InterSystems-

IRIS Data Platform

Using the Callin API

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Callin API

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
L THE CalliN TNEEIFACE ..ottt sttt ne e e se et e e eresaenae e 3
1.1 SBIUPD ottt R R Rt R R e nn e e 3
1.2 The iris-Callin.n HEAAEr FIIEc.iiviiiiieiiesie ettt 4
1.3 8-bit and Unicode String HandliNgccccevviieiiiiieieiceesee s 4
1.3.1 8-Dit String DAt TYPES .uveiveereriieiesieeiesteetesteeteseesteseesteseestesseestessaesbessaesteensesreensesreenns 4
1.3.2 2—-byte UNICOdE Data TYPES ...ecveieieiieieieietieesie sttt sttt e ebe s 5
1.3.3 4—Dyte UNiCOde Data TYPEScerrererreriireiireieetereete et st seese e sre e sn e sne e sne e ene e 5
1.3.4 System-neutral Symbol Definitions ..o 6

1.4 Using InterSystems SecUrity FUNCLIONSccvceiverieicieieeicese et ne e ene e 7
1.5 Using Callin with MUItItRIEAdING ...vecvevveieeriiieieiee e 7
1.5.1 Threads and UNIX® Signal Handlingccccceiiiieiiiicieicsesee e 7

1.6 Callin Programming TIPS ..coeoeeeeeiereresiestesie e seeeeiesies e etesiessesbeseeseesbesbeseessessesseseeneesessessessens 10
1.6.1 Tips for All Callin PrOGramscccoeereireinieenieeseesreesre sttt snesesneneas 10
1.6.2 TIPS FOr WINGUOWSocveicieiieiereie ettt 11
1.6.3 Tips fOr UNIX® and LINUXccvcvieiinieiiiisesesiesieieesessesesie e e e see e seesnensessesesnesnens 11

2 UsiNg the Callin FUNCLIONSccviiiisieie ettt sae st s se et e e e e e e e e e enesressesnnsnens 13
2.1 PrOCESS CONTIOI ...uiiiiiictiee ettt bt bbb bbb bbbt e e b e e e neene s 13
2.1.1 SESSION CONIOL ...ttt bbbttt et e et nbe b sbe b e 14
2.1.2 RUNNING ODJECESCIIPL ..oviieieiitiiiesiesiesie ettt sttt et ene e 14

2.2 FUNCEIONS AN ROULINES ...ovvevieiiiieeiisesie sttt se et sae e ne e eneens 15
2.3 Transactions and LOCKINGcvcvvviiieiesiesiesese st ee e e s e se st re s sreste st s sae e e saenaesaeneens 15
2.3.1 TIANSACTIONS .veveivirietiieetisietiste sttt sttt bbbttt ettt b e bbb bt 15
0 T I Tod [o S 15

2.4 MaNAGING ODJECES ...ueeuiiuieierieiie ettt sttt ettt b e bt bbb e be b sa et e b et e e e beeneaneane s 16
O O =1 £SO SO 16
B |V 1113 To T RSP TR 16
B B o 0] 1= 1 TSRS 17

2.5 Managing GIODAIScccviiiiieie e et 17
2.6 MANAGING SEFNGS 1oveiieieiie et e et s e s e e sre e aesteesbesteesbeessesteensesteensesneensesneesrens 17
2.7 Managing Other DatatyPEScccerererererierierieseesieeeseeeeesies e tesbesbe b b sbe e sbesbe b seesseeeseene e 18
3 Callin FUNCLION REFEIENCE ..ottt sttt bbbt s e bt e 19
3.1 Alphabetical FUNCEION LIStccoiiiiiiirieeree e 19
Be2 IFISADOIT 1.ttt bbb bbbt bbb b b 22
3.3 IMISACUITELOCK .iviiiiiiiice ettt st bt s e e r e se e eneeneeneens 23
B TFISBITFING ..o bbb bbb et b bbb e e 24
RS LTS 11 0T |2 ORISR 24
3.6 ITISCAIIEXECULEFUNC ..e.viveiiieiieiee ettt sttt ettt ettt sbe st e e nne e 25
3.7 IrISChaNGEPASSWOITAcuiiieiieiiie e bbbttt 26
3.8 11iISChaNgEPASSWOITHccviiiiieiesi ettt e e e neenesneanens 26
3.9 1riISChaNQEPASSWOITUWcceiieiieiieieiicieee ettt sa et s e s e e e e eresresnesresrenrenrens 27
310 ITISCIOSEOIET ...ttt bbbt et b bbbttt b e eb e b e b sb b et e e e eneas 27
BLLL TFISCONTEXE .ttt ettt ettt bbb e ettt e b e b e bbbt sb e eb e e b e b neeee et et e e ene et e e b e neebeeras 27
TR 1S 011V T o PR SRRRRRRRPR 28
K T0 T 1 1] 1 1 SRS 29
314 THISCVEEXSIIINA oottt bbbt b ettt ettt b e b s 30

Using the Callin API

BAS TFSCVIEXSIIINWV L.t nn e nnes 31

3.6 IFISCVIEXSITINH ..ottt et et et te e saae e sbe e sareeebessabeenbeesabeens 31
3.7 ITISCVEEXSIIOULA ..ovieciee ettt ettt ettt et e et s b e e be e s b e st e e ebe e e st e e sbeeeabeesbeeenbeesbessnbeesresenras 32
IS I L T O e 1@ L AT 33
3.19 IFISCVEEXSITOULH ...oviiiiciicciectecte ettt sttt b e st b e et e b e earesbeenbesbeeresbeeseesrens 34
.20 TFISCVEINA L.ttt b b e b e b e e bb e e be e ae e sbeeaaesbe e besbe e besbaesbesbsesbeebsebesneenres 35
I N [EY O 1 [111 OO 36
K 1 {03V, 1 2] = PRSPPSO 37
I 1 1 O/ (O 11| 7 O ROTRTRPO 38
I T O/ (@ 11 A7 39
325 ITISCVEOULH .ottt sttt st b e s be e b e ebe e beeaseebeeasesbeennesbeennesbaenrens 40
3.26 TFISDIOFUN 1eivviiviciiite ettt ettt ettt ettt er e st e b e st e e b e sbeeebe e st e b e eabeebeaabesbeenbesbeesbesbeesbesraesbeenbeses 41
327 TFISDORIN L.ttt sttt e e be e et e e sbeesabe e s beesabeeabeesabeeebeeeabeesteeeareenreas 41
IS [T =1 (o OO POUOTRRPRROPRROP 42
IS L1 =t o 1A | OO ORUT 42
R IRC O [TS g (o R 43
IR R 4 1Y = (0] ¢ = OO PEOPROPPRROR 43
332 THISEITOIWV .ttt ettt ettt ettt s b et bbb e b e e tb e b e etbeebeeabeabeeabesbeesbesaeesbesreesbeesbesbeens 44
G LA =t o d L (=Y AN SRS RTRR 45
Y L g o L (=1 o OSSR OT TR 46
I L = 0 d P21 (=) AT OSSOSO 46
IR L 1S] A7 1 47
337 IHSEVAIH .ottt b et b e et be et s be et s be e sbe e beeaaesbeenbe e 48
3.3 ITISEVAIWVV ...ttt sttt b bbb et b e et be e s b e e besbe e besba et e sbe e b e ebbebeeabenas 49
3.3 ITISEXECULBA ..ottt ectee ettt ettt ettt e te e st e e be e s ae e s beesaeeeabe e sheesabeesbbeeabeesbeesabeesbeesabeesbeesareesteas 49
340 ITISEXECULEH ..ovieviiitie ittt ettt ettt e te e et e e e ae e et e e sbaeeabe e sbbeeabeesbeesabeesbeesabeesbaesabeestnas 50
ST ITISEXECULEWV ottt ettt ettt ettt s bt e et e e sbe e s b e e sbe e eabe e sbaesabeesbbeenbeesbeesabeesnesanbes 51
3LA2 ITISEXECULBATTS ..ttt sttt sttt sttt b ettt et sttt sttt skt b et s b et bbbt b et bbb n bt e 52
SAB TSEXSIIKIIL ..ottt et b e e s be et e sbeenbesaeesbesreesbesreens 52
SA4 ITISEXSIINEW ©1eviericeiiite ettt ettt ettt sttt b e st et ests e b e etbeebeeabeebesnbesbeensesbeebesbeesbesbeesbesteens 53
345 TFISEXSIINEWWV ...ttt ettt ettt e be e st e e s be e sabe e sbeesaaeesbeesabeeabeestbeebeesareens 53
3B TFISEXSIINEWH ...ttt e b et e e be e stbe e beesaee e ebeesaneenbeeas 53
K A 1] 1 U [SO 54
348 ITISGEIPTOPEITY ..euvvieeieiteieiteie sttt ettt sttt bbbt bbbt bbbttt et 54
349 ITISGIODAIDALAccveiveiiveiiecteeie ettt ettt s be e b e st e et e ebbesbe e b e sbeenresbeeresreenreas 55
3.50 IFISGIODAIGELvicviciicriete ettt st b e et e b e e be e b e sbs e ebeeasesbeeneesbeeneesbeennens 55
3.51 IrISGIODAIGELBINGIYvvcuiiivieiecie ettt et et e sre e saeentesreeseesraeseenreens 56
3.52 IriSGIODAIINCIEMENT ...ooviiivicctie ettt et et sbb e s teesaae e s beesareebessabeenbeesareens 57
eI LTS € o] o 1] | OSSPSR 58
oY [T € o] o1 L@ T [T R 58
KT Lo T 1 1511 [o] o= 1[0 11T Y 59
3.56 ITISGIODAIREIEASEecvviiveiiiiticie ettt ettt b e et ebe et e s be et e saeesbesreesbeereens 60
BT IHISGIODAISEL ...ttt b e s be e st e e sbe e s be e sbeesareenreeenns 60
3.58 IriSINCreMENTCOUNTOTETvviiieccie ettt ettt eaae e ebe e srr e e be e sbeeebeesaneens 60
3.59 I1iSINVOKECIASSMELNOMviivieciieicrec ettt et e sb e e ebe e s e e sbe e saeeenre e 61
3.60 IFISINVOKEMETNOWc.viieeectec ettt e s e sabe e sreesate e sressreeesres e 61
361 IFISOFIUSI .ttt et be et e s be et e s be e s besaeesbeeraesbeesbesreens 62
TG YZ 2 1151 2o o ST 62
KT I [T o] o103 AT SR 63
364 TTISPOPCVIH .ot b e bbb bbb b et e et ne et e b e 63
3.85 TTISPOPDIDI ..t 64

Using the Callin API

BT O TS 0] 0] = 1 ST 64

3.B7 IFISPOPEXSIIVV .ttt ettt et b e bbb bbb et e e et e e e e ens 64
3.88 TTISPOPEXSIIH ...t bbbttt 65
3.69 IFISPOPEXSIICVEWW ...ttt bbbttt b et b e bbb e ebe e 65
KT A L 0] o] e 1 (A TS 66
KT 1 TS =T o] g RSP 66
K 7 [1 2] o1 1] (SRS 67
BT 3 ITISPOPLLISTE .ttt bbb bbbttt b bbbt ekt b e bbb bt e b e e eneas 67
B T4 IFISPOPOIET ..ttt bbbt b et b etttk et 67
BT TTISPOPPLE .ottt bbbt b etttk bbb bbbt bbbt b b 68
KT T LT 20 015 1 SR 68
KT TS =T o 15 1 AT RSO S 69
4 B [T o] o 1S 1 SR 69
3T TFISPIOMPLA ..ottt ettt h et b e bt b e bt bt s besb e eb e b e sb e e et e e e e e neebeans 69
3.80 TFISPIOMPTH ..ottt ettt bbbt ne s 70
B.BLIFISPIOMPIWV .ottt ettt s b et b et bbbttt r e 71
3.82 IFiSPUSNCIASSIMIEINOM ...vecvviivieiictiecieeteete ettt ettt st b e st e be et e ebeenr e beennesbeennes 71
3.83 IFISPUSNCIASSIMEINOUHccviiviiiiiiiiicie ettt bbb e b e e ebe b b e resbeesresbees 72
3.84 IriSPUSNCIASSIMETNOUWVvviiieicie ettt ettt be e b sabe e sbe e sare et as 73
3.85 ITISPUSNCVEW ..ottt ettt ettt s e e s be e sabe e s be e saaeesbessabeebeestbeebeesareans 74
I [o VT 4OV 1 = I OTRPRRORO 75
IR A L1 o) 11 o] 75
3.88 ITISPUSNEXECULEBFUNCA . .ooviiieiite ettt ettt be bbb e s e sbe s e e sbesneesbeeraesbeenbesbeens 76
3.89 ITISPUSNEXECULEFUNCWV ...ocoviitieiectie ittt ettt st sttt et st e sbe et e saeesbesnnesbesnnesbeennen 76
3.90 IFiSPUSNEXECULEFUNCHooviiiie ittt ettt e be e s ree e be e s taeebeesane s 77
3.0 TTISPUSNEXSEE .ttt t et e b e e b e e s beeeabe e sbeesabeesbeesabeesbeeenbeesbeesareeees 77
3.92 ITISPUSNEXSITWW .ottt be e st s b e st e et esaaeebe s sabeenbeesabeesbaesareebeas 78
e I LA U] a1] [t 78
3.94 ITISPUSNEXSIICVEW ...otiiiiiiiecie ettt ettt et st sre st st e st et e sbsesbeenbesbaenbesbeenesaeesrens 79
3.95 IFISPUSNEXSIICVEH ...oiiviiiiiire ittt ettt ebe bbb et sbe et saeentesbeesbesbeesbesbeens 79
396 TTISPUSNIFUNC .uveeiiicie ettt ettt sttt e e te e st e st e e sae e e be e sbeeeabeestaesabeesteesnbeesaneeneas 80
3L97 ITISPUSNFUNCH ..ttt ettt et s b e s be et e e s beeabe e s abeenbeesabeesbeesareeteas 81
398 IFISPUSNFUNCWV ...ttt ettt ettt ebe e s sbe e ea e e s beesate e sbeesnbeebessabeebeesabe s 82
IR eI T U o U o) G 82
3.100 IFISPUSHFUNCXH ...ttt sttt ettt st be e s be et sbe e eesbeesbesbeesbesbeesbesbeens 83
3,101 IFISPUSHFUNCXWV .ottt ettt sttt st b sre st st e st e b e sbbesbeeabesbeenbesbeenesanenrens 84
3,102 IFISPUSNGIODALoiiieeieiceec ettt e sbe e s et esabe e steesareesteas 85
3,103 IFISPUSNGIODAIHc.vviiieiitii ettt e sbe e s re e sbe e s rbeeebeesare s 86
3,104 TrISPUSNGIODAIVV ...ttt ettt ettt b e s e e be e stb e e beesbee s beesaneenreeas 86
I (0L Y ES U] a1 L] = 87
3.106 IrISPUSNGIODAIXHoiiviiiiieie ettt sttt et b e e sbe e b e sbeeresaeesre s 88
3.107 IrISPUSNGIODAIXWV ...ttt ettt sttt b e e be e s be e ntesaeesbesreesbesneens 89
3.108 IFISPUSHIEEEDDIcovviiiiitiiiicteee ettt sttt sttt be et sbe et sbeebesaeesre s 89
3.109 TFISPUSKINT «.eiitiectee ettt ettt e s e et e sbe e s b e e s be e s abeebeestbeebeesabeesbeesaseesbessrneenreees 90
I OB LTS U Y] 11 (G SO POPTRRR 90
00 A LT o U |) 91
3112 IFISPUSNLOCK ...ttt ettt ettt e e s be b s be e besbe et e sbsesbeebeebesnsenes 91
3 113 IFISPUSNLOCKH ..ottt st bbbt et sb e b e sbseebeenreebeennesbeennas 92
3114 IFISPUSNLOCKWV ...ttt sttt e be e st e e re e sbe e s beesaeeenras 93
SLAL5 IFISPUSHLOCKX ...ttt ettt ettt sttt et e be e st e e be e st e e s beesbeeeabeesbeesabeeees 93
O S [TS VTS o] o T 20 SO 94

Using the Callin API

3107 IFISPUSNLOCKXWV ..ttt ettt sttt st e s s e s s bt s s bt e e s sbb e e s saba e s sbaeesabbeseans 95

3,118 IFISPUSNIMIBENOMcuviiiviiciec ettt ettt ebe e st e beesabe e sbeesareebeesraeenbee e 95
3,119 IrISPUSNIMETNOOHoocviiiiiciii ettt ettt be e sare e ebe s sabeesbeesabeens 96
I O LTS VTS 1A =11 T Lo L A 97
3121 IFISPUSNOIET ..ottt sttt e et e b e e ab e e be et e sbeebesbeesbesbeesbeeraesbeenbe e 98
TN L 0T o o] 0T o SRS 98
KN B L S T Y o o (0] 01T Y S SRSN 99
3. 124 IFISPUSHPTOPEITYWV ..ttt bbbt bbb e bt 100
I ST 1 S U]] 1 SO 100
IR I I £ R UES] 1 1 101
3127 TFISPUSHRINH ..ottt ettt e e a e s be et e s be e b e sbeebeeaeebeenns 102
3.128 TFISPUSHRINWV ..ottt sttt ettt bttt st e b e s b e e et e st e esbesbeenbesbeenbesbeennas 102
3.129 TFISPUSHRINX vttt ettt ettt s re s s be e st e e besbe et e sbe et e ebeebeensebeenns 103
3,130 TFISPUSNRINXH ..eviiiiiiitie ettt ettt ettt sae e e be e saa e e be e sbbeeebeesareesbeesnreenresenns 104
3131 IFISPUSNRINXWV ottt ettt sttt et ettt e e sba e s be e sateebe s sabeebeesabeesbeesaneers 105
IR 2 L £ U] 1) 1 106
3133 IFISPUSNSIIWW ettt ettt sttt e st e e st e sbe e b e sbeebesbeesbesaeesbeennas 107
3134 THISPUSNSIIH .ottt b e b e st s b e et e st e e st e sbeenbesbeenbesbeeanas 107
3135 IFISPUSHUNGET ...ttt sbe e sare e sbe e saaeeree e 108
3.136 ITISREICASEAIILOCKSviiireeitii ittt ettt ettt ebe e st be s s bae e be e sbbeeebeesaeeesbeesnreenbessnns 108
3,137 ITISREIEASELOCKvviievecree ittt et ba e e be e sbaeenreesbeeeane 109
3,138 ITISSECUIESTAITAeveitieeee ettt ettt e ettt e et e e sbe e s be e ebeseabe s sbaeenbeesbeseteesaesesbessneeenressres 109
3.139 IFISSECUIESTAITH ..oviiveiiiiiee ettt et e et e st e eabesbeenbesbeenbesbeennas 111
3.140 IFISSECUIESTANTVV ...eiviiiieirieiecre ettt ettt ettt st s s be e s be et e s b e e st e sbe e b e sbeebesbeesbesanesbesneas 112
O R S T=1 | D USROS PR 114
3142 TTISSEIPTOPEITY .eeuvitititeie ettt ettt sttt e bt e ettt b et e bt s bt sbesbesb et et se e s e neeneeneeneas 114
BLLAZ TFISSTIGNAD .ottt bbb 115
I L TSy o O = ot |V T 115
3145 IFISSPCSENG ...ecvviivietieiteete ettt ettt ettt st s te s s be s st e s be e st e sbeesbesbeenbesbeenbesbeenbesaeestesaeesrens 116
314G TFISSTAMTA ottt ettt e bbbt e b e s he e e be e ae e s beaab e s b e e rbesbe e st e e b e et e ere e beearebeeaes 116
SLLAT IEISSTAMTH oot et ste e st e st e e saa e e be e sabeebe e sabeebeestreebeenaeeenras 118
SLLAB ITISSTAIWV .ottt ettt ettt et e e s b e s be e saeeeabe e sbbeebeesbbeebeesareesbeesnreenreennns 120
I e B 4 1S3 W0 40 1 1) APPSR 121
I YOI S I Y 122
3. I5L IFISTROIDACK .cvviiveeiveitecitecie ettt ettt sttt st sb e e s be et e sbeebesaeeebesneesbesanesbeennens 122
Iy [TS IS U AU 122
K TR B 1 TS 1oL ST SSR 122
3152 TTISUNPOP vttt ettt b bbb e et s et e bt e btk e bt bt sb e s b b e b seenn e b neenes 123

vi

Using the Callin API

List of Tables

Table 2—1: Session CONrol FUNCLIONScoiiiiiii e s 14
Table 2-2: ObjectScript command FUNCLIONScvieiiiiieie e 14
Table 2-3: Functions for performing function and routing Callsccoeoveiriiniiienie e 15
Table 2—4: Transaction FUNCLIONScieiiiiieiie ettt st sne e nnas 15
Table 2-5: LOCKING TUNCLIONS ...icviiieiieieiieie ettt n e neenestesnesrenre e nnens 16
Table 2—6: OFef TUNCLIONS ...oc.iiuiieiieie ettt s b st be b b e e 16
Table 2—7: Method FUNCLIONSoiiiiiiriie ettt ettt sb bbb 16
Table 2—8: Property fUNCLIONSoiiiriiiieirieirieesie sttt 17
Table 2-9: Functions for managing globals ... 17
Table 2—10: StriNG FUNCLIONS ...oveii e et ne et ne st e resresnesaeseenreen 18
Table 2-11: Other datatype fUNCLIONScccccciiiiiiiicse et neeneas 18

Using the Callin API vii

About This Book

This book describes how to use the InterSystems Callin API, which offers an interface that you can use from within C or
C++ programs to execute InterSystems IRIS® commands and evaluate ObjectScript expressions.

In order to use this book, you should be reasonably familiar with your operating system, and have significant experience
with C, C++, or another language that can use the C/C++ calling standard for your operating system.

This book is organized as follows:

* Thechapter “The Callin Interface” describes the Callin interface, which you can use from within C programs to execute
InterSystems IRIS commands and evaluate ObjectScript expressions.

e The chapter “Using the Callin Functions™ provides a quick summary of the Callin functions (with links to the full
description of each function) categorized according to the tasks they perform.

» Thechapter “Callin Function Reference” contains detailed descriptions of all InterSystems Callin functions, arranged
in alphabetical order.

The Callin functions provide a very low-level programming interface. In many cases, you will be able to accomplish your
objectives much more easily by using one of the standard InterSystems IRIS connectivity options. For details, see the fol-
lowing sources:

e “InterSystems Java Connectivity Options™ in Using Java with InterSystems Software
e Using the InterSystems Managed Provider for NET
The InterSystems Callout Gateway is a programming interface that allows you to create a shared library with functions that

can be invoked from InterSystems IRIS. Callout code is usually written in C or C++, but can be written in any language
that supports C/C++ calling conventions.

* Using the Callout Gateway

Using the Callin API 1

The Callin Interface

InterSystems IRIS® offers a Callin interface you can use from within C programs to execute InterSystems IRIS commands
and evaluate ObjectScript expressions.

The Callin interface permits a wide variety of applications. For example, you can use it to make ObjectScript available
from an integrated menu or GUI. If you gather information from an external device, such as an Automatic Teller Machine
or piece of laboratory equipment, the Callin interface lets you store this data in an InterSystems IRIS database. Although
InterSystems IRIS currently supports only C and C++ programs, any language that uses the calling standard for that platform
can invoke the Callin functions.

See Using the Callin Functions for a quick review of Callin functions. For detailed reference material on each Callin function,
see the Callin Function Reference.

1.1 Setup

The Callin development environment should include the following options:
» The Development installation package

Your system should include the components installed by the Deve lopment installation option. Existing instances of
InterSystems IRIS can be updated by running the installer again:

— InWindows, select the Setup Type: Development option during installation.

— In UNIX® and related operating systems, select the 1) Development - Install InterSystems IRIS
server and all language bindings option during installation (see “Standard InterSystems IRIS Instal-
lation Procedure” in the UNIX® and Linux section of the Installation Guide).

» The%Service_Callln service

If InterSystems IRIS has been installed with security option 2 (normal), open the Management Portal and go to System
Administration > Security > Services, select %Service_Call In, and make sure the Service Enabled box is
checked.

If you installed InterSystems IRIS with security option 1 (minimal) it should already be checked.

Using the Callin API 3

The Callin Interface

1.2 The iris-callin.h Header File

The iris-callin.h header file defines prototypes for these functions, which allows your C compiler to test for valid parameter
data types when you call these functions within your program. You can add this file to the list of #include statements in
your C program:

#include "iris-callin.h"

The iris-callin.h file also contains definitions of parameter values you use in your calls, and includes various #defines that
may be of use. These include operating-system—specific values, error codes, and values that determine how InterSystems
IRIS behaves.

You can translate the distributed header file, iris-callin.h. However, iris-callin.h is subject to change and you must track any
changes if you create a translated version of this file. InterSystems Worldwide Support Center does not handle calls about
unsupported languages.

Return values and error codes

Most Callin functions return values of type int, where the return value does not exceed the capacity of a 16-bit integer.
Returned values can be IR1S_SUCCESS, an InterSystems IRIS error, or a Callin interface error.

There are two types of errors:
» InterSystems IRIS errors — The return value of an InterSystems IRIS error is a positive integer.
» Interface errors — The return value of an interface error is 0 or a negative integer.

iris-callin.h defines symbols for all system and interface errors, including IRIS_SUCCESS (0) and IR1S_FAILURE (-1).
You can translate InterSystems IRIS errors (positive integers) by making a call to the Callin function IrisErrxlate.

1.3 8-bit and Unicode String Handling

InterSystems Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use a suffix
character to indicate the type of string that they handle:

* Names with an “A” suffix or no suffix at all (for example,lrisEvalA or IrisPopExStr) are versions for 8-bit character
strings.

* Names with a “W” suffix (for example,IrisEvalW or IrisPopExStrW) are versions for Unicode character strings on
platforms that use 2—byte Unicode characters.

» Names with an “H” suffix (for example,IrisEvalH or IrisPopExStrH) are versions for Unicode character strings on
platforms that use 4-byte Unicode characters.

For best performance, use the kind of string native to your installed version of InterSystems IRIS.

1.3.1 8-bit String Data Types

InterSystems IRIS supports the following data types that use local 8-bit string encoding:
* IRIS_ASTR — counted string of 8-bit characters

* IRIS_ASTRP — Pointer to an 8-bit counted string

4 Using the Callin API

8-bit and Unicode String Handling

The type definition for these is:

#define IRIS_MAXSTRLEN 32767
typedef struct {

unsigned short len;

Callin_char_t str[IRIS_MAXSTRLEN];
} IRIS_ASTR, *IRIS_ASTRP;

The IRIS_ASTR and IR1S_ASTRP structures contain two elements:

* len—An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

* str—A input or output string.

IRIS_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of length
IRIS_MAXSTRLEN nor does that much space have to be allocated in the program.

1.3.2 2-byte Unicode Data Types

InterSystems IRIS supports the following Unicode-related data types on platforms that use 2—byte Unicode characters:
* IRISWSTR — Unicode counted string

e IRISWSTRP — Pointer to Unicode counted string

The type definition for these is:

typedef struct {

unsigned short len;

unsigned short str[IRIS_MAXSTRLEN];
} IRISWSTR, *IRISWSTRP;

The IRISWSTR and IRISWSTRP structures contain two elements:

» len—Aninteger. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

* str—A input or output string.
IRIS_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of length
IRIS_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of InterSystems IRIS, there is also the data type IRIS_WSTRING, which represents the native
string type on 2-byte platforms. IrisType returns this type. Also, IrisConvert can specify IRIS_WSTRING as the data type
for the return value; if this type is requested, the result is passed back as a counted Unicode string in a IRISWSTR buffer.

1.3.3 4-byte Unicode Data Types

InterSystems IRIS supports the following Unicode-related data types on platforms that use 4-byte Unicode characters:
e IRISHSTR — Extended Unicode counted string

* IRISHSTRP — Pointer to Extended Unicode counted string

Using the Callin API 5

The Callin Interface

The type definition for these is:

typedef struct {

unsigned int len;

wchar_t str[IRIS_MAXSTRLEN];
} IRISHSTR, *IRISHSTRP;

The IRISHSTR and IRISHSTRP structures contain two elements:

« len— Aninteger. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

e str—A input or output string.

IRIS_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of length
IRIS_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of InterSystems IRIS, there is also the data type IRIS_HSTRING, which represents the native
string type on 4-byte platforms. IrisType returns this type. Also, IrisConvert can specify IRIS_HSTRING as the data type
for the return value; if this type is requested, the result is passed back as a counted Unicode string in a IRISHSTR buffer.

Because Unicode-enabled InterSystems IRIS uses only 2-byte characters, these strings are converted to UTF-16 when
coming into InterSystems IRIS and from UTF-16 to 4-byte Unicode when going out from InterSystems IRIS. The $W
family of functions (for example, $WASCII() and $WCHAR()) can be used in InterSystems IRIS code to work with these
strings.

1.3.4 System-neutral Symbol Definitions

The allowed inputs and outputs of some functions vary depending on whether they are running on an 8-bit system or a
Unicode system. For many of the “A” (ASCII) functions, the arguments are defined as accepting a IRISSTR, IR1S_STR,
IRISSTRP, or IRIS_STRP type. These symbol definitions (without the “A” |, “W™”, or “H”) can conditionally be asso-
ciated with either the 8-bit or Unicode names, depending on whether the symbols IRIS_UNICODE and 1R1S_WCHART
are defined at compile time. This way, you can write source code with neutral symbols that works with either local 8-bit
or Unicode encodings.

The following excerpt from iris-callin.h illustrates the concept:

#if defined(IRIS_UNICODE) /* Unicode character strings */

#define IRISSTR IRISWSTR
#define IRIS_STR IRISWSTR
#define IRISSTRP IRISWSTRP
#define IRIS_STRP IRISWSTRP

#define IRIS_STRING IRIS_WSTRING
#elif defined(IRIS_WCHART) /* wchar_t character strings */

#define IRISSTR IRISHSTR
#define IRIS_STR IRISHSTR
#define IRISSTRP IRISHSTRP
#define IRIS_STRP IRISHSTRP
#define IRIS_STRING IRIS_HSTRING
#else /* 8-bit character strings */
#define IRISSTR IRIS_ASTR
#define IRIS_STR IRIS_ASTR
#define IRISSTRP IRIS_ASTRP
#define IRIS_STRP IRIS_ASTRP
#define IRIS_STRING IRIS_ASTRING
#endif

6 Using the Callin API

Using InterSystems Security Functions

1.4 Using InterSystems Security Functions

Two functions are provided for working with InterSystems IRIS passwords:

e IrisSecureStart — Similar to IrisStart, but with additional parameters for password authentication. The IrisStart
function is now deprecated. If used, it will behave as if IrisSecureStart has been called with NULL for Username,
Password, and ExeName. You cannot use IrisStart if you need to use some form of password authentication.

» IrisChangePassword — This function will change the user's password if they are using InterSystems authentication
(it is not valid for LDAP/DELEGATED/Kerberos etc.). It must be called before a Callin session is initialized.

There are IrisSecureStart and IrisChangePassword functions for ASCII "A", Unicode "W", and Unicode "H" installs.
The new functions either narrow, widen or "use as is" the passed in parameters, store them in the new Callin data area, then
eventually call the IrisStart entry point.

IrisStart and IrisSecureStart pin and pout parameters can be passed as NULL, which indicates that the platform's default
input and output device should be used.

1.5 Using Callin with Multithreading

InterSystems IRIS has been enhanced so that Callin can be used by threaded programs running under some versions of
Windows and UNIX® (see “Other Supported Features” in the InterSystems Supported Platforms document for this release
for a list). A threaded application must link against libirisdbt.so or irisdbt.lib.

A program can spawn multiple threads (pthreads in a UNIX® environment) and each thread can establish a separate con-
nection to InterSystems IRIS by calling IrisSecureStart. Threads may not share a single connection to InterSystems IRIS;
each thread which wants to use InterSystems IRIS must call IrisSecureStart. If a thread attempts to use a Callin function
and it has not called IrisSecureStart, a IRIS_NOCON error is returned.

If IrisSecureStart is being used to specify credentials as part of the login, each thread must call I risSecureStart and provide
the correct username/password for the connection, since credentials are not shared between the threads. There is a performance
penalty within InterSystems IRIS using threads because of the extra code the C compiler has to generate to access thread
local storage (which uses direct memory references in non-threaded builds).

1.5.1Threads and UNIX® Signal Handling

On UNIX®, InterSystems IRIS uses a number of signals. If your application uses the same signals, you should be aware
of how InterSystems IRIS deals with them. All signals have a default action specified by the OS. Applications may choose
to leave the default action, or can choose to handle or ignore the signal. If the signal is handled, the application may further
select which threads will block the signal and which threads will receive the signal. Some signals cannot be blocked, ignored,
or handled. Since the default action for many signals is to halt the process, leaving the default action in place is not an
option. The following signals cannot be caught or ignored, and terminate the process:

SIGNAL DISPOSITION
SIGKILL terminate process immediately
SIGSTOP stop process for later resumption

The actions that an application establishes for each signal are process-wide. Whether or not the signal can be delivered to
each thread is thread-specific. Each thread may specify how it will deal with signals, independently of other threads. One

Using the Callin API 7

The Callin Interface

thread may block all signals, while another thread may allow all signals to be sent to that thread. What happens when a
signal is sent to the thread depends on the process-wide handling established for that signal.

1.5.1.1 Signal Processing

InterSystems IRIS integrates with application signal handling by saving application handlers and signal masks, then
restoring them at the appropriate time. Signals are processed in the following ways:

Generated signals

InterSystems IRIS installs its own signal handler for all generated signals. It saves the current (application) signal
handler. If the thread catches a generated signal, the signal handler disconnects the thread from InterSystems IRIS,
calls the applications signal handling function (if any), then does pthread_exit.

Since signal handlers are process-wide, threads not connected to InterSystems IRIS will also go into the signal
handler. If InterSystems IRIS detects that the thread is not connected, it calls the application handler and then does
pthread_exit.

Synchronous Signals
InterSystems IRIS establishes signal handlers for all synchronous signals, and unblocks these signals for each
thread when the thread connects to InterSystems IRIS (see “Synchronous Signals” for details).
Asynchronous Signals
InterSystems IRIS handles all asynchronous signals that would terminate the process (see “ Asynchronous Signals™
for details).
Save/Restore Handlers
The system saves the signal state when the first thread connects to it. When the last thread disconnects, InterSystems
IRIS restores the signal state for every signal that it has handled.
Save/Restore Thread Signal Mask

The thread signal mask is saved on connect, and restored when the thread disconnects.

1.5.1.2 Synchronous Signals

Synchronous signals are generated by the application itself (for example, SIGSEGV). InterSystems IRIS establishes signal
handlers for all synchronous signals, and unblocks these signals for each thread when it connects to InterSystems IRIS.

Synchronous signals are caught by the thread that generated the signal. If the application has not specified a handler for a
signal it has generated (for example, SIGSEGV), or if the thread has blocked the signal, then the OS will halt the entire
process. If the thread enters the signal handler, that thread may exit cleanly (via pthread_exit) with no impact to any
other thread. If a thread attempts to return from the handler, the OS will halt the entire process. The following signals cause
thread termination:

8 Using the Callin API

Using Callin with Multithreading

SIGNAL DISPOSITION

SI1GABRT process abort signal

SIGBUS bus error

SIGEMT EMT instruction

SIGFPE floating point exception

SIGILL illegal instruction

SIGSEGV access violation

SIGSYS bad argument to system call

SIGTRAP trace trap

SIGXCPU CPU time limit exceeded (setrlimit)

1.5.1.3 Asynchronous signals

Asynchronous signals are generated outside the application (for example, SIGALRM, SIGINT, and SIGTERM). InterSystems
IRIS handles all asynchronous signals that would terminate the process.

Asynchronous signals may be caught by any thread that has not blocked the signal. The system chooses which thread to
use. Any signal whose default action is to cause the process to exit must be handled, with at least one thread eligible to
receive it, or else it must be specifically ignored.

The application must establish a signal handler for those signals it wants to handle, and must start a thread that does not
block those signals. That thread will then be the only one eligible to receive the signal and handle it. Both the handler and
the eligible thread must exist before the application makes its first call to IrisStart. On the first call to I risStart, the following
actions are performed for all asynchronous signals that would terminate the process:

» InterSystems IRIS looks for a handler for these signals. If a handler is found, InterSystems IRIS leaves it in place.
Otherwise, it sets the signal to S1G_IGN (ignore the signal).

» InterSystems IRIS blocks all of these signals for connected threads, whether or not a signal has a handler. Thus, if there
is a handler, only a thread that is not connected to InterSystems IRIS can catch the signal.

The following signals are affected by this process:

SIGNAL DISPOSITION
SI1GALRM timer
SI1GCHLD blocked by threads

S1GDANGER ignore if unhandled

SIGHUP ignore if unhandled
SIGINT ignore if unhandled
SIGPIPE ignore if unhandled
SIGQUIT ignore if unhandled
SIGTERM If SIGTERM is unhandled, InterSystems IRIS will handle it. On receipt of a SIGTERM signal,

the InterSystems IRIS handler will disconnect all threads and no new connections will be
permitted. Handlers for SIGTERM are not stacked.

SIGUSR1 inter-process communication

Using the Callin API 9

The Callin Interface

SIGNAL DISPOSITION

SIGUSR2 inter-process communication

SIGVTALRM virtual timer

SIGXFSZ InterSystems IRIS asynchronous thread rundown

1.6 Callin Programming Tips

Topics in this section include:

Tips for All Callin Programs
Tips for Windows
Tips for UNIX® and Linux

1.6.1Tips for All Callin Programs

Your external program must follow certain rules to avoid corrupting InterSystems IRIS data structures, which can cause a
system hang.

Limits on the number of open files

Your program must ensure that it does not open so many files that it prevents InterSystems IRIS from opening the
number of databases or other files it expects to be able to. Normally, InterSystems IRIS looks up the user's open file
quota and reserves a certain number of files for opening databases, allocating the rest for the Open command.
Depending on the quota, InterSystems IRIS expects to have between 6 and 30 InterSystems IRIS database files open
simultaneously, and from 0 to 36 files open with the Open command.

Maximum Directory Length for Callin Applications

The directory containing any Callin application must have a full path that uses fewer than 232 characters. For example,
if an application is in the C:\1risApps\Accounting\AccountsPayable\ directory, this has 40 characters in
it and is therefore valid.

Call IrisEnd after IrisStart before halting

If your connection was established by a call to IrisStart, then you must call IrisEnd when you are done with the
connection. You can make as many Callin function calls in between as you wish.

You must call IrisEnd even if the connection was broken. The connection can be broken by a call to IrisAbort with
the RESJOB parameter.

IrisEnd performs cleanup operations which are necessary to prepare for another call to IrisStart. Calling IrisStart
again without calling IrisEnd (assuming a broken connection) will return the code IRIS_CONBROKEN.

Wait until ObjectScript is done before exiting

If you are going to exit your program, you must be certain ObjectScript has completed any outstanding request. Use
the Callin function IrisContext to determine whether you are within ObjectScript. This call is particularly important
in exit handlers and ctrl-C or Ctrl-Y handlers. If IrisContext returns a non-zero value, you can invoke IrisAbort.

Maintaining Margins in Callin Sessions

10

Using the Callin API

Callin Programming Tips

While you can set the margin within a Callin session, the margin setting is only maintained for the rest of the current
command line. If a program (as with direct mode) includes the line:

:Use 0:10 Write Xx

the margin of 10 is established for the duration of the command line.

Certain calls affect the command line and therefore its margin. These are the calls are annotated as "calls into InterSys-
tems IRIS™ in the function descriptions.

Avoid signal handling when using IrisStart()

IrisStart sets handlers for various signals, which may conflict with signal handlers set by the calling application.

1.6.2 Tips for Windows

These tips apply only to Windows.

Limitations on building Callin applications using the iris shared library (irisdb.dll)

When Callin applications are built using the shared library irisdb.dll, users who have large global buffer pools may see
the Callin fail to initialize (in IrisStart) with an error:

<InterSystems IRIS Startup Error: Mapping shared memory (203)>

The explanation for this lies in the behavior of system DLLs loading in Windows. Applications coded in the Win 32
API or with the Microsoft Foundation Classes (the chief libraries that support Microsoft Visual C++ development)
need to have the OS load the DLLs for that Windows code as soon as they initialize. These DLLs get loaded from the
top of virtual storage (higher addresses), reducing the amount of space left for the heap. On most systems, there are
also a number of other DLLs (for example, DLLs supporting the display graphics) that load automatically with each
Windows process at locations well above the bottom of the virtual storage. These DLLs have a tendency to request a
specific address space, most commonly 0X10000000 (256MB), chopping off a few hundred megabytes of contiguous
memory at the bottom of virtual memory. The result may be that there is insufficient virtual memory space in the Callin
executable in which to map the InterSystems IRIS shared memory segment.

1.6.3Tips for UNIX® and Linux

These tips apply only to UNIX® and Linux.

Do not disable interrupt delivery on UNIX®
UNIX® uses interrupts. Do not prevent delivery of interrupts.
Avoid using reserved signals

On UNIX®, InterSystems IRIS uses a number of signals. If possible, application programs linked with InterSystems
IRIS should avoid using the following reserved signals:

SIGABRT SIGDANGER SIGILL SIGQUIT SIGTERM SIGVTALRM
SIGALRM SIGEMT SIGINT SIGSTOP SIGTRAP SIGXCPU
SIGBUS SIGFPE SIGKILL SIGSEGV SIGUSR1 SIGXFSZ
SIGCHLD SIGHUP SIGPIPE SIGSYS SIGUSR2

If your application uses these signals, you should be aware of how InterSystems IRIS deals with them. See Threads
and UNIX® Signal Handling for details.

Using the Callin API 11

The Callin Interface

1.6.3.1 Setting Permissions for Callin Executables on UNIX®

InterSystems IRIS executables, files, and resources such as shared memory and operating system messages, are owned by
a user selected at installation time (the installation owner) and a group with a default name of irisusr (you can choose a

different name at installation time). These files and resources are only accessible to processes that either have this user 1D
or belong to this group. Otherwise, attempting to connect to InterSystems IRIS results in protection errors from the operating
system (usually specifying that access is denied); this occurs prior to establishing any connection with InterSystems IRIS.

A Callin program can only run if its effective group ID is irisusr. To meet this condition, one of the following must be true:

» The program is run by a user in the irisusr group (or an alternate run-as group if it was changed from irisusr to something
else).

e The program sets its effective user or group by manipulating its uid or gid file permissions (using the UNIX® chgrp
and chmod commands).

12 Using the Callin API

Using the Callin Functions

This section provides a quick summary of the Callin functions, with links to the full description of each function. The fol-
lowing categories are discussed:

Process Control

These functions start and stop a Callin session, and control various settings associated with the session.

Functions and Routines

These functions execute function or routine calls. Stack functions are provided for pushing function or routine references.
Transactions and Locking

These functions execute the standard InterSystems IRIS® transaction commands (TSTART, TCOMMIT, and
TROLLBACK) and the LOCK command.

Managing Objects

These functions manipulate the Oref counter, perform method calls, and get or set property values. Stack functions are
also included for Orefs, method references, and property names.

Managing Globals

These functions call into InterSystems IRIS to manipulate globals. Functions are provided to push globals onto the
argument stack.

Managing Strings
These functions translate strings from one form to another, and push or pop string arguments.
Managing Simple Datatypes

These stack functions are used to push and pop arguments that have int, double, $list, or pointer values.

The following sections discuss the individual functions in more detail.

2.1 Process Control

These functions start and stop a Callin session, control various settings associated with the session, and provide a high-level
interface for executing ObjectScript commands and expressions.

Using the Callin API 13

Using the Callin Functions

2.1.1 Session Control

These functions start and stop a Callin session, and control various settings associated with the session.

Table 2-1: Session control functions

IrisAbort Tells InterSystems IRIS to terminate the current request.

IrisChangePasswordA[W][H] Changes the user's password if InterSystems authentication is used. Must
be called before a Callin session is initialized.

IrisContext Returns an integer indicating whether you are in a $ZF callback session,
in the InterSystems IRIS side of a Callin call, or in the user program side.

IrisCtrl Determines whether or not InterSystems IRIS ignores CTRL-C.

IrisEnd Terminates an InterSystems IRIS session and, if necessary, cleans up a

broken connection. (Calls into InterSystems IRIS).

IrisEndAll Disconnects all Callin threads and waits until they terminate.
IrisOflush Flushes any pending output.

IrisPromptA[W][H] Returns a string that would be the Terminal.

IrisSetDir Dynamically sets the name of the manager's directory (IrisSys\Mgr) at

runtime. On Windows, the shared library version of InterSystems IRIS
requires this function.

IrisSignal Reports a signal detected by the user program to InterSystems IRIS for
handling.
IrisSecureStartA[W][H] Initiates an InterSystems IRIS process.
IrisStartA[W][H] (Deprecated. Use IrisSecureStart instead) Initiates an InterSystems IRIS
process.
2.1.2 Running ObjectScript

These functions provide a high-level interface for executing ObjectScript commands and expressions.

Table 2-2: ObjectScript command functions

IrisExecute A[W][H] Executes an ObjectScript command. (Calls into InterSystems IRIS).
IrisEvalA[W][H] Evaluates an ObjectScript expression. (Calls into InterSystems IRIS).
IrisConvert Returns the value of the InterSystems IRIS expression returned by IrisEval.
IrisType Returns the datatype of an item returned by IrisEval.

IrisErrorA[W][H] Returns the most recent error message, its associated source string, and

the offset to where in the source string the error occurred.

IrisErrxlateA[W][H] Returns the InterSystems IRIS error string associated with error number
returned from a Callin function.

14 Using the Callin API

Functions and Routines

2.2 Functions and Routines

These functions call into InterSystems IRIS to perform function or routine calls. Functions are provided to push function
or routine references onto the argument stack.

Table 2-3: Functions for performing function and routine calls

IrisDoFun Perform a routine call (special case). (Calls into InterSystems IRIS).
IrisDoRtn Perform a routine call. (Calls into InterSystems IRIS).

IrisExtFun Perform an extrinsic function call. (Calls into InterSystems IRIS).
IrisPop Pops a value off argument stack.

IrisUnPop Restores the stack entry from IrisPop

IrisPushFunc[W][H] Pushes an extrinsic function reference onto the argument stack.
IrisPushFuncX[W][H] Push an extended function reference onto argument stack
I[risPushRtn[W][H] Push a routine reference onto argument stack

IrisPushRtnX[W][H] Push an extended routine reference onto argument stack

2.3 Transactions and Locking

These functions execute the standard InterSystems IRIS transaction commands (TSTART, TCOMMIT, and TROLLBACK)
and the LOCK command.

2.3.1 Transactions

The following functions execute the standard InterSystems IRIS transaction commands.

Table 2-4: Transaction functions

IrisTCommit Executes a TCommit command.
IrisTLevel Returns the current nesting level ($TLEVEL) for transaction processing.
IrisTRollback Executes a TRollback command.
IrisTStart Executes a TStart command.
2.3.2 Locking

These functions execute various forms of the InterSystems IRIS LOCK command. Functions are provided to push lock
names onto the argument stack for use by the IrisAcquireLock function.

Using the Callin API 15

Using the Callin Functions

Table 2-5: Locking functions

IrisAcquireLock

IrisReleaseAllLocks

IrisReleaselLock

IrisPushLock[W][H]

IrisPushLockX[W][H]

Executes a LOCK command.

Performs an argumentless InterSystems IRIS LOCK command to remove
all locks currently held by the process.

Executes an InterSystems IRIS LOCK — command to decrement the lock
count for the specified lock name.

Initializes a IrisAcquireLock command by pushing the lock name on the
argument stack.

Initializes a IrisAcquireLock command by pushing the lock name and an
environment string on the argument stack.

2.4 Managing Objects

These functions call into InterSystems IRIS to manipulate the Oref counter, perform method calls, and get or set property
values. Stack functions are also included for Orefs, method references, and property names.

2.4.1 Orefs

Table 2-6: Oref functions

IrisCloseOref

IrisincrementCountOref
IrisPopOref
IrisPushOref

2.4.2 Methods

Table 2-7: Method functions

IrisinvokeMethod
IrisPushMethod[W][H]

IrisinvokeClassMethod

IrisPushClassMethod[W][H]

Decrement the reference counter for an OREF. (Calls into InterSystems
IRIS).

Increment the reference counter for an OREF
Pop an OREF off argument stack

Push an OREF onto argument stack

Perform an instance method call. (Calls into InterSystems IRIS).
Push an instance method reference onto argument stack
Perform a class method call. (Calls into InterSystems IRIS).

Push a class method reference onto argument stack

16

Using the Callin API

Managing Globals

2.4.3 Properties

Table 2-8: Property functions

IrisGetProperty
IrisSetProperty
IrisPushProperty[W][H]

Obtain the value for a property. (Calls into InterSystems IRIS).
Store the value for a property. (Calls into InterSystems IRIS).

Push a property name onto argument stack

2.5 Managing Globals

These functions call into InterSystems IRIS to manipulate globals. Functions are provided to push globals onto the argument

stack.

Table 2-9: Functions for managing globals

IrisGlobalGet

IrisGlobalGetBinary

IrisGlobalSet

IrisGlobalData
IrisGloballncrement
IrisGlobalKill
IrisGlobalOrder
IrisGlobalQuery
IrisGlobalRelease
IrisPushGlobal[W][H]
IrisPushGlobalX[W][H]

Obtains the value of the global reference defined by IrisPushGlobal[W][H]
and any subscripts. The node value is pushed onto the argument stack.

Obtains the value of the global reference like IrisGlobalGet, and also tests
to make sure that the result is a binary string that will fit in the provided
buffer.

Stores the value of the global reference. The node value must be pushed
onto the argument stack before this call.

Performs a $Data on the specified global.

Performs a $Increment and returns the result on top of the stack.
Performs a ZKILL on a global node or tree.

Performs a $Order on the specified global.

Performs a $Query on the specified global.

Releases ownership of a retained global buffer, if one exists.
Pushes a global name onto argument stack

Pushes an extended global name onto argument stack

2.6 Managing Strings

These functions translate strings from one form to another, and push or pop string arguments. These string functions may
be used for both standard strings and legacy short strings. Functions are provided for local 8-bit encoding, 2-byte Unicode,

and 4-byte Unicode.

Using the Callin API

17

Using the Callin Functions

Table 2-10: String functions

IrisCVvtExStrinA[W][H]

IrisCvtExStrOutA[W][H]

IrisExStrKill
IrisExStrNew[W][H]

I[risPOpEXStr{W][H]

IrisPushExStr[W][H]

Translates a string with specified external character set encoding to the
character string encoding used internally by InterSystems IRIS.

Translates a string from the character string encoding used internally in
InterSystems IRIS to a string with the specified external character set
encoding.

Releases the storage associated with a string.

Allocates the requested amount of storage for a string, and fills in the
EXSTR structure with the length and a pointer to the value field of the
structure.

Pops a value off argument stack and converts it to a string of the desired
type.

Pushes a string onto the argument stack

2.7 Managing Other Datatypes

These functions are used to push and pop argument values with datatypes such as int, double, $list, or pointer, and to return

the position of specified bit values withi

Table 2-11: Other datatype functions

IrisPushint
IrisPoplint
IrisPushint64
IrisPopInt64
I[risPushDbl
IrisPushIEEEDDI
IrisPopDbl
IrisPushList
IrisPopList
IrisPushPtr
IrisPopPtr
IrisPushUndef

IrisBitFind[B]

n a bitstring.

Push an integer onto argument stack

Pop a value off argument stack and convert it to an integer
Push a 64-bit (long long) value onto argument stack

Pop a value off argument stack and convert it to a 64—bit (long long) value
Push a double onto argument stack

Push an IEEE double onto argument stack.

Pops value off argument stack and converts it to a double
Translates and pushes a $LIST object onto argument stack
Pops a $LIST object off argument stack and translates it
Pushes a pointer value onto argument stack

Pops a pointer value off argument stack

Pushes an Undefined value that is interpreted as an omitted function
argument.

Returns the position of specified bit values within a bitstring. Similar to
InterSystems IRIS $BITFIND.

18

Using the Callin API

Callin Function Reference

This reference chapter contains detailed descriptions of all InterSystems Callin functions, arranged in alphabetical order.
For an introduction to the Callin functions organized by function, see Using the Callin Functions.

Note: InterSystems Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use

a suffix character to indicate the type of string that they handle:

e Names with an “A” suffix or no suffix at all (for example, IrisEvalA or IrisPopExStr) are versions for 8-
bit character strings.

e Names with a “W” suffix (for example, IrisEvalW or IrisPopExStrW) are versions for Unicode character
strings on platforms that use 2-byte Unicode characters.

» Names with an “H” suffix (for example, IrisEvalH or IrisPopExStrH) are versions for Unicode character
strings on platforms that use 4-byte Unicode characters.

For convenience, the different versions of each function are listed together here. For example, IrisEvalA[W][H]
or IrisPopExStr[W][H] .

3.1 Alphabetical Function List

This section contains an alphabetical list of all Callin functions with a brief description of each function and links to detailed
descriptions.

IrisAbort — Tells InterSystems IRIS® to cancel the current request being processed on the InterSystems IRIS side,
when it is convenient to do so.

IrisAcquirel ock — Executes an InterSystems IRIS LOCK command. The lock reference should already be set up
with IrisPushL ock X[W][H].

IrisCallExecuteFunc — Performs the $Xecute() function after the command string has been pushed onto the stack
by IrisPushExecuteFuncA[W][H].

IrisChangePasswor dA[W][H] — Changes the user's password if InterSystems authentication is used (not valid for
other forms of authentication).

IrisBitFind[B] — Returns the position of specified bit values within a bitstring (similar to InterSystems IRIS $BITFIND).
IrisCloseOref — Decrements the system reference counter for an OREF.

IrisContext — Returns true if there is a request currently being processed on the InterSystems IRIS side of the
connection when using an external Callin program.

Using the Callin API 19

Callin Function Reference

IrisConvert — Converts the value returned by IrisEvalA[W][H] into proper format and places in address specified
in its return value.

IrisCtrl — Determines whether or not InterSystems IRIS ignores CTRL-C.

IrisCvtExStrInA[W][H] — Translates a string with specified external character set encoding to the local 8-bit char-
acter string encoding used internally only in 8-bit versions of InterSystems IRIS.

IrisCvtExStrOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in the
InterSystems IRIS 8-bit product to a string with the specified external character set encoding. (This is only available
with 8-bit versions of InterSystems IRIS.)

IrisCvtInA[W][H] — Translates string with specified external character set encoding to the local 8-bit character string
encoding (used internally only in 8-bit versions of InterSystems IRIS) or the Unicode character string encoding (used
internally in Unicode versions of InterSystems IRIS).

IrisCvtOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in the Inter-
Systems IRIS 8-bit product to a string with the specified external character set encoding. (This is only available with
8-bit versions of InterSystems IRIS.)

IrisDoFun — Performs a routine call (special case).
IrisDoRtn — Performs a routine call.

IrisEnd — Terminates an InterSystems IRIS process. If there is a broken connection, it also performs clean-up opera-
tions.

IrisEndAll — Disconnects all Callin threads and waits until they terminate.

IrisError A[W][H] — Returns the most recent error message, its associated source string, and the offset to where in
the source string the error occurred.

IrisErrxlateA[W][H] — Translates an integer error code into an InterSystems IRIS error string.

IrisEvalA[W][H] — Evaluates a string as if it were an InterSystems IRIS expression and places the return value in
memory for further processing by IrisTypeand IrisConvert.

IrisExecuteA[W][H] — Executes a command string as if it were typed in the Terminal.
IrisExecuteArgs — Executes a command string with arguments.
IrisExStrKill — Releases the storage associated with an EXSTR string.

IrisExStrNew[W][H] — Allocates the requested amount of storage for a string, and fills in the EXSTR structure with
the length and a pointer to the value field of the structure.

IrisExtFun — Performs an extrinsic function call where the return value is pushed onto the argument stack.

IrisGetProperty — Obtains the value of the property defined by I risPushProperty[W][H]. The value is pushed onto
the argument stack.

IrisGlobalData — Performs a $Data on the specified global.

IrisGlobal Get — Obtains the value of the global reference defined by IrisPushGlobal[W][H] and any subscripts.
The node value is pushed onto the argument stack.

IrisGloball ncrement — Performs a $INCREMENT and returns the result on top of the stack.
IrisGlobalKill — Performs a ZKILL on a global node or tree.

IrisGlobalOrder — Performs a $Order on the specified global.

IrisGlobalQuery — Performs a $Query on the specified global.

IrisGlobalRelease — Release ownership of a retained global buffer, if one exists.

20

Using the Callin API

Alphabetical Function List

IrisGlobal Set — Stores the value of the global reference defined by IrisPushGlobal[W][H] and any subscripts. The
node value must be pushed onto the argument stack before this call.

IrislncrementCountOref — Increments the system reference counter for an OREF.

IrisinvokeClassM ethod — Executes the class method call defined by I risPushClassM ethod[W][H] and any arguments.
The return value is pushed onto the argument stack.

IrislnvokeM ethod — Executes the instance method call defined by IrisPushM ethod[W][H] and any arguments
pushed onto the argument stack.

I risOflush — Flushes any pending output.
IrisPop — Pops a value off argument stack.

IrisPopCvtW[H] — Pops a local 8-bit string off argument stack and translates it to Unicode. Identical to
IrisPopStr[W][H] for Unicode versions.

IrisPopDbl — Pops a value off argument stack and converts it to a double.
IrisPopEXxStr[W][H] — Pops a value off argument stack and converts it to a string.
IrisPopExStr CvtW[H] — Pops a value off argument stack and converts it to a long Unicode string.
IrisPoplnt — Pops a value off argument stack and converts it to an integer.

IrisPoplnt64 — Pops a value off argument stack and converts it to a 64-bit (long long) number.
IrisPopList — Pops a SLIST object off argument stack and converts it.

IrisPopOref — Pops an OREF off argument stack.

IrisPopPtr — Pops a pointer off argument stack in internal format.

IrisPopStr[W][H] — Pops a value off argument stack and converts it to a string.
IrisPromptA[W][H] — Returns a string that would be the Terminal.

IrisPushClassM ethod[W][H] — Pushes a class method reference onto the argument stack.

IrisPushCvtW[H] — Translates a Unicode string to local 8-bit and pushes it onto the argument stack. ldentical to
IrisPushStr[W][H] for Unicode versions.

IrisPushDbl — Pushes a double onto the argument stack.

IrisPushExecuteFuncA[W][H] — Pushes the $Xecute() command string onto the stack in preparation for a call by
IrisCallExecuteFunc.

IrisPushExStr[W][H] — Pushes a string onto the argument stack.

IrisPushExStr CvtW[H] — Converts a Unicode string to local 8-bit encoding and pushes it onto the argument stack.
IrisPushFunc[W][H] — Pushes an extrinsic function reference onto the argument stack.

IrisPushFuncX[W][H] — Pushes an extended extrinsic function reference onto the argument stack.
IrisPushGlobal[W][H] — Pushes a global reference onto the argument stack.

IrisPushGlobal X[W][H] — Pushes an extended global reference onto the argument stack.

IrisPushl EEEDbI — Pushes an IEEE double onto the argument stack.

IrisPushlnt — Pushes an integer onto the argument stack.

IrisPushlnt64 — Pushes a 64-bit (long long) number onto the argument stack.

IrisPushList — Converts a $LIST object and pushes it onto the argument stack.

IrisPushLock[W][H] — Initializes a I risAcquireL ock command by pushing the lock name on the argument stack.

Using the Callin API 21

Callin Function Reference

IrisPushL ock X[W][H] — Initializes a IrisAcquireL ock command by pushing the lock name and an environment
string on the argument stack.

IrisPushM ethod[W][H] — Pushes an instance method reference onto the argument stack.
IrisPushOref — Pushes an OREF onto the argument stack.

IrisPushProperty[W][H] — Pushes a property reference onto the argument stack.

IrisPushPtr — Pushes a pointer onto the argument stack in internal format.

IrisPushRtn[W][H] — Pushes a routine reference onto the argument stack.
IrisPushRtnX[W][H] — Pushes an extended routine reference onto the argument stack.
IrisPushStr[W][H] — Pushes a byte string onto the argument stack.

IrisPushUndef — pushes an Undefined value that is interpreted as an omitted function argument.

IrisReleaseAllL ocks — Performs an argumentless InterSystems IRIS LOCK command to remove all locks currently
held by the process.

IrisReleasel ock — Executes an InterSystems IRIS LOCK command to decrement the lock count for the specified
lock name. This command will only release one incremental lock at a time.

IrisSecureStartA[W][H] — Calls into InterSystems IRIS to set up a process.

IrisSetDir — Dynamically sets the name of the manager's directory at runtime.
IrisSetProperty — Stores the value of the property defined by IrisPushProperty[W][H].
IrisSignal — Passes on signals caught by user's program to InterSystems IRIS.

I risSPCReceive — Receive single-process-communication message.

IrisSPCSend — Send a single-process-communication message.

IrisStartA[W][H] — Calls into InterSystems IRIS to set up an InterSystems IRIS process.
IrisTCommit — Executes an InterSystems IRIS TCommit command.

IrisTLevel — Returns the current nesting level ($TLEVEL) for transaction processing.
IrisTRollback — Executes an InterSystems IRIS TRollback command.

IrisT Start — Executes an InterSystems IRIS TStart command.

IrisType — Returns the native type of the item returned by IrisEvalA[W][H], as the function value.
IrisUnPop — Restores the stack entry from IrisPop.

3.2 IrisAbort

int IrisAbort(unsigned long type)

22

Using the Callin API

IrisAcquireLock

Arguments
type Either of the following predefined values that specify how the termination occurs:
e IRIS_CTRLC — Interrupts the InterSystems IRIS processing as if a CTRL-C had been pro-
cessed (regardless of whether CTRL-C has been enabled with IrisCtrl). A connection to
InterSystems IRIS remains.
e IRIS_RESJOB — Terminates the Callin connection. You must then call IrisEnd and then
IrisStart to reconnect to InterSystems IRIS.
Description

Tells InterSystems IRIS to cancel the current request being processed on the InterSystems IRIS side, when it is convenient
to do so. This function is for use if you detect some critical event in an AST (asynchronous trap) or thread running on the
Callin side. (You can use IrisContext to determine if there is an InterSystems IRIS request currently being processed.)
Note that this only applies to Callin programs that use an AST or separate thread.

Return Values for IrisAbort

IRIS_BADARG The termination type is invalid.
IRIS_CONBROKEN Connection has been broken.
IRIS_NOCON No connection has been established.
IRIS_NOTINCACHE The Callin partner is not in InterSystems IRIS at this time.
IRIS_SUCCESS Connection formed.

Example

rc = IrisAbort(IRIS_CTRLC);

3.3 IrisAcquireLock

int IrisAcquireLock(int nsub, int flg, int tout, iInt * rval)

Arguments
nsub Number of subscripts in the lock reference.
flg Modifiers to the lock command. Valid values are one or both of IRIS_ INCREMENTAL _LOCK
and IRIS_SHARED_LOCK.
tout Number of seconds to wait for the lock command to complete. Negative for no timeout. 0 means
return immediately if the lock is not available, although a minimum timeout may be applied if the
lock is mapped to a remote system.
rval Optional pointer to an int return value: success = 1, failure = 0.
Description

Executes an InterSystems IRIS LOCK command. The lock reference should already be set up with IrisPushL ock.

Using the Callin API 23

Callin Function Reference

Return Values for IrisAcquireLock

IRIS_FAILURE An unexpected error has occurred.

IRIS_ SUCCESS Successfully called the LOCK command (but the rval parameter must be
examined to determine if the lock succeeded).

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_ERARGSTACK Argument stack overflow.

3.4 IrisBitFind

int IrisBitFind(int strlen, unsigned short *bitstr, int newlen, int srch, int revflg)

Arguments
strlen Data length of the bitstring.
bitstr Pointer to a Unicode bitstring.
newlen 0 to start at the beginning, otherwise 1-based starting position
srch The bit value (0 or 1) to search for within the bitstring.
revflg Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.
0 — Search backward from the position indicated by newlen.
Description

Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns O if there are no more bits of the specified value in the specified direction.

This function is similar to InterSystems IRIS $BITFIND (also see “General Information on Bitstring Functions™).
Return Values for IrisBitFind

IRIS_SUCCESS The operation was successful.

3.5 IrisBitFindB

int IrisBitFindB(int strlen, unsigned char *bitstr, int newlen, int srch, int revflg)

24 Using the Callin API

IrisCallExecuteFunc

Arguments
strlen Data length of the bitstring.
bitstr Pointer to a bitstring.
newlen 0 to start at the beginning, otherwise 1-based starting position.
srch The bit value (0 or 1) to search for within the bitstring.
revflg Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.
0 — Search backward from the position indicated by newlen.
Description

Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns O if there are no more bits of the specified value in the specified direction.

This function is similar to InterSystems IRIS $BITFIND (also see “General Information on Bitstring Functions™).
Return Values for IrisBitFindB

IRIS_SUCCESS The operation was successful.

3.6 IrisCallExecuteFunc

int IrisCallExecuteFunc(int numargs)

Arguments

numargs | Number of arguments pushed onto the stack.

Description

Calls the $Xecute() function with arguments. The function command string must have been pushed onto the argument stack
by IrisPushExecuteFuncA[W][H], followed by pushing the arguments. The number of arguments may be 0. The result
of the function will be left on the argument stack.

Return Values for IrisCallExecuteFunc

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_BADARG Invalid call argument.

IRIS_ STRTOOLONG String is too long.

IRIS_ ERPARAMETER Xecute string is not expecting arguments

IRIS_SUCCESS The operation was successful.

IRIS_FAILURE An unexpected error has occurred.

Using the Callin API 25

Callin Function Reference

3.7 IrisChangePasswordA

Variants: | risChangePasswor dW, | risChangePasswor dH

int IrisChangePasswordA(IRIS_ASTRP username, IRIS_ASTRP oldpassword, IRIS_ASTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if InterSystems authentication or delegated authentication is used. It is not
valid for LDAP, Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical
use would be to handle a IR1S_CHANGEPASSWORD error from IrisSecureStart. In such a case IrisChangePassword
would be called to change the password, then IrisSecureStart would be called again.

Return Values for IrisChangePasswordA
IRIS_FAILURE An unexpected error has occurred.
IRIS_SUCCESS Password changed.

3.8 IrisChangePasswordH

Variants: IrisChangePasswor dA, IrisChangePasswor dW

int IrisChangePasswordH(IRISHSTRP username, IRISHSTRP oldpassword, IRISHSTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if InterSystems authentication or delegated authentication is used. It is not
valid for LDAP, Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical
use would be to handle a IRIS_CHANGEPASSWORD error from IrisSecureStart. In such a case |risChangePassword
would be called to change the password, then IrisSecureStart would be called again.

Return Values for IrisChangePasswordH
IRIS_FAILURE An unexpected error has occurred.
IRIS_ SUCCESS Password changed.

26 Using the Callin API

IrisChangePasswordW

3.9 IrisChangePasswordW

Variants: I risChangePasswor dA, IrisChangePasswor dH

int IrisChangePasswordW(IRISWSTRP username, IRISWSTRP oldpassword, IRISWSTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if InterSystems authentication or delegated authentication is used. It is not
valid for LDAP, Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical
use would be to handle a IR1S_CHANGEPASSWORD error from IrisSecureStart. In such a case IrisChangePassword
would be called to change the password, then IrisSecureStart would be called again.

Return Values for IrisChangePasswordW
IRIS_FAILURE An unexpected error has occurred.
IRIS_SUCCESS Password changed.

3.10 IrisCloseOref

int IrisCloseOref(unsigned int oref)

Arguments

oref Object reference.

Description
Decrements the system reference counter for an OREF.

Return Values for IrisCloseOref
IRIS_ERBADOREF Invalid OREF.
IRIS_SUCCESS The operation was successful.

3.11 IrisContext

int IrisContext()

Description
Returns an integer as the function value.

Using the Callin API 27

Callin Function Reference

If you are using an external Callin program (as opposed to a module that was called from a $ZF function) and your program
employs an AST or separate thread, then IrisContext tells you if there is a request currently being processed on the Inter-
Systems IRIS side of the connection. This information is needed to decide if you must return to InterSystems IRIS to allow
processing to complete.

Return Values for IrisContext

-1 Created in InterSystems IRIS via a $ZF callback.
0 No connection or not in InterSystems IRIS at the moment.
1 In InterSystems IRIS via an external (i.e., not $ZF) connection. An asynchronous trap (AST), such

as an exit-handler, would need to return to InterSystems IRIS to allow processing to complete.

Note: The information about whether you are in a $ZF function from a program or an AST is needed because, if you
are in an AST, then you need to return to InterSystems IRIS to allow processing to complete.

Example

rc = IrisContext();

3.12 IrisConvert

int IrisConvert(unsigned long type, void * rbuf)

Arguments
type The #define'd type, with valid values listed below.
rouf Address of a data area of the proper size for the data type. If the type is IRIS_ASTRING, rbuf
should be the address of a IRIS_ASTR structure that will contain the result, and the len element
in the structure should be filled in to represent the maximum size of the string to be returned (in
characters). Similarly, if the type is IRIS_WSTRING, rbuf should be the address of a IRISWSTR
structure whose len element has been filled in to represent the maximum size (in characters).
Description

Converts the value returned by IrisEval into proper format and places in address specified in its return value (listed below
as rbuf).

Valid values of type are:

o |IRIS_ASTRING — 8-bit character string.
* IRIS_CHAR — 8-bit signed integer.

* IRIS_DOUBLE — 64-hit floating point.

e IRIS_FLOAT — 32-bit floating point.

* IRIS_INT — 32-bit signed integer.

* IRIS_INT2 — 16-bit signed integer.

o IRIS_INT4 — 32-bit signed integer.

* |RIS_INT8 — 64-bit signed integer.

* IRIS_UCHAR — 8-bit unsigned integer.

28 Using the Callin API

IrisCitrl

e |RIS_UINT — 32-bit unsigned integer.

* IRIS_UINT2 — 16-bit unsigned integer.

* IRIS_UINT4 — 32-bit unsigned integer.

* IRIS_UINT8 — 64-bit unsigned integer.

* IRIS_WSTRING — Unicode character string.

Return Values for IrisConvert

IRIS_BADARG Type is invalid.

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_FAILURE An unexpected error has occurred.

IRIS_NOCON No connection has been established.

IRIS_NORES No result whose type can be returned (no call to IrisEvalA preceded this
call).

IRIS_RETTRUNC Success, but the type IRIS_ASTRING, IRIS_INT8, IRIS_UINT8 and

IRIS_WSTRING resulted in a value that would not fit in the space allocated
in retval. For IRIS_INT8 and IRIS_UINTS, this means that the expression
resulted in a floating point number that could not be normalized to fit within

64 bits.
IRIS_STRTOOLONG String is too long.
IRIS_SUCCESS Value returned by last IrisEval converted successfully.

Note: InterSystems IRIS may perform division when calculating the return value for floating point types, IRIS_FLOAT
and IRIS_DOUBLE, which have decimal parts (including negative exponents), as well as the 64-bit integer types
(IRIS_INT8 and IRIS_UINTS). Therefore, the returned result may not be identical in value to the original.
IRIS_ASTRING, IRIS_INTS8, IRIS_UINT8 and IRIS_WSTRING can return the status IRIS_RETTRUNC.

Example

IRIS_ASTR retval;
/* define variable retval */

retval.len = 20;
/* maximum return length of string */

rc = IrisConvert(IRIS_ASTRING,&retval);

3.13 IrisCtrl

int IrisCtri(unsigned long flags)

Arguments

flags Either of two #define'd values specifying how InterSystems IRIS handles certain keystrokes.

Using the Callin API 29

Callin Function Reference

Description

Determines whether or not InterSystems IRIS ignores CTRL-C. flags can have bit state values of

e IRIS_DISACTRLC — InterSystems IRIS ignores CTRL-C.

* IRIS_ENABCTRLC — Default if function is not called, unless overridden by a BREAK or an OPEN command. In
InterSystems IRIS, CTRL-C generates an <INTERRUPT>.

Return Values for IrisCtrl

IRIS_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
IRIS_ SUCCESS Control function performed.
Example

rc = IrisCtri(IRIS_ENABCTRLC);

3.14 IrisCvtEXStrinA

Variants: IrisCvtExStrInW, IrisCvtExStrInH

int IrisCvtEXStrInA(IRIS_EXSTRP src, IRIS_ASTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.
Description

Translates a string with specified external character set encoding to the local 8-bit character string encoding used internally.

Return Values for IrisCvtExStrinA

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_ERRUNIMPLEMENTED Not available for Unicode.

IRIS_ERVALUE The specified 1/O translation table name was undefined or did not have
an input component.

IRIS_ERXLATE Input string could not be translated using the specified I/O translation
table.

IRIS_NOCON No connection has been established.

IRIS_ RETTRUNC Result was truncated because result buffer was too small.

IRIS_FAILURE Error encountered while trying to build translation data structures (prob-

ably not enough partition memory).

IRIS_SUCCESS Translation completed successfully.

30 Using the Callin API

IrisCVtEXStrinW

3.15 IriIsCVtExStrinW

Variants: IT1isCVtExStrIinA, IrisCvtExStrInH

int IrisCvtEXStrinW(IRIS_EXSTRP src, IRISWSTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.
Description

Translates a string with specified external character set encoding to the 2-byte Unicode character string encoding used
internally in InterSystems IRIS.

Return Values for IrisCVtEXStrinW

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_ ERRUNIMPLEMENTED Not available for 8-bit systems.

IRIS_ERVALUE The specified 1/O translation table name was undefined or did not have
an input component.

IRIS_ERXLATE Input string could not be translated using the specified 1/O translation
table.

IRIS_NOCON No connection has been established.

IRIS_ RETTRUNC Result was truncated because result buffer was too small.

IRIS_FAILURE Error encountered while trying to build translation data structures (prob-

ably not enough partition memory).

IRIS_SUCCESS Translation completed successfully.

3.16 IrisCvtExStrinH

Variants: Ir1isCvtExStrInA, IrisCvtEXStrInW

int IrisCvtExXStriInH(IRIS_EXSTRP src, IRISWSTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
thl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.

Using the Callin API 31

Callin Function Reference

Description

Translates a string with specified external character set encoding to the 4-byte Unicode character string encoding used

internally in InterSystems IRIS.

Return Values for IrisSCvtExStrinH
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

Connection has been closed due to a serious error.
Not available for 8—bit systems.

The specified 1/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified 1/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.17 IriIsCVtEXStrOutA

Variants: | risCvtExStrOutW, IrisCvtExStr OutH

int IrisCvtEXStrOutA(IRIS_EXSTRP src, IRIS_ASTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.
Description

Translates a string from the 8-bit character string encoding used internally in an older InterSystems 8-bit product to a string
with the specified external character set encoding.

32

Using the Callin API

IrisCVvtExStrOutwW

Return Values for IrisCvtExStrOutA
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.18 IriIsCVtExStrOutW

Variants: 1risCvtExStr OutA, IrisCvtExStrOutH

int IrisCvtEXStrOutW(IRIS_EXSTRP src, IRISWSTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.
Description

Translates a string from the 2—byte Unicode character string encoding used internally in InterSystems IRIS to a string with
the specified external character set encoding.

Using the Callin API

33

Callin Function Reference

Return Values for IrisCVtExStrOutW
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.19 IrisCvtExStrOutH

Variants: 1risCvtExStr OutA, IrisCvtExStr OutW

int IrisCvtEXStrOutH(IRIS_EXSTRP src, IRISWSTRP tbl, IRIS_EXSTRP res)

Arguments
src Address of a IRIS_EXSTRP variable that contains the string to be converted.
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_EXSTRP variable that will contain the result.
Description

Translates a string from the 4—byte Unicode character string encoding used internally in InterSystems IRIS to a string with
the specified external character set encoding.

34

Using the Callin API

IrisCvtinA

Return Values for IrisCvtExStrOutH
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.20 IrisCvtinA

Variants: IrisCvtlnW, IrisCvtlnH

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

int IrisCvtInA(IRIS_ASTRP src, IRIS_ASTRP tbl, IRIS_ASTRP res)

Arguments
src The string in an external character set encoding to be translated (described using a counted
character string buffer). The string should be initialized, for example, by setting the value to the
number of blanks representing the maximum number of characters expected as output.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_ASTR variable that will contain the counted 8-bit string result.
Description

Translates string with specified external character set encoding to the local 8-bit character string encoding used internally
only in 8-bit versions of InterSystems IRIS.

Using the Callin API

35

Callin Function Reference

Return Values for IrisCvtinA
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.21 IrisCvtinW

Variants: IrisCvtInA, IrisCvtlnH

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

int IrisCvtInW(IRIS_ASTRP src, IRISWSTRP tbl, IRISWSTRP res)

Arguments
src The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).
thl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRISWSTR variable that will contain the counted Unicode string result.
Description

Translates string with specified external character set encoding to the Unicode character string encoding used internally in

Unicode versions of InterSystems IRIS.

36

Using the Callin API

IrisCvtinH

Return Values for IrisCvtinW
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.22 IrisCvtinH

Variants: 1risCvtlnA, IrisCvtlnW

int IrisCvtInH(IRIS_ASTRP src,

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

IRISHSTRP tbl, IRISHSTRP res)

Arguments
src The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).
thl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRISHSTRP variable that will contain the counted Unicode string result.
Description

Translates string with specified external character set encoding to the Unicode character string encoding used internally in

Unicode versions of InterSystems IRIS.

Using the Callin API

37

Callin Function Reference

Return Values for IrisCvtinH
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.23 IrisCvtOutA

Variants: 1risCvtOutW, IrisCvtOutH

int IrisCvtOutA(IRIS_ASTRP src,

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

IRIS_ASTRP tbl, IRIS_ASTRP res)

Arguments
src The string in the local 8-bit character string encoding used internally in the InterSystems IRIS 8-
bit product (if a NULL pointer is passed, InterSystems IRIS will use the result from the last call
to IrisEvalA or IrisEvalW).
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_ASTR variable that will contain the result in the target external character set
encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the local 8-bit character string encoding used internally in the InterSystems IRIS 8-bit product to
a string with the specified external character set encoding. (This is only available with 8-bit versions of InterSystems IRIS.)

38

Using the Callin API

IrisCvtOutw

Return Values for IrisCvtOutA
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.24 IrisCvtOutW

Variants: 1risCvtOutA, IrisCvtOutH

int IrisCvtOutW(IRISWSTRP src,

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

IRISWSTRP tbl, IRIS_ASTRP res)

Arguments
src The string in the Unicode character string encoding used internally in the InterSystems IRIS
Unicode product (if a NULL pointer is passed, InterSystems IRIS will use the result from the last
call to IrisEvalA or IrisEvalWw).
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_ASTR variable that will contain the result in the target external character set
encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the Unicode character string encoding used internally in Unicode versions of InterSystems IRIS
to a string with the specified external character set encoding. (This is only available with Unicode versions of InterSystems

IRIS.)

Using the Callin API

39

Callin Function Reference

Return Values for IrisCvtOutW
IRIS_CONBROKEN
IRIS_ERRUNIMPLEMENTED
IRIS_ERVALUE

IRIS_ERXLATE

IRIS_NOCON
IRIS_RETTRUNC
IRIS_FAILURE

IRIS_SUCCESS

3.25 IrisCvtOutH

Variants: 1risCvtOutA, IrisCvtOutW

int IrisCvtOutH(IRISHSTRP src,

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

IRISHSTRP tbl, IRIS_ASTRP res)

Arguments
src The string in the Unicode character string encoding used internally in the InterSystems IRIS
Unicode product (if a NULL pointer is passed, InterSystems IRIS will use the result from the last
call to IrisEvalA or IrisEvalWw).
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a IRIS_ASTR variable that will contain the result in the target external character set
encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the Unicode character string encoding used internally in Unicode versions of InterSystems IRIS
to a string with the specified external character set encoding. (This is only available with Unicode versions of InterSystems

IRIS.)

40

Using the Callin API

IrisDoFun

Return Values for IrisCvtOutH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_ ERRUNIMPLEMENTED Not available for 8-bit systems.

IRIS_ERVALUE The specified I/O translation table name was undefined or did not have
an input component.

IRIS_ERXLATE Input string could not be translated using the specified I/O translation
table.

IRIS_NOCON No connection has been established.

IRIS_ RETTRUNC Result was truncated because result buffer was too small.

IRIS_FAILURE Error encountered while trying to build translation data structures (prob-

ably not enough partition memory).

IRIS_ SUCCESS Translation completed successfully.

3.26 IrisDoFun

int IrisDoFun(unsigned int flags, int narg)

Arguments
flags Routine flags from IrisPushRtn[XW]
narg Number of call arguments pushed onto the argument stack. Target must have a (possibly empty)
formal parameter list.
Description

Performs a routine call (special case).

Return Values for IrisDoFun

IRIS_CONBROKEN Connection has been closed due to a serious error.
IRIS_NOCON No connection has been established.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_FAILURE Internal consistency error.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.27 IrisDoRtn

int IrisDoRtn(unsigned int flags, int narg)

Using the Callin API 41

Callin Function Reference

Arguments
flags Routine flags from IrisPushRtn[XW]
narg Number of call arguments pushed onto the argument stack. If zero, target must not have a formal
parameter list.
Description

Performs a routine call.

Return Values for IrisDoRtn

IRIS_ CONBROKEN Connection has been closed due to a serious error.
IRIS_NOCON No connection has been established.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_FAILURE Internal consistency error.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.28 IrisEnd

int IrisendQ)

Description
Terminates an InterSystems IRIS process. If there is a broken connection, it also performs clean-up operations.

Return Values for IrisEnd

IRIS_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

IRIS_NOCON No connection has been established.

IRIS_SUCCESS InterSystems IRIS session terminated/cleaned up.

IrisEnd can also return any of the InterSystems IRIS error codes.

Example

rc = IriséndQ);

3.29 IrisEndAll

int IrisendAllQ)

Description

Disconnects all threads in a threaded Callin environment, then schedules the threads for termination and waits until they
are done.

42 Using the Callin API

IrisErrorA

Return Values for IrisEndAll

IRIS_ SUCCESS InterSystems IRIS session terminated/cleaned up.

Example

rc = IrisendAlIlI();

3.30 IrisErrorA

Variants: IrisErrorW, IrisErrorH

int IrisErrorA(IRIS_ASTRP msg, IRIS_ASTRP src, int * offp)

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp An integer that specifies the offset to location in errsrc or the address of an integer to receive
the offset to the source string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for IrisErrorA

IRIS_CONBROKEN Connection has been broken.
IRIS_NOCON No connection has been established.
IRIS_ RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
IRIS_SUCCESS Connection formed.
Example

IRIS_ASTR errmsg;

IRIS_ASTR srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = IrisErrorA(&errmsg, &srcline, &offset)) != IRIS_SUCCESS)
printf("'\r\nfailed to display error - rc = %d",rc);

3.31 IrisErrorH

Variants: IrisErrorA, IrisErrorW

int IrisErrorH(IRISHSTRP msg, IRISHSTRP src, int * offp)

Using the Callin API 43

Callin Function Reference

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for IrisErrorH

IRIS_ CONBROKEN Connection has been broken.
IRIS_NOCON No connection has been established.
IRIS_RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
IRIS_ SUCCESS Connection formed.
Example

IRISHSTRP errmsg;

IRISHSTRP srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = IrisErrorH(&errmsg, &srcline, &offset)) = IRIS_SUCCESS)
printf(""\r\nfailed to display error - rc = %d",rc);

3.32 IrisErrorW

Variants: IrisErrorA, IrisErrorH

int IriserrorW(IRISWSTRP msg, IRISWSTRP src, int * offp)

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

44 Using the Callin API

IrisErrxlateA

Return Values for IrisErrorW

IRIS_CONBROKEN Connection has been broken.
IRIS_NOCON No connection has been established.
IRIS_RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
IRIS_SUCCESS Connection formed.
Example

IRISWSTRP errmsg;

IRISWSTRP srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = IrisErrorW(&errmsg, &srcline, &offset)) != IRIS_SUCCESS)
printf("'\r\nfailed to display error - rc = %d",rc);

3.33 IrisErrxlateA

Variants: IrisErrxlateW, IrisErrxlateH

int IrisErrxlateA(int code, IRIS_ASTRP rbuf)

Arguments
code The error code.
rbuf Address of a IRIS_ASTR variable to contain the InterSystems IRIS error string. The len field
should be loaded with the maximum string size that can be returned.
Description

Translates error code code into an InterSystems IRIS error string, and writes that string into the structure pointed to by rbuf

Return Values for IrisErrxlateA

IRIS_ ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest InterSystems IRIS error number.
IRIS_ RETTRUNC The associated error string was truncated to fit in the allocated area.
IRIS_SUCCESS Connection formed.
Example

IRIS_ASTR retval; /* define variable retval */
retval . len = 30; /* maximum return length of string */
rc = IrisErrxlateA(IRIS_ERSTORE,&retval);

Using the Callin API 45

Callin Function Reference

3.34 IrisErrxlateH

Variants: IrisErrxlateA, IrisErrxlateW

int IrisErrxlateH(int code, IRISHSTRP rbuf)

Arguments
code The error code.
rbuf Address of a IRISHSTRP variable to contain the InterSystems IRIS error string. The len field
should be loaded with the maximum string size that can be returned.
Description

Translates error code code into an InterSystems IRIS error string, and writes that string into the structure pointed to by rbuf

Return Values for IrisErrxlateH

IRIS_ ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest InterSystems IRIS error number.
IRIS RETTRUNC The associated error string was truncated to fit in the allocated area.
IRIS_SUCCESS Connection formed.
Example

IRISHSTR retval; /* define variable retval */
retval . len = 30; /* maximum return length of string */
rc = IrisErrxlateH(IRIS_ERSTORE,&retval);

3.35 IrisErrxlateW

Variants: IrisErrxlateA, IrisErrxlateH

int IriseErrxlateW(int code, IRISWSTRP rbuf)

Arguments
code The error code.
rbuf Address of a IRISWSTR variable to contain the InterSystems IRIS error string. The len field
should be loaded with the maximum string size that can be returned.
Description

Translates error code code into an InterSystems IRIS error string, and writes that string into the structure pointed to by rbuf

46 Using the Callin API

IrisEvalA

Return Values for IrisErrxlateW

IRIS_ ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest InterSystems IRIS error number.
IRIS_ RETTRUNC The associated error string was truncated to fit in the allocated area.
IRIS_SUCCESS Connection formed.
Example

IRISWSTR retval; /* define variable retval */
retval . len = 30; /* maximum return length of string */
rc = IrisErrxlateW(IRIS_ERSTORE,&retval);

3.36 IrisEvalA

Variants: IrisEvalW, IrisEvalH
int IrisevalA(IRIS_ASTRP volatile expr)

Arguments

expr The address of a IRIS_ASTR variable.

Description

Evaluates a string as if it were an InterSystems IRIS expression and places the return value in memory for further processing
by IrisTypeand IrisConvert.

If IrisEval A completes successfully, it sets a flag that allows calls to IrisTypeand IrisConvert to complete. These functions
are used to process the item returned from IrisEvalA.

CAUTION: Thenext call to IrisEvalA, IrisExecuteA, or IrisEnd will overwrite the existing return value.

Return Values for IrisEvalA

IRIS_ CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRIS_ERSYSTEM Either InterSystems IRIS generated a <SYSTEM> error, or if called from
a $ZF function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_ STRTOOLONG String is too long.

IRIS_ SUCCESS String evaluated successfully.

IrisEvalA can also return any of the InterSystems IRIS error codes.

Using the Callin API 47

Callin Function Reference

Example

int rc;
IRIS_ASTR retval;
IRIS_ASTR expr;

strcpy(expr.str, '"\""Record\'"_~Recnum \" = \"_$$"GetRec(”“Recnum)');
expr.len = strlen(expr.str);
rc = IrisEvalA(&expr);
if (rc == IRIS_SUCCESS)
rc = IrisConvert(IRIS_ASTRING, &retval);

3.37 IriskvalH

Variants: IrisEvalA, IrisEvalW
int IriseEvalH(IRISHSTRP volatile expr)

Arguments

expr The address of a IRISHSTRP variable.

Description

Evaluates a string as if it were an InterSystems IRIS expression and places the return value in memory for further processing
by IrisTypeand IrisConvert.

If IrisEvalH completes successfully, it sets a flag that allows calls to I risTypeand IrisConvert to complete. These functions
are used to process the item returned from IrisEvalA.

CAUTION: The nextcall to IrisEvalH, IrisExecuteH, or IrisEnd will overwrite the existing return value.

Return Values for IrisEvalH

IRIS_ CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRISW_ERSYSTEM Either InterSystems IRIS generated a <SYSTEM> error, or if called from
a $ZF function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_STRTOOLONG String is too long.

IRIS_SUCCESS String evaluated successfully.

IrisEvalH can also return any of the InterSystems IRIS error codes.

Example

int rc;
IRISHSTRP retval;
IRISHSTRP expr;

strcpy(expr.str, ""\"Record\"_"Recnum_\" = \"_$$"GetRec(”“Recnum)');
expr.len = strlen(expr.str);

rc = IriskEvalH(&expr);
if (rc == IRIS_SUCCESS)
rc = IrisConvert(ING,é&retval);

48 Using the Callin API

IrisEvalw

3.38 IrisEvalW

Variants: IrisEvalA, IrisEvalH
int IrisevalW(IRISWSTRP volatile expr)

Arguments

expr The address of a IRISWSTR variable.

Description

Evaluates a string as if it were an InterSystems IRIS expression and places the return value in memory for further processing
by IrisTypeand IrisConvert.

If IrisEvalW completes successfully, it sets a flag that allows calls to I risTypeand IrisConvert to complete. These functions
are used to process the item returned from IrisEvalA.

CAUTION: The nextcall to IrisEvalW, IrisExecuteW, or IrisEnd will overwrite the existing return value.

Return Values for IrisEvalW

IRIS_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRISHW_ERSYSTEM Either InterSystems IRIS generated a <SYSTEM> error, or if called from
a $ZF function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_STRTOOLONG String is too long.

IRIS_SUCCESS String evaluated successfully.

IrisEvalW can also return any of the InterSystems IRIS error codes.

Example

int rc;
IRISWSTR retval;
IRISWSTR expr;

strepy(expr.str, "\"Record\"_~Recnum \" = \"_$$"GetRec(”Recnum)');
expr.len = strlen(expr.str);

rc = lrisEvalW(&expr);
if (rc == IRIS_SUCCESS)
rc = IrisConvert(ING,&retval);

3.39 IrisExecuteA

Variants: | risExecuteW, IrisExecuteH

int IrisExecuteA(IRIS_ASTRP volatile cmd)

Arguments

cmd The address of a IRIS_ASTR variable.

Using the Callin API 49

Callin Function Reference

Description
Executes the command string as if it were typed in the Terminal.

CAUTION: The nextcall to IrisEvalA, IrisExecuteA, or IrisEnd will overwrite the existing return value.

Return Values for IrisExecuteA

IRIS_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRIS_ ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_STRTOOLONG String is too long.

IRIS_ SUCCESS String executed successfully.

IrisExecuteA can also return any of the InterSystems IRIS error codes.

Example

int rc;

IRIS_ASTR command;

sprintf(command.str, " set $namespace = \"USER\'""); /* changes namespace */
command.len = strlen(command.str);

rc = IrisExecuteA(&command);

3.40 IrisExecuteH

Variants: IrisExecuteA, IrisExecuteW
int IrisExecuteH(IRISHSTRP volatile cmd)

Arguments

cmd The address of a IRIS_ASTR variable.

Description
Executes the command string as if it were typed in the Terminal.

If IrisExecuteH completes successfully, it sets a flag that allows calls to IrisTypeand IrisConvert to complete. These
functions are used to process the item returned from IrisEvalH.

CAUTION: The nextcall to IrisEvalH, IrisExecuteH, or IrisEnd will overwrite the existing return value.

50 Using the Callin API

IrisExecuteW

Return Values for IrisExecuteH

IRIS_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRIS_ ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_ STRTOOLONG String is too long.

IRIS_ SUCCESS String executed successfully.

IrisExecuteH can also return any of the InterSystems IRIS error codes.

Example

int rc;

unsigned short zname[] = {"Z","N"," =,""","U","S","E","R","""};
IRISHSTRP pcommand;

pcommand.str = zname;

pcommand. len = sizeof(zname) / sizeof(unsigned short);

rc = IrisExecuteH(pcommand);

3.41 IrisExecuteW

Variants: IrisExecuteA, IrisExecuteH
int IrisExecuteW(IRISWSTRP volatile cmd)

Arguments

cmd The address of a IRIS_ASTR variable.

Description
Executes the command string as if it were typed in the Terminal.

If IrisExecuteW completes successfully, it sets a flag that allows calls to IrisType and IrisConvert to complete. These
functions are used to process the item returned from IrisEvalW.

CAUTION: The next call to IrisEvalW, IrisExecuteW, or IrisEnd will overwrite the existing return value.

Return Values for IrisExecuteW

IRIS_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRIS_ ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_NOCON No connection has been established.

IRIS_STRTOOLONG String is too long.

IRIS_SUCCESS String executed successfully.

IrisExecuteW can also return any of the InterSystems IRIS error codes.

Using the Callin API 51

Callin Function Reference

Example

int rc;

unsigned short zname[] = {"Z","N"," *,*"","U","S","E","R","""};
IRISWSTRP pcommand;

pcommand.str = zname;

pcommand. len = sizeof(zname) / sizeof(unsigned short);

rc = IrisExecuteW(pcommand);

3.42 IrisExecuteArgs

int IrisExecuteArgs(int numargs)

Arguments

numargs | Number of arguments pushed onto the stack.

Description

Executes a command string with arguments. The command string must have been pushed onto the argument stack with
normal push string functions, followed by pushing the arguments. The number of arguments may be 0.

Return Values for IrisExecuteArgs

IRIS_CONBROKEN Connection has been closed due to a serious error.
IRIS_BADARG Invalid call argument.

IRIS_STRTOOLONG String is too long.

IRIS_FAILURE An unexpected error has occurred.
IRIS_SUCCESS The operation was successful.

3.43 IrisExStrKill

int IriseExStrKill(IRIS_EXSTRP obj)

Arguments

obj Pointer to the string.

Description
Releases the storage associated with an EXSTR string.

Return Values for IrisExStrKill
IRIS_ERUNIMPLEMENTED String is undefined.
IRIS_SUCCESS String storage has been released.

52 Using the Callin API

IrisExStrNew

3.44 IrisExStrNew

Variants: IrisExStrNewW, IrisExStrNewH

unsigned char * IrisexStrNew(IRIS_EXSTRP zstr, int size)

Arguments
zstr Pointer to a IRIS_EXSTR string descriptor.
size Number of 8-bit characters to allocate.
Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for IrisExStrNew
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.45 [risExStrNewW

Variants: IrisExStrNew, | risExStr NewH

unsigned short * IriseExStrNewW(IRIS_EXSTRP zstr, int size)

Arguments
zstr Pointer to a IRIS_EXSTR string descriptor.
size Number of 2—byte characters to allocate.
Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for IrisExStrNewW
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.46 IrisExStrNewH

Variants: ITisExStrNew, | risExStr NewW

unsigned short * IriseExStrNewH(IRIS_EXSTRP zstr, int size)

Using the Callin API 53

Callin Function Reference

Arguments
zstr Pointer to a IRIS_EXSTR string descriptor.
size Number of 4—byte characters to allocate.
Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for IrisExStrNewH
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.47 IrisExtFun

int IrisExtFun(unsigned int flags, int narg)

Arguments

flags Routine flags from IrisPushFunc[XW].

narg Number of call arguments pushed onto the argument stack.
Description

Performs an extrinsic function call where the return value is pushed onto the argument stack.

Return Values for IrisExtFun

IRIS_CONBROKEN Connection has been closed due to a serious error.
IRIS_NOCON No connection has been established.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_FAILURE Internal consistency error.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.48 IrisGetProperty

int IrisGetProperty()

Description
Obtains the value of the property defined by IrisPushProperty. The value is pushed onto the argument stack.

54 Using the Callin API

IrisGlobalData

Return Values for IrisGetProperty

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.49 IrisGlobalData

int IrisGlobalData(int narg, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Data on the specified global.

Return Values for IrisGlobalData

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ERPROTECT Protection violation.

IRIS_ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.50 IrisGlobalGet

int IrisGlobalGet(int narg, int flag)

Using the Callin API 55

Callin Function Reference

Arguments
narg Number of subscript expressions pushed onto the argument stack.
flag Indicates behavior when global reference is undefined:
e 0O —returns IRIS_ERUNDEF
e 1 —returns IRIS_SUCCESS but the return value is an empty string.
Description

Obtains the value of the global reference defined by IrisPushGlobal and any subscripts. The node value is pushed onto
the argument stack.

Return Values for IrisGlobalGet

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS ERPROTECT Protection violation.

IRIS_ ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.51 IrisGlobalGetBinary

int IrisGlobalGetBinary(int numsub, int flag, int *plen, Callin_char_t **pbuf)

Arguments
numsub Number of subscript expressions pushed onto the argument stack.
flag Indicates behavior when global reference is undefined:
e 0O —returns IRIS_ERUNDEF
e 1 —returns IRIS_SUCCESS but the return value is an empty string.

plen Pointer to length of buffer.
pbuf Pointer to buffer pointer.
Description

Obtains the value of the global reference defined by IrisPushGlobal[W][H] and any subscripts, and also tests to make
sure that the result is a binary string that will fit in the provided buffer. The node value is pushed onto the argument stack.

56 Using the Callin API

IrisGloballncrement

Return Values for IrisGlobalGetBinary

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ERPROTECT Protection violation.

IRIS_ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.52 IrisGloballncrement

int IrisGloballncrement(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description
Performs a SINCREMENT and returns the result on top of the stack.

Return Values for IrisGloballncrement

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ERPROTECT Protection violation.

IRIS_ERUNDEF Node has no associated value.

IRIS_ERMAXINCR MAXINCREMENT system error

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

Using the Callin API 57

Callin Function Reference

3.53 IrisGlobalKill

int IrisGlobalKill(int narg, int nodeonly)

Arguments
narg Number of call arguments pushed onto the argument stack.

nodeonly | A value of 1 indicates that only the specified node should be killed. When the value is 0, the
entire specified global tree is killed.

Description
Performs a ZKILL on a global node or tree.

Return Values for IrisGlobalKill

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ERPROTECT Protection violation.

IRIS_ ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.54 IrisGlobalOrder

int IrisGlobalOrder(int narg, int dir, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.
dir Direction for the $Order is 1 for forward, -1 for reverse.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Order on the specified global.

58 Using the Callin API

IrisGlobalQuery

Return Values for IrisGlobalOrder

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ERPROTECT Protection violation.

IRIS_ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.55 IrisGlobalQuery

int IrisGlobalQuery(int narg, int dir, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.
dir Direction for the $Query is 1 for forward, -1 for reverse.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Query on the specified global.

Return Values for IrisGlobalQuery

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS ERPROTECT Protection violation.

IRIS_ERUNDEF Node has no associated value.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

Using the Callin API 59

Callin Function Reference

3.56 IrisGlobalRelease

int IrisGlobalRelease()

Description

Release ownership of a retained global buffer, if one exists.
Return Values for IrisGlobalRelease

IRIS_ SUCCESS The operation was successful.

3.57 IrisGlobalSet

int IrisGlobalSet(int narg)

Arguments

narg Number of subscript expressions pushed onto the argument stack.

Description

Stores the value of the global reference defined by IrisPushGlobal and any subscripts. The node value must be pushed
onto the argument stack before this call.

Return Values for IrisGlobalSet

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.58 IrisIncrementCountOref

int IrislncrementCountOref(unsigned int oref)

Arguments

oref Object reference.

Description
Increments the system reference counter for an OREF.

60 Using the Callin API

IrisinvokeClassMethod

Return Values for IrisincrementCountOref
IRIS_ERBADOREF Invalid OREF.
IRIS_ SUCCESS The operation was successful.

3.59 IrisinvokeClassMethod

int IrislnvokeClassMethod(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description

Executes the class method call defined by IrisPushClassM ethod[W] and any arguments. The return value is pushed onto
the argument stack.

Return Values for IrisInvokeClassMethod

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.60 IrisinvokeMethod

int IrislnvokeMethod(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description
Executes the instance method call defined by IrisPushM ethod[W] and any arguments pushed onto the argument stack.

Using the Callin API 61

Callin Function Reference

Return Values for IrisInvokeMethod

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.61 IrisOflush

int IrisOflushQ

Description
Flushes any pending output.

Return Values for IrisOflush

IRIS_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
IRIS_ SUCCESS Control function performed.

3.62 IrisPop

int IrisPop(void ** arg)

Arguments

arg Pointer to argument stack entry.

Description
Pops a value off argument stack.

Return Values for IrisPop
IRIS_NORES No result whose type can be returned has preceded this call.

IRIS_SUCCESS The operation was successful.

62 Using the Callin API

IrisPopCvtW

3.63 IrisPopCvtW

Variants: | risPopCvtH

int IrisPopCvtW(int * lenp, unsigned short ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Deprecated: The long string function IrisPopExStr CvtW should be used for all strings.

Pops a local 8-bit string off argument stack and translates it to 2-byte Unicode. Identical to IrisPopStrW in Unicode
environments.

Return Values for IrisPopCvtW

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.64 IrisPopCvtH

Variants: IrisPopCvtW

int IrisPopCvtH(int * lenp, wchar_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a local 8-bit string off argument stack and translates it to 4-byte Unicode. Identical to IrisPopStrH in Unicode
environments.

Return Values for IrisPopCvtH

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

Using the Callin API 63

Callin Function Reference

3.65 IrisPopDbl

int IrisPopDbl(double * nump)

Arguments

nump Pointer to double value.

Description
Pops a value off argument stack and converts it to a double.

Return Values for IrisPopDbl
IRIS_NORES No result whose type can be returned has preceded this call.

IRIS_SUCCESS The operation was successful.

3.66 IrisPopEXStr

Variants: | risPopExStrW, IrisPopExStrH

int IrisPopExStr(IRIS_EXSTRP sstrp)

Arguments

Sstrp Pointer to standard string pointer.

Description
Pops a value off argument stack and converts it to a string in local 8-bit encoding.

Return Values for IrisPopEXStr

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_SUCCESS The operation was successful.
IRIS_ EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.67 IrisPopEXStrW

Variants: | risPopEXStr, IrisPopExStrH

int IrisPopExStrW(IRIS_EXSTRP sstrp)

Arguments

sstrp Pointer to standard string pointer.

64 Using the Callin API

IrisPopEXStrH

Description
Pops a value off argument stack and converts it to a 2-byte Unicode string.

Return Values for IrisPopExStrW

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

IRIS_EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.68 IrisPopEXStrH

Variants: | risPopEXStr, IrisPopEXStrW

int IrisPopExXStrH(IRIS_EXSTRP sstrp)

Arguments

sstrp Pointer to standard string pointer.

Description
Pops a value off argument stack and converts it to a 4-byte Unicode string.

Return Values for IrisPopExStrH

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

IRIS_EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.69 IrisPopEXStrCvtwW

Variants: | risPopExStr CvtH

int 1risPopExXStrCvtW(IRIS_EXSTRP sstr)

Arguments

sstr Pointer to long string pointer.

Description

Pops a local 8-bit string off the argument stack and translates it to a 2-byte Unicode string. On Unicode systems, this is

the same as IrisPOpEXStr\W.

Using the Callin API

65

Callin Function Reference

Return Values for IrisPOpEXStrCvtW

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.70 IrisPopExStrCvtH

Variants: | risPopExStr CvtW
int IrisPopExXStrCvtW(IRIS_EXSTRP sstr)

Arguments

sstr Pointer to long string pointer.

Description

Pops a local 8-bit string off argument stack and translates it to a 4—byte Unicode string. On Unicode systems, this is the
same as IrisPoOpEXStrH.

Return Values for IrisPopExStrCvtH

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.71 IrisPoplnt

int IrisPopInt(int* nump)

Arguments

nump Pointer to integer value.

Description
Pops a value off argument stack and converts it to an integer.

Return Values for IrisPopint
IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_SUCCESS The operation was successful.

66 Using the Callin API

IrisPopInt64

3.72 IrisPoplInt64

int IrisPoplnté4(long long * nump)

Arguments

nump Pointer to long long value.

Description
Pops a value off argument stack and converts it to a 64-bit (long long) value.

Return Values for IrisPopint64
IRIS_NORES No result whose type can be returned has preceded this call.

IRIS_SUCCESS The operation was successful.

3.73 IrisPopList

int IrisPopList(int * lenp, Callin_char_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a $LIST object off argument stack and converts it.

Return Values for IrisPopList

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_ SUCCESS The operation was successful.

3.74 IrisPopOref

int IrisPopOref(unsigned int * orefp)

Arguments

orefp Pointer to OREF value.

Description
Pops an OREF off argument stack.

Using the Callin API 67

Callin Function Reference

Return Values for IrisPopOref

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ ERNOOREF Result is not an OREF.
IRIS_SUCCESS The operation was successful.

3.75 IrisPopPtr

int IrisPopPtr(void ** ptrp)

Arguments

ptrp Pointer to generic pointer.

Description
Pops a pointer off argument stack in internal format.

Return Values for IrisPopPtr

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_BADARG The entry is not a valid pointer.
IRIS_ SUCCESS The operation was successful.

3.76 IrisPopStr

Variants: IrisPopStrW, IrisPopStrH

int IrisPopStr(int * lenp, Callin_char_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a string.

Return Values for IrisPopStr
IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_SUCCESS The operation was successful.

68 Using the Callin API

IrisPopStrw

3.77 IrisPopStrw

Variants: | risPopStr, IrisPopStrH

int IrisPopStrW(int * lenp, unsigned short ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a 2-byte Unicode string.

Return Values for IrisPopStrw

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_ SUCCESS The operation was successful.

3.78 IrisPopStrH

Variants: | risPopStr, IrisPopStrw

int IrisPopStrH(int * lenp, wchar_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a 4-byte Unicode string.

Return Values for IrisPopStrH

IRIS_NORES No result whose type can be returned has preceded this call.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_ SUCCESS The operation was successful.

3.79 IrisPromptA

Variants: | risPromptW, IrisPromptH

int IrisPromptA(IRIS_ASTRP rbuf)

Using the Callin API

69

Callin Function Reference

Arguments

rbuf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the Terminal (without the “>").

Return Values for IrisPromptA

IRIS_CONBROKEN Connection has been broken.
IRIS_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.
IRIS_FAILURE An unexpected error has occurred.
IRIS_NOCON No connection has been established.
IRIS_ RETTOOSMALL rbuf must have a length of at least five.
IRIS_SUCCESS Connection formed.
Example
IRIS_ASTR retval; /* define variable retval */
retval . len = 5; /* maximum return length of string */

rc = IrisPromptA(&retval);

3.80 IrisPromptH

Variants: IrisPromptA, IrisPromptW
int IrisPromptH(IRISHSTRP rbuf)

Arguments

rbuf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the Terminal (without the “>").

Return Values for IrisPromptH

IRIS_CONBROKEN Connection has been broken.

IRIS_ ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_FAILURE Request failed.

IRIS_NOCON No connection has been established.

IRIS_ RETTOOSMALL rbuf must have a length of at least five.

IRIS_ SUCCESS Connection formed.

70 Using the Callin API

IrisPromptW

Example

IRISHSTRP retval; /* define variable retval */
retval.len = 5; /* maximum return length of string */
rc = IrisPromptH(&retval);

3.81 IrisPromptW

Variants: IrisPromptA, IrisPromptH
int IrisPromptW(IRISWSTRP rbuf)

Arguments

rouf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the Terminal (without the “>").

Return Values for IrisPromptW

IRIS_CONBROKEN Connection has been broken.
IRIS_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.
IRIS_FAILURE Request failed.
IRIS_NOCON No connection has been established.
IRIS_ RETTOOSMALL rbuf must have a length of at least five.
IRIS_SUCCESS Connection formed.
Example

IRISWSTR retval; /* define variable retval */
retval.len = 5; /* maximum return length of string */
rc = IrisConvertW(&retval);

3.82 IrisPushClassMethod

Variants: | risPushClassM ethodW, I risPushClassM ethodH

int IrisPushClassMethod(int clen, const Callin_char_t * cptr,
int mlen, const Callin_char_t * mptr, int flg)

Using the Callin API 71

Callin Function Reference

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.
Description

Pushes a class method reference onto the argument stack.

Return Values for IrisPushClassMethod

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_ SUCCESS The operation was successful.

3.83 IrisPushClassMethodH

Variants: IrisPushClassM ethod, |risPushClassM ethodW

int IrisPushClassMethodH(int clen, const wchar_t * cptr,
int mlen, const wchar_t * mptr, int flg)

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be setto 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0O if no value will be returned.
Description

Pushes a 4-byte Unicode class method reference onto the argument stack.

72 Using the Callin API

IrisPushClassMethodW

Return Values for IrisPushClassMethodH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.84 IrisPushClassMethodW

Variants: | risPushClassM ethod, | risPushClassM ethodH

int IrisPushClassMethodW(int clen, const unsigned short * cptr,
int mlen, const unsigned short * mptr, int flg)

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to O if no value will be returned.
Description

Pushes a 2-byte Unicode class method reference onto the argument stack.

Using the Callin API 73

Callin Function Reference

Return Values for IrisPushClassMethodW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.85 IrisPushCvtW

Variants: | risPushCvtH

int IrisPushCvtW(int len, const unsigned short * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Deprecated: The long string function IrisPushExStr CvtW should be used for all strings.

Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to IrisPushStrW for Unicode
versions.

Return Values for IrisPushCvtW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating the string.

74 Using the Callin API

IrisPushCvtH

3.86 IrisPushCvtH

Variants: IrisPushCvtwW

int IrisPushCvtH(int len, const wchar_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to IrisPushStrH for Unicode
versions.

Return Values for IrisPushCvtH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating the string.

3.87 IrisPushDbl

int IrisPushDbl(double num)

Arguments

num Double value.

Description
Pushes a double onto the argument stack.

Using the Callin API 75

Callin Function Reference

Return Values for IrisPushDbl

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ SUCCESS The operation was successful.

3.88 IrisPushExecuteFuncA

Variants: |risPushExecuteFuncW, IrisPushExecuteFuncH

int IrisPushExecuteFuncA(int len, const unsigned char *ptr)

Arguments
len Length of command string
ptr Pointer to command string
Description

Pushes the $Xecute() command string onto the argument stack to prepare for a call by IrisCallExecuteFunc().

Return Values for IrisPushExecuteFuncA

IRIS_STRTOOLONG String is too long.
IRIS_ERARGSTACK Argument stack overflow.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.89 IrisPushExecuteFuncW

Variants: IrisPushExecuteFuncA, IrisPushExecuteFuncH

int IrisPushExecuteFuncW(int len, const unsigned short *ptr)

Arguments
len Length of command string
ptr Pointer to command string
Description

Pushes the $Xecute() command string onto the argument stack to prepare for a call by IrisCallExecuteFunc().

76 Using the Callin API

IrisPushExecuteFuncH

Return Values for IrisPushExecuteFuncW

IRIS_STRTOOLONG String is too long.

IRIS_ ERARGSTACK Argument stack overflow.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.90 IrisPushExecuteFuncH

Variants: | risPushExecuteFuncA, IrisPushExecuteFuncW

int IrisPushExecuteFuncH(int len, const wchar_t *ptr)

Arguments
len Length of command string
ptr Pointer to command string
Description

Pushes the $Xecute() command string onto the argument stack to prepare for a call by IrisCallExecuteFunc().

Return Values for IrisPushExecuteFuncH

IRIS_ STRTOOLONG String is too long.
IRIS_ERARGSTACK Argument stack overflow.
IRIS_ERSTRINGSTACK String stack overflow.
IRIS_SUCCESS The operation was successful.

3.91 IrisPUshExStr

Variants: IrisPushExStrwW, IrisPushExStrH

int IrisPushExStr(IRIS_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Pushes a string onto the argument stack.

Using the Callin API

77

Callin Function Reference

Return Values for IrisPushExStr

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.92 IrisPushExStrw

Variants: IrisPushExStr, IrisPushExStrH

int IrisPushExStrW(IRIS_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description

Pushes a Unicode string onto the argument stack.

Return Values for IrisPushExStrw

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

3.93 IrisPushExStrH

Variants: IrisPushExStr, IrisPushExStrwW

int IrisPushExStrH(IRIS_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

78

Using the Callin API

IrisPushExStrCvtw

Description
Pushes a 4-byte Unicode string onto the argument stack.

Return Values for IrisPushExStrH

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.94 IrisPUshExStrCvtW

Variants: I risPushExStr CvtH
int IrisPushExStrCvtW(IRIS_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Translates a Unicode string to local 8-bit and pushes it onto the argument stack.

Return Values for IrisPushExStrCvtW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating the string.

3.95 IrisPushExStrCvtH

Variants: risPushExStr CvtwW

int IrisPushExStrCvtH(IRIS_EXSTRP sptr)

Using the Callin API 79

Callin Function Reference

Arguments

sptr Pointer to the argument value.

Description
Translates a 4-byte Unicode string to local 8-bit and pushes it onto the argument stack.

Return Values for IrisPushExStrCvtH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating the string.

3.96 IrisPushFunc

Variants: | risPushFuncW, IrisPushFuncH

int IrisPushFunc(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
int nlen, const Callin_char_t * nptr)

Arguments
rflag Routine flags for use by IrisExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (™).
tptr Pointer to a tag name. If tlen == 0, then tagptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes an extrinsic function reference onto the argument stack.

80 Using the Callin API

IrisPushFuncH

Return Values for IrisPushFunc
IRIS_CONBROKEN
IRIS_NOCON
IRIS_ERSYSTEM

IRIS_ERARGSTACK
IRIS_ERSTRINGSTACK
IRIS_SUCCESS

Connection has been closed due to a serious error.
No connection has been established.

Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.

The operation was successful.

3.97 IrisPushFuncH

Variants: IrisPushFunc, IrisPushFuncW

int IrisPushFuncH(unsigned int * rflag, int tlen, const wchar_t * tptr,
int nlen, const wchar_t * nptr)

Arguments
rflag Routine flags for use by IrisExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 4-byte Unicode extrinsic function reference onto the argument stack.

Return Values for IrisPushFuncH

IRIS_CONBROKEN
IRIS_NOCON
IRIS_ERSYSTEM

IRIS_ERARGSTACK
IRIS_ERSTRINGSTACK
IRIS_SUCCESS

Any InterSystems IRIS error

Connection has been closed due to a serious error.
No connection has been established.

Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.
The operation was successful.

From translating a name.

Using the Callin API

81

Callin Function Reference

3.98 IrisPushFuncW

Variants: IrisPushFunc, IrisPushFuncH

int IrisPushFuncW(unsigned int * rflag, int tlen, const unsigned short * tptr,
int nlen, const unsigned short * nptr)

Arguments
rflag Routine flags for use by IrisExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode extrinsic function reference onto the argument stack.

Return Values for IrisPushFuncW

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.99 IrisPushFuncX

Variants: | risPushFuncXW, IrisPushFuncXH

int IrisPushFuncX(unsigned int * rflag, int tlen, const Callin_char_t * tptr, int off,
int elen, const Callin_char_t * eptr,
int nlen, const Callin_char_t * nptr)

82 Using the Callin API

IrisPushFuncXH

Arguments
rflag Routine flags for use by IrisExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes an extended extrinsic function reference onto the argument stack.

Return Values for IrisPushFuncX

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

3.100 IrisPushFuncXH

Variants: IrisPushFuncX, IrisPushFuncXwW

int IrisPushFuncXH(unsigned int * rflag, int tlen, const wchar_t * tptr, int off,
int elen, const wchar_t * eptr, int nlen, const wchar_t * nptr)

Using the Callin API 83

Callin Function Reference

Arguments
rflag
tlen

tptr

off

elen

eptr

nlen

nptr

Description

Routine flags for use by IrisExtFun.
Tag name length (characters), where 0 means that the tag name is null (").

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

Line offset from specified tag, where 0 means that there is no offset.

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

Routine name length (characters), where 0 means that the routine name is null (
routine name is used.

) and the current

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

Pushes a 4-byte Unicode extended function routine reference onto the argument stack.

Return Values for IrisPushFuncXH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.101 IrisPushFuncXw

Variants: IrisPushFuncX, IrisPushFuncXH

int IrisPushFuncXW(unsigned int * rflag, int tlen, const unsigned short * tptr, int off,

int elen, const unsigned short * eptr,
int nlen, const unsigned short * nptr)

84

Using the Callin API

IrisPushGlobal

Arguments
rflag Routine flags for use by IrisExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode extended function routine reference onto the argument stack.

Return Values for IrisPushFuncXW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.102 IrisPushGlobal

Variants: IrisPushGlobalW, IrisPushGlobalH

int IrisPushGlobal(int nlen, const Callin_char_t * nptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a global reference onto the argument stack.

Using the Callin API 85

Callin Function Reference

Return Values for IrisPushGlobal

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.103 IrisPushGlobalH

Variants: IrisPushGlobal, IrisPushGlobalW

intlrisPushGlobalH(int nlen, const wchar_t * nptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a 4-byte Unicode global reference onto the argument stack.

Return Values for IrisPushGlobalH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.104 IrisPushGlobalwW

Variants: IrisPushGlobal, I risPushGlobalH

int IrisPushGlobalW(int nlen, const unsigned short * nptr)

86 Using the Callin API

IrisPushGlobalX

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a 2-byte Unicode global reference onto the argument stack.

Return Values for IrisPushGlobalW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.105 IrisPushGlobalX

Variants: IrisPushGlobal XW, IrisPushGlobal XH

int IrisPushGlobalX(int nlen, const Callin_char_t * nptr,
int elen, const Callin_char_t * eptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Pushes an extended global reference onto the argument stack.

Using the Callin API 87

Callin Function Reference

Return Values for IrisPushGlobalX

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.106 IrisPushGlobalXH

Variants: IrisPushGlobal X, I risPushGlobal XW

int IrisPushGlobalXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Pushes a 4-byte Unicode extended global reference onto the argument stack.

Return Values for IrisPushGlobalXH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM?> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTAC String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

88 Using the Callin API

IrisPushGlobalXW

3.107 IrisPushGlobalXW

Variants: IrisPushGlobal X, IrisPushGlobal XH

int IrisPushGlobalXW(int nlen, const unsigned short * nptr,
int elen, const unsigned short * eptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Pushes a 2-byte Unicode extended global reference onto the argument stack.

Return Values for IrisPushGlobalXW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTAC String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.108 IrisPushlEEEDDI

int IrisPushlEEEDbI(double num)

Arguments

num Double value.

Description
Pushes an IEEE double onto the argument stack.

Using the Callin API 89

Callin Function Reference

Return Values for IrisPushlEEEDbDI

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ SUCCESS The operation was successful.

3.109 IrisPushint

int IrisPushInt(int num)

Arguments

num Integer value.

Description
Pushes an integer onto the argument stack.

Return Values for IrisPushint

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_SUCCESS The operation was successful.

3.110 IrisPushint64

int IrisPushInt64(long long num)

Arguments

num long long value.

Description
Pushes a 64-bit (long long) value onto the argument stack.

90 Using the Callin API

IrisPushList

Return Values for IrisPushint64

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ SUCCESS The operation was successful.

3.111 IrisPushList

int IrisPushList(int len, const Callin_char_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Converts a $LIST object and pushes it onto the argument stack.

Return Values for IrisPushList

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a string element.

3.112 IrisPushLock

Variants: IrisPushL ockW, IrisPushL ockH

int IrisPushLock(int nlen, const Callin_char_t * nptr)

Arguments
nlen Length (in bytes) of lock name.
nptr Pointer to lock name.

Using the Callin API 91

Callin Function Reference

Description
Initializes a IrisAcquirel ock command by pushing the lock name on the argument stack.

Return Values for IrisPushLock

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.113 IrisPushLockH

Variants: | risPushL ock, IrisPushlL ock\W

int IrisPushLockH(int nlen, const wchar_t * nptr)

Arguments
nlen Length (number of 2—byte or 4-byte characters) of lock name.
nptr Pointer to lock name.

Description

Initializes a IrisAcquirel ock command by pushing the lock name on the argument stack.

Return Values for IrisPushLockH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

92 Using the Callin API

IrisPushLockW

3.114 IrisPushLockW

Variants: IrisPushL ock, IrisPushL ockH

int IrisPushLockW(int nlen, const unsigned short * nptr)

Arguments
nlen Length (number of 2—byte characters) of lock name.
nptr Pointer to lock name.

Description

Initializes a IrisAcquirel ock command by pushing the lock name on the argument stack.

Return Values for IrisPushLockW

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.115 IrisPushLockX

Variants: IrisPushL ock XW, IrisPushlL ockXH

int IrisPushLockX(int nlen, const Callin_char_t * nptr, int elen, const Callin_char_t * eptr)

Arguments
nlen Length (number of 8-bit characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]~<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a IrisAcquirel ock command by pushing the lock name and an environment string on the argument stack.

Using the Callin API 93

Callin Function Reference

Return Values for IrisPushLockX
IRIS_CONBROKEN
IRIS_NOCON
IRIS_ERSYSTEM

IRIS_ERARGSTACK
IRIS_ERSTRINGSTACK
IRIS_SUCCESS

Any InterSystems IRIS error

Connection has been closed due to a serious error.
No connection has been established.

Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.
The operation was successful.

From translating a name.

3.116 IrisPushLockXH

Variants: | risPushL ock X, IrisPushL ockXW

int IrisPushLockXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments
nlen Length (number of 2—byte or 4-byte characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]~<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a IrisAcquirel ock command by pushing the lock name and an environment string on the argument stack.

Return Values for IrisPushLockXH

IRIS_CONBROKEN
IRIS_NOCON
IRIS_ERSYSTEM

IRIS_ERARGSTACK
IRIS_ERSTRINGSTACK
IRIS_SUCCESS

Any InterSystems IRIS error

Connection has been closed due to a serious error.
No connection has been established.

Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.
The operation was successful.

From translating a name.

94

Using the Callin API

IrisPushLockXW

3.117 IrisPushLockXW

Variants: IrisPushLock X, I risPushL ock XH

int IrisPushLockXW(int nlen, const unsigned short * nptr, int elen, const unsigned short * eptr)

Arguments
nlen Length (number of 2—byte characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]~<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a IrisAcquirel ock command by pushing the lock name and an environment string on the argument stack.

Return Values for IrisPushLockXW

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.118 IrisPushMethod

Variants: IrisPushM ethodW, IrisPushM ethodH

int IrisPushMethod(unsigned int oref, int mlen, const Callin_char_t * mptr, int flg)

Using the Callin API

95

Callin Function Reference

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0O if no value will be returned.
Description

Pushes an instance method reference onto the argument stack.

Return Values for IrisPushMethod

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

3.119 IrisPushMethodH

Variants: | risPushM ethod, | risPushM ethodW

int IrisPushMethodH(unsigned int oref, int mlen, const wchar_t * mptr, int flg)

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.
Description

Pushes a 4-byte Unicode instance method reference onto the argument stack.

96 Using the Callin API

IrisPushMethodW

Return Values for IrisPushMethodH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.120 IrisPushMethodW

Variants: | risPushM ethod, | risPushM ethodH

int IrisPushMethodW(unsigned int oref, int mlen, const unsigned short * mptr, int flg)

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.
Description

Pushes a 2-byte Unicode instance method reference onto the argument stack.

Return Values for IrisPushMethodW

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

Using the Callin API 97

Callin Function Reference

3.121 IrisPushOref

int IrisPushOref(unsigned int oref)

Arguments

oref Object reference.

Description
Pushes an OREF onto the argument stack.

Return Values for IrisPushOref

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERBADOREF Invalid OREF.

IRIS_SUCCESS The operation was successful.

3.122 IrisPushProperty

Variants: IrisPushPropertyW, IrisPushPropertyH

int IrisPushProperty(unsigned int oref, int plen, const Callin_char_t * pptr)

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a property reference onto the argument stack.

98 Using the Callin API

IrisPushPropertyH

Return Values for IrisPushProperty

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

3.123 IrisPushPropertyH

Variants: IrisPushProperty, IrisPushPropertyW

int IrisPushPropertyH(unsigned int oref, int plen, const wchar_t * pptr)

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a 4-byte Unicode property reference onto the argument stack.

Return Values for IrisPushPropertyH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_BADARG Invalid call argument.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

Using the Callin API 99

Callin Function Reference

3.124 IrisPushPropertyW

Variants: IrisPushProperty, IrisPushPropertyH

int IrisPushPropertyW(unsigned int oref, int plen, const unsigned short * pptr)

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a 2-byte Unicode property reference onto the argument stack.

Return Values for IrisPushPropertyW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ BADARG Invalid call argument.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.125 IrisPushPtr

int IrisPushPtr(void * ptr)

Arguments

ptr Generic pointer.

Description
Pushes a pointer onto the argument stack in internal format.

100 Using the Callin API

IrisPushRtn

Return Values for IrisPushPtr

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.126 IrisPushRtn

Variants: IrisPushRtnW, IrisPushRtnH

int IrisPushRtn(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
int nlen, const Callin_char_t * nptr)

Arguments
rflag Routine flags for use by IrisDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a routine reference onto the argument stack. See IrisPushRtnX for a version that takes all arguments. This is a short
form that only takes a tag name and a routine name.

Return Values for IrisPushRtn

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Using the Callin API 101

Callin Function Reference

3.127 IrisPushRtnH

Variants: IrisPushRtn, IrisPushRtnW

int IrisPushRtnH(unsigned int * rflag, int tlen, const wchar_t * tptr,
int nlen, const wchar_t * nptr)

Arguments
rflag Routine flags for use by IrisDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 4-byte Unicode routine reference onto the argument stack. See IrisPushRtnXH for a version that takes all arguments.
This is a short form that only takes a tag name and a routine name.

Return Values for IrisPushRtnH

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.128 IrisPushRtnW

Variants: IrisPushRtn, IrisPushRtnH

int IrisPushRtnW(unsigned int * rflag, int tlen, const unsigned short * tptr,
int nlen, const unsigned short * nptr)

102 Using the Callin API

IrisPushRtnX

Arguments
rflag
tlen

tptr

nlen

nptr

Description

Routine flags for use by IrisDoRtn
Tag name length (characters), where 0 means that the tag name is null (").

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

Routine name length (characters), where 0 means that the routine name is null (
routine name is used.

) and the current

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

Pushes a 2-byte Unicode routine reference onto the argument stack. See IrisPushRtnXW for a version that takes all arguments.
This is a short form that only takes a tag name and a routine name.

Return Values for IrisPushRtnW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.129 IrisPushRtnX

Variants: IrisPushRtnXW, IrisPushRtnXH

int IrisPushRtnX(unsigned int * rflag, int tlen, const Callin_char_t * tptr,

int off, int elen, const Callin_char_t * eptr,
int nlen, const Callin_char_t * nptr)

Using the Callin API 103

Callin Function Reference

Arguments
rflag Routine flags for use by IrisDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes an extended routine reference onto the argument stack. See IrisPushRtn for a short form that only takes a tag name
and a routine name.

Return Values for IrisPushRtnX

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

3.130 IrisPushRtnXH

Variants: IrisPushRtnX, IrisPushRtnXW

int IrisPushRtnXH(unsigned int * rflag, int tlen, const wchar_t * tptr,
int off, int elen, const wchar_t * eptr,
int nlen, const wchar_t * nptr)

104 Using the Callin API

IrisPushRtnXW

Arguments
rflag Routine flags for use by IrisDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 4-byte Unicode extended routine reference onto the argument stack. See IrisPushRtnH for a short form that only
takes a tag name and a routine name.

Return Values for IrisPushRtnXH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.131 IrisPushRtnXW

Variants: IrisPushRtnX, IrisPushRtnXH

int IrisPushRtnXW(unsigned int * rflag, int tlen, const unsigned short * tptr,
int off, int elen, const unsigned short * eptr,
int nlen, const unsigned short * nptr)

Using the Callin API 105

Callin Function Reference

Arguments
rflag Routine flags for use by IrisDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode extended routine reference onto the argument stack. See IrisPushRtn\W for a short form that only
takes a tag name and a routine name.

Return Values for IrisPushRtnXW

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_ SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.132 IrisPushStr

Variants: IrisPushStrW, IrisPushStrH

int IrisPushStr(int len, const Callin_char_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

106 Using the Callin API

IrisPushStrw

Description
Pushes a byte string onto the argument stack.

Return Values for IrisPushStr

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.133 IrisPushStrw

Variants: | risPushStr, IrisPushStrH

int IrisPushStrW(int len, const unsigned short * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Pushes a 2-byte Unicode string onto the argument stack.

Return Values for IrisPushStrw

IRIS_ CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.134 IrisPushStrH

Variants: IrisPushStr, IrisPushStrwW

int IrisPushStrH(int len, const wchar_t * ptr)

Using the Callin API 107

Callin Function Reference

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Pushes a 4-byte Unicode string onto the argument stack.

Return Values for IrisPushStrH

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the InterSystems IRIS engine generated a <SYSTEM> error, or
Callin detected an internal data inconsistency.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

3.135 IrisPushUndef

int IrisPushUndef()

Description
Pushes an Undefined value on the argument stack. The value is interpreted as an omitted function argument.

Return Values for IrisPushUndef

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERARGSTACK Argument stack overflow.

IRIS_ SUCCESS The operation was successful.

3.136 IrisReleaseAllLocks

int IrisReleaseAllLocks()

Description

Performs an argumentless InterSystems IRIS LOCK command to remove all locks currently held by the process.
Return Values for IrisReleaseAllLocks

IRIS_ SUCCESS The operation was successful.

108 Using the Callin API

IrisReleaselLock

3.137 IrisReleaselLock

int IrisReleaseLock(int nsub, int flg)

Arguments
nsub Number of subscripts in the lock reference.
flg Modifiers to the lock command. Valid values are one or both of IRIS_ IMMEDIATE_RELEASE
and IRIS_SHARED_LOCK.
Description

Executes an InterSystems IRIS LOCK command to decrement the lock count for the specified lock name. This command
will only release one incremental lock at a time.

Return Values for IrisReleaselLock
IRIS_FAILURE An unexpected error has occurred.
IRIS_SUCCESS Successful lock.

3.138 IrisSecureStartA

Variants: | risSecureStartW, |risSecureStartH

int IrisSecureStartA(IRIS_ASTRP username, IRIS_ASTRP password, IRIS_ASTRP exename,
unsigned long flags, int tout, IRIS_ASTRP prinp, IRIS_ASTRP prout)

Arguments

username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

exename | Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

flags One or more of the terminal settings listed below.

tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the standard input device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.

prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len
== 0) implies using the standard output device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.

Using the Callin API 109

Callin Function Reference

Description
Calls into InterSystems IRIS to set up a process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

e IRIS_PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

e IRIS_TTALL — Default. InterSystems IRIS should initialize the terminal's settings and restore them across each call
into, and return from, the interface.

e IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

* IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

e IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

e IRIS_TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

* IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_ TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for IrisSecureStartA

IRIS_ACCESSDENIED Authentication has failed. Check the audit log for the real authentication
error.

IRIS_ALREADYCON Connection already existed. Returned if you call IrisSecureStartH from
a $ZF function.

IRIS_CHANGEPASSWORD Password change required. This return value is only returned if you are
using InterSystems authentication.

IRIS_ CONBROKEN Connection was formed and then broken, and IrisEnd has not been
called to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_STRTOOLONG prinp or prout is too long.

IRIS_ SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_TTNEVER requires the least overhead.

110 Using the Callin API

IrisSecureStartH

3.139 IrisSecureStartH

Variants: |risSecureStartA, IrisSecureStartW

int IrisSecureStartH(IRISHSTRP username, IRISHSTRP password, IRISHSTRP exename,
unsigned long flags, int tout, IRISHSTRP prinp, IRISHSTRP prout)

Arguments

username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

exename | Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

flags One or more of the terminal settings listed below.

tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the standard input device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.

prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len
== 0) implies using the standard output device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.

Description
Calls into InterSystems IRIS to set up a process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

* IRIS_PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_ CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

* IRIS_TTALL — Default. InterSystems IRIS should initialize the terminal's settings and restore them across each call
into, and return from, the interface.

* IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

e IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

* IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

Using the Callin API 111

Callin Function Reference

* IRIS_TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

* IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for IrisSecureStartH

IRIS_ACCESSDENIED Authentication has failed. Check the audit log for the real authentication
error.

IRIS_ALREADYCON Connection already existed. Returned if you call IrisSecureStartH from
a $ZF function.

IRIS_ CHANGEPASSWORD Password change required. This return value is only returned if you are
using InterSystems authentication.

IRIS_ CONBROKEN Connection was formed and then broken, and IrisEnd has not been
called to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_ STRTOOLONG prinp or prout is too long.

IRIS_ SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_TTNEVER requires the least overhead.

3.140 IrisSecureStartW

Variants: |risSecureStartA, IrisSecureStartH

int IrisSecureStartW(IRISWSTRP username, IRISWSTRP password, IRISWSTRP exename,
unsigned long flags, int tout, IRISWSTRP prinp, IRISWSTRP prout)

112 Using the Callin API

IrisSecureStartW

Arguments
username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.
password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.
exename | Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.
flags One or more of the terminal settings listed below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the standard input device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.
prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len
== 0) implies using the standard output device for the process. A NULL pointer ((void *) 0)
implies using the NULL device.
Description

Calls into InterSystems IRIS to set up a process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

IRIS_ PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

IRIS_TTALL — Default. InterSystems IRIS should initialize the terminal's settings and restore them across each call
into, and return from, the interface.

IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

IRIS_ TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_ TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Using the Callin API 113

Callin Function Reference

Return Values for IrisSecureStartW

IRIS_ACCESSDENIED Authentication has failed. Check the audit log for the real authentication
error.

IRIS_ALREADYCON Connection already existed. Returned if you call IrisSecureStartH from
a $ZF function.

IRIS_ CHANGEPASSWORD Password change required. This return value is only returned if you are
using InterSystems authentication.

IRIS_ CONBROKEN Connection was formed and then broken, and IrisEnd has not been
called to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_ STRTOOLONG prinp or prout is too long.

IRIS_ SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_TTNEVER requires the least overhead.

3.141 IrisSetDir

int IrisSetDir(char * dir)

Arguments

dir Pointer to the directory name string.

Description

Dynamically sets the name of the manager's directory (IrisSys\Mgr) at runtime. On Windows, the shared library version
of InterSystems IRIS requires the use of this function to identify the managers directory for the installation.

Return Values for IrisSetDir

IRIS_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
IRIS_SUCCESS Control function performed.

3.142 IrisSetProperty

int IrisSetProperty()

Description

Stores the value of the property defined by IrisPushProperty. The value must be pushed onto the argument stack before
this call.

114 Using the Callin API

IrisSignal

Return Values for IrisSetProperty

IRIS_CONBROKEN Connection has been closed due to a serious error.
IRIS_NOCON No connection has been established.
IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.

IRIS_SUCCESS The operation was successful.

3.143 IrisSignal

int IrisSignal(int signal)

Arguments

signal The operating system's signal value.

Description
Passes on signals caught by user's program to InterSystems IRIS.

This function is very similar to IrisAbort, but allows passing of any known signal value from a thread or user side of the
connection to the InterSystems IRIS side, for whatever action might be appropriate. For example, this could be used to pass
signals intercepted in a user-defined signal handler on to InterSystems IRIS.

Example

rc = IrisSignal (CTRL_C_EVENT); // Windows response to Ctrl-C
rc = IrisSignal (CTRL_C_EVENT); // UNIX response to Ctrl-C

Return Values for IrisSignal

IRIS_CONBROKEN Connection has been broken.

IRIS_NOCON No connection has been established.

IRIS_NOTINIRIS The Callin partner is not in InterSystems IRIS at this time.
IRIS_SUCCESS Connection formed.

3.144 IrisSPCRecelve

int IrisSPCReceive(int * lenp, Callin_char_t * ptr)

Arguments
lenp Maximum length to receive. Modified on return to indicate number of bytes actually received.
ptr Pointer to buffer that will receive message. Must be at least lenp bytes.

Using the Callin API 115

Callin Function Reference

Description

Receive single-process-communication message. The current device must be a TCP device opened in SPC mode, or
IRIS_ ERFUNCTION will be returned.

Return Values for IrisSPCReceive

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERFUNCTION Current device is not TCP device or is not connected.

IRIS_SUCCESS The operation was successful.

3.145 IrisSPCSend

int IrisSPCSend(int len, const Callin_char_t * ptr)

Arguments

len Length of message in bytes.

ptr Pointer to string containing message.
Description

Send a single-process-communication message. The current device must be a TCP device opened in SPC mode, or
IRIS_ERFUNCTION will be returned.

Return Values for IrisSPCSend

IRIS_CONBROKEN Connection has been closed due to a serious error.

IRIS_NOCON No connection has been established.

IRIS_ERSYSTEM Either the database engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

IRIS_ERFUNCTION Current device is not TCP device or is not connected.

IRIS_ ERARGSTACK Argument stack overflow.

IRIS_ERSTRINGSTACK String stack overflow.

IRIS_SUCCESS The operation was successful.

Any InterSystems IRIS error From translating a name.

3.146 IrisStartA

Variants: I risStartW, IrisStartH

int IrisStartA(unsigned long flags, int tout, IRIS_ASTRP prinp, IRIS_ASTRP prout)

116 Using the Callin API

IrisStartA

Arguments
flags One or more of the values listed in the description below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.
prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len
== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.
Description

Calls into InterSystems IRIS to set up an InterSystems IRIS process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

IRIS_PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

IRIS_TTALL — Default. InterSystems IRIS should initialize the terminal's settings and restore them across each call
into, and return from, the interface.

IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

IRIS_ TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Using the Callin API 117

Callin Function Reference

Return Values for IrisStartA

IRIS_ALREADYCON Connection already existed. Returned if you call IrisStartA from a $ZF
function.

IRIS_CONBROKEN Connection was formed and then broken, and IrisEndA has not been called
to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_ STRTOOLONG prinp or prout is too long.

IRIS_ SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_ TTNEVER requires the least overhead.

Example

An InterSystems IRIS process is started. The terminal is reset after each interface Callin function. The start fails if a partition
is not allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for an InterSystems
IRIS backup. Output appears on the terminal.

IRIS_ASTR inpdev;
IRIS_ASTR outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup');
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,"");

outdev.len = strlen(outdev.str);
rc = IrisStartA(IRIS_TTALL]IRIS_TTNOUSE,O, inpdev,outdev);

3.147 IrisStartH

Variants: IrisStartA, IrisStartwW

int IrisStartH(unsigned long flags, int tout, IRISHSTRP prinp, IRISHSTRP prout)

Arguments

flags One or more of the values listed in the description below.

tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.

prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len

== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.

118 Using the Callin API

IrisStartH

Description
Calls into InterSystems IRIS to set up an InterSystems IRIS process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

e IRIS_PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

e IRIS_TTALL — Default. InterSystems IRIS should initialize the terminal's settings and restore them across each call
into, and return from, the interface.

e IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

* IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

e IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

e IRIS_TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

* IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_ TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for IrisStartH

IRIS_ALREADYCON Connection already existed. Returned if you call IrisStartH from a $ZF
function.

IRIS_ CONBROKEN Connection was formed and then broken, and IrisEndH has not been called
to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_ STRTOOLONG prinp or prout is too long.

IRIS_ SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_ TTNEVER requires the least overhead.

Using the Callin API 119

Callin Function Reference

Example

An InterSystems IRIS process is started. The terminal is reset after each interface Callin function. The start fails if a partition
is not allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for an InterSystems
IRIS backup. Output appears on the terminal.

inpdev;
outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup'™);
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,"");

outdev.len = strlen(outdev.str);
rc = IrisStartH(IRIS_TTALL]IRIS_TTNOUSE,O, inpdev,outdev);

3.148 IrisStartW

Variants: IrisStartA, IrisStartH

int IrisStartW(unsigned long flags, int tout, IRISWSTRP prinp, IRISWSTRP prout)

Arguments
flags One or more of the values listed in the description below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for InterSystems IRIS. An empty string (prinp.len
== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.
prout String that defines the principal output device for InterSystems IRIS. An empty string (prout.len
== 0) implies using the principal device for the process. A NULL pointer ((void *) 0) implies
using the NULL device.
Description

Calls into InterSystems IRIS to set up an InterSystems IRIS process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a connection, InterSystems IRIS does not open the principal input or
output device until it is first used.

Valid values for the flags variable are:

* IRIS_PROGMODE — InterSystems IRIS should treat the connection as one in Programmer mode, rather than the
Application mode. This means that distinct errors are reported to the calling function and the connection remains active.
(By default, a Callin connection is like execution of a routine in application mode. Any runtime error detected by
InterSystems IRIS results in closing the connection and returning error IRIS_ CONBROKEN for both the current
operation and any subsequent attempts to use Callin without establishing a new connection.)

e |RIS_TTALL — Default. InterSystems IRIS should initialize the terminal’s settings and restore them across each call
into, and return from, the interface.

* IRIS_TTCALLIN — InterSystems IRIS should initialize the terminal each time it is called but should restore it only
when IrisEnd is called or the connection is broken.

120 Using the Callin API

IrisTCommit

e IRIS_TTSTART — InterSystems IRIS should initialize the terminal when the connection is formed and reset it when
the connection is terminated.

* IRIS_TTNEVER — InterSystems IRIS should not alter the terminal's settings.

* IRIS_TTNONE — InterSystems IRIS should not do any output or input from the principal input/output devices. This
is equivalent to specifying the null device for principal input and principal output. Read commands from principal
input generate an <ENDOFFILE> error and Write command to principal output are ignored.

* IRIS_TTNOUSE — This flag is allowed with IRIS_TTALL, IRIS_TTCALLIN, and IRIS_TTSTART. It is implicitly
set by the flags IRIS_TTNEVER and IRIS_TTNONE. It indicates that InterSystems IRIS Open and Use commands
are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for IrisStartwW

IRIS_ALREADYCON Connection already existed. Returned if you call IrisStartW from a $ZF
function.

IRIS_CONBROKEN Connection was formed and then broken, and IrisEndW has not been
called to clean up.

IRIS_FAILURE An unexpected error has occurred.

IRIS_STRTOOLONG prinp or prout is too long.

IRIS_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want InterSystems IRIS
to set terminal characteristics. The safest, but slowest, route is to have InterSystems IRIS set and restore terminal settings
for each call into ObjectScript. However, you can save ObjectScript overhead by handling more of that yourself, and col-
lecting only information that matters to your program. The parameter IRIS_TTNEVER requires the least overhead.

Example

An InterSystems IRIS process is started. The terminal is reset after each interface Callin function. The start fails if a partition
is not allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for an InterSystems
IRIS backup. Output appears on the terminal.

inpdev;

outdev;

int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup'™);

inpdev.len = strlen(inpdev.str);

strcpy(outdev.str,™");

outdev.len = strlen(outdev.str);

rc = IrisStartW(IRIS_TTALL]IRIS_TTNOUSE,O, inpdev,outdev);

3.149 IrisTCommit

int IrisTCommit()

Description

Executes an InterSystems IRIS TCommit command.
Return Values for IrisTCommit

IRIS_ SUCCESS TCommit was successful.

Using the Callin API 121

Callin Function Reference

3.150 IrisTLevel

int IrisTLevel()

Description

Returns the current nesting level ($TLEVEL) for transaction processing.
Return Values for IrisTLevel

IRIS_ SUCCESS TLevel was successful.

3.151 IrisTRollback

int IrisTRollback(int nlev)

Arguments

nlev Determines how many levels to roll back, (all levels if 0, one level if 1).

Description

Executes an InterSystems IRIS TRollback command. If nlev is O, rolls back all transactions in progress (no matter how
many levels of TSTART were issued) and resets $STLEVEL to 0. If nlev is 1, rolls back the current level of nested transactions
(the one initiated by the most recent TSTART) and decrements $TLEVEL by 1.

Return Values for IrisTRollback
IRIS_SUCCESS TStart was successful.

3.152 IrisTStart

int IrisTStart()

Description
Executes an InterSystems IRIS TStart command.

Return Values for IrisTStart

IRIS_SUCCESS TStart was successful.

3.153 IrisType

int IrisType()

Description
Returns the native type of the item returned by IrisEvalA, IrisEvalW, or IrisEvalH as the function value.

122 Using the Callin API

IrisUnPop

Return Values for IrisType

IRIS_ASTRING 8-bit string.

IRIS_ CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

IRIS_DOUBLE 64-bit floating point.

IRIS_ ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

IRIS_IEEE_DBL 64-bit IEEE floating point.

IRIS_INT 32-bit integer.

IRIS_NOCON No connection has been established.

IRIS_NORES No result whose type can be returned (no call to IrisEvalA or IrisEvalW
preceded this call).

IRIS_OREF InterSystems IRIS object reference.

IRIS_ WSTRING Unicode string.

Example

rc = IrisType(Q;

3.154 IrisUnPop

int IrisUnPop()
Description
Restores the stack entry from IrisPop.
Return Values for IrisUnPop
IRIS_NORES No result whose type can be returned has preceded this call.

IRIS_SUCCESS The operation was successful.

Using the Callin API 123

	Table of Contents
	About This Book
	1 The Callin Interface
	1.1 Setup
	1.2 The iris-callin.h Header File
	1.3 8-bit and Unicode String Handling
	1.3.1 8-bit String Data Types
	1.3.2 2–byte Unicode Data Types
	1.3.3 4–byte Unicode Data Types
	1.3.4 System-neutral Symbol Definitions

	1.4 Using InterSystems Security Functions
	1.5 Using Callin with Multithreading
	1.5.1 Threads and UNIX® Signal Handling

	1.6 Callin Programming Tips
	1.6.1 Tips for All Callin Programs
	1.6.2 Tips for Windows
	1.6.3 Tips for UNIX® and Linux

	2 Using the Callin Functions
	2.1 Process Control
	2.1.1 Session Control
	2.1.2 Running ObjectScript

	2.2 Functions and Routines
	2.3 Transactions and Locking
	2.3.1 Transactions
	2.3.2 Locking

	2.4 Managing Objects
	2.4.1 Orefs
	2.4.2 Methods
	2.4.3 Properties

	2.5 Managing Globals
	2.6 Managing Strings
	2.7 Managing Other Datatypes

	3 Callin Function Reference
	3.1 Alphabetical Function List
	3.2 IrisAbort
	3.3 IrisAcquireLock
	3.4 IrisBitFind
	3.5 IrisBitFindB
	3.6 IrisCallExecuteFunc
	3.7 IrisChangePasswordA
	3.8 IrisChangePasswordH
	3.9 IrisChangePasswordW
	3.10 IrisCloseOref
	3.11 IrisContext
	3.12 IrisConvert
	3.13 IrisCtrl
	3.14 IrisCvtExStrInA
	3.15 IrisCvtExStrInW
	3.16 IrisCvtExStrInH
	3.17 IrisCvtExStrOutA
	3.18 IrisCvtExStrOutW
	3.19 IrisCvtExStrOutH
	3.20 IrisCvtInA
	3.21 IrisCvtInW
	3.22 IrisCvtInH
	3.23 IrisCvtOutA
	3.24 IrisCvtOutW
	3.25 IrisCvtOutH
	3.26 IrisDoFun
	3.27 IrisDoRtn
	3.28 IrisEnd
	3.29 IrisEndAll
	3.30 IrisErrorA
	3.31 IrisErrorH
	3.32 IrisErrorW
	3.33 IrisErrxlateA
	3.34 IrisErrxlateH
	3.35 IrisErrxlateW
	3.36 IrisEvalA
	3.37 IrisEvalH
	3.38 IrisEvalW
	3.39 IrisExecuteA
	3.40 IrisExecuteH
	3.41 IrisExecuteW
	3.42 IrisExecuteArgs
	3.43 IrisExStrKill
	3.44 IrisExStrNew
	3.45 IrisExStrNewW
	3.46 IrisExStrNewH
	3.47 IrisExtFun
	3.48 IrisGetProperty
	3.49 IrisGlobalData
	3.50 IrisGlobalGet
	3.51 IrisGlobalGetBinary
	3.52 IrisGlobalIncrement
	3.53 IrisGlobalKill
	3.54 IrisGlobalOrder
	3.55 IrisGlobalQuery
	3.56 IrisGlobalRelease
	3.57 IrisGlobalSet
	3.58 IrisIncrementCountOref
	3.59 IrisInvokeClassMethod
	3.60 IrisInvokeMethod
	3.61 IrisOflush
	3.62 IrisPop
	3.63 IrisPopCvtW
	3.64 IrisPopCvtH
	3.65 IrisPopDbl
	3.66 IrisPopExStr
	3.67 IrisPopExStrW
	3.68 IrisPopExStrH
	3.69 IrisPopExStrCvtW
	3.70 IrisPopExStrCvtH
	3.71 IrisPopInt
	3.72 IrisPopInt64
	3.73 IrisPopList
	3.74 IrisPopOref
	3.75 IrisPopPtr
	3.76 IrisPopStr
	3.77 IrisPopStrW
	3.78 IrisPopStrH
	3.79 IrisPromptA
	3.80 IrisPromptH
	3.81 IrisPromptW
	3.82 IrisPushClassMethod
	3.83 IrisPushClassMethodH
	3.84 IrisPushClassMethodW
	3.85 IrisPushCvtW
	3.86 IrisPushCvtH
	3.87 IrisPushDbl
	3.88 IrisPushExecuteFuncA
	3.89 IrisPushExecuteFuncW
	3.90 IrisPushExecuteFuncH
	3.91 IrisPushExStr
	3.92 IrisPushExStrW
	3.93 IrisPushExStrH
	3.94 IrisPushExStrCvtW
	3.95 IrisPushExStrCvtH
	3.96 IrisPushFunc
	3.97 IrisPushFuncH
	3.98 IrisPushFuncW
	3.99 IrisPushFuncX
	3.100 IrisPushFuncXH
	3.101 IrisPushFuncXW
	3.102 IrisPushGlobal
	3.103 IrisPushGlobalH
	3.104 IrisPushGlobalW
	3.105 IrisPushGlobalX
	3.106 IrisPushGlobalXH
	3.107 IrisPushGlobalXW
	3.108 IrisPushIEEEDbl
	3.109 IrisPushInt
	3.110 IrisPushInt64
	3.111 IrisPushList
	3.112 IrisPushLock
	3.113 IrisPushLockH
	3.114 IrisPushLockW
	3.115 IrisPushLockX
	3.116 IrisPushLockXH
	3.117 IrisPushLockXW
	3.118 IrisPushMethod
	3.119 IrisPushMethodH
	3.120 IrisPushMethodW
	3.121 IrisPushOref
	3.122 IrisPushProperty
	3.123 IrisPushPropertyH
	3.124 IrisPushPropertyW
	3.125 IrisPushPtr
	3.126 IrisPushRtn
	3.127 IrisPushRtnH
	3.128 IrisPushRtnW
	3.129 IrisPushRtnX
	3.130 IrisPushRtnXH
	3.131 IrisPushRtnXW
	3.132 IrisPushStr
	3.133 IrisPushStrW
	3.134 IrisPushStrH
	3.135 IrisPushUndef
	3.136 IrisReleaseAllLocks
	3.137 IrisReleaseLock
	3.138 IrisSecureStartA
	3.139 IrisSecureStartH
	3.140 IrisSecureStartW
	3.141 IrisSetDir
	3.142 IrisSetProperty
	3.143 IrisSignal
	3.144 IrisSPCReceive
	3.145 IrisSPCSend
	3.146 IrisStartA
	3.147 IrisStartH
	3.148 IrisStartW
	3.149 IrisTCommit
	3.150 IrisTLevel
	3.151 IrisTRollback
	3.152 IrisTStart
	3.153 IrisType
	3.154 IrisUnPop

	Index

