
Using APIs for External
Messaging Platforms

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using APIs for External Messaging Platforms
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Using the Messaging APIs .. 1
1.1 Connecting to a Messaging Platform ... 1
1.2 Creating Topics/Queues .. 2
1.3 Sending Messages .. 2
1.4 Receiving Messages ... 3
1.5 Deleting Topics/Queues .. 3
1.6 Disconnecting from a Messaging Platform .. 4

2 Using the JMS Messaging API .. 5
2.1 Connecting to JMS ... 5
2.2 JMS Producers .. 6
2.3 JMS Consumers .. 7
2.4 Working with Queues and Topics ... 7

2.4.1 Create or Delete an Queue ... 8
2.4.2 Create or Delete a Topic ... 8

2.5 Close Client .. 8

3 Using the Kafka Messaging API .. 11
3.1 Connecting to Kafka ... 11
3.2 Kafka Producers ... 12
3.3 Kafka Consumers ... 13
3.4 Defining AdminClient Configs .. 14
3.5 Working with Topics ... 14

3.5.1 Delete a Topic ... 15
3.6 Close Client .. 15

4 Using the RabbitMQ Messaging API .. 17
4.1 Connecting to RabbitMQ ... 17
4.2 RabbitMQ Publishers ... 18
4.3 RabbitMQ Consumers .. 19
4.4 Working with Exchanges and Queues .. 20

4.4.1 Create or Delete an Exchange .. 20
4.4.2 Create or Delete a Queue ... 20
4.4.3 Bind a Queue to an Exchange .. 21

4.5 Close Client .. 21

5 Using the Amazon SNS Messaging API .. 23
5.1 Connecting to Amazon SNS ... 23
5.2 Amazon SNS Publishers ... 24
5.3 Working with Topics ... 24
5.4 Close Client .. 25

6 Using the Amazon SQS Messaging API .. 27
6.1 Connecting to Amazon SQS ... 27
6.2 Amazon SQS Producers ... 28
6.3 Amazon SQS Consumers ... 29
6.4 Working with Queues ... 30
6.5 Close Client .. 31

Using APIs for External Messaging Platforms iii

1
Using the Messaging APIs

InterSystems IRIS provides messaging APIs that can be used to communicate directly with a variety of messaging platforms:
JMS, Kafka, RabbitMQ, Amazon Simple Notification Service (SNS), and Amazon Simple Queue Service (SQS). These
API classes are available in the %External.Messaging package.

Most of the code flow is the same regardless of the platform. This page discusses this common flow and the common classes
and methods. Other articles provide details for specific messaging platforms; see the links above.

(In addition to the APIs described in this page, InterSystems provides specialized classes for use in interoperability produc-
tions. These classes enable productions to communicate directly with the same messaging platforms; follow the links above
for details.)

1.1 Connecting to a Messaging Platform
Before you can send or receive messages, your code needs to:

1. Create a settings object, which contains information about connecting to the platform. This object is an instance of one
of the settings classes. InterSystems provides a set of platform-specific settings classes, which are all subclasses of
%External.Messaging.Settings. Create an instance of the applicable class and set its properties as needed.

For example (Kafka):

ObjectScript

 Set settings = ##class(%External.Messaging.KafkaSettings).%New()
 Set settings.username = "amandasmith"
 Set settings.password = "234sdsge"
 Set settings.servers = "100.0.70.179:9092, 100.0.70.089:7070"
 Set settings.clientId = "BazcoApp"
 // If Consumer, specify a consumer group
 Set settings.groupId = "G1"

2. Create the messaging client object, which is also specific to the platform. This object is an instance of one of the client
classes, which are all subclasses of %External.Messaging.Client.

To create the messaging client object, call the CreateClient() method of %External.Messaging.Client, passing the settings
object as the first argument. For example:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 // if tSC is an error, handle error scenario

Using APIs for External Messaging Platforms 1

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

CreateClient() returns an instance of the appropriate client class. For example, if the settings variable is an instance
of %External.Messaging.KafkaSettings, the returned object is an instance of %External.Messaging.KafkaClient.

Similarly, if settings is an instance of %External.Messaging.SNSSettings, the returned object is an instance of
%External.Messaging.SNSClient.

1.2 Creating Topics/Queues
Before you can send messages, you may need a topic or queue depending on which is relevant to your specific messaging
platform.

Platform-specific settings for a topic/queue are passed into the common method as a string, but these settings are defined
using an object, so the object’s ToJSON() method must be called when passing in the settings. The following code creates
a new Kafka topic using the common method:

ObjectScript

 Set topic = "quick-start-events"
 Set queueSettings = ##class(%External.Messaging.KafkaTopicSettings).%New()
 Set queueSettings.numberOfPartitions = 1, queueSettings.replicationFactor = 1
 Set tSC = client.CreateQueueOrTopic(topic, queueSettings.ToJSON())

Be aware that some messaging platforms have their own method for creating a topic/queue that may include advanced
capabilities.

1.3 Sending Messages
Once you have a messaging client object and any relevant topic/queue object, call the methods of the client object to send
messages, as follows:

1. Create a message object, which is an instance of a message class. InterSystems provides a set of platform-specific
message classes, which are all subclasses of %External.Messaging.Message.

For example (Kafka):

ObjectScript

 Set msg = ##class(%External.Messaging.Messaging).%New()
 Set msg.topic = "quick-start-events"
 Set msg.value = "body of the message"
 Set msg.key = "somekey"

2. Call the SendMessage() method of the client object, passing the message object as the argument. For example:

ObjectScript

 Set tSC = client.SendMessage(msg)
 // if tSC is an error, handle error scenario

The method returns a status code, which your code should check before proceeding.

2 Using APIs for External Messaging Platforms

Using the Messaging APIs

3. When your application no longer needs a topic/queue, your code can safely delete it using the DeleteTopicOrQueue()

method of the client object.

ObjectScript

 Do client.DeleteQueueOrTopic(topic)

Be aware that some messaging platforms have their own method for deleting a topic/queue that may include advanced
capabilities.

1.4 Receiving Messages
For messaging platforms that can receive messages, use the ReceiveMessage() method of the client object to receive messages.
The first argument for this method is the name of the topic/queue. The second argument is an instance of %ListOfObjects.
The method returns messages by reference using this second argument.

ReceiveMessage() also accepts a JSON-formatted string of settings as an optional third argument. Available settings vary
by platform, and are defined as properties of the ReceiveSettings class for each platform. To define these settings, create
a new instance of the ReceiveSettings class and set properties as desired. Then, use the ToJSON() method inherited by the
ReceiveSettings object to provide these settings to the ReceiveMessage() method.

The ReceiveMessage() method returns a status code, which your program should check before it continues.

In the following example, a JMS client (client) receives messages from a JMS queue (queue), with the timeout for message
retrieval set to 200 milliseconds:

ObjectScript

 Set rset = ##class(%External.Messaging.JMSReceiveSettings).%New()
 Set rset.receiveTimeout = 200

 #dim messages As %ListOfObjects
 Set tSC = client.ReceiveMessage(queue, .messages, rset.ToJSON())
 // if tSC is an error, handle error scenario

The %ListOfObjects instance messages contains the messages obtained from the topic/queue.

1.5 Deleting Topics/Queues
When your application no longer needs a topic/queue, your code can safely delete it using the DeleteTopicOrQueue() method
of the client object.

ObjectScript

 Do client.DeleteQueueOrTopic(topic)

Be aware that some messaging platforms have their own method for deleting a topic/queue that may include advanced
capabilities.

Using APIs for External Messaging Platforms 3

Receiving Messages

1.6 Disconnecting from a Messaging Platform
When your code is done communicating with the messaging platform, call the Close() method of the client object. For
example:

ObjectScript

 Do:client'="" client.Close()

4 Using APIs for External Messaging Platforms

Using the Messaging APIs

2
Using the JMS Messaging API

InterSystems provides an API you can use to produce and consume messages using a Java Messaging Service (JMS). Your
code acts as a producer or consumer by creating a client, then calling the client’s methods to perform actions like sending
and receiving messages. InterSystems IRIS also provides methods to create and delete JMS queues and topics.

The JMS API is based on the common messaging classes that are shared by other messaging platforms. This page describes
platform-specific variations in the work flow which these common classes establish.

In addition to the API described here, InterSystems provides specialized classes that you can use to send messages to a
JMS and retrieve messages from a JMS as part of an interoperability production.

2.1 Connecting to JMS
To create a connection to a JMS application:

1. Create a settings object. To do this, create an instance of %External.Messaging.JMSSettings and set its properties as
needed:

ObjectScript

 Set settings = ##class(%External.Messaging.JMSSettings).%New()
 Set settings.url = "messaging.bazco.com"
 Set settings.connectionFactoryName = "connectionFactory"
 Set settings.initialContextFactoryName = "eventContextFactory"
 Set settings.username = "briannawaller"
 Set settings.password = "824yvpi"

For a full list of the properties available, see the JMSSettings class reference page.

2. Create the messaging client object. To do this, call the CreateClient() method of the generic %External.Messaging.Client

class, passing the settings object as the first argument. For example:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 If $$$ISERR(tSC) {
 //handle error scenario
 }

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

Because the settings object is an instance of %External.Messaging.JMSSettings, the returned object (client) is an instance
of %External.Messaging.JMSClient.

Using APIs for External Messaging Platforms 5

2.2 JMS Producers
InterSystems IRIS can act as a producer within a JMS application by calling API methods to create messages and then send
them. If you need to create the queues or topics which will route your messages, see Working with Queues and Topics.
The following flow uses the client object to interact with a JMS application as a producer:

Set Message Properties (Optional)

The JMS specification allows you to attach a variety of metadata to a message, using both specified message
headers and custom message properties. To create and set properties for a JMS message, you must create a
%ListOfObjects collection of JMS message property objects. A JMS message object (described in the next section)
accepts this list as an optional property. For each message property you want to define:

1. Create a new instance of the %External.Messaging.JMSMessageProperty object.

2. Set the properties of the message property object:

• key, the message property key

• type, the data type of the message property value

• value, a string representation of the message property value

3. Add the message property object to your list of message property objects.

Refer to the JMS documentation for more information about message properties. The following example prepares
a custom time stamp property:

ObjectScript

 Set propList = ##class(%ListOfObjects).%New()

 Set key = "odbcUtcTimestamp"
 Set type = "String"
 Set value = $zdatetime($horolog, 3, 8)

 Set msgProp1 = ##class(%External.Messaging.JMSMessageProperty).%New()
 Set msgProp1.key = key
 Set msgProp1.type = type
 Set msg.value = value

 Set tSC = propList.Insert(msgProp1)

Create Message

To prepare a message to be sent, create a new instance of the %External.Messaging.JMSMessage object. Then,
define properties for that message object. You must specify the name of the destination and the type ("Text" or
"Bytes") of the message. Depending on the message type, use the textBody property or the bytesBody property
to set the message body. If you have created a list of message property objects as described in the previous section,
provide that list as the properties property.

ObjectScript

 Set destination = "quick-start-events-queue"
 Set type = "Text"
 Set textBody = "MyMessage"

 Set msg = ##class(%External.Messaging.JMSMessage).%New()
 Set msg.destination = destination
 Set msg.type = type
 Set msg.textBody = textBody
 Set msg.properties = propList

6 Using APIs for External Messaging Platforms

Using the JMS Messaging API

https://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html#bnces

Send Message

After creating a message, you can send it to the destination queue or topic by executing the SendMessage() method
for the JMS client object. For example:

ObjectScript

 set tSC = client.SendMessage(msg)
 if $$$ISERR(tSC) {
 //handle error scenario
 }

2.3 JMS Consumers
InterSystems IRIS can act as an a consumer within a JMS application by calling an API method to retrieve messages for a
topic. The following flow uses the client to interact with a JMS application as a consumer:

Configure Settings for Message Retrieval (Optional)

The JMS client object can use the ReceiveMessage() method to act as a consumer of JMS messages. This method
allows you to specify settings for the message retrieval operation by providing a JSON-formatted string as an
optional argument. To do so, create a new instance of the %External.Messaging.JMSReceiveSettings class and set
properties as desired. The following properties are available:

• receiveTimeout, an integer specifying the duration of time (in milliseconds) before the retrieval operation
times out. If not set, the default value is 100.

• subscriber (optional), a string containing a subscriber name to identify the client

For example:

ObjectScript

 Set rset = ##class(%External.Messaging.JMSReceiveSettings).%New()
 Set rset.receiveTimeout = 200

Retrieve Messages

To retrieve messages, invoke the ReceiveMessage() method inherited by the JMS client object. This method takes
the name of a queue or a topic as an argument and returns messages as a %ListOfObjects by reference. If you have
specified message retrieval settings as described in the preceding section, provide these settings as a third argument
using the ToJSON() method for the settings object.

ObjectScript

 #dim messages As %ListOfObjects
 Set tSC = client.ReceiveMessage(queue, .messages, rset.ToJSON())

2.4 Working with Queues and Topics
InterSystems IRIS provides an API to manage destinations for JMS messages. For point-to-point messaging, you can create
or delete a queue. For publisher-to-subscriber messaging, you can create or delete a topic.

Using APIs for External Messaging Platforms 7

JMS Consumers

2.4.1 Create or Delete an Queue

Create an Queue

A JMS client object includes a CreateQueue() method for creating a queue. CreateQueue() accepts the queue
name as an argument:

ObjectScript

 Set queueName = "quick-start-events"

 Set tSC = client.CreateQueue(queueName)

As an alterative, you can create the queue with a method that is common to all messaging platforms. See
%External.Messaging.Client.CreateQueueOrTopic() for details.

Delete an Queue

You can delete a JMS queue with a method that is common to client objects for all messaging platforms supported
by the API. See %External.Messaging.Client.DeleteQueueOrTopic() for details.

ObjectScript

 Set tSC = client.DeleteQueueOrTopic(queueName)

2.4.2 Create or Delete a Topic

Create a Topic

A JMS client object includes a CreateTopic() method for creating a topic. CreateTopic() accepts the topic name
as an argument:

ObjectScript

 Set topicName = "alerts_urgent"

 Set tSC = client.CreateTopic(topicName)

As an alterative, you can create the topic with a method that is common to all messaging platforms. See %Exter-
nal.Messaging.Client.CreateQueueOrTopic() for details.

Delete a Topic

You can delete a JMS topic with a method that is common to client objects for all messaging platforms supported
by the API. See %External.Messaging.Client.DeleteQueueOrTopic() for details.

ObjectScript

 Set tSC = client.DeleteQueueOrTopic(topicName)

2.5 Close Client
An InterSystems IRIS application that is done communicating with a JMS application should close the client with the
Close() method for the client object. For example:

8 Using APIs for External Messaging Platforms

Using the JMS Messaging API

ObjectScript

 Do:client'="" client.Close()

Using APIs for External Messaging Platforms 9

Close Client

3
Using the Kafka Messaging API

InterSystems provides an API you can use to produce and consume Kafka messages. Your code acts as a producer or consumer
by creating a client, then calling the client’s methods to perform actions like sending and receiving messages. InterSystems
IRIS also provides methods to create and delete Kafka topics.

The Kafka API is based on the common messaging classes that are shared by other messaging platforms. This page describes
platform-specific variations in the work flow these common classes establish.

In addition to the API described here, InterSystems provides specialized classes that you can use in interoperability produc-
tions. These classes enable your productions to send messages to Kafka and retrieve messages from Kafka.

3.1 Connecting to Kafka
To create a connection to Kafka:

1. Create a settings object. To do this create an instance of %External.Messaging.KafkaSettings and set its properties as
needed. Most of the properties, listed below, apply to both producers and consumers; the exception is the groupId setting,
which is used only to assign a consumer to a consumer group.

• username and password define the client's Kafka credentials.

• servers defines a comma-separated list of IP address:port entries that identify servers in your Kafka broker cluster.

• clientId optionally defines the client ID of the Kafka producer or consumer.

• groupId defines the consumer group ID of a Consumer.

• securityprotocol specifies the security protocol which secures connections to your Kafka broker cluster. Currently,
this property supports two values:

– SASL_PLAINTEXT, which performs SASL authentication of the client over an unencrypted channel.

– SASL_SSL, which uses the truststore and keystore information you provide to establish an SSL/TLS connection
over which SASL authentication takes place.

• saslmechanism specifies the SASL authentication mechanism used to authenticate the client. Currently, only
PLAIN is supported.

• truststorelocation (optional) specifies the file system path to the truststore which contains the certificate authority
certificates necessary to validate a certificate from your Kafka broker cluster and establish an SSL/TLS connection.

• truststorepassword (optional) defines the password which provides access to the truststore at the location specified
by truststorelocation.

Using APIs for External Messaging Platforms 11

• keystorelocation (optional) specifies the file system path to the keystore which contains the keys necessary to
establish an SSL/TLS connection with your Kafka broker cluster.

• keystorepassword (optional) defines the password which provides access to the keystore at the location specified
by keystorelocation.

• keypassword (optional) defines the password which provides access to a private key within the keystore at the
location specified by keystorelocation.

For example:

ObjectScript

 Set settings = ##class(%External.Messaging.KafkaSettings).%New()
 Set settings.username = "amandasmith"
 Set settings.password = "234sdsge"
 Set settings.servers = "100.0.70.179:9092, 100.0.70.089:7070"
 Set settings.clientId = "BazcoApp"
 // If Consumer, specify a consumer group
 Set settings.groupId = "G1"
 Set settings.securityprotocol="SASL_SSL"
 Set settings.saslmechanism="PLAIN"
 Set settings.truststorelocation="/etc/kafkatls/trustcerts.jks"
 Set settings.truststorepassword="F00B&r!"

2. Create the messaging client object. To do this, call the CreateClient() method of %External.Messaging.Client, passing
the settings object as the first argument. For example:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 // if tSC is an error, handle error scenario

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

Because the settings object is an instance of %External.Messaging.KafkaSettings, the method returns an instance of
%External.Messaging.KafkaClient for client.

3.2 Kafka Producers
InterSystems IRIS can act as a Kafka producer by calling API methods to create messages and send them. If the application
needs to create the topic where messages will be sent, see Working with Topics. The following flow uses the client to
interact with Kafka as a producer:

Configure Client as Producer (Optional)

After creating the Kafka client but before sending messages, the application can customize the Producer using
standard Apache ProducerConfig configuration options. The client defaults to a standard Producer configuration,
but modifications can be made by passing the Apache options as a JSON string to the UpdateProducerConfig()
method. For a list of supported options, refer to the Apache Kafka documentation. For example, the following
code configures the Kafka client with an Apache configuration option:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(kafkaSettings, .tSC)

 Set producerSettings =
"{""key.serializer"":""org.apache.kafka.common.serialization.StringSerializer""}"
 Set tSC = client.UpdateProducerConfig(producerSettings)

12 Using APIs for External Messaging Platforms

Using the Kafka Messaging API

https://kafka.apache.org/documentation/#producerconfigs

Create Message

A message sent to Kafka must contain a topic and value, and can optionally contain a key, which acts as a tag for
the value. To prepare a message to be sent to a topic, create a new Kafka message object and then define these
properties. For example:

ObjectScript

 Set topic = "quick-start-events"
 Set value = "MyMessage", key = "OptionalTag"

 Set msg = ##class(%External.Messaging.KafkaMessage).%New()
 Set msg.topic = topic
 Set msg.value = value
 Set msg.key = key

To support Kafka configurations which allow for the exchange of messages which exceed the length of an Inter-
Systems IRIS %String, store your message content as an appropriately encoded binary stream using the property
binaryValue instead of value. The binaryValue property can be arbitrarily long.

Send Message

After creating a message, you can send it to the topic by executing the SendMessage() method. For example:

ObjectScript

 Set tSC = client.SendMessage(msg)

3.3 Kafka Consumers
InterSystems IRIS can act as a Kafka consumer by calling APIs to retrieve messages for a topic. Be sure to define the
groupId property when defining the settings of the client in order to identify the consumer group of the Consumer. The
following flow uses the client to interact with Kafka as a Consumer:

Configure Client as Consumer (Optional)

After creating the Kafka client but before retrieving messages, the application can customize the Consumer using
standard Apache ConsumerConfig configuration options. The client defaults to a standard Consumer configuration,
but modifications can be made by passing the Apache options as a JSON string to the UpdateConsumerConfig()
method. For a list of supported options, refer to the Apache Kafka documentation. For example, the following
code configures the Kafka client with an Apache configuration option:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(kafkaSettings, .tSC)

 Set consumerSettings =
"{""key.deserializer"":""org.apache.kafka.common.serialization.StringDeserializer""}"
 Set tSC = client.UpdateConsumerConfig(consumerSettings)

Configure Settings for Message Retrieval (Optional)

The Kafka client can use the ReceiveMessage() method to act as a Kafka Consumer. This method allows you to
set the poll timeout for the message retrieval operation (in milliseconds) by providing a JSON-formatted string as
an optional argument. If you wish to do so, create a new instance of the %External.Messaging.KafkaReceiveSettings

class and set the pollTimeout property:

Using APIs for External Messaging Platforms 13

Kafka Consumers

https://kafka.apache.org/documentation/#consumerconfigs

ObjectScript

 Set rset = ##class(%External.Messaging.KafkaReceiveSettings).%New()
 Set rset.pollTimeout = 500

If not set, the default poll timeout duration is 100 milliseconds.

Retrieve Messages

To retrieve messages, invoke the ReceiveMessage() method for the Kafka client. This method takes the name of
the topic as an argument and returns messages as a %ListOfObjects by reference. If you have specified message
retrieval settings using a KafkaReceiveSettings object (as described in the preceding section), provide these settings
as a third argument using the ToJSON() method for the settings object. Kafka returns only new messages, that
is, messages that have not been previously retrieved by the Consumer. For example, to retrieve and display messages
for a topic:

ObjectScript

 #dim messages As %ListOfObjects
 Set tSC = client.ReceiveMessage(topic, .messages, rset.ToJSON())

 For i=1:1:messages.Size {
 Set msg = messages.GetAt(i)
 Write "Message: ", msg.ToJSON(), !
 }

For messages which exceed the length of an InterSystems IRIS %String, the Kafka message class also includes a
binaryValue property which can store messages of arbitrary length as appropriately encoded binary streams.

3.4 Defining AdminClient Configs
An application can customize the Kafka client using standard Apache AdminClient Configs. The client defaults to a standard
configuration, but modifications can be made by passing the Apache options as a JSON string to the UpdateAdminConfig()
method. For a list of supported options, refer to the Apache Kafka documentation. For example:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(kafkaSettings, .tSC)

 Set adminSettings = "{""ssl.protocol"":""TLSv1.3""}"
 Set tSC = client.UpdateAdminConfig(adminSettings)

3.5 Working with Topics
InterSystems IRIS provides an API that can be used to create a new Kafka topic, and another that deletes a topic. When
creating a topic, the number of partitions and the replication factor are passed in as arguments. For an introduction to partitions
and replication factors, see the Apache Kafka documentation. To create a topic:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(kafkaSettings, .tSC)

 Set topic = "quick-start-events"
 Set numberOfPartitions = 1
 Set replicationFactor = 3
 Set tSC = client.CreateTopic(topic,numberOfPartitions,replicationFactor)

14 Using APIs for External Messaging Platforms

Using the Kafka Messaging API

https://kafka.apache.org/documentation/#adminclientconfigs
https://kafka.apache.org/documentation/

As an alterative, you can create the topic with a method that is common to all messaging platforms. When using this alter-
native, the topic settings are defined in an instance of the %External.Messaging.KafkaTopicSettings class and then passed
to the method as a JSON object using the ToJSON() method. See %External.Messaging.Client.CreateQueueOrTopic() for
details.

3.5.1 Delete a Topic

An application can delete a Kafka topic using the DeleteTopic() method.

ObjectScript

 Set tSC = client.DeleteTopic(topic)

As an alterative, you can delete the topic with a method that is common to all messaging platforms. See %External.Messag-
ing.Client.DeleteQueueOrTopic() for details.

3.6 Close Client
An InterSystems IRIS application that is done communicating with Kafka should close the client with the Close() method.
For example:

ObjectScript

 Do:client'="" client.Close()

Using APIs for External Messaging Platforms 15

Close Client

4
Using the RabbitMQ Messaging API

InterSystems provides an API you can use to publish and consume RabbitMQ messages. Your code acts as a publisher or
consumer by creating a client, then calling the client’s methods to perform actions like sending and receiving messages.
InterSystems IRIS also provides methods to manage RabbitMQ queues and exchanges, and to set bindings between the
two.

The RabbitMQ API is based on the common messaging classes that are shared by other messaging platforms. This page
describes platform-specific variations in the work flow which these common classes establish.

In addition to the API described here, InterSystems provides specialized classes that you can use to send messages to
RabbitMQ and retrieve messages from RabbitMQ as part of an interoperability production.

Note: The InterSystems RabbitMQ API corresponds with the RabbitMQ implementation of the AMQP 0–9–1 protocol.
To send and receive messages with an external messaging service using the AMQP 1.0 protocol, InterSystems
recommends connecting to a JMS implementation of the protocol such as Apache Qpid JMS. InterSystems provides
a JMS API for working with JMS applications.

4.1 Connecting to RabbitMQ
To create a connection to RabbitMQ:

1. Create a settings object. To do this create an instance of %External.Messaging.RabbitMQSettings and set its properties
as needed:

• username and password define the client's RabbitMQ credentials. If you do not set the value for these properties,
"guest" is provided as the default.

• host defines the name for the host server. If not defined, "localhost" is the default.

• port is an integer which defines the port number being used on the host server. The default is 5672.

• virtualHost optionally defines the name of the virtual host.

For example:

ObjectScript

 Set settings = ##class(%External.Messaging.RabbitMQSettings).%New()
 Set settings.username = "ronaldkellogg"
 Set settings.password = "449!ds%t"
 Set settings.host = "bazco.com"
 Set settings.port = 5693

Using APIs for External Messaging Platforms 17

https://qpid.apache.org/components/jms/index.html

2. (Optional.) If you want to connect to RabbitMQ using SSL/TLS, set the enableSSL property for the settings object to
1, and then set the following properties according to your TLS configuration:

• tlsVersion, a string that specifies the version of the TLS protocol you are using. The default value is "TLSv1.2"

• enableHostnameVerification, a boolean which determines whether the peer verification process includes a verification
that the hostname of the server matches the name on the server certificate

• clientKeyFile, a string specifying the path to the client’s private key file (if the server is configured to perform peer
verification)

• keyPassword, the password string which is required to access the client key file (if the key file is secured)

• keyStoreFile, a string specifying the path to the key store file

• keyStorePassword, the password string which is required to access the key store file (if the key store file is secured)

3. Create the messaging client object. To do this, call the CreateClient() method of the generic %External.Messaging.Client

class, passing the settings object as the first argument. For example:

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 If $$$ISERR(tSC) { //handle error scenario }

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

Because the settings object is an instance of %External.Messaging.RabbitMQSettings, the returned object (client) is an
instance of %External.Messaging.RabbitMQClient.

4.2 RabbitMQ Publishers
InterSystems IRIS can act as a RabbitMQ publisher by calling API methods to create messages and send them. If the
application needs to create the exchanges where messages will be sent or the queues where the exchanges will route them,
see Working with Exchanges and Queues. The following flow uses the client object to interact with RabbitMQ as a publisher:

Create Message

To prepare a message to be sent, create a new instance of the %External.Messaging.RabbitMQMessage object.
Then, define the properties for that message object as needed. For a full description of the available message
properties, refer to the RabbitMQ documentation. Set the content of the message by invoking the
SetEncodedContent() method (for UTF-8) or the SetContent() method (for other values of contentEncoding).
For example:

ObjectScript

set exchange = "events_handler"
set routingKey = "quick_start"
set deliveryMode = 2
set body = "MyMessage"

set msg = ##class(%External.Messaging.RabbitMQMessage).%New()
set msg.exchange = exchange
set msg.routingKey = routingKey
set msg.deliveryMode = deliveryMode
do msg.SetEncodedContent(body)

18 Using APIs for External Messaging Platforms

Using the RabbitMQ Messaging API

https://www.rabbitmq.com/publishers.html#message-properties

Send Message

After creating a message, you can send it to the topic by executing the SendMessage() method for the RabbitMQ
client object. For example:

ObjectScript

set tSC = client.SendMessage(msg)
if $$$ISERR(tSC) { //handle error scenario }

4.3 RabbitMQ Consumers
InterSystems IRIS can act as a RabbitMQ consumer by calling APIs to retrieve messages from a queue. The following flow
uses the client object to interact with RabbitMQ as a consumer:

Configure Settings for Message Retrieval (Optional)

The RabbitMQ client can use the ReceiveMessage() method to act as a RabbitMQ consumer. This method allows
you to specify settings for the message retrieval operation by providing a JSON-formatted string as an optional
argument. To do so, create a new instance of the %External.Messaging.RabbitMQReceiveSettings class and set
properties as desired. The following properties are available:

• autoAck, a boolean. If true, the server considers messages acknowledged automatically once they are delivered.
If false, the server expects explicit, manual acknowledgements from the consumer. If not set, autoAck defaults
to false.

• ackMultiple, a boolean. If true, a manual acknowledgement acknowledges the batch of all messages up to and
including the message corresponding to the delivery tag which the acknowledgement supplies. If false, an
acknowledgement only acknowledges the message corresponding to the delivery tag it supplies. If not set,
ackMultiple defaults to false.

For example:

ObjectScript

Set rset = ##class(%External.Messaging.RabbitMQReceiveSettings).%New()
Set rset.autoAck = 0

Retrieve Messages

To retrieve messages, invoke the ReceiveMessage() method inherited by the RabbitMQ client. This method takes
the name of a queue as an argument and returns messages as a %ListOfObjects by reference. If you have specified
message retrieval settings as described in the preceding section, provide these settings as a third argument using
the ToJSON() method. For example:

ObjectScript

 #dim messages As %ListOfObjects
 Set tSC = client.ReceiveMessage(queue, .messages, rset.ToJSON())

 For i=1:1:messages.Size {
 Set msg = messages.GetAt(i)
 Write "Message: ", msg.ToJSON(), !
 }

Using APIs for External Messaging Platforms 19

RabbitMQ Consumers

4.4 Working with Exchanges and Queues
InterSystems IRIS provides an API for managing RabbitMQ exchanges and queues. This includes:

• Creating or deleting an exchange

• Creating or deleting a queue

• Binding a queue to an exchange

This section describes how to use the API to perform these tasks. For a detailed explanation of exchanges and queues, refer
to the introduction to the AMQP 0–9–0 protocol which is provided in the RabbitMQ documentation.

4.4.1 Create or Delete an Exchange

Per the AMQP 0–9–0 specification, all RabbitMQ messages must be sent to an exchange, which routes them to their desti-
nation queue (or queues).

Create an Exchange

A RabbitMQ client object includes a CreateExchange() method for creating an exchange. CreateExchange()
accepts the following arguments, in order:

1. exchangeName, the name you wish to assign to the exchange.

2. exchangeType, a string specifying one of the four AMQP 0–9–1 exchange types: "direct", "fanout",
"topic", or "headers".

3. durable, a boolean. If true, the exchange survives after the server restarts. If false, the exchange must be created
again.

4. autoDelete, a boolean. If true, the exchange is deleted when all queues are unbound from it. If false, the
exchange persists.

For example:

Set exchangeName = "broadcast"
Set exchangeType = "fanout"
Set durable = 1
Set autoDelete = 0

Set tSC = client.CreateExchange(exchangeName, exchangeType, durable, autoDelete)

Delete an Exchange

An application can delete a RabbitMQ exchange by invoking the DeleteExchange() method of the RabbitMQ
client object, providing the name of the exchange as an argument.

Set tSC = client.DeleteExchange(exchangeName)

4.4.2 Create or Delete a Queue

A RabbitMQ consumer receives messages when an exchange routes them to a queue to which the consumer is subscribed.

Create a Queue

To create a queue, invoke the CreateQueue() method of the RabbitMQ client object. CreateQueue() accepts the
following arguments, in order:

20 Using APIs for External Messaging Platforms

Using the RabbitMQ Messaging API

https://www.rabbitmq.com/tutorials/amqp-concepts.html

1. queueName, the name you wish to assign to the queue.

2. durable, a boolean. If true, the queue persists after the server restarts. If false, the exchange must be created
again after a restart.

3. exclusive, a boolean. If true, the queue is used by only one connection and is deleted when the connection
closes.

4. autoDelete, a boolean. If true, the queue is deleted when all consumers unsubscribe. If false, the queue persists.

For example:

ObjectScript

 Set queue = "quick-start-events"
 Set durable = 1
 Set exclusive = 0
 Set autoDelete = 0
 Set tSC = client.CreateQueue(queue, durable, exclusive, autoDelete)

As an alterative, you can create the queue with a method that is common to all messaging platforms. When using
this alternative, the queue settings are defined in an instance of the %External.Messaging.RabbitMQQueueSettings

class and then passed to the method as a JSON object using the ToJSON() method. See %External.Messag-
ing.Client.CreateQueueOrTopic() for details.

Delete a Queue

An application can delete a RabbitMQ queue by invoking the DeleteQueue() method of the RabbitMQ client
object, providing the name of the queue as an argument.

Set tSC = client.DeleteQueue(queueName)

As an alterative, you can delete the queue with a method that is common to all messaging platforms. See
%External.Messaging.Client.DeleteQueueOrTopic() for details.

4.4.3 Bind a Queue to an Exchange

To route messages to a queue, the queue must be bound to an exchange. An application can bind a queue to an exchange
by invoking the BindQueue() method of the RabbitMQ client object.

As its arguments, the BindQueue() method accepts the queue name, the exchange name, and a string containing the binding
keys separated by commas. A comma which is part of a binding key can be escaped by preceding it with the backslash
character (\); backslashes which are part of a binding key can be escaped using a second backslash character.

For example, if the two desired binding keys were "event-log,critical" and "event-log,urgent/important",
application code could bind a queue as follows:

Set bindingKeys = "event-log\,critical,event-log\,urgent\\important"
Set tSC = client.BindQueue(queueName, exchangeName, bindingKeys)

4.5 Close Client
An InterSystems IRIS application that is done communicating with RabbitMQ should close the client with the Close()
method. For example:

Using APIs for External Messaging Platforms 21

Close Client

ObjectScript

 Do:client'="" client.Close()

22 Using APIs for External Messaging Platforms

Using the RabbitMQ Messaging API

5
Using the Amazon SNS Messaging API

InterSystems provides an API you can use to publish messages using the Amazon Simple Notification Service (SNS). Your
code acts as a publisher by creating a client and then calling the client’s methods to send messages. InterSystems IRIS also
provides methods to create and delete Amazon SNS topics.

The Amazon SNS API is based on the common messaging classes that are shared by other messaging platforms. This page
describes platform-specific variations in the work flow which these common classes establish.

In addition to the API described here, InterSystems provides specialized classes that you can use to send messages to
Amazon SNS as part of an interoperability production.

5.1 Connecting to Amazon SNS
To create a connection to Amazon SNS:

1. Create a settings object. To do this create an instance of %External.Messaging.SNSSettings and set its properties as
follows:

• credentialsFile, a string specifying the location of your Amazon Simple Storage Service (S3) credentials file.

• accessKey, a string containing your Amazon S3 access key. If you have specified a credentialsFile, you do not
need to set this property.

• secretKey, a string containing your Amazon S3 secret key. If you have specified a credentialsFile, you do not need
to set this property.

• sessionToken, a string containing an Amazon S3 session token. If you have specified a credentialsFile which
includes a session token, you do not need to set this property.

• region, a string specifying an Amazon S3 region.

For example:

ObjectScript

 Set settings = ##class(%External.Messaging.SNSSettings).%New()
 Set settings.credentialsFile = "~/.aws/credentials/cred.ini"
 Set settings.region = "us-east-1"

2. Create the messaging client object. To do this, call the CreateClient() method of the generic %External.Messaging.Client

class, passing the settings object as the first argument. For example:

Using APIs for External Messaging Platforms 23

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 // If tSC is an error, handle error scenario

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

Because the settings object is an instance of %External.Messaging.SNSSettings, the returned object (client) is an instance
of %External.Messaging.SNSClient.

5.2 Amazon SNS Publishers
InterSystems IRIS can act as an Amazon SNS publisher by calling API methods to create messages and then send them.
If the application needs to create the topics where messages will be sent, see Working with Topics. The following flow
uses the client object to interact with Amazon SNS as a publisher:

Create Message

To prepare a message to be sent, create a new instance of the %External.Messaging.SNSMessage object. Then,
define properties for that message object. You must specify the Amazon Resource Name (ARN) for the topic
where the message will be sent (the topicARN property) and a message body (the message property). You can also
specify an optional subject for the message.

ObjectScript

 Set topicARN = "arn:aws:sns:us-east-1:123456789012:quick-start-events"
 Set message = "MyMessage"
 Set subject = "EventNotification"

 Set msg = ##class(%External.Messaging.SNSMessage).%New()
 Set msg.topicARN = topicARN
 Set msg.message = message
 Set msg.subject = subject

Send Message

After creating a message, you can send it to the topic by executing the SendMessage() method for the Amazon
SNS client object. For example:

ObjectScript

 set tSC = client.SendMessage(msg)
 if $$$ISERR(tSC) {
 //handle error scenario
 }

5.3 Working with Topics
InterSystems IRIS provides an API that can be used to create and delete Amazon SNS topics.

Create a Topic

To create a topic, invoke the CreateTopic() method of the client object. The method accepts the topic name as
an argument, and returns an ARN for the topic by reference. For example:

24 Using APIs for External Messaging Platforms

Using the Amazon SNS Messaging API

ObjectScript

 Set topicName = "quick-start-events"
 Set topicARN = ""
 Set tSC = client.CreateQueue(topicName, .topicARN)

As an alterative, you can create the topic with a method that is common to all messaging platforms: %External.Mes-
saging.Client.CreateQueueOrTopic(). However, this generic method does not return the ARN for the new topic,
which is required by the API methods for deleting a topic and for sending a message. To use the API to perform
these tasks with a topic created using CreateQueueOrTopic(), you must obtain the ARN for the topic manually.

Delete a Topic

An application can delete an Amazon SNS topic by invoking the DeleteTopic() method of the client object, pro-
viding the ARN of the topic as an argument.

ObjectScript

 Set tSC = client.DeleteTopic(topicARN)

As an alterative, you can delete the topic with a method that is common to all messaging platforms. See %Exter-
nal.Messaging.Client.DeleteQueueOrTopic() for details.

5.4 Close Client
An InterSystems IRIS application that is done communicating with Amazon SNS should close the client with the Close()
method. For example:

ObjectScript

 Do:client'="" client.Close()

Using APIs for External Messaging Platforms 25

Close Client

6
Using the Amazon SQS Messaging API

InterSystems provides an API you can use to produce and consume messages using the Amazon Simple Queue Service
(SQS). Your code acts as a producer or consumer by creating a client, then calling the client’s methods to perform actions
like sending and receiving messages. InterSystems IRIS also provides methods to create and delete Amazon SQS queues.

The Amazon SQS API is based on the common messaging classes that are shared by other messaging platforms. This page
describes platform-specific variations in the work flow which these common classes establish.

In addition to the API described here, InterSystems provides specialized classes that you can use to send messages to
Amazon SQS and retrieve messages from Amazon SQS as part of an interoperability production.

6.1 Connecting to Amazon SQS
To create a connection to Amazon SQS:

1. Create a settings object. To do this create an instance of %External.Messaging.SQSSettings and set its properties as
follows:

• credentialsFile, a string specifying the location of your Amazon Simple Storage Service (S3) credentials file.

• accessKey, a string containing your Amazon S3 access key. If you have specified a credentialsFile, you do not
need to set this property.

• secretKey, a string containing your Amazon S3 secret key. If you have specified a credentialsFile, you do not need
to set this property.

• sessionToken, a string containing an Amazon S3 session token. If you have specified a credentialsFile which
includes a session token, you do not need to set this property.

• region, a string specifying an Amazon S3 region.

For example:

ObjectScript

 Set settings = ##class(%External.Messaging.SQSSettings).%New()
 Set settings.credentialsFile = "~/.aws/credentials/cred.ini"
 Set settings.region = "us-east-1"

2. Create the messaging client object. To do this, call the CreateClient() method of the generic %External.Messaging.Client

class, passing the settings object as the first argument. For example:

Using APIs for External Messaging Platforms 27

ObjectScript

 Set client = ##class(%External.Messaging.Client).CreateClient(settings, .tSC)
 If $$$ISERR(tSC) {
 //handle error scenario
 }

The method returns a status code by reference as the second argument. Your code should check the status before pro-
ceeding.

Because the settings object is an instance of %External.Messaging.SQSSettings, the returned object (client) is an instance
of %External.Messaging.SQSClient.

6.2 Amazon SQS Producers
InterSystems IRIS can act as an Amazon SQS publisher by calling API methods to create messages and then send them.
If the application needs to create the topics where messages will be sent, see Working with Queues. The following flow
uses the client object to interact with Amazon SQS as a publisher:

Set Message Attributes (Optional)

To attach custom metadata to your message using Amazon SQS message attributes, you must create an InterSystems
IRIS %ListOfObjects collection of SQS message attribute objects. The Amazon SQS message object you will
create in the next section will accepts this list of attributes as an optional property. For each attribute you want to
define:

1. Create a new instance of the %External.Messaging.SQSMessageAttribute object.

2. Set the properties of the message attribute object:

• key, the message attribute key

• dataType, the data type of the message attribute value ("String", "Number", or "Binary")

• stringValue or binaryValue, the message attribute value. Set the property appropriate to the data type you
have specified.

3. Add each message attribute object to your list of message attribute objects.

Refer to the Amazon SQS message metadata documentation for more information about message attributes. The
following example prepares a time stamp attribute:

ObjectScript

 Set attrList = ##class(%ListOfObjects).%New()

 Set key = "timestamp"
 Set dataType = "String"
 Set value = $zdatetime($horolog)

 Set msgAttr1 = ##class(%External.Messaging.SQSMessageAttribute).%New()
 Set msgAttr1.key = key
 Set msgAttr1.dataType = dataType
 Set msg.stringValue = value

 Set tSC = attrList.Insert(msgAttr1)

28 Using APIs for External Messaging Platforms

Using the Amazon SQS Messaging API

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-message-metadata.html#sqs-message-attributes

Create Message

To prepare a message to be sent, create a new instance of the %External.Messaging.SQSMessage object. Then,
define properties for that message object. You must specify the name of the destination queue and the body of the
message. If you have defined custom message attributes as described in the previous section, provide the list of
message attribute objects as the messageAttributes property. For example:

ObjectScript

 Set queue = "quick-start-events"
 Set body = "MyMessage"

 Set msg = ##class(%External.Messaging.SQSMessage).%New()
 Set msg.queue = queue
 Set msg.body = body
 Set msg.messageAttributes = attrList

Send Message

After creating a message, you can send it to the topic by executing the SendMessage() method for the Amazon
SQS client object:

ObjectScript

 set tSC = client.SendMessage(msg)
 if $$$ISERR(tSC) {
 //handle error scenario
 }

6.3 Amazon SQS Consumers
InterSystems IRIS can act as an Amazon SQS consumer by calling an API method to retrieve messages for a topic. The
following flow uses the client object to interact with Amazon SQS as a consumer:

Configure Settings for Message Retrieval (Optional)

The Amazon SQS client can use the ReceiveMessage() method to act as an Amazon SQS consumer. This method
allows you to specify settings for the message retrieval operation by providing a JSON-formatted string as an
optional argument. To do so, create a new instance of the %External.Messaging.SQSReceiveSettings class and set
properties as desired. The following properties are available:

• maxNumberOfMessages, an integer specifying the maximum number of messages to return

• waitTimeSeconds, an integer specifying the number of seconds before polling timeout

• visibilityTimeout, an integer specifying the number of seconds during which the messages returned by the
method are effectively invisible to other consumers

For example:

ObjectScript

 Set rset = ##class(%External.Messaging.SQSReceiveSettings).%New()
 Set rset.waitTimeSeconds = 5
 Set rset.visibilityTimeout = 30

Using APIs for External Messaging Platforms 29

Amazon SQS Consumers

Retrieve Messages

To retrieve messages, invoke the ReceiveMessage() method inherited by the Amazon SQS client object. This
method takes the name of a queue as an argument and returns messages as a %ListOfObjects by reference. If you
have specified message retrieval settings as described in the preceding section, provide these settings as a third
argument using the ToJSON() method. For example:

ObjectScript

 #dim messages As %ListOfObjects
 Set tSC = client.ReceiveMessage(queue, .messages, rset.ToJSON())

Delete Messages from the Queue

An Amazon SQS consumer is responsible for deleting messages from a queue as the consumer receives and processes
them. To delete a message, invoke the DeleteMessage() method for the client object. DeleteMessage() requires
you to provide the name of the queue as the first argument and the receipt handle for the message as the second
argument. The receipt handle is stored in the receiptHandle property for each message object the ReceiveMessage()
method returns.

ObjectScript

 For i=1:1:messages.Size {
 Set msg = messages.GetAt(i)
 Write "Message: ", msg.ToJSON(), !
 Set tSC = client.DeleteMessage(queue, msg.receiptHandle)
 }

6.4 Working with Queues
InterSystems IRIS provides an API that can be used to create and delete Amazon SQS queues.

Specify Queue Settings (Optional)

If you would like to specify settings for your queue, create an %External.Messaging.SQSQueueSettings object
and set the properties of that object corresponding to your desired settings. For more information about the config-
uration options available, refer to the Amazon SQS documentation.

For example, the following code creates a queue settings object which specifies a first-in-first-out queue and delays
the delivery of all messages in the queue for five seconds:

ObjectScript

 Set queueSet = ##class(%External.Messaging.SQSQueueSettings).%New()
 Set queueSet.FifoQueue = 1
 Set queueSet.DelaySeconds = 5

Create a Queue

To create a queue, invoke the CreateQueue() method of the client object. CreateQueue() requires you to provide
a queue name as an argument. If you have created a queue settings object for the queue (as described in the previous
section), you may provide this object as an optional second argument.

ObjectScript

 Set queue = "quick-start-events"
 Set tSC = client.CreateQueue(queue, queueSet)

30 Using APIs for External Messaging Platforms

Using the Amazon SQS Messaging API

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/CreateQueueRequest.html

As an alterative, you can create the queue with a method that is common to all messaging platforms. When using
this alternative, you can provide the contents of your queue settings object as a JSON object using the ToJSON()
method. See %External.Messaging.Client.CreateQueueOrTopic() for details.

Delete a Queue

An application can delete an Amazon SQS queue by invoking the DeleteTopic() method of the client object. This
method accepts the queue name as an argument.

ObjectScript

 Set tSC = client.DeleteQueue(queue)

As an alterative, you can delete the queue with a method that is common to all messaging platforms. See
%External.Messaging.Client.DeleteQueueOrTopic() for details.

6.5 Close Client
An InterSystems IRIS application that is done communicating with Amazon SQS should close the client with the Close()
method. For example:

ObjectScript

 Do:client'="" client.Close()

Using APIs for External Messaging Platforms 31

Close Client

	Table of Contents
	1 Using the Messaging APIs
	1.1 Connecting to a Messaging Platform
	1.2 Creating Topics/Queues
	1.3 Sending Messages
	1.4 Receiving Messages
	1.5 Deleting Topics/Queues
	1.6 Disconnecting from a Messaging Platform

	2 Using the JMS Messaging API
	2.1 Connecting to JMS
	2.2 JMS Producers
	2.3 JMS Consumers
	2.4 Working with Queues and Topics
	2.4.1 Create or Delete an Queue
	2.4.2 Create or Delete a Topic

	2.5 Close Client

	3 Using the Kafka Messaging API
	3.1 Connecting to Kafka
	3.2 Kafka Producers
	3.3 Kafka Consumers
	3.4 Defining AdminClient Configs
	3.5 Working with Topics
	3.5.1 Delete a Topic

	3.6 Close Client

	4 Using the RabbitMQ Messaging API
	4.1 Connecting to RabbitMQ
	4.2 RabbitMQ Publishers
	4.3 RabbitMQ Consumers
	4.4 Working with Exchanges and Queues
	4.4.1 Create or Delete an Exchange
	4.4.2 Create or Delete a Queue
	4.4.3 Bind a Queue to an Exchange

	4.5 Close Client

	5 Using the Amazon SNS Messaging API
	5.1 Connecting to Amazon SNS
	5.2 Amazon SNS Publishers
	5.3 Working with Topics
	5.4 Close Client

	6 Using the Amazon SQS Messaging API
	6.1 Connecting to Amazon SQS
	6.2 Amazon SQS Producers
	6.3 Amazon SQS Consumers
	6.4 Working with Queues
	6.5 Close Client

	Index

