
Developing Business Rules

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Developing Business Rules
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 About Business Rules ... 1
1.1 Rules as Classes ... 2

2 Getting Started .. 5
2.1 Using the Old Zen Rule Editor ... 5
2.2 About Rule Definitions ... 6

2.2.1 Exporting and Importing Rules .. 6
2.3 About Rule Sets .. 6

3 Working with Rules .. 9
3.1 About If and Else Clauses .. 9
3.2 About Actions ... 10

3.2.1 Using the foreach Action .. 10
3.3 Defining Expressions ... 11

3.3.1 Editing the Condition Property of an if Clause .. 12
3.3.2 Expression Operators ... 14
3.3.3 Expression Functions ... 15
3.3.4 Expression Examples ... 15

3.4 Defining Constraints .. 16
3.5 Disabling a Rule ... 17
3.6 Passing Data to a Data Transformation .. 17
3.7 Adding Business Rule Notification .. 18

4 Debugging Routing Rules .. 19
4.1 Testing Routing Rules .. 19

4.1.1 Testing with Raw Text of a Message .. 19
4.1.2 Test Results .. 20
4.1.3 Security Requirements ... 20

4.2 Strategies for Debugging Routing Rules .. 20

Appendix A: Utility Functions for Use in Productions ... 25
A.1 Built-in Functions .. 25
A.2 Syntax to Invoke a Function .. 29

Developing Business Rules iii

List of Figures

Figure 4–1: Solving Problems with Routing Rules (Drawing A) .. 21
Figure 4–2: Solving Problems with Routing Rules (Drawing B) .. 22
Figure 4–3: Solving Problems with Routing Rules (Drawing C) .. 23
Figure 4–4: Solving Problems with Routing Rules (Drawing D) ... 24

iv Developing Business Rules

1
About Business Rules

Business rules allow nontechnical users to change the behavior of business processes at specific decision points. You can
change the logic of the rule instantly, using the Rule Editor in the Management Portal. There is no need for programming
or diagramming skills to change the rule, and there is no need to modify or compile production code for changes to take
effect. The following figure shows how business rules work.

Suppose that an international enterprise runs a production that processes loan applications. The decision process is consistent
worldwide. However, each bank in the enterprise has its own acceptance criteria, which may vary from country to country.
Business rules support this division of responsibility as follows:

Developing Business Rules 1

1. The developer of the business process identifies a decision point, by naming the business rule that will make the decision
on behalf of the business process. The developer leaves a placeholder for that business rule in the Business Process
Language (BPL) code by invoking the Business Process Language (BPL) element <rule>. The <rule> element specifies
the business rule name, plus parameters to hold the result of the decision and (optionally) the reason for that result.
Suppose we call this rule LoanDecision.

2. Wherever the <rule> element appears in a BPL business process, a corresponding rule definition must exist within the
production. A user at the enterprise, typically a business analyst, may define the rule using the browser-based online
form called the Rule Editor. This form prompts the user for the simple information required to define the business rule
called LoanDecision. InterSystems IRIS® saves this information in its configuration database.

Any enterprise user who is familiar with the Rule Editor and who has access to it in the Management Portal can modify
the rule definition. Modifications are simply updates to the database and can be instantly applied to a production while
it is running. Therefore, it is possible for business analysts at various regional locations to run the Rule Editor to
modify their copies of the rule to provide different specific criteria appropriate to their locales.

3. At runtime, upon reaching the BPL <rule> statement the business process invokes the rule named LoanDecision.
The rule retrieves its decision criteria from the configuration database, which may be different at different locales.
Based on these criteria, the rule returns an answer to the business process. The business process redirects its execution
path based on this answer.

4. For ongoing maintenance purposes, the business process developer need not be involved if a rule needs to change. Any
rule definition is entirely separate from business process code. Rule definitions are stored in a configuration database
as classes and are evaluated at runtime. Additionally, rule definitions can be exported and imported from one InterSystems
IRIS installation to another.

In this way, enterprise users such as business analysts can change the operation of the business process at the decision
point, without needing the programming expertise that would be required to revise the BPL or class code for the business
process.

A rule definition is a collection of one or more rule sets. A rule set is a collection of one or more rules. Each rule set has
an effective (or beginning) date and time as well as an ending date and time. When a business process invokes a rule defi-
nition, one and only one rule set is executed.

You have several options for specifying a rule workflow using business processes, data transformations, and business rules.
For a discussion of the options, see Comparison of Business Logic Tools.

These topics describe how to define business rules including how to create and use rule sets using the Rule Editor as well
as how to invoke rules using BPL and using business process routing engines.

1.1 Rules as Classes
The Interoperability > Build > Business Rules (or Rule Editor) page enables enterprise business analysts to shape the logical
decisions made by a business process in a structured way without requiring programming skills.

Additionally, Studio enables business process developers to work with business rule definitions as classes, for example:

Class Definition

/// Business rule responsible for mapping an input location
///
Class Demo.ComplexMap.Rule.SemesterBatchRouting Extends Ens.Rule.Definition
{

Parameter RuleAssistClass = "EnsLib.MsgRouter.RuleAssist";

XData RuleDefinition [XMLNamespace = "http://www.intersystems.com/rule"]
{

2 Developing Business Rules

About Business Rules

<ruleDefinition alias="" context="EnsLib.MsgRouter.RoutingEngine"
production="Demo.ComplexMap.SemesterProduction">
<ruleSet name="" effectiveBegin="" effectiveEnd="">
<rule name="" disabled="false">
<constraint name="source" value="Semester_Data_FileService"></constraint>
<constraint name="msgClass" value="Demo.ComplexMap.Semester.Batch"></constraint>
<when condition="1">
<send transform="" target="Semester_Data_FileOperation"></send>
<send transform="Demo.ComplexMap.Transform.SemesterBatchToSemesterSummaryBatch"
target="Semester_Summary_FileOperation"></send>
<send transform="Demo.ComplexMap.Transform.SemesterBatchToFixedClassBatch"
target="Semester_FixedClassBatch_FileOperation"></send>
<send transform="Demo.ComplexMap.Transform.SemesterBatchToFixedStudentBatch"
target="Semester_FixedStudentBatch_FileOperation"></send>
<send transform="" target="Semester_FixedStudent_BatchCreator"></send>
<return></return>
</when>
</rule>
</ruleSet>
</ruleDefinition>
}

}

You can open a business rule as a class in Studio, edit the document, and save the changes. Changes saved in Studio are
immediately available in the Rule Editor page. However, you may have to refresh the page to see them.

Package Mapping Rule Classes
Given that rules are classes, you can map rules to other namespaces. If you do so, you must recompile all the mapped rule
classes in each namespace where you use them to ensure that the local metadata is available in each namespace.

For details, see Package Mapping.

Developing Business Rules 3

Rules as Classes

2
Getting Started

Each business rule in InterSystems IRIS is part of a rule set. In turn, each rule set is part of a larger rule definition. Sometimes,
the terms rule and rule definition are used interchangeably, but each individual rule is ultimately grouped under a rule
definition.

Rule definitions, rules sets, and rules are edited using the Rule Editor, which is accessed in the Management Portal by
navigating to Interoperability > Build > Business Rules.

You can open existing rules in the Rule Editor by navigating to Interoperability > List > Business Rules.

Important: The Rule Editor includes two web applications: /ui/interop/rule-editor and
/api/interop-editors. The /api/interop-editors/ web application can be configured to use
the same authentication methods as the Management Portal. If an alternative authentication method is not
configured for the web application, users will need to re-authenticate as an InterSystems IRIS user upon
opening the Rule Editor. The /ui/interop/rule-editor web application should remain unauthenti-
cated.

2.1 Using the Old Zen Rule Editor
The Zen based Rule Editor has been replaced with a new Rule Editor. The new Rule Editor maintains the same functionality,
but with an updated user interface.

The old Rule Editor is still accessible from the new Rule Editor. To access it, open the new Rule Editor, click on the menu
in the upper right (identified by the username of the current user and a profile icon), then click Open in Zen Rule Editor.

You can also set the old Rule Editor to be used as the default editor. To do this:

1. In the Management Portal, navigate to System Administration > Security > Applications > Web Applications.

2. Select the /ui/interop/rule-editor web application.

3. Clear the Enable Application checkbox.

4. Click Save.

Disabling this web application will cause the Management Portal link to open the old Rule Editor. If you disable the
/ui/interop/rule-editor web application, in order to access the new Rule Editor, you will have to re-enable the application.

Developing Business Rules 5

2.2 About Rule Definitions
Individual business rules are grouped under a rule definition, which is built and edited using the Rule Editor. A rule definition
includes the following settings:

Package

Package for the rule definition class.

Name

Name of the rule definition class.

Description

User-specified description of the rule definition and its purpose.

Rule Type

Type of rule definition, which determines valid actions when defining rules that belong to the rule definition.

Context Class

Class that determines which object properties you can modify when you edit a rule. For general business rules,
the context class is generated from the business process class associated with the BPL process and ends in .Context.
For routing rules that are not associated with a BPL process, the context class is usually the business process class
used by the routing engine.

When creating the rule definition, you can use the Filters options to shrink the list of classes that appears in the
Context Class drop-down list.

Production Name

(Optional) For routing rules, provides the name of the production where the rule will be used so the Rule Editor
can offer predefined options when editing the rule. For example, if you specify a production and then modify a
constraint, the configuration items in the production appear as options for the Source field of the constraint.

The routing rule is not automatically used in the production unless you specify the rule when you configure the
production.

2.2.1 Exporting and Importing Rules

A rule definition, including its rule sets and rules, can be exported by navigating to Interoperability > List > Business Rules,
and selecting Export. You can import a previously exported rule definition using the Import option.

Alternatively, you can also export and import rule classes from the System Explorer > Globals page of the Management
Portal or the Tools menu in Studio as well.

2.3 About Rule Sets
When you create a new rule definition, a new rule set is created automatically. To define the rule set name and effective

date range, or to create new rules sets, select the icon next to the rule set name.

6 Developing Business Rules

Getting Started

In general, there are two types of rule sets:

• General business rule sets—A list of rules that are evaluated sequentially until one of them is found to be true. The
rule that is found to be true determines the next action of the business process that invoked the rule. If none of the rules
are true, the rule set returns a default value. You invoke this type of rule set using the BPL <rule> element.

• Routing rule sets—A rule set for use in message routing productions. Based on the types and contents of incoming
messages (which you specify as constraints), the routing rule set determines the correct destination for each message
and how to transform the message contents prior to transmission. You use a routing engine business process to invoke
this type of rule set.

All rule sets have two properties:

• Rule Set Name—Identifier for the rule set.

• Effective Range—Defines the time during which the rule set is effective, that is, when its rules will be executed.

Typically, a rule definition includes only one rule set that is always in effect. However, a rule definition can include multiple
rule sets as long as they are in effect at different times. Each time a business process invokes a rule, one and only one rule
set is executed.

Developing Business Rules 7

About Rule Sets

3
Working with Rules

A rule set contains one or more rules that you define to satisfy specific functions in a business process. Once you create a
new rule definition in the Rule Editor (Interoperability > Build > Business Rules), you are ready to start adding rules to a
rule set.

Though you can give each rule a name, it is not required. By default, InterSystems IRIS® names the rules in sequential
order in the form rule#n. If you give the rule a user-defined name, it appears in the class definition and also appears in
parentheses next to the internal rule name in the rule log. The value of n changes if you reorder the rules in a rule set.

3.1 About If and Else Clauses
A rule can contain one or more if clauses and an else clause. Each clause can include actions such as assign or return.

The logic in an if clause can be executed only if the condition property associated with the clause holds true. The logic in
an else clause can be executed only if none of the condition properties associated with the preceding if clauses holds true.
When a rule contains multiple if clauses, only the logic in the first if clause where the condition property associated with
the clause holds true is executed. For more information about conditions, see Editing the Condition Property of an if Clause.

As you develop rules, keep the following points in mind:

• Once the execution through a rule set encounters a return action, the execution of the rule set ends and returns to the
business process that invoked the rule definition class.

• You can control the execution of more than one rule in a rule set by omitting the returns. In other words, if you want
to check all rules, do not provide a return action within any of the rule clauses. You may then provide a value in a
return action at the end of the rule set for the case where no rule clauses evaluate to true.

• Each if clause has a condition property. A common design for a general business rule set is one that contains one rule
with a series of if conditions and returning a value depending on which condition is true. If you want to return a default
value if none of the conditions is true, you can use the else clause with a return.

• A common design for a routing rule set is one that contains several rules each with a different constraint defined and
each with one if clause describing how and where to route the message that matches the constraint.

• You can access property paths in virtual documents using the syntax described in Virtual Property Path Basics.

Developing Business Rules 9

3.2 About Actions
Each if or else clause in a rule can include actions, but they are not required. The actions in a clause are executed if and
only if the condition associated with the clause holds true. The following actions are supported:

DescriptionActionRule Set
Type

Assigns values to properties in the business process execution context.assignAll

Returns to the business process without further execution of the rule. For general
rules it also returns the indicated value to the result location.

returnAll

Adds the information you enter into the Event Log when this specific part of the
rule is executed. For details, see <trace>.

traceAll

Adds the expression text and value to the Rule Log when this specific part of
the rule is executed. The debug action is executed only if the router business
process RuleLogging property specifies the d flag, For details on the RuleLogging
property, see Rule Logging.

debugAll

Loops through a repeating segment. A segment may repeat if it is designated
as a repeating segment, is in a repeating loop, or both. See Using the foreach
Action for more details.

foreachSegmented
Virtual
Document
Routing
Rule or
HL7
Message
Routing
Rule

When evaluated by a routing engine business process, this action sends the
message to a particular target after optionally transforming it. For the ability to
pass data to the data transformation, see Passing Data to a Data Transformation.

sendRouting
Rule

When evaluated by a routing engine business process, this action deletes the
current message.

deleteRouting
Rule

When evaluated by a routing engine business process, this action delegates the
message to a different rule.

delegateRouting
Rule

The send, delete, and delegate actions should not be used within a BPL <rule>. If you include them, the action will not be
executed and instead a string value will be returned that includes the given action.

You must ensure that you construct rule sets such that they are logically sound and result in the rule set being executed as
you intended. For example, while it might make sense to set a default return value if none of the rules in a rule set are
executed, it does not make sense to do so if you have created the rule set such that one rule is always executed. Typically,
most actions reside in the if clauses of rules.

3.2.1 Using the foreach Action

The foreach action allows you to loop through a repeating segment and reference any of the fields within the segment.

You specify the repeating segment in the propertypath property of the foreach action using the syntax described in Virtual
Property Path Basics. For example, to access the OBX segments in the repeating OBXgrp of an HL7 document, you can

10 Developing Business Rules

Working with Rules

specify HL7.{OBXgrp().OBX}, where the empty parentheses indicate the repeating group. A foreach action can contain
one or more if clauses and an else clause. Within the clauses, you specify actions to execute when the conditions in the
clauses hold true.

For example, you can use a foreach action to determine when a field in a repeating segment contains a particular value,
and then specify a send action to route a message when the value is present. To reference the specific field, you can use
Segment.{<field-name>} — for example: Segment.{ObservationIdentifier}.

The if and else clauses in a foreach action can contain one or more rule nodes. However, you cannot nest foreach actions.

When the rule executes a return action within a foreach loop, it exits the entire rule set, not just the loop or rule.

The following example shows the use of a foreach action within a business rule. The action iterates through a repeating
OBX segment in an HL7 document to determine when the ObservationIdentifier field contains certain string values.
When the values are found, the rule sends the document to a file operation. When the values are not found, the rule logs
an entry in the Event Log using a trace action.

3.3 Defining Expressions
You can use expressions when modifying the values of four properties:

Developing Business Rules 11

Defining Expressions

• condition property of an if clause— Specifies the condition for executing the logic in the if clause. For more information,
see Editing the Condition Property of an if Clause.

• value property of an assign action—Specifies the value to assign

• value property of a return action in a general business rule—Specifies the value to return to the process that executed
the rule set

• value property of a trace action—Specifies the text to include in a trace message. You can specify a literal text string
or an expression to be evaluated. Expressions must use the scripting language specified in the language attribute of
the corresponding <process> element.

You can set each property to one of the following supported values:

• A numeric value (integer or decimal), such as 1.1 or 23000.

• A string value enclosed in double quotes, for example:

"NY"

Important: The double quotes are required.

• A value of a context property. Recall that a BPL business process can contain a general-purpose, persistent variable
called context. You define the context variable using the <context> and <property> elements of BPL. You can
access the properties of the context object from anywhere in the business process. Therefore, if you invoke a rule
from a business process using the <rule> element, you can access the context properties from within the rule.

For context properties that contain collections such as lists and arrays, InterSystems IRIS supports several retrieval
methods from within business rules, including Count(), Find(), GetAt(), GetNext(), GetPrevious(), IsDefined(),
Next(), and Previous(). For more information, see Working with Collections.

Note: Property names are case-sensitive and must not be enclosed in quotes, for example, PlaceOfBirth.

• An expression using supported operators, literal values, properties of the general-purpose, and persistent variable
contextfor example:

((2+2)*5)/154.3
"hello" & "world"
Age * 4
(((x=1) || (x=3)) && (y=2))

• A built-in function such as Min(), Max(), Round(n,m), or SubString(). The function name must include parentheses.
It must also include any input parameters, such as the numeric values n and m for Round. If there are no input values
for the function, then the open and close parentheses must be present and empty.

• The Document variable, which represents the message object.

• Within a foreach action, a segment. For more information, see About Actions.

For examples, see Expression Examples.

3.3.1 Editing the Condition Property of an if Clause

In a rule definition, a condition consists of two values and a comparison operator between the values, for example:

Amount <= 5000

If a condition is not true, it is false. There are no other possible values for the condition property. A result that may be
only true or false is called a boolean result. InterSystems IRIS stores boolean results as integer values, where 1 is true and
0 is false. In most cases, you do not need to use this internal representation. However, for a routing rule, you may want to

12 Developing Business Rules

Working with Rules

execute the if clause that corresponds to the condition property any time the constraint for the rule holds true. In this case,
you can set the condition property to 1.

A condition property can contain more than one condition. InterSystems IRIS evaluates and compares all the conditions in
the property before determining whether to execute the corresponding rule. The logic between conditions is determined by
AND or OR operators. For example, consider a condition property with the following value:

IF Amount <= 5000
AND CreditRating > 5
OR CurrentCustomer = 1

The same value appears in the Rule Editor as follows

The value contains three conditions: Amount <= 5000, CreditRating > 5, CurrentCustomer = 1. Each condition could be
true or false. InterSystems IRIS evaluates the conditions individually before evaluating the relationships between them
defined by the AND and OR operators.

The AND and OR operators can operate only on true and false values. That is, the operators must be positioned between two
boolean values and return a single boolean result as follows:

Result is true when...Operator

Both values are true.AND

At least one of the values is true, or both are true. If one of the values is false and the other is
true, then the result (as a whole) is still true.

OR

If a condition property contains multiple AND or OR operators, the AND operators take precedence over the OR operators.
Specifically, all the AND operations are performed first. Then, the OR operations are performed. For example, consider the
following set of conditions:

IF Amount <= 5000
AND CreditRating > 5
OR CurrentCustomer = 1
AND CreditRating >= 5

The same set of conditions appears in the Rule Editor as follows:

InterSystems IRIS evaluates the conditions as follows:

IF (Amount <= 5000 AND CreditRating > 5)
OR (CurrentCustomer = 1 AND CreditRating >= 5)

That is, the whole set of conditions is true if either or both of the following statements is true:

Developing Business Rules 13

Defining Expressions

• Someone requests an amount less than 5,000 and has a credit rating better than average.

• A current bank customer requests any amount and has a credit rating greater than or equal to the average.

If both statements are false, then the set of conditions (as a whole) is false.

To explain another way, InterSystems IRIS evaluates the set of conditions by taking the following steps:

1. Determine whether the result of the following AND expression is true or false:

IF Amount <= 5000
AND CreditRating > 5

Suppose this result is called “SafeBet.”

2. Determine whether the result of the following AND expression is true or false:

IF CurrentCustomer = 1
AND CreditRating >= 5

Suppose this result is called “KnownEntity.”

3. Determine whether the result of the following OR expression is true or false:

IF SafeBet is true
OR KnownEntity is true

If SafeBet is true and KnownEntity is false, then the set of conditions is true. Similarly, if SafeBet is false and Know-
nEntity is true, then the set of conditions is true. Lastly, if both SafeBet and KnownEntity are true, then the set of
conditions is true.

3.3.2 Expression Operators

When defining an expression, you can select one of the follow arithmetic operators:

MeaningOperator

Plus (binary and unary)+

Minus (binary and unary)–

Times*

Divide/

Additionally, the following logical operators are supported and return an integer value of 1 (true) or 0 (false):

Expression is true when...MeaningOperator

Both values are true.AndAND
(&&)

At least one of the values is true. Both values may be true, or only one true.OrOR (||)

The value is false.Not (unary)!

The two values are equal.Equals=

The two values are not equal.Does not equal!=

The value to the left of the operator is greater than the value to the right of
the operator.

Is greater than>

14 Developing Business Rules

Working with Rules

Expression is true when...MeaningOperator

The value to the left is less than the value to the right.Is less than<

The value to the left is greater than the value to the right, or if the two values
are equal.

Is greater than or
equal to

>=

The value to the left is less than the value to the right, or if the two values
are equal.

Is less than or
equal to

<=

The string contains the substring to the right. Pattern matching for Contains
is exact. If the value at left is “Hollywood, California” and the value at right
is “od, Ca”, there is a match, but a value of “Wood” does not match.

Contains[

Lastly, you can use the following string operators:

MeaningOperator

Concatenation operator for strings.&

Binary concatenation to combine string literals, expressions, and variables._

When more than one operator is found in an expression, the operators are evaluated in the following order of precedence,
from first to last:

1. Any of the following logical operators: ! = != < > <= >= [

2. Multiplication and division: * /

3. Addition and subtraction: + –

4. String concatenation: & _

5. Logical AND: &&

6. Logical OR: ||

3.3.3 Expression Functions

Within a rule definition, an expression can include a call to one of the InterSystems IRIS utility functions. These include
mathematical or string processing functions similar to those that exist in other programming languages. When defining the
expression, simply select a function from the drop-down list.

For a list of the available utility functions and the proper syntax for using them in business rules or DTL data transformations,
see Utility Functions for Use in Productions.

3.3.4 Expression Examples

Within a rule definition, an expression is a formula for combining values and properties to return a value. The following
table includes examples of expressions along with their computed values:

Computed valueExpression

0.129617628((2+2)*5)/154.3

"helloworld""hello" & "world"

Developing Business Rules 15

Defining Expressions

Computed valueExpression

If Age is a context property (a property in the general-purpose, persistent context
variable, which you can define using the <context> and <property> elements
in BPL) and has the numeric value 30, the value of this expression is 120.

Age * 4

61+2.5*2

102*5

This expression uses the built-in Min()function . If Age is a context property with
the value 30 and Limit (likewise a property) has the value 65, the value of this
expression is 30.

Min(Age,80,Limit)

This expression uses the built-in Round() function. The result is 0.33.Round(1/3,2)

This expression uses the operator precedence conventions that are described
inExpression Operators). If A is a context property with the string value F, and
x (likewise a property) has the integer value 38, this expression has the integer
value 1. In InterSystems IRIS, an integer value of 1 is true and an integer value
of 0 means false.

x<65&&A="F"||x>80

This expression uses the Min() and Max() functions. If X is a context property
with the numeric value 9.125, and Y (likewise a property) has the numeric value
6.875, the value of this expression is 9.125.

Min(10,Max(X,Y))

This expression uses parentheses to clarify precedence in a complex logical
relationship.

(((x=1) || (x=3)) &&

(y=2))

When you select a property that takes an expression as its value, a blank text field appears at the top of the rule set diagram.
You must ensure that you use the appropriate syntax for the property since the text field enables you to specify any string.
Consider the following rules when you formulate an expression:

• An expression can include the values described in previous sections: numbers, strings, context properties, other
expressions, functions, or any valid combination of these.

• White spaces in expressions are ignored.

• You can use any of the supported operators in an expression.

• If you want to override the default operator precedence, or if you want to make an expression easier to read, you can
use parentheses to group parts of the expression and indicate precedence. For example, consider the following
expression, which results in a value of 6:

1+2.5*2

If you change the expression as follows, the result becomes 7:

(1+2.5)*2

• Business rules support parentheses to group complex logical expressions such as (((x=1) || (x=3)) && (y=2)).

3.4 Defining Constraints
If the rule set contains routing rules, you can define constraints such that when a message makes its way through the rule
set, the rule logic is executed only if the message matches the defined constraints. Leaving a field blank will match all
values. To set constraints for a rule, double-click the rule and define the following settings:

16 Developing Business Rules

Working with Rules

Source

Configuration name of one of the following items:

• A business service (for a routing interface)

• A message routing process (if another rule chains to this routing rule set)

Message Class

Identifies the production message object that is being routed by this rule. The value of this field depends on the
routing rule type:

• For a General Message Routing Rule, you can click the ellipsis (...) next to the Message Class field to invoke
the Finder Dialog and select the appropriate message class. You can choose the category of message class to
narrow your choices.

• For a Virtual Document Message Routing Rule, you can choose from the list of defined virtual document
classes.

Schema Category

For virtual document routing rules, identifies the category of the message class and specifies its structure. You
can choose from the list of category types defined for your chosen virtual document class. The types may be built-
in or imported from a custom schema.

Document Name

For virtual document routing rules, identifies the message structure. The acceptable values depend on the message
class. You can choose from the list of category types defined for your chosen virtual document class. The types
may be built-in or imported from a custom schema.

If you specify more than one value in the Document Name field, the rule matches any of the specified Document

Name values and no others.

3.5 Disabling a Rule
If you would like to prevent a rule set from executing a rule, but do not want to delete the rule, you can disable it. Simply
double-click the rule, and select Disable.

3.6 Passing Data to a Data Transformation
A Send action can invoke a data transformation before sending the message to a target within the production. This data
transformation can use its aux variable to obtain information from the rule. Some of this data, for example the name of the
rule and the reason the rule was fired, is available to the transformation without making changes to the rule class.

In order to pass additional information to the transformation, you need to edit the rule class in an IDE to assign values to
properties of the class. A value assigned to the RuleUserData property of the rule class is available to the transformation
if it accesses the aux.RuleUserData variable. A value assigned to the RuleActionUserData property of the rule
class is available to the transformation as aux.RuleActionUserData.

Developing Business Rules 17

Disabling a Rule

For additional information about accessing the aux variable in a transformation, see the list of valid expressions in DTL
Syntax Rules.

3.7 Adding Business Rule Notification
InterSystems IRIS enables you to set up rule notifications so that the system takes specific actions each time a rule is executed.
Unlike most activities related to rules, setting up notifications requires programming. You must create a subclass of the
Ens.Rule.Notification class and override the %OnNotify method of the subclass. The signature of %OnNotify method is
as follows:

ClassMethod %OnNotify(pReason As %String,
 pRule As Ens.Rule.RuleDefinition)
 As %Status

Possible pReason values are:

• BeforeSave

• AfterSave

• Delete

At runtime, the production framework automatically finds your subclass of Ens.Rule.Notification and uses the code in
%OnNotify to determine what to do upon executing a rule.

18 Developing Business Rules

Working with Rules

4
Debugging Routing Rules

This topic describes how to test routing rules without sending the message through the entire production. It also contains
flow diagrams that can help you debug problems in routing rules defined for EDI messages in a production.

4.1 Testing Routing Rules
Using the Test button of the Rule Editor, you can see whether a message triggers any of the routing rules without having
to send the message through the entire production. Running this test does not transform or send the message, but any
functions in the condition are executed as if the message ran through the production.

If you want to test a rule’s constraint that is based on the source of the message, use the Production Source field to specify
the business host in the production that is sending the message. You can use the drop down menu to choose the business
host from a list.

You can use the Context field to specify the contents of the message in one of three ways:

• Specify User Input and then click next to paste the raw text of a message.

• Specify the Document Body ID of an existing message. You can find the Document Body ID for a message by looking
at the <Object Id> field on the Body tab of the Message Viewer.

• Specify the Message Header ID of an existing message. If the Production Source field is blank, the Source Config
Name in the message header is used as the source. You can find the Message Header ID for a message by looking at
the <Object Id> field on the Header tab of the Message Viewer.

4.1.1 Testing with Raw Text of a Message

For a virtual document message routing rule, you can test the rule with the raw text of a message. To do so:

1. Optionally, in the Production Source field, enter the business host that is sending the message.

2. Choose User Input from the Context drop-down list.

3. Click the Next button.

4. Paste the raw text of the message in the Content text field.

This can be the text of an HL7 message or an X12 message.

5. Enter any other constraints that you want to test by entering information in the DocType field or by selecting from the
Category or Name drop downs.

Developing Business Rules 19

6. Click Submit.

4.1.2 Test Results

The test results will tell you whether the message met a rule’s constraint and whether an if or else clause was triggered.

4.1.3 Security Requirements

A user must have the correct security privileges to test routing rules. They must have USE permissions for %Ens_RuleLog
and %Ens_TestingService . In addition, they must have Select SQL privileges on Ens_Rule.log and
Ens_Rule.DebugLog tables.

4.2 Strategies for Debugging Routing Rules
This section describes strategies for debugging the routing rules in an EDI message routing production.

The primary symptom for problems in routing rules is that the message does not reach its destination. Perhaps the message
reaches a point along the way, such as a business operation or routing process within the routing production, but it does
not reach its target destination, which is generally an application server outside InterSystems IRIS®. In that case you can
follow the problem-solving sequence captured in the next four drawings: “Solving Problems with Routing Rules,” Drawings
A, B, C, and D.

20 Developing Business Rules

Debugging Routing Rules

Figure 4–1: Solving Problems with Routing Rules (Drawing A)

Developing Business Rules 21

Strategies for Debugging Routing Rules

Figure 4–2: Solving Problems with Routing Rules (Drawing B)

22 Developing Business Rules

Debugging Routing Rules

Figure 4–3: Solving Problems with Routing Rules (Drawing C)

Developing Business Rules 23

Strategies for Debugging Routing Rules

Figure 4–4: Solving Problems with Routing Rules (Drawing D)

24 Developing Business Rules

Debugging Routing Rules

A
Utility Functions for Use in Productions

This topic describes the InterSystems IRIS® utility functions that you can use in business rules and DTL data transformations.
These include mathematical or string processing functions such as you may be accustomed to using in other programming
languages.

To define your own functions, see Defining Custom Utility Functions.

A.1 Built-in Functions
The following lists the utility functions built into InterSystems IRIS.

Note: For boolean values, 1 indicates true and 0 indicates false.

Contains(val,str)

Returns 1 (true) if val contains the substring str; otherwise 0 (false).

ConvertDateTime (val,in,out,file)

Reads the input string val as a time stamp in in format, and returns the same value converted to a time stamp in
out format. See Time Stamp Specifications for Filenames.

The default for in and out is %Q. Any %f elements in the out argument are replaced with the file string. If val does
not match the in format, out is ignored and val is returned unchanged.

CurrentDateTime(format)

Returns a string representing a date/time value in the given format. For a list of possible formats, see the Date and
Time Expansion section of the class reference for the FormatDateTime method. For example,
CurrentDateTime("%H") returns the current hour in 24–hour format as a 2–digit number. The default format
is ODBC format (%Q) in the server's local timezone.

DoesNotContain(val,str)

Returns 1 (true) if val does not contain the substring str.

DoesNotIntersectList(val,items,srcsep,targetsep)

Returns 1 (true) if no item in the given source list (val) appears in the target list (items). For details on the arguments,
see IntersectsList.

Developing Business Rules 25

DoesNotMatch(val,pat)

Returns 1 (true) if val does not match the pattern specified by pat. pat must be a string that uses syntax suitable
for the ? pattern matching operator in ObjectScript. For details, see Pattern Match Operator.

DoesNotStartWith(val,str)

Returns 1 (true) if val does not start with the substring str.

Exists(tab,val)

The Exists function provides a way to predict the results of the Lookup function. Exists returns 1 (true) if val is a
key defined within the table identified by tab; otherwise it returns 0 (false).

The tab value must be enclosed in double quotes, for example:

Exists("Alert","Priority_FileOperation")

If(val,true,false)

If the argument val evaluates to 1 (true), the If function returns the string value of its true argument; otherwise it
returns the string value of its false argument.

In(val,items)

Returns 1 (true) if val is found in the comma-delimited string items.

InFile(val,file)

Returns 1 (true) if val is found in the identified file.

InFileColumn(...)

The function InFileColumn can have as many as 8 arguments. The full function signature is:

InFileColumn(val, file, columnId, rowSeparator, columnSeparator, columnWidth, lineComment, stripPadChars)

InFileColumn returns 1 (true) if val is in the specified column in a table-formatted text file. Arguments are as follows:

• val (required) is the value.

• file (required) is the text file.

• Default columnId is 1.

• Default rowSeparator is ASCII 10. A negative rowSeparator value indicates the row length.

• Default columnSeparator is ASCII 9. If columnSeparator is 0, the format of the file is said to be “positional.”
In this case columnId means character position and columnWidth means character count.

• Default columnWidth is 0.

• Default lineComment is an empty string.

• Default stripPadChars consists of a blank space followed by ASCII 9.

IntersectsList(val,items,srcsep,targetsep)

Returns 1 (true) if any item in the given source list (val) appears in the target list (items). The arguments srcsep
and targetsep specify the list separators in the source and target lists respectively; for each of these, the default is
"><", which means that the lists are assumed to have the form "<item1><item2><item3>".

26 Developing Business Rules

Utility Functions for Use in Productions

The IntersectsList utility works well with the square bracket [] syntax to match values of a virtual document
property. If there is more than one instance of the segment type in a message, the square bracket syntax returns
the multiple values in a string like <ValueA><ValueB><ValueC>.

If the target list has only a single item, this function is essentially the same as the Contains function. If the source
list has only a single item, this function is essentially the same as the In function.

Length(string,delimiter)

Returns the length of the given string. If you specify delimiter, this function returns the number of substrings based
on this delimiter.

Like(string,pattern)

Returns 1 (true) if the given value (string) satisfies a SQL Like comparison with the given pattern string (pattern).
In SQL Like patterns, % matches 0 or more characters, and _ matches any single character. Note that an escape
character can be specified by appending "%%" to the pattern, e.g. "#%SYSVAR_#_%%%#" to match any value
string that starts with "%SYSVAR" followed by any single character, an underscore, and anything else.

Lookup(table,keyvalue,default, defaultOnEmptyInput)

The Lookup() function searches for the key value specified by keyvalue in the table specified by table and returns
its associated value. This returned value is equivalent to the following global:

^Ens.LookupTable(table,keyvalue)

The table value must be enclosed in double quotes, for example:

Lookup("Gender",source.{PID:Sex},,"U")

If the key is not found in the table, the Lookup function returns the default value specified by the default parameter.
The default parameter is optional, so if it is not specified and Lookup does not find a matching key, it returns an
empty string. An exception is that if either the key value or the lookup table is empty, the Lookup() function
returns either the default value or the empty string depending on the value of the defaultOnEmptyInput parameter
as described in the following table. The default value of the defaultOnEmptyInput parameter is 0.

Lookup() returnskey value and lookup tabledefaultOnEmptyInput Value

empty stringeither key value or lookup table is
empty

0

empty stringkey value is empty1

default valuelookup table is empty but key value
is not

empty stringlookup table is empty2

default valuekey value is empty but lookup table
is not

default valueeither key value or lookup table is
empty

3

The Exists() function returns true if a Lookup() function with the same parameters would find the key value in
the lookup table.

Developing Business Rules 27

Built-in Functions

Matches(val,pat)

Returns 1 (true) if val matches the pattern specified by pat. pat must be a string that uses syntax suitable for the
? pattern matching operator in ObjectScript. For details, see Pattern Match Operator.

Max(...)

Returns the largest of a list of up to 8 values. List entries are separated by commas.

Min(...)

Returns the smallest of a list of up to 8 values. List entries are separated by commas.

Not(val)

Returns 0 (false) if val is 1 (true); 1 (true) if val is 0 (false).

NotIn(val,items)

Returns 1 (true) if val is not found in the comma-delimited string items.

NotInFile(val,file)

Returns 1 (true) if val is not found in the identified file.

NotLike(string,pattern)

Returns 1 (true) if the given value (string) does not satisfy a SQL Like comparison with the given pattern string
(pattern). See Like.

Pad(val,width,char)

Reads the input string val. Adds enough instances of char to widen the string to width characters. If width is a
positive value, the padding is appended to the right-hand side of the val string. If width is a negative value, the
padding is prepended to the left-hand side of the val string.

Piece(val,char,from,to)

If the delimiter character char is present in the string val, this separates the string into pieces. If there are multiple
pieces in the string, from and to specify which range of these pieces to return, starting at 1. If multiple pieces are
returned, the delimiter in the return string is the same as the delimiter in the input string. For example:

Piece("A,B,C,D,E,F") returns "A"

Piece("A!B!C!D!E!F","!",2,4) returns "B!C!D"

The default char is a comma, the default from is 1, and the default to is from (return one piece). For details, see
$PIECE.

ReplaceStr(val,find,repl)

Reads the input string val. Replaces any occurrences of string find with the string repl, and returns the resulting
string.

Note: Use ReplaceStr instead of the Replace function, which has been deprecated.

RegexMatch(string,regex)

Given an input string val and a regular expression regex, returns 1 if val matches the regular expression; returns
0 otherwise.

28 Developing Business Rules

Utility Functions for Use in Productions

Round(val,n)

Returns val rounded off to n digits after the decimal point. If n is not provided (that is, Round(val)) the function
drops the fractional portion of the number and rounds it to the decimal point, producing an integer.

Rule(rulename,context,activity)

Evaluates the rule specified in the rulename with the given context object and the given activity label for the Rule
Log and returns the value.

Schedule(ScheduleSpec, ODBCDateTime)

Evaluates the state of the given ScheduleSpec string, named Schedule or Rule at the moment given by
ODBCDateTime. If ScheduleSpec begins with '@' it is a Schedule name or Rule name, otherwise a raw Schedule
string. If ODBCDateTime is blank, the evaluation is done for the current time.

StartsWith(val,str)

Returns 1 (true) if val starts with the substring str.

Strip(val,act,rem,keep)

Reads the input string val. Removes any characters matching the categories specified in the act template and the
rem string, while retaining any characters found in the keep string. Returns the resulting string. For details and
examples, see $ZSTRIP.

SubString(str,n,m)

Returns a substring of a string str, starting at numeric position n and continuing until numeric position m. The
number 1 indicates the first character in the string. If m is not provided (that is, SubString(str,n)) the function
returns the substring from position n to the end of the string.

ToLower(str)

Returns the string str converted to lowercase.

ToUpper(str)

Returns the string str converted to uppercase.

Translate(val,in,out)

Reads the input string val. Translates each occurrence of a character in string in to the character at the corresponding
position in string out, and returns the resulting string.

Note: These functions are defined by methods in the class Ens.Util.FunctionSet.

A.2 Syntax to Invoke a Function
When you reference a function in a business rule or a DTL data transformation, the syntax must include parentheses. It
must also include any input parameters, such as the numeric values for the mathematical functions Min, Max, or Round.
If there are no input values for the function, then the open and close parentheses must be present, but empty.

The following are examples of valid function syntax:

Developing Business Rules 29

Syntax to Invoke a Function

Computed ValueExpression

When Age is a property with the value 30 and Limit (likewise a property) has
the value 65, the value of this expression is 30.

Min(Age,80,Limit)

0.33Round(1/3,2)

When X is a property with the numeric value 9.125, and Y (likewise a property)
has the numeric value 6.875, the value of this expression is 9.125.

Min(10,Max(X,Y))

If the value input to any function is a string that starts with a number, nonnumeric characters in the string are dropped and
the numeric portion is used. The string "3a" is treated like the number 3, so the function Min("3a","2OfThem") returns
the value 2. A string that begins with a nonnumeric character such as "a123" has the numeric value 0.

The business rule syntax for utility functions differs from the DTL syntax in the following significant way:

• Business rules reference the utility functions simply by name:

ToUpper(value)

• DTL uses two leading dots immediately before the function name, as if the function were a method:

..ToUpper(value)

The following DTL data transformation uses a utility function called ToUpper() to convert a string to all uppercase char-
acters. The <assign> statement references ToUpper() using double-dot syntax, as if it were a method in the class:

Class Definition

Class User.NewDTL1 Extends Ens.DataTransformDTL
{

XData DTL
{
<?xml version="1.0" ?>
<transform targetClass='Demo.Loan.Msg.Approval'
 sourceClass='Demo.Loan.Msg.Approval'
 create='new' language='objectscript'>
<assign property='target.BankName'
 value='..ToUpper(source.BankName)' action='set'/>
<trace value='Changed all lowercase letters to uppercase!' />
</transform>
}

}

30 Developing Business Rules

Utility Functions for Use in Productions

	Table of Contents
	1 About Business Rules
	1.1 Rules as Classes

	2 Getting Started
	2.1 Using the Old Zen Rule Editor
	2.2 About Rule Definitions
	2.2.1 Exporting and Importing Rules

	2.3 About Rule Sets

	3 Working with Rules
	3.1 About If and Else Clauses
	3.2 About Actions
	3.2.1 Using the foreach Action

	3.3 Defining Expressions
	3.3.1 Editing the Condition Property of an if Clause
	3.3.2 Expression Operators
	3.3.3 Expression Functions
	3.3.4 Expression Examples

	3.4 Defining Constraints
	3.5 Disabling a Rule
	3.6 Passing Data to a Data Transformation
	3.7 Adding Business Rule Notification

	4 Debugging Routing Rules
	4.1 Testing Routing Rules
	4.1.1 Testing with Raw Text of a Message
	4.1.2 Test Results
	4.1.3 Security Requirements

	4.2 Strategies for Debugging Routing Rules

	Appendix A: Utility Functions for Use in Productions
	A.1 Built-in Functions
	A.2 Syntax to Invoke a Function

	Index

