
Using the Native SDK for
.NET

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Native SDK for .NET
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Native SDK for .NET Overview .. 1

2 Introduction to the .NET Native SDK .. 3

3 Calling ObjectScript Methods and Functions from .NET .. 5
3.1 Class Method Calls ... 5
3.2 Function Calls .. 7
3.3 Calling Class Library Methods .. 8

3.3.1 Using Pass-by-reference Arguments .. 8
3.3.2 Catching %Status Error Codes ... 9

4 Using .NET Inverse Proxy Objects ... 11
4.1 Introducing External Servers .. 11
4.2 Creating an Inverse Proxy Object ... 12
4.3 Controlling a Target Object .. 12
4.4 IRISObject Supported Datatypes ... 13

5 Working with Global Arrays ... 15
5.1 Introduction to Global Arrays .. 15

5.1.1 Glossary of Native SDK Terms .. 17
5.1.2 Global Naming Rules ... 18

5.2 Creating, Accessing, and Deleting Nodes .. 19
5.2.1 Creating Nodes and Setting Node Values .. 19
5.2.2 Getting Node Values ... 20
5.2.3 Deleting Nodes ... 20

5.3 Finding Nodes in a Global Array ... 20
5.3.1 Iterating Over a Set of Child Nodes ... 21
5.3.2 Iteration in Conditional Loops ... 22
5.3.3 Testing for Child Nodes and Node Values ... 23

5.4 Class IRIS Supported Datatypes .. 24

6 Transactions and Locking .. 27
6.1 Controlling Transactions .. 27
6.2 Concurrency Control .. 28

7 Native SDK for .NET Quick Reference .. 31
7.1 Class IRIS ... 31

7.1.1 IRIS Method Details .. 31
7.2 Class IRISIterator ... 43

7.2.1 IRISIterator Method and Property Details ... 44
7.3 Class IRISList .. 44

7.3.1 IRISList Constructors .. 45
7.3.2 IRISList Method Details .. 45

7.4 Class IRISObject .. 49
7.4.1 IRISObject Method Details .. 49

Using the Native SDK for .NET iii

List of Figures

Figure 4–1: External Server connection .. 11

iv Using the Native SDK for .NET

1
Native SDK for .NET Overview

See the Table of Contents for a detailed listing of the subjects covered in this document.

The InterSystems Native SDK for .NET is a lightweight interface to powerful InterSystems IRIS® resources that were once
available only in ObjectScript:

• Call ObjectScript classmethods and functions. Write custom ObjectScript classmethods or functions for any purpose,
and call them from your .NET application as easily as you can call native .NET methods.

• Manipulate ObjectScript class instances through Gateway proxy objects. Call instance methods and get or set property
values as easily as you could in an ObjectScript application.

• Directly access globals, the tree-based sparse arrays used to implement the InterSystems multidimensional storage
model. These native data structures provide very fast, flexible storage and retrieval. InterSystems IRIS uses globals to
make data available as objects or relational tables, but you can use the Native SDK to implement your own data
structures.

The following chapters discuss the main features of the Native SDK for .NET:

• Introduction to the .NET Native SDK — gives an overview of Native SDK abilities and provides some simple code
examples.

• Calling ObjectScript Methods and Functions from .NET — describes how to call ObjectScript classmethods and
functions from .NET applications.

• Using .NET Inverse Proxy Objects — demonstrates how to use .NET inverse proxy objects to control ObjectScript
objects.

• Working with Global Arrays in .NET — describes how to create, change, or delete nodes in a multidimensional global
array, and demonstrates methods for iteration and data manipulation.

• Transactions and Locking — describes how to work with the .NET Native SDK transaction and concurrency control
model.

• .NET Native SDK Quick Reference — provides a brief description of each .NET Native SDK method mentioned in
this book.

InterSystems Core SDKs for Java
The Native SDK for .NET is part of a suite that also includes lightweight .NET SDKs for object and relational database
access. See the following books for more information:

• Using .NET with InterSystems Software — describes how use the InterSystems implementation of the ADO.NET
Managed Provider for relational data access and the Entity Framework for object access.

Using the Native SDK for .NET 1

• Persisting .NET Objects with XEP — describes how to store and retrieve .NET objects using the InterSystems XEP
SDK.

Native SDKs for other languages
Versions of the Native SDK are also available for Java, Python, and Node.js:

• Using the Native SDK for Java

• Using the Native SDK for Python

• Using the Native SDK for Node.js

More information about globals
The following book is highly recommended for developers who want to master the full power of globals:

• Using Globals — describes how to use globals in ObjectScript, and provides more information about how multidimen-
sional storage is implemented on the server.

2 Using the Native SDK for .NET

Native SDK for .NET Overview

2
Introduction to the .NET Native SDK

The Native SDK for .NET is a lightweight interface to powerful InterSystems IRIS® resources that were once available
only through ObjectScript. With the Native SDK, your applications can take advantage of seamless InterSystems IRIS data
platform integration:

• Implement transparent bidirectional communication between ObjectScript and .NET

The Native SDK, Object Gateway proxy objects, and ObjectScript applications can all share the same connection and
work together in the same context.

• Create and use individual instances of an ObjectScript class

The Native SDK allows you to create instances of ObjectScript classes on InterSystems IRIS and generate Object
Gateway proxy objects for them at runtime. Your .NET application can use proxies to work with ObjectScript objects
as easily as if they were native .NET objects.

• Call ObjectScript classmethods and user-defined functions

You can write custom ObjectScript classmethods or functions for any purpose, and your application can use the Native
SDK to call them just as easily as native .NET methods.

• Work with multidimensional global arrays

The Native SDK provides direct access to the high performance native data structures (global arrays) that underpin
the InterSystems IRIS multidimensional storage model. Global arrays can be created, read, changed, and deleted in
.NET applications just as they can in ObjectScript.

Important: To use the Native SDK for .NET, you must download the .NET connection package as described in Con-
nection Tools.

The following brief examples demonstrate how easy it is to add all of these abilities to your .NET application.

Implement transparent bidirectional communication between ObjectScript and .NET

The Native SDK for .NET is implemented as an extension to the InterSystems ADO.NET Managed Provider.
Connections are created just they would be for any other application using the Managed Provider (see Using the
InterSystems Managed Provider for .NET). This example opens a connection and then creates an instance of the
Native SDK IRIS class:

//Open a connection to InterSystems IRIS
 IRISConnection conn = new IRISConnection();
 conn.ConnectionString = "Server = localhost; " + "Port = 1972; "
 + "Namespace = USER; " + "Password = SYS; " + "User ID = _SYSTEM;";
 conn.Open();

// Use the connection to create an instance of the Native SDK
 IRIS iris = IRIS.CreateIRIS(conn);

Using the Native SDK for .NET 3

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_extconnex
https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_extconnex

This connection can also be used by the InterSystems Object Gateway, allowing your .NET and ObjectScript
applications to share the same context and work with the same objects.

Create and use individual instances of an ObjectScript class

Your application can create an instance of an ObjectScript class, immediately generate an Object Gateway proxy
for it, and use the proxy to work with the ObjectScript instance (see the chapter on “Using .NET Inverse Proxy
Objects”).

In this example, the first line calls the %New() method of ObjectScript class Demo.dataStore, creating an instance
in InterSystems IRIS. In .NET, the call returns a corresponding proxy object named dataStoreProxy, which is
used to call instance methods and get or set properties of the ObjectScript instance:

// use a classmethod call to create an ObjectScript instance and generate a proxy object
 IRISObject dataStoreProxy = (IRISObject)iris.ClassMethodObject("Demo.dataStore","%New");

// use the proxy to call instance methods, get and set properties
 dataStoreProxy.InvokeVoid("ititialize");
 dataStoreProxy.Set("propertyOne","a string property");
 String testString = dataStoreProxy.Get("propertyOne");
 dataStoreProxy.Invoke("updateLog","PropertyOne value changed to "+testString);

// pass the proxy back to ObjectScript method ReadDataStore()
 iris.ClassMethodObject("Demo.useData","ReadDataStore",dataStoreProxy);

The last line of this example passes the dataStoreProxy proxy to an ObjectScript method named ReadDataStore(),
which interprets it as a reference to the original ObjectScript instance. From there, the instance could be saved to
the database, passed to another ObjectScript application, or even passed back to your .NET application.

Call ObjectScript classmethods and user-defined functions

You can easily call an ObjectScript classmethod or function (see the chapter on “Calling ObjectScript Methods
and Functions”).

 String currentNameSpace = iris.ClassMethodString("%SYSTEM.SYS","NameSpace");

This example just calls a classmethod to get some system information, but the real power of these calls is their
ability to leverage user-written code. You can write custom ObjectScript classmethods or functions for any purpose,
and your .NET application can call them as easily as it calls native .NET methods.

Work with multidimensional global arrays

The Native SDK provides all the methods needed to manipulate global arrays (see the chapter on “Working with
Global Arrays”). You can easily access and manipulate globals, traverse multilevel global arrays, and inspect data
structures just as you can in ObjectScript. The following example demonstrates how to create, read, change, and
delete a simple global array.

// Create a global (ObjectScript equivalent: set ^myGlobal("subOne") = 10)
 iris.Set(10, "myGlobal", "subOne");

// Change, read, and delete the global
 iris.increment(2, "myGlobal", "subOne") // increment value to 12
 Console.Write("New number is " + iris.GetInteger("myGlobal", "subOne"));
 iris.Kill("myGlobal", "subOne");

4 Using the Native SDK for .NET

Introduction to the .NET Native SDK

3
Calling ObjectScript Methods and
Functions from .NET

This chapter describes methods of class IRIS that allow you to call ObjectScript class methods and user-defined functions
directly from your .NET application. See the following sections for details and examples:

• Class Method Calls — demonstrates how to call ObjectScript class methods.

• Function Calls — demonstrates how to call user defined ObjectScript functions and procedures.

• Calling Class Library Methods — demonstrates how to pass arguments by reference and check %Status codes.

3.1 Class Method Calls
The following methods of class IRIS call ObjectScript class methods, returning values of the type indicated by the method
name: ClassMethodBool(), ClassMethodBytes(), ClassMethodDouble(), classMethodIRISList(), ClassMethodLong(),
ClassMethodObject(), ClassMethodString(), and ClassMethodVoid(). You can also use ClassMethodStatusCode() to
retrieve error messages from class methods that return ObjectScript %Status (see “Catching %Status Error Codes”).

All of these methods take string arguments for className and methodName, plus 0 or more method arguments, which may
be any of the following types: int?, short?, string, long?, double?, float?, byte[], bool?, DateTime?, IRISList?, or IRISObject.
If the connection is bidirectional (see “Using .NET Inverse Proxy Objects”), then any .NET object can be used as an
argument. See “Class IRIS Supported Datatypes” for more information about how the Native SDK handles these datatypes.

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments, or by
passing null for trailing arguments. An exception will be thrown if a non-null argument is passed to the right of a null
argument.

Calling ObjectScript class methods

The code in this example calls class methods of each supported datatype from ObjectScript test class User.NativeTest

(listed immediately after the example). Assume that variable iris is a previously defined instance of class IRIS and
is currently connected to the server.

 String className = "User.NativeTest";
 String comment = "";
 try{
 comment = "cmBoolean() tests whether two numbers are equal (true=1,false=0): ";
 bool boolVal = iris.ClassMethodBool(className,"cmBoolean",7,7);
 Console.WriteLine(comment+boolVal);

Using the Native SDK for .NET 5

 comment = "cmBytes creates byte array [72,105,33]. String value of array: ";
 byte[] byteVal = iris.ClassMethodBytes(className,"cmBytes",72,105,33);
 Console.WriteLine(comment+ (new String(byteVal)));

 comment = "cmString() concatenates \"Hello\" + arg: ";
 string stringVal = iris.ClassMethodString(className,"cmString","World");
 Console.WriteLine(comment+stringVal);

 comment = "cmLong() returns the sum of two numbers: ";
 Long longVal = iris.ClassMethodLong(className,"cmLong",7,8);
 Console.WriteLine(comment+longVal);

 comment = "cmDouble() multiplies a number by 1.5: ";
 Double doubleVal = iris.ClassMethodDouble(className,"cmDouble",10);
 Console.WriteLine(comment+doubleVal);

 comment = "cmProcedure assigns a value to global array ^cmGlobal: ";
 iris.ClassMethodVoid(className,"cmVoid",67);
 // Read global array ^cmGlobal and then delete it
 Console.WriteLine(comment+iris.GetInteger("^cmGlobal"));
 iris.Kill("cmGlobal");

 comment = "cmList() returns a $LIST containing two values: ";
 IRISList listVal = iris.ClassMethodList(className,"cmList","The answer is ",42);
 Console.WriteLine(comment+listVal.Get(1)+listVal.Get(2));
 } catch (Exception e){
 Console.WriteLine("method failed");
 }

ObjectScript Class User.NativeTest

To run the previous example, this ObjectScript class must be compiled and available on the server:

Class Definition

Class User.NativeTest Extends %Persistent
{
ClassMethod cmBoolean(cm1 As %Integer, cm2 As %Integer) As %Boolean
{
 Quit (cm1=cm2)
}
ClassMethod cmBytes(cm1 As %Integer, cm2 As %Integer, cm3 As %Integer) As %Binary
{
 Quit $CHAR(cm1,cm2,cm3)
}
ClassMethod cmString(cm1 As %String) As %String
{
 Quit "Hello "_cm1
}
ClassMethod cmLong(cm1 As %Integer, cm2 As %Integer) As %Integer
{
 Quit cm1+cm2
}
ClassMethod cmDouble(cm1 As %Double) As %Double
{
 Quit cm1 * 1.5
}
ClassMethod cmVoid(cm1 As %Integer)
{
 Set ^cmGlobal=cm1
 Quit ^cmGlobal
}
ClassMethod cmList(cm1 As %String, cm2 As %Integer)
{
 Set list = $LISTBUILD(cm1,cm2)
 Quit list
}
}

You can test these methods by calling them from the Terminal. For example:

USER>write ##class(User.NativeTest).cmString("World")
Hello World

6 Using the Native SDK for .NET

Calling ObjectScript Methods and Functions from .NET

3.2 Function Calls
Function calls are similar to method calls, but the arguments are in a different order. The function label is specified first,
followed by the name of the routine that contains it. This corresponds to the order used in ObjectScript, where function
calls have the following form :

 set result = $$myFunctionLabel^myRoutineName([arguments])

Functions are supported because they are necessary for older code bases (see “Callable User-defined Code Modules” in
Using ObjectScript), but new code should always use method calls if possible. ObjectScript also provides a special keyword
to create method wrappers around existing routines without losing efficiency; set the CodeMode keyword equal to call.

The Native SDK methods in this section call user-defined ObjectScript functions or procedures and return a value of the
type indicated by the method name: FunctionBool(), FunctionBytes(), FunctionDouble(), FunctionIRISList(),
FunctionObject(), FunctionLong(), FunctionString(), or Procedure() (no return value).

They take String arguments for functionLabel and routineName, plus 0 or more function arguments, which may be any of
the following types: int?, short?, string, long?, double?, float?, byte[], bool?, DateTime?, IRISList?, or IRISObject. If the
connection is bidirection (see Using .NET Inverse Proxy Objects), then any .NET object can be used as an argument. See
“Class IRIS Supported Datatypes” for more information about how the Native SDK handles these datatypes.

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments, or by
passing null for trailing arguments. An exception will be thrown if a non-null argument is passed to the right of a null
argument.

Note: Built-in system functions are not supported
These methods are designed to call functions in user-defined routines. ObjectScript system functions (which start
with a $ character. See “ObjectScript Functions” in the ObjectScript Reference) cannot be called directly from
your .NET code. However, you can call a system function indirectly by writing an ObjectScript wrapper function
that calls the system function and returns the result. For example, the fnList() function (at the end of this section
in ObjectScript Routine NativeRoutine.mac) calls $LISTBUILD.

Calling functions of ObjectScript routines with the Native SDK

The code in this example calls functions of each supported datatype from ObjectScript routine NativeRoutine (File
NativeRoutine.mac, listed immediately after this example). Assume that iris is an existing instance of class IRIS,
and is currently connected to the server.

 String routineName = "NativeRoutine";
 String comment = "";

 comment = "fnBoolean() tests whether two numbers are equal (true=1,false=0): ";
 Bool boolVal = iris.FunctionBool("fnBoolean",routineName,7,7);
 Console.WriteLine(comment+boolVal);

 comment = "fnBytes creates byte array [72,105,33]. String value of the array: ";
 Byte[] byteVal = new String(iris.FunctionBytes("fnBytes",routineName,72,105,33));
 Console.WriteLine(comment+(new String(byteVal)));

 comment = "fnString() concatenates \"Hello\" + arg: ";
 String stringVal = iris.FunctionString("fnString",routineName,"World");
 Console.WriteLine(comment+stringVal);

 comment = "fnLong() returns the sum of two numbers: ";
 Long longVal = iris.FunctionInt("fnLong",routineName,7,8);
 Console.WriteLine(comment+longVal);

 comment = "fnDouble() multiplies a number by 1.5: ";
 Double doubleVal = iris.FunctionDouble("fnDouble",routineName,5);
 Console.WriteLine(comment+doubleVal);

 comment = "fnProcedure assigns a value to global array ^fnGlobal: ";

Using the Native SDK for .NET 7

Function Calls

 iris.Procedure("fnProcedure",routineName,88);
 // Read global array ^fnGlobal and then delete it
 Console.WriteLine(comment+iris.GetInteger("^fnGlobal")+"\n\n");
 iris.Kill("fnGlobal");

 comment = "fnList() returns a $LIST containing two values: ";
 IRISList listVal = iris.FunctionList("fnList",routineName,"The answer is ",42);
 Console.WriteLine(comment+listVal.Get(1)+listVal.Get(2));

ObjectScript Routine NativeRoutine.mac

To run the previous example, this ObjectScript routine must be compiled and available on the server:

ObjectScript

fnBoolean(fn1,fn2) public {
 quit (fn1=fn2)
}
fnBytes(fn1,fn2,fn3) public {
 quit $CHAR(fn1,fn2,fn3)
}
fnString(fn1) public {
 quit "Hello "_fn1
}
fnLong(fn1,fn2) public {
 quit fn1+fn2
}
fnDouble(fn1) public {
 quit fn1 * 1.5
}
fnProcedure(fn1) public {
 set ^fnGlobal=fn1
 quit
}
fnList(fn1,fn2) public {
 set list = $LISTBUILD(fn1,fn2)
 quit list
}

You can test these functions by calling them from the Terminal. For example:

USER>write $$fnString^NativeRoutine("World")
Hello World

3.3 Calling Class Library Methods
Most of the classes in the InterSystems Class Library use a calling convention where methods only return a %Status value.
The actual results are returned in arguments passed by reference. This section describes how to pass by reference and read
%Status values.

• Using Pass-by-reference Arguments — demonstrates how to use the IRISReference class to pass objects by reference.

• Catching %Status Error Codes — describes how to use the ClassMethodStatusCode() method to test and read %Status

values..

3.3.1 Using Pass-by-reference Arguments

The Native SDK supports pass by reference for both methods and functions. To pass an argument by reference, assign the
argument value to an instance of class ADO.IRISReference and pass that instance as the argument:

 IRISReference valueRef = new IRISReference(""); // set inital value to null string
 iris.ClassMethodString("%SomeClass","SomeMethod",valueRef);
 String myString = valueRef.value; // get the method result

Here is a working example:

8 Using the Native SDK for .NET

Calling ObjectScript Methods and Functions from .NET

Using pass-by-reference arguments

This example calls %SYS.DatabaseQuery.GetDatabaseFreeSpace() to get the amount of free space (in MB)
available in the iristemp database.

 IRISReference freeMB = new IRISReference(0); // set inital value to 0
 String dir = "C:/InterSystems/IRIS/mgr/iristemp"; // directory to be tested
 Object status = null;

 try {
 Console.Write("\n\nCalling %SYS.DatabaseQuery.GetDatabaseFreeSpace()... ");
 status = iris.ClassMethodObject("%SYS.DatabaseQuery","GetDatabaseFreeSpace",dir,freeMB);
 Console.WriteLine("\nFree space in " + dir + " = " + freeMB.value + "MB");
 }
 catch (IRISException e) {
 Console.Write("Call to class method GetDatabaseFreeSpace() returned error:");
 Console.WriteLine(e.getMessage());
 }

prints:

Calling %SYS.DatabaseQuery.GetDatabaseFreeSpace()...
Free space in C:/InterSystems/IRIS/mgr/iristemp = 8.9MB

3.3.2 Catching %Status Error Codes

When a class method has ObjectScript %Status as the return type, you can use ClassMethodStatusCode() to retrieve error
messages. When a class method call fails, the resulting IRISException error will contain the %Status error code and message.

In the following example, the ValidatePassword() method returns a %Status object. If the password is invalid (for example,
password is too short) an exception will be thrown and the %Status message will explain why it failed. Assume that variable
iris is a previously defined instance of class IRIS and is currently connected to the server.

Using ClassMethodStatusCode() to catch ObjectScript %Status values

This example passes an invalid password to %SYSTEM.Security.ValidatePassword() and catches the error
message.

 String className = "%SYSTEM.Security";
 String methodName = "ValidatePassword";
 String pwd = ""; // an invalid password
 try {
// This call will throw an IRISException containing the %Status error message:
 iris.ClassMethodStatusCode(className,methodName,pwd);
// This call would fail silently or throw a generic error message:
 Object status = iris.ClassMethodObject(className,methodName,pwd);
 Console.WriteLine("\nPassword validated!");

 } catch (IRISException e) {
 Console.WriteLine("Call to "+methodName+"(\""+pwd+"\") returned error:");
 Console.WriteLine(e.getMessage());
 }

Notice that this example deliberately calls a method that does not use any pass by reference arguments.

To experiment with a more complex example, you can try catching the status code in the previous example (Using
pass-by-reference arguments). Force an exception by passing an invalid directory.

Note: Using IRISObject.InvokeStatusCode() when calling Instance methods
The ClassMethodStatusCode() method is used for class method calls. When you are invoking proxy object
instance methods (see “Using .NET Inverse Proxy Objects”) the IRISObject.InvokeStatusCode() method can
be used in exactly the same way.

Using the Native SDK for .NET 9

Calling Class Library Methods

4
Using .NET Inverse Proxy Objects

The .NET Native SDK is designed to take full advantage of .NET External Server connections, allowing completely
transparent bidirectional communications between InterSystems IRIS and your .NET application.

Inverse proxy objects are .NET objects that allow you to control ObjectScript target objects over an external server gateway
connection. You can use an inverse proxy object to call target methods and get or set target property values, manipulating
the target object as easily as if it were a native .NET object.

This section covers the following topics:

• Introducing External Servers — provides a brief overview of external servers.

• Creating an Inverse Proxy Object — describes methods used to create inverse proxy objects.

• Controlling a Target Object — demonstrates how inverse proxy objects are used.

• IRISObject Supported Datatypes — describes datatype-specific versions of the inverse proxy methods.

4.1 Introducing External Servers
External Server connections allow InterSystems IRIS target objects and .NET objects to interact freely, using the same
connection and working together in the same context (database, session, and transaction). External server architecture is
described in detail in Using InterSystems External Servers, but for the purposes of this discussion you can think of an
external server connection as a simple black box allowing proxy objects on one side to control target objects on the other:

Figure 4–1: External Server connection

Using the Native SDK for .NET 11

As the diagram shows, a forward proxy object is an ObjectScript proxy that controls a .NET object (see “Working with
External Languages” in Using InterSystems External Servers for details). A .NET inverse proxy works in the other direction,
allowing your .NET application to control an InterSystems IRIS target object.

4.2 Creating an Inverse Proxy Object
You can create an inverse proxy object by obtaining the OREF of an ObjectScript class instance (normally by calling the
%New() method of the class) and casting it to IRISObject. (See “Calling ObjectScript Methods and Functions” for more
information). The following methods can be used to generate an inverse proxy object:

• ADO.IRIS.ClassMethodObject() calls an ObjectScript class method and returns the result as an instance of object.

• ADO.IRIS.FunctionObject() calls an ObjectScript function and returns the result as an instance of object.

If the %New() method successfully creates a new target instance, an inverse proxy object will be generated for the instance.
For example, the following call creates an inverse proxy object named test that controls an instance of ObjectScript class
Demo.Test:

 IRISObject test = (IRISObject)iris.ClassMethodObject("Demo.Test","%New");

• ClassMethodObject() calls the %New() method of an ObjectScript class named Demo.Test to create a new target
instance of that class.

• If the call to %New() returns a valid instance of the class, an inverse proxy for the new instance is generated, and
classMethodObject() returns it as an Object.

• In .NET, the Object is cast to IRISObject, creating inverse proxy variable test.

Variable test is a .NET inverse proxy object for the new target instance of Demo.Test. In the following section, test will be
used to access methods and properties of the Demo.Test target instance.

4.3 Controlling a Target Object
An inverse proxy object is an instance of IRISObject. It provides methods Invoke() and InvokeVoid() to call target instance
methods, and accessors Get() and Set() to read and write target properties. The example in this section uses an inverse
proxy to control a target instance of ObjectScript class Demo.Test, which includes declarations for methods initialize() and
add(), and property name:

Method and Property Declarations in ObjectScript Class Demo.Test

 Class Demo.Test Extends %Persistent
 Method initialize(initialVal As %String)
 Method add(val1 As %Integer, val2 As %Integer) As %Integer
 Property name As %String

In the following example, the first line creates an inverse proxy object named test for a new instance of Demo.Test (as
described in the previous section). The rest of the code uses test to control the target Demo.Test instance.

12 Using the Native SDK for .NET

Using .NET Inverse Proxy Objects

Controlling an instance of Demo.Test with an inverse proxy object

// Create an instance of Demo.Test and return a proxy object for it
 IRISObject test = (IRISObject)iris.ClassMethodObject("Demo.Test","%New");

// instance method test.initialize() is called with one argument, returning nothing.
 test.InvokeVoid("initialize", "Test One");

// instance method test.add() is called with two arguments, returning an int value.
 int sum = test.Invoke("add",2,3); // adds 2 plus 3, returning 5

// The value of property test.name is set and then returned.
 test.Set("name", "Einstein, Albert"); // sets the property to "Einstein, Albert"
 String name = test.Get("name"); // returns the new property value

This example used the following IRISObject methods to access methods and properties of the Demo.Test instance:

• ClassMethodObject() calls Demo.Test class method %New(), which creates an instance of Demo.Test and returns
an IRISObject proxy named test (as described previously in “Creating Reverse Proxy Objects”).

• InvokeVoid() invokes the initialize() instance method, which initializes an internal variable but does not return a
value.

• Invoke() invokes the add() instance method, which accepts two integer arguments and returns the sum as an integer.

• Set() sets the name property to a new value.

• Get() returns the value of property name.

There are also datatype-specific versions of these methods, as described in the following section.

4.4 IRISObject Supported Datatypes
The example in the previous section used the generic Set(), Get(), and Invoke() methods, but the IRISObject class also
provides datatype-specific methods for supported datatypes.

IRISObject set() and get() methods

The IRISObject.Set() method accepts any .NET object as a property value, including all datatypes supported by
IRIS.Set() (see “Class IRIS Supported Datatypes”).

In addition to the generic Get() method, IRISObject provides the following type-specific methods: GetBool(),
GetBytes(), GetDouble(), GetIRISList(), GetLong(), GetObject() and GetString().

IRISObject invoke() methods

The IRISObject invoke methods support the same set of datatypes as the IRIS classmethod calls (see “Class Method
Calls”).

In addition to the generic Invoke() method, IRISObject provides the following type-specific methods: InvokeBool(),
InvokeBytes(), InvokeDouble(), InvokeIRISList(), InvokeLong(), InvokeObject(), InvokeString(), and
InvokeVoid(). It also provides InvokeStatusCode(), which gets the contents of an ObjectScript %Status return
value (see “Catching %Status Error Codes”).

All of the invoke methods take a String argument for methodName plus 0 or more method arguments, which may
be any of the following types int?, short?, string, long?, double?, float?, byte[], bool?, DateTime?, IRISList?, or
IRISObject. If the connection is bidirectional, any .NET object can be used as an argument.

Trailing arguments may be omitted in argument lists, either by passing fewer than the full number of arguments,
or by passing null for trailing arguments. An exception will be thrown if a non-null argument is passed to the
right of a null argument.

Using the Native SDK for .NET 13

IRISObject Supported Datatypes

5
Working with Global Arrays

The .NET Native SDK provides mechanisms for working with global arrays from your instance of InterSystems IRIS. This
chapter covers the following topics:

• Introduction to Global Arrays — introduces global array concepts and provides a simple demonstration of how the
.NET Native SDK is used.

• Creating, Accessing, and Deleting Nodes — demonstrates how to create, change, or delete nodes in a global array, and
how to retrieve node values.

• Finding Nodes in a Global Array — describes the iteration methods that allow rapid access to the nodes of a global
array.

• Class IRIS Supported Datatypes — provides details on how to retrieve node values as specific datatypes.

Note: Creating a .NET Connection
The examples in this chapter assume that an IRIS object named iris already exists and is connected to the server.
The following code establishes a standard .NET connection and creates an instance of IRIS:

//Open a connection to the server and create an IRIS object
 IRISConnection conn = new IRISConnection();
 conn.ConnectionString = "Server = localhost; "
 + "Port = 1972; " + "Namespace = USER; "
 + "Password = SYS; " + "User ID = _SYSTEM;";
 conn.Open();
 IRIS iris = IRIS.CreateIRIS(conn);

For more information on how to create an instance of IRIS, see the Quick Reference entry for CreateIRIS(). For
general information on creating .NET connections, see Establishing .NET Connections in Using .NET with
InterSystems Software. .

5.1 Introduction to Global Arrays
A global array, like all sparse arrays, is a tree structure rather than a sequential list. The basic concept behind global arrays
can be illustrated by analogy to a file structure. Each directory in the tree is uniquely identified by a path composed of a
root directory identifier followed by a series of subdirectory identifiers, and any directory may or may not contain data.

Using the Native SDK for .NET 15

Global arrays work the same way: each node in the tree is uniquely identified by a node address composed of a global
name identifier and a series of subscript identifiers, and a node may or may not contain a value. For example, here is a
global array consisting of six nodes, two of which contain values:

 root -->|--> foo --> SubFoo="A"
 |--> bar --> lowbar --> UnderBar=123

Values could be stored in the other possible node addresses (for example, root or root->bar), but no resources are wasted if
those node addresses are valueless. In InterSystems ObjectScript globals notation, the two nodes with values would be:

 root("foo","SubFoo")
 root("bar","lowbar","UnderBar")

The global name (root) is followed by a comma-delimited subscript list in parentheses. Together, they specify the entire
path to the node.

This global array could be created by two calls to the Native SDK Set() method:

 irisObject.Set("A", "root", "foo", "SubFoo");
 irisObject.Set(123, "root", "bar", "lowbar", "UnderBar");

Global array root is created when the first call assigns value "A" to node root("foo","SubFoo"). Nodes can be created in
any order, and with any set of subscripts. The same global array would be created if we reversed the order of these two
calls. The valueless nodes are created automatically, and will be deleted automatically when no longer needed. For details,
see “Creating, Accessing, and Deleting Nodes” later in this chapter.

The Native SDK code to create this array is demonstrated in the following example. An IRISConnection object establishes
a connection to the server. The connection will be used by an instance of class IRIS named iris. Native SDK methods are
used to create a global array, read the resulting persistent values from the database, and then delete the global array.

The NativeDemo Program

The Native SDK for .NET is part of the InterSystems.Data.IrisClient.dll library. For detailed information, see the
Introduction to Using .NET with InterSystems Software.

using System;
using InterSystems.Data.IRISClient;
using InterSystems.Data.IRISClient.ADO;

namespace NativeSpace {
 class NativeDemo {
 static void Main(string[] args) {
 try {

//Open a connection to the server and create an IRIS object
 IRISConnection conn = new IRISConnection();
 conn.ConnectionString = "Server = localhost; "
 + "Port = 1972; " + "Namespace = USER; "
 + "Password = SYS; " + "User ID = _SYSTEM;";
 conn.Open();
 IRIS iris = IRIS.CreateIRIS(conn);

//Create a global array in the USER namespace on the server
 iris.Set("A", "root", "foo", "SubFoo");
 iris.Set(123, "root", "bar", "lowbar", "UnderBar");

// Read the values from the database and print them
 string subfoo = iris.GetString("root", "foo", "SubFoo");
 string underbar = iris.GetString("root", "bar", "lowbar", "UnderBar");
 Console.WriteLine("Created two values: \n"
 + " root(\"foo\",\"SubFoo\")=" + subfoo + "\n"
 + " root(\"bar\",\"lowbar\",\"UnderBar\")=" + underbar);

//Delete the global array and terminate
 iris.Kill("root"); // delete global array root
 iris.Close();
 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);

16 Using the Native SDK for .NET

Working with Global Arrays

 }
 }// end Main()
 } // end class NativeDemo
}

NativeDemo prints the following lines:

Created two values:
 root("foo","SubFoo")=A
 root("bar","lowbar","UnderBar")=123

In this example, an IRISConnection object named conn provides a connection to the database associated with the USER

namespace. Native SDK methods perform the following actions:

• IRIS.CreateIRIS() creates a new instance of IRIS named iris, which will access the database through conn.

• IRIS.Set() creates new persistent nodes in the database.

• IRIS.GetString() queries the database and returns the values of the specified nodes.

• IRIS.Kill() deletes the specified node and all of its subnodes from the database.

The next chapter provides detailed explanations and examples for all of these methods.

5.1.1 Glossary of Native SDK Terms

See the previous section for an overview of the concepts listed here. Examples in this glossary will refer to the global array
structure listed below. The Legs global array has ten nodes and three node levels. Seven of the ten nodes contain values:

 Legs // root node, valueless, 3 child nodes
 fish = 0 // level 1 node, value=0
 mammal // level 1 node, valueless
 human = 2 // level 2 node, value=2
 dog = 4 // level 2 node, value=4
 bug // level 1 node, valueless, 3 child nodes
 insect = 6 // level 2 node, value=6
 spider = 8 // level 2 node, value=8
 millipede = Diplopoda // level 2 node, value="Diplopoda", 1 child node
 centipede = 100 // level 3 node, value=100

Child node

The nodes immediately under a given parent node. The address of a child node is specified by adding exactly one
subscript to the end of the parent subscript list. For example, parent node Legs("mammal") has child nodes
Legs("mammal","human") and Legs("mammal","dog").

Global name

The identifier for the root node is also the name of the entire global array. For example, root node identifier Legs
is the global name of global array Legs.

Node

An element of a global array, uniquely identified by a namespace consisting of a global name and an arbitrary
number of subscript identifiers. A node must either contain data, have child nodes, or both.

Node level

The number of subscripts in the node address. A ‘level 2 node’ is just another way of saying ‘a node with two
subscripts’. For example, Legs("mammal","dog") is a level 2 node. It is two levels under root node Legs and one
level under Legs("mammal").

Using the Native SDK for .NET 17

Introduction to Global Arrays

Node address

The complete namespace of a node, including the global name and all subscripts. For example, node address
Legs("fish") consists of root node identifier Legs plus a list containing one subscript, "fish". Depending on
context, Legs (with no subscript list) can refer to either the root node address or the entire global array.

Root node

The unsubscripted node at the base of the global array tree. The identifier for a root node is its global name with
no subscripts.

Subnode

All descendants of a given node are referred to as subnodes of that node. For example, node Legs("bug") has four
different subnodes on two levels. All nine subscripted nodes are subnodes of root node Legs.

Subscript / Subscript list

All nodes under the root node are addressed by specifying the global name and a list of one or more subscript
identifiers. (The global name plus the subscript list is the node address).

Target address

Many Native SDK methods require you to specify a valid node address that does not necessarily point to an
existing node. For example, the Set() method takes a value argument and a target address, and stores the value at
that address. If no node exists at the target address, a new node is created.

Value

A node can contain a value of any supported type. A node with no child nodes must contain a value; a node that
has child nodes can be valueless.

Valueless node

A node must either contain data, have child nodes, or both. A node that has child nodes but does not contain data
is called a valueless node. Valueless nodes only exist as pointers to lower level nodes.

5.1.2 Global Naming Rules

Global names and subscripts obey the following rules:

• The length of a node address (totaling the length of the global name and all subscripts) can be up to 511 characters.
(Some typed characters may count as more than one encoded character for this limit. For more information, see
“Maximum Length of a Global Reference”).

• A global name can include letters, numbers, and periods ('.'), and can have a length of up to 31 significant characters.
It must begin with a letter, and must not end with a period.

• A subscript can be a string or a number. String subscripts are case-sensitive and can use all characters (including control
and non-printing characters). Length is limited only by the 511 character maximum for the total node address.

18 Using the Native SDK for .NET

Working with Global Arrays

5.2 Creating, Accessing, and Deleting Nodes
The Native SDK provides three methods that can make changes in the database: Set() and Increment() can create nodes
or change node values, and Kill() can delete a node or set of nodes. Node values are retrieved by type-specific getter
methods such as GetInteger() and GetString().

• Creating Nodes and Setting Node Values — describes how to use Set() and Increment().

• Getting Node Values — lists getter methods for each supported datatype.

• Deleting Nodes — describes how to use Kill().

5.2.1 Creating Nodes and Setting Node Values

The Set() and Increment() methods can be used to create a persistent node with a specified value, or to change the value
of an existing node.

IRIS.Set() takes a value argument of any supported datatype and stores the value at the specified address. If no node exists
at the target address, a new one is created.

Setting and changing node values

In the following example, the first call to Set() creates a new node at subnode address myGlobal("A") and sets the
value of the node to string "first". The second call changes the value of the subnode, replacing it with integer
1.

 iris.Set("first", "myGlobal", "A"); // create node myGlobal("A") = "first"
 iris.Set(1, "myGlobal", "A"); // change value of myGlobal("A") to 1.

Set() can create and change values of any supported datatype. To read an existing value, you must use a different getter
method for each datatype, as described in the next section.

IRIS.Increment() takes a number argument, increments the node value by that amount, and returns the incremented value.

If there is no node at the target address, the method creates one and assigns the number argument as the value. This method
uses a thread-safe atomic operation to change the value of the node, so the node is never locked.

Incrementing node values

In the following example, the first call to Increment() creates new subnode myGlobal("B") with value -2. The
next two calls each increment by -2, resulting in a final value of -6:

 for (int loop = 0; loop < 3; loop++) {
 iris.Increment(-2,"myGlobal", "B");
 }

Note: Global naming rules
The second argument for either Set() or Increment() is a global array name. The name can include letters, numbers,
and periods. It must begin with a character, and may not end with a period. The arguments after the global name
are subscripts, which can be either numbers or strings (case-sensitive, not restricted to alphanumeric characters).
See “Global Naming Rules” for more information.

Using the Native SDK for .NET 19

Creating, Accessing, and Deleting Nodes

5.2.2 Getting Node Values

The Set() method can be used with all supported datatypes, but each datatype requires a separate getter. Node values can
be any of the following datatypes: int?, short?, string, long?, double?, float?, byte[], bool?, DateTime?, IRISList?, and instances
of objects that implement System.IO.MemoryStream (stored and retrieved as byte[]). A null value translates to ""

The following methods are used to retrieve node values of these datatypes:

• Numeric datatypes: GetBool(), GetInt16(), GetInt32(), GetInt64(), GetSingle(), GetDouble()

• String datatypes: GetString(), GetBytes(), GetIRISList()

• Other datatypes: GetDateTime(), GetObject()

For more information on datatypes, see “Class IRIS Supported Datatypes” later in this chapter.

5.2.3 Deleting Nodes

IRIS.Kill() deletes the specified node and all of its subnodes. The entire global array will be deleted if the root node is
deleted, or if all nodes with values are deleted.

In the following example, global array myGlobal initially contains the following nodes:

 myGlobal = <valueless node>
 myGlobal("A") = 0
 myGlobal("A",1) = 0
 myGlobal("A",2) = 0
 myGlobal("B") = <valueless node>
 myGlobal("B",1) = 0

The example will delete the entire global array by calling Kill() on two of its subnodes, myGlobal("A") and myGlobal("B",1).

Deleting a node or group of nodes

The first call will delete node myGlobal("A") and both of its subnodes:

 iris.Kill("myGlobal", "A");
 // also kills child nodes myGlobal("A",1) and myGlobal("A",2)

The second call deletes myGlobal("B",1), the last remaining subnode with a value:

 iris.Kill("myGlobal","B",1);

Since neither of the remaining nodes has a value, the entire global array is deleted:

• The parent node, myGlobal("B"), is deleted because it is valueless and now has no subnodes.

• Now root node myGlobal is valueless and has no subnodes, so the entire global array is deleted from the
database.

5.3 Finding Nodes in a Global Array
The Native SDK provides ways to iterate over part or all of a global array. The following topics describe the various iteration
methods:

• Iterating Over a Set of Child Nodes — describes how to iterate over all child nodes under a given parent node.

• Iteration in Conditional Loops — describes methods and properties that provide more control over iteration.

20 Using the Native SDK for .NET

Working with Global Arrays

• Testing for Child Nodes and Node Values — describes how to find all subnodes regardless of node level, and identify
which nodes have values.

5.3.1 Iterating Over a Set of Child Nodes

Child nodes are sets of nodes immediately under the same parent node. Any child node address can be defined by appending
one subscript to the subscript list of the parent. For example, the following global array has four child nodes under parent
node heroes("dogs"):

The heroes global array

This global array uses the names of several heroic dogs (plus a reckless boy and a pioneering sheep) as subscripts.
The values are birth years.

 heroes // root node, valueless, 2 child nodes
 heroes("dogs") // level 1 node, valueless, 4 child nodes
 heroes("dogs","Balto") = 1919 // level 2 node, value=1919
 heroes("dogs","Hachiko") = 1923 // level 2 node, value=1923
 heroes("dogs","Lassie") = 1940 // level 2 node, value=1940, 1 child node
 heroes("dogs","Lassie","Timmy") = 1954 // level 3 node, value=1954
 heroes("dogs","Whitefang") = 1906 // level 2 node, value=1906
 heroes("sheep") // level 2 node, valueless, 1 child node
 heroes("sheep","Dolly") = 1996 // level 2 node, value=1996

The following methods are used to create an iterator, define the direction of iteration, and set the starting point of the search:

• IRIS.GetIRISIterator() returns an instance of IRISIterator for the child nodes of the specified target node.

• IRIS.GetIRISReverseIterator() returns an instance of IRISIterator set to backward iteration for the child nodes of the
specified target node.

• IRISIterator.StartFrom() sets the iterator's starting position to the specified subscript. The subscript is an arbitrary
starting point, and does not have to address an existing node.

Read child node values in reverse order

The following code iterates over child nodes of heroes("dogs") in reverse collation order, starting with subscript
V:

// Iterate in reverse, seeking nodes lower than heroes('dogs','V') in collation order
 IRISIterator iterDogs = iris.GetIRISReverseIterator("heroes","dogs");
 iterDogs.StartFrom("V");
 String output = "\nDog birth years: ";
 foreach (int BirthYear in iterDogs) {
 output += BirthYear + " ";
 };
 Console.WriteLine(output);

This code prints the following output:

 Dog birth years: 1940 1923 1919

The example does the following:

• GetIRISReverseIterator() returns iterator iterDogs, which will find child nodes of heroes("dogs") in reverse
collation order.

• StartFrom() specifies subscript V, meaning that the search range will include all child nodes of heroes("dogs")
with subscripts lower than V in collation order. The iterator will first find subscript Lassie, followed by
Hachiko and Balto.

Two subnodes of heroes("dogs") are ignored:

Using the Native SDK for .NET 21

Finding Nodes in a Global Array

• Child node heroes("dogs","Whitefang") will not be found because it is outside of the search range (Whitefang
is higher than V in collation order).

• Level 3 node heroes("dogs","Lassie","Timmy") will not be found because it is a child of Lassie, not dogs.

See the last section in this chapter (“Testing for Child Nodes and Node Values”) for a discussion of how to iterate
over multiple node levels.

Note: Collation Order
The order in which nodes are retrieved depends on the collation order of the subscripts. This is not a function of
the iterator. When a node is created, it is automatically stored it in the collation order specified by the storage
definition. In this example, the child nodes of heroes("dogs") would be stored in the order shown (Balto,
Hachiko, Lassie, Whitefang) regardless of the order in which they were created. For more information, see
“Collation of Global Nodes” in Using Globals.

5.3.2 Iteration in Conditional Loops

The previous section demonstrated an easy way to make a single pass over a set of child nodes, but in some cases you may
want more control than a simple foreach loop can provide. This section demonstrates some methods and properties that
allow more control over the iterator and provide easier access to data:

• IRISIterator.MoveNext() implements System.Collections.IEnumerator, allowing you to control exactly when the iterator
will move to the next node. It returns true if the next node has been found, or false if there are no more nodes in
the current iteration.

• IRISIterator.Reset() can be called after exiting a loop to reset the iterator to its starting position, allowing it to be used
again.

• IRISIterator.Current gets an object containing the value of the node at the current iterator position. This is the same
value as the one assigned to the current loop variable in a foreach loop.

• IRISIterator.CurrentSubscript gets an object containing the lowest level subscript for the node at the current iterator
position. For example, if the iterator points to node myGlobal(23,"somenode"), the returned object will contain value
"somenode".

Like the previous example, this one uses the heroes global array and iterates over the child nodes under heroes("dogs").
However, this example uses the same iterator to make several passes over the child nodes, and exits a loop as soon as certain
conditions are met.

Search for values that match items in a list

This example scans the child nodes under heroes("dogs") until it finds a specific node value or runs out of nodes.
Array targetDates specifies the list of targetYear values to be used in the main foreach loop. Within the main
loop, the do while loop finds each child node and compares its value to the current targetYear.

 IRISIterator iterDogs = iris.GetIRISIterator("heroes","dogs");
 bool seek;
 int[] targetDates = {1906, 1940, 2001};
 foreach (int targetYear in targetDates) {
 do {
 seek = iterDogs.MoveNext();
 if (!seek) {
 Console.WriteLine("Could not find a dog born in " + targetYear);
 }
 else if ((int)iterDogs.Current == targetYear) {
 Console.WriteLine(iterDogs.CurrentSubscript + " was born in " + iterDogs.Current);
 seek = false;
 }
 } while (seek);
 iterDogs.Reset();
 } // end foreach

22 Using the Native SDK for .NET

Working with Global Arrays

This code prints the following output:

 Whitefang was born in 1906
 Lassie was born in 1940
 Could not find a dog born in 2001

The example does the following:

• GetIRISIterator() returns iterator iterDogs, which will find child nodes of heroes("dogs") in collation order
(as demonstrated in the previous section, “Iterating Over a Set of Child Nodes”). iterDogs will be reset and
used again in each pass of the foreach loop.

• MoveNext() is called in each pass of the do while loop to find the next child node. It sets seek to true if
a node is found, or false if there are no more child nodes. If seek is false, the do while loop exits after
printing a message indicating that the current targetYear value was not found.

• The Current and CurrentSubscript properties of iterDogs are set each time a child node is found. Current
contains the current node value, and CurrentSubscript contains the current subscript.

• Current is compared to targetYear. If there is a match, a message displays both the subscript and the node
value, and the do while loop is terminated by setting seek to false.

• Reset() is called at the end of each do while pass. This returns iterator iterDogs to its original starting
condition so it can be used again in the next pass.

5.3.3 Testing for Child Nodes and Node Values

In the previous examples, the scope of the search is restricted to child nodes of heroes("dogs"). The iterator fails to find
two values in global array heroes because they are under different parents:

• Level 3 node heroes("dogs","Lassie","Timmy") will not be found because it is a child of Lassie, not dogs.

• Level 2 node heroes("sheep","Dolly") is not found because it is a child of sheep, not dogs.

To search the entire global array, we need to find all of the nodes that have child nodes, and create an iterator for each one.
The IsDefined() method provides the necessary information:

• IRIS.IsDefined() — can be used to determine if a node has a value, a subnode, or both. It returns one of the following
values:

– 0 — the specified node does not exist

– 1 — the node exists and has a value

– 10 — the node is valueless but has a child node

– 11 — the node has both a value and a child node

The returned value can be used to determine several useful boolean values:

 bool exists = (iris.IsDefined(root,subscripts) > 0); // value is 1, 10, or 11
 bool hasValue = (iris.IsDefined(root,subscripts)%10 > 0); // value is 1 or 11
 bool hasChild = (iris.IsDefined(root,subscripts) > 9); // value is 10 or 11

The following example consists of two methods:

• TestNode() will be called for each node in the heroes global array. It calls IsDefined() on the current node, and returns
a boolean value indicating whether the node has child nodes. It also checks to see if the current subscript is Timmy or
Dolly, and prints a message if so.

Using the Native SDK for .NET 23

Finding Nodes in a Global Array

• FindAllHeroes() uses the return value of TestNode() to navigate the entire global array. It starts by iterating over the
child nodes of root node heroes. Whenever TestNode() indicates that the current node has child nodes, FindAllHeroes()
creates a new iterator to test the lower level child nodes.

Method FindAllHeroes()

This example processes a known structure, and traverses the various levels with simple nested calls. In the less
common case where a structure has an arbitrary number of levels, a recursive algorithm could be used.

 public void FindAllHeroes() {
 string root = "heroes";

 // Iterate over child nodes of root node heroes
 IRISIterator iterRoot = iris.GetIRISIterator(root);
 foreach (object node in iterRoot) {
 object sub1 = iterRoot.CurrentSubscript;
 bool hasChild1 = TestNode(iterRoot,sub1);

 // Process current child of heroes(sub1)
 if (hasChild1) {
 IRISIterator iterOne = iris.GetIRISIterator(root,sub1);
 foreach (object node in iterOne) {
 object sub2 = iterOne.CurrentSubscript;
 bool hasChild2 = TestNode(iterOne,sub1,sub2);

 // Process current child of heroes(sub1,sub2)
 if (hasChild2) {
 IRISIterator iterTwo = iris.GetIRISIterator(root,sub1,sub2);
 foreach (object node in iterTwo) {
 object sub3 = iterTwo.CurrentSubscript;
 TestNode(iterTwo,sub1,sub2,sub3); //no child nodes below level 3
 }
 } //end hasChild2
 }
 } //end hasChild1
 } // end main loop
 } // end FindAllHeroes()

Method TestNode()

 public bool TestNode(IRISIterator iter, string root, params object[] subscripts) {
 // Test for values and child nodes
 int state = iris.IsDefined(root,subscripts);
 bool hasValue = (state%10 > 0); // has value if state is 1 or 11
 bool hasChild = (state > 9); // has child if state is 10 or 11

 // Look for lost heroes

// string[] lost = {"Timmy","Dolly"};
 var lost = new List<string> {"Timmy","Dolly"};

 if (hasValue) { // ignore valueless nodes
 string name = (string)iter.CurrentSubscript;
 int year = (int)iter.Current;
// foreach (string hero in lost) {
// if (hero == name) {
 if (lost.Contains(name))
 Console.WriteLine("Hey, we found " + name + " (born in " + year + ")!!!");
// }
// }
 }

 return hasChild;
 }

5.4 Class IRIS Supported Datatypes
For simplicity, examples in previous sections of this chapter have always used Integer or String node values, but the IRIS

class also provides datatype-specific methods for the following supported datatypes.

24 Using the Native SDK for .NET

Working with Global Arrays

IRIS.set()

The IRIS.Set() method supports datatypes bool, byte[], Single, Double, DateTime, Int16, Int32, Int64, String, IRISList,
and instances of objects that implement System.IO.MemoryStream. A null value is stored as "".

Class IRIS getters for numeric values

The following IRIS methods assume that the node value is numeric, and attempt to convert it to an appropriate
.NET variable: GetBool(), GetSingle(), GetDouble(), GetInt16(), GetInt32(), or GetInt64(). Given an integer
node value, all numeric methods return meaningful values. Integer getters cannot reliably retrieve Single or Double

values, and may return an inaccurate or meaningless value.

Class IRIS getters for String, byte[], and IRISList

In the InterSystems IRIS database, String, byte[], and IRISList objects are all stored as strings, and no information
about the original datatype is preserved. The IRIS GetString(), GetBytes(), and GetIRISList() methods get string
data and attempt to coerce it to the desired format.

The string getters assume that a node value is non-numeric, and attempt to convert it appropriately. They return
null if the target node is valueless or does not exist. These methods do not perform any type checking, and will
not usually throw an exception if the node value is of the wrong datatype.

Class IRIS getters for .NET classes

The IRIS class also supports getters for some .NET classes:

• GetDateTime() — gets instances of System.DateTime.

• GetObject() — returns the value of the target node as an object.

• GetBytes() — can be used to get objects that implement System.IO.MemoryStream. An instance of
MemoryStream will be stored as byte[] when set as a node value. Use GetBytes() to retrieve the value, then
initialize a MemoryStream with the returned byte [] value.

Important: Getter methods do not check for incompatible datatypes
These methods are optimized for speed, and never perform type checking. Your application should never
depend on an exception being thrown if one of these methods attempts to fetch a value of the wrong
datatype. Although an exception may be thrown, it is more likely that the method will fail silently, returning
an inaccurate or meaningless value.

Using the Native SDK for .NET 25

Class IRIS Supported Datatypes

6
Transactions and Locking

The Native SDK for .NET provides transaction and locking methods that use the InterSystems IRIS transaction model, as
described in the following sections:

• Controlling Transactions — describes how transactions are started, nested, rolled back, and committed.

• Concurrency Control — describes how to use the various lock methods.

Important: Never Mix Native SDK and ADO.NET Transaction Models
DO NOT mix the Native SDK transaction model with the ADO.NET/SQL transaction model.

• If you want to use only Native SDK commands within a transaction, you should always use Native
SDK transaction methods.

• If you want to use a mix of Native SDK and ADO.NET/SQL commands within a transaction, you
should turn autoCommit OFF and then always use Native SDK transaction methods.

• If you want to use only ADO.NET/SQL commands within a transaction, you can either always use
SQL transaction methods, or turn autocommit OFF and then always use Native SDK transaction
methods.

• Although you can use both models in the same application, you must take care never to start a trans-
action in one model while a transaction is still running in the other model.

6.1 Controlling Transactions
The methods described here are alternatives to the standard ADO.NET/SQL transaction model. The Native SDK model
for transaction and concurrency control is based on ObjectScript methods, and is not interchangeable with the .NET model.
The Native SDK model must be used if your transactions include Native SDK method calls.

For more information on the ObjectScript transaction model, see “Transaction Processing” in Using ObjectScript.

The Native SDK for .NET provides the following methods to control transactions:

• IRIS.TCommit() — commits one level of transaction.

• IRIS.TStart() — starts a transaction (which may be a nested transaction).

• IRIS.GetTLevel() — returns an int value indicating the current transaction level (0 if not in a transaction).

• IRIS.TRollback() — rolls back all open transactions in the session.

Using the Native SDK for .NET 27

GCOS_tp
GCOS

• IRIS.TRollbackOne() — rolls back the current level transaction only. If this is a nested transaction, any higher-level
transactions will not be rolled back.

The following example starts three levels of nested transaction, setting the value of a different node in each transaction
level. All three nodes are printed to prove that they have values. The example then rolls back the second and third levels
and commits the first level. All three nodes are printed again to prove that only the first node still has a value.

Controlling Transactions: Using three levels of nested transaction

 String globalName = "myGlobal";
 iris.TStart();

 // GetTLevel() is 1: create myGlobal(1) = "firstValue"
 iris.Set("firstValue", globalName, iris.GetTLevel());

 iris.TStart();
 // GetTLevel() is 2: create myGlobal(2) = "secondValue"
 iris.Set("secondValue", globalName, iris.GetTLevel());

 iris.TStart();
 // GetTLevel() is 3: create myGlobal(3) = "thirdValue"
 iris.Set("thirdValue", globalName, iris.GetTLevel());

 Console.WriteLine("Node values before rollback and commit:");
 for (int ii=1;ii<4;ii++) {
 Console.Write(globalName + "(" + ii + ") = ");
 if (iris.isDefined(globalName,ii) > 1) Console.WriteLine(iris.GetString(globalName,ii));
 else Console.WriteLine("<valueless>");
 }
// prints: Node values before rollback and commit:
// myGlobal(1) = firstValue
// myGlobal(2) = secondValue
// myGlobal(3) = thirdValue

 iris.TRollbackOne();
 iris.TRollbackOne(); // roll back 2 levels to GetTLevel 1
 iris.TCommit(); // GetTLevel() after commit will be 0
 Console.WriteLine("Node values after the transaction is committed:");
 for (int ii=1;ii<4;ii++) {
 System.out.print(globalName + "(" + ii + ") = ");
 if (iris.isDefined(globalName,ii) > 1) Console.WriteLine(iris.GetString(globalName,ii));
 else Console.WriteLine("<valueless>");
 }
// prints: Node values after the transaction is committed:
// myGlobal(1) = firstValue
// myGlobal(2) = <valueless>
// myGlobal(3) = <valueless>

6.2 Concurrency Control
Concurrency control is a vital feature of multi-process systems such as InterSystems IRIS. It provides the ability to lock
specific elements of data, preventing the corruption that would result from different processes changing the same element
at the same time. The Native SDK transaction model provides a set of locking methods that correspond to ObjectScript
commands. These methods must not be used with the ADO.NET/SQL transaction model (see the warning at the beginning
of this chapter for details).

The following methods of class IRIS are used to acquire and release locks. Both methods take a lockMode argument to
specify whether the lock is shared or exclusive:

 Lock(string lockMode, int timeout, string globalName, Object[] subscripts)
 Unlock(string lockMode, string globalName, Object[] subscripts)

• IRIS.Lock() — Takes lockMode, timeout, globalName, and subscripts arguments, and locks the node. The lockMode
argument specifies whether any previously held locks should be released. This method will time out after a predefined
interval if the lock cannot be acquired.

• IRIS.Unlock() — Takes lockMode, globalName, and subscripts arguments, and releases the lock on a node.

28 Using the Native SDK for .NET

Transactions and Locking

The following argument values can be used:

• lockMode — combination of the following chars, S for shared lock, E for escalating lock, or SE for shared and escalating.
Default is empty string (exclusive and non-escalating)

• timeout — number of seconds to wait when attempting to acquire the lock

Note: You can use the Management Portal to examine locks. Go to System Operation > Locks to see a list of the locked
items on your system.

There are two ways to release all currently held locks:

• IRIS.ReleaseAllLocks() — releases all locks currently held by this connection.

• When the Close() method of the connection object is called, it releases all locks and other connection resources.

Tip: A detailed discussion of concurrency control is beyond the scope of this book. See the following books and articles
for more information on this subject:

• “Transaction Processing” and “Lock Management” in Using ObjectScript

• “Locking and Concurrency Control” in the Orientation Guide for Server-Side Programming

• “LOCK” in the ObjectScript Reference

Using the Native SDK for .NET 29

Concurrency Control

GCOS_tp
GCOS_locktable
GCOS
GORIENT_objectscript_locking
GORIENT
RCOS_clock
RCOS

7
Native SDK for .NET Quick Reference

This is a quick reference for the InterSystems IRIS Native SDK for .NET, providing information on the following extension
classes in InterSystems.Data.IRISClient.ADO:

• Class IRIS provides the main functionality of the Native SDK.

• Class IRISIterator provides methods to navigate a global array.

• Class IRISList provides support for InterSystems $LIST serialization.

• Class IRISObject provides methods to work with Gateway inverse proxy objects.

All of these classes are part of the InterSystems ADO.NET Managed Provider (InterSystems.Data.IRISClient.ADO). They
access the database through a standard .NET connection, and can be used without any special setup or installation procedures.

Note: This reference is intended as a convenience for readers of this book, but it is not the definitive reference for the
Native SDK. For the most complete and up-to-date information, see the online class documentation.

All methods listed in the following sections will throw an exception on encountering any kind of error. The subscript
argument Object[] args is always defined as params object[].

7.1 Class IRIS
Class IRIS is a member of InterSystems.Data.IRISClient.ADO (the InterSystems ADO.NET Managed Provider).

IRIS has no public constructors. Instances of IRIS are created by calling static method IRIS.CreateIRIS().

7.1.1 IRIS Method Details

ClassMethodBool()

ADO.IRIS.ClassMethodBool() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of bool?.

bool ClassMethodBool(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

Using the Native SDK for .NET 31

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodBytes()

ADO.IRIS.ClassMethodBytes() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of byte[].

byte[] ClassMethodBytes(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodDouble()

ADO.IRIS.ClassMethodDouble() calls an ObjectScript class method, passing zero or more arguments and
returning an instance of double?.

double ClassMethodDouble(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodIRISList()

ADO.IRIS.ClassMethodIRISList() calls an ObjectScript class method, passing zero or more arguments and
returning an instance of IRISList.

IRISList ClassMethodIRISList(string className, string methodName, params object[] args)

This method is equivalent to newList=(IRISList) ClassMethodBytes(className, methodName,
args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

32 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

ClassMethodLong()

ADO.IRIS.ClassMethodLong() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of long?.

long ClassMethodLong(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodObject()

ADO.IRIS.ClassMethodObject() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of object. If the returned object is a valid OREF (for example, if %New() was called),
ClassMethodObject() will generate and return an inverse proxy object (an instance of IRISObject) for the referenced
object. See “Using .NET Inverse Proxy Objects” for details and examples.

object ClassMethodObject(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

ClassMethodStatusCode()

ADO.IRIS.ClassMethodStatusCode() tests whether a class method that returns an ObjectScript $Status object
would throw an error if called with the specified arguments. If the call would fail, this method throws an
IRISException error containing the ObjectScript $Status error status number and message.

void ClassMethodStatusCode(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

This is an indirect way to catch exceptions when using ClassMethod[type] calls. If the call would run without
error, this method returns without doing anything, meaning that you can safely make the call with the specified
arguments.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodString()

ADO.IRIS.ClassMethodString() calls an ObjectScript class method, passing zero or more arguments and returning
an instance of string.

string ClassMethodString(string className, string methodName, params object[] args)

Using the Native SDK for .NET 33

Class IRIS

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

ClassMethodVoid()

ADO.IRIS.ClassMethodVoid() calls an ObjectScript class method with no return value, passing zero or more
arguments.

void ClassMethodVoid(string className, string methodName, params object[] args)

parameters:

• className — fully qualified name of the class to which the called method belongs.

• methodName — name of the class method.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

Close()

ADO.IRIS.Close() closes the IRIS object.

void Close()

CreateIRIS() [static]

ADO.IRIS.CreateIRIS() returns an instance of ADO.IRIS that uses the specified IRISConnection.

static IRIS CreateIRIS(IRISADOConnection conn)

parameters:

• conn — an instance of IRISConnection.

See “Introduction to Global Arrays” for more information and examples.

FunctionBool()

ADO.IRIS.FunctionBool() calls an ObjectScript function, passing zero or more arguments and returning an instance
of bool?.

bool FunctionBool(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

34 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

FunctionBytes()

ADO.IRIS.FunctionBytes() calls an ObjectScript function, passing zero or more arguments and returning an
instance of byte[].

byte[] FunctionBytes(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

FunctionDouble()

ADO.IRIS.FunctionDouble() calls an ObjectScript function, passing zero or more arguments and returning an
instance of double?.

double FunctionDouble(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

FunctionInt()

ADO.IRIS.FunctionInt() calls an ObjectScript function, passing zero or more arguments and returning an instance
of long?.

long FunctionInt(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

FunctionIRISList()

ADO.IRIS.FunctionIRISList() calls an ObjectScript function, passing zero or more arguments and returning an
instance of IRISList.

IRISList FunctionIRISList(string functionName, string routineName, params object[] args)

This function is equivalent to newList=(IRISList) FunctionBytes(functionName, routineName,
args)

parameters:

Using the Native SDK for .NET 35

Class IRIS

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

FunctionLong()

ADO.IRIS.FunctionLong() calls an ObjectScript function, passing zero or more arguments and returning an instance
of Long.

long FunctionLong(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

FunctionObject()

ADO.IRIS.FunctionObject() calls an ObjectScript function, passing zero or more arguments and returning an
instance of object. If the returned object is a valid OREF, FunctionObject() will generate and return an inverse
proxy object (an instance of IRISObject) for the referenced object. See “Using .NET Inverse Proxy Objects” for
details and examples.

object FunctionObject(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Class IRIS Supported Datatypes” for related information.

FunctionString()

ADO.IRIS.FunctionString() calls an ObjectScript function, passing zero or more arguments and returning an
instance of string.

string FunctionString(string functionName, string routineName, params object[] args)

parameters:

• functionName — name of the function to call.

• routineName — name of the routine containing the function.

• args — zero or more arguments of supported types.

See “Calling ObjectScript Methods and Functions” for details and examples.

36 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

GetAPIVersion() [static]

ADO.IRIS.GetAPIVersion() returns the Native SDK version string.

static String GetAPIVersion()

GetBool()

ADO.IRIS.GetBool() gets the value of the global as a bool? (or null if node does not exist). Returns false if
node value is empty string.

bool GetBool(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetBytes()

ADO.IRIS.GetBytes() gets the value of the global as a byte[] (or null if node does not exist).

byte[] GetBytes(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetDateTime()

ADO.IRIS.GetDateTime() gets the value of the global as a DateTime? (or null if node does not exist).

DateTime GetDateTime(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetDouble()

ADO.IRIS.GetDouble() gets the value of the global as a double? (or null if node does not exist). Returns 0.0 if
node value is empty string.

Double GetDouble(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

Using the Native SDK for .NET 37

Class IRIS

See “Class IRIS Supported Datatypes” for related information.

GetInt16()

ADO.IRIS.GetInt16() gets the value of the global as an Int16? (or null if node does not exist). Returns 0 if node
value is empty string.

Int16 GetInt16(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetInt32()

ADO.IRIS.GetInt32() gets the value of the global as an Int32? (or null if node does not exist). Returns 0 if node
value is empty string.

Int32 GetInt32(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetInt64()

ADO.IRIS.GetInt64() gets the value of the global as an Int64? (or null if node does not exist). Returns 0 if node
value is empty string.

Int64 GetInt64(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetIRISIterator()

ADO.IRIS.GetIRISIterator() returns an IRISIterator object (see “Class IRISIterator”) for the specified node with
search direction set to FORWARD. See “Iterating Over a Set of Child Nodes” for more information and examples.

IRISIterator GetIRISIterator(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

38 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

GetIRISList()

ADO.IRIS.GetIRISList() gets the value of the node as an IRISList (or null if node does not exist).

IRISList GetIRISList(String globalName, params object[] subscripts)

This is equivalent to calling newList=(IRISList) GetBytes(globalName, subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetIRISReverseIterator()

ADO.IRIS.GetIRISReverseIterator() returns an IRISIterator object (see “Class IRISIterator”) for the specified
node with search direction set to BACKWARD. See “Iterating Over a Set of Child Nodes” for more information
and examples.

IRISIterator GetIRISReverseIterator(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetObject()

ADO.IRIS.GetObject() gets the value of the global as an Object (or null if node does not exist). See “Using
.NET Inverse Proxy Objects” for details and examples.

object GetObject(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetServerVersion()

ADO.IRIS.GetServerVersion() returns the server version string for the current connection. This is equivalent to
calling $system.Version.GetVersion() in ObjectScript.

String GetServerVersion()

GetSingle()

ADO.IRIS.GetSingle() gets the value of the global as a Single? (Nullable<float>) or null if node does not exist.
Returns 0.0 if node value is an empty string.

Single GetSingle(string globalName, params object[] subscripts)

parameters:

Using the Native SDK for .NET 39

Class IRIS

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetString()

ADO.IRIS.GetString() gets the value of the global as a string (or null if node does not exist).

Empty string and null values require some translation. An empty string "" in .NET is translated to the null string
character $CHAR(0) in ObjectScript. A null in .NET is translated to the empty string in ObjectScript. This trans-
lation is consistent with the way .NET handles these values.

string GetString(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

GetTLevel()

ADO.IRIS.GetTLevel() gets the level of the current nested Native SDK transaction. Returns 1 if there is only a
single transaction open. Returns 0 if there are no transactions open. This is equivalent to fetching the value of the
$TLEVEL special variable.

int GetTLevel()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

Increment()

ADO.IRIS.Increment() increments the specified global with the passed value. If there is no node at the specified
address, a new node is created with value as the value. A null value is interpreted as 0. Returns the new value
of the global node. See “Creating, Accessing, and Deleting Nodes” for more information and examples.

long Increment(long? value, string globalName, params object[] subscripts)

parameters:

• value — long value to which to set this node (null value sets global to 0).

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

IsDefined()

ADO.IRIS.IsDefined() returns a value indicating whether the specified node exists and if it contains a value. See
“Testing for Child Nodes and Node Values” for more information and examples.

int IsDefined(string globalName, params object[] subscripts)

parameters:

40 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

return values:

• 0 — the specified node does not exist

• 1 — the node exists and has a value

• 10 — the node is valueless but has subnodes

• 11 — the node has both a value and subnodes

Kill()

ADO.IRIS.Kill() deletes the global node including any descendants. See “Creating, Accessing, and Deleting
Nodes” for more information and examples.

void Kill(string globalName, params object[] subscripts)

parameters:

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

Lock()

ADO.IRIS.Lock() locks the global for a Native SDK transaction, and returns true on success. Note that this method
performs an incremental Lock and not the implicit Unlock before Lock feature that is also offered in ObjectScript.

bool Lock(string lockMode, int timeout, string globalName, params object[] subscripts)

parameters:

• lockMode — Character S for shared Lock, E for escalating Lock, or SE for both. Default is empty string
(exclusive and non-escalating).

• timeout — number of seconds to wait when attempting to acquire the Lock.

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

Procedure()

ADO.IRIS.Procedure() calls a procedure, passing zero or more arguments. Does not return a value.

void Procedure(string procedureName, string routineName, params object[] args)

parameters:

• procedureName — name of the procedure to call.

• routineName — name of the routine containing the procedure.

• args — zero or more arguments of supported types.

Using the Native SDK for .NET 41

Class IRIS

See “Calling ObjectScript Methods and Functions” for more information and examples.

ReleaseAllLocks()

ADO.IRIS.ReleaseAllLocks() is a Native SDK transaction method that releases all locks associated with the session.

void ReleaseAllLocks()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

Set()

ADO.IRIS.Set() sets the current node to a value of a supported datatype (or "" if the value is null). If there is no
node at the specified node address, a new node will be created with the specified value. See “Creating, Accessing,
and Deleting Nodes” for more information.

void Set(bool? value, string globalName, params object[] subscripts)
void Set(byte[] value, string globalName, params object[] subscripts)
void Set(DateTime? value, string globalName, params object[] subscripts)
void Set(Double? value, string globalName, params object[] subscripts)
void Set(Int16? value, string globalName, params object[] subscripts)
void Set(Int32? value, string globalName, params object[] subscripts)
void Set(Int64? value, string globalName, params object[] subscripts)
void Set(IRISList value, String globalName, params object[] subscripts)
void Set(object value, string globalName, params object[] subscripts)
void Set(Single? value, string globalName, params object[] subscripts)
void Set(string value, string globalName, params object[] subscripts)
void Set(System.IO.MemoryStream value, string globalName, params object[] subscripts)

parameters:

• value — value of a supported datatype (null value sets global to "").

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

See “Class IRIS Supported Datatypes” for related information.

Notes on specific datatypes
The following datatypes have some extra features:

• string — empty string and null values require some translation. An empty string "" in .NET is translated to
the null string character $CHAR(0) in ObjectScript. A null in .NET is translated to the empty string in
ObjectScript. This translation is consistent with the way .NET handles these values.

• System.IO.MemoryStream — an instance of an object that implements MemoryStream will be stored as a byte[]

when set as the global value. A null in .NET is translated to the empty string in ObjectScript. Use getBytes()
to retrieve the value, then initialize a MemoryStream with the returned byte [] value.

TCommit()

ADO.IRIS.TCommit() commits the current Native SDK transaction.

void TCommit()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

42 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

TRollback()

ADO.IRIS.TRollback() rolls back all open Native SDK transactions in the session.

void TRollback()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

TRollbackOne()

ADO.IRIS.TRollbackOne() rolls back the current level Native SDK transaction only. If this is a nested transaction,
any higher-level transactions will not be rolled back.

void TRollbackOne()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

TStart()

ADO.IRIS.TStart() starts/opens a Native SDK transaction.

void TStart()

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

Unlock()

ADO.IRIS.Unlock() unlocks the global in a Native SDK transaction. This method performs an incremental Unlock,
not the implicit Unlock-before-Lock feature that is also offered in ObjectScript.

void Unlock(string lockMode, string globalName, params object[] subscripts)

parameters:

• lockMode — Character S for shared Lock, E for escalating Lock, or SE for both. Default is empty string
(exclusive and non-escalating).

• globalName — global name.

• subscripts — zero or more subscripts specifying the target node.

This method uses the Native SDK transaction model, and is not compatible with ADO.NET/SQL transaction
methods. Never mix the two transaction models. See “Transactions and Locking” for more information and
examples.

7.2 Class IRISIterator
Class IRISIterator is a member of InterSystems.Data.IRISClient.ADO (the InterSystems ADO.NET Managed Provider).

Instances of IRISIterator are created by calling one of the following IRIS methods:

Using the Native SDK for .NET 43

Class IRISIterator

• ADO.IRIS.GetIRISIterator() — Returns an IRISIterator instance set to forward iteration.

• ADO.IRIS.GetIRISReverseIterator() — Returns an IRISIterator instance set to backward iteration.

See “Iterating Over a Set of Child Nodes” for more information and examples.

This class implements required IEnumerator method System.Collections.IEnumerator.GetEnumerator(), which is invoked
when the iterator is used in a foreach loop.

All methods listed in the following sections will throw an exception on encountering any kind of error.

7.2.1 IRISIterator Method and Property Details

Property Current

ADO.IRISIterator.Current gets the value of the node at the current iterator position. In a foreach loop, this value
is also assigned to the current loop variable. See “Iteration in Conditional Loops” for more information and
examples.

object Current [get]

Property CurrentSubscript

ADO.IRISIterator.CurrentSubscript gets the lowest level subscript for the node at the current iterator position.
For example, if the iterator points to node ^myGlobal(23,"somenode"), the returned value will be "somenode".
See “Iteration in Conditional Loops” for more information and examples.

object CurrentSubscript [get]

MoveNext()

ADO.IRISIterator.MoveNext() implements System.Collections.IEnumerator. It returns true if the next value was
retrieved, false if there are no more values. See “Iteration in Conditional Loops” for more information and
examples.

bool MoveNext()

Reset()

ADO.IRISIterator.Reset() can be called after completing a foreach loop to reset the iterator to its starting position,
allowing it to be used again. See “Iteration in Conditional Loops” for more information and examples.

void Reset()

StartFrom()

ADO.IRISIterator.StartFrom() sets the iterator's starting position to the specified subscript. The subscript is an
arbitrary starting point, and does not have to specify an existing node. See “Iterating Over a Set of Child Nodes”
for more information and examples.

void StartFrom(Object subscript)

7.3 Class IRISList
Class IRISList is a member of InterSystems.Data.IRISClient.ADO (the InterSystems ADO.NET Managed Provider). It
implements a .NET interface for InterSystems $LIST serialization. In addition to the IRISList constructors (described in the

44 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netframework-4.7.2

following section), it is also returned by the following ADO.IRIS methods: classMethodIRISList(), functionIRISList(),
getIRISList().

7.3.1 IRISList Constructors

Constructor ADO.IRISList.IRISList() has the following signatures:

public IRISList()
public IRISList(IRISList list)
public IRISList(byte[] buffer, int length)

parameters:

• list — instance of IRISList to be copied

• buffer — buffer to be allocated

• length — initial buffer size to be allocated

Instances of IRISList can be created in the following ways:

Create an empty IRISList

IRISList list = new IRISList();

Create a copy of another IRISList

Create a copy of the IRISList instance specified by argument list.

IRISList listcopy = new IRISList(myOtherList)

Construct an IRISList instance from a byte array

Construct an instance from a $LIST formatted byte array, such as that returned by IRIS.GetBytes(). The constructor
takes a buffer of size length:

byte[] listBuffer = myIris.GetBytes("myGlobal",1);
IRISList listFromByte = new IRISList(listBuffer, listBuffer.length);

The returned list uses the buffer (not a copy) until changes to the list are visible in the buffer and a resize is required.

7.3.2 IRISList Method Details

Add()

ADO.IRISList.Add() appends an Object of any supported type to the end of the IRISList. If value is an IRISList, it
will be added as a single element (IRISList instances are never concatenated).

void Add(Object value)

parameters:

• value — Object value. The following types are supported: Int16, Int32, Int64, bool, Single, Double, string,
byte[], IRISList.

Adding an IRISList element
Add() always appends an IRISList instance as a single object. However, you can use IRISList.ToArray() to convert
an IRISList to an array, and then call Add() on each element separately.

Using the Native SDK for .NET 45

Class IRISList

AddRange()

ADO.IRISList.AddRange() appends each element of a collection to the end of the list as it is returned by the col-
lection iterator. An exception will be thrown if any element is not one of the supported types.

void AddRange(System.Collections.IList list)

parameters:

• list — a collection containing only elements of the following types: Int16, Int32, Int64, bool, Single, Double,
string, byte[], IRISList.

See “Class IRIS Supported Datatypes” for related information.

Clear()

ADO.IRISList.Clear() resets the list by removing all elements from the list.

void Clear()

Count()

ADO.IRISList.Count() iterates over the list and returns the number of elements encountered.

int Count()

DateToHorolog() [static]

ADO.IRISList.DateToHorolog() converts the date property of a DateTime value to an int representing the day field
of a $Horolog string. Also see HorologToDate().

static int DateToHorolog(DateTime value)

parameters:

• value — DateTime value to convert.

DateToPosix() [static]

ADO.IRISList.DateToPosix() converts a Time object to the time field of a $Horolog string.

static long DateToPosix(DateTime Value)

parameters:

• Value — DateTime value to convert.

Equals()

ADO.IRISList.Equals() compares the specified list with this instance of IRISList, and returns true if they are identical.
To be equal, both lists must contain the same number of elements in the same order with identical serialized values.

override bool Equals(Object list)

parameters:

• list — instance of IRISList to compare.

46 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

Get()

ADO.IRISList.Get() returns the element at index as Object. Throws IndexOutOfRangeException if the index is less
than 1 or past the end of the list.

Object Get(int index)

parameters:

• index — integer specifying the list element to be retrieved.

GetList()

ADO.IRISList.GetList() gets the element at index as an IRISList. Throws IndexOutOfRangeException if the index
is less then 1 or past the end of the list

IRISList GetList(int index)

parameters:

• index — integer specifying the list element to return

Throws IndexOutOfRangeException if the index is less then 1 or past the end of the list.

HorologToDate() [static]

ADO.IRISList.HorologToDate() converts the day field of a $Horolog string to a DateTime value. Also see
DateToHorolog().

static DateTime HorologToDate(int HorologValue)

parameters:

• HorologValue — int representing the day field of a $Horolog string.

HorologToTime() [static]

ADO.IRISList.HorologToTime() converts the time field of a $Horolog string to a TimeSpan value. Also see
TimeToHorolog().

static TimeSpan HorologToTime(int HorologValue)

parameters:

• HorologValue — int representing the time field of a $Horolog string. The date field will be zeroed out (set
to the epoch), so a TimeSpan with a milliseconds value outside the range 0L to 86399999L does not round
trip.

PosixToDate() [static]

ADO.IRISList.PosixToDate() converts a %Library.PosixTime value to a DateTime. Also see DateToPosix().

static DateTime PosixToDate(long PosixValue)

parameters:

• PosixValue — the %PosixTime value (a 64-bit signed integer).

Using the Native SDK for .NET 47

Class IRISList

Remove()

ADO.IRISList.Remove() removes the element at index from the list. Returns true if the element existed and was
removed, false otherwise. This method can be expensive, since it will usually have to reallocate the list.

bool Remove(int index)

parameters:

• index — integer specifying the list element to remove.

Set()

ADO.IRISList.Set() sets or replaces the list element at index with value. If value is an array, each array element is
inserted into the list, starting at index, and any existing list elements after index are shifted to make room for the
new values. If index is beyond the end of the list, value will be stored at index and the list will be padded with
nulls up to that position.

void Set(int index, Object value)
void Set(int index, object[] value)

Throws IndexOutOfRangeException if index is less than 1. All elements must be of the following types: Int16,
Int32, Int64, bool, Single, Double, string, byte[], IRISList.

parameters:

• index — integer indicating the list element to be set or replaced

• value — Object value or object[] array to insert at index

Size()

ADO.IRISList.Size() returns the byte length of the serialized value for this IRISList.

int Size()

SubList()

ADO.IRISList.SubList() returns a new IRISList containing the elements in the closed range [from, to]. Throws
IndexOutOfRangeException if from is greater than Count() or to is less than from.

IRISList SubList(int from, int to)

parameters:

• from — index of first element to add to the new list.

• to — index of last element to add to the new list.

TimeToHorolog() [static]

ADO.IRISList.TimeToHorolog() converts a DateTime value to the time field of a $Horolog value. Also see
HorologToTime().

static int TimeToHorolog(DateTime value)

parameters:

• value — DateTime to be converted.

48 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

ToArray()

ADO.IRISList.ToArray() returns an array of the given type containing all of the elements in this list. If the list is
empty, a zero length array will be returned.

IMPORTANT: This method should be used only if all elements can be coerced to be of the same type.

Object[] ToArray()

ToList()

ADO.IRISList.ToList() returns a List of the given type containing all of the elements in this IRISList. If the list is
empty, a zero length List will be returned.

List<Object> ToList()

ToString()

ADO.IRISList.ToString() returns a printable representation of the list.

override string ToString()

Some element types are represented differently than they would be in ObjectScript:

• An empty list ("" in ObjectScript) is displayed as "$lb()".

• Empty elements (where $lb()=$c(1)) are displayed as "null".

• Strings are not quoted.

• Doubles format with sixteen significant digits

7.4 Class IRISObject
Class IRISObject is a member of InterSystems.Data.IRISClient.ADO (the InterSystems ADO.NET Managed Provider). It
provides methods to work with Gateway inverse proxy objects (see “Using .NET Inverse Proxy Objects” for details and
examples).

IRISObject has no public constructors. Instances of IRISObject can be created by calling one of the following IRIS methods:

• ADO.IRIS.ClassMethodObject()

• ADO.IRIS.FunctionObject()

If the called method or function returns an object that is a valid OREF, an inverse proxy object (an instance of IRISObject)
for the referenced object will be generated and returned. For example, ClassMethodObject() will return a proxy object
for an object created by %New().

See “Using .NET Inverse Proxy Objects” for details and examples.

7.4.1 IRISObject Method Details

Dispose()

ADO.IRISObject.Dispose() releases this instance of IRISObject.

void Dispose()

Using the Native SDK for .NET 49

Class IRISObject

Get()

ADO.IRISObject.Get() returns a property value of the proxy object as an instance of object.

object Get(string propertyName)

parameters:

• propertyName — name of the property to be returned.

GetBool()

ADO.IRISObject.GetBool() returns a property value of the proxy object as an instance of bool.

bool GetBool(string propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

GetBytes()

ADO.IRISObject.GetBytes() returns a property value of the proxy object as an instance of byte[].

byte[] GetBytes(string propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

GetDouble()

ADO.IRISObject.GetDouble() returns a property value of the proxy object as an instance of double.

double GetDouble(string propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

GetIRISList()

ADO.IRISObject.GetIRISList() returns a property value of the proxy object as an instance of IRISList.

IRISList getIRISList(String propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

50 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

GetLong()

ADO.IRISObject.GetLong() returns a property value of the proxy object as an instance of long.

Long getLong(String propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

GetObject()

ADO.IRISObject.GetObject() returns a property value of the proxy object as an instance of object.

Object getObject(String propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

GetString()

ADO.IRISObject.GetString() returns a property value of the proxy object as an instance of string.

String getString(String propertyName)

parameters:

• propertyName — name of the property to be returned.

See “IRISObject Supported Datatypes” for related information.

Invoke()

ADO.IRISObject.Invoke() invokes an instance method of the object, returning value as object.

object Invoke(string methodName, params object[] args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

Arguments may be of any of the following types: int?, short?, string, long?, double?, float?, byte[], bool?, DateTime?,
IRISList?, or IRISObject. If the connection is bidirection, then any .NET object can be used as an argument.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeBoolean()

ADO.IRISObject.InvokeBool() invokes an instance method of the object, returning value as bool.

Boolean invokeBoolean(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

Using the Native SDK for .NET 51

Class IRISObject

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeBytes()

ADO.IRISObject.InvokeBytes() invokes an instance method of the object, returning value as byte[].

byte[] invokeBytes(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeDouble()

ADO.IRISObject.InvokeDouble() invokes an instance method of the object, returning value as double.

Double invokeDouble(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeIRISList()

ADO.IRISObject.InvokeIRISList() invokes an instance method of the object, returning value as IRISList.

IRISList invokeIRISList(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeLong()

ADO.IRISObject.InvokeLong() invokes an instance method of the object, returning value as long.

Long invokeLong(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

52 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

InvokeObject()

ADO.IRISObject.InvokeObject() invokes an instance method of the object, returning value as object.

Object invokeObject(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeStatusCode()

ADO.IRISObject.InvokeStatusCode() tests whether an invoke method that returns an ObjectScript $Status object
would throw an error if called with the specified arguments. If the call would fail, this method throws a
RuntimeException error containing the ObjectScript $Status error number and message. See “Catching %Status
Error Codes” for details and examples.

void invokeStatusCode(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeString()

ADO.IRISObject.InvokeString() invokes an instance method of the object, returning value as string.

String invokeString(String methodName, Object... args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

InvokeVoid()

ADO.IRISObject.InvokeVoid() invokes an instance method of the object, but does not return a value.

void InvokeVoid(string methodName, params object[] args)

parameters:

• methodName — name of the instance method to be called.

• args — zero or more arguments of supported types.

See “IRISObject Supported Datatypes” for valid argument types and related information.

Using the Native SDK for .NET 53

Class IRISObject

iris [attribute]

jdbc.IRISObject.iris is a public field that provides access to the instance of IRIS associated with this object.

public IRIS iris

See “IRISObject Supported Datatypes” for related information.

Set()

ADO.IRISObject.Set() sets a property of the proxy object.

void Set(string propertyName, Object value)

parameters:

• propertyName — name of the property to which value will be assigned.

• value — property value to assign.

54 Using the Native SDK for .NET

Native SDK for .NET Quick Reference

	Table of Contents
	1 Native SDK for .NET Overview
	2 Introduction to the .NET Native SDK
	3 Calling ObjectScript Methods and Functions from .NET
	3.1 Class Method Calls
	3.2 Function Calls
	3.3 Calling Class Library Methods
	3.3.1 Using Pass-by-reference Arguments
	3.3.2 Catching %Status Error Codes

	4 Using .NET Inverse Proxy Objects
	4.1 Introducing External Servers
	4.2 Creating an Inverse Proxy Object
	4.3 Controlling a Target Object
	4.4 IRISObject Supported Datatypes

	5 Working with Global Arrays
	5.1 Introduction to Global Arrays
	5.1.1 Glossary of Native SDK Terms
	5.1.2 Global Naming Rules

	5.2 Creating, Accessing, and Deleting Nodes
	5.2.1 Creating Nodes and Setting Node Values
	5.2.2 Getting Node Values
	5.2.3 Deleting Nodes

	5.3 Finding Nodes in a Global Array
	5.3.1 Iterating Over a Set of Child Nodes
	5.3.2 Iteration in Conditional Loops
	5.3.3 Testing for Child Nodes and Node Values

	5.4 Class IRIS Supported Datatypes

	6 Transactions and Locking
	6.1 Controlling Transactions
	6.2 Concurrency Control

	7 Native SDK for .NET Quick Reference
	7.1 Class IRIS
	7.1.1 IRIS Method Details

	7.2 Class IRISIterator
	7.2.1 IRISIterator Method and Property Details

	7.3 Class IRISList
	7.3.1 IRISList Constructors
	7.3.2 IRISList Method Details

	7.4 Class IRISObject
	7.4.1 IRISObject Method Details

	Index

