the
problem; for assistance with your analysis, contact the InterSystems Worldwide Response Center (WRC), which can provide
tasks that automate both the running of ~mgstat and the purging of files.

14.2 Data Provided by “mgstat

Most of the reported data is averaged in per-second values, except as noted in the table below. The generated output file is
in a readable, comma-separated value (CSV) format, which is more easily interpreted with a spreadsheet tool such as
Microsoft Excel. The first line of the file is a header line which includes the filename and the utility version, as well infor-
mation about buffer allocation and the version of the product being monitored. The number of columns of data depends on
the version of the product: the first two columns are the date and time; the remaining columns are:

Column Description Notes
Glorefs Global references (database accesses).

Indicates the amount of work that is occurring on behalf of
the current workload; although global references consume
CPU time, they do not always require physical reads because
of the buffer pool.

RemGrefs - Remote global references (database accesses).
Indicates the number of global references that are generated
on behalf of distributed cache cluster application servers.
GRratio Ratio of global references to remote global references.
PhyRds Physical reads from disk.
A high number of physical reads may indicate a performance
problem; you can improve the performance by increasing the
number of database (global) buffers.
Rdratio Ratio of logical block reads to physical block reads, but zero
if physical block reads is zero.
Gloupds Global updates (sets or kills).

120 Monitoring Guide

https://www.intersystems.com/support-learning/support/

Data Provided by “mgstat

Column

RemGupds i

Rourefs

RemRrefs i

RouLaS

RemRLaS

PhyWrs
WDQsz
WDtmpq

WDphase

Wijwri

RouCMs
Jrnwrts

Gblsz

pGbINsz

pGblAsz

RouSz

pRouAsz

Description Notes

Remote global updates.
Routine references (includes tag”routine).
Remote routine references.

Routine loads and saves (fetch from or save to disk).

A high number of routine loads/saves may indicate a perfor-
mance problem; you can improve the performance by
increasing the number of routine buffers.

Remote routine loads and saves.
Physical writes to disk.

write daemon Queue size (in blocks). Not per second.

Updated blocks in IRISTEMP. Not per second.

Phase of the write daemon. Not per second.
The most common phases are:

e 0:ldle (WD is not running)

* 5:WD is updating the Write Image Journal (W1J) file.

e 7:WD is committing wWiJ and Journal.

e 8: Databases are being updated.

Number of 256-KB blocks written to the wiJ.

This is non-zero when the WD is writing data to the wiJ.
Number of Routine Cache Misses.

Number of blocks written to journals.

Number of seizes on the global resource; see Considering
Seizes, ASeizes, and NSeizes.

Percentage of NSeizes on the global resource; see Consid-
ering Seizes, ASeizes, and NSeizes.

Percentage of ASeizes on the global resource; see Consid-
ering Seizes, ASeizes, and NSeizes.

Number of seizes on the routine resource; see Considering
Seizes, ASeizes, and NSeizes.

Percentage of ASeizes on the routine resource; see Consid-
ering Seizes, ASeizes, and NSeizes.

Monitoring Guide

121

Monitoring Performance Using “mgstat

Column

ObjSz

pObjAsz

ActECP
Addblk *

PrgBufL ~

P@SWR*

BytSnt .

BytRcd ’

WDPass
IJuCnt

IJULock

PPGrefs
PPGupds

Description

Number of seizes on the object resource; see Considering
Seizes, ASeizes, and NSeizes.

Percentage of ASeizes on the object resource; see Consid-
ering Seizes, ASeizes, and NSeizes.

Number of active ECP connections.
Number of blocks added to ECP Client’s cache.

Number of blocks purged from ECP Client’s cache due to
global buffer shortage (on the ECP Client).

A high number may indicate a performance problem on the
ECP client; you can improve performance by increasing the
number of global buffers on the ECP Client.

Number of blocks purged from ECP Client’s cache by ECP
server.

Number of bytes sent as an ECP Client.

Number of bytes received as an ECP Client.

WD cycle since startup.

Number of jobs that WD is waiting for to continue this cycle.

Indicates whether or not the 1JULock flag is set .

If IJULocKk is set, all updates are locked out while the WD
finalizes the write cycle.

The count of all process private global accesses.

The count of all process private global updates.

“0is displayed unless this is an ECP configuration.

Notes

Not per second.

Not per second.
Not per second.

Not per second.

14.3 Considering Seizes, ASeizes, and NSeizes

Note: Seize statistics are included if the underlying system is collecting them; more information can be found in the
Config.Miscellaneous class; see the CollectResourceStats property.

A Seize occurs whenever a job needs exclusive access on a given resource to guarantee that an update occurs without
interference from other processes. If the Seize is not immediately satisfied, the update is postponed until it is satisfied.

On a single-CPU system, the process immediately hibernates (because it cannot do anything until the process holding the
resource relinquishes it, which does not occur until after its own update completes).

122

Monitoring Guide

See Also

On a multiple-CPU system, the process enters a holding loop in the “hope” that it will gain the resource in a reasonable
time, thus avoiding the expense of hibernating. If the process gets access to the resource during the hold loop, the loop
immediately exits and the process continues with its update; upon completing the update, the process relinquishes the
resource for other processes that may be waiting for it; this is an Aseize. If, at the end of the hold loop, the resource is still
held by another process, the process continues to hibernate and wait to be woken up when the resource is released,; this is
an Nseize.

Nseizes are a natural consequence of running multiple processes on a single-CPU system; Aseizes are a natural consequence
of running multiple processes on a multi-CPU system. The difference is that Nseizes incur system, or privileged, CPU time
because the operating system must change the context of the running process, whereas an Aseize incurs user time on the
CPU because it continues to run until the resource is gained and released, or until it gives up and hibernates. In general, on
multi-CPU systems it is more expensive for the operating system to do the context switch than to loop a few times to avoid
this operation because there is both CPU overhead and memory latency associated with context switching on multi-CPU
systems.

14.4 See Also

» Monitoring Performance Using ~SystemPerformance

Monitoring Guide 123

15

History Monitor

The History Monitor maintains a historical database of performance and system usage metrics. Its primary purposes are
to:

e Provide a performance baseline and help with analysis of performance issues.

* Help analyze system usage over time for capacity planning.

This database is defined in the SYS.History class package and kept in the %SYS namespace. All of the details of the database
structure are published there and the data is accessible through SQL or the normal persistent object access. The class docu-
mentation in SYS.History also contains descriptions of all the individual properties, methods and queries that are available.

The data is generally organized into performance (see SYS.History.Performance) and system usage (see
SYS.History.SystemUsage) data. The performance metrics are intended to be sampled at short intervals (by default, 30
seconds), and the system usage data at longer intervals (by default, 5 minutes). At the beginning of each day, the individual
interval samples are summarized into hourly and daily tables as averages, maximums, minimums, standard deviation,
medians and totals. You can select which, if any, of the summary functions are kept for each metric class. The interval and
hourly data may be purged automatically after a defined number of days (by default, seven (7) days and 60 days, respectively);
the daily summary is intended for long-term analysis and can be purged manually.

15.1 Base Metrics

All of the collected metrics are defined in four %SerialObject classes in SYS.History. These same classes are used as the
basis for the Interval, Hourly, and Daily databases, so all of the properties are defined as %Numeric types to allow for dec-
imal values in the summaries.

The performance related metrics are defined in:

e SYS.History.Performance — The properties in this class are general performance metrics like global references and
routine calls.

Note: These properties are all “counter” types and the interval data is collected as deltas, which represent the
change in the counter over the last interval. When this data is summarized into hourly and daily values, the
data is normalized to per-second rates

* SYS.History.WriteDaemon — The properties in this class describe the performance of write daemon cycles. The system
automatically keeps track of the last 20 write daemon cycles, and the History Monitor stores the data for the cycles
that occurred in each interval. Typically, there are multiple cycles within each interval.

Monitoring Guide 125

History Monitor

The system usage metrics are defined in:

* SYS.History.SystemUsage — The properties in this class track how busy the system is but do not tend to change as
quickly or dramatically as the performance data, such as the number of processes in InterSystems IRIS® data platform
and license information.

* SYS.History.Database — This class tracks the database growth, file size and free space, for each local database.

15.2 Collecting Data

To begin collecting data, you must do the following:

e Use the System Monitor *% SY SMONM GR utility in the %SYS namespace to activate the desired monitor classes
(%Monitor.System.HistoryPerf or %Monitor.System.HistorySys) in Application Monitor (which is part of System Monitor).
These classes are registered in the %SYS namespace by default.

* Restart System Monitor in the %SYS namespace.

See Using "%SYSMONMGR to Manage Application Monitor and Start/Stop System Monitor for information about these
procedures.

The detailed interval collection of data is defined in two persistent classes:

* SYS.History.PerfData — Includes the performance and write daemon classes as embedded objects.

e SYS.History.SysData — Includes the system usage and database classes.

The corresponding %Monitor classes must be activated in Application Monitor in order to collect data and build the history
data:

* 9%Monitor.System.HistoryPerf — Collects instances of SYS.History.PerfData samples.

* 9%Monitor.System.HistorySys — Collects SYS.History.SysData samples.

System Monitor, including Application Monitor, starts by default in the %SYS namespace when the InterSystems IRIS

instance starts. You can configured other startup hamespaces, however. The %Monitor classes are provided by default only
in %SYS, but can be added to other configured startup namespaces using *% SY SMONM GR.

15.3 Summaries

The %Monitor.System.HistoryPerf and %Monitor.System.HistorySys classes, as executed by Application Monitor, also create
the hourly and daily summaries at the end of each day. The summaries are defined as the persistent classes SYS.History.Hourly
and SYS.History.Daily; they include all four of the base classes as embedded objects.

For each metric property, the system may calculate the average, maximum (high-water mark), standard deviation, minimum,
median, or total for each hour and for the whole day. The summary functions are selectable (or may be disabled) for each
base class (SYS.History.Performance, SYS.History.WriteDaemon, SYS.History.SystemUsage, Or SYS.History.Database) and
for each summary period class, using the SetSummary() method of each of the base classes. By default, the History
Monitor calculates average, maximum and standard deviation for each class for both hourly and daily summaries.

Note: The counter properties of the SYS.History.Performance class are normalized to per second rates for these calculations
(except Total).

126 Monitoring Guide

Accessing the Data

Purging Data

After creating the summaries, Application Monitor automatically purges the interval and hourly databases. The default is
seven (7) days for interval data and 60 days for hourly data, but these may be changed using the SetPurge() method in
SYS.History.PerfData and SYS.History.Hourly classes. The SYS.History.Daily data is not automatically purged, but can be
done manually using the SY S.History.Daily: Purge() method.

15.4 Accessing the Data

Since the database is defined as persistent classes, the data is available using standard SQL or persistent object access.
Using the SQL browser in the Management Portal is a quick and easy way to see the various SQL schemas/tables that are
created, including the individual property values.

There are several basic queries implemented in each of the persistent classes in SYS.History (SYS.History.PerfData,
SYS.History.SysData, SYS.History.Hourly, and SYS.History.Daily) that can be used to access the individual tables for a date
range; for more information about the queries, see the class reference documentation.

The are also several Export() methods provided for each persistent class so that the individual tables can be exported to
files in CSV format, suitable for use with a spreadsheet such as Microsoft Excel. In particular, the
SYS.History.PerfData: Export() method creates a file that is very similar in format to that created by the *mgstat utility
(for more information, see Monitoring Performance Using “mgstat).

15.5 Adding User-Defined Metrics

You can add user-defined metrics to the History Monitor (SYS.History package):

1. Create a class, or multiple classes, that inherit from SYS.History.Adaptor and add %Numeric properties to define the
metrics.

Note: User-written classes must be in the %SYS namespace, and should begin with “Z” or *z” to prevent naming
conflicts with system classes and problems during upgrades.

2. Code the Sample() method to instantiate the class and provide periodic values for each property. This method is called
when the interval data is collected.

3. When you compile your class, it is added as an embedded object to an interval persistent class in SYS.History. You
can choose where and when it is collected using the INTERVAL parameter provided in SYS.History.Adaptor class. This
selects which interval class it is added to and which %Monitor class does the collection, as shown in the following table:

INTERVAL Selected Interval Class Used %Monitor Class Used
“User” (default) SYS.History.User %Monitor.System.HistoryUser
“UserPerf” SYS.History.UserPerf %Monitor.System.HistoryPerf
“UserSys” SYS.History.UserSys %Monitor.System.HistorySys

Selecting “UserPerf” or “UserSys” lets you collect data at the same interval and with the same timestamp as
SYS.History.PerfData or SYS.History.SysData, which makes it easier to correlate your data with the system data. “User”
gives you a choice of a third (unrelated) time interval.

Monitoring Guide 127

History Monitor

Note: There are several parameters in the SYS.History. Adaptor class that provide options for how properties are
collected and summarized; for more information, see the SYS.History.Adaptor class reference documentation.

4. User-defined classes are also added as embedded objects to the SYS.History.UserHourly and SYS.History.UserDaily
summary classes. The user-defined metrics are summarized and automatically purged just like the system metrics.

Important: User-defined metric classes become embedded objects in persistent data. You should not change def-
initions after data collection has started: deleting objects can result in orphaned data; re-defining
existing classes or properties can cause already stored data to be misinterpreted.

However, because of the schema evolution feature, you can safely add new objects and properties.
See Schema Evolution.

128 Monitoring Guide

16

Monitoring Block Collisions Using
"BLKCOL

A block collision occurs when a process is forced to wait for access to a block. Excessive block collisions slow application
performance. This page describes how to monitor block collisions by using the *BLK COL utility.

16.1 Using “BLKCOL

In InterSystems IRIS® data platform, the "BL K COL utility samples block collisions over a specified period (10 seconds
by default), recording the latest block collision within a specified interval (10 milliseconds by default) during this time.
For each recorded collision, *BL K COL identifies not only the block, but the global involved and its first and last references
in the block, as well as the routine and line that created the process attempting to access the block.

Note: Theirisstat -D option, as described in Running irisstat with Options, also samples block collisions, but identifies
only the blocks involved.

The output of irisstat -D is included in the reports generated by the * SystemPer for mance utility, as described
in Monitoring Performance Using ~SystemPerformance.
When running *BLKCOL, you can specify the following:
» The length of the sampling period in seconds
* The interval between samples in milliseconds
e Whether to collect routine details (default is yes)
* Whether to format the output as:
— alist of the blocks with the highest collision counts (default)
— alist of all blocks involved in collisions
— comma-separated values from all block collisions detected, sorted and counted by block number and routine
— comma-separated values from all block collisions detected, unsorted (raw)

— alist of collision hot spots in routines

» the number of blocks to display (if applicable)

» whether to send output to a file

Monitoring Guide 129

Monitoring Block Collisions Using “"BLKCOL

16.2 "BLKCOL Ouput

Use of the "BLK COL utility is shown in the following sample terminal session:

%SYS>do ~BLKCOL
Block Collision Analysis

How many seconds should we sample: <10>

How long to wait (ms) between each sample: <10>

Collect routine details? <Y>

Format for "T"op counts, "D"isplay all, "S"orted CSV, "H"ot spot, or "R"aw CSV: <T>
Number of blocks to display: <10>

Output to file: <0>

Sampling ... (any key to interrupt)

625 block collisions in 735 samples.
Block # (count) - Global refs (first - last in block) - Routine refs (SFN)

767 (395) in c:\InterSystems\iris\mgr\user\
Nacctest - “acctest(10220," 167') (T/BPtr)
325 at "AccessTest+156(4)
25 at ™AccessTest+121(4)
24 at ™AccessTest+92(4)
8 at MAccessTest+109(4)
8 at "MAccessTest+127(4)
4 at "AccessTest+170(4)
1 at "AccessTest+163(4)

3890 (11) in c:\InterSystems\iris\mgr\user\
Nacctest(2552," 371'") - "acctest(2552," 38") (Data)
6 at MAccessTest+164(4)
3 at "AccessTest+163(4)
1 at "AccessTest+134(4)
1 at "AccessTest+156(4)

15572 (©)) in c:\InterSystems\iris\mgr\user\
Nacctest(6980," 4795'™) - Macctest(6988," 3259') (Data)
7 at ™AccessTest+134(4)
1 at "AccessTest+164(4)
1 at "AccessTest+170(4)

15818 3) in c:\InterSystems\iris\mgr\user\
Nacctest(9124," 173") - "acctest(9124," 1743") (Data)
5 at ™AccessTest+164(4)
3 at MAccessTest+170(4)

971 a in c:\InterSystems\iris\mgr\user\
Nacctest(484," 3927') - "acctest(484," 3938") (Data)
5 at MAccessTest+170(4)
2 at ™AccessTest+164(4)

1137 @ in c:\InterSystems\iris\mgr\user\
Nacctest(756," 4063'") - Macctest(756," 4073") (Data)

at "MAccessTest+109(4)

at MAccessTest+134(4)

at MAccessTest+156(4)

at "MAccessTest+163(4)

PERENW

2999 a in c:\InterSystems\iris\mgr\user\
Nacctest(2092," 666') - Macctest(2092," 674') (Data)

at MAccessTest+170(4)

at MAccessTest+109(4)

at "MAccessTest+121(4)

at MAccessTest+134(4)

at MAccessTest+164(4)

RPRRPW

6173 @ in c:\InterSystems\iris\mgr\user\
Nacctest(3684," 528'") - Macctest(3684," 536') (Data)
3 at MAccessTest+163(4)
1 at "AccessTest+109(4)
1 at "MAccessTest+156(4)
1 at "AccessTest+164(4)
1 at "AccessTest+170(4)

14617 (@) in c:\InterSystems\iris\mgr\user\
Nacctest(9688," 18") - ~acctest(9688," 26'") (Data)

130 Monitoring Guide

~BLKCOL Ouput

4 at NAccessTest+170(4)
2 at MAccessTest+164(4)
1 at "AccessTest+134(4)

15282 @ in c:\InterSystems\iris\mgr\user\
Nacctest(8700," 4889') - “Macctest(8760," 1402') (Data)
4 at MAccessTest+170(4)
3 at MAccessTest+164(4)
%SYS>d ~BLKCOL

Block Collision Analysis

How many seconds should we sample: <10>

How long to wait (ms) between each sample: <10>

Collect routine details? <Y>

Format for "T"op counts, "D"isplay all, "S"orted CSV, "H"ot spot, or "R"aw CSV: <T> H
Number of blocks to display: <10>

Output to file: <0>

Sampling ... (any key to interrupt)
571 block collisions In 768 samples.

Sorted by routine/line that waits for block ownership

(571) AccessTest
(324) +156™AccessTest : s @G@($J,node)=%$$getdata($SE(Str,1,$r(1000))) ;SMLXXX+, AFH
(54) +164~AccessTest : k @G@($J,node)

(43) +134™AccessTest : . k @G@($J,node)
(31) +92”AccessTest : . . k 0GO($))
(28) +109™MAccessTest : . s x=$%0(@GQ($JI,%x))

Sorted by routine that owns the block

(472) AccessTest
(472) +AccessTest

Monitoring Guide 131

17

Monitoring Processes Using
"PERFSAMPLE

This topic describes the *PERFSAMPL E utility, a tool for analyzing InterSystems IRIS® data platform processes.

The utility performs high frequency sampling of selected processes on the system, and analyzes the data to determine where
the processes are spending most of their time. It presents an easily navigable breakdown of the sampled activity, which can
provide insights into your system. For example, you may discover application bottlenecks by checking ECP requests, or
identify overall system bottlenecks by reviewing the types of wait events.

To get started, run *"PERFSAMPLE in the %SYS namespace:

Terminal

USER>set $namespace = ""%SYS"
%SYS>do ~PERFSAMPLE

17.1 Collecting Samples

The following message appears as soon as you run *PERFSAMPLE:

Terminal

This utility performs high frequency sampling of processes on the system,
analyzing and counting data points in different ways to understand where

processes are spending most of their time. On ECP Data Servers, this also
offers sampling of the current request being processed and the states of

the ECPSvrW daemons doing the processing.

1) Sample Local Process Activity
2) Sample ECP Server Requests

Option?

If the instance has no incoming ECP connections from ECP clients (application servers), option 1 above is automatically
selected.
Then specify the following information at the prompts:

1. Specify the processes or ECP connections to sample.

Monitoring Guide 133

Monitoring Processes Using "PERFSAMPLE

» If you are sampling local processes, the prompt looks like this:
Enter a list of PIDs (comma separated), * for all, or ? for "%SS display.

If you enter ?, the routine displays information on all the currently running processes, with the process ID in the
first column, as in the following partial example:

Process Device Namespace Routine CPU,Glob Pr User/Location
7428 CONTROL , 8
1668 WRTDMN 184,2501 9
5168 GARCOL 0,0 8
3512 JRNDMN 1912,401 8
5800 EXPDMN 0,0 8

» Ifyou are sampling ECP connections, the routine first lists the available connections alphabetically (with connection
numbers) as in the following example, and then prompts for input:

The following clients are connected:
Conn# Client
9: DBSVR:APP1:IRIS
10: DBSVR:APP2:IRIS
2: DBSVR:APP3:IRIS
1: DBSVR:APP4:IRIS
4: DBSVR:APP5:IRIS

Enter *, list of connection numbers (comma separated) or clients.

For ECP connections, you can enter * to select all, a connection number, a client name, or a comma-separated list
of connection numbers and/or client names.

For a given client name, you can specify the fully qualified name, like MYSVR:MYAPPHOST1: IRIS, or — if any
of those three pieces are sufficient to uniquely identify the connection (as is typically true of the client host name
in the middle piece) — then you can abbreviate the name to just that piece.

2. Specify whether to ignore samples where the process is in any of the following states: READ, READW, EVTW, HANG,
SLCT, SLCTW, and RUNW. When sampling ECP connections, only events where the ECPSvrW process is non-idle are
recorded.

Selecting YES (the default) reduces the number of events that *"PERFSAM PL E records. When monitoring many
processes, this speeds analysis and uses less memory.

3. Specify the number of samples to collect per second.

4. Specify the total number of seconds to collect samples.
The following shows an example:

Terminal

Enter a list of PIDs, * for all, or ? for ~%SS display: *

Ignore samples where the process appears idle (READ, HANG, etc)?
Yes =>

Sample rate per second: 1000 =>

Number of seconds to sample: 30 =>

17.2 Examining and Analyzing Samples

After collecting the samples, you may view an analysis. An analysis is a summary of one or more dimensions, or components,
of the sampled processes. That is, an analysis sorts the sampled information according to the selected dimensions.

This section includes the following:

134 Monitoring Guide

Examining and Analyzing Samples

* Anexample of using a predefined analyses.
» Information about creating a custom analyses.

* A description of the available analysis dimensions.

Use the following keys to navigate within the analyzer:

Key Input Navigation Action

Up arrow Or U Move the selector up

Down arrow OF D Move the selector down

Right arrow Or Enter Select the current item

Left arrow Or Backspace Go back to the previous level

c Cycles through the following count displays:

* Percent of total
¢ Raw count
» Percent of the current subset

* (If multiple jobs are sampled) Average number of jobs found
concurrently in this state

N or CTRL-D Next page (if multiple pages)
P or CTRL-U Previous page (if multiple pages)
Q Quit "PERFSAMPLE

The main landing page looks like:

Terminal

— PERFSAMPLE for Local Process Activity. 1.710949s at 11/17/2020 15:58:31
28479 samples | CPULoad* 0.91

Multiple jobs included: 1290 samples per job

———————————————————————————— *?® for help-———— -
Select an analysis to view:

New Analysis (press "+" any time)

Using CPU? -> PID -> Process State

Using CPU? -> Routine -> Namespace -> Process State

Process State -> Routine -> PID

Kernel Wait State -> Routine -> PID

17.2.1 Predefined Analysis Example

Below is an example of an analysis that begins with the Process State dimension.

In this example, "PERFSAMPLE found 76755 samples of processes in a sample-able state (non-idle if the option to
ignore idle was selected) out of 319994 total samples:

Monitoring Guide 135

Monitoring Processes Using "PERFSAMPLE

Terminal

— PERFSAMPLE for Local Process Activity. 3.89s at 11/17/2020 16:59:59
76755 events in 319994 samples [24.0 %-total] | CPULoad* 8.22
Multiple jobs included: 2191 samples per job
———————————————————————————— *?" for help-———————————
Process State [24.0 %-total]

GGET [8.46 %-total]

RUN [5.88 %-total]

GDEF [3.16 %-total]

GSETW [1.63 %-total]

BSETW [1.21 %-total]

GDEFW [1.18 %-total]

GGETW [0.931 %-total]

SEMW [0.685 %-total]

GSET [0.311 %-total]

LOCKW [0.144 %-total]

LOCK [0.0644 %-total]

INCRW [0.0641 %-total]

BSET [0.0513 %-total]

Initially, the values appear as a percent of the total number of samples. The most common Process State value sampled
in this case was GGET, which represents 8.46% of the total 319994 samples.

Pressing c cycles through how this count is displayed. For example, you can display the above information as a raw count
of samples:

Terminal

Process State [76755]
> GGET [27083]

RUN [18823]

GDEF [10121]

You can also view the information as a percent of qualifying samples (in this case, samples that had a non-idle Process
State):

Terminal

Process State [24.0 %-total]
> GGET [35.3 %-subset]

RUN [24.5 %-subset]

GDEF [13.2 %-subset]

Finally, you can view the average number of jobs concurrently each state:

Terminal

Process State [24.0 %-total]
GGET [12.4 jobs]
RUN [8.59 jobs]
GDEF [4.62 jobs]

Selecting GGET with the Right Arrow key moves to the next dimension, ordering the values of that dimension for samples
where the first dimension had value GGET. You can navigate freely between the dimensions using the arrow keys.

17.2.2 Creating a Custom Analysis

Select the New Analysis option from the main landing page to create a custom analysis. You can also create an custom
analysis using one of these shortcuts:

136 Monitoring Guide

Examining and Analyzing Samples

Key Input Shortcut

+ key Add a dimension to the current analysis (when in an
analysis)

* key Begin a new analysis with the current item as the first
dimension

Adding a new analysis brings you to the following screen:

Terminal

New Analysis:

Specify a comma-delimited list of dimensions upon which to analyze samples.
For example, "state,ns,rou" means first count each unique state the sampled
processes were in; then for each state, count the namespace from the samples
in that state; and finally for each state->namespace pair, count each unique
routine name. In other words, report on routines by namespace by state.

The following dimensions are available:

cpu - Using CPU? (process state indicates expected CPU use)

ns - Namespace (current namespace)

pid - PID (process 1ID)

rou - Routine (name of current routine)

state - Process State (process state string, e.g. GSETW)

trace - Kernel Trace (alternative to "state” w/ kernel-level detail)

waits - Kernel Wait State (kernel-level condition that delayed the process)
wtrace - Reverse Kernel Trace (revese kernel trace, stop at any wait state)

Enter dimension list:

From here, enter the list of dimensions you would like to analyze as described by the prompt. Once you press Enter, you
may navigate the analysis as described above.

17.2.3 Analysis Dimensions

The dimensions for analyses are described within the *PERFSAM PL E tool. This section provides some additional infor-
mation.

* cpu - Using CPU? (process state indicates expected CPU use)

Note: The yes or no value for cpu is not a true measure of on-cpu time, but an estimate. "PERFSAMPLE infers
CPU use from the process state, and InterSystems IRIS state tracking may not directly correlate to CPU use.

If the process is waiting for the OS scheduler to make the CPU available to it as a result of (instantaneous or
persistent) over-utilization of the CPU, this can also lead to inaccuracy in cpu.

* ns - Namespace (current namespace)

e pid-PID (process ID)

* rou - Routine (name of current routine)

» state - Process State (process state string, e.g. GSETW)

* walits - Kernel Wait State (kernel-level condition that delayed the process). See the following section for more

information.

In general, the following dimensions are only useful when troubleshooting with the InterSystems Worldwide Response

Center (WRC):

* trace - Kernel Trace (alternative to 'state’ w/ kernel-level detail)

» wtrace - Reverse Kernel Trace (revese kernel trace, stop at any wait state)

Monitoring Guide 137

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Monitoring Processes Using "PERFSAMPLE

The trace and wtrace dimensions have a hierarchical organization. Selecting an ancestor, denoted with an ellipsis (- - .),
moves down a hierarchy level. Selecting a non-ancestral item goes to the next dimension of analysis. The h key toggles
between this hierarchical view and a flattened view. Pressing the a key on an ancestor aggregates subsequent dimensions
for all its descendants.

17.2.3.1 The waits Dimension

The waits dimension is null if the process was not found to be waiting on anything internal to the InterSystems IRIS
kernel. A non-null value indicates a condition which required the process to wait (to block internally).

It's important to note that these are internal conditions leading to the process waiting outside of the application's direct
control. As such, waiting due to a conflicting LOCK command, a $SYSTEM.Event, and the like do not count here.

Nonetheless, many of the values, particularly the more common ones, are things that the application can influence indirectly.
For example, if samples show that a key application process is often waiting for diski o, this indicates that the process is
waiting to read database blocks from disk and could possibly benefit from parallelization, prefetching, or more database
cache. Similarly, a process that samples show is often waiting on inusebufwt is encountering database block collisions
that may need investigation at the application level (with the help of the "BLKCOL utility). The values in this dimension
take on the following mnemonic values, which are subject to change in the future:

» diskio: waiting for database physical block read

* inusebufwt: waiting due to block collision ("BLKCOL utility may help identify application cause)
* expand: waiting for database expansion

» ecpwait: waiting for an answer from the ECP server

e jrniowait: no space in journal buffers, waiting for journal 1/0

e jrnsyncblk: waiting for journal data to be committed

» jrnlckwait: waiting to access journal buffer

* mirrorwait: waiting for active backup mirror member

* mirrortrouble: blocked due to mirror trouble state

» globwait: waiting because of an internal condition blocking global updates

e aiowait: waiting for asynchronous disk 1/0 to complete

e wdqwai t: waiting for a write cycle to complete

» freebuf: global buffers are completely exhausted and waiting for database writes
» gfownwait: access to database is blocked

* resengXYZ: waiting on an internal resource XYZ

Note: While many of these correspond to a canonical process state that includes the W letter flag (e.g. GSETW, GORDW,
etc) and not all do — diskio is a very common example — and not all cases of the W state flag have an internal
reason reflected here (e.g. LOCKW as mentioned above).

17.3 Save Analysis

After viewing the samples, you may save them for future analysis. To do so, press the Left Arrow from the analysis landing
page. This returns you to the initial Collecting Samples page, but with the additional option to Save Samples to File.

138 Monitoring Guide

See Also

Select this option and enter the desired filename, such as perfsample001. txt. "PERFSAM PLE saves the file to the
install-dir\mgr directory.

To open a saved analysis, launch *PERFSAMPL E using the LOAD tag and specify the file to open. For example:

Terminal

USER>set $namespace = ""%SYS"
%SYS>do LOADPERFSAMPLE
File: C:\MyIRIS\mgr\perfsample00l.txt

A"PERFSAM PLE loads the file, allowing you to analyze and examine the saved samples.

17.4 See Also

» Controlling InterSystems IRIS Processes (general information on InterSystems processes)

« "BLKCOL utility (for monitoring block collisions, which occur when a process is forced to wait for access to a block)

Monitoring Guide 139

Monitoring InterSystems IRIS Using SNMP

This topic describes the interface between InterSystems IRIS® data platform and SNMP (Simple Network Management
Protocol). SNMP is a communication protocol that has gained widespread acceptance as a method of managing TCP/IP
networks, including individual network devices, and computer devices in general. Its popularity has expanded its use as
the underlying structure and protocol for many enterprise management tools. This is its main importance to InterSystems
IRIS: a standard way to provide management and monitoring information to a wide variety of management tools.

SNMP is both a standard message format and a standard set of definitions for managed objects. It also provides a standard
structure for adding custom-managed objects, a feature that InterSystems IRIS uses to define its management information
for use by other applications.

A.1 Using SNMP with InterSystems IRIS

SNMP defines a client-server relationship where the client (a network management application) connects to a server program
(called the SNMP agent) which executes on a remote network device or a computer system. The client requests and receives
information from that agent. There are four basic types of SNMP messages:

» GET - fetch the data for a specific managed object

« GETNEXT - get data for the next managed object in a hierarchical tree, allowing system managers to walk through
all the data for a device

» SET - set the value for a specific managed object

» TRAP -an asynchronous alert sent by the managed device or system

The SNMP MIB (Management Information Base) contains definitions of the managed objects. Each device publishes a
file, also referred to as its MIB, which defines which portion of the standard MIB it supports, along with any custom definitions
of managed objects. For InterSystems IRIS, this is the ISC-IRIS.mib file, located in the install-dir\SNMP directory.

A.2 InterSystems IRIS as a Subagent

The SNMP client connects to the SNMP agent which is listening on a well-known address, port 161. Since the client
expects to connect on this particular port, there can only be one SNMP agent on a computer system. To allow access to
multiple applications on the system, developers can implement master agents, which may be extended or connected to
multiple subagents. InterSystems has implemented the InterSystems IRIS SNMP interface as a subagent, designed to
communicate through an SNMP master agent.

Monitoring Guide 141

Monitoring InterSystems IRIS Using SNMP

Most operating systems that InterSystems IRIS supports provide an SNMP master agent which is extensible in some way
to support multiple subagents. Many of these agents, however, implement their extensibility in a proprietary and incompat-
ible manner. InterSystems IRIS implements its subagent using the Agent Extensibility (AgentX) protocol, an IETF-proposed
standard as described in RFC 2741.

Some of the standard SNMP master agents support AgentX. If the SNMP master agent supplied by an operating system is
not AgentX-compatible, you can replace it with the public domain Net-SNMP agent.

Note: The exception is the Windows standard agent which does not support AgentX and for which the Net-SNMP version
may not be adequate. For this exception, InterSystems supplies a Windows extension agent DLL, iscsnmp.dll,
which handles the connection between the standard Windows SNMP service extension API and the InterSystems
IRIS AgentX server.

A.3 Managing SNMP in InterSystems IRIS

Since SNMP is a standard protocol, the management of the InterSystems IRIS subagent is minimal. The most important
task is to verify that the SNMP master agent on the system is compatible with the Agent Extensibility (AgentX) protocol
(see InterSystems IRIS as a Subagent) and it is active and listening for connections on the standard AgentX TCP port 705.
On Windows systems, the system automatically installs a DLL to connect with the standard Windows SNMP service.
Verify that the Windows SNMP service is installed and started either automatically or manually.

Important: Some SNMP master agents, notably Net-SNMP on Linux, do not enable AgentX by default and do not
use TCP port 705 by default once they are enabled. For Net-SNMP you must modify the snmpd.conf file
to enable communications with the InterSystems IRIS subagent. Recent versions of Net-SNMP also
implement VACM (View-based Access Control Model) security and, by default, only allow access to the
mib-2.system subtree; the InterSystems IRIS subagent starts and runs without error, but no SNMP requests
are forwarded to InterSystems IRIS. You must expand the “views” defined in snmpd.conf to include the
InterSystems IRIS MIB subtree.

Next, enable the monitoring service using the following steps:

1. Navigate to the Services page in the Management Portal (System Administration > Security > Services).

2. Click the %Ser vi ce_Moni t or service.

3. Select the Service enabled check box and click Save.

4. Return to the list of services page and ensure that the %8er vi ce_Moni t or service is enabled.

Finally, configure the InterSystems IRIS SNMP subagent to start automatically at InterSystems IRIS startup using the fol-

lowing steps:

1. Navigate to the Monitor Settings page in the Management Portal (System Administration > Configuration > Additional
Settings > Monitor).

2. Select Yes for the Start SNMP Agent at System Startup setting and click Save.

3. When you edit this setting, the InterSystems IRIS end of the SNMP interface immediately stops and starts.

You can also start and stop the InterSystems IRIS SNMP subagent manually or programmatically using the * SNM P routine:

Do start”SNMP(<port>,<timeout>)
Do stop”SNMP

142 Monitoring Guide

https://www.faqs.org/rfcs/rfc2741.html

SNMP Troubleshooting

where <port> is the TCP port for the connection (default is 705) and <timeout> is the TCP port read timeout value (default
is 20 seconds). Until the <timeout> value is reached, InterSystems IRIS logs any problems encountered while establishing
a connection or answering requests in the SNMP.LOG file in the install-dir\mgr directory.

Note: When the SNMP master agent is restarted, it may be necessary to manually restart the InterSystems IRIS SNMP
subagent using the ~SNM P routine, as described in the foregoing.

A.4 SNMP Troubleshooting

The InterSystems IRIS subagent (running the ~ SNM P routine) depends on the correct installation and configuration of the
SNMP master agent supplied by the operating system. As noted in InterSystems IRIS as a Subagent, there are two main
ways in which the ~SNM P routine communicates with this master agent:

* Primarily, "SNMP uses the AgentX protocol on TCP port 705.

* OnWindows, *"SNMP uses a Windows extension agent DLL installed as iscsnmp.dll.

Detailed instructions for configuring the SNMP agent should be supplied with the operating system, and system managers
should take some time to understand how to do this. The following are some basic guidelines and tips for troubleshooting
if problems are encountered in getting InterSystems IRIS to communicate with the SNMP agent.

A.4.1 All Systems

e Make sure the SNMP agent is working independently of InterSystems IRIS and you can at least query the
mib-2.system tree for general system information. If this fails, on Windows check the Windows SNMP Service;
on UNIX®/Linux see if the SNMP daemon (snmpd) is running.

» If you can successfully query the SNMP system information but not the InterSystems IRIS MIB, then check for a
background process in InterSystems IRIS running the ~ SNM P routine. Try starting it using the $$start* SNM P()
function. If the routine starts but does not continue running, check for errors in the messages.log and SNMP.log log
files in the InterSystems IRIS install-dir/mgr directory. On Windows, iscsnmp.dll logs any errors it encounters in
Windows\System32\snmpdbg.log (on a 64—bit Windows system, the file is in the SyswoOwe64 subdirectory).

» Make sure the InterSystems IRIS %Service_Monitor service is enabled.

* More information can be logged to the SNMP.log file if you set *SY S(*MONITOR”,”SNM P”,”"DEBUG”)=1 in the
%SYS namespace and restart the *SNM P InterSystems IRIS subagent process. This logs details about each message
received and sent.

A.4.2 Windows Systems

» Not all Windows versions install the Windows SNMP service by default. You may need to do this as an additional
step. Make sure the Security tab of the Properties dialog for the service has at least a public community with READ
rights. To send SNMP traps, you must define a Community Name and Destination on the Trap tab of the properties
dialog.

e InterSystems IRIS expects the SNMP service to be installed before you install InterSystems IRIS, so it can add
iscsnmp.dll to the proper Registry keys. Once InterSystems IRIS is installed, the SNMP service must be restarted so
that it properly loads iscsnmp.dll and can find and communicate with the new InterSystems IRIS instance.

Monitoring Guide 143

Monitoring InterSystems IRIS Using SNMP

Note: If InterSystems IRIS is installed before the SNMP service, iscsnmp.dil cannot be properly registered, and
you must use the set myStatus=$$Register* SNM P() function to do this after the Windows SNMP service
is installed. Once this is done the SNMP service must be restarted.

* OnWindows, the $$star t* SNM P() function only signals the SNMP service, and the InterSystems IRIS * SNM P process
is actually started by a callback from the SNMP service into InterSystems IRIS. It may take a few seconds for the
process to start, and a few more seconds before it can respond to queries.

A.4.3 UNIX® Systems

Many UNIX operating systems (IBM AIX®) do not support the AgentX protocol at this time. If your system does not
support AgentX, you must install a separate SNMP agent which supports AgentX, such as Net-SNMP.

A.4.4 Linux and macOS with Net-SNMP

» AgentX support is not enabled by default, and the default port is not 705. You must modify the snmpd.conf file and
add master agentx and agentXSocket TCP:localhost: 705, or use snmpd -x TCP:localhost: 705 on the command
line.

« Basic system information like syslocation, syscontact and sysservices must be defined in snmpd.conf to
enable successful startup of the snmpd daemon.

» Recent versions of Net-SNMP also implement VACM (View-based Access Control Model) security and, by default,
allow access to the mib-2.system subtree only; as a result, the InterSystems IRIS subagent starts and runs without
error, but no SNMP requests are forwarded to InterSystems IRIS. You must expand the “views” defined in snmpd.conf
to include the InterSystems IRIS MIB subtree.

» Tosend SNMP traps, you must define a destination using the trapsink parameter in snmpd.conf, for example trapsink
192.16.61.36 public.

A.5 InterSystems IRIS MIB Structure

All of the managed object data available through the InterSystems IRIS SNMP interface is defined in the InterSystems
IRIS MIB file, ISC-IRIS.mib, which is located in the install-dinSNMP directory. Typically an SNMP management application
must load the MIB file for the managed application to understand and appropriately display the information. Since this
procedure varies among applications, consult your management application documentation for the appropriate way to load
the InterSystems IRIS MIB.

The specific data defined in the InterSystems IRIS MIB is documented in the file itself and, therefore, is not repeated here.
However, it may be valuable to understand the overall structure of the InterSystems IRIS MIB tree, especially as it relates
to multiple instances on the same system.

Note: The best way to view the MIB tree is to load the MIB into a management application or MIB browser. These tools
display the MIB as a tree with object IDs (OIDs), matching text representations of the objects, and descriptions
of the objects.

SNMP defines the Structure of Management Information (SMI), a specific, hierarchical tree structure for all managed
objects, which is detailed in RFC 1155. Each managed object is named by a unique object identifier (OID), which is written
as a sequence of integers separated by periods, for example: 1.3.6.1.2.1.1_1. The MIB translates this dotted integer
identifier into a text name.

144 Monitoring Guide

https://www.faqs.org/rfcs/rfc1155.html

InterSystems IRIS MIB Structure

The standard SNMP MIB defines many standard managed objects. To define application-specific extensions to the standard
MIB, as InterSystems IRIS does, an application uses the enterprise branch which is defined as:

iso.org.dod. internet._private._enterprises (1.3.6.1.4.1)

The Internet Assigned Numbers Authority (IANA) assigns each organization a private enterprise number as the next level
in the hierarchy. For InterSystems IRIS this is 16563, which represents intersystems.

Below this, InterSystems IRIS implements its enterprise private subtree as follows:

» The level below intersystemsis the “product™ or application ID level. For InterSystems IRIS thisis .4 (isclris).
This serves as the MIB module identity.

» The next level is the “object” level, which separates data objects from notifications. For InterSystems IRIS, these are
-1 (irisObjects)and .2 (irisTraps). By convention, the intersystems tree uses a brief lowercase prefix added
to all data objects and notification names. For InterSystems IRIS this is iris.

» The next level is the “table” or group level. All data objects are organized into tables, even if there is only one instance
or “row” to the table. This serves to organize the management data objects into groups. This is also necessary to
support multiple InterSystems IRIS instances on one machine. All tables use the InterSystems IRIS instance name as
the first index of the table. The tables may also have one or more additional indexes.

* The next level, which is always -1, is the *“conceptual row” for the table (as required by the SNMP SMI).
» Finally, the individual data objects contained in that table, including any that are designated as indexes.

» The notifications (traps) are defined as individual entries at the same hierarchical level as the “table”. For more
information, see InterSystems IRIS SNMP Traps.

» InterSystems IRIS-specific auxiliary objects sent via notifications (traps) are defined as individual entries at the same
hierarchical level as the “table”. For more information, see InterSystems IRIS SNMP Traps.
For example, encode the size of a database as:

1.3.6.1.4.1.16563.4.1.3.1.6.4.84.69.83.84.1

This translates to:

iso.org.dod.internet._private.enterprises.intersystems.isciris.irisObjects
irisDBTab.irisDBRow. irisDBSize.TEST(instname) .1(DBindex)

A.5.1 Extending the InterSystems IRIS MIB

Application programmers can add managed object definitions and extend the MIB for which the InterSystems IRIS subagent
provides data. This is not intended to be a complete MIB editor or SNMP toolKkit; rather, it is a way to add simple application
metrics that you can browse or query through SNMP.

Note: The objects must follow the basic InterSystems IRIS SNMP structure, there is limited support for SNMP table
structures (only integer-valued indexes are supported), and SNMP traps are not created (see the %Monitor.Alert
class). A basic understanding of SNMP structure of management information is helpful.

To create these objects do the following:

1. Create InterSystems IRIS object definitions in classes that inherit from the %Monitor.Adaptor class. See the Inter Systems
Class Reference for details about adding managed objects to the %Monitor package.

2. Execute an SNMP class method to enable these managed objects in SNMP and create a MIB definition file for man-
agement applications to use. The method to accomplish this is Monitor Tools.SNMP.CreateM | B().

See the MonitorTools.SNMP class documentation for details of the CreateM I B() method parameters.

Monitoring Guide 145

Monitoring InterSystems IRIS Using SNMP

The method creates a branch of the private enterprise MIB tree for a specific application defined in the %Monitor database.
In addition to creating the actual MIB file for the application, the method also creates an internal outline of the MIB tree.
The InterSystems IRIS subagent uses this to register the MIB subtree, walk the tree for GETNEXT requests, and reference

specific objects methods for gathering the instance data in GET requests.

All the managed object definitions use the same general organization as the InterSystems IRIS enterprise MIB tree, that
is: application.objects._table._row.item.indices. The first index for all tables is the InterSystems IRIS
application ID. All applications must register with the IANA to obtain their own private enterprise number, which is one
of the parameters in the CreateM | B() method.

To disable the application in SNMP, use the M onitor Tools.SNM P.DeleteM | B() method. This deletes the internal outline
of the application MIB, so the InterSystems IRIS subagent no longer registers or answers requests for that private enterprise

MIB subtree.

For an example of defining a user Monitor class, see Sample User-Defined SNMP Monitor Class.

A.5.2 InterSystems IRIS SNMP Traps

In addition to the object data and metrics available through SNMP queries, InterSystems IRIS can send asynchronous alerts
or SNMP traps. The following table describes the InterSystems IRIS-specific SNMP traps.

Table I-1: InterSystems IRIS SNMP Notification Objects (Traps)

Trap Name (Number)
irisStart (1)

irisStop (2)
irisDBExpand (3)
irisDBOutOfSpace (4)

irisDBStatusChange (5)
irisDBWriteFail (6)

irisWDStop (7)
irisWDPanic (8)

irisLockTableFull (9)

irisProcessFail (10)

irisECPTroubleDSrv (11)

irlsECPTroubleASrv (12)

Description

The InterSystems IRIS instance has been started.

The InterSystems IRIS instance is in the process of shutting down.
An InterSystems IRIS database has expanded successfully.

Future expansion of an InterSystems IRIS database may be limited; there is
not enough free space on the file system for 10 more expansions or there is
less than 50 MB of free space.

The read/write status of an InterSystems IRIS database has been changed.

A write to an InterSystems IRIS database has failed. It includes the
InterSystems IRIS error code for the failed write.

The write daemon for an InterSystems IRIS instance has stalled.

The write daemon for an InterSystems IRIS instance has entered “panic”
mode; that is, the write daemon is out of buffers and must write database
blocks directly to disk without first committing them to the Write Image Journal
(WI1J) file.

The lock table for an InterSystems IRIS instance is full, which causes
subsequent Locks to fail.

A process has exited InterSystems IRIS abnormally (due to an access
violation). For detailed information, see the messages.log file.

A connection to this ECP Data Server for an InterSystems IRIS database has
encountered a serious communication problem. For detailed information, see
the messages.log file.

A connection from this ECP Application Server to a remote InterSystems IRIS
database has encountered a serious communication problem. For detailed
information, see the messages.log file.

146

Monitoring Guide

Sample User-Defined SNMP Monitor Class

Trap Name (Number)

irisAuditLost (13)

irisLoggedError (14)

irisLicenseExceed (15)

irisEventLogPost (16)
irisAppAlert (100)

Description

InterSystems IRIS has failed to record an Audit event. The most likely cause
is a problem with space for the Audit database, which requires operator
assistance.

A “severe ” error has been logged in the messages.log file. This trap includes
the error message defined in irisSysErrorMsg.

Arequest for a license has exceeded the number of licenses currently available
or allowed.

An entry posted in the Interoperability Event Log.

This is a generic trap that can be used by InterSystems IRIS applications to
generate alerts via SNMP. For detailed information about how this trap can
be used, see the %Monitor.Alert.External class method.

The following table describes the InterSystems IRIS-specific auxiliary objects that can be sent in the traps described in the

preceding table.

Table I-2: InterSystems IRIS-specific Auxiliary Objects Sent in Traps

Auxiliary Object
Name (Number)

irisDBWriteError (1)

irisApp (2)

irisAppSeverity (3)

irisApptext (4)

Description

The InterSystems IRIS-specific error code for a failed database write. Possible values
are: <DATABASE>, <DISKHARD>, <BLOCKNUMBER>, <FILEFULL> or
<DATABASE MAP LABEL>.

A short text string (maximum of 20 characters) that identifies the application that
generated (or was the source of) an irisAppAlert trap.

A code that indicates the severity of the problem for a irisAppAlert trap. The code
can be 0 (info), 1 (warning), 2 (severe), or 3 (fatal).

A text string description (maximum of 1024 characters) of the problem, error, or event
that caused the irisAppAlert trap.

A.6 Sample User-Defined SNMP Monitor Class

This section describes an example of how to define a user Application Monitor class (see Application Monitor) that you
can query via SNMP. The Application Monitor includes only properties with %Monitor data types in the SNMP data.

Example Sample Class

The following is the sample class for this example:

Class Definition

Class SNMP.Example Extends %Monitor.Adaptor
{

/// Give the application a name. This allows you to group different
/// classes together under the same application level in the SNMP MIB.
/// The default is the same as the Package name.

Parameter APPLICATION = "MyApp";

/// This groups a set of properties together at the 'table" level of the
/// SNMP MIB hierarchy. The default is the Class name.
Parameter GROUPNAME = "MyTable';

Monitoring Guide

147

Monitoring InterSystems IRIS Using SNMP

/// An integer metric counter
Property Counterl As %Monitor.Integer;

/// Another integer metric counter
Property Counter2 As %Monitor.Integer;

/// A status indicator as a string data type
Property Status As %Monitor.String;

/// The method is REQUIRED. It is where the Application Monitor
/// calls to collect data samples, which then get picked up by the
/// "SNMP server process when requested.
Method GetSample() As %Status
{

set ..Counterl=%$r(200)

set ..Counter2=200+$r(100)

set n=$r(4)
set ..Status=$s(n=1:"Crashed",n=2:"Warning",n=3:"Error',1:"Normal'")
Quit $$$0K

}

Before compiling this class in a user namespace, InterSystems IRIS must load supporting classes into the namespace; these
classes are required to store the data samples for SNMP.

To load the classes, run 2% SY SMONMGR, as described in Using *%SYSMONMGR to Manage Application Monitor,
and do the following:

e Select option 2, Manage Monitor Classes.

e Select option 3, Register Monitor System Classes.

When you compile the sample class, it creates the SNMP.Sample.Example class to store the sample data.

Important: Do not delete generated sample classes explicitly; if you select both the Application Monitor and generated
sample classes for deletion, the sample class routines remain although the monitor class routines are deleted,
which causes an error. To ensure that all sample class routines are properly removed, delete only the
Application Monitor class that generated it; when you delete the monitor class both the monitor class and
generated sample class, as well as related routines for both classes, are deleted. For example, to delete a
sample class (for example, SNMP.Sample.Example), use the Management Portal to delete the monitor class
from which it is generated (that is, SNMP.Example).

Run *% SY SMONM GR to activate the sample class and start the Application Monitor to collect samples:

1. Select option 2, Manage Monitor Classes.

2. Selectoption 1, Activate/Deactivate a Monitor Class.

3. To see an numbered list of registered Monitor Classes, enter ?.

4

Enter the number of Monitor Class you want to activate; for example, to activate a user-defined class named
SNMP.Example, enter the number next to the class name.

Select option 6, Exiit (to return to the Application Monitor main menu).
Select option 1, Manage Application Monitor.
Select option 1, Start Application Monitor.

Select option 5, Exit (to return to the Application Monitor main menu).

© o N o O

Select option 6, Exit (to exit from Application Monitor main menu).

Note: For information about configuring and using Application Monitor, see Application Monitor.

148 Monitoring Guide

Sample User-Defined SNMP Monitor Class

Example of Creating a User MIB
To create the SNMP MIB, run the M onitor Tools.SNM P: CreateM | B method from the %SYS namespace. See the
MonitorTools.SNMP class documentation for details.

The input parameters for the method are similar to the following:
CreateMIB(*"MyApp"', ""USER",99990, 1, "mycorp", "myapp", 'mc", " "MC-MYAPP*, "*Unknown"*,1)

Important: Do not use 99990 as the Enterprise ID for production; each organization should register with the IANA
for their own ID.

USER>set $namespace = "%SYS"

%SYS>Do ##class(MonitorTools.SNMP) .CreateMIB(*'"MyApp'*,''USER',99990,1, ""mycorp’,
"myapp',""'mc", "MC-MYAPP",""Unknown'", 1)

Create SNMP structure for Application - MyApp

Group - MyTable
Counterl Integer
Counter2 Integer
Status = String

Create MIB file for MyApp

Generate table MyTable
Add object Counterl
Add object Counter2
Add object Status

%SYS>

This creates the MC-MYAPP.MIB file in your default directory (install-dirimgr\User), which you can load into your SNMP
management application.

Note: You may need to restart the SNMP master agent and the InterSystems IRIS * SNM P service on your system before
each recognizes this MIB.

-- MIB file generated for mcMyApp product.
-- Sep 16, 2008

MC-MYAPP DEFINITIONS ::= BEGIN
IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Counter32, Gauge32, Integer32

FROM SNMPv2-SMI

DisplayString

FROM SNMPv2-TC

enterprises

FROM RFC1155-SMI

cacheSysIndex

FROM 1SC-IRIS;

mcMyApp MODULE- IDENTITY
LAST-UPDATED ''200809161700Z"
ORGANIZATION "'mycorp"
CONTACT-INFO *'

Unknown"*
DESCRIPTION ****
z:= { mycorp 1 }
mycorp OBJECT IDENTIFIER ::= { enterprises 16563 }
myappObjects OBJECT IDENTIFIER ::= { mcMyApp 1 }

Monitoring Guide 149

Monitoring InterSystems IRIS Using SNMP

-- Begin tables

-- Table myappMyTable

myappMyTable OBJECT-TYPE
SYNTAX SEQUENCE OF myappMyTableR
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

::= { myappObjects 1 }

myappMyTableR OBJECT-TYPE
SYNTAX myappMyTableR
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

""Conceptual row for MyTable table."
INDEX { cacheSyslndex }
::= { myappMyTable 1 }

myappMyTableR ::=
SEQUENCE {
myappCounterl Integer32
myappCounter?2 Integer32
myappStatus DisplayString

myappCounterl OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

::= { myappMyTableR 1 }

myappCounter?2 OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

::= { myappMyTableR 2 }

myappStatus OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"'Status"

:= { myappMyTableR 3 }
-- End of MyTable table
myappTraps OBJECT IDENTIFIER ::= { mcMyApp 2 }

150

Monitoring Guide

Monitoring InterSystems IRIS Using Web
Services

This topic introduces and briefly describes how to use InterSystems IRIS® data platform support for the WS-Management
specification, which enables you to remotely monitor an InterSystems IRIS instance via SOAP.

B.1 Overview of InterSystems IRIS Support for
WS-Monitoring

Following the WS-Management specification, the SYS.WSMon package provides a web service that you can use to remotely
monitor an InterSystems IRIS instance. It is functionally similar to the SNMP interface (see Monitoring InterSystems IRIS
Using SNMP), but uses the built-in InterSystems IRIS web service services support.

The support for WS-Management includes the following elements:

* The Log Monitoring Web Service (SYS.WSMon.Service) that provides methods that return information about an
InterSystems IRIS instance.

* AnInterSystems IRIS web service client (SYS.wSMon.Client) that can invoke methods in this Monitoring Web Service
or in the Monitoring Web Service of another InterSystems IRIS instance.

Instead of using this web client, you can create your own web client, possibly using third-party technology.
» Several XML-enabled classes that this web service and client use to represent monitoring information.
These classes include SYS.wSMon.wsEvent, which can represent events.

e A sample event sink web service (SYS.WSMon.EventSink) that can receive and process events. Via a SOAP call, you
can subscribe to this sample event sink service so that it will receive events from any Monitoring Web Service.

Instead of using this sample, you can create your own, possibly using third-party technology.

These classes are available only in the %SYS namespace.

For basic monitoring, you can use the Log Monitoring Web Service with a web client in another instance. The image below
shows a monitoring client requesting monitoring data from a target instance. The Log Monitoring Web Service on the target
instance responds, sending the client monitoring data.

Monitoring Guide 151

https://www.dmtf.org/standards/published_documents/DSP0226_1.1.pdf

Monitoring InterSystems IRIS Using Web Services

Instance 1

Monitoring Web Service
monitors this instance

Requests for monitoring data
for instance 1

Instance 2

F Y

Monitoring Client

dafa

h 4

In more advanced cases, the web client subscribes an event sink service, possibly running on another InterSystems IRIS

instance. For example, in the image below the monitoring client sends a request to the primary instance to subscribe a third
instance. The primary instance’s Monitoring Web Service responds by sending subscription ID to the client, and thereafter
sends events to the third instance. The third instance can process these events in a number of ways, such as to create custom

reporting or alerting.

Instance 1

Monitoring Web Service
monitors this instance

Request to subscribe
instance 3 to receive events

Instance 2

&~

Monitoring Client

events

subscription 1D

Instance 3

Y

Event Sink Web Service
Processes events sent from any
Monitoring Web Service

Custom reporting,
——» alerting, or other
processing

Your event sink web service can perform any processing needed by the business.

For information on generating web services and web clients from a WSDL, see Creating Web Services and Web Clients.

B.2 Support Details

InterSystems supports the following parts of the WS-Management specification:

o« wxf:Get
e wsen:Enumerate
e wsen:Pull

* wsen:Release

152

Monitoring Guide

URL for the Monitoring Web Service

e wse:Subscribe
* wse:Renew

» wse:Unsubscribe

For more information, see the WS-Management specification (https://www.dmtf.org/standards/published_docu-
ments/DSP0226_1.1.pdf).

B.3 URL for the Monitoring Web Service

For a given InterSystems IRIS instance, the Log Monitoring Web Service is available at the following URL, using the
<baseURL> for your instance:

http://<baseURL>/csp/sys/SYS.WSMon.Service.cls

For example:

http://1ocalhost:8000/csp/sys/SYS.WSMon.Service.cls

Similarly, the WSDL for this web service is available at the following URL, again using the <baseURL> for your instance:

http://<baseURL>/csp/sys/SYS.WSMon.Service.cls?WSDL=1

B.4 Web Methods of the Monitoring Web Service

The SYS.WSMon.Service class provides the following web methods:

EnumBuffer()
method EnumBuffer() as %XML.DataSet

Returns an instance of %XML.DataSet that enumerates the statistics for all buffer sizes. For this instance, the dataset
uses the Sample() class query of the SYS.Stats.Buffer class.

For information on working with %XML.DataSet, see Using Datasets in SOAP Messages or see the class reference
for %XML.DataSet.

Also see the class reference for SYS.Stats.Buffer.
EnumDatabase()
method EnumDatabase() as %XML.DataSet

Returns an instance of %XML.DataSet that enumerates all databases for this instance. For this instance, the dataset
uses the List() class query of the SYS.WSMon.wsDatabase class.

See the comments for EnumBuffer () and see the class reference for SYS.WSMon.wsDatabase.

EnumResource()

method EnumResource() as %XML.DataSet

Monitoring Guide 153

https://www.dmtf.org/standards/published_documents/DSP0226_1.1.pdf
https://www.dmtf.org/standards/published_documents/DSP0226_1.1.pdf

Monitoring InterSystems IRIS Using Web Services

Returns an instance of %XML.DataSet that enumerates statistics for all system resource seizes. For this instance,
the dataset uses the Sample() class query of the SYS.Stats.Resource class.

See the comments for EnumBuffer () and see the class reference for SYS.Stats.Resource.
EnumWriteDaemon()
method EnumWriteDaemon() as %XML.DataSet

Returns an instance of %XML.DataSet that enumerates statistics for all write daemons. For this instance, the dataset
uses the Sample() class query of the SYS.Stats.WriteDaemon class.

See the comments for EnumBuffer () and see the class reference for SYS.Stats.WriteDaemon.
EventCancel()
method EventCancel(id) as %Integer

Cancels the subscription for a given web service; see EventSubscribe().

EventSubscribe()
method EventSubscribe(location) as %String

Subscribes the given web service to receive information about events in this InterSystems IRIS instance. This can
be your own web service or can be the SYS.WSMon.EventSink web service, which is provided as an example. If
you create your own web service, it must follow the WSDL of the SYS.WSMon.EventSink web service.

For location, specify the URL needed to invoke the EventSink() method of the web service, using the <baseURL>
for your instance. For SYS.WSMon.EventSink, you might specify location as the following:

http://<baseURL>/csp/sys/SYS.WSMon.EventSink.cls

Where server is the server on which InterSystems IRIS is running, and port is the port that InterSystems IRIS
uses.

For each event, InterSystems IRIS will attempt to call EventSink() method of the given web service, sending an
instance of SYS.WSMon.wsEvent.

This method returns an ID that you can use to cancel the subscription; see EventCancel().
GetDisk()
method GetDisk() as SYS.Stats.Disk

Returns an instance of SYS.Stats.Disk that contains metrics of disk usage for globals for this instance.

See the class reference for SYS.Stats.Disk.
GetECPAppSvVr()
method GetECPAppSvr() as SYS.Stats.ECPAppSvr

Returns an instance of SYS.Stats.ECPAppSvr that contains ECP application server metrics for this instance.

See the class reference for SYS.Stats.ECPAppSvr.

GetECPDataSvr()

method GetECPDataSvr() as SYS.Stats.ECPDataSvr

154 Monitoring Guide

Monitoring Web Client

Returns an instance of SYS.Stats.ECPDataSvr that contains ECP database server metrics for this instance.

See the class reference for SYS.Stats.ECPDataSvr.

GetGlobal()

method GetGlobal() as SYS.Stats.Global

Returns an instance of SYS.Stats.Global that contains global metrics for this instance.

See the class reference for SYS.Stats.Global.

GetRoutine()

method GetRoutine() as SYS.Stats.Routine

Returns an instance of SYS.Stats.Routine that contains routine metrics for this instance.

See the class reference for SYS.Stats.Routine.

GetSystem()

method GetSystem() as SYS.WSMon.wsSystem

Returns an instance of SYS.WSMon.wsSystem that contains system information about the InterSystems IRIS
instance.

See the class reference for SYS.WSMon.wsSystem.

B.5 Monitoring Web Client

The SYS.WSMon.Client class and related classes are an InterSystems IRIS web service client that can invoke methods of
SYS.WSMon.Server web service in the same InterSystems IRIS instance or another InterSystems IRIS instance.

This web client class uses the following LOCATION parameter, using the <baseURL> for your instance:

Parameter LOCATION = "http://<baseURL>/csp/sys/SYS.WSMon.Service.cls"

Where server is the server on which InterSystems IRIS is running and port is the port that the InterSystems IRIS web service
server uses.

Use this web client in the same way that you use other InterSystems IRIS web service clients:

1.
2.

Create an instance of the web client class.
Set its Location property if needed.

This is necessary if the SYS.WSMon.Server web service that you want to use is on a different machine than the client,
or if it uses a port other than 52773.

Set other properties if needed.

See Creating Web Services and Web Clients.
Invoke a web method.

Examine the value returned by the web method.

The details depend on the web method you invoke; see Web Methods of the Monitoring Web Service and see the class
reference for the return types.

Monitoring Guide 155

Monitoring InterSystems IRIS Using Web Services

The following shows an example Terminal session:

USER>set $namespace = "%SYS"

%SYS>set client=##class(SYS.WSMon.Client).%New()

%SYS>set client.Location="http://localhost:8000/csp/sys/SYS.WSMon.Service.cls"
%SYS>set myroutinestats=client.GetRoutine()

%SYS>write myroutinestats.RtnCallsLocal
19411581

%SYS>write myroutinestats.RtnCallsRemote
0

%SYS>write myroutinestats.RtnCommands
432764817
%SYS>

More typically, you create and use the client programmatically, perhaps to retrieve data for display in a user interface.

Note: Remember that the SYS.WSMon package is available only in %SYS namespace, which means that you must be
in that namespace to perform the steps described here.

B.6 Processing Events

InterSystems IRIS provides a sample web service (SYS.WSMon.EventSink) that can receive and process events sent by any
Log Monitoring Web Service. You can use this web service or create and use your own.

B.6.1 Using the Sample Event Sink Web Service

SYS.WSMon.EventSink is a sample InterSystems IRIS web service service that can receive and process events.

For a given InterSystems IRIS instance, the Log Monitoring Web Service is available at the following URL, using the
<baseURL> for your instance:

http://<baseURL>/csp/sys/SYS.WSMon.EventSink.cls

Where server is the server on which InterSystems IRIS is running and port is the port that the InterSystems IRIS web service
Server uses.

This web service has one method:
CacheEventSink()
Method CacheEventSink(event As SYS.WSMon.wsEvent) As %Integer

On Windows platforms, this sample method displays a popup window when an event occurs; for other platforms,
it adds an entry to ASYS(**"MONITOR™, ""WSMON"*, ""EVENT_RECEIVED"", $h).

This method always returns 1.

156 Monitoring Guide

Processing Events

To subscribe this sample service so that it will receive events from the Monitoring Web Service, do the following in the
Terminal:

USER>set $namespace = "'Ysys"

%SYS>set client=##class(SYS.WSMon.Client) .%New()

%SYS>set eventsinklocation="http://localhost:8000/csp/sys/SYS.WSMon._EventSink.cls"
%SYS>set subscriptionid=client.EventSubscribe(eventsinklocation)

%SYS>write subscriptionid
CacheEventSubscription_2

Here eventsinklocation is the URL for the event sink web service that will process events.

B.6.2 Creating Your Own Event Sink Web Service

To create your own event sink web service, generate a web service from the following WSDL, using the <baseURL> for
your instance:

http://<baseURL>/csp/sys/SYS.WSMon.EventSink.cls?WSDL=1

Where server is the server on which InterSystems IRIS is running and port is the port that the InterSystems IRIS web service
Server uses.

For details, see Creating Web Services and Web Clients.

Then modify the CacheEventSink() method in the generated web service to include your custom logic.

Monitoring Guide 157

Monitoring InterSystems IRIS via REST

Every InterSystems IRIS® data platform instance contains a REST interface that provides statistics about the instance.
This REST API provides a way to gather information from multiple machines running InterSystems IRIS, allowing you to
monitor in detail all instances that comprise your application. The API follows the OpenMetrics standard.

This topic describes the metrics provided by the /api/monitor service. These metrics are compatible with Prometheus, an
open-source monitoring and alerting tool. Configuring Prometheus to scrape multiple connected InterSystems IRIS instances
provides a cohesive view of your entire system, making it easier to evaluate whether the system is behaving properly and
efficiently.

C.1 Introduction to /api/monitor Service

The /api/monitor service provides information about the InterSystems IRIS Instance on which it runs. By default, the
/api/monitor web application is enabled with “Unauthenticated” access. For information about setting up authentication
for this service, see Securing REST Services.

This API has the following two endpoints:
» /api/monitor/metrics, which returns all instance metrics, and can be configured to return specific application metrics.
» /api/monitor/alerts, which returns any system alerts that have been posted since the endpoint was last scraped.

« /api/monitor/interop/interfaces, which returns the number and type of production interfaces running within a specified
time span.

Note: InterSystems IRIS logs any errors in the SystemMonitor.log file, which is located in the install-dir/mgr directory.

C.2 /api/monitor/metrics

The /api/monitor/metrics endpoint returns a list of metrics, which are described in Metric Descriptions. You can also enable
the collection of additional metrics about active interoperability productions, as described in Interoperability Metrics. Create
Application Metrics contains instructions for how to define custom metrics.

To configure Prometheus to scrape an instance of InterSystems IRIS, follow the instructions in First SepsWth Prometheus
(https://prometheus.io/docs/introduction/first_steps/).

Monitoring Guide 159

https://openmetrics.io/
https://prometheus.io/docs/introduction/first_steps/

Monitoring InterSystems IRIS via REST

C.2.1 Metric Descriptions

The metrics are returned in a text-based format, described in the Exposition Formats page of the Prometheus documentation
(https://prometheus.io/docs/instrumenting/exposition_formats/). Each metric is listed on a single line with only one space,

which separates the name from the value.

InterSystems IRIS metrics are listed in the table below. Metric names with a label appear here with line breaks to improve

readability.

Note: This table contains metrics for the version of InterSystems IRIS documented here. As metrics may be added in
newer versions, be sure this documentation matches your version of InterSystems IRIS.

Metric Name

iris_cpu_pct
{id=""ProcessType"}

iris_cpu_usage

iris_csp_activity
{id=""1Paddress:port"}

iris_csp_actual_connections
{id=""IPAddress:port"}

iris_csp_gateway latency
{id=""1Paddress:port"}

iris_csp_in_use_connections
{id=""1Paddress:port"}

iris_csp_private_connections
{id=""1Paddress:port"}

iris_csp_sessions
iris_cache_efficiency

s_db_expansion_size_mb

ri
id=""database"'}

i
{

Description

Percent of CPU usage by InterSystems IRIS process
type. ProcessType can be any of the following:
ECPWorker, ECPCliR, ECPCIiW, ECPSrvR,
ECPSrvW, LICENSESRV, WDAUX, WRTDMN,
JRNDMN, GARCOL, CSPDMN, CSPSRV, ODBCSRC,
MirrorMaster, MirrorPri, MirrorBack,
MirrorPre, MirrorSvrR, MirrorJrnR,
MirrorSK, MirrorComm

(see Secure InterSystems Processes and Operating
System Resources.)

Percent of CPU usage for all programs on the
operating system

Number of web requests served by the Web Gateway
Server since it was started

Number of current connections to this server by the
Web Gateway Server

Amount of time to obtain a response from the Web
Gateway Server when fetching iris_csp_ metrics,
in milliseconds

Number of current connections to this server by the
Web Gateway Server that are processing a web
request

Number of current connections to this server by the
Web Gateway Server that are reserved for
state-aware applications (Preserve mode 1)

Number of currently active web session IDs on this
server

Ratio of global references to physical reads and
writes, as a percent

Amount by which to expand database, in megabytes

160

Monitoring Guide

https://prometheus.io/docs/instrumenting/exposition_formats/

/api/monitor/metrics

Metric Name

iris_db_free_space
{id=""database""}

iris_db_latency
{id=""database'"}

iris_db max_size mb
{id=""database""}

iris_db_size_mb
{id=""database",dir="path"}
iris_directory_space
{id=""database",dir="path"}
iris_disk_percent_full
{id=""database",dir="path"}

iris_ecp_conn

iris_ecp_conn_max

iris_ecp_connections

iris_ecp_latency

iris_ecps_conn

iris_ecps_conn_max

iris_glo_a seize _per_sec

iris_glo _n_seize per_sec

iris_glo_ref_per_sec

iris_glo_ref _rem_per_sec

iris_glo_seize_per_sec

iris_glo_update_per_sec

Description

Free space available in database, in megabytes (This
metric is only updated once per day, and may not
reflect recent changes.)

Amount of time to complete a random read from
database, in milliseconds

Maximum size to which database can grow, in
megabytes

Size of database, in megabytes

Free space available on the database directory’s
storage volume, in megabytes

Percent of space filled on the database directory’s
storage volume

Total number of active client connections on this ECP
application server

Maximum active client connections from this ECP
application server

Number of servers synchronized when this ECP
application server synchronizes with its configured
ECP data servers

Latency between the ECP application server and the
ECP data server, in milliseconds

Total active client connections to this ECP data server
per second

Maximum active client connections to this ECP data
server

Number of Aseizes on the global resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Number of Nseizes on the global resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Number of references to globals located on local
databases per second

Number of references to globals located on remote
databases per second

Number of seizes on the global resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Number of updates (SET and KILL commands) to
globals located on local databases per second

Monitoring Guide

161

Monitoring InterSystems IRIS via REST

Metric Name

iris_glo_update_rem_per_sec

iris_jrn_block _per_sec

iris_jrn_free_space

{id="JournalType",dir="path"}

iris_jrn_size
{id="JournalType"}

iris_license_available

iris_license_consumed

iris_license_days_remaining

iris_license_percent_used
iris_log_reads_per_sec

iris_obj a seize per_sec

iris_obj del_per_sec

iris_obj hit_per_sec

iris_obj load per_sec

iris_obj miss_per_sec

iris_obj new per_sec

iris_obj_seize_per_sec

iris_page_space_percent_used

iris_phys_mem_percent_used
iris_phys_reads_per_sec
iris_phys_writes_per_sec
iris_process_count

iris_rtn_a seize per_sec

iris_rtn_call_local_per_sec

iris_rtn_call_miss_per_sec

Description

Number of updates (SET and KILL commands) to
globals located on remote databases per second

Journal blocks written to disk per second

Free space available on each journal directory’s
storage volume, in megabytes. JournalType can be
W13, primary, or secondary

Current size of each journal file, in megabytes.
JournalType can be W13, primary, or secondary
Number of licenses not currently in use

Number of licenses currently in use

Number of days before the InterSystems IRIS license
expires. Supports up to one decimal place

Percent of licenses currently in use
Logical reads per second

Number of Aseizes on the object resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Number of objects deleted per second

Number of object references per second, in process
memory

Number of objects loaded from disk per second, not
in shared memory

Number of object references not found in memory per
second

Number of objects initialized per second

Number of seizes on the object resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Percent of maximum allocated page file space used
Percent of physical memory (RAM) currently in use

Physical database blocks read from disk per second
Physical database blocks written to disk per second
Total number of active InterSystems IRIS processes

Number of Aseizes on the routine resource per
second (see Considering Seizes, ASeizes, and
NSeizes)

Number of local routine calls per second to globals
located on remote databases per second

Number of routines calls not found in memory per
second

162

Monitoring Guide

/api/monitor/metrics

Metric Name
iris_rtn_call_remote_per_sec

iris_rtn_load_per_sec

iris_rtn_load_rem_per_sec

iris_rtn_seize_per_sec

iris_sam get_db_sensors_seconds

iris_sam get_jrn_sensors_seconds

iris_sam _get_sqgl_sensors_seconds

iris_sam get_wgm_sensors_seconds

iris_smh_available
{id="purpose'}

iris_smh_percent_full
{id=""purpose'}

iris_smh_total

iris_smh_total_percent_full

iris_smh_used
{id=""purpose"}

iris_sgl_active_queries
{id=""namespace"}

iris_sgl_active_queries_95 percentile

{id=""namespace"}

iris_sgl_active_queries 99 percentile

{id=""namespace"}

iris_sqgl_commands_per_second
{id="namespace"}

iris_sgl_queries_avg_runtime
{id=""namespace"}

Description
Number of remote routine calls per second

Number of routines locally loaded from or saved to
disk per second

Number of routines remotely loaded from or saved to
disk per second

Number of seizes on the routine resource per second
(see Considering Seizes, ASeizes, and NSeizes)

Amount of time it took to collect iris_db* sensors,
in seconds

Amount of time it took to collect iris_jrn* sensors,
in seconds

Amount of time it took to collect iris_sql* sensors,
in seconds

Amount of time it took to collect iris_wgm* sensors,
in seconds

Shared memory available by purpose, in kilobytes
(For more information, including a list of identifiers for
purpose, see Generic (Shared) Memory Heap Usage.)

Percent of allocated shared memory in use by
purpose (For more information, including a list of
identifiers for purpose, see Generic (Shared) Memory
Heap Usage.)

Shared memory allocated for current instance, in
kilobytes

Percent of allocated shared memory in use for current
instance

Shared memory in use by purpose, in kilobytes (For
more information, including a list of identifiers for
purpose, see Generic (Shared) Memory Heap Usage.)

The number of SQL statements currently executing

For the current set of active SQL statements, the 95th
percentile elapsed time since a statement began
executing

For the current set of active SQL statements, the 99th
percentile elapsed time since a statement began
executing

Average number of ObjectScript commands executed
to perform SQL queries, per second

Average SQL statement runtime, in seconds

Monitoring Guide

163

Monitoring InterSystems IRIS via REST

Metric Name

iris_sgl_qgueries_avg_runtime_std_dev
{id=""namespace"}

iris_sgl_queries_per_second
{id=""namespace"}

iris_system_alerts

iris_system alerts_log

iris_system alerts_new

iris_system state

iris_trans_open_count

iris_trans_open_secs

iris_trans_open_secs_max

iris_wd_buffer_redirty

iris_wd_buffer_write

iris_wd_cycle_time

iris_wd_proc_in_global

iris_wd_size write

iris_wd_sleep

iris_wd_temp_queue

iris_wd_temp_write

iris_wdwij_time

iris_wd_write_time

iris_wij_writes_per_sec

Description
Standard deviation of the average SQL statement
runtime

Average number of SQL statements, per second

The number of alerts posted to the messages log
since system startup

The number of alerts currently located in the alerts
log

Whether new alerts are available on the
/api/monitor/alerts endpoint, as a Boolean

A number representing the system monitor health
state (see System Monitor Health State.)

Number of open transactions on the current instance

Average duration of open transactions on the current
instance, in seconds

Duration of longest currently open transaction on the
current instance, in seconds

Number of database buffers the write daemon wrote
during the most recent cycle that were also written in
prior cycle

Number of database buffers the write daemon wrote
during its most recent cycle

Amount of time the most recent write daemon cycle
took to complete, in milliseconds

Number of processes actively holding global buffers
at start of the most recent write daemon cycle

Size of database buffers the write daemon wrote
during its most recent cycle, in kilobytes

Amount of time that the write daemon was inactive
before its most recent cycle began, in milliseconds

Number of in-memory buffers the write daemon used
at the start of its most recent cycle

Number of in-memory buffers the write daemon wrote
during its most recent cycle

Amount of time the write daemon spent writing to the
WIJ file during its most recent cycle, in milliseconds

Amount of time the write daemon spent writing buffers
to databases during its most recent cycle, in
milliseconds

WIJ physical block writes per second

164

Monitoring Guide

/api/monitor/metrics

Metric Name

iris_wgm_active_worker_jobs
{id="category"}
iris_wgm_commands_per_sec
{id=""category'}

iris_wgm _globals per_sec
{id="category"}

iris_wgm_max_active_worker_jobs
{id=""category"}

iris_wgm max_work_queue_depth
{id=""category'}
iris_wgm waiting_worker_jobs
{id=""category"}

C.2.2 Interoperability Metrics

Description
Average number of worker jobs running logic that are
not blocked

Average number of commands executed in this Work
Queue Management category, per second

Average number of global references run in this Work
Queue Management category, per second

Maximum number of active workers since the last log
entry was recorded

Maximum number of entries in the queue of this Work
Queue Management category since the last log

Average number of idle worker jobs waiting for a
group to connect to and do work for

Note: The interoperability production data collected by the /metrics endpoint described in this section is very granular,
providing detailed information about number of messages processed, average number of characters processed,
etc. Users who wish to do a broader check-in about the statuses of their production interfaces can take advantage

of the Zinterop/interfaces endpoint.

In addition to the metrics described in the previous section, an InterSystems IRIS instance can also record metrics about
active interoperability productions and include them in the output of the /metrics endpoint. The recording of these interop-
erability metrics is disabled by default. To enable it, you must perform the following steps for each interoperability production
you want to monitor:

Open a Terminal session for the InterSystems IRIS instance running the production you want to monitor. If necessary,

In the Terminal, execute the following command to enable the collection of metrics for the active production within
the current namespace (SAM refers to System Alerting and Monitoring, the InterSystems monitoring solution):

Note: If the recording of metrics is enabled for a namespace but the corresponding production is not active, the

The Ens.Util.Statistics class provides methods for customizing the output of the /metrics endpoint. For
example, invoking the method DisableSAM IncludeH ostL abel will provide aggregated metrics for the entire

The metrics available after completing this step are described in the Basic Interoperability Metrics table below.

1.
switch to the namespace associated with the production by executing the following command:
set $namespace = "[interopNS] "
where [interopNg] is the namespace name.
2.
do ##class(Ens.Util.Statistics).EnableSAMForNamespace()
Imetrics endpoint does not return any metrics.
production instead of providing them for each host individually.
3.

To collect additional metrics for a production, enable activity monitoring by invoking the class method
Ens.Util.Statistics.EnableStatsFor Production in the corresponding namespace using the Terminal. You must also

Monitoring Guide 165

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM

Monitoring InterSystems IRIS via REST

add the Ens.Activity.Operation.Local business operation to the production. This process is detailed in Enabling
Activity Monitoring.

The additional metrics available after completing this step are described in the Activity Volume Metrics table below.

To collect additional HTTP transmission metrics for EnsLib.HTTP.OutboundAdapter or the EnsLib.SOAP.Outbound-
Adapter (used in productions), enable the reporting of HTTP metrics for the corresponding business operation by per-
forming the following steps:

a.

b.

Open the Management Portal for the InterSystems IRIS instance containing the web client you want to monitor.
Select Interoperability and choose the namespace containing the web client.

Select Configure > Production to open the Production Configuration page.

Select the operation which uses the HTTP or SOAP outbound adapter.

In the Alerting Control section of the Production Settings > Settings panel, select the Provide Metrics for SAM check
box.

Select Apply to save your settings.

The additional metrics available after completing this step are described in the HTTP Metrics table below.

Note: Currently, HTTP transmission metrics are only collected for business operations which invoke actors using

the Queue style (not inProc). For more information on the difference between these invocation styles, see
Defining a Business Operation Class.

InterSystems IRIS interoperability metrics are listed in the tables below. Metric names with a label appear here with line
breaks to improve readability.

Note:

These tables contain metrics for the version of InterSystems IRIS documented here. As metrics may be added in
newer versions, be sure this documentation matches your version of InterSystems IRIS.

166

Monitoring Guide

/api/monitor/metrics

Table IlI-1: Basic Interoperability Metrics

Metric Name

iris_interop_alert_delay
{id="namespace"’ ,host=""host*, productior= production’}

iris_interop_hosts

{icH Ferespece StAtL 5 StALE* Fost? hostprac otiar? pra ot

iris_interop_messages
{id="namespace"’ ,host="host*, productior production’}

iris_interop_messages_per_sec
{id="namespace"’ ,host=""host’", productior production’}

iris_interop_queued
{id="namespace’’ ,host=""host’", productior="production’}

Description

Number of hosts within the production and namespace
that have triggered a Queue Wait Alert. If output has
been configured to include host labels, the hosts that
have triggered Queue Wait Alerts are provided
separately and the value will be 1.

Number of hosts within the production and namespace
which currently have the specified status. If output
has been configured to include host labels, the status
of each host is provided separately and the value will
be 1. status can be OK, Error, Retry, Starting,
Inactive, or Unconfigured.

Number of messages processed since the production
started. If output has been configured to include host
labels, the number of messages processed by each
host is provided separately

Average number of messages processed within the
production and namespace in a second over the most
recent sampling interval. If output has been configured
to include host labels, the number of messages
processed by each host is provided separately

Number of messages currently queued within the
production and namespace. If output has been
configured to include host labels, the number of
messages currently queued for each host is provided
separately.

Monitoring Guide

167

Monitoring InterSystems IRIS via REST

Table Il1-2: Activity Volume Metrics

Metric Name

iris_interop_avg_processing_time

{cH ey ety fesiye fot-fel ooy i) Tesspye s}

iris_interop_avg_queueing_time

{ckf e ety fesiye oot noldiny ol espye e}

iris_interop_sample_count

{cH ey ety fesiye fot-Fe ooy i) ey s}

iris_interop_sample_count_per_sec

{ckf e ety fesfiye oot noldiny ol espye s}

Description

Average length of time required to process a message
of the specified MessageType within the production
and namespace, in seconds. HostType can be
service, operation, or actor (that is, process).
MessageType is user-defined; if no MessageType is
specified,""-"" is returned. If output has been
configured to include host labels, the message
processing time for each host is provided separately.

Average duration that a message of the specified
MessageType spent in the queue while being
processed by a host of HostType within the production
and namespace, in seconds. HostType can be
service, operation, or actor (that is, process).
MessageType is user-defined; if no MessageType is
specified,""-"" is returned. If output has been
configured to include host labels, the queueing time
for each host is provided separately.

Number of messages of the specified MessageType
processed by a host of HostType within the production
and namespace over the most recent sampling
interval. HostType can be service, operation, or
actor (that is, process). MessageType is
user-defined; if no MessageType is specified,”"-"" is
returned. If output has been configured to include host
labels, the number of messages processed by each
host is provided separately.

Number of messages of the specified MessageType
processed per second by a host of HostType within
the production and namespace, averaged over the
most recent sampling interval. HostType can be
service, operation, or actor (that is, process).
MessageType is user-defined; if no MessageType is
specified,""-"" is returned. If output has been
configured to include host labels, the number of
messages processed by each host is provided
separately.

168

Monitoring Guide

/api/monitor/metrics

Table I1I-3: HTTP Metrics

Metric Name

iris_interop_avg_http_received_chars
{id="namespace"’ ,host=""host*, productior= production’}

iris_interop_avg_http_sent_chars
{id="namespace"* ,host=""host*, productiorn= production’}

iris_interop_avg_http_ttfc
{id="namespace"* ,host=""host’*, productior= production’}

iris_interop_avg_http_ttlc
{id="namespace"* ,host=""host*, productiorn= production’}

iris_interop_http_sample_count
{id="namespace"*,host="host"*, productiorF ‘production’}

iris_interop_http_sample_count_per_sec
{id="namespace"’ ,host="host*, productior production’}

Description

Average number of characters received per HTTP or
SOAP response within the production and namespace
over the most recent sampling interval. If output has
been configured to include host labels, the average
number of characters received by each host is
provided separately.

Average number of characters sent per HTTP or
SOAP request within the production and namespace
over the most recent sampling interval. If output has
been configured to include host labels, the average
number of characters sent by each host is provided
separately.

Time to First Character (TTFC): average length of
time between the start of an HTTP or SOAP request
and the first character of the corresponding response,
in seconds. If output has been configured to include
host labels, the TTFC for each host is provided
separately

Time to Last Character (TTLC): average length of
time between the start of an HTTP or SOAP request
and the last character of the corresponding response.
If output has been configured to include host labels,
the TTLC for each host is provided separately.

Number of HTTP or SOAP transmissions sent within
the production and namespace over the most recent
sampling interval. If output has been configured to
include host labels, the number of transmissions sent
by each host is provided separately.

Number of HTTP or SOAP transmissions sent per
second within the production and namespace,
averaged over the most recent sampling interval. If
output has been configured to include host labels, the
number of transmissions sent by each host per second
is provided separately.

C.2.2.1The /interop/interfaces Endpoint

This section describes the Zinterop/interfaces endpoint and the parameters that can be used to filter its results. Calls
to this endpoint return the number of unique interfaces that have run within a specified time span.

The metrics returned by the Zinterop/interfaces endpoint are enumerated by interface type. Interface types are as

follows:
e |nbound Interfaces— Inbound business services.

» Outbound Interfaces— Outbound business operations.

Monitoring Guide

169

Monitoring InterSystems IRIS via REST

* Web APIs— Manually created CSP applications. These are defined on the Web Applications page of the management
portal, not within a production. Web API interfaces can feed in to REST and SOAP services or can be used for calls
to custom code outside of a production.

For a discussion of inbound and outbound production interfaces, see Formal Overview of Productions.

The Zinterop/interfaces endpoint can be used in the following ways:

/interop/interfaces
When passed without parameters, returns the number of unique interfaces that have ever been run, and the number
that are currently active, enumerated by interface type.
/interop/interfaces/time/<start-date>{/<end-date>}
Returns the number of unique interfaces active during the specified time span, enumerated by interface type.

The format for start-date and end-date is YYYY-MM-DD{THH:MM:SS}, and they are in the current time zone.
For example, 2024-02-19T16:30:00 would be 4:30 PM on February 19, 2024, in the local time zone.

If the time is excluded for either parameter, the default time for start-date is the first second of the specified day,
ie midnight; the default for end-date is the last second of the specified day.

If end-date is not included, the time span is from the specified start until the current date-time.

/interop/interfaces/year{/N}

Returns the number of unique interfaces active during the year specified by N (January 1 through December 31
for past years; January 1 through the current date for the current year), enumerated by interface type. For example,
if N is 2, the specified year is two years ago. If N is 0 or not specified, the time span is the current year to date.
That is, if N is 0 and the current date is February 19, 2024, the time span is January 1, 2024 to February 19, 2024.
If N is 2 and the current year is 2024, the time span is January 1, 2022 to December 31, 2022.

/interop/interfaces/month{/N}

Returns the number of unique interfaces active during the month specified by N, enumerated by interface type.
For example, if N is 2, the specified month is two months ago. If N is 0 or not specified, the time span is the current
month to date. That is, if N is 0 and the current date is February 19, the time span is February 1 to February 19.
If N is 2 and the current month is June, the time span is April 1 to April 30.

/interop/interfaces/day{/N}

Returns the number of unique interfaces active during the day specified by N, enumerated by interface type. For

example, if N is 2, the specified day is two days ago. If N is 0 or not specified, the time span is the current day.

That is, if N is 0 and the current time is 11:53AM, the time span is today from midnight to 11:53AM. If N is 2

and the current day is February 19, the time span is midnight on February 17 to 11:59:59 PM on February 17.
/interop/interfaces/namespace/<name-of-namespace>

Returns the number of unique interfaces active in the specified namespace, enumerated by interface type.

The Interoperability Usage page in the management portal also provides easy access to these metrics, but direct use of the
API endpoint enables more flexible output filtering.

C.2.3 Create Application Metrics

To add custom application metrics to those returned by the /metrics endpoint:

1. Create a new class that inherits from %SYS.Monitor.SAM.Abstract.

170 Monitoring Guide

/api/monitor/metrics

2. Define the PRODUCT parameter as the name of your application. This can be anything except for iris, which is
reserved for the InterSystems IRIS metrics.

3. Implement the GetSensor s() method to define the desired custom metrics, as follows:

» The method must contain one or more calls to the SetSensor () method. This method sets the name and value for
an application metric. The values should be integers or floating point numbers to ensure compatibility with
Prometheus and InterSystems SAM.

You can optionally define a label for the metric, though if you do, you must always define a label for that particular
metric.

Note: For best practices when choosing metric and label names, see Metric and Label Naming in the Prometheus
documentation (https://prometheus.io/docs/practices/naming/).

e The method must return $$$0K if successful.

Important: A slow implementation of GetSensors() can negatively impact system performance. Be sure to test
that your implementation of GetSensor 5() is efficient, and avoid implementations that could time out
or hang.

4. Compile the class. An example is shown below:

Class Definition

/// Example of a custom class for the /metric API

Class MyMetrics.Example Extends %SYS._Monitor.SAM._Abstract
{

Parameter PRODUCT = "myapp";

/// Collect metrics from the specified sensors
Method GetSensors() As %Status

do ..SetSensor("my_counter',$increment(“MyCounter),"my_label')

do ..SetSensor('my_gauge',$random(100))
return $$$0K

5. Use the AddApplicationClass() method of the SYS.Monitor.SAM.Config class to add the custom class to the /metrics
configuration. Pass as arguments the name of the class and the namespace where it is located.

For example, enter the following in the Terminal from the %SYS namespace:

%SYS>set status = ##class(SYS._Monitor.SAM.Config) -AddApplicationClass(*'MyMetrics.Example™, "USER™)

%SYS>w status
status=1

Note: When you upgrade your InterSystems IRIS system, you will need to redo this step.

6. Ensure that /api/monitor web application has the necessary Application Roles to access the custom metrics. For details
on how to edit application roles, see Edit an Application: The Application Roles Tab.

This step grants /api/monitor access to the data needed for the custom metric. For example, if the custom metric class
is located in the USER database (protected by the %DB_USER resource), grant /api/monitor the %DB_USER role.

7. Review the output of the /metrics endpoint by pointing your browser to a URL with the following form, using the
<baseURL> for your system: http://<baseURL>/api/monitor/metrics. The metrics you defined should appear after the
InterSystems IRIS metrics, such as:

Monitoring Guide 171

https://prometheus.io/docs/practices/naming/

Monitoring InterSystems IRIS via REST

[]
myapp_my_counter{id="my_label") 1
myapp_my_gauge 92

The /metrics endpoint now returns the custom metrics you defined. The InterSystems IRIS metrics include an i ris_ prefix,
while your custom metrics use the value of PRODUCT as a prefix.

C.3 /api/monitor/alerts

The /api/monitor/alerts endpoint fetches the most recent alerts from the alerts.log file and returns them in JSON format, such
as:

{"time':"2019-08-15T10:36:38.3132","severity":2,\
"message'':"Failed to allocate 1150MB shared memory using large pages. Switching to small pages.'}

When /api/monitor/alerts is called, it returns the alerts that have been generated since the previous time /api/monitor/alerts
was called. The iris_system _alerts_new metric is a Boolean that indicates whether new alerts have been generated.

For more information about when and how alerts are generated, see Using Log Monitor.

C.4 See Also

» Securing REST Services
» Introduction to Creating REST Services
» Developing Rest Interfaces

» https://prometheus.io/docs/

172 Monitoring Guide

https://learning.intersystems.com/course/view.php?id=2158
https://prometheus.io/docs/

Monitoring InterSystems IRIS Using the
Irisstat Utility

This topic provides an overview of how to use the irisstat utility. It is intended as an introduction for new users and a ref-
erence for experienced users.

Important: When using this utility, you should consult with the InterSystems Worldwide Response Center (WRC) for
guidance about specifying appropriate irisstat options and assistance in interpreting the data produced by
the utility.

irisstat is a C executable that is distributed with InterSystems IRIS® data platform. It is a diagnostic tool for system level
problems, including InterSystems IRIS hangs, network problems, and performance issues. When run, irisstat attaches to
the shared memory segment allocated by InterSystems IRIS at start time, and displays an InterSystems IRIS instance’s
internal structures and tables in a readable format. The shared memory segment contains the global buffers, lock table,
journal buffers, and a wide variety of other memory structures which need to be accessible to all InterSystems IRIS processes.
Processes also maintain their own process private memory for their own variables and stack information. The basic display-
only options of irisstat are fast and non-invasive to InterSystems IRIS.

CAUTION: More advanced (undocumented) options may alter shared memory and should be used with care. These
advanced options should be used only at the direction of InterSystems Support personnel; for information,
contact the InterSystems Worldwide Response Center (WRC).

D.1 Basics of Running irisstat

In the event of a system problem, the irisstat report is often the most important tool that InterSystems has to determine the
cause of the problem. Use the following guidelines to ensure that the irisstat report contains all of the necessary information:

* Runirisstat at the time of the event.
» Use the Diagnostic Report task or IRISHung script unless directed otherwise by InterSystems support personnel.

* Check the contents of the irisstat report to ensure it is valid.

Since irisstat is a separate executable file included with InterSystems IRIS, it is run outside of InterSystems IRIS, at an
operating system prompt. Therefore, the details of running it depend on the operating system:

e Running irisstat on Windows

Monitoring Guide 173

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Monitoring InterSystems IRIS Using the irisstat Utility

* Running irisstat on UNIX®

Running irisstat with no options is not a common way to run it, but doing so produces a basic report which is the equivalent
of running it with the following default options:

o —T(global module flags)

« -p (PID table)

e —q (semaphores)

For information about irisstat options, see Running irisstat with Options.

D.1.1 Running irisstat on Windows

The irisstat executable is located in the install-dir\bin directory. Starting with a Windows command prompt running as
Administrator, you can run it as follows:

C:\>cd install-dir\bin

C:\install-dir\bin>irisstat

If you run irisstat from a directory other than install-dir\bin or install-dir\mgr, you must include the —s argument to specify
the location of the install-dir\mgr directory. For example:

C:\Users>\install-dir\bin\irisstat -s\install-dir\mgr

D.1.2 Running irisstat on UNIX®

Theirisstat executable is located in the install-dir/bin directory. If you run irisstat from a directory other than install-dir\bin
or install-dir\mgr, you must include the -s argument to specify the location of the install-dir\mgr directory.

Starting with a UNIX® command prompt running as root, change to the install-dir/bin directory or the install-dir/mgr
directory and run the irisstat command:

bash-3.00$./irisstat

From the InterSystems IRIS installation directory, the command would be as follows:

bash-3.00$% ./bin/irisstat -smgr

You can also invoke irisstat via the iriscommand, which can be run from any directory as shown in the following example:

bash-3.00% iris stat iris_instance_name

where iris_instance_name is the name of the InterSystems IRIS instance on which you are running irisstat.

D.2 Running irisstat with Options

Running irisstat without options produces a basic report. Generally, you run irisstat to obtain specific information. To
specify target information, you can include or exclude options as follows:

e Toinclude (turn on) an option, specify a flag followed by a 1 (or other level).

e To exclude (turn off) an option, specify a flag followed by a 0.

For example, to include the Global File Table (GFILETAB) section in the irisstat report, use the —-m1 option:

174 Monitoring Guide

Running irisstat with Options

C:\iris-install-dir\Bin\irisstat -ml

or, to turn off the default basic options, use the —a0 option:

C:\iris-install-dir\bin\irisstat -a0

Many options have more detailed levels than 0 and 1. These additional levels are described as having bits, which are displayed
in decimal as powers of two and control specific types of information about the option. For example, the basic —p option,
which displays the PID table, is turned on with a 1; however, using a 2 adds a swcheck column, a 4 adds a pstate column.
and so on. These bits can be combined; for example, if you want to see the information displayed by both the 2 and 4 bits,
specify -p6. To ask for all bits, use -1, as follows:

bash-3.00$./irisstat -p-1

In addition, multiple flags can be combined in a single irisstat command. For example, the following command turns off
the basic options, then turns on all bits for the global module flags and PID table, as well as a detailed level for the
GFILETAB:

bash-3.00$./irisstat -a0 -f-1 -p-1 -m3
It is common for irisstat commands to have many flags when you start diagnosing a complex problem; however, the options
that make modifications are typically used alone. For example, the —d option requests a process dump; before using this

option, you might run irisstat with multiple options to identify the process to dump, but when using -d, typically no other
options are selected.

The irisstat Options table describes the options that you can use with the irisstat command.

Note: Forassistance in interpreting the data produced by the irisstat options described in this table, contact the InterSys-
tems Worldwide Response Center (WRC).

Table IV-1: irisstat Options

Option Description
—a[0r1] Displays all information described in this table.
~bibits] Displays information about global buffer descriptors blocks (BDBs). You can specify

a combination of the following bits:
e 1(all)

e 2 (cluster)

e 4 (ECP server)

» 8 (ECP client)

» 16 (block contents)

* 64 (check block integrity)

» 128 (block and LRU summary)

Note: Running irisstat -b64 may require extra time.

Monitoring Guide 175

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

Monitoring InterSystems IRIS Using the irisstat Utility

Option Description
—c[bits] Displays counters, which are statistics on system performance. You can specify a
combination of the following bits:
e 1 (global)
* 2 (network)
o 4 (lock)
» 8 (optim)

e 16 (terminal)

e 32 (symtab)

* 64 (journal)

» 128 (disk i/0)

» 256 (cluster)

« 262144 (bshash)

e 2097152 (job cmd)

e 4194304 (sem)

» 8388608 (async disk i/0)
e 16777216 (fsync)

» 33554432 (obj class)

+ 67108864 (wd)

« 134217728 (bigstr)

« 268435456 (swd)

» 536870912 (sort)

* 1073741824 (symsave)
e 2147483648 (freeblkpool)

—d[pid,opt] Creates dump of InterSystems IRIS processes. You can specify the following options:
. 0 (full); default
e 1 (partial)

—e[0/1/2] Displays the InterSystems IRIS system error log (see InterSystems IRIS System
Error Log); —e2 displays additional process information (in hex).

176 Monitoring Guide

Running irisstat with Options

Option
—f[bits]

—g[0/1]

—h

—j[0/1/2/3/4/5/6]

—I[bits]

-m[0/1/3/4/8/16]

-n[o0/1]

Description

Displays global module flags. You can specify a combination of the following bits:
e 1 (basic)

* 64 (resources)

* 128 (with detail)

* 256 (account detail)

* 512 (incstrtab)

e 1024 (audit)

Displays "GLOSTAT information; for information see Gathering Global Activity
Statistics Using "GLOSTAT.

Displays irisstat usage information.

Displays the journal system master structure, which lists information about journaling
status. —j 32 displays mirror server information.

Displays information about prefetch daemons used by the $PREFETCHON function;
see $PREFETCHON

Displays information about least recently used (LRU) global buffer descriptor block
(BDB) queue, but not the contents of the BDBs. You can specify a combination of
the following bits:

e 1(all)

e 2 (cluster)

* 4 (ECP server)

8 (ECP client)

e 16 (block contents)

* 32, but not 1 (most recently used (MRU) order)

Note: See also —b.

Displays Global File Table (GFILETAB), which contains information about all
databases, listed by SFN, that have been mounted since the instance of InterSystems
IRIS started up. You can specify a combination of the following bits:

* 3 (additional details)
* 4 (volume queues)
e 8 (disk device id table)

e 16 (systems remotely mounting this database)

Displays information about network structures and local/remote SFN translations;
irisstat -n-1 also displays namespace structures.

Monitoring Guide

177

Monitoring InterSystems IRIS Using the irisstat Utility

Option Description

-0l Clears the resource statistics displayed by irisstat -c to reestablish a base situation
without rebooting InterSystems IRIS. No output is produced.

—plbits] Displays information about processes that are running in InterSystems IRIS. The
information is obtained from the process ID table (PIDTAB). You can specify a
combination of the following flags:

* 2 (swcheck)

e 4 (pstate and %SS)

* 5 (NT mailbox locks); Windows only
* 8 (jssum)

e 16 (js list)

* 32 (grefcnt info)

* 64 (gstatebits)

e 128 (gstate summary)

e 256 (jrnhib)

» 512 (transaction summary)

* 1024 (pidflags)

* 2048 (pgbdbsav); additionally dumps pgshared table
* 4096 (freeblk table)

—q[0/1] Displays information about hibernation semaphores.
-s[dir] Specifies the directory containing the irisstat executable when running the command
from other than the mgr or bin directories.

-t[seconds] Runs irisstat repeatedly in a loop every seconds seconds until halted. Only the
global module flags section is displayed, as when -f1 is specified.

—u[bits] Displays information about InterSystems IRIS locks stored in the lock table (see
Monitoring Locks). You can specify a combination of the following bits:

e 1 (summary)

e 2 (waiters)

* 4 (intermediate)

» 8 (detail)

e 16 (watermark)

e 32 (buddy memory)

e 64 (resource info)

-vl Ensures that the InterSystems IRIS executable associated with the shared memory
segment irisstat is being run on and the irisstat executable are from the same
version; if not, irisstat will not run.

178 Monitoring Guide

Running irisstat with Options

Option
—w[bits]

-B[0/1]
—C[o/1]

—D[secs], [msecs][,0]

—E[bits]

—G[bdb]

—H[sfn],[bIk]

—1[0/1]

-L[0/1]

-M[o/1]

Description

Displays information about BDBs in write daemon queues.
Displays, in hex, the contents of blocks held in GBFSPECQ.
Displays configuration information for inter-job communication (1JC) devices.

Displays resource statistics over an interval of ‘secs’ seconds. Sample block collisions
ever ‘msec’ milliseconds.

Note: Resource information same as —c.

The "BLKCOL utility, described in Monitoring Block Collisions Using
ABLKCOL, provides more detailed information about block collisions.

Displays status of cluster on platforms that support clustering. You can specify a
combination of the following bits:

e 1 (vars)
e 2 (write daemon locks)
* 4 (enqginuse)

* 8/16 (allenq)

Displays, in hex, the contents of the global buffer descriptors and the global buffer
for a specific buffer descriptor block (BDB).

Note: Same as —H except that the information is displayed by BDB.

Displays, in hex, the contents of the global buffer descriptors and the global buffer
for a specific system file number (sfn) and block number (blk) pair.

Note: Same as —G except that the information is displayed by system file number

and block number pair.

The block must be in the buffer pool.

Displays the incremental backup data structures.

Displays the license.

Note: Same as "CKEY and %SYSTEM.License.CKEY method.

Displays the mailbox log.

Note: Disabled by default. A special build is required to capture and log the mailbox

messages; additional logging may be required.

Monitoring Guide

179

Monitoring InterSystems IRIS Using the irisstat Utility

Option
—N[value]

Description

Displays ECP network information. You can specify a combination of the following
values:

1 (client)

2 (server)

4 (client buffers)

8 (server buffers)

16 (client buffers, in detail)

32 (user jobs awaiting answer)

64 (server answer buffers details)

128 (request global)

256 (server send answer buffer details; not -1)
1024 (dump server received request buffers)
2048 (client trans bitmap)

4096 (client GLO Q)

8192 (request global reference dump, in hex)

65536 (ECP blocks downloaded to clients)

131072 (client released request buffer details; not -1)

180

Monitoring Guide

Running irisstat with Options

Option
—R[value]

—S[bits]

—T[os1]

Description

Displays information about routine buffers in use (or changing), class control blocks
(CCB), and least recently used (LRU) queues. You can specify a combination of the
following values:

* 1 (routine buffers in use)

* 4 (RCT - changed routine table)

8 (RCT detall)

e 16 (0x10=all routine buffers)

« 32 (0x20=LRU Q)

* 64 (0Ox40=all CCB’s)

* 128 (0x80=invalidated CCB’s)

* 0x100 (invalidated subclasses)

* 0x200 (buffer address)

e 0x400 (buffer descriptors)

e 0x800 (procedure table and cached routines buffer number)
* 0x1000 (process cached routine names)

* 0x2040 (CCB's and CCB details

* 0x4000 (cls NS cache)

* 0x6000 (cls NS cache details)

e 0x8000 (validate shm cls cache)

e 0x10000 (dump all class hierarchy)

* 0x20000 (dump all class hierarchy details)

* 0x40000 (dump process class and routine statistics)

» 0x80000 (process cached class names)

Displays information about the cause of a hang based on a self diagnosis of whether
or not the system is hung. You can specify a combination of the following bits:

* 1 (display diagnosis)
» 2 (partial process dump for suspect jobs)
e 4 (full process dump for first suspect job and partial dumps for other suspect

jobs)

Note: In a cluster, this option should be run all cluster members.

Displays hex values of many in-memory tables, including National Language Settings
(NLS) tables.

Monitoring Guide

181

Monitoring InterSystems IRIS Using the irisstat Utility

Option Description

-VIpid] Displays variables that are part of the process memory structures; of limited value
unless you have access to the source code.

Note: Windows only. Run from the directory that contains the pid.dmp file.

-W Performs the same function as the Backup.General.ExternalThaw() classmethod,
and may be used to resume the write daemon after
Backup.General.ExternalFreeze() has been called in cases when a new
InterSystems IRIS session cannot be started. (See External Backup for information
on the use of these methods.) This option will not unfreeze the write daemon from
any hang or suspension caused by anything other than a backup. Use of this option
is recorded in the messages log.

—X[0/1] Displays the contents of the device translation table. It is organized by device number
and shows both the numeric and plaintext class identifiers.

D.3 Viewing irisstat Output

irisstat data can be viewed immediately (via a terminal) or redirected to an output file for later analysis. The most common
methods for viewing the data are:

» irisstat Text File
« Diagnostic Report Task
* IRISHung Script

e ASystemPerformance Utility

Note: When InterSystems IRIS is forcibly shut down, irisstat is run in order to capture the current state of the system.
The output is added to the messages log as part of the emergency shutdown procedure.

D.3.1 irisstat Text File

irisstat reports can be redirected to a file instead of the terminal, which might be useful if you want to collect a set of
irisstat options that are not provided by one of the InterSystems IRIS tools (Diagnostic Report Task, IRISHung Script,
ASystemPerformance Utility) or if you are having trouble running those tools.

D.3.2 Diagnostic Report Task

The Diagnostic Report task creates an HTML log file containing both basic and advanced information, which can be used
by the InterSystems Worldwide Response Center (WRC) to resolve system problems. For information about the Diagnostic
Report task, including the irisstat options that it uses, see Using the InterSystems Diagnostic Report.

Note: The Diagnostic Report task cannot be run on a hung system; if your system is hung, see IRISHung Script.

182 Monitoring Guide

https://www.intersystems.com/support-learning/support/

Viewing irisstat Output

D.3.3 IRISHung Script

The IRISHung script is an OS tool used to collect data on the system when an InterSystems IRIS instance is hung. The
name of the script, which is located in the install-dir\bin directory, is platform-specific, as specified in the following table:

Platform Script name
Microsoft Windows IRISHung.cmd
UNIX®/Linux IRISHung.sh

The IRISHung script should be run with Administrator privileges. Like the Diagnostic Report Task, the IRI SHung script
runs irisstat twice, 30 seconds apart, in case the status is changing, and bundles the reports into an html file together with
the other collected data. The irisstat reports taken from I RI SHung use the following options:

irisstat -e2 -f-1 -m-1 -n3 -j5 -g1 -L1 -u-1 -v1 -p-1 -c-1 -gl1 -w2 -E-1 -N65535

IRISHung also runs a third irisstat using only the —S2 option, which it writes to a separate section of output called Self-
Diagnosis. The —-S2 option causes suspect processes to leave mini-dumps; therefore, running I RISHung is likely to collect
information about the specific processes responsible for the hang, whereas simply forcing the instance down does not collect
this information.

In addition, |RISHung generates irisstat output files that are often very large, in which case they are saved to separate .txt
files. Remember to check for these files when collecting the output.

D.3.4 ASystemPerformance Utility

The ~ SystemPer for mance utility collects detailed performance data about an InterSystems IRIS instance and the platform
on which it is running. It runs inside InterSystems IRIS for a configurable amount of time, collects samples over the that
interval, and generates a report when it finishes. For information about the * SystemPer for mance utility, including the
irisstat options that it uses, see Monitoring Performance Using ~SystemPerformance.

Monitoring Guide 183

	Table of Contents
	1 Monitoring InterSystems IRIS Using the Management Portal
	1.1 Monitoring System Dashboard Indicators
	1.2 Monitoring System Usage and Performance
	1.2.1 System Usage Table
	1.2.2 Shared Memory Heap Usage
	1.2.3 Monitoring SQL Activity
	1.2.4 Interoperability Usage

	1.3 Monitoring Locks
	1.4 Monitoring InterSystems IRIS Logs
	1.4.1 Log Files in the install-dir\mgr Directory
	1.4.2 Application and Database Driver Error Logs
	1.4.3 InterSystems IRIS System Error Log

	2 Using the InterSystems Diagnostic Report
	2.1 Running the Diagnostic Report Task
	2.2 Configuring Diagnostic Report Settings
	2.3 Diagnostic Report Contents
	2.3.1 Basic Information
	2.3.2 Advanced Information

	3 Using Log Monitor
	3.1 System Monitoring Tools
	3.2 Log Monitor Overview
	3.3 Configuring the Log Monitor
	3.3.1 Start/Stop/Update Monitor
	3.3.2 Manage Monitor Options
	3.3.3 Manage Email Options

	3.4 Log Monitor Errors and Traps

	4 Introduction to System Monitor Tools
	4.1 About System Monitor
	4.2 See Also

	5 Using System Monitor
	5.1 The System Monitor Process
	5.2 Tracking System Monitor Notifications
	5.3 System Monitor Status and Resource Metrics
	5.4 System Monitor Health State
	5.5 System Monitor Defaults
	5.5.1 Default System Monitor Components
	5.5.2 Default System Monitor Namespace
	5.5.3 Default System Monitor Settings

	5.6 Using the ^%SYSMONMGR Utility
	5.6.1 Start/Stop System Monitor
	5.6.2 Set System Monitor Options
	5.6.3 Configure System Monitor Components
	5.6.4 View System Monitor State
	5.6.5 Manage Application Monitor
	5.6.6 Manage Health Monitor
	5.6.7 View System Data

	5.7 Defining System Monitor Components
	5.7.1 Sensor Classes
	5.7.2 Subscriber Classes
	5.7.3 Notifier Classes

	5.8 See Also

	6 Using Health Monitor
	6.1 Health Monitor Overview
	6.1.1 Health Monitor Process Description
	6.1.2 Sensors and Sensor Objects
	6.1.3 Periods
	6.1.4 Charts
	6.1.5 Notification Rules
	6.1.6 Examples

	6.2 Using ^%SYSMONMGR to Manage Health Monitor
	6.2.1 View Alerts Records
	6.2.2 Configure Health Monitor Classes
	6.2.3 Set Health Monitor Options

	6.3 See Also

	7 Using Application Monitor
	7.1 Overview
	7.2 Using ^%SYSMONMGR to Manage Application Monitor
	7.2.1 Manage Application Monitor
	7.2.2 Manage Monitor Classes
	7.2.3 Change Default Notification Method
	7.2.4 Manage Email Options
	7.2.5 Manage Alerts

	7.3 Application Monitor Metrics
	7.3.1 Generating Metrics
	7.3.2 Viewing Metrics Data

	7.4 Writing User-Defined Application Monitor Classes
	7.5 See Also

	8 Gathering Global Activity Statistics Using ^GLOSTAT
	8.1 Running ^GLOSTAT
	8.2 Overview of ^GLOSTAT Statistics
	8.3 Examples of ^GLOSTAT Output
	8.3.1 Example A
	8.3.2 Example B
	8.3.3 Example C

	9 Monitoring System Performance Using ^PERFMON
	9.1 Introduction
	9.2 Using ^PERFMON
	9.2.1 Running ^PERFMON Interactively

	9.3 Start
	9.4 Stop
	9.5 Pause
	9.6 Resume
	9.7 Sample Counters
	9.8 Clear
	9.9 Report
	9.10 Collect
	9.11 Report Examples
	9.12 See Also

	10 Monitoring Routine Performance Using ^PROFILE
	10.1 Using ^PROFILE
	10.2 ^PROFILE Example

	11 Examining Routine Performance Using ^%SYS.MONLBL
	11.1 Invoking the Line-by-line Monitoring Routine
	11.1.1 Start Monitoring
	11.1.2 Estimate Memory Requirements

	11.2 Line-by-line Monitoring Options
	11.2.1 Report Line-by-line Statistics

	11.3 Sample Line-by-line Detail Report
	11.4 Sample Line-by-line Summary Report
	11.5 Sample Line-by-line Delimited Output Report
	11.6 Sample Line-by-line Procedure Level Report
	11.7 Metrics Shown in These Reports
	11.8 Line-by-line Monitor Programming Interface

	12 Tracing Process Performance with ^TRACE
	12.1 Using ^TRACE

	13 Monitoring Performance Using ^SystemPerformance
	13.1 Basics
	13.2 Stopping ^SystemPerformance
	13.3 Functions in ^SystemPerformance
	13.4 Generating ^SystemPerformance Performance Reports
	13.5 Scheduling the ^SystemPerformance Utility with Task Manager
	13.6 Changing the Output Directory
	13.7 Getting Version Information
	13.8 Manipulating Profiles
	13.8.1 Create New Profiles
	13.8.2 Edit Profiles
	13.8.3 Copy Profiles
	13.8.4 Delete Profiles

	13.9 Performance Report Details
	13.10 See Also

	14 Monitoring Performance Using ^mgstat
	14.1 Running ^mgstat
	14.2 Data Provided by ^mgstat
	14.3 Considering Seizes, ASeizes, and NSeizes
	14.4 See Also

	15 History Monitor
	15.1 Base Metrics
	15.2 Collecting Data
	15.3 Summaries
	15.4 Accessing the Data
	15.5 Adding User-Defined Metrics

	16 Monitoring Block Collisions Using ^BLKCOL
	16.1 Using ^BLKCOL
	16.2 ^BLKCOL Ouput

	17 Monitoring Processes Using ^PERFSAMPLE
	17.1 Collecting Samples
	17.2 Examining and Analyzing Samples
	17.2.1 Predefined Analysis Example
	17.2.2 Creating a Custom Analysis
	17.2.3 Analysis Dimensions

	17.3 Save Analysis
	17.4 See Also

	Appendix A: Monitoring InterSystems IRIS Using SNMP
	A.1 Using SNMP with InterSystems IRIS
	A.2 InterSystems IRIS as a Subagent
	A.3 Managing SNMP in InterSystems IRIS
	A.4 SNMP Troubleshooting
	A.4.1 All Systems
	A.4.2 Windows Systems
	A.4.3 UNIX® Systems
	A.4.4 Linux and macOS with Net-SNMP

	A.5 InterSystems IRIS MIB Structure
	A.5.1 Extending the InterSystems IRIS MIB
	A.5.2 InterSystems IRIS SNMP Traps

	A.6 Sample User-Defined SNMP Monitor Class

	Appendix B: Monitoring InterSystems IRIS Using Web Services
	B.1 Overview of InterSystems IRIS Support for WS-Monitoring
	B.2 Support Details
	B.3 URL for the Monitoring Web Service
	B.4 Web Methods of the Monitoring Web Service
	B.5 Monitoring Web Client
	B.6 Processing Events
	B.6.1 Using the Sample Event Sink Web Service
	B.6.2 Creating Your Own Event Sink Web Service

	Appendix C: Monitoring InterSystems IRIS via REST
	C.1 Introduction to /api/monitor Service
	C.2 /api/monitor/metrics
	C.2.1 Metric Descriptions
	C.2.2 Interoperability Metrics
	C.2.3 Create Application Metrics

	C.3 /api/monitor/alerts
	C.4 See Also

	Appendix D: Monitoring InterSystems IRIS Using the irisstat Utility
	D.1 Basics of Running irisstat
	D.1.1 Running irisstat on Windows
	D.1.2 Running irisstat on UNIX®

	D.2 Running irisstat with Options
	D.3 Viewing irisstat Output
	D.3.1 irisstat Text File
	D.3.2 Diagnostic Report Task
	D.3.3 IRISHung Script
	D.3.4 ^SystemPerformance Utility

	Index

