InterSystems-

IRIS Data Platform

Using the Native SDK for
Python

Version 2024.1
2024-07-02

Using the Native SDK for Python

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Introduction to the Native SDK for PYthON ... 1
2 Calling Database M ethods and Functions from PYthon ... 3
2.1 Calling Class Methods from PYENON ..ot 3

2.2 Calling Functions and Procedures from PYthONcocovevviiiein s 5

2.3 Passing Arguments DY REFEIENCEc.vcvcveiie st s 6

3 Controlling Database ObjectS from PYLNONcocuviiee et 9
3.1 Introducing the Python EXIErNal SEIVET ..ot 9

3.2 Creating Python INVerse ProXy ODJECLScccueiieiieineririerisie ettt 10

3.3 Controlling Database Objects With IRISODJECEccccorvreriieieieiceeee e 10

4 Accessing Global ArraySWith PYETNON ..o 13
4.1 Introduction t0 GIODAI ATTAYS ...cc.civeieiicieieeeee ettt e e nesrenre e 13
4.1.1 Glossary of Global Array TEIMSccveiiiieiiciere e 15

4.1.2 Global NamiNg RUIESoouiiiiiie e e e 16

4.2 Fundamental NOAE OPEIAtIONScccceriiririeiirieirieiesiei ettt 16

4.3 Iteration with nextSubscript() and iSDefiNed()coovrerireriririierre e 18

5 Managing Transactions and L ocking With PYthon ... 19
5.1 Processing Transactions iN PYthONcocveiiiiiiieccse st 19

5.2 Concurrency Control With PYENONccocieiiccccn e 21

6 USING the PYthon DB-API ...ttt et bbb bbb bbb e 23
5.1 USAUE vveretiritee ettt 23

6.2 PEP 249 Implementation REFErENCEccooeiiiiieireee e 24
B.2.1 GIODAIS ..ot bbb et nr e 24

I O] T T 1 To T4 1@] 1= ! AP 25

I I O U [0 g o] 1< SR 26

6.3 SQLTYPE ENUMETALION VAIUEScoviiviitiiiie ettt sttt et 30

7 Native SDK for Python QUICK REFEIENCEceviiiiiireiiieese e s 33
7.20riS PACKAgE METNOAS ...cvvveiiitiictiieeer bbbt 34
7.1.1 Creating @ Connection iN PYLhONccvviviiiieiiiirese e 34

7.1.2 iris Package Method DEtailsccvciveiviieiiiisie s 34

7.2 ClaSS IFIS. TRIS ..ttt b bbbt bbb bbb e e e 35
7.2.1 IRIS MEthOd DELAIIScouiieiitiiiiiieiie ettt sne 35

7.3 ClaSS IFIS TRISLIST ..uvetiieieieiieiiee ettt ettt sttt b et sbe e e be e e e e eneas 42
7.3. 1 IRISLISt CONSIIUCTOIS .veteverteieiereeiesieseeeereeteseeeesteseeseeseeseeseesseseeseeseenseseeseeneesessessensens 42

7.3.2 IRISList Method DetailScccoeiiiriiiiieiriee e 43

7.4 Class iriS.JRISCONNECLIONeviueiiierietirieie ettt sttt ettt ettt b e e nbne 45

A O R T T 1 1S o] =T SR 46
7.5.1 IRISODJECE CONSLIUCTON ...ttt ettt b e bbbt e 46

7.5.2 IRISObject Method Detailsccorueirieiniiiiiiiesese s 46

7.6 Class IMS. IRISREFEIENCEc..cveiieieeieiee sttt sttt e seeneenens 48
7.6.1 IRISRETEreNCE CONSLIUCLOT ...vcvviveriiieieteieie ettt et et ettt 48

7.6.2 IRISReference Method DEtailScc.covrveirieineiinieienieeseese e 48

7.7 Class iriS.IRISGIODAINOUEcceiuiiiiiiiierie e 49
7.7.1 IRISGI0DaINOAE CONSIIUCTOLvevieiieiieieieee ettt 50

7.7.2 IRISGlobalNode Method Detailsccooveieieiiieirese e 50

Using the Native SDK for Python

7.8 Class iriS. IRISGIODAINOUEVIEWcciveiiriiiriicieriere ettt 51
7.9 Legacy SUPPOIT CIASSEScvirereireiirerietereete st se ettt st sr et r et r et r e b e e b e b e b sr b snenesnesennas 52
7.9.1 Class iris.Legacylterator [depreCated]ccoeereireirerirese e 52
7.9.2 class irisnative.IRISNative [deprecated]coevereiineiineiieere e 53

Using the Native SDK for Python

List of Figures

Figure 3—1: Python EXternal SErVer SYSIEIMc.ciiiiiriieiiiese et

Using the Native SDK for Python

Introduction to the Native SDK for Python

See the Table of Contents for a detailed listing of the subjects covered in this document. See the Python Native SDK Quick
Reference for a brief description of Native SDK classes and methods.

The InterSystems Native SDK for Python is a lightweight interface to powerful InterSystems IRIS® resources that were
once available only through ObjectScript:

» Call ObjectScript Methods and Functions — call any embedded language classmethod from your Python application
as easily as you can call native Python methods.

» Control Database Objects from Python — use Python proxy objects to control embedded language class instances.
Call instance methods and get or set property values as if the instances were native Python objects.

» Work with Global Arrays — directly access globals, the tree-based sparse arrays used to implement the InterSystems
multidimensional storage model.

» Use InterSystems Transactions and Locking — use Native SDK implementations of embedded language transactions
and locking methods to work with InterSystems databases.

* Python DB-API Support — use the InterSystems implementation of the PEP 249 version 2.0 Python Database API
for relational database access.

Native SDKs for other languages
Versions of the Native SDK are also available for Java, .NET, and Node.js:

» Using the Native SDK for Java
e Using the Native SDK for .NET
* Using the Native SDK for Node.js

More information about globals
The following book is highly recommended for developers who want to master the full power of global arrays:

e Using Globals — describes how to use globals in ObjectScript, and provides more information about how multidimen-
sional storage is implemented on the server.

Using the Native SDK for Python 1

https://www.python.org/dev/peps/pep-0249
GGBL

Calling Database Methods and Functions
from Python

This section describes methods of class iris.IRIS that allow you to call ObjectScript class methods and functions directly
from your Python application. See the following sections for details and examples:

e Calling Class Methods from Python — demonstrates how to call ObjectScript class methods.
e Calling Functions and Procedures from Python — demonstrates how to call functions and procedures.

» Passing Arguments by Reference — demonstrates how to pass arguments with the IRISReference class. .

2.1 Calling Class Methods from Python

The classM ethodValug() and classM ethodVoid() methods will work for most purposes, but if a specific return type is
needed, the following IRIS. typecast methods are also available: classM ethodBoolean(), classM ethodBytes(),

classM ethodDecimal(), classM ethodFloat(), classM ethodl RI SList(), classM ethodl nteger (), classM ethodObj ect(),
and classM ethodString().

These methods all take string arguments for class_name and method_name, plus O or more method arguments.

The code in the following example calls class methods of several datatypes from an ObjectScript test class named
User.NativeTest. (see listing “ObjectScript Class User.NativeTest” at the end of this section).

Python calls to ObjectScript class methods

The code in this example calls class methods of each supported datatype from ObjectScript test class User.NativeTest
(listed immediately after this example). Assume that variable irispy is a previously defined instance of class iris.IRIS
and is currently connected to the server (see “Creating a Connection in Python™).

className = "User.NativeTest"

comment = "._cmBoolean() tests whether arguments 2 and 3 are equal: "
boolval = irispy.classMethodBoolean(className, "cmBoolean®,2,3)
print(className + comment + str(boolVval))

comment = ""_cmBytes returns integer arguments 72,105,33 as a byte array (string value "Hil!"):

byteVal = irispy.classMethodBytes(className, "cmBytes*®,72,105,33) #ASCI "Hil*"
print(className + comment + str(byteval))

comment = "._.cmString() concatenates "Hello" with argument string “World": "
stringVal = irispy.classMethodString(className, "cmString”, "World®)
print(className + comment + stringval)

Using the Native SDK for Python 3

Calling Database Methods and Functions from Python

comment = "_cmLong() returns the sum of arguments 7+8: "

longVal = irispy.classMethodInteger(className, "cmLong”®,7,8)

print(className + comment + str(longval))

comment = "._cmDouble() multiplies argument 4.5 by 1.5: "

doubleVal = irispy.classMethodFloat(className, "cmDouble®,4.5)

print(className + comment + str(doubleval))

comment = "_.cmList() returns a $LIST containing arguments "The answer is " and 42: "

listval = irispy.classMethodIRISList(className, " cmList","The answer is ',42);

print(className + comment+listVal.get(1)+str(listVal.get(2)))

comment = "._cmVoid assigns argument value 75 to global node ~cmGlobal: **

try:

irispy.kill("*cmGlobal ") # delete ~cmGlobal if it exists
irispy.classMethodVoid(className, "cmVoid*®,75)
nodeVal = irispy.get(“cmGlobal®); #get current value of ~cmGlobal

except:

nodevVal = "FAIL"
print(className + comment + str(nodeVval))

This example omits classM ethodValue() (which returns an untyped value), classM ethodDecimal() (which differs
from classM ethodFloat() primarily in support for higher precision), and classM ethodObject() (which is
demonstrated in “Controlling Database Objects from Python™).

ObjectScript Class User.NativeTest

To run the previous example, this ObjectScript class must be compiled and available on the server:

Class User.NativeTest Extends %Persistent

ClassMethod cmBoolean(cml As %lInteger, cm2 As %lInteger) As %Boolean

Quit (cml=cm2)

ClassMethod cmBytes(cml As %Integer, cm2 As %Integer, cm3 As %lInteger) As %Binary
Quit $CHAR(cml,cm2,cm3)

ClassMethod cmString(cml As %String) As %String

Quit "Hello " _cml

ClassMethod cmLong(cml As %Integer, cm2 As %Integer) As %Integer

Quit cml+cm2

ClassMethod cmDouble(cml As %Double) As %Double
Quit cml * 1.5

ClassMethod cmVoid(cml As %Integer)
{
Set ~cmGlobal=cml
Quit
ClassMethod cmList(cml As %String, cm2 As %Integer)

Set list = $LISTBUILD(cml,cm2)
Quit list

}
}
You can test these methods by calling them from the Terminal. For example:

USER>write ##class(User._NativeTest).cmString(""World™)
Hello World

4 Using the Native SDK for Python

Calling Functions and Procedures from Python

2.2 Calling Functions and Procedures from Python

Note:

Procedural Code Support

On older InterSystems database platforms, code consisted of modules containing functions and procedures, rather
than object-oriented classes and methods (see “Callable User-defined Code Modules” in Using ObjectScript).
Functions are frequently necessary for older code bases, but new code should use object oriented method calls if
possible.

The function() and procedure() methods will work for most purposes, but if a specific return type is needed, the following
IRIS. typecast methods are also available: functionBoolean(), functionBytes(), functionDecimal(), functionFloat(),
functionl RISList(), functionObject(), functionl nteger (), and functionString().

These methods take string arguments for functionLabel and routineName, plus O or more function arguments, which may
be bool, bytes, bytearray, Decimal, float, int, str or |RI SList.

The code in the following example calls functions from an ObjectScript test routine named NativeRoutine (listed immediately
after the example).

Note:

Built-in ObjectScript $ system functions are not supported

These methods are designed to call functions in user-defined routines. ObjectScript system functions (which start
with a $ character. See “ObjectScript Functions” in the ObjectScript Reference) cannot be called directly from
your Python code. However, you can call a system function indirectly by writing an ObjectScript wrapper function
that calls the system function and returns the result. For example, the fnList() function (at the end of this section
in ObjectScript Routine NativeRoutine.mac) calls SLISTBUILD.

Python calls to ObjectScript routines

The code in this example calls functions of each supported datatype from the ObjectScript routine NativeRoutine
(File NativeRoutine.mac, listed immediately after this example). Assume that irispy is an existing instance of class
iris.IRIS, and is currently connected to the server (see “Creating a Connection in Python™).

routineName = "NativeRoutine®

comment = "_fnBoolean() tests whether arguments 2 and 3 are equal: "
boolVal = irispy.functionBoolean("fnBoolean”,routineName,?2,3)
print(routineName + comment + str(boolVval))

comment = "_fnBytes returns integer arguments 72,105,33 as a byte array (string value "Hi!"):

byteVal = irispy.functionBytes("fnBytes",routineName,72,105,33) #ASCI "Hil"
print(routineName + comment + str(byteval))

comment = "_fnString() concatenates "Hello" with argument string “World": "
stringVal = irispy.functionString("'fnString",routineName, " World™)
print(routineName + comment + stringVal)

comment = "_fnLong() returns the sum of arguments 7+8: "
longVal = irispy.functioninteger("fnLong",routineName,7,8)
print(routineName + comment + str(longval))

comment = "_fnDouble() multiplies argument 4.5 by 1.5: "
doubleVal = irispy.functionFloat("fnDouble®,routineName,4.5)
print(routineName + comment + str(doubleVval))

comment = "_fnList() returns a $LIST containing arguments "The answer is " and 42: "
listval = irispy.functionlRISList(""fnList",routineName,"The answer is ",42);
print(routineName + comment + listvVal_get(l)+str(listval._get(2)));

comment = "_fnProcedure() assigns argument value 66 to global node ~fnGlobal: **
try:
irispy.kill("*fnGlobal ") # delete ~fnGlobal if it exists
irispy.procedure("fnProcedure”,routineName,66)
nodeVal = irispy.get("fnGlobal*®) # get current value of node ~fnGlobal

Using the Native SDK for Python

Calling Database Methods and Functions from Python

except:
nodevVal = "FAIL"
print(routineName + comment + str(nodeVval))

This example omits function() (which returns an untyped value), functionDecimal() (which differs from
functionFloat() primarily in support for higher precision), and functionObject() (functionally identical to the
classM ethodObj ect() method demonstrated in “Controlling Database Objects from Python™).

ObjectScript Routine NativeRoutine.mac

To run the previous example, this ObjectScript routine must be compiled and available on the server:

fnBoolean(fnl,fn2) public {
quit (fnl1=fn2)

b5
fnBytes(fnl,fn2,fn3) public {
quit $CHAR(Ffn1,¥n2,fn3)

fnString(fnl) public {
quit "Hello "_fnl

b5
fnLong(fnl,fn2) public {
quit fnl+fn2

b5
fnDouble(fnl) public {
quit fn1 * 1.5

fnProcedure(fnl) public {
set “nGlobal=fnl
quit

T .

fnList(fnl,fn2) public

{
set list = $LISTBUILD(fnl,fn2)
quit list

You can test these functions by calling them from the Terminal. For example:

USER>write $$fnString”~NativeRoutine(*World™)
Hello World

2.3 Passing Arguments by Reference

Most of the classes in the InterSystems Class Library use a calling convention where methods only return a %Status value.
The actual results are returned in arguments passed by reference. The Native SDK supports pass by reference for both
methods and functions by assigning the argument value to an instance of class IRISReference and passing that instance as
the argument:

ref_object = iris.IRISReference(None); // set inital value to None

irispy.classMethodObject("'%SomeClass™,*SomeMethod",ref_object);
returned_value = ref_object.getValue; // get the method result

The following example calls a standard Class Library method:

Using pass-by-reference arguments

This example calls %SYS.DatabaseQuery.GetDatabaseFreeSpace() to get the amount of free space (in MB)
available in the iristemp database.

6 Using the Native SDK for Python

Passing Arguments by Reference

Python

dir = "C:/InterSystems/IRIS/mgr/iristemp” # directory to be tested
value = “error"
status = 0

freeMB = iris.IRISReference(None) # set inital value to 0O
print(*"Variable freeMB is type"+str(type(freeMB)) + ", value=" + str(freeMB.getValue()))
try:
print(*"Calling %SYS.DatabaseQuery.GetDatabaseFreeSpace()... ')
status = irispy.classMethodObject("'%SYS.DatabaseQuery","GetDatabaseFreeSpace",dir,freeMB)
value = freeMB.getValue()

except:
print(*"Call to class method GetDatabaseFreeSpace() returned error:')
print(""(status=" + str(status) + ") Free space in " + dir + " = " + str(value) + "MB\n'")
prints:

Variable freeMB is type<class "iris.IRISReference">, value=None
Calling %SYS.DatabaseQuery.GetDatabaseFreeSpace().-. .
(status=1) Free space in C:/InterSystems/IRIS/mgr/iristemp = 10MB

Using the Native SDK for Python 7

Controlling Database Objects from Python

The Native SDK works together with InterSystems External Servers, allowing your external Python application to control
instances of database classes written in either ObjectScript or Embedded Python. Native SDK inverse proxy objects can
use External Server connections to create a target database object, call the target’s instance methods, and get or set property
values as easily as if the target were a native Python object.

This section covers the following topics:

* Introducing the Python External Server — provides a brief overview of External Servers.

» Creating Python Inverse Proxy Objects — describes methods used to create inverse proxy objects.

» Controlling Database Objects with IRISObject — demonstrates how inverse proxy objects are used.

3.1 Introducing the Python External Server

The Python External Server allows InterSystems IRIS embedded language objects and Python Native SDK objects to
interact freely, using the same connection and working together in the same context (database, session, and transaction).
External Server architecture is described in detail in Using InterSystems External Servers, but for the purposes of this dis-
cussion you can think of it as a simple black box connecting proxy objects on one side to target objects on the other:

Figure 3-1: Python External Server System

InterSystems IRIS Python Environment

ObjectScript application Python application

Forward Proxy object
%Net.Remote Object

Python
object

{ External Server connection

ObjectScript
object

Inverse proxy object
iris.IRISObject

As the diagram shows, a forward proxy is a database object that controls an external Python target object. The corresponding
Native SDK object is an inverse proxy that controls a database target object from an external Python application, inverting
the normal flow of control.

Using the Native SDK for Python 9

Controlling Database Objects from Python

3.2 Creating Python Inverse Proxy Objects

You can create an inverse proxy object by obtaining the OREF of a database class instance (for example, by calling the
% New/() method of an ObjectScript class). The IRIS.classM ethodObject() and IRIS.functionObject() methods will return
an IRISObject instance if the call obtains a valid OREF. The following example uses IRIS.classM ethodObject() to create
an inverse proxy object:

Creating an instance of IRISObject
proxy = irispy.classMethodObject(*'User.TestlInverse", "%New');

» classMethodObject() calls the % New() method of an ObjectScript class named User.TestInverse

» The call to % New() creates a database instance of User.TestInverse.

» classMethodObject() returns inverse proxy object proxy, which is an instance of IRISObject mapped to the
database instance.

This example assumes that irispy is a connected instance of IRIS (see “Creating a Connection in Python”). See

“Calling Database Methods and Functions from Python™ for more information on how to call class methods.

The following section demonstrates how proxy can be used to access methods and properties of the ObjectScript
User.Testinverse instance

3.3 Controlling Database Objects with IRISObject

The iris.IRISObject class provides several methods to control the database target object: invoke() and invokeVoid() call an
instance method with or without a return value, and accessors get() and set() get and set a property value. .

This example uses an ObjectScript class named User.Testinverse, which includes declarations for methods initialize() and
add(), and property name:

ObjectScript sample class Testlnverse

Class User.Testlnverse Extends %Persistent {

Method initialize(initialval As %String = "no name') {
set ..name = initialval
return O

T
Method add(vall As %Integer, val2 As %Integer) As %Integer {
return vall + val2

Property name As %String;

}

The first line of the following example creates a new instance of User.Testinverse and returns inverse proxy object proxy,
which is mapped to the database instance. The rest of the code uses proxy to access the target instance. Assume that a
connected instance of IRIS named irispy already exists (see “Creating a Connection in Python™).

10 Using the Native SDK for Python

Controlling Database Objects with IRISObject

Using inverse proxy object methods in Python

Create an instance of User.Testlnverse and return an inverse proxy object for it
proxy = irispy.classMethodObject(*'User.TestlInverse", "%New');

instance method proxy.initialize() is called with one argument, returning nothing.
proxy. invokevoid(initialize", "George");
print('Current name is "+ proxy.get(‘'name')); # display the initialized property value

iInstance method proxy.add() is called with two arguments, returning an int value.
print("Sum of 2 plus 3 is " + str(proxy.invoke(*'add",2,3)));

The value of property proxy.name is displayed, changed, and displayed again.
proxy.set('name’, "Einstein, Albert'); # sets the property to "Einstein, Albert"”
print(*New name is "+ proxy.get(‘'name')); # display the new property value

This example uses the following methods to access methods and properties of the User.Testinverse instance:

* IRISObject.invokeVoid() invokes the initialize() instance method, which initializes a property but does not return a
value.

* IRISObject.invoke() invokes instance method add(), which accepts two integer arguments and returns the sum as an
integer.

* IRISObject.set() sets the name property to a new value.
e IRISObject.get() returns the value of property name.

This example used the variant get(), and invoke() methods, but the IRISObject class also provides datatype-specific Typecast
Methods for supported datatypes:

IRISObject get() typecast methods
In addition to the variant get() method, IRISObject provides the following IRISObject. typecast methods: getBytes(),
getDecimal () getFloat() getlnteger (), getString(), getl RISList(), and getObject().

IRISObject invoke() typecast methods

In addition to invoke() and invokeVoid(), IRISObject provides the following IRISObject. typecast methods:
invokeBytes(), invokeDecimal(), invokel nteger (), invokeString(), invokel Rl SList(), and invokeObj ect().

All of the invoke() methods take a str argument for methodName plus O or more method arguments. The arguments
may be either Python objects, or values of supported datatypes. Database proxies will be generated for arguments
that are not supported types.

invoke() can only call instance methods of an IRISObject instance. See “Calling Database Methods and Functions
from Python” for information on how to call class methods.

Using the Native SDK for Python 11

Accessing Global Arrays with Python

The Native SDK for Python provides mechanisms for working with global arrays. The following topics are covered here:

» Introduction to Global Arrays — introduces global array concepts and provides a simple demonstration of how the
Native SDK is used.

» Fundamental Node Operations — demonstrates how use set(), get(), and kill() to create, access, and delete nodes in a
global array.

» lteration with nextSubscript() and isDefined() — demonstrates methods that emulate ObjectScript-style iteration.

Note: Creating a Database Connection in Python

The examples in this chapter assume that iris.IRIS object irispy already exists and is connected to the server. The
following code is used to create and connect irispy:
import iris

conn = iris.connect("127.0.0.1%, 51773, “USER", "_SYSTEM®", "SYS®)
irispy = iris.createlRIS(conn)

For more information, see the Quick Reference entries for iris package functions connect() and createl Rl S().

4.1 Introduction to Global Arrays

A global array, like all sparse arrays, is a tree structure rather than a sequential list. The basic concept behind global arrays
can be illustrated by analogy to a file structure. Each directory in the tree is uniquely identified by a path composed of a
root directory identifier followed by a series of subdirectory identifiers, and any directory may or may not contain data.

Global arrays work the same way: each node in the tree is uniquely identified by a node address composed of a global
name identifier and a series of subscript identifiers, and a node may or may not contain a value. For example, here is a
global array consisting of six nodes, two of which contain values:

root -->]--> foo --> SubFoo="A"
|--> bar --> lowbar --> UnderBar=123

Values could be stored in the other possible node addresses (for example, root or root->bar), but no resources are wasted if
those node addresses are valueless. Unlike a directory structure, all nodes in a global array must have either a value or a
subnode with a value. In InterSystems ObjectScript globals notation, the two nodes with values would be:

root("foo", "SubFoo*")
root("bar”, "lowbar*", "UnderBar™)

Using the Native SDK for Python 13

Accessing Global Arrays with Python

In this notation, the global name (root) is followed by a comma-delimited subscript list in parentheses. Together, they
specify the entire node address of the node.

This global array could be created by two calls to the Native SDK set() method. The first argument is the value to be
assigned, and the rest of the arguments specify the node address:

irispy.set("A", "root", "foo", "SubFoo")

irispy.set(123, "root", "bar®, "lowbar®, “UnderBar®)
Global array root is does not exist until the first call assigns value *A*" to node root(‘foo’,'SubFoo"). Nodes can be created

in any order, and with any set of subscripts. The same global array would be created if we reversed the order of these two
calls. The valueless nodes are created automatically, and will be deleted automatically when no longer needed.

The Native SDK code to create this array is demonstrated in the following example. An IRISConnection object establishes
a connection to the server. The connection will be used by an instance of iris.IRIS named irispy. Native SDK methods are
then used to create a global array, read the resulting persistent values from the database, and delete the global array.

The NativeDemo Program

Import the Native SDK module
import iris

Open a connection to the server
args = {"hostname®:"127.0.0.1", "port":52773,
“"namespace” : "USER", “username®:"_SYSTEM®", “password®:"SYS*

conn = iris.connect(**args)
Create an iris object
irispy = iris.createlRIS(conn)

Create a global array in the USER namespace on the server
irispy.set(*A", “root", "foo", "SubFoo")

irispy.set(123, "root®, "bar®, "lowbar®, "UnderBar"®)

Read the values from the database and print them

subfoo_value = irispy.get(“root", "foo", "SubFoo")
underbar_value = irispy.get(“root", "bar®, "lowbar®, “UnderBar")
print(“Created two values: *)

print(” root(*'foo", " "SubFoo"™)=", subfoo_value)
print(” root("'bar","lowbar",""UnderBar')=", underbar_value)

Delete the global array and terminate
irispy.kill("root") # delete global array root
conn.close()

NativeDemo prints the following lines:

Created two values:
root("foo", "SubFoo")=""A"
root("bar”, "lowbar", "UnderBar®)=123

In this example, Native SDK iris package methods are used to connect to the database and to create irispy, which is the
instance of iris.IRIS the contains the connection object. Native SDK methods perform the following actions:

» iris.connect() creates a connection object named conn, connected to the database associated with the USER namespace.

» iris.createl RIS() creates a new instance of iris.IRIS named irispy, which will access the database through server con-
nection conn.

» iris.IRIS.set() creates new persistent nodes in database namespace USER.

» iris.IRIS.get() returns the values of the specified nodes.

o iris.IRIS.kill() deletes the specified root node and all of its subnodes from the database.
e iris.IRISConnection.close() closes the connection.

See “iris Package Methods” for details about connecting and creating an instance of iris.IRIS. See *“Fundamental Node
Operations” for more information about set(), get(), and kill().

14 Using the Native SDK for Python

Introduction to Global Arrays

This simple example doesn’t cover more advanced topics such as iteration. See “Class iris.IRISGlobalNode” for information
on how to create and iterate over complex global arrays.

4.1.1 Glossary of Global Array Terms

See the previous section for an overview of the concepts listed here. Examples in this glossary will refer to the global array
structure listed below. The Legs global array has ten nodes and three node levels. Seven of the ten nodes contain values:

Legs # root node, valueless, 3 child nodes

fish = 0 # level 1 node, value=0

mammal # level 1 node, valueless
human = 2 # level 2 node, value=2
dog = 4 # level 2 node, value=4

bug # level 1 node, valueless, 3 child nodes
insect = 6 # level 2 node, value=6
spider = 8 # level 2 node, value=8
millipede = Diplopoda # level 2 node, value="Diplopoda™, 1 child node

centipede = 100 # level 3 node, value=100

Child node

The nodes immediately under a given parent node. The address of a child node is specified by adding exactly one
subscript to the end of the parent subscript list. For example, parent node Legs('mammal’) has child nodes
Legs('mammal’,'human’) and Legs(‘mammal’,'dog").

Global name
The identifier for the root node is also the name of the entire global array. For example, root node identifier Legs
is the global name of global array Legs. Unlike subscripts, global names can only consist of letters, numbers, and
periods (see Global Naming Rules).

Node
An element of a global array, uniquely identified by a namespace consisting of a global name and an arbitrary
number of subscript identifiers. A node must either contain a value, have child nodes, or both.

Node level

The number of subscripts in the node address. A ‘level 2 node’ is just another way of saying ‘a node with two
subscripts’. For example, Legs(‘mammal’,'dog’) is a level 2 node. It is two levels under root node Legs and one
level under Legs('mammal’).

Node address

The complete namespace of a node, consisting of the global name and all subscripts. For example, node address
Legs(‘fish") consists of root node identifier Legs plus a list containing one subscript, " fish®. Depending on
context, Legs (with no subscript list) can refer to either the root node address or the entire global array.

Root node
The unsubscripted node at the base of the global array tree. The identifier for a root node is its global name with
no subscripts.

Subnode

All descendants of a given node are referred to as subnodes of that node. For example, node Legs(‘bug’) has four
different subnodes on two levels. All nine subscripted nodes are subnodes of root node Legs.

Using the Native SDK for Python 15

Accessing Global Arrays with Python

Subscript / Subscript list

All nodes under the root node are addressed by specifying the global name and a list of one or more subscript
identifiers. (The global name plus the subscript list is the node address). Subscripts can be bool, bytes, bytearray,
Decimal, float, int, Or str.

Target address

Many Native SDK methods require you to specify a valid node address that does not necessarily point to an
existing node. For example, the set() method takes a value argument and a target address, and stores the value at
that address. If no node exists at the target address, a new node is created.

Value

A node can contain a value of type bool, bytes, bytearray, Decimal, float, int, str, IRISList, or None (see Typecast
Methods and Supported Datatypes). A node that has child nodes can be valueless, but a node with no child nodes
must contain a value.

Valueless node

A node must either contain data, have child nodes, or both. A node that has child nodes but does not contain data
is called a valueless node. Valueless nodes only exist as pointers to lower level nodes.

4.1.2 Global Naming Rules

Global names and subscripts obey the following rules:

e The length of a node address (totaling the length of the global name and all subscripts) can be up to 511 characters.
(Some typed characters may count as more than one encoded character for this limit. For more information, see
“Maximum Length of a Global Reference”).

» Aglobal name can include letters, numbers, and periods (" - *), and can have a length of up to 31 significant characters.
It must begin with a letter, and must not end with a period.

e Asubscript can be bool, bytes, bytearray, Decimal, float, int, or str. String subscripts are case-sensitive, and can contain
any character (including non-printing characters). Subscript length is restricted only by the maximum length of a node
address.

4.2 Fundamental Node Operations

This section demonstrates how to use the set(), get(), and kill() methods to create, access, and delete nodes. These methods
have the following signatures:

set (value, globalName, subscripts)
et (globalName, subscripts)
kill (globalName, subscripts)

» value can be bool, bytes, bytearray, Decimal, float, int, str, IRISList, or None.

» globalName can only include letters, numbers, and periods (" - *), must begin with a letter, and cannot end with a
period.

» subscripts can be bool, bytes, bytearray, Decimal, float, int, or str. A string subscript is case-sensitive and can include
non-printing characters.

16 Using the Native SDK for Python

Fundamental Node Operations

All of the examples in this section assume that a connected instance of IRIS named irispy already exists (see “Creating a
Connection in Python™).

Setting and changing node values

iris.IRIS.set () takes value, globalname, and *subscripts arguments and stores the value at the specified node address.
If no node exists at that address, a new one is created.

In the following example, the first call to set() creates a new node at subnode address myGlobal('A") and sets the
value of the node to string " First*. The second call changes the value of the subnode, replacing it with integer
1.

irispy.set("first","myGlobal*,"A") # create node myGlobal (*A") = "first"
irispy.set(l, "myGlobal*®, "A") # change value of myGlobal("A") to 1.

Retrieving node values with get()

iris.IRIS.get() takes globalname and *subscripts arguments and returns the value stored at the specified node
address, or None if there is no value at that address.

irispy.set(23, "myGlobal*","A")
value_of_A = irispy.get("myGlobal*®,*A")

The get() method returns an untyped value. To return a specific datatype, use one of the IRIS.get() typecast
methods. The following methods are available: getBoolean(), getBytes(), getDecimal() getFloat() getlnteger (),
getString(), getl RISList(), and getObject().

Deleting a node or group of nodes

iris.IRIS.kill() — deletes the specified node and all of its subnodes. The entire global array will be deleted if the
root node is deleted or if all nodes with values are deleted.

Global array myGlobal initially contains the following nodes:

myGlobal = <valueless node>
myGlobal ("A") = 0
myGlobal (*A",1)

myGlobal (*A*.2) = 0
myGlobal ("B") = <valueless node>
myGlobal ("B",1) = 0O

This example will delete the global array by calling kill() on two of its subnodes. The first call will delete node
myGlobal(‘*A") and both of its subnodes:

irispy.-kill("myGlobal*®,"A") # also kills myGlobal("A",1) and myGlobal ("A",2)
The second call deletes the last remaining subnode with a value, killing the entire global array:
irispy.kill(*myGlobal*,"B",1) # deletes last value in global array myGlobal

» The parent node, myGlobal('B"), is deleted because it is valueless and now has no subnodes.

» Root node myGlobal is valueless and now has no subnodes, so the entire global array is deleted from the
database.

Using the Native SDK for Python 17

Accessing Global Arrays with Python

4.3 Iteration with nextSubscript() and isDefined()

In ObjectScript, the standard iteration methods are $ORDER and $DATA. The Native SDK provides corresponding
methods nextSubscript() and isDefined() for those who wish to emulate the ObjectScript methods.

The IRIS.nextSubscript() method (corresponds to $ORDER) is a much less powerful iteration method than node(), but it
works in much the same way, iterating over a set of nodes under the same parent. Given a node address and direction of
iteration, it returns the subscript of the next node under the same parent as the specified node, or None if there are no more
nodes in the indicated direction.

The IRIS.isDefined() method (corresponds to $DATA) can be used to determine if a specified node has a value, a subnode,
or both. It returns one of the following values:

* 0 — the specified node does not exist
e 1 — the node exists and has a value
e 10— the node is valueless but has a child node

e 11 — the node has both a value and a child node

The returned value can be used to determine several useful boolean values:

exists = (irispy.isDefined(root,subscripts) > 0)
hasValue (irispy.isDefined(root,subscripts) in [1,11]) # [value, value+child]
hasChild (irispy.isDefined(root,subscripts) in [10,11]) # [child, value+child]

Find sibling nodes and test for children

The following code uses nextSubscript() to iterate over nodes under heroes('dogs’), starting at heroes(‘dogs’,chr(0))
(the first possible subscript). It tests each node with isDefined() to see if it has children.

direction = 0 # direction of iteration (boolean forward/reverse)
next_sub = chr(0) # start at first possible subscript
while next_sub !'= None:
if (irispy.isDefined("heroes”,"dogs”,next_sub) in [10,11]): # [child, value+child]
print(” ", next_sub, "has children®)
next_sub = irispy.nextSubscript(direction, "heroes”, "dogs”,next_sub)
print(“next subscript = " + str(next_sub))

Prints:

next subscript = Balto
next subscript = Hachiko
next subscript = i

Lassie has children
next subscript = Whitefang
next subscript = None

18 Using the Native SDK for Python

Managing Transactions and Locking with
Python

The Native SDK for Python provides transaction and locking methods that use the InterSystems transaction model, as
described in the following sections:

* Processing Transactions — describes how transactions are started, nested, rolled back, and committed.

e Concurrency Control — describes how to use the various lock methods.

For information on the InterSystems transaction model, see “Transaction Processing” in Using ObjectScript.

5.1 Processing Transactions in Python

The iris.IRIS class provides the following methods for transaction processing:

* IRIS.tCommit() — commits one level of transaction.

IRIS.tStart() — starts a transaction (which may be a nested transaction).

* IRIS.getTLevel() — returns an int value indicating the current transaction level (0 if not in a transaction).
* IRIS.increment() — increments or decrements a node value without locking the node.

* IRIS.tRollback() — rolls back all open transactions in the session.

* IRIS.tRollbackOne() — rolls back the current level transaction only. If this is a nested transaction, any higher-level
transactions will not be rolled back.

The following example starts three levels of nested transaction, storing a different global node value at each transaction
level. All three nodes are printed to prove that they have values. The example then rolls back the second and third levels
and commits the first level. All three nodes are printed again to prove that only the first node still has a value. The example
also increments two counters during the transactions to demonstrate the difference between the increment() method and
the += operator.

Note: This example uses global arrays as a convenient way to store values in the database without having to create a
new storage class. Global array operations that are not directly relevant to this example are isolated in utility
functions listed immediately after the main example.

Using the Native SDK for Python 19

Managing Transactions and Locking with Python

Controlling Transactions: Creating and rolling back three levels of nested transaction
Assume that irispy is a connected instance of iris.IRIS (see “Creating a Connection in Python™).

Global array utility functions store_values(), show_values(), start_counters(), and show_counters() are listed
immediately after this example (see “Global array utility functions™).

tlevel = irispy.getTLevel()
counters = start_counters()
action = "Initial values:".ljust(18," ") + "tLevel="+str(tlevel)
print(action + ", * + show_counters() + *, " + show_values())
print("\nStore three values iIn three nested transaction levels:")
while tlevel < 3:
irispy.tStart() # start a new transaction, incrementing tlevel by 1
tlevel = irispy.getTLevel()
store_values(tlevel)
counters["add"] += 1 # increment with +=
irispy.increment(l,counters._global_name, "inc") # call increment()
action = " tStart:".ljust(18," ") + "tLevel=" + str(tlevel)

print(action + ", * + show_counters() + *, * + show_values())

print(*\nNow roll back two levels and commit the level 1 transaction:")
while tlevel > 0O:
if (tlevel>1):

irispy.tRollbackOne() # roll back to level 1
action = * tRollbackOne():*

else:
irispy.tCommit() # commit level 1 transaction

action = * tCommit():"
tlevel = irispy.getTLevel()
action = action.ljust(18," ") + "tLevel=" + str(tlevel)

print(action + *, * + show_counters() + *, " + show_values())

Prints:
Initial values: tLevel=0, add=0/inc=0, values=[]
Store three values in three nested transaction levels:
tStart: tLevel=1, add=1/inc=1, values=["datal"]
tStart: tLevel=2, add=2/inc=2, values=[''datal', ''data2']
tStart: tLevel=3, add=3/inc=3, values=[''datal’, ''data2', ''data3']

Now roll back two levels and commit the level 1 transaction:
tRollbackOne(): tLevel=2, add=2/inc=3, values=[''datal', ''data2']
tRolIbackOne(): tLevel=1, add=1/inc=3, values=["datal']
tCommit(): tLevel=0, add=1/inc=3, values=["datal"]

Global array utility functions

This example uses global arrays as a convenient way to store values in the database without having to create a
new storage class (see “Accessing Global Arrays with Python™). The following functions use two IRISGlobalNode
objects named data_node and counter_node to store and retrieve persistent data.

The data_node object will be used to store and retrieve transaction values. A separate child node will be created
for each transaction, using the level number as the subscript.

irispy.kill("my.data.node®) # delete data from previous tests
data_node = irispy.node("my.data.node") # create IRISGlobalNode object

def store_values(tlevel):
""" store data for this transaction using level number as the subscript """
data_node[tlevel] = ""data“+str(tlevel)+*"" # "datal", "data2", etc.

def show_values():
=" display values stored in all subnodes of data_node
return “values=[" + ", "_join([str(val) for val in data_node.valuesQ]) + "]1°

The increment() method is typically called before attempting to add a new entry to a database, allowing the counter
to be incremented quickly and safely without having to lock the node. The value of the incremented node is not
affected by transaction rollbacks.

20 Using the Native SDK for Python

Concurrency Control with Python

To demonstrate this, the counter_node object will be used to manage two counter values. The counter_node(’add’)
subnode will be incremented with the standard += operator, and the counter_node(’inc’) subnode will be incremented
with the increment() method. Unlike the counter_node(’add’) value, the counter_node(’inc’) value will retain its
value after rollbacks.

counter_node object will manage persistent counters for both increment methods
irispy.kill("my.count.node") # delete data left from previous tests
counter_node = irispy.node("my.count.node") # create IRISGlobalNode object

def start_counters():
""" initialize the subnodes and return the IRISGlobalNode object
counter_node["add®"] = 0 # counter to be incremented by += operator
counter_node["inc"] = 0 # counter to be incremented by IRIS.increment()
return counter_node

def show_counters():
**" display += and increment() counters side by side: add=#/inc=#
return "add="+str(counter_node["add"])+"/inc="+str(counter_node["inc"])

5.2 Concurrency Control with Python

Concurrency control is a vital feature of multi-process systems such as InterSystems IRIS. It provides the ability to lock
specific elements of data, preventing the corruption that would result from different processes changing the same element
at the same time. The Native SDK transaction model provides a set of locking methods that correspond to ObjectScript
commands (see “LOCK?™ in the ObjectScript Reference).

The following methods of class iris.IRIS are used to acquire and release locks:

* IRIS.Iock() — locks the node specified by the lockReference and *subscripts arguments. This method will time out
after a predefined interval if the lock cannot be acquired.

* IRIS.unlock() — releases the lock on the node specified by the lockReference and *subscripts arguments.

* IRIS.releaseAllL ocks() — releases all locks currently held by this connection.

parameters:

lock(lockMode, timeout, lockReference, *subscripts)
unlock(lockMode, lockReference, *subscripts)
releaseAllLocks()

» lockMode — str specifying how to handle any previously held locks. Valid arguments are, S for shared lock, E for
escalating lock, or SE for shared and escalating. Default is empty string (exclusive and non-escalating).

e timeout — number of seconds to wait before timing out when attempting to acquire a lock.

» lockReference — str starting with a circumflex (©) followed by the global name (for example, ~myGlobal, not just
myGlobal).

Important: the lockReference parameter must be prefixed by a circumflex, unlike the globalName parameter
used by most methods. Only lock() and unlock() use lockReference instead of globalName.

» subscripts — zero or more subscripts specifying the node to be locked or unlocked.
In addition to these methods, the IRISConnection.close() method is used to release all locks and other connection resources.

Tip: You can use the Management Portal to examine locks. Go to System Operation > View Locks to see a list of the
locked items on your system.

Using the Native SDK for Python 21

Managing Transactions and Locking with Python

Note: A detailed discussion of concurrency control is beyond the scope of this document. See the following articles for
more information on this subject:

* “Transaction Processing” and *“Lock Management” in Using ObjectScript
* “Locking and Concurrency Control” in the Orientation Guide for Server-Side Programming

e« “LOCK" inthe ObjectScript Reference

22 Using the Native SDK for Python

Using the Python DB-API

The InterSystems Python DB-API driver is a fully compliant implementation of the PEP 249 version 2.0 Python Database
API specification. The following sections list all required implementation features, indicate the level of support for each
one, and describe all InterSystems-specific features in detail:

e Usage
Describes how to make a connection to InterSystems IRIS and get a Cursor object.
* PEP 249 Implementation Reference
Lists all PEP 249 requirements and provides implementation details in the following subsections:
— Globals lists values for required global constants apilevel, threadsafety, and paramstyle.
— Connection Object describes Connection methods connect(), close(), commit(), rollback(), and cursor().
— Cursor Object describes the following Cursor members:
» Attributes arraysize, description, and rowcount.

» Standard methods callproc(), close(), execute(), executemany(), fetchone(), fetchmany(), fetchall(), nextset(),
scroll(), setinputsizes(), and setoutputsize().

» InterSystems extension methods isClosed() and stored_results().

e SQLType enumeration values

Lists valid SQLType enumeration constants.

Note: DB-API Driver Installation

The DB-API is available when you install InterSystems IRIS. If you do not have the InterSystems DB-API driver
(for example, if you are connecting from a host on which InterSystems IRIS is not installed), you can download
it from the InterSystems IRIS Drivers page and install it with:

pip install intersystems_irispython-3.2_0-py3-none-any._whl

6.1 Usage

The following example makes a connection to the InterSystems IRIS database, creates a cursor associated with the connection,
sets up to make some DB-API calls, and then shuts down.

Using the Native SDK for Python 23

https://www.python.org/dev/peps/pep-0249
https://intersystems-community.github.io/iris-driver-distribution/

Using the Python DB-API

See “Connection Object” and “Cursor Object” in the following section for detailed documentation on all available DBAPI
methods.

Connecting to the DB-API driver and getting a cursor

Python

import iris

def main(Q):
connection_string = "localhost:1972/USER"
username = "'_system"

password = "SYs™

connection = iris.connect(connection_string, username, password)
cursor = connection.cursor()
try:
pass # do something with DB-API calls
except Exception as ex:
print(ex)
finally:
if cursor:
cursor.close()
if connection:
connection.close()
if _name_ == "_ main__":
main()

See iris.connect(), Connection.close(), Connection.cursor(), and Cursor.close() for more information on the methods
called in this example.

Connecting Your Application to InterSystems IRIS also provides instructions, including sample code, for connecting to an
InterSystems IRIS server from a Python application using DB-API.

6.2 PEP 249 Implementation Reference

This section lists all required implementation features described in the PEP 249 version 2.0 Python Database API specifi-
cation, indicates the level of support for each one, and describes all InterSystems-specific features in detail.

6.2.1 Globals

These are required implementation-specific constants. In the InterSystems implementation, these globals are set to the fol-
lowing values:

apilevel

"'2.0" — specifies compliance with PEP 249 version 2.0.

threadsafety

0 — threads may not share the module.

paramstyle

"gmark' — query parameters use question mark style (for example: WHERE name=7?).

24 Using the Native SDK for Python

https://docs.intersystems.com/components/csp/docbook/DocBook.UI.Page.cls?KEY=ADRIVE
https://www.python.org/dev/peps/pep-0249

PEP 249 Implementation Reference

6.2.2 Connection Object

This section describes how to use iris.connect() to create a Connection object, and provides implementation details for
required Connection methods close(), commit(), rollback(), and cursor().

6.2.2.1 Creating a Connection Object

DB-API Connection objects are created by calls to the InterSystems iris.connect() method:

connect()

iris.connect() returns a new Connection object and attempts to create a new connection to an instance of InterSystems
IRIS. The object will be open if the connection was successful, or closed otherwise (see Cursor.isClosed()).

iris.connect(hostname,port,namespace,username,password, timeout,sharedmemory, logfile)
iris.connect(connectionstr,username,password, timeout,sharedmemory, logfile)

The hostname, port, namespace, timeout, and logfile from the last successful connection attempt are saved as
properties of the connection object.

parameters:

Parameters may be passed by position or keyword.

* hostname — str specifying the server URL

* port —int specifying the superserver port number

* namespace — str specifying the namespace on the server

» The following parameter can be used in place of the hostname, port, and namespace arguments:

— connectionstr — str of the form host nane:port /nanespace.

e username — str specifying the user name
* password — str specifying the password

e timeout (optional) — int specifying maximum number of seconds to wait while attempting the connection.
Defaults to 10.

» sharedmemory (optional) — specify bool True to attempt a shared memory connection when the hostname
is localhost or 127.0.0.1. Specify False to force a connection over TCP/IP. Defaults to True.

» logfile (optional) — str specifying the client-side log file path. The maximum path length is 255 ASCII
characters.

6.2.2.2 Connection Object Methods

A Connection object can be used to create one or more Cursor objects. Database changes made by one cursor are immediately
visible to all other cursors created from the same connection. Rollbacks and commits affect all changes made by cursors
using this connection.

close()

Connection.closg() closes the connection immediately. The connection and all cursors associated with it will be
unusable. An implicit rollback will be performed on all uncommitted changes made by associated cursors.

Connection.close()

Using the Native SDK for Python 25

Using the Python DB-API

A ProgrammingError exception will be raised if any operation is attempted with a closed connection or any associated
cursor.

commit()

Connection.commit() commits all SQL statements executed on the connection since the last commit/rollback. The
rollback affects all changes made by any cursor using this connection. Explicit calls to this method are not required.

Connection.commit()

rollback()

Connection.rollback() rolls back all SQL statements executed on the connection that created this cursor (since the
last commit/rollback). It affects all changes made by any cursor using this connection.

Connection.rollback()
cursor()
Connection.cur sor () returns a new Cursor object that uses this connection.

Connection.cursor()

Any changes made to the database by one cursor are immediately visible to all other cursors created from the same
connection. Rollbacks and commits affect all changes made by any cursor using this connection.

6.2.3 Cursor Object

This section describes how to create a Cursor object, and provides implementation details for the following required Cursor
methods and attributes:

» Attributes arraysize, description, and rowcount.

+ Standard methods callproc(), close(), execute(), executemany(), fetchone(), fetchmany(), fetchall(), nextset(), scroll(),
setinputsizes(), and setoutputsize().

» InterSystems extension methods isClosed() and stored_results().

6.2.3.1 Creating a Cursor object

A Cursor object is created by establishing a connection and then calling Connection.cur sor (). For example:

connection = iris.connect(connection_string, username, password)
cursor = connection.cursor()

Any changes made to the database by one cursor are immediately visible to all other cursors created from the same connection.

See “Connecting to the DB-API driver and getting a cursor” for a more complete example. See “Creating a Connection
Object” for detailed information on creating a connection.

6.2.3.2 Cursor attributes

arraysize

Cursor.arraysize is a read/write attribute that specifies the number of rows to fetch at a time with fetchmany().
Default is 1 (fetch one row at a time).

26 Using the Native SDK for Python

PEP 249 Implementation Reference

description

Cursor.description returns a list of tuples containing information for each result column returned by the last SQL
select statement. Value will be None if an execute method has not been called, or if the last operation did not return
any rows.

Each tuple (column description) in the list contains the following items:

* name — column name (defaults to None)

» type_code — integer SQLType identifier (defaults to 0). See “ SQLType enumeration values” for valid values.
» display_size — not used - value set to None

» internal_size — not used - value set to None

e precision — integer (defaults to 0)

» scale — integer (defaults to None)

* nullable — integer (defaults to 0)

rowcount

Cursor.rowcount specifies the number of rows modified by the last SQL statement. The value will be -1 if no
SQL has been executed or if the number of rows is unknown. For example, DDLs like CREATE, DROP, DELETE,
and SELECT statements (for performance reasons) return -1.

Batch updates also return the number of rows affected.

6.2.3.3 Cursor methods

callproc()

Cursor.callproc() calls a stored database procedure with the given procname.

Cursor.callproc(procname)
Cursor.callproc(procname, parameters)

parameters:
* procname - string containing a stored procedure call with parameterized arguments.

» parameters - list of parameter values to pass to the stored procedure

example:

This code calls stored procedure Sample.SP_Sample_By_Name, specifying parameter value "*A™ in a list:

cursor.callproc("CALL Sample.SP_Sample_By Name (?)", ["A"])
row = cursor.fetchone()
while row:

print(row.1D, row.Name, row.DOB, row.SSN)

row = cursor.fetchone()

Output will be similar to the following:

167 Adams,Patricia J. 1964-10-12 216-28-1384
28 Ahmed,Dave H. 1954-01-12 711-67-4091

20 Alton,Samantha E. 2015-03-28 877-53-4204
118 Anderson,Elvis V. 1994-05-29 916-13-245

Using the Native SDK for Python 27

Using the Python DB-API

close()

Cursor.close() closes the cursor.
Cursor.close()

A ProgrammingError exception will be raised if any operation is attempted with a closed cursor. Cursors are closed
automatically when they are deleted (typically when they go out of scope), so calling this is not usually necessary.
execute()

Cursor.execute() executes the query specified in the operation parameter. Updates the Cursor object and sets the
rowcount attribute to -1 for a query or 1 for an update.

Cursor._execute(operation)
Cursor.execute(operation, parameters)

parameters:
* operation - string containing SQL statement to be executed

e parameters - optional list of values. This must be a Python list (tuples or sets are not acceptable).

examples:

Parameter values are used in positions where the SQL statement contains a ? (gmark) rather than a literal or constant.
If the statement does not contain any gmarks, the parameters argument is not required will raise an exception if
given.

« gl "o..(1,2)..."; execute(sql)

« gql “o..(?,?)..."; params = [1,2]; execute(sqgl, params)

« gql o..(1,?)...""; params = [2]; execute(sqgl, params)

executemany()

Cursor.executemany() is used for batch inserts/updates. It prepares a database operation (query or command) and
then executes it against all parameter sequences or mappings found in the sequence seq_of parameters.

Cursor .executemany(operation)
Cursor .executemany(operation, seq_of _parameters)

parameters:
* operation - string containing SQL statement to be executed

+ seq_of_parameters — sequence of parameter sequences or mappings

fetchone()

Cursor.fetchone() returns the pointer to the next ResultSetRow.DataRow object (integer array of data offsets) in
the query, or None if no more data is available.

Cursor . fetchone()

Data is fetched only on request, via indexing. The object contains a list of integer offsets that can be used to retrieve
the row values. Index values must be positive integers (a value of 1 refers to column 1, and so on).

A ProgrammingError exception is raised if no SQL has been executed or if it did not return a result set (for example,
if it was not a SELECT statement).

28 Using the Native SDK for Python

PEP 249 Implementation Reference

fetchmany()

Cursor.fetchmany() fetches the next set of rows of a query result, returning a sequence of sequences (a list of
tuples). If the size argument is not specified, the number of rows to fetch at a time is set by the Cursor.arraysize
attribute (default 1). An empty sequence is returned when no more rows are available.

Cursor . fetchmany()
Cursor . fetchmany(size)

parameters:

» size - optional. Defaults to the current value of attribute Cursor.arraysize.

fetchall()

Cursor.fetchall() fetches all remaining rows of a query result.
Cursor.fetchall()

isClosed() [InterSystems extension method]

Cursor.isClosed() is an InterSystems extension method that returns True if the cursor object is already closed,
False otherwise.

Cursor.i sd osed()

nextset() [optional DB-API method]

Cursor.nextset() is an optional DB-API method for iterating over multiple result sets. Skips to the next result set
if available. Returns True if available, otherwise Fal se (hence, should not be used to access a result set/result
set row).

Cursor.nextset()
Example:

for row in cursor.stored_results():
row_values = row[0] // data in all columns
vall = row[1] // data in column 1
cursor.nextset() // skips to the next result set if multiple result sets
// does nothing (or breaks out of loop) in case of single result set;

scroll() [optional DB-API method]

Cursor.scroll() is an optional DB-API method that scrolls the cursor in the result set to a new position and returns
the row at that position.

Cursor.scroll(value)
Cursor.scroll(value, mode)

Raises an IndexError if scroll operation would leave the result set.
parameters:
* value - integer value specifying the new target position.

— If mode is relative (the default) , value is a positive or negative offset to the current position in the
result set.

— If mode is absolute, value is an absolute target position (negative values are not valid).

e mode — optional. Valid values are relative or absolute.

Using the Native SDK for Python 29

Using the Python DB-API

Example:

For each example, assume the result set has a total of 10 rows, and the initial number of rows fetched is 5. Result
set index values are 0—based, so the current position in the result set is rs[4] (the 5th row).

Scroll forward 3 rows relative to rs[4] (mode defaults to "relative®)
datarow = Cursor.scroll(3) // returns rs[7] (8th row in resultset)
Scroll to absolute position 3
datarow = Cursor.scroll (3, "absolute®) // returns rs[2] (3rd row in resultset)
Scroll backward 4 rows relative to rs[4] (mode defaults to “relative®)
datarow = Cursor.scroll(-4) // returns rs[0]
Scroll to absolute position -4
datarow = Cursor.scroll(-4,"absolute®) // Throws IndexError (negative row number not valid)

setinputsizes()

Cursor.setinputsizes() is not applicable to InterSystems IRIS, which does not implement or require this function-
ality. Throws NotimplementedError if called.

setoutputsize()

Cursor.setoutputsize() is not applicable to InterSystems IRIS, which does not implement or require this function-
ality. Throws NotimplementedError if called.

stored_results() [InterSystems extension method]

Cursor.stored_results() is an InterSystems extension method that returns a list iterator (containing first row of
each result set) if the procedure type is "query™, and empty list if the procedure type is "function*”

Cursor.stored_results()

Example:

for row in cursor.stored_results(): // row is DataRow object for 1st row of result set
row_values = row[0] // data in all columns
vall = row[1] // data in column 1

Incorrect Syntax:
row = cursor.stored_results() // row values not accessible using row[0] since it is a list
iterator

6.3 SQLType enumeration values

Valid values for the Cursor.description attribute.

BIGINT =-5

BINARY = -2

BIT=-7

CHAR=1

DECIMAL =3
DOUBLE =8

FLOAT =6

GUID =-11

INTEGER =4
LONGVARBINARY = -4

30

Using the Native SDK for Python

SQLType enumeration values

* LONGVARCHAR=-1

* NUMERIC=2

* REAL=7

* SMALLINT =5

« DATE=9

« TIME=10

« TIMESTAMP =11

* TINYINT=-6

» TYPE_DATE =91

* TYPE_TIME =92

* TYPE_TIMESTAMP =93
* VARBINARY =-3

* VARCHAR =12
 WCHAR=-8

* WLONGVARCHAR =-10
* WVARCHAR=-9

+ DATE_HOROLOG =1091
* TIME_HOROLOG = 1092
TIMESTAMP_POSIX = 1093

Using the Native SDK for Python 31

Native SDK for Python Quick Reference

This is a quick reference for the InterSystems IRIS Native SDK for Python, providing information on the following classes:
e package iris

— iris Package Methods — connect and create an instance of IRIS.

— Class IRIS main entry point for the Native SDK

— Class IRISConnection connects an IRIS instance to the database.

— Class IRISList provides support for InterSystems $L1ST serialization.

— Class iris.IRISGlobalNode navigate global arrays

— Class iris.IRISGlobalNodeView dictionary-like views of child nodes

— Class IRISReference passes method arguments by reference.

— Class IRISObject provides methods for External Server inverse proxy objects.

» Legacy Support Classes
— Class Legacylterator iterator methods retained for compatibility with earlier implementations.

— Class IRISNative connection methods retained for compatibility with earlier implementations.

Typecast Methods and Supported Datatypes
The Native SDK supports datatypes bool, bytes, bytearray, Decimal, float, int, str, IRISList, and None.
In many cases, a class will have a generic method (frequently named get()) that returns a default value type, plus a set of

typecast methods that work exactly like the generic method but also cast the return value to a specific datatype. For example,
IRIS.get() is followed by typecast methods getBoolean(), getBytes(), and so forth.

To avoid lengthening this quick reference with dozens of nearly identical listings, all typecast methods are listed collectively
after the generic version (for example, IRIS.get() Typecast Methods).

Sets of typecast methods are available for IRIS.classM ethodValue(), IRIS.function(), IRIS.get(), IRISList.get(),
IRISObject.get(), IRISObject.invoke(), and IRISReference.getValue().

Using the Native SDK for Python 33

Native SDK for Python Quick Reference

7.1 iris Package Methods

The iris package includes method connect() for creating a connection, and createl Rl S() for creating a new instance of class
IRIS that uses the connection. A connected instance of iris.IRIS is required to use the Native SDK.

7.1.1 Creating a Connection in Python

The following code demonstrates how to open a database connection and create an instance of iris.IRIS named irispy. Most
examples in this document will assume that a connected instance of irispy already exists.

import iris

Open a connection to the server
args = {"hostname®:"127.0.0.1", "port":52773,
"namespace” :"USER", “username®:"_SYSTEM®", “password®:"SYS*

conn = iris.connect(**args)
Create an iris object
irispy = iris.createlRIS(conn)

See the following section for detailed information about iris.connect() and iris.createl Rl ().

7.1.2 iris Package Method Details

connect()

iris.connect() returns a new IRISConnection object and attempts to create a new connection to the database. The
object will be open if the connection was successful. Throws an exception if a connection cannot be established.

iris.connect(hostname,port,namespace,username,password, timeout,sharedmemory, logfile)
iris.connect(connectionstr,username,password, timeout,sharedmemory, logfile)

The hostname, port, namespace, timeout, and logfile from the last successful connection attempt are saved as
properties of the connection object.

parameters:

Parameters may be passed by position or keyword.

e hostname — str specifying the server URL

* port —int specifying the superserver port number

e namespace — str specifying the namespace on the server

» The following parameter can be used in place of the hostname, port, and namespace arguments:

— connectionstr — str of the form host nane :port /nanespace.

* username — str specifying the user name
» password — str specifying the password

» timeout (optional) — int specifying maximum number of milliseconds to wait while attempting the connec-
tion. Defaults to 10000.

e sharedmemory (optional) — specify bool True to attempt a shared memory connection when the hostname
is localhost or 127.0.0.1. Specify False to force a connection over TCP/IP. Defaults to True.

34 Using the Native SDK for Python

Class iris.IRIS

» logfile (optional) — str specifying the client-side log file path. The maximum path length is 255 ASCII
characters.

createlRIS()

iris.createl R1S() returns a new instance of IRIS that uses the specified IRISConnection. Throws an exception if the
connection is closed.

iris.createlRIS(conn)

returns: a new instance of iris.IRIS
parameter:

* conn — an IRISConnection object that provides the server connection

7.2 Class iris.IRIS

To use the Native SDK, your application must create an instance of IRIS with a connection to the database. Instances of
IRIS are created by calling iris package method createl R1 S().

7.2.1 IRIS Method Details

classMethodValue()

IRIS.classM ethodValueg() calls a class method, passing zero or more arguments and returns the value as a type
corresponding to the datatype of the ObjectScript return value. Returns None if the ObjectScript return value is
an empty string ($$$SNULLOREF). See “Calling Class Methods from Python™ for details and examples.

classMethodValue (className, methodName, args)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, or None. See classMethodValue() Typecast Methods
for ways to return a specific type.

parameters:

* class_name — fully qualified name of the class to which the called method belongs.

* method_name — name of the class method.

e *args — zero or more method arguments. Arguments of types bool, bytes, Decimal, float, int, str and IRISList

are projected as literals. All other types are projected as proxy objects.

Also see classM ethodVoid(), which is similar to classM ethodValue() but does not return a value.

Using the Native SDK for Python 35

Native SDK for Python Quick Reference

classMethodValue() Typecast Methods

All of the IRIS.classM ethodValue() typecast methods listed below work exactly like IRIS.classM ethodValue(),
but also cast the return value to a specific type. They all return None if the ObjectScript return value is an empty
string ($$SNULLOREF). See “Calling Class Methods from Python™ for details and examples.

classMethodBoolean (className, methodName, args)
classMethodBytes (className, methodName, args)
classMethodDecimal (className, methodName, args)
classMethodFloat (className, methodName, args)
classMethodInteger (className, methodName, args)
classMethodIRISList (className, methodName, args)
classMethodString (className, methodName, args)
classMethodObject (className, methodName, args)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None.

parameters:

» class_name — fully qualified name of the class to which the called method belongs.

 method_name — name of the class method.

* *args — zero or more method arguments of supported types. Arguments of types bool, bytes, Decimal, float,
int, str and IRISList are projected as literals. All other types are projected as proxy objects.

Also see classM ethodVoid(), which is similar to classM ethodValueg() but does not return a value.

classMethodVoid()

IRIS.classM ethodVoid() calls an ObjectScript class method with no return value, passing zero or more arguments.
See “Calling Class Methods from Python™ for details and examples.

classMethodVoid (className, methodName, args)

parameters:

» class_name — fully qualified name of the class to which the called method belongs.

* method_name — name of the class method.

e *args — zero or more method arguments of supported types. Arguments of types bool, bytes, Decimal, float,

int, str and IRISList are projected as literals. All other types are projected as proxy objects.

This method assumes that there will be no return value, but can be used to call any class method. If you use
classM ethodVoid() to call a method that returns a value, the method will be executed but the return value will be
ignored.

close()

IRIS.close() closes the IRIS object.
close O

function()

IRIS.function() calls a function, passing zero or more arguments and returns the value as a type corresponding to
the datatype of the ObjectScript return value. Returns None if the ObjectScript return value is an empty string
($$BNULLOREF). See “Calling Functions and Procedures from Python” for details and examples.

function (functionName, routineName, args)

36 Using the Native SDK for Python

Class iris.IRIS

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None. See function() Typecast Methods
for ways to return a specific type.

parameters:

e function_name — name of the function to call.

* routine_name — name of the routine containing the function.

* *args — zero or more method arguments of supported types. Arguments of types bool, bytes, Decimal, float,

int, str and IRISList are projected as literals. All other types are projected as proxy objects.

Also see procedur (), which is similar to function() but does not return a value.

function() Typecast Methods

get()

All of the IRIS.function() typecast methods listed below work exactly like IRIS.function(), but also cast the return
value to a specific type. They all return None if the ObjectScript return value is an empty string ($$$NULLOREF).
See “Calling Functions and Procedures from Python” for details and examples.

functionBoolean (functionName, routineName, args)
functionBytes (functionName, routineName, args)
functionDecimal (functionName, routineName, args)
functionFloat (functionName, routineName, args)
functionlnteger (functionName, routineName, args)
functionlRISList (functionName, routineName, args)
functionString (functionName, routineName, args)
functionObject (functionName, routineName, args)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None

parameters:

« function_name — name of the function to call.

* routine_name — name of the routine containing the function.

* *args — zero or more method arguments of supported types. Arguments of types bool, bytes, Decimal, float,

int, str and IRISList are projected as literals. All other types are projected as proxy objects.

Also see procedure(), which is similar to function() but does not return a value.

IRIS.get() returns the value of the global node as a type corresponding to the ObjectScript datatype of the property.
Returns None if the node is an empty string, is valueless, or does not exist.

get (globalName, subscripts)

returns: bool, bytes, int, float, Decimal, str, IRISList, Object, or None. See get() Typecast Methods for ways to return
other types.

parameters:
e global_name — global name

* *subscripts — zero or more subscripts specifying the target node

Using the Native SDK for Python 37

Native SDK for Python Quick Reference

get() Typecast Methods

All of the IRIS.get() typecast methods listed below work exactly like IRIS.get(), but also cast the return value to
a specific type. They all return None if the node is an empty string, is valueless, or does not exist.

getBoolean (globalName, subscripts)
getBytes (globalName, subscripts)
getDecimal (globalName, subscripts)
getFloat (globalName, subscripts)
getinteger (globalName, subscripts)
getIRISList (globalName, subscripts)
getString (globalName, subscripts)
getObject (globalName, subscripts)

returns: bool, bytes, int, float, Decimal, str, IRISList, Object, or None
parameters:
» global_name — global name

» *subscripts — zero or more subscripts specifying the target node
Also see deprecated typecast method getL ong().

getAPIVersion() [static]
IRIS.getAPI Version() returns the version string for this version of the Native SDK. Also see getServer Version().

getAPIVersion ()

returns: str

getLong() [deprecated]

IRIS.getL ong() The Python long type is no longer required in Python 3. Please use IRIS.get() typecast method
getl nteger (), which supports the same precision.

getServerVersion()

IRIS.get Server Ver sion() returns the version string for the currently connected InterSystems IRIS server. Also see
getAPIVersion().

getServerVersion ()

returns: str

getTLevel()

IRIS.getTL evel () returns the number of nested transactions currently open in the session (1 if the current transaction
is not nested, and O if there are no transactions open). This is equivalent to fetching the value of the ObjectScript
$TLEVEL special variable. See “Processing Transactions in Python” for details and examples.

getTLevel O

returns: int

38 Using the Native SDK for Python

Class iris.IRIS

increment()

IRIS.increment() increments the global node with the value argument and returns the new value of the global
node. If there is no existing node at the specified address, a new node is created with the specified value. This
method uses a very fast, thread-safe atomic operation to change the value of the node, so the node is never locked.
See “Processing Transactions in Python” for details and examples.

increment (value, globalName, subscripts)

returns: float

parameters:

» value —int or float number to increment by

» global_name — global name

e “*subscripts — zero or more subscripts specifying the target node

Common usage for SINCREMENT is to increment a counter before adding a new entry to a database. $INCRE-

MENT provides a way to do this very quickly, avoiding the use of the LOCK command. See “$INCREMENT
and Transaction Processing” in the ObjectScript Reference.

isDefined()

IRIS.isDefined() returns a value that indicates whether a node has a value, a child node, or both.
isDefined (globalName, subscripts)

returns: one of the following int values:

» 0 if the node does not exist.

» 1 if the node has a value but no child nodes.

e 10 if the node is valueless but has one or more child nodes.

e 11ifithas aboth a value and child nodes.

parameters:
e global_name — global name

* *subscripts — zero or more subscripts specifying the target node

iterator() [deprecated]

kill()

IRIS.iterator () is deprecated; use node() instead. See Class for information about continued functionality in
existing applications.

IRIS.Kill() deletes the specified global node and all of its subnodes. If there is no node at the specified address, the
command will do nothing. It will not throw an <UNDEF INED> exception.

kill (globalName, subscripts)

parameters:
» global_name — global name

» *subscripts — zero or more subscripts specifying the target node

Using the Native SDK for Python 39

Native SDK for Python Quick Reference

lock()

IRIS.lock() locks the global. This method performs an incremental lock (you must call the releaseAllL ocks()
method first if you want to unlock all prior locks). Throws a <T IMEOUT> exception if the timeout value is reached
waiting to acquire the lock. See “Concurrency Control with Python™ for more information.

lock (lock_mode, timeout, lock_reference, subscripts)

parameters:

» lock_mode — one of the following strings: **S** for shared lock, ""E** for escalating lock, **SE** for both, or
"*** for neither. An empty string is the default mode (unshared and non-escalating).

e timeout — number of seconds to wait to acquire the lock

» lock_reference — a string starting with a circumflex () followed by the global name (for example,
~myGlobal, not just myGlobal).

NOTE: Unlike the global _name parameter used by most methods, the lock_reference parameter must
be prefixed by a circumflex. Only lock() and unlock() use lock_reference instead of global_name.

» *subscripts — zero or more subscripts specifying the target node

See “LOCK?” in the ObjectScript Reference for detailed information on locks.

nextSubscript()

node()

IRIS.nextSubscript() accepts a node address and returns the subscript of the next sibling node in collation order.
Returns None if there are no more nodes in the specified direction. This method is similar to SORDER in
ObijectScript.

nextSubscript (reversed, globalName, subscripts)

returns: bytes, int, str, or float (next subscript in the specified direction)

parameters:

* reversed — boolean true indicates that nodes should be traversed in reverse collation order.
» global_name — global name

e “*subscripts — zero or more subscripts specifying the target node

Also see node(), which returns an object that iterates over children of a specified node (unlike nextSubscript(),
which allows you to iterate over nodes on the same level as the specified node).

IRIS.node() returns an IRISGlobalNode object that allows you to iterate over children of the specified node. An
IRISGlobalNode behaves like a virtual dictionary representing the immediate children of a global node. It is iterable,
reversable, indexable and sliceable.

def node (self, globalName, subscripts)
parameters:

* global_name — global name

* *subscripts — zero or more subscripts specifying the target node

Also see nextSubscript(), which allows you to iterate over nodes on the same level as the specified node (unlike
node(), which iterates over children of a specified node).

40

Using the Native SDK for Python

Class iris.IRIS

procedure()

IRIS.procedure() calls an ObjectScript procedure or function, passing zero or more arguments and returning
nothing (also see IRIS.function()). See “Calling Functions and Procedures from Python™ for details and examples.

procedure (procedureName, routineName, args)

parameters:

e procedureName — name of the procedure to call.

e routine_name — name of the routine containing the procedure.

* *args — zero or more method arguments. Arguments of types bool, bytes, Decimal, float, int, str and IRISList

are projected as literals. All other types are projected as proxy objects.

This method assumes that there will be no return value, but can be used to call any function. If you use procedur &)
to call a function that returns a value, the function will be executed but the return value will be ignored.

releaseAllLocks()

IRIS.releaseAllL ocks() releases all locks associated with the session. See “Concurrency Control with Python”
for more information.

releaseAllLocks

set()
IRIS.set() assigns value as the current node value. The new value may be bool, bytes, bytearray, Decimal, float, int,
str, or IRISList,.
set (value, globalName, subscripts)
parameters:
e value — new value of the global node
* global_name — global name
* *subscripts — zero or more subscripts specifying the target node
tCommit()
IRIS.tCommit() commits the current transaction. See “Processing Transactions in Python” for details and
examples.
tCommit O
tRollback()

IRIS.tRollback() rolls back all open transactions in the session. See “Processing Transactions in Python™ for
details and examples.

tRollback O

Using the Native SDK for Python 41

Native SDK for Python Quick Reference

tRollbackOne()

IRIS.tRollbackOne() rolls back the current level transaction only. This is intended for nested transactions, when
the caller only wants to roll back one level. If this is a nested transaction, any higher-level transactions will not
be rolled back. See “Processing Transactions in Python” for details and examples.

tRol IbackOne O

tStart()

IRIS.tStart() starts or opens a transaction. See *“Processing Transactions in Python” for details and examples.
tStart O

unlock()

IRIS.unlock() decrements the lock count on the specified lock, and unlocks it if the lock count is 0. To remove a
shared or escalating lock, you must specify the appropriate lockMode (**S** for shared, "'E** for escalating lock).
See “Concurrency Control with Python” for more information.

unlock (lock_mode, lock_reference, subscripts)

parameters:

e lock _mode — one of the following strings: **S** for shared lock, "'E** for escalating lock, **SE"* for both, or
"*** for neither. An empty string is the default mode (unshared and non-escalating).

» lock_reference — a string starting with a circumflex () followed by the global name (for example,
~myGlobal, not just myGlobal).

NOTE: Unlike the global _name parameter used by most methods, the lock_reference parameter must
be prefixed by a circumflex. Only lock() and unlock() use lock_reference instead of global_name.

e “*subscripts — zero or more subscripts specifying the target node

7.3 Class iris.IRISList

Class iris.IRISList implements a Python interface for InterSystems $LIST serialization. IRISList is a Native SDK supported
type (see “Typecast Methods and Supported Datatypes™).

7.3.1 IRISList Constructors

The IRISList constructor takes the following parameters:
IRISList(buffer = None, locale = "latin-1", is_unicode = True, compact_double = False)

parameters:

* buffer — optional list buffer, which can be an instance of IRISList or a byte array in $LIST format (returned by
Native SDK methods such as IRIS.getBytes()).

» locale — optional str indicating locale setting for buffer.
e is_unicode — optional bool indicating if buffer is Unicode.

» compact_double — optional bool indication if compact doubles are enabled.

42 Using the Native SDK for Python

Class iris.IRISList

Instances of IRISList can be created in the following ways:

» Create an empty IRISList
list = IRISListQ
» Create a copy of another IRISList
listcopy = IRISList(myOtherIRISList)

» Construct an instance from a $LIST formatted byte array, such as that returned by IRIS.getBytes() and numerous other
iris methods.

globalBytes = mylris.getBytes(''myGlobal',1)
listFromByte = IRISList(globalBytes)

Many methods in the iris package return IRISList, which is one of the Native SDK supported types.

7.3.2 IRISList Method Details

add()
IRISList.add() appends a value to the end of the IRISList and returns the IRISList object.
add (value)
returns: self (the IRISList object)
parameters:
» value — avalue of any supported type, or an array or collection of values. Each element of an array or col-
lection will be appended individually. Instances of IRISList are always appended as a single element.
The add() method never concatenates two instances of IRISList. However, you can use IRISList.toArray() to
convert an IRISList to an array. Calling add() on the resulting array will append each element separately.
clear()
IRISList.clear () resets the list by removing all elements from the list, and returns the IRISList object.
clear O
returns: self (the IRISList object)
count()
IRISList.count() returns the number of data elements in the list.
count
returns: int
equals()

IRISList.equals() compares the specified irislist2 with this instance of IRISList, and returns true if they are identical.
To be equal, both lists must contain the same number of elements in the same order with identical serialized values.

equals (irislist2)

Using the Native SDK for Python 43

Native SDK for Python Quick Reference

get()

returns: bool
parameters:

e irislist2 — instance of IRISList to compare.

IRISList.get() moves the list cursor to the specified index (if one is specified) and returns the element at the cursor
as an Object. Throws IndexOutOfBoundsException if the index is out of range (less then 1 or past the end of the
list). Returns None if

get (index)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:

e index — optional int specifying the index (one-based) of the new cursor location

get() Typecast Methods

All of the IRISList.get() typecast methods listed below work exactly like IRISList.get(), but also cast the return
value to a specific type. They all throw IndexOutOfBoundsException if the index is out of range (less then 1 or past
the end of the list).

getBoolean (index)
getBytes (index)
getDecimal (index)
getFloat (index)
getinteger (index)
getlRISList (index)
getString (index)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:

e index — optional int specifying the index (one-based) of the new cursor location

remove()

IRISList.remove() removes the element at index from the list and returns the IRISList object.
remove (index)

returns: self (the IRISList object)
parameters:

e index — int specifying the index (one-based) of the element to remove

set()
IRISList.set() replaces the list element at index with value and returns the IRISList object.
If value is an array, each array element is inserted into the list, starting at index, and any existing list elements
after index are shifted to make room for the new values.

44 Using the Native SDK for Python

Class iris.IRISConnection

If index is beyond the end of the list, value will be stored at index and the list will be padded with nulls up to that
position. Throws IndexOutOfBoundsException if index is less than 1.

set (index, value)

returns: self (the IRISList object)
parameters:
» index — int specifying the index (one-based) of the list element to be set

» value — Object value or Object array to insert at index. Objects can be any supported type.

size()

IRISList.size() returns the byte length of the serialized value for this IRISList.
size O

returns: int

7.4 Class iris.IRISConnection

Instances of IRISConnection are created by calling package method iris.connect(). See “iris Package Methods” for details
about creating and using connections.

close()

IRISConnection.close() closes the connection to the iris instance if it is open. Does nothing if the connection is
already closed.

connection.close()

returns: self

isClosed()

IRISConnection.isClosed() returns True if the connection was successful, or False otherwise.
connection.isClosed()
returns: bool
isUsingSharedMemory()
IRISConnection.isUsingSharedM emory() returns True if the connection is open and using shared memory.
connection. isUsingSharedMemory()
returns: bool

Properties

The hostname, port, namespace, timeout, and logfile from the last successful connection attempt are saved as
properties of the connection object.

Using the Native SDK for Python 45

Native SDK for Python Quick Reference

7.5 Class Iris.IRISObject

Class iris.IRISObject provides methods to work with External Server inverse proxy objects (see “Controlling Database
Objects from Python™ for details and examples).

If the called method or function returns an object that is a valid OREF, an inverse proxy object (an instance of IRISObject)
for the referenced object will be generated and returned. For example, classM ethodObject() will return a proxy object for
an object created by % New().

7.5.1 IRISODbject Constructor

The IRISObject constructor takes the following parameters:
IRISObject(connection, oref)

parameters:
* connection — an IRISConnection object

« oref — the OREF of the database object to be controlled.

7.5.2 IRISObject Method Details

close()

IRISObject.close() releases this instance of IRISObject.
close O

returns: self

get()

IRISObject.get() fetches a property value of the proxy object. Returns None for IRIS empty string ($$$NULLOREF);
otherwise, returns a variable of a type corresponding to the ObjectScript datatype of the property.

get (propertyName)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:

e property_name — name of the property to be returned.

get() Typecast Methods

All of the IRISObject.get() typecast methods listed below work exactly like IRISObject.get(), but also cast the
return value to a specific type. They all return None for IRIS empty string ($$$NULLOREF), and otherwise return
a value of the specified type.

getBoolean (propertyName)
getBytes (propertyName)
getDecimal (propertyName)
getFloat (propertyName)
getinteger (propertyName)
getlRISList (propertyName)
getString (propertyName)
getObject (propertyName)

46 Using the Native SDK for Python

Class iris.IRISObject

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:

e property_name — name of the property to be returned.

getConnection()

IRISObject.getConnection() returns the current connection as an IRISConnection object.
getConnection ()

returns: an IRISConnection object

getORER()
IRISObject.get OREF() returns the OREF of the database object mapped to this IRISObject.

getOREF O

returns: OREF

invoke()

IRISObject.invoke() invokes an instance method of the object, returning a variable of a type corresponding to the
ObjectScript datatype of the property.

invoke (methodName, args)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:
* method_name — name of the instance method to be called.

* *args — zero or more arguments of supported types.
Also see invokeVoid(), which is similar to invoke() but does not return a value.

invoke() Typecast Methods

All of the IRISObject.invoke() typecast methods listed below work exactly like IRISObject.invoke(), but also cast
the return value to a specific type. They all return None for IRIS empty string ($$$NULLOREF), and otherwise
return a value of the specified type.

invokeBoolean (methodName, args)
invokeBytes (methodName, args)
invokeDecimal (methodName, args)
invokeFloat (methodName, args)
invokelnteger (methodName, args)
invokelRISList (methodName, args)
invokeString (methodName, args)
invokeObject (methodName, args)

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None
parameters:
e method_name — name of the instance method to be called.

* *args — zero or more arguments of supported types.

Also see invokeVoid(), which is similar to invoke() but does not return a value.

Using the Native SDK for Python 47

Native SDK for Python Quick Reference

invokeVoid()

IRISObject.invokeVoid() invokes an instance method of the object, but does not return a value.
invokeVoid (methodName, args)

parameters:
* method_name — name of the instance method to be called.

e *args — zero or more arguments of supported types.

set()
IRISObject.set() sets a property of the proxy object.

set (propertyName, propertyValue)

parameters:
* property_name — name of the property to which value will be assigned.

« value — property value to assign. Value can be any supported type.

7.6 Class iris.IRISReference

The iris.IRISReference class provides a way to use pass-by-reference arguments when calling database classmethods. See
“Passing Arguments by Reference” for details and examples.

7.6.1 IRISReference Constructor

The IRISReference constructor takes the following parameters:
IRISReference(value, type = None)

parameters:
» value — initial value of the referenced argument.

* type — optional Python type used as a type hint for unmarshaling modified value of the argument. Supported types
are bool, bytes, bytearray, Decimal, float, int, str, IRISList, or None. If None is specified, uses the type that matches the
original database type

7.6.2 IRISReference Method Details

get_type() [deprecated]

IRISReference.get_type() is deprecated. Use one of the getValue() Typecast Methods to get a return value of the
desired type.

get_type O

get value() [deprecated]

IRISReference.get_valug() is deprecated. Use getValue() or the getObject() instead.

48 Using the Native SDK for Python

Class iris.IRISGlobalNode

getValue()

IRISReference.getValue() returns the value of the referenced parameter as a type corresponding to the datatype
of the database value.

getvalue O

returns: value of the referenced parameter

getValue() Typecast Methods

All of the IRISReference.getValue() typecast methods listed below work exactly like IRISReference.getValue(),
but also cast the return value to a specific type.

getBoolean
getBytes ()
getDecimal O
getFloat ()
getinteger O
getlIRISList O
getString ()
getObject ()

returns: bool, bytes, bytearray, int, float, Decimal, str, IRISList, Object, or None

set_type() [deprecated]

IRISReference.set_type() is deprecated. There is an option to set the type when calling the IRISReference.
set_type (type)

setValue()

IRISReference.setValue() sets the value of the referenced argument.
setValue (value)

parameters:

» value — value of this IRISReference object

set_value() [deprecated]

IRISReference.set_value() is deprecated. Use setValue() instead.

7.7 Class iris.IRISGlobalNode

IRISGlobalNode provides an iterable interface that behaves like a virtual dictionary representing the immediate children of
a global node. It is iterable, sliceable, reversible, and indexable, with support for views and membership tests.

* IRISGlobalNode supports an iterable interface:

For example, the following for loop will list the subscripts of all child nodes:

for x in node:
print(x)

* IRISGlobalNode supports views:

Using the Native SDK for Python 49

Native SDK for Python Quick Reference

Methods keys(), subscripts(), values(), items(), and nodes() return IRISGlobalNodeView view objects. They provide
specific views on the IRISGlobalNode entries which can be iterated over to yield their respective data, and they support
membership tests. For example, the items() method returns a view object containing a list of subscript-value pairs:

for sub, val in node.items():
print("“subscript:*",sub,” value:", val)

* |RISGlobalNode is sliceable:

Through standard Python slicing syntax, IRISGlobalNode can be iterated over a more restricted ranges of subscripts.
node[start:stop:step]

This results in a new IRISGlobalNode object with the subscript range limited to from start (inclusive) to stop (exclusive).
step can be 1 or -1, meaning traversing in forward direction or in reversed direction.

* |RISGlobalNode is reversible:

If the "step™ variable is -1 in the slicing syntax, the IRISGlobalNode will iterate backwards - reversed from the standard
order. For example, the following statement will traverse the subscripts from 8 (inclusive) to 2 (exclusive):

for x in node[8:2:-1]: print(x)

* IRISGlobalNode is indexable and supports membership tests

For example, given a child node with subscript X, the node value can be set with node[x] = y and returned with z
= node[x]. A membership test with x in node will return a boolean.

7.7.1 IRISGlobalNode Constructor

Instances of IRISGlobalNode can be created by calls to IRIS.node(), IRISGlobalNode.node(), or IRISGlobalNode.nodes().

7.7.2 IRISGlobalNode Method Details

get()

iris.IRISGlobalNode.get() returns the value of a node at the specified subscript. Returns default_value if the node
is valueless or does not exist. .

get (subscript, default_value)

parameters:
e subscript — subscript of the child node containing the value to retrieve

» default_value — value to return if there is no value at the specified subscript

items()

iris.IRISGlobalNode.items() returns a view yielding subscript-value tuples for all child nodes of this node.
items O

returns: IRISGlobalNodeView object yielding subscript-value tuples

50 Using the Native SDK for Python

Class iris.IRISGlobalNodeView

keys()
iris.IRISGlobalNode.keys() returns a view yielding subscripts for all child nodes of this node. Identical to subscripts().
keys O
returns: IRISGlobalNodeView object yielding only subscripts.

node()
iris.IRISGlobalNode.node() returns an IRISGlobalNode object representing the child node at the specified subscript.
node (subscript)

returns: IRISGlobalNode object
parameters:

* subscript — subscript of the desired child node

nodes()

iris.IRISGlobalNode.nodes() returns a view yielding an IRISGlobalNode object for each child node of this node.
nodes ()
returns: IRISGlobalNodeView object yielding IRISGlobalNode objects

subscripts()

iris.IRISGlobalNode.subscripts() returns a view yielding subscripts for all child nodes of this node. Identical to
keys().

subscripts
returns: IRISGlobalNodeView object yielding only subscripts.

values()

iris.IRISGlobalNode.values() returns a view yielding values for all child nodes of this node. Returns None if a node
does not have a value.

values

returns: IRISGlobalNodeView object yielding only values.

7.8 Class iris.IRISGlobalNodeView

Class iris.IRISGlobalNodeView implements view objects for IRISGlobalNode which can be iterated over to yield data from
the child nodes. IRISGlobalNodeView objects are returned by IRISGlobalNode methods keys(), subscripts(), values(),
items(), and nodes().

Using the Native SDK for Python 51

Native SDK for Python Quick Reference

7.9 Legacy Support Classes

These classes have been retained to allow legacy applications to run without alteration. They should never be used in new
code, and legacy code should work without any changes.

7.9.1 Class iris.Legacylterator [deprecated]
This class is included only for backward compatibility. Class iris.Legacylterator allows code that was written with the dep-
recated irisnative.Iterator class to continue working without any changes.

New code should always use the iris.IRISGlobalNode class instead.

7.9.1.1 Legacylterator Method Details

next() [deprecated]

iterator.next() positions the iterator at the next child node and returns the node value, the node subscript, or a tuple
containing both, depending on the currently enabled return type (see below). Throws a Stoplteration exception if
there are no more nodes in the iteration.

iterator._next()

returns: node information in one of the following return types:

e subscript and value (default) — atuple containing the subscript and value of the next node in
the iteration. The subscript is the first element of the tuple and the value is the second. Enable this type by
calling items() if the iterator is currently set to a different return type.

* subscript only — Enable this return type by calling subscripts().
* value only — Enable this return type by calling values().

startFrom() [deprecated]

iterator.startFrom() returns the iterator with its starting position set to the specified subscript. The iterator will
not point to a node until you call next(), which will advance the iterator to the next child node after the position

you specify.
iterator.startFrom(subscript)
returns: calling instance of iterator

parameter:

e subscript — asingle subscript indicating a starting position.

Calling this method with None as the argument is the same as using the default starting position, which is just
before the first node, or just after the last node, depending on the direction of iteration.

reversed() [deprecated]

iterator.rever sed() returns the iterator with the direction of iteration reversed from its previous setting (direction
is set to forward iteration when the iterator is created).

iterator.reversed()

52 Using the Native SDK for Python

Legacy Support Classes

returns: same instance of iterator

subscripts() [deprecated]

iterator.subscripts() returns the iterator with its return type set to subscripts-only.
iterator.subscripts()

returns: same instance of iterator

values() [deprecated]

iterator.values() returns the iterator with its return type set to values-only.
iterator.values()

returns: same instance of iterator

items() [deprecated]

iterator.items() returns the iterator with its return type set to a tuple containing both the subscript and the node
value. The subscript is the first element of the tuple and the value is the second. This is the default setting when
the iterator is created.

iterator.items(Q)

returns: same instance of iterator

7.9.1.2 Legacy Iteration Example

In the following example, iterDogs is set to iterate over child nodes of global array heroes(‘dogs"). Since the subscripts()
method is called when the iterator is created, each call to next() will return only the subscript for the current child node.
Each subscript is appended to the output variable, and the entire list will be printed when the loop terminates. A Stoplteration
exception is thrown when there are no more child nodes in the sequence.

Use next() to list the subscripts under node heroes(‘dogs')

Get a list of child subscripts under node heroes("dogs®)
iterDogs = irispy.iterator(“heroes”, "dogs”).subscripts()
output = "\nSubscripts under node heroes("dogs"): "
try:
while True: output += "%s " % iterDogs.next()
except Stoplteration: # thrown when there are no more child nodes
print(output + "\n*)

This code prints the following output:

Subscripts under node heroes("dogs®): Balto Hachiko Lassie Whitefang

7.9.2 class irisnative.IRISNative [deprecated]

This class is included only for backward compatibility. Class irisnative.IRISNative allows code that was written with the
deprecated irisnative connection methods to continue working without any changes.

The old createConnection() and createl R1 S() methods are now exposed as iris package methods connect() and createl RI S()
(see “iris™), which should always be used in new code.

createConnection() [deprecated]

Replace this method with iris package method iris.connect().

Using the Native SDK for Python 53

Native SDK for Python Quick Reference

IRISNative.createConnection() attempts to create a new connection to an IRIS instance. Returns a new connection
object. The object will be open if the connection was successful, or closed otherwise).

irisnative.createConnection(hostname, port,namespace,username,password, timeout,sharedmemory, logfile)

irisnative.createConnection(connectionstr,username,password, timeout,sharedmemory, logfile)

The hostname, port, namespace, timeout, and logfile from the last successful connection attempt are saved as
properties of the connection object.

returns: a new instance of connection

parameters: Parameters may be passed by position or keyword.

hostname — str specifying the server URL

port — int specifying the superserver port number

namespace — str specifying the namespace on the server

The following parameter can be used in place of the hostname, port, and namespace arguments:

— connectionstr — str of the form host nane:port Znanespace.

username — str specifying the user name
password — str specifying the password

timeout (optional) — int specifying maximum number of milliseconds to wait while attempting the connec-
tion. Defaults to 10000.

sharedmemory (optional) — specify bool True to attempt a shared memory connection when the hostname
is localhost or 127.0.0.1. Specify False to force a connection over TCP/IP. Defaults to True.

logfile (optional) — str specifying the client-side log file path. The maximum path length is 255 ASCII
characters.

createlris() [deprecated]

Replace this method with iris package method iris.createl RI S().

IRISNative.createl ris() returns a new instance of IRIS that uses the specified connection. Throws an exception if
the connection is closed.

irisnative.createlris(conn)

returns: a new instance of IRIS

parameter:

conn — object that provides the server connection

54

Using the Native SDK for Python

	Table of Contents
	1 Introduction to the Native SDK for Python
	2 Calling Database Methods and Functions from Python
	2.1 Calling Class Methods from Python
	2.2 Calling Functions and Procedures from Python
	2.3 Passing Arguments by Reference

	3 Controlling Database Objects from Python
	3.1 Introducing the Python External Server
	3.2 Creating Python Inverse Proxy Objects
	3.3 Controlling Database Objects with IRISObject

	4 Accessing Global Arrays with Python
	4.1 Introduction to Global Arrays
	4.1.1 Glossary of Global Array Terms
	4.1.2 Global Naming Rules

	4.2 Fundamental Node Operations
	4.3 Iteration with nextSubscript() and isDefined()

	5 Managing Transactions and Locking with Python
	5.1 Processing Transactions in Python
	5.2 Concurrency Control with Python

	6 Using the Python DB-API
	6.1 Usage
	6.2 PEP 249 Implementation Reference
	6.2.1 Globals
	6.2.2 Connection Object
	6.2.3 Cursor Object

	6.3 SQLType enumeration values

	7 Native SDK for Python Quick Reference
	7.1 iris Package Methods
	7.1.1 Creating a Connection in Python
	7.1.2 iris Package Method Details

	7.2 Class iris.IRIS
	7.2.1 IRIS Method Details

	7.3 Class iris.IRISList
	7.3.1 IRISList Constructors
	7.3.2 IRISList Method Details

	7.4 Class iris.IRISConnection
	7.5 Class iris.IRISObject
	7.5.1 IRISObject Constructor
	7.5.2 IRISObject Method Details

	7.6 Class iris.IRISReference
	7.6.1 IRISReference Constructor
	7.6.2 IRISReference Method Details

	7.7 Class iris.IRISGlobalNode
	7.7.1 IRISGlobalNode Constructor
	7.7.2 IRISGlobalNode Method Details

	7.8 Class iris.IRISGlobalNodeView
	7.9 Legacy Support Classes
	7.9.1 Class iris.LegacyIterator [deprecated]
	7.9.2 class irisnative.IRISNative [deprecated]

