
Transact-SQL (TSQL)
Migration Guide

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Transact-SQL (TSQL) Migration Guide
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Planning and Performing TSQL Migration ... 1
1.1 Why Migrate to InterSystems IRIS? .. 1

1.1.1 Running your TSQL Applications on InterSystems IRIS .. 1
1.1.2 Migrating off Sybase Products ... 2
1.1.3 Migrating off Microsoft Products .. 2

1.2 Planning your Migration .. 2
1.2.1 Planning the Infrastructure ... 2
1.2.2 Reviewing your Application Schema and Code ... 3
1.2.3 Reviewing your Data .. 3
1.2.4 Project Planning ... 3
1.2.5 Testing the Migration ... 4

1.3 Executing the Plan .. 4
1.3.1 Setting Up the System .. 4
1.3.2 Migrating the Code .. 5
1.3.3 Migrating the Data ... 6
1.3.4 Troubleshooting ... 6

1.4 Writing and Executing TSQL on InterSystems IRIS ... 6
1.4.1 Working with TSQL via SQL Interfaces .. 6
1.4.2 Working with TSQL via Class Definitions .. 7

2 InterSystems TSQL Constructs .. 9
2.1 Table References .. 9
2.2 Temporary Tables ... 9
2.3 System Tables ... 10
2.4 Transactions .. 10
2.5 Cursor Name Management ... 10
2.6 SYSOBJECTS References ... 11

3 InterSystems TSQL Language Elements ... 13
3.1 Literals .. 13

3.1.1 String Literals ... 13
3.1.2 Empty Strings ... 13
3.1.3 NULL ... 14
3.1.4 Hexadecimal ... 14
3.1.5 Reserved Words .. 14
3.1.6 Comments, Blank Lines, and Semicolons ... 14

3.2 Variables ... 15
3.3 Identifiers ... 15

3.3.1 Delimited and Quoted Identifiers ... 16
3.4 Data Types .. 16
3.5 Operators .. 17

3.5.1 Arithmetic and Equality Operators .. 17
3.5.2 Concatenation Operator ... 18
3.5.3 Comparison Operators ... 18
3.5.4 NOT Logical Operator ... 18
3.5.5 Bitwise Logical Operators ... 19

4 TSQL Commands ... 21
4.1 Data Definition Language (DDL) Statements .. 22

Transact-SQL (TSQL) Migration Guide iii

4.1.1 CREATE TABLE ... 22
4.1.2 ALTER TABLE .. 23
4.1.3 DROP TABLE .. 24
4.1.4 CREATE INDEX ... 25
4.1.5 DROP INDEX .. 25
4.1.6 CREATE TRIGGER .. 26
4.1.7 DROP TRIGGER ... 26
4.1.8 CREATE VIEW ... 26
4.1.9 DROP VIEW .. 27
4.1.10 CREATE DATABASE ... 27
4.1.11 DROP DATABASE .. 27

4.2 Data Management Language (DML) Statements ... 27
4.2.1 DELETE ... 28
4.2.2 INSERT .. 28
4.2.3 UPDATE ... 29
4.2.4 READTEXT ... 31
4.2.5 WRITETEXT ... 31
4.2.6 UPDATETEXT .. 31
4.2.7 TRUNCATE TABLE .. 32

4.3 Query Statements ... 32
4.3.1 SELECT ... 32
4.3.2 JOIN ... 35
4.3.3 UNION ... 36
4.3.4 FETCH Cursor ... 36

4.4 Flow of Control Statements .. 36
4.4.1 IF .. 36
4.4.2 WHILE ... 38
4.4.3 CASE ... 38
4.4.4 GOTO and Labels .. 39
4.4.5 WAITFOR .. 39

4.5 Assignment Statements .. 39
4.5.1 DECLARE ... 39
4.5.2 SET ... 40

4.6 Transaction Statements ... 41
4.6.1 SET TRANSACTION ISOLATION LEVEL .. 41
4.6.2 BEGIN TRANSACTION .. 41
4.6.3 COMMIT TRANSACTION .. 41
4.6.4 ROLLBACK TRANSACTION .. 42
4.6.5 SAVE TRANSACTION ... 42
4.6.6 LOCK TABLE ... 42

4.7 Procedure Statements ... 43
4.7.1 CREATE PROCEDURE / CREATE FUNCTION ... 43
4.7.2 ALTER FUNCTION .. 44
4.7.3 DROP FUNCTION .. 44
4.7.4 DROP PROCEDURE ... 45
4.7.5 RETURN .. 45
4.7.6 EXECUTE ... 45
4.7.7 EXECUTE IMMEDIATE .. 46
4.7.8 CALL ... 46

4.8 Other Statements .. 46
4.8.1 CREATE USER ... 46

iv Transact-SQL (TSQL) Migration Guide

4.8.2 GRANT .. 47
4.8.3 REVOKE .. 47
4.8.4 PRINT .. 47
4.8.5 RAISERROR ... 48
4.8.6 UPDATE STATISTICS .. 48
4.8.7 USE database ... 48

4.9 InterSystems Extensions .. 49
4.9.1 OBJECTSCRIPT ... 49
4.9.2 IMPORTASQUERY ... 49

5 TSQL Settings ... 51
5.1 DIALECT ... 52
5.2 ANSI_NULLS .. 52
5.3 CASEINSCOMPARE .. 53
5.4 QUOTED_IDENTIFIER .. 53
5.5 Equal Literal Replacement ... 54
5.6 TRACE ... 54

5.6.1 Cached Query Source ... 55
5.7 Data Collation and String Truncation ... 56
5.8 Timestamp and Time Precision .. 56
5.9 Settings for Temporary Databases ... 57

6 TSQL Functions .. 59
6.1 ABS .. 59
6.2 ACOS .. 59
6.3 ASCII .. 59
6.4 ASIN ... 59
6.5 ATAN .. 60
6.6 AVG .. 60
6.7 CAST .. 60
6.8 CEILING .. 60
6.9 CHAR ... 61
6.10 CHAR_LENGTH / CHARACTER_LENGTH .. 61
6.11 CHARINDEX .. 61
6.12 COALESCE ... 61
6.13 COL_NAME .. 61
6.14 CONVERT ... 62
6.15 COS .. 63
6.16 COT .. 63
6.17 COUNT .. 63
6.18 CURRENT_DATE ... 63
6.19 CURRENT_TIME ... 64
6.20 CURRENT_TIMESTAMP .. 64
6.21 CURRENT_USER ... 64
6.22 DATALENGTH .. 64
6.23 DATEADD ... 65
6.24 DATEDIFF ... 65
6.25 DATENAME .. 66
6.26 DATEPART .. 67
6.27 DAY .. 68
6.28 DB_NAME ... 68
6.29 DEGREES .. 68

Transact-SQL (TSQL) Migration Guide v

6.30 ERROR_MESSAGE .. 68
6.31 ERROR_NUMBER .. 68
6.32 EXEC ... 68
6.33 EXP .. 69
6.34 FLOOR ... 69
6.35 GETDATE .. 69
6.36 GETUTCDATE .. 69
6.37 HOST_NAME .. 69
6.38 INDEX_COL ... 70
6.39 ISNULL .. 70
6.40 ISNUMERIC .. 70
6.41 LEFT .. 70
6.42 LEN .. 70
6.43 LOG .. 70
6.44 LOG10 .. 71
6.45 LOWER .. 71
6.46 LTRIM .. 71
6.47 MAX ... 71
6.48 MIN .. 71
6.49 MONTH ... 72
6.50 NCHAR .. 72
6.51 NEWID ... 72
6.52 NOW .. 72
6.53 NULLIF .. 73
6.54 OBJECT_ID ... 73
6.55 OBJECT_NAME .. 73
6.56 PATINDEX ... 73
6.57 PI .. 74
6.58 POWER .. 74
6.59 QUOTENAME ... 74
6.60 RADIANS .. 75
6.61 RAND ... 75
6.62 REPLACE .. 75
6.63 REPLICATE ... 75
6.64 REVERSE .. 75
6.65 RIGHT .. 76
6.66 ROUND .. 76
6.67 RTRIM ... 76
6.68 SCOPE_IDENTITY ... 76
6.69 SIGN ... 77
6.70 SIN ... 77
6.71 SPACE .. 77
6.72 SQRT .. 77
6.73 SQUARE .. 77
6.74 STR ... 78
6.75 STUFF .. 78
6.76 SUBSTRING .. 78
6.77 SUM ... 78
6.78 SUSER_NAME .. 79
6.79 SUSER_SNAME .. 79
6.80 TAN .. 79

vi Transact-SQL (TSQL) Migration Guide

6.81 TEXTPTR .. 79
6.82 TEXTVALID .. 79
6.83 UNICODE .. 79
6.84 UPPER ... 80
6.85 USER .. 80
6.86 USER_NAME .. 80
6.87 YEAR ... 80
6.88 Unsupported Functions .. 80

7 TSQL Variables ... 83
7.1 Local Variables ... 83

7.1.1 Declaring a Local Variable ... 83
7.1.2 Setting a Local Variable ... 83
7.1.3 Initial and Default Values ... 84
7.1.4 Plain Local Variables .. 84

7.2 @@ Special Variables .. 84
7.2.1 @@ERROR ... 85
7.2.2 @@FETCH_STATUS ... 85
7.2.3 @@IDENTITY .. 85
7.2.4 @@LOCK_TIMEOUT ... 85
7.2.5 @@NESTLEVEL .. 86
7.2.6 @@ROWCOUNT .. 86
7.2.7 @@SERVERNAME .. 86
7.2.8 @@SPID .. 87
7.2.9 @@SQLSTATUS .. 87
7.2.10 @@TRANCOUNT .. 87
7.2.11 @@VERSION ... 88

8 TSQL System Stored Procedures .. 89
8.1 sp_addtype .. 89
8.2 sp_droptype .. 90
8.3 sp_procxmode (Sybase only) ... 90

Transact-SQL (TSQL) Migration Guide vii

1
Planning and Performing TSQL Migration

InterSystems TSQL is an implementation of the Transact-SQL procedural language which supports many of the features
of both the Sybase and Microsoft implementations. Transact-SQL is used with Sybase Adaptive Server, Microsoft SQL
Server (MSSQL), and other platforms.

Note: Sybase Adaptive Server (ASE) is the implementation primarily described on this page, though much of this
information is relevant to any Transact-SQL implementation.

InterSystems TSQL also contains a few proprietary extensions not found in either of these implementations. These are
described in Commands and System Stored Procedures.

This document will help you to effectively migrate your schemas, stored procedures and data from a Transact-SQL database
application and it will provide you with an understanding of the TSQL (Transact-SQL) implementation for InterSystems
IRIS® data platform to maintain and enhance it after the initial migration.

1.1 Why Migrate to InterSystems IRIS?
InterSystems IRIS provides an efficient and modern SQL implementation delivering speed, scale and security to mission-
critical applications in many industries. These performance benefits, the vertical and horizontal scalability and enterprise-
grade security also apply to TSQL applications migrated to InterSystems IRIS.

All data in an InterSystems IRIS database is stored in efficient, tree-based sparse multidimensional arrays called globals.
Because they are accessed directly with no file system layer needed, InterSystems IRIS globals provide very fast, flexible
storage and retrieval. Globals underlie the InterSystems IRIS object and SQL interfaces, support the Key/Value and No
SQL paradigms, and allow InterSystems IRIS to easily handle dynamic data types such as XML or JSON.

InterSystems SQL provides high-performance access through highly optimized ODBC and JDBC drivers that have been
enhanced to fully support TSQL syntax. It also provides a SQL Gateway capability to facilitate accessing and importing
data from other relational databases.

1.1.1 Running your TSQL Applications on InterSystems IRIS

When you run TSQL code on the InterSystems IRIS platform, the code is compiled into the corresponding InterSystems
SQL and ObjectScript code. ObjectScript is InterSystems object-oriented programming language. The compiled code is
run on InterSystems IRIS and available for debugging purposes, if needed. This compilation step is fully automated and
not a one-time migration task. The migration effort consists of loading the schema, data and TSQL code from the old
environment to InterSystems IRIS. From then on you can continue to use and modify the TSQL application code, simply
recompiling it after making any changes.

Transact-SQL (TSQL) Migration Guide 1

InterSystems IRIS provides many interfaces for running TSQL code. These interfaces provide a dialect option that specifies
either Sybase or MSSQL.

Regardless of which of these interfaces or dialects is used, InterSystems IRIS will only execute the corresponding InterSystems
SQL and ObjectScript code. InterSystems IRIS does not run TSQL natively.

1.1.2 Migrating off Sybase Products

The initial implementation of InterSystems TSQL was designed to support the migration of Sybase ASE code. It provides
support for the vast majority of native ASE TSQL commands and system stored procedures.

It fully supports or accepts most ASE schema options, including datetime formats. It supports compiling ASE TSQL stored
procedure code to InterSystems SQL and ObjectScript.

InterSystems IRIS performance is significantly higher than Sybase ASE when run on the same hardware. InterSystems
Mirroring capability offers more robust resiliency than Sybase ASE database replication and InterSystems Enterprise Cache
Protocol (ECP) and sharding offer more flexible options for scaling out.

Sybase's other products, Sybase ASA and Sybase IQ, involves slight differences in TSQL support and dialect. While some
customers have migrated successfully from Sybase ASA, it is recommended that you work with InterSystems Support
when planning such a migration.

While Sybase IQ is well-known for its high performance, customers that have moved their workloads from Sybase IQ to
InterSystems IRIS have experienced even higher levels of performance than they did on their previous platform.

1.1.3 Migrating off Microsoft Products

Microsoft SQL Server (MSSQL) and Azure Database use a different TSQL dialect that has evolved significantly since it
parted ways with Sybase TSQL. InterSystems IRIS supports a subset of the MSSQL dialect. However, InterSystems IRIS
TSQL was principally designed to support migration of code in the Sybase dialect. It provides more limited support for
Microsoft TSQL compatibility and migration.

1.2 Planning your Migration
While migrating a TSQL application means you will end up with the same schema, data and application code (but just on
a different platform), it is still worthwhile planning this project carefully.

1.2.1 Planning the Infrastructure

InterSystems IRIS typically requires fewer hardware resources than other database platforms to run the same TSQL workload.
This means migrating to InterSystems IRIS is an appropriate time to consider the infrastructure on which to run your TSQL
application:

• Leverage InterSystems IRIS efficiencies and vertical scalability to determine the minimal hardware for your TSQL
application.

• InterSystems IRIS also runs in the cloud, where the different Cloud Service Providers offer a wide range of options to
right-size your environment.

• Mirroring offers a robust and proven mechanism to implement your High Availability and Disaster Recovery require-
ments.

2 Transact-SQL (TSQL) Migration Guide

Planning and Performing TSQL Migration

• InterSystems IRIS can use Asynchronous Mirrored Reporting Servers to offload queries from the database server,
providing significantly enhanced performance in high query usage systems. A Reporting Server can provide a subset
of the data on the database server, if desired.

• For the most demanding workloads, InterSystems IRIS also supports scaling out for user and data volume independently
by deploying multiple machines in a cluster.

InterSystems Technology Architects are available for consultation to assist you in this process.

1.2.2 Reviewing your Application Schema and Code

InterSystems IRIS TSQL supports the vast majority of TSQL concepts and language elements and will accept most schema
options. Still, it is appropriate to review your TSQL application to determine if it relies on any of the few constructs not
currently supported. The easiest way to validate this is by simply importing the TSQL schema and code on IRIS and compile
it. The InterSystems IRIS TSQL compiler will flag any issues it finds in the imported code so they can be addressed, either
by changing the original TSQL code to use a supported alternative, or by choosing to re-implement specific procedures in
ObjectScript.

1.2.2.1 TSQL features not supported on InterSystems IRIS

InterSystems IRIS coverage of TSQL features differs depending on the dialect the code was originally developed for. Due
to differences in how schema and aliases are handled, there are some limitations with certain specific handling of SQL
aliases as well as schema naming. These can be circumvented by appropriately matching schema names in the DDL, and
careful use of mixing table names and aliases in SQL queries.

Many table properties and other schema options are platform-specific. These may not make a difference in the behavior of
the table from the user or application point of view. This includes many storage-related properties such as partitioning and
compression clauses, but also orthogonal features such as encryption. InterSystems IRIS TSQL will silently accept and
ignore many properties that have no impact on behavior, but will report a compilation error when they do.

1.2.2.2 Client access to TSQL code on InterSystems IRIS

InterSystems IRIS TSQL supports a command-line SQL Shell which you can use to issue TSQL commands and queries
directly. You must initially set the dialect for the current SQL Shell session to the preferred value. For example, SET
DIALECT = Sybase.

TSQL commands can also be issued from Java-based applications through the JDBC or ODBC driver by setting the dialect
accordingly.

InterSystems SQL provides an even broader set of accessibility options when using InterSystems SQL and ObjectScript,
including ultra-fast, native access to the underlying storage paradigm. For further details, refer to InterSystems IRIS docu-
mentation.

1.2.3 Reviewing your Data

InterSystems IRIS is a full multi-model database and supports a broad variety of data types. Most data types available in
TSQL are also available on InterSystems IRIS and the Data Definition Language (DDL) statements to create tables will
automatically map those types appropriately. InterSystems IRIS also supports both traditional row-oriented storage models,
as are typical for Sybase ASE, Sybase ASA, and Microsfot SQL Server, and an analytics-focused columnar storage model,
as is the case for Sybase IQ.

1.2.4 Project Planning

The following are important consideration when determining the scope of your migration to InterSystems IRIS:

Transact-SQL (TSQL) Migration Guide 3

Planning your Migration

• Availability of TSQL expertise for a general understanding of the code.

• Availability of the original TSQL application developers for functional questions.

• Availability of unit tests or other test scripts to validate the migration.

• Initial assessment of schema and code. Determining complexity and presence of unsupported features.

• Assessing the size of the data set.

• Agreement on your requirements for switching over, either an all-at-once conversion or a phased conversion.

In the process of migration you may use any combination of the following approaches:

• Migrating all TSQL code and then fixing incompatible code.

• Migrating compatible TSQL code and then augmenting with new development in InterSystems SQL and ObjectScript.

• Letting TSQL and IRIS SQL systems run side-by-side, leveraging the benefits of each and keeping the data in sync.
InterSystems can assist you in determining what to migrate based upon an agreed-upon level of performance and service.

1.2.5 Testing the Migration

Unit tests are an essential part of any application development project and crucial for testing application code changes as
well as upgrades of the underlying infrastructure. As such, they are also extremely valuable when migrating an application
to a new platform, such as InterSystems IRIS. For TSQL applications, unit tests written in TSQL can be migrated along
with the TSQL application code. Unit tests driven from an external facility, such as Java-based application code or frameworks
such as Jenkins, can also be reused as-is.

In testing the migration of TSQL code and data sets the following are important additional considerations:

• Performance tests. Are application response times as good or better than the previous platform?

• Scalability tests. Can I support larger user and/or data volumes compared to the previous platform, optionally engaging
additional hardware resources?

• Correctness tests. Some semantics may differ between InterSystems TSQL and the previous platform (as they do
between different TSQL implementations), such as the resolution of outer joins in SQL queries offered by Sybase
ASE. Correctness tests are particularly important to guarantee users observe the same behavior and results after the
migration.

1.3 Executing the Plan
To migrate existing TSQL applications to InterSystems TSQL, you need to perform four operations: configure InterSystems
IRIS for TSQL, migrate the TSQL source code, migrate the metadata (DDL), and migrate the data. InterSystems and its
implementation partners are available to assist in each of these tasks.

1.3.1 Setting Up the System

Some of InterSystems IRIS default system settings differ from the default configuration of Sybase ASE and other TSQL
platforms. InterSystems and professional service partners with TSQL migration experience can provide scripts to prepare
a freshly installed InterSystems IRIS instance for use with TSQL applications.

To configure your system for TSQL manually, using the InterSystems IRIS configuration utilities:

4 Transact-SQL (TSQL) Migration Guide

Planning and Performing TSQL Migration

• Go into the InterSystems IRIS Management Portal. Select System Administration, Configuration, SQL and Object Settings,
then select TSQL Compatibility. Here you can specify the dialect (Sybase or MSSQL), and turn on or off the
ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings. The default for all three is “off”, which
is the appropriate setting for Sybase ASE.

• From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then SQL. From
here, you can set the Default Schema. This is the default schema name (which maps to a package) for all unqualified
DDL entities, such as table names and procedure names.

• Set Equal Literal Replacement to OFF. This is the appropriate setting for Sybase ASE.

• Set the default collation sequence to %SQLSTRING. Collation options perform string conversions only for the purpose
of index collation; the stored data is not changed. The %SQLSTRING option corresponds to the default binary collation
on Sybase ASE. It is important to verify that this setting matches the Sybase sort order. This step must be done before
loading any data.

• Truncation settings may be required for Sybase implementations where there are trailing spaces in the database at the
end of strings. Truncating these strings will allow for proper string matching. See Data Collation and String Truncation.

• Consider using Posix time instead of the default timestamp to increase performance. See Timestamp and Time Precision.

• Temporary tables are fully supported. Their settings should be optimized for speed if they are heavily used. See Settings
for Temporary Databases.

• From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then User DDL

Mappings. You can use this option to map any needed user-defined data types.

1.3.2 Migrating the Code

The initial application migration is simple:

1. Import the DDL: Import table and view definitions using either the %SYSTEM.SQL.Schema.ImportDDL() method
(for single files) or the $SYSTEM.SQL.Schema.ImportDDLDir() method (for multiple files in a directory). Within
these methods, you set the DDLMode parameter to either "MSSQLServer" or "Sybase". These methods import
DDL statements, as well as DML statements such as INSERT, convert them to equivalent InterSystems IRIS SQL,
and execute them. For further details, see Importing SQL Code.

Alternatively, you can invoke the $SYSTEM.SQL.Schema.LoadSybase() or
$SYSTEM.SQL.Schema.LoadMSSQLServer() method to import the schema. For further details, see Importing SQL
Code.

If the TSQL source contains CREATE PROC statements, then a class method containing the CREATE PROC source
is created. InterSystems IRIS places this class method in either an existing class or in a new class whose name is based
on the schema and procedure name. If the procedure already exists, then the existing version is replaced by the new
version. If a class matching the class name generated from the schema and procedure already exists, then this class
name is used — if it was previously generated by the TSQL utility. If not, then a unique class name is generated, based
on the schema and procedure name. The resulting class is compiled once the procedure has been successfully created.
If logging is requested then the source statements are logged along with the name of the containing class, class method,
and the formal arguments generated. Any errors encountered by the process are also reported in the log. If an error is
detected during CREATE PROC processing, InterSystems IRIS deletes any new class that was generated for that
procedure.

2. Inspect the log file for errors: Search by Error #. A summary count of errors and successful imports will appear at the
end of the log. In most cases, errors can be worked around or addressed by using information found in this document.

3. Compile: When you import DDL, table and view definition compilation is automatically performed. To compile other
TSQL source code, it is best to use the command as follows:

Transact-SQL (TSQL) Migration Guide 5

Executing the Plan

ObjectScript

 DO $SYSTEM.OBJ.CompileAll("-l")

The lowercase “L” qualifier flag specifies that locking is not applied for the duration of the compile. For a full list of
flag qualifiers, call DO $SYSTEM.OBJ.ShowFlags().

1.3.3 Migrating the Data

The following are options for migrating data:

• Set up an SQL Gateway Connection, using either JDBC or ODBC for data export/import. In the Management Portal
select System Administration, Configuration, Connectivity, SQL Gateway Connections, then select the Create New Con-

nection button to define an SQL Gateway Connection.

• Use the Data Migration Wizard. In the Management Portal select System Explorer, SQL, then from the Wizards drop-
down list select Data Migration to configure a Data Migration Wizard. Select an existing SQL Gateway Connection
from the drop-down list. This runs a wizard to migrate data from an external source and creates an InterSystems IRIS
class definition to store it.

• Use a bulk loader. InterSystems has utilities that understand the various formats in which Sybase stores datetime fields
and can normalize these into a standard internal format in InterSystems IRIS. Without these transformations, data load
may experience issues with datetime fields, depending on how these are stored in Sybase.

For a large volume of data, use a bulk loader that provides support for reading Bulk Copy Program (BCP) files, or use
your preferred Extract Transform and Load (ETL) utility. InterSystems Support can provide tools for bulk data ingestion.
Contact InterSystems Support for further details.

1.3.4 Troubleshooting

Inspect the compile log by turning on the TSQL Trace facility. See TRACE. This produces a log that records a timestamp
for each operation, the elapsed time for each operation, a global references count and a %ROWCOUNT. The log provides
detailed information by TSQL statement in processed stored procedures.

Additionally, consider retaining cached query source code as well as the generated cached queries to provide detailed
information on the compiled code. See Cached Query Source.

1.4 Writing and Executing TSQL on InterSystems IRIS
You can write and execute TSQL by using InterSystems SQL interfaces or by using an integrated development environment.

1.4.1 Working with TSQL via SQL Interfaces

As an alternative to developing TSQL code within class definitions, you can use Data Definition Language (DDL) to create,
replace, or drop TSQL stored procedures. You can enter DDL commands using the following set of interfaces:

• Using the TSQL Shell

The InterSystems TSQL Shell can be used to execute Transact-SQL code directly on InterSystems IRIS. To use the
TSQL Shell, invoke the TSQLShell() (or $SYSTEM.SQL.Schema.LoadTSQL()) method from the Terminal as follows:
DO $SYSTEM.SQL.TSQLShell(). This invokes the InterSystems SQL Shell and sets its DIALECT configuration
parameter to the currently configured TSQL dialect (MSSQL or Sybase). The initial configuration default is MSSQL.

6 Transact-SQL (TSQL) Migration Guide

Planning and Performing TSQL Migration

When entering SQL code interactively, the TSQL Shell supports, but does not require, the semicolon (;) statement
delimiter at the end of each SQL statement.

You can use the Shell’s RUN command to execute a TSQL script file. The RUN command displays a series of prompts,
including Please enter the end-of-statement delimiter (Default is 'GO'): GO=>. This enables
you to specify the TSQL semicolon (;) as the statement delimiter in your script file, rather than the InterSystems IRIS
default GO statement. See Using the SQL Shell Interface.

• Using the InterSystems SQL Shell

The InterSystems SQL Shell can be used to execute lines of TSQL code by using the SET DIALECT command to set
the Shell’s dialect to Sybase or MSSQL.

When the Shell’s dialect is set to Sybase or MSSQL, the SQL Shell supports, but does not require, the semicolon (;)
statement delimiter at the end of each SQL statement. When the Shell’s dialect is set to IRIS, a semicolon (;) statement
delimiter results in an SQLCODE -25 error.

You can use the Shell’s RUN command to execute a TSQL script file. The RUN command displays a series of prompts,
including Please enter the end-of-statement delimiter (Default is 'GO'): GO=>. This enables
you to specify the TSQL semicolon (;) as the statement delimiter in your script file, rather than the InterSystems IRIS
default GO statement. See Using the SQL Shell Interface.

• Using the Management Portal SQL Interface

In the Management Portal SQL interface, the Dialect option allows you to set the SQL dialect to IRIS, Sybase, or
MSSQL. The default is IRIS. Note that the dialect you select becomes the user customized default the next time you
access the Management Portal. See Using the Management Portal SQL Interface.

• Using Dynamic SQL

InterSystems IRIS Dynamic SQL, a feature of ObjectScript, can be used to execute TSQL code queries and a limited
subset of other DML and DDL statements from ObjectScript code.

– You can create a Dynamic SQL statement class instance, then set the %Dialect property to Sybase or MSSQL.
You then prepare and execute a TSQL command within that object instance.

– You can execute Dynamic SQL without creating a statement class instance by invoking the
%SYSTEM.SQL.Prepare() method which prepares an SQL command, or the %SYSTEM.SQL.Execute()
method, which both prepares and executes an SQL command. Both of these methods provide a Dialect parameter.

See Using Dynamic SQL.

1.4.2 Working with TSQL via Class Definitions

Via an IDE, you can define InterSystems class definitions, which can include methods or class queries that you can write
in TSQL and then easily project as SQL stored procedures.

A class method takes parameters and returns a single scalar result. A class query takes parameters and returns rows. If you
put plain SELECT statements into a class method they will be executed but you won’t be able to get the rows.

To create a TSQL stored procedure in an IDE, create a class method marked as a stored procedure using the SqlProc keyword
and enter the language as tsql. You can use the following template as a starting point:

ClassMethod MyTestMethod() As %Integer
 [Language = tsql, ReturnResultSets, SqlName=name, SqlProc]
{
}

See the Language, SqlProc, and SqlName keywords for method definition in the Class Definition Reference.

Transact-SQL (TSQL) Migration Guide 7

Writing and Executing TSQL on InterSystems IRIS

You can write and maintain triggers in TSQL. A trigger is a set of instructions that appear in TSQL code that are executed
in response to a specified SQL event. You can use the Language=tsql class definition keyword to specify that a trigger is
written in TSQL. The UpdateColumnList class definition keyword is only supported for TSQL. Row-level triggers are not
supported for TSQL. See Using Triggers.

8 Transact-SQL (TSQL) Migration Guide

Planning and Performing TSQL Migration

2
InterSystems TSQL Constructs

2.1 Table References
InterSystems TSQL supports table references with the InterSystems IRIS® data platform SQL format:

schema.table

The only mandatory table reference component is table. If the schema is omitted, TSQL uses the default schema name.

Other forms of Transact-SQL may use table references with up to four components, separated by dots:
server.database.owner.table. Here is how a Transact-SQL table reference is processed:

• The server. component, if present, is ignored.

• If the database. component is present and the owner. component is omitted, database is mapped to the schema
name. Therefore, database..table maps to schema.table. This conversion is not performed if the database
name is 'master'.

• If the owner. component is present, it is mapped to the schema name.

For the purposes of name translation, a field name has the field suffix removed while translation is performed and then
replaced afterwards.

2.2 Temporary Tables
InterSystems TSQL supports #tablename temporary tables. A #tablename temporary table is visible to the current
procedure of the current process. It is also visible to any procedure called from the current procedure. #tablename syntax
is only supported in TSQL procedures (class methods projected as procedures with language tsql).

A temporary table is defined by using CREATE TABLE with a table name starting with "#". The temporary table is created
at runtime. A #tablename table definition goes out of scope when you exit the procedure. All temporary table definitions
go out of scope when the connection is dropped. You can also explicitly delete a temporary table using DROP TABLE.

However, if a temporary table is referenced by an active result set, the temporary table may become invisible to the process,
but the data and definition are retained until the result set goes out of scope.

A #tablename temporary table is visible both to the creating procedure and to any procedures called from that procedure.
Temporary tables are visible to nested procedure calls. It is not necessary to declare the temporary table in the called pro-
cedure. If the called procedure also creates a temporary table with the same name, InterSystems IRIS uses the most recently

Transact-SQL (TSQL) Migration Guide 9

created table definition. Because a temporary table is defined using an ObjectScript local variable, the creation, modification,
and deletion of these tables are not journaled transaction events; rolling back the transaction has no effect on these operations.

2.3 System Tables
System tables exist per InterSystems IRIS namespace.

Systypes

Partially supported.

2.4 Transactions
Code generated for BEGIN TRAN, COMMIT and ROLLBACK uses explicit transaction mode, but following a transaction
TSQL always restores the mode which was active before the BEGIN TRAN statement. TSQL restores this mode when
the procedure is exited from, or when a COMMIT or ROLLBACK is issued, whichever comes first.

2.5 Cursor Name Management
You can declare the same cursor more than once, so long as only one version of the cursor is open at runtime. If the same
cursor is declared more than once in a stored procedure, all but the first declaration are associated with renamed cursors.
OPEN, FETCH, CLOSE, and DEALLOCATE statements are assumed to refer to the most recent DECLARE for the
given cursor. Note that the lexical position of a statement within a stored procedure is all that is used to match up a cursor
name with its DECLARE — no account is taken of runtime paths through the code.

Cursors inside queries are named using an extension of the scheme used in InterSystems SQL queries. For example:

TSQL

DECLARE C CURSOR FOR SELECT A FROM B
--
OPEN C
FETCH C
CLOSE C
DEALLOCATE C
--
DECLARE C CURSOR FOR SELECT D FROM E
--
OPEN C
FETCH C
CLOSE C
DEALLOCATE C

Would be effectively translated to:

10 Transact-SQL (TSQL) Migration Guide

InterSystems TSQL Constructs

TSQL

DECLARE C CURSOR FOR SELECT A FROM B
--
OPEN C
FETCH C
CLOSE C
DEALLOCATE C
--
DECLARE Cv2 CURSOR FOR SELECT D FROM E
--
OPEN Cv2
FETCH Cv2
CLOSE Cv2
DEALLOCATE Cv2

2.6 SYSOBJECTS References
Commonly, an application will have setup procedures that create tables, views, and the metadata for the application envi-
ronment. Such procedures will have expressions like:

TSQL

IF EXISTS (SELECT * FROM SYSOBJECTS
WHERE ID = OBJECT_ID('People'))

This determines if a table exists, in this example. It’s usually followed by a DROP and CREATE statement to reestablish the
table metadata.

TSQL procedures and triggers can reference the SYSOBJECTS system table. InterSystems TSQL supports the following
columns in the SYSOBJECTS table (%TSQL.sys.objects class properties):

DescriptionColumn

Object name.name

Object Id.id

Object type: can be one of the following values:
K=PRIMARY KEY or UNIQUE constraint; P=stored
procedure; RI=FOREIGN KEY constraint; S=system
table; TR=trigger; U=user table; V=view.

type

Object ID of a delete trigger if the entry is a table.
Table ID of a table if the entry is a trigger.

deltrig

Object ID of a table’s insert trigger if the entry is a
table.

instrig

Object ID of a table’s update trigger if the entry is a
table.

updtrig

Object identification number of parent object. For
example, the table ID if a trigger or constraint.

parent_obj

Name of the schema in which the object resides.schema

Object name of parent_obj. If parent_obj=0,
parent_obj_name is the same as name.

parent_obj_name

Transact-SQL (TSQL) Migration Guide 11

SYSOBJECTS References

The SYSOBJECTS table is read-only. The SYSOBJECTS table may be referenced from outside a TSQL procedure or
trigger by the name %TSQL_sys.objects. SYSOBJECTS is not supported for tables mapped across namespaces.

Note: InterSystems IRIS provides the %Dictionary package of class objects that can perform the same operations as
SYSOBJECTS references. For further details, refer to the %Dictionary package in the InterSystems Class Reference.

12 Transact-SQL (TSQL) Migration Guide

InterSystems TSQL Constructs

3
InterSystems TSQL Language Elements

This page describe the specific TSQL language elements for InterSystems IRIS® data platform.

3.1 Literals

3.1.1 String Literals

A string literal must be delimited by quote characters. The preferred delimiter characters are single quote characters. You
can also use double quote characters as string delimiters if you specify SET DELIMITED_IDENTIFER OFF. Otherwise,
double quote characters are parsed as delimiting an identifier.

If you delimit a string literal with single quote characters, you can include literal double quote characters within the string.
To include a literal single quote character within the string, double it by typing two single quotes.

A string containing literal single quotes, such as 'this is an ''embedded'' string', is compiled by InterSystems
IRIS to single quotes within double quotes: "this is an 'embedded' string".

3.1.2 Empty Strings

When migrating Transact-SQL code to InterSystems TSQL, it may be necessary to redefine the empty string. You can do
this by setting the following InterSystems IRIS system global:

^%SYS("sql","sys","namespace",nspace,"empty string")

All of these specified values are keyword literals, except nspace, which is a namespace name specified as a quoted string.

CAUTION: Changing the empty string definition should be done with extreme caution. It can result in data containing
different representations for an empty string. It can also cause existing programs to fail when executed in
this namespace. After defining the empty string, you must purge all cached queries and recompile all classes
and routines for that namespace that use the former empty string definition.

The following ObjectScript example changes the empty string definition for the SAMPLES namespace. It first sets the
empty string value to a single blank space. It then sets the empty string value to the non-printing character represented by
the ASCII code 0. (This example then immediately resets the empty string value to the InterSystems IRIS default):

Transact-SQL (TSQL) Migration Guide 13

ObjectScript

 SET ^%SYS("sql","sys","namespace","SAMPLES","empty string")=" "
 WRITE !,"Empty string set to:"
 ZZDUMP ^%SYS("sql","sys","namespace","SAMPLES","empty string")
 SET ^%SYS("sql","sys","namespace","SAMPLES","empty string")=$CHAR(0)
 WRITE !,"Empty string set to:"
 ZZDUMP ^%SYS("sql","sys","namespace","SAMPLES","empty string")
 SET ^%SYS("sql","sys","namespace","SAMPLES","empty string")=""
 WRITE !,"Empty string reset to:"
 ZZDUMP ^%SYS("sql","sys","namespace","SAMPLES","empty string")
 WRITE !,!,"End of sample program"

3.1.3 NULL

In TSQL a NULL supplied to a boolean operation returns as FALSE, as shown in the following example:

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var PRINT "true" ELSE PRINT "false"

In Sybase dialect, NULL is equal to NULL. A NULL=NULL comparison returns TRUE, and a NULL != NULL comparison
returns FALSE.

In MSSQL dialect, a comparison of NULL with any value returns FALSE. Thus NULL=NULL and NULL != NULL
comparisons both return FALSE.

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var=NULL PRINT "true" ELSE PRINT "false"

In Sybase dialect, NULL is not equal to any value. Therefore, Not Equals (!=) comparison involving NULL and any boolean,
numeric, or string value (including the empty string ("")) returns TRUE. All Equals (=), Greater Than (>) or Less Than (<)
comparisons return FALSE.

In MSSQL dialect, NULL cannot be compared to a value. Thus all Equals (=), Not Equals (!=), Greater Than (>) or Less
Than (<) comparisons return FALSE.

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0.

3.1.4 Hexadecimal

InterSystems TSQL automatically converts hexadecimal numeric literals in TSQL source code to the corresponding decimal
(base-10) numeric literals.

3.1.5 Reserved Words

InterSystems TSQL cannot use as identifiers the SQL Server reserved words. InterSystems TSQL can use InterSystems
SQL reserved words (that are not also SQL Server reserved words) if the QUOTED_IDENTIFIER SQL configuration setting
is set to Yes.

3.1.6 Comments, Blank Lines, and Semicolons

InterSystems TSQL supports both single-line and multi-line comments.

• A single line comment continues to the rest of the line. When used in the TSQL shell, a comment does not encompass
the end-of-line qualifier, such as /x or /c. InterSystems TSQL supports both –– and // as single-line comment delimiters.

• A multi-line comment begins with /* and ends with */. A comment can include nested /* ... */ comments.

14 Transact-SQL (TSQL) Migration Guide

InterSystems TSQL Language Elements

TSQL

PRINT 'these are comments'
-- this is a single-line comment
// this is a single-line comment
/* This is a multi-line comment
The command
PRINT 'do not print'
is part of the comment and is not executed */

3.1.6.1 TSQL-only Statements

InterSystems TSQL provides the means to include executable statements within InterSystems IRIS TSQL code which are
parsed as nonexecutable comments in Transact-SQL. A statement prefixed with two hyphens and a vertical bar is parsed
by InterSystems IRIS as an executable statement. Sybase Adaptive Server and Microsoft SQL Server consider this to be a
Transact-SQL comment.

TSQL

PRINT 'any context'
-- PRINT 'commented out'
--| PRINT 'InterSystems only'

3.1.6.2 Semicolons

You can specify a blank line by using either two hyphens or a semicolon.

A semicolon either before or after a TSQL statement is ignored. They are supported for compatibility with Transact-SQL
code, such as stored procedures, that ends statements with a semicolon.

TSQL

PRINT 'no semicolon'
--
PRINT 'trailing semicolon';
;
;PRINT 'leading semicolon'

3.2 Variables
TSQL uses DECLARE to declare the data type of a local variable. TSQL uses SET to set the value of a local variable.

A local variable name must be a valid identifier. An at sign (@) prefix to an identifier specifies that it is the name of a local
variable.

Case-sensitivity differs for TSQL dialects:

• Sybase: local variable names are case-sensitive.

• MSSQL: local variable names are not case-sensitive.

InterSystems IRIS local variable names are case-sensitive.

3.3 Identifiers
An identifier is a name for a TSQL object, such as a table, column, view, key, index, trigger, or stored procedure. Naming
conventions for identifiers are as follows:

Transact-SQL (TSQL) Migration Guide 15

Variables

• The first character of an identifier must be a letter, an underscore (_) or a percent (%) character.

• Subsequent characters of an identifier may be letters, numbers, underscores (_), dollar signs ($), or pound signs (#).

• Identifiers can be of any length, but must be unique within their first 30 characters.

• Identifiers are not case-sensitive.

• An identifier cannot be an SQL reserved word.

• A pound sign (#) prefix to an identifier specifies that it is the name of a temporary table.

• An at sign (@) prefix to an identifier specifies that it is the name of a variable.

Some identifiers are qualified with a schema name. For example, schema.tablename or schema.storedprocedure. If the
schema name is omitted, the identifier is unqualified. TSQL resolves unqualified identifiers by using either the system-
wide default schema (for DDL) or the schemaPath property (for DML), which provides a search path of schemas to check
for the specified table name or stored procedure name.

3.3.1 Delimited and Quoted Identifiers

A delimited identifier is not restricted by the naming conventions of ordinary identifiers. For example, a delimited identifier
can be the same word as an SQL reserved word; a delimited identifier can contain space characters.

By default, both square brackets and double quotation marks can be used to delimit an identifier. These delimiters are
interchangeable; you can define a delimited identifier by enclosing it with square brackets, and invoke the same delimited
identifier by specifying it enclosed with double quotation marks.

You can specify a quoted identifier if the QUOTED_IDENTIFIER SQL configuration setting is set to Yes. You specify a
quoted identifier by enclosing it in double quotation marks. When QUOTED_IDENTIFIER is on, double quotes are parsed
as delimiting an identifier. When QUOTED_IDENTIFIER is off, double quotes are parsed as alternative delimiters for
string literals. The preferable delimiters for string literals are single quotes. A quoted identifier can contain any characters,
including blank spaces.

3.4 Data Types
The following data types are supported for local variables and table columns. These data types are supported in that they
are parsed as valid data types; however, no range or value validation is performed.

BINARY(n) and VARBINARY(n). The (n) size specification is mandatory.

BIT

BOOLEAN

CHAR and VARCHAR

CHAR(n), NCHAR(n), VARCHAR(n), and NVARCHAR(n)

VARCHAR(MAX), and NVARCHAR(MAX). By default, these map to %Stream.GlobalCharacter.

DATETIME and SMALLDATETIME

DECIMAL, DECIMAL(p), and DECIMAL(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

DOUBLE and DOUBLE PRECISION

FLOAT and FLOAT(n)

16 Transact-SQL (TSQL) Migration Guide

InterSystems TSQL Language Elements

INT, BIGINT, SMALLINT, and TINYINT

MONEY and SMALLMONEY

NATIONAL

NUMERIC, NUMERIC(p), and NUMERIC(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

REAL

TIMESTAMP

Note: The Microsoft SQL Server TIMESTAMP data type is not used for date or time information. It is an integer counter
of the number of times a record is inserted or updated in a table. It should not be confused with the InterSystems
SQL and ODBC TIMESTAMP data type, which represents a date and time in YYYY-MM-DD
HH:MM:SS.nnnnnnnnn format. In TSQL, use DATETIME and SMALLDATETIME for date and time values.

ROWVERSION

SQL_VARIANT

The following SQL Server data types are supported in a specific context:

CURSOR

NTEXT, TEXT By default, these map to %Stream.GlobalCharacter.

IMAGE

TABLE

The following are not implemented:

• UNIQUEIDENTIFIER stored as a 16-byte binary string. Instead use VARCHAR(32) as the data type for a globally
unique ID.

• SQL92 and TSQL options

• UPDATE OF

3.5 Operators

3.5.1 Arithmetic and Equality Operators

InterSystems TSQL supports + (addition), – (subtraction), * multiplication, / division, and % modulo arithmetic operators.

InterSystems TSQL supports the following equality and comparison operators:

• = (equal to)

• <> (not equal to) and != (not equal to)

• < (less than), !< (not less than), <= (less than or equal to)

• > (greater than), !> (not greater than), >= (greater than or equal to)

When performing equality comparisons (= or <>) between date values with different data types, all date and time values
are compared using the TIMESTAMP data type. Thus two dates in different formats can be meaningfully compared. A
date value declared as a STRING data type can be compared to a date value declared as a DATETIME data type.

Transact-SQL (TSQL) Migration Guide 17

Operators

3.5.2 Concatenation Operator

InterSystems TSQL supports the + (plus sign) as both a concatenation operator and the addition operator. The plus sign
functions as a concatenation operator with strings. You can concatenate several strings together using this operator. If all
item are strings, TSQL performs concatenation; however, if one of the items is a number, TSQL performs addition, treating
non-numeric strings as 0.

'world'+'wide'+'web' concatenates to 'worldwideweb'

'world'+'33'+'web' concatenates to 'world33web'

'world'+33+'web' performs addition (0+33+0=33)

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0. Note that because the plus sign (+) is used for both concatenation and addition, the data type declaration
of the NULL variable is critical. The following examples all return “bigdeal”:

DECLARE @var1 BINARY(1)
DECLARE @var2 VARCHAR(10)
SELECT @var1=NULL,@var2=NULL
PRINT "big"+NULL+"deal"
PRINT "big"+@var1+"deal"
PRINT "big"+@var2+"deal"

The following example returns 0; it treats the + as an arithmetic operator and interprets the argument as 0 + 0 + 0 = 0:

DECLARE @var1 INT
SELECT @var1=NULL
PRINT "big"+@var1+"deal"

InterSystems TSQL also supports || as a concatenation operator.

3.5.3 Comparison Operators

3.5.3.1 BETWEEN

InterSystems TSQL supports the BETWEEN range check operator of the form: BETWEEN num1 AND num2. BETWEEN
is inclusive of the specified range limits.

3.5.3.2 IS NULL

InterSystems TSQL supports the IS NULL match operator. A variable is NULL if it has been declared but not assigned a
value, or if it has been explicitly specified as NULL. The empty string is not NULL.

3.5.3.3 LIKE

InterSystems TSQL supports the LIKE pattern match operator. LIKE performs not case-sensitive matching of letters.
InterSystems TSQL also supports NOT LIKE.

3.5.4 NOT Logical Operator

The NOT logical operator inverts the truth value of the statement that follows it. For example, IF NOT EXISTS(...).
NOT is not case-sensitive.

18 Transact-SQL (TSQL) Migration Guide

InterSystems TSQL Language Elements

3.5.5 Bitwise Logical Operators

InterSystems TSQL supports the AND (&), OR (|), XOR (^), and NOT (~) bitwise operators for the integer data type. The
decimal integers are converted to binary, the logical operation is performed, and the resulting binary is converted to a dec-
imal integer value. The NOT (~) operator is a unary operator that inverts bits.

Transact-SQL (TSQL) Migration Guide 19

Operators

4
TSQL Commands

This page lists the supported TSQL commands for InterSystems IRIS® data platform in the following groups:

• Data Definition Language (DDL) statements:

ALTER TABLE, CREATE TABLE, DROP TABLE

CREATE INDEX, DROP INDEX

CREATE TRIGGER, DROP TRIGGER

CREATE VIEW, DROP VIEW

Parsed but ignored: CREATE DATABASE, DROP DATABASE

• Data Management Language (DML) statements:

INSERT, UPDATE, DELETE, TRUNCATE TABLE

READTEXT, WRITETEXT, UPDATETEXT

• Query statements:

SELECT, JOIN, UNION, FETCH cursor

• Flow of control statements:

IF, WHILE, CASE, GOTO, WAITFOR

• Assignment statements:

DECLARE, SET

• Transaction statements:

SET TRANSACTION ISOLATION LEVEL, BEGIN TRANSACTION, COMMIT, ROLLBACK, LOCK TABLE

Parsed but ignored: SAVE TRANSACTION

• Procedure statements

CREATE PROCEDURE, DROP PROCEDURE

CREATE FUNCTION, ALTER FUNCTION, DROP FUNCTION

RETURN, EXECUTE, EXECUTE IMMEDIATE, CALL

• Other statements

CREATE USER, GRANT, REVOKE, PRINT, RAISERROR, UPDATE STATISTICS

• InterSystems IRIS extensions

Transact-SQL (TSQL) Migration Guide 21

OBJECTSCRIPT, IMPORTASQUERY

InterSystems IRIS implementation of TSQL accepts, but does not require, a semicolon command terminator. When
importing TSQL code to InterSystems SQL, semicolon command terminators are stripped out.

4.1 Data Definition Language (DDL) Statements
The following DDL statements are supported.

4.1.1 CREATE TABLE

Defines a table, its fields, and their data types and constraints.

CREATE TABLE [schema. | #]tablename (fieldname datatype constraint [,...])

Specify tablename as described in Table References.

A CREATE TABLE can create a temporary table by prefixing a # character to the table name. A temporary table can only
be defined from a stored procedure; you cannot define a temporary table from Dynamic SQL outside of a stored procedure.
To create a fully-qualified temporary table name, use quotes around each name element such as the following:
"SQLUser"."#mytemp".

A valid table name must begin with a letter, an underscore character (_), or a # character (for a local temporary table).
Subsequent characters of a table name may be letters, numbers, or the #, $, or _ characters. Table names are not case-sensitive.

A field name must be a valid TSQL identifier. A field name can be delimited using square brackets. This is especially
useful when defining a field that has the same name as a reserved word. The following example defines two fields named
Check and Result:

TSQL

CREATE TABLE mytest ([Check] VARCHAR(50),[Result] VARCHAR(5))

The optional CONSTRAINT keyword can be used to specify a user-defined constraint name for a field constraint or a table
constraint. You can specify multiple CONSTRAINT name type statements for a field.

InterSystems SQL does not retain constraint names. Therefore these names cannot be used by a subsequent ALTER TABLE
statement.

The table field constraints DEFAULT, IDENTITY, NULL, NOT NULL, PRIMARY KEY, [FOREIGN KEY] REFERENCES
(the keywords FOREIGN KEY are optional), UNIQUE, CLUSTERED, and NONCLUSTERED are supported. The table
constraint FOREIGN KEY REFERENCES is supported.

The field definition DEFAULT values can include the following TSQL functions: CURRENT_TIMESTAMP, CUR-
RENT_USER, GETDATE, HOST_NAME, ISNULL, NULLIF, and USER.

The field definition IDENTITY constraint is supported and assigned a system-generated sequential integer. The IDENTITY
arguments seed and increment are parsed, but ignored.

The TSQL CREATE TABLE command can create a sharded table. The syntax for the SHARD clause is the same as for
the InterSystems SQL CREATE TABLE statement:

SHARD [KEY fieldname { , fieldname2 }] [COSHARD [WITH] [(] tablename [)]]

22 Transact-SQL (TSQL) Migration Guide

TSQL Commands

The CHECK field constraint is not supported. If a CHECK constraint is encountered while compiling TSQL source Inter-
Systems IRIS generates an error message indicating that CHECK constraints are not supported. This error is logged in the
compile log (if active), and the source is placed in the unsupported log (if active).

If the table already exists, an SQLCODE -201 error is issued.

The following Dynamic SQL example creates a temporary table named #mytest with four fields, populates it with data,
then displays the results. The LastName field has multiple constraints. The FirstName field takes a default. The DateStamp
field takes a system-defined default:

ObjectScript

 SET sql=9
 SET sql(1)="CREATE TABLE #mytest (MyId INT PRIMARY KEY,"
 SET sql(2)="LastName VARCHAR(20) CONSTRAINT unq_lname UNIQUE "
 SET sql(3)=" CONSTRAINT nonull_lname NOT NULL,"
 SET sql(4)="FirstName VARCHAR(20) DEFAULT '***TBD***',"
 SET sql(5)="DateStamp DATETIME DEFAULT CURRENT_TIMESTAMP)"
 SET sql(6)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1224,'Smith','John')"
 SET sql(7)="INSERT INTO #mytest(MyId,LastName) VALUES (1225,'Jones')"
 SET sql(8)="SELECT MyId,FirstName,LastName,DateStamp FROM #mytest"
 SET sql(9)="DROP TABLE #mytest"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 WRITE status,!
 SET result=statement.%Execute()
 DO result.%Display()

4.1.1.1 Parsed But Ignored

The table constraint clauses WITH, ON, and TEXTIMAGE ON are parsed for compatibility, but are ignored. The
index_options clause for the UNIQUE or PRIMARY KEY constraint is parsed for compatibility, but is ignored.

The following SQL Server parenthesized WITH options in a table constraint are parsed but ignored:
ALLOW_PAGE_LOCKS, ALLOW_ROW_LOCKS, DATA_COMPRESSION, FILLFACTOR, IGNORE_DUP_KEY,
PAD_INDEX, and STATISTICS_NORECOMPUTE.

The field constraints CLUSTERED and NONCLUSTERED are parsed for compatibility, but are ignored.

4.1.2 ALTER TABLE

Modifies the definition of a table, its fields, and their data types and constraints.

The following syntactical forms are supported:

ALTER TABLE tablename ADD fieldname datatype [DEFAULT value]
 [{UNIQUE | NOT NULL} | CONSTRAINT constraintname {UNIQUE | NOT NULL}]
ALTER TABLE tablename ALTER COLUMN fieldname newdatatype
ALTER TABLE tablename DROP COLUMN fieldname [,fieldname2]
ALTER TABLE tablename ADD tableconstraint FOR fieldname
ALTER TABLE tablename DROP tableconstraint
ALTER TABLE tablename DROP FOREIGN KEY role
ALTER TABLE tablename ADD CONSTRAINT constraint DEFAULT defaultvalue FOR fieldname
ALTER TABLE tablename ADD CONSTRAINT constraint FOREIGN KEY
ALTER TABLE tablename DROP CONSTRAINT constraint

Specify tablename as described in Table References.

• ALTER TABLE...ADD fieldname can add a field definition or a comma-separated list of field definitions:

– DEFAULT is supported.

– NOT NULL is supported if the table contains no data. If the table contains data, you can only specify NOT NULL
if the field also specifies a DEFAULT value.

– UNIQUE is parsed but ignored. To establish a unique constraint use the CREATE INDEX command with the
UNIQUE keyword.

Transact-SQL (TSQL) Migration Guide 23

Data Definition Language (DDL) Statements

The full supported syntax for ALTER TABLE...ADD fieldname is as follows:

ALTER TABLE tablename
 [WITH CHECK | WITH NOCHECK]
 ADD fieldname datatype [DEFAULT value]
 [{UNIQUE | NOT NULL} | CONSTRAINT constraintname {UNIQUE | NOT NULL}]
 [FOREIGN KEY (field1[,field2[,...]])
 REFERENCES tablename(field1[,field2[,...]])]

WITH CHECK | WITH NOCHECK is parsed by InterSystems IRIS, but is ignored. In Transact-SQL, WITH CHECK
| WITH NOCHECK provides an execution time check of existing data for a new or newly enabled constraint. InterSys-
tems TSQL does not specifically support that, although InterSystems SQL will check existing data against a new
constraint.

The Sybase PARTITION BY clause is not supported.

• ALTER TABLE...ALTER COLUMN fieldname datatype can change the data type of an existing field. This command
completes without error when the specified datatype is the same as the field’s existing data type.

• ALTER TABLE...DROP [COLUMN] fieldname can drop a defined field or a comma-separated list of defined fields.
The keyword DELETE is a synonym for the keyword DROP.

– Sybase: the COLUMN keyword is not permitted, the CONSTRAINT keyword is required: ALTER TABLE...DROP
fieldname, CONSTRAINT constraint

– MSSQL: the COLUMN keyword is required, the CONSTRAINT keyword is optional: ALTER TABLE...DROP
COLUMN fieldname, constraint

• ALTER TABLE...DROP [CONSTRAINT] constraintname can drop a constraint from a field. The keyword DELETE
is a synonym for the keyword DROP.

– Sybase: the CONSTRAINT keyword is required.

– MSSQL: the CONSTRAINT keyword is optional.

• ALTER TABLE...ADD CONSTRAINT...DEFAULT syntax does not create a field constraint. Instead, it performs
the equivalent of an ALTER TABLE...ALTER COLUMN...DEFAULT statement. This means that InterSystems
IRIS establishes the specified field default as the field property’s initial expression. Because no field constraint is
defined, this “constraint” cannot be subsequently dropped or changed.

CHECK | NOCHECK CONSTRAINT is not supported by InterSystems IRIS TSQL. Specifying this CHECK or
NOCHECK keyword generates an error message.

4.1.3 DROP TABLE

Deletes a table definition.

DROP TABLE [IF EXISTS] tablename

Deletes a table definition. You can delete both regular tables and temporary tables. (Temporary table names begin with a
'#' character.) DROP TABLE ignores a nonexistent temporary table name and completes without error.

Specify tablename as described in Table References.

If tablename has an associated view, you must delete the view before you can delete the table.

The IF EXISTS clause is parsed but ignored.

24 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.1.4 CREATE INDEX

Creates an index for a specified table or view.

CREATE [UNIQUE] INDEX indexname ON tablename (fieldname [,fieldname2])

You can create an index on a field or a comma-separated list of fields.

You can create an index on the IDKEY (which is treated as a clustered index), on an IDENTITY field (which create an
index on the %%ID field), on the Primary Key, or on other fields.

Specify tablename as described in Table References.

The UNIQUE keyword creates a unique value constraint index for the specified field(s).

The following Transact-SQL features are parsed, but ignored:

• The CLUSTERED/NONCLUSTERED keywords. Other than the IDKEY, which is implicitly treated as a clustered
index, InterSystems TSQL does not support clustered indexes.

• The ON dbspace clause.

• The ASC/DESC keywords.

• The INCLUDE clause.

• WITH clause options, such as WITH FILLFACTOR=n or WITH DROP_EXISTING=ON. The comma-separated list
of WITH clause options can optionally be enclosed in parentheses.

• The ON filegroup or IN dbspace-name clause.

The following Transact-SQL features are not currently supported:

• Sybase index types.

• The IN dbspace clause.

• The NOTIFY integer clause.

• The LIMIT integer clause.

• Using a function name as an alternative to a field name.

The ALTER INDEX statement is not supported.

4.1.5 DROP INDEX

Deletes an index definition. You can delete a single index or a comma-separated list of indexes, using either of the following
syntax forms:

DROP INDEX tablename.indexname [,tablename.indexname]

DROP INDEX indexname ON tablename [WITH (...)] [,indexname ON tablename [WITH (...)]]

tablename is the name of the table containing the indexed field. Specify tablename as described in Table References.
Specifying a #temptable is only permitted when the current namespace is part of a shard cluster.

indexname is the name of the index. It can be a regular identifier or a quoted identifier.

The WITH (...) clause, with any value within the parentheses, is accepted by syntax checking for compatibility, but is not
validated and performs no operation.

The IF EXISTS clause is not supported.

Transact-SQL (TSQL) Migration Guide 25

Data Definition Language (DDL) Statements

4.1.6 CREATE TRIGGER

Creates a statement-level trigger.

CREATE TRIGGER triggername ON tablename
[WITH ENCRYPTION]
{FOR | AFTER | INSTEAD OF} {INSERT | DELETE | UPDATE}
[WITH APPEND]
[NOT FOR REPLICATION]
AS tsql_trigger_code

You can create a trigger for one event (INSERT), or for a comma-separated list of events (INSERT,UPDATE).

Specify tablename as described in Table References.

The FOR, AFTER, and INSTEAD OF keywords are synonyms. A trigger is always pulled after the event operation is per-
formed.

If there are multiple triggers for the same event or comma-separated list of events they are executed in the order the triggers
were created.

The following clauses are parsed but ignored: WITH ENCRYPTION, WITH APPEND, NOT FOR REPLICATION.

InterSystems TSQL does not support row-level triggers.

You cannot include a CREATE TRIGGER statement in CREATE PROCEDURE code.

4.1.7 DROP TRIGGER

Deletes a trigger definition.

DROP TRIGGER [owner.]triggername

4.1.8 CREATE VIEW

Creates a view definition.

CREATE VIEW [owner.]viewname
 [WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}]
 AS select_statement
 [WITH CHECK OPTION]

A viewname must be a unique TSQL identifier. Specify viewname as described in Table References. If the view already
exists, an SQLCODE -201 error is issued. A viewname can be a delimited identifier. For example, CREATE VIEW
Sample.[Name/Age View].

By default, the view fields have the same names as the fields in the SELECT table. To specify different names for the view
fields, specify field aliases in the SELECT statement. These aliases are used as the view field names:

TSQL

CREATE VIEW NameAgeV
AS SELECT Name AS FullName,Age AS Years FROM Sample.Person

You can specify a WITH clause with a single keyword or a comma-separated list of keywords. For example: WITH
SCHEMABINDING, ENCRYPTION, VIEW_METADATA. The ENCRYPTION, SCHEMABINDING, and VIEW_META-
DATA keywords are parsed but ignored.

The select_statement can only include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to
include all of the rows in the view, you can pair an ORDER BY clause with a TOP ALL clause. You can include a TOP

26 Transact-SQL (TSQL) Migration Guide

TSQL Commands

clause without an ORDER BY clause. However, if you include an ORDER BY clause without a TOP clause, an SQLCODE
-143 error is generated.

The select_statement can contain a UNION or UNION ALL.

The optional WITH CHECK OPTION clause prevents an update through the view that makes the record inaccessible to
that view. It does this by checking the WITH clause in the SELECT statement. WITH CHECK OPTION binds to InterSystems
SQL using the default of CASCADE.

The ALTER VIEW statement is not supported.

4.1.9 DROP VIEW

Deletes a view definition.

DROP VIEW viewname [,viewname2 [,...]]

You can delete a single view, or a comma-separated list of views. Specify viewname as described in Table References.

DROP VIEW is not an all-or-nothing operation. It deletes existing views in the list of views until it encounters a nonexistent
view in the list. At that point the delete operation stops with an SQLCODE -30 error.

The IF EXISTS clause is not supported.

4.1.10 CREATE DATABASE

CREATE DATABASE syntax is parsed to provide compatibility. No functionality is provided.

CREATE DATABASE dbname

Only this basic CREATE DATABASE syntax is parsed.

Sybase additional CREATE DATABASE clauses are not supported.

MSSQL attach a database and create a database snapshot syntax options are not supported.

The ALTER DATABASE statement is not supported.

4.1.11 DROP DATABASE

DROP DATABASE syntax is parsed to provide compatibility. No functionality is provided.

DROP DATABASE dbname

4.2 Data Management Language (DML) Statements
• TSQL can resolve an unqualified table name using a schema search path for a single DML statement in Dynamic SQL.

• TSQL cannot resolve an unqualified table name using a schema search path for multiple DML statements in Dynamic
SQL. This includes multiple statements such as an explicit BEGIN TRANSACTION followed by a single DML
statement.

Transact-SQL (TSQL) Migration Guide 27

Data Management Language (DML) Statements

4.2.1 DELETE

Deletes rows of data from a table. Both DELETE and DELETE ... FROM are supported:

DELETE FROM tablename WHERE condition

DELETE FROM tablename FROM matchtablename WHERE tablename.fieldname = matchtablename.fieldname

Only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries).

You can specify how DELETE executes by providing one or more execution options as a comma-separated list. You
provide these options in a comment with the following specific syntax:

/* IRIS_DELETE_HINT: option,option2 */

Where option can be the following: %NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK, %NOTRIGGER, %PROFILE,
%PROFILE_ALL. Refer to the InterSystems SQL DELETE command for details.

You can provide optimization hints to the DELETE FROM clause as a comma-separated list. You provide these hints in
a comment with the following specific syntax:

/* IRIS_DELETEFROM_HINT: hint,hint2 */

Where hint can be the following: %ALLINDEX, %FIRSTTABLE tablename, %FULL, %INORDER, %IGNOREINDICES,
%NOFLATTEN, %NOMERGE, %NOSVSO, %NOTOPOPT, %NOUNIONOROPT, and %STARTTABLE. Refer to the
InterSystems SQL FROM clause for details.

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

DELETE sets the @@ROWCOUNT system variable to the number of rows deleted, and the @@IDENTITY system
variable to the IDENTITY value of the last row deleted.

A DELETE that has a @@ROWCOUNT of more than 100,000 automatically invokes UPDATE STATISTICS to optimize
the table for future queries.

You can use either DELETE or TRUNCATE TABLE to delete all rows from a table. DELETE sets @@ROWCOUNT
to the number of rows deleted. TRUNCATE TABLE is more efficient, but does not preserve the number of rows deleted;
it sets @@ROWCOUNT to -1. DELETE does not reset the RowID counter and other row counters; TRUNCATE TABLE
resets these counters.

The following options are not supported:

• MSSQL rowset functions.

• MSSQL OPTION clause.

4.2.2 INSERT

Inserts rows of data into a table. The following syntactic forms are supported:

INSERT [INTO] tablename (fieldname[,fieldname2[,...]]) VALUES (list_of_values)

INSERT [INTO] tablename (fieldname[,fieldname2[,...]]) SELECT select_list

The INTO keyword is optional. Specify tablename as described in Table References.

28 Transact-SQL (TSQL) Migration Guide

TSQL Commands

For the VALUES syntax, the VALUES keyword is mandatory for both MSSQL and Sybase. The (fieldname) list is optional
if the list_of_values lists all user-specified fields in the order defined in the table. If field names are specified, the
list_of_values is a comma-separated list of values that matches the list of field names in number and data type.

You can specify how INSERT executes by providing one or more execution options as a comma-separated list. You provide
these options in a comment with the following specific syntax:

/* IRIS_INSERT_HINT: option,option2 */

Where option can be the following: %NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK, %NOTRIGGER, %PROFILE,
%PROFILE_ALL. Refer to the InterSystems SQL INSERT command for details.

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

INSERT sets the @@ROWCOUNT system variable to the number of rows inserted, and the @@IDENTITY system
variable to the IDENTITY value of the last row inserted.

An INSERT that has a @@ROWCOUNT of more than 100,000 automatically invokes UPDATE STATISTICS to optimize
the table for future queries.

The following options are not supported:

• (fieldname) DEFAULT VALUES or (fieldname) VALUES (DEFAULT). A field’s default value is used when
the field is not specified in the INSERT statement.

• (fieldname) EXECUTE procname.

• Sybase insert load option clauses: LIMIT, NOTIFY, SKIP, or START ROW ID.

• Sybase insert select load option clauses: WORD SKIP, IGNORE CONSTRAINT, MESSAGE LOG, or LOG
DELIMITED BY.

• Sybase LOCATION clause.

• MSSQL INSERT TOP clause.

• MSSQL rowset functions.

4.2.3 UPDATE

Updates values of existing rows of data in a table.

UPDATE tablename SET fieldname=value [,fieldname2=value2[,...]]
 [FROM tablename [,tablename2]] WHERE fieldname=value

UPDATE tablename SET fieldname=value[,fieldname2=value2[,...]]
 WHERE [tablename.]fieldname=value

These syntactic forms are vendor-specific:

• Sybase: the optional FROM keyword syntax is used to specify an optional table (or joined tables) used in a condition.
Only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries).

• MSSQL: the tablename.fieldname syntax is used to specify an optional table used in a condition.

The value data type and length must match the fieldname defined data type and length. A value can be a expression that
resolves to a literal value or it can be the NULL keyword. It cannot be the DEFAULT keyword.

Transact-SQL (TSQL) Migration Guide 29

Data Management Language (DML) Statements

Specify tablename as described in Table References.

UPDATE supports the use of a local variable on the left-hand-side of a SET clause. This local variable can be either instead
of a field name or in addition to a field name. The following example shows a SET to a field name, a SET to a local variable,
and a SET to both a field name and a local variable:

UPDATE table SET x=3,@v=b,@c=Count=Count+1

You can specify how UPDATE executes by providing one or more execution options as a comma-separated list. You
provide these options in a comment with the following specific syntax:

/* IRIS_UPDATE_HINT: option,option2 */

Where option can be the following: %NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK, %NOTRIGGER, %PROFILE,
%PROFILE_ALL. Refer to the InterSystems SQL UPDATE command for details.

You can provide optimization hints to the UPDATE FROM clause as a comma-separated list. You provide these hints in
a comment with the following specific syntax:

/* IRIS_UPDATEFROM_HINT: hint,hint2 */

Where hint can be the following: %ALLINDEX, %FIRSTTABLE tablename, %FULL, %INORDER, %IGNOREINDICES,
%NOFLATTEN, %NOMERGE, %NOSVSO, %NOTOPOPT, %NOUNIONOROPT, and %STARTTABLE. Refer to the
InterSystems SQL FROM clause for details.

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

UPDATE sets the @@ROWCOUNT system variable to the number of rows updated, and the @@IDENTITY system
variable to the IDENTITY value of the last row updated.

An UPDATE that has a @@ROWCOUNT of more than 100,000 automatically invokes UPDATE STATISTICS to optimize
the table for future queries.

The following Dynamic SQL example shows a simple UPDATE operation:

ObjectScript

 SET sql=9
 SET sql(1)="CREATE TABLE #mytest (MyId INT PRIMARY KEY,"
 SET sql(2)="LastName VARCHAR(20) CONSTRAINT nonull_lname NOT NULL,"
 SET sql(3)="FirstName VARCHAR(20) DEFAULT '***TBD***')"
 SET sql(4)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1224,'Smith','John')"
 SET sql(5)="INSERT INTO #mytest(MyId,LastName) VALUES (1225,'Jones')"
 SET sql(6)="INSERT INTO #mytest(MyId,LastName) VALUES (1226,'Brown')"
 SET sql(7)="UPDATE #mytest SET FirstName='Fred' WHERE #mytest.LastName='Jones'"
 SET sql(8)="SELECT FirstName,LastName FROM #mytest ORDER BY LastName"
 SET sql(9)="DROP TABLE #mytest"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 WRITE status,!
 SET result=statement.%Execute()
 DO result.%Display()

The following options are not supported:

• Sybase ORDER BY clause.

• MSSQL OPTION clause.

• MSSQL TOP clause.

30 Transact-SQL (TSQL) Migration Guide

TSQL Commands

• MSSQL rowset functions.

4.2.4 READTEXT

Reads data from a stream field.

READTEXT tablename.fieldname textptr offset size

The MSSQL READTEXT statement returns stream data from a field of a table. It requires a valid text pointer value, which
can be retrieved using the TEXTPTR function, as shown in the following example:

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
READTEXT Sample.Person.Notes @ptrval 0 0

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The offset can be 0, a positive integer value, or NULL: 0 reads from the beginning of the text. A positive integer reads from
the offset position. NULL reads from the end of the text; that is, it completes successfully but returns no value.

The size can be 0 or a positive integer value, or NULL: 0 reads all characters from the offset position to the end of the text.
A positive integer reads the size number of characters from the offset position. NULL completes successfully but returns
no value.

The MSSQL HOLDLOCK keyword is parsed but ignored.

4.2.5 WRITETEXT

Writes data to a stream field, replacing the existing data value.

WRITETEXT tablename.fieldname textptr value

The MSSQL WRITETEXT statement writes data to a stream field of a table. It requires a valid text pointer value, which
can be retrieved using the TEXTPTR function, as shown in the following example:

TSQL

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
WRITETEXT Sample.Person.Notes @ptrval 'This is the new text value'

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The MSSQL BULK keyword is not supported.

The MSSQL WITH LOG keyword phrase is parsed but ignored.

4.2.6 UPDATETEXT

Updates data in a stream field.

UPDATETEXT tablename.fieldname textptr offset deletelength value

Transact-SQL (TSQL) Migration Guide 31

Data Management Language (DML) Statements

The MSSQL UPDATETEXT statement updates stream data from a field of a table. It requires a valid text pointer value,
which can be retrieved using the TEXTPTR function. The following example updates the contents of the Notes stream
data field by inserting the word ‘New’ at the beginning of the existing data value:

DECLARE @ptrval binary(16);
SELECT @ptrval = TEXTPTR(Notes) FROM Sample.Person
WRITETEXT Sample.Person.Notes @ptrval 0 0 'New'

The textptr must be declared as binary. A textptr is only defined for a text field that is not null. You can specify an initial
non-null value for a text field using the INSERT statement.

The offset can be an integer value or NULL: 0 inserts the value at the beginning of the existing text. NULL inserts the value
at the end of the existing text.

The deletelenth can be an integer value or NULL: 0 or NULL deletes no existing characters from the offset position before
inserting the value. A positive integer deletes that number of existing characters from the offset position before inserting
the value.

The MSSQL BULK keyword is not supported.

The MSSQL WITH LOG keyword phrase is parsed but ignored.

4.2.7 TRUNCATE TABLE

Deletes all of the data from a table.

TRUNCATE TABLE tablename

Invokes the InterSystems SQL TRUNCATE TABLE command, which deletes all rows from the specified table and resets
the RowId (ID), IDENTITY, and SERIAL (%Counter) row counters and the stream field OID counter values. TRUNCATE
TABLE does not preserve the number of rows deleted; it sets @@ROWCOUNT to -1.

You can specify how TRUNCATE TABLE executes by providing one or more execution options as a comma-separated
list. You provide these options in a comment with the following specific syntax:

/* IRIS_DELETE_HINT: option,option2 */

Where option can be the following: %NOCHECK, %NOLOCK. Refer to the InterSystems SQL TRUNCATE TABLE for
details.

4.3 Query Statements

4.3.1 SELECT

SELECT [DISTINCT | ALL]
 [TOP [(]{ int | @var | ? | ALL}[)]]
select-item {,select-item}

 [[fieldname=IDENTITY(n)] INTO [#]copytable]
 [FROM tablename [[AS] t-alias] [,tablename2 [[AS] t-alias2]]]
 [[WITH] [(] tablehint=val [,tablehint=val] [)]]
 [WHERE condition-expression]
 [GROUP BY scalar-expression]
 [HAVING condition-expression]
 [ORDER BY item-order-list [ASC | DESC]]

The above SELECT syntax is supported. The following features are not supported:

• TOP nn PERCENT or TOP WITH TIES

32 Transact-SQL (TSQL) Migration Guide

TSQL Commands

• OPTION

• WITH CUBE

• WITH ROLLUP

• GROUP BY ALL

• GROUP WITH

• COMPUTE clause

• FOR BROWSE

TOP nn specifies the number of rows to retrieve. InterSystems TSQL supports TOP nn with a integer, ?, local variable,
or the keyword ALL. The TOP argument can be enclosed in parentheses TOP (nn). These parentheses are retained, pre-
venting preparser substitution. If SET ROWCOUNT specifies fewer rows than TOP nn, the SET ROWCOUNT value is used.
The following Dynamic SQL example shows the use of TOP with a local variable:

ObjectScript

 SET sql=3
 SET sql(1)="DECLARE @var INT"
 SET sql(2)="SET @var=4"
 SET sql(3)="SELECT TOP @var Name,Age FROM Sample.Person"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

The select-item list can contain the following:

• field names, functions, and expressions

• the $IDENTITY pseudo-field name, which always returns the RowID value, regardless of the field name assigned to
the RowID.

• an asterisk: SELECT * is supported. The asterisk means to select all fields in the specified table. You can qualify the
asterisk with the table name or table alias: SELECT mytable.*.

• a subquery

• stream fields. A SELECT on a stream field returns the OREF (object reference) of the opened stream object.

An INTO clause can be used to copy data from an existing table into a new table. By default, SELECT creates the INTO
table with the same field names and data types as the fields selected from the source table. The INTO table cannot already
exist. This INTO table can be a permanent table, or a temporary table, as shown in the following examples:

TSQL

SELECT Name INTO Sample.NamesA_G FROM Sample.Person WHERE name LIKE '[A-G]%'

TSQL

SELECT Name INTO #MyTemp FROM Sample.Person WHERE name LIKE '[A-G]%'
SELECT * FROM #MyTemp

You can specify a different name for an INTO table field by using a field alias, as shown in the following example:

TSQL

SELECT Name AS Surname INTO Sample.NamesA_G FROM Sample.Person WHERE name LIKE '[A-G]%'

Transact-SQL (TSQL) Migration Guide 33

Query Statements

An INTO clause can contain an optional IDENTITY field definition, which adds the specified field as an IDENTITY field
(with n precision) to the table created by the INTO clause.

An INTO clause cannot be used when the SELECT is a subquery or is part of a UNION.

The FROM clause is not required. A SELECT without a FROM clause can be used to assign a value to a local variable,
as follows:

TSQL

DECLARE @myvar INT
SELECT @myvar=1234
PRINT @myvar

The FROM clause supports table hints with either of the following syntactic forms:

FROM tablename (INDEX=indexname)
FROM tablename INDEX (indexname)

Table hints can be optionally preceded by the WITH keyword, and optionally enclosed in parentheses. A list of table hints
can be separated by either commas or blank spaces. The following table hints are parsed but ignored: FASTFIRSTROW,
HOLDINDEX, NOLOCK, PAGLOCK, READCOMMITTED, READPAST, READUNCOMMITTED, REPEAT-
ABLEREAD, ROWLOCK, SERIALIZABLE, SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK.

You can provide optimization hints to the SELECT FROM clause as a comma-separated list. You provide these hints in
a comment with the following specific syntax:

/* IRIS_SELECTFROM_HINT: hint,hint2 */

Where hint can be the following: %ALLINDEX, %FIRSTTABLE tablename, %FULL, %INORDER, %IGNOREINDICES,
%NOFLATTEN, %NOMERGE, %NOSVSO, %NOTOPOPT, %NOUNIONOROPT, and %STARTTABLE. Refer to the
InterSystems SQL FROM clause for details.

A WHERE clause can use AND, OR, and NOT logic keywords. It can group multiple search conditions using parentheses.
The WHERE clause supports the following search conditions:

• Equality comparisons: = (equals), <> (not equals), < (less than), > (greater than), <= (less than or equals), >= (greater
than or equals).

• IS NULL and IS NOT NULL comparisons.

• BETWEEN comparisons: Age BETWEEN 21 AND 65 (inclusive of 21 and 65); Age NOT BETWEEN 21 AND 65
(exclusive of 21 and 65). BETWEEN is commonly used for a range of numeric values, which collate in numeric order.
However, BETWEEN can be used for a collation sequence range of values of any data type. It uses the same collation
type as the field it is matching against. By default, string data types collate as not case-sensitive.

• IN comparisons: Home_State IN ('MA','RI','CT').

• LIKE and NOT LIKE comparisons, specified as a quoted string. The comparison string can contain wildcards: _ (any
single character); % (any string); [abc] (any value in the set specified as a list of items); [a-c] (any value in the set
specified as a range of items). InterSystems TSQL does not support the ^ wildcard. A LIKE comparison can include
an ESCAPE clause, such as the following: WHERE CategoryName NOT LIKE 'D_%' ESCAPE '\'.

• EXISTS comparison check: used with a subquery to test whether the subquery evaluates to the empty set. For example
SELECT Name FROM Sample.Person WHERE EXISTS (SELECT LastName FROM Sample.Employee

WHERE LastName='Smith'). In this example, all Names are returned from Sample.Person if a record with Last-
Name='Smith' exists in Sample.Employee. Otherwise, no records are returned from Sample.Person.

• ANY and ALL comparison check: used with a subquery and an equality comparison operator. The SOME keyword
is a synonym for ANY.

34 Transact-SQL (TSQL) Migration Guide

TSQL Commands

WHERE clause and HAVING clause comparisons are not case-sensitive.

A HAVING clause can be specified after a GROUP BY clause. The HAVING clause is like a WHERE clause that can
operate on groups, rather than on the full data set. HAVING and WHERE use the same comparisons. This is shown in the
following example:

TSQL

SELECT Home_State, MIN(Age) AS Youngest,
 AVG(Age) AS AvgAge, MAX(Age) AS Oldest
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age < 21
 ORDER BY Youngest

The following Dynamic SQL example selects table data into a result set:

ObjectScript

 SET sql=7
 SET sql(1)="CREATE TABLE #mytest (MyId INT PRIMARY KEY,"
 SET sql(2)="LastName VARCHAR(20),"
 SET sql(3)="FirstName VARCHAR(20))"
 SET sql(4)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1224,'Smith','John')"
 SET sql(5)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1225,'Jones','Wilber')"
 SET sql(6)="SELECT FirstName,LastName FROM #mytest"
 SET sql(7)="DROP TABLE #mytest"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

The following Dynamic SQL example selects a single field value into a local variable:

ObjectScript

 SET sql=9
 SET sql(1)="CREATE TABLE #mytest (MyId INT PRIMARY KEY,"
 SET sql(2)="LastName VARCHAR(20),"
 SET sql(3)="FirstName VARCHAR(20))"
 SET sql(4)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1224,'Smith','John')"
 SET sql(5)="INSERT INTO #mytest(MyId,LastName,FirstName) VALUES (1225,'Jones','Wilber')"
 SET sql(6)="DECLARE @nam VARCHAR(20)"
 SET sql(7)="SELECT @nam=LastName FROM #mytest"
 SET sql(8)="PRINT @nam"
 SET sql(9)="DROP TABLE #mytest"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 DO statement.%Execute()

An ORDER BY clause can specify ascending (ASC) or descending (DESC) order. The default is ascending. Unlike Inter-
Systems SQL, an ORDER BY may be used in subqueries and in queries that appear in expressions. For example:

TSQL

SET @var = (SELECT TOP 1 name FROM mytable ORDER BY name)

4.3.2 JOIN

JOIN (equivalent to INNER JOIN), INNER JOIN, and LEFT JOIN supported. Parentheses can be used to rationalize
parsing of multiple joins.

Sybase legacy *= and =* outer joins are supported.

Transact-SQL (TSQL) Migration Guide 35

Query Statements

4.3.3 UNION

A union of two (or more) SELECT statements is supported. InterSystems TSQL supports UNION and UNION ALL. If
you specify UNION ALL, only the first SELECT can specify an INTO table. This INTO table can be a defined table, or
a temporary table generated from the SELECT field list.

4.3.4 FETCH Cursor

The OPEN, FETCH, CLOSE, and DEALLOCATE commands are mainly supported. The following features are not
supported:

• OPEN/FETCH/CLOSE @local

• FETCH followed by any qualifier other than NEXT (the qualifier can be omitted).

• Note that DEALLOCATE is supported, but that, by design, it generates no code.

4.4 Flow of Control Statements

4.4.1 IF

Executes a block of code if a condition is true.

The IF command is supported with four syntactic forms:

IF...ELSE syntax:

IF condition
statement
[ELSE statement]

IF...THEN...ELSE single-line syntax:

IF condition THEN statement [ELSE statement]

ELSEIF...END IF syntax:

IF condition THEN
statements
{ELSEIF condition THEN statements}
 [ELSE statements]
END IF

ELSE IF (SQL Anywhere) syntax:

IF condition THEN statement
{ELSE IF condition THEN statement}
[ELSE statement]

The first syntactic form is the TSQL standard format. No THEN keyword is used. You may use white space and line breaks
freely. To specify more than one statement in a clause you must use BEGIN and END keywords to demarcate the block of
statements. The ELSE clause is optional. This syntax is shown in the following example:

36 Transact-SQL (TSQL) Migration Guide

TSQL Commands

ObjectScript

 SET sql=4
 SET sql(1)="DECLARE @var INT"
 SET sql(2)="SET @var=RAND()"
 SET sql(3)="IF @var<.5 PRINT 'The Oracle says No'"
 SET sql(4)="ELSE PRINT 'The Oracle says Yes' "
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

The second syntactic form is single-line syntax. The THEN keyword is required. A line break restriction requires that IF
condition THEN statement all be on the same line, though only the first keyword of the statement must be on that
line. Otherwise, you may use white space and line breaks freely. To specify more than one statement in a clause you must
use BEGIN and END keywords to demarcate the block of statements. The ELSE clause is optional. This syntax is shown
in the following example:

ObjectScript

 SET sql=3
 SET sql(1)="DECLARE @var INT "
 SET sql(2)="SET @var=RAND() "
 SET sql(3)="IF @var<.5 THEN PRINT 'No' ELSE PRINT 'Yes' "
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

The third syntactic form provides an ELSEIF clause. You can specify zero, one, or more than one ELSEIF clauses, each
with its own condition test. Within an IF, ELSEIF, or ELSE clause you can specify multiple statements. BEGIN and END
keywords are permitted but not required. A line break restriction requires a line break between IF condition THEN
and the first statement. Otherwise, you may use white space and line breaks freely. The ELSE clause is optional. The END
IF keyword clause is required. This syntax is shown in the following example:

ObjectScript

 SET sql=14
 SET sql(1)="DECLARE @var INT "
 SET sql(2)="SET @var=RAND() "
 SET sql(3)="IF @var<.2 THEN "
 SET sql(4)="PRINT 'The Oracle' "
 SET sql(5)="PRINT 'says No' "
 SET sql(6)="ELSEIF @var<.4 THEN "
 SET sql(7)="PRINT 'The Oracle' "
 SET sql(8)="PRINT 'says Possibly' "
 SET sql(9)="ELSEIF @var<.6 THEN "
 SET sql(10)="PRINT 'The Oracle' "
 SET sql(11)="PRINT 'says Probably' "
 SET sql(12)="ELSE PRINT 'The Oracle' "
 SET sql(13)="PRINT 'says Yes' "
 SET sql(14)="END IF"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

The fourth syntactic form is compatible with SQL Anywhere. It provides an ELSE IF clause (note space between keywords).
You can specify zero, one, or more than one ELSE IF clauses, each with its own condition test. To specify more than one
statement in a clause you must use BEGIN and END keywords to demarcate the block of statements. You may use white
space and line breaks freely. The ELSE clause is optional. This syntax is shown in the following example:

Transact-SQL (TSQL) Migration Guide 37

Flow of Control Statements

ObjectScript

 SET sql=6
 SET sql(1)="DECLARE @var INT "
 SET sql(2)="SET @var=RAND() "
 SET sql(3)="IF @var<.2 THEN PRINT 'The Oracle says No'"
 SET sql(4)="ELSE IF @var<.4 THEN PRINT 'The Oracle says Possibly'"
 SET sql(5)="ELSE IF @var<.6 THEN PRINT 'The Oracle says Probably'"
 SET sql(6)="ELSE PRINT 'The Oracle says Yes'"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

4.4.2 WHILE

Repeatedly executes a block of code while a condition is true.

WHILE condition BEGIN statements END

The BREAK keyword exits the WHILE loop.

The CONTINUE keyword immediately returns to the top of the WHILE loop.

The BEGIN and END keywords are required if statements is more than one command.

The following example returns four result sets, each containing a pair of records in ascending ID sequence:

 DECLARE @n INT;
 SET @n=0;
 WHILE @n<8 BEGIN
 SELECT TOP 2 ID,Name FROM Sample.Person WHERE ID>@n
 SET @n=@n+2
 END;

4.4.3 CASE

Returns a value from the first match of multiple specified values.

CASE expression WHEN value THEN rtnval
[WHEN value2 THEN rtnval2] [...]
[ELSE rtndefault]
END

The WHEN value must be a simple value. It cannot be a boolean expression.

The ELSE clause is optional. If no WHEN clause is satisfied and the ELSE clause is not provided, the CASE statement
returns expression as NULL.

For example:

SQL

SELECT CASE Name WHEN 'Fred Rogers' THEN 'Mr. Rogers'
 WHEN 'Fred Astare' THEN 'Ginger Rogers'
 ELSE 'Somebody Else' END
 FROM Sample.Person

The returned value does not have to match the data type of expression.

CASE parses but ignores WHEN NULL THEN rtnval cases.

38 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.4.4 GOTO and Labels

InterSystems TSQL supports the GOTO command and labels. A label must be a valid TSQL identifier followed by a colon
(:). A GOTO reference to a label does not include the colon.

4.4.5 WAITFOR

Used to delay execution until a specific elapse of time or clock time.

WAITFOR DELAY timeperiod
WAITFOR TIME clocktime

timeperiod is the amount of time to wait before resuming execution, expressed as 'hh:mm[:ss[.fff]] Thus WAITFOR DELAY
'00:00:03' provides a time delay of 3 seconds; WAITFOR DELAY '00:03' provides a time delay of 3 minutes;
WAITFOR DELAY '00:00:00.9' provides a time delay of nine-tenths of a second. Note that the fractional second
divider is a period, not a colon.

clocktime is the time at which to resume execution, expressed as 'hh:mm[:ss[.fff]], using a 24-hour clock. Thus WAITFOR
TIME '14:35:00' resumes execution at 2:35pm; WAITFOR TIME '00:00:03' resumes execution at 3 seconds after
midnight.

The following options are not supported:

• Sybase CHECK EVERY clause.

• Sybase AFTER MESSAGE BREAK clause.

• MSSQL RECEIVE clause.

4.5 Assignment Statements

4.5.1 DECLARE

Declares the data type for a local variable.

DECLARE @var [AS] datatype [= initval]

Only the form which declares local variables is supported; cursor variables are not supported. The AS keyword is optional.
Unlike InterSystems SQL, you must declare a local variable before you can set it.

@var can be any local variable name. Sybase local variable names are case-sensitive. MSSQL local variable names are
not case-sensitive.

The datatype can be any valid data type, such as CHAR(12) or INT. TEXT, NTEXT, and IMAGE data types are not allowed.
For further details on data types, see TSQL Constructs.

The optional initval argument allows you to set the initial value of the local variable. You can set it to a literal value or to
any of the following: NULL, USER, CURRENT DATE (or CURRENT_DATE), CURRENT TIME (or CURRENT_TIME),
CURRENT TIMESTAMP (or CURRENT_TIMESTAMP), or CURRENT_USER. The DEFAULT and CUR-
RENT_DATABASE keywords are not supported. Alternatively, you can set the value of a local value using the SET
command or the SELECT command. For example:

DECLARE @c INT;
SELECT @c=100;

Transact-SQL (TSQL) Migration Guide 39

Assignment Statements

You can specify multiple local variable declarations as a comma-separated list. Each declaration must have its own data
type and (optionally) its own initial value:

DECLARE @a INT=1,@b INT=2,@c INT=3

4.5.2 SET

Assigns a value to a local variable or an environment setting.

Used to assign a value to a local variable:

TSQL

DECLARE @var CHAR(20)
SET @var='hello world'

Used to set an environment setting:

SET option ON

These settings have immediate effect at parse time, whether inside a stored procedure or not. The change persists until
another SET command alters it – even if the SET is made inside a stored procedure, and accessed outside the SP or in
another SP.

The following SET environment settings are supported:

• SET ANSI_NULLS Permitted values are SET ANSI_NULLS ON and SET ANSI_NULLS OFF. If ANSI_NULLS
OFF, a=b is true if (a=b OR (a IS NULL) AND (b IS NULL)). See the ANSI_NULLS TSQL system-wide configuration
setting.

• SET DATEFIRST integer specifies which day is treated as the first day of the week. Permitted values are 1 through
7, with 1=Monday and 7=Sunday. The default is 7.

• SET IDENTITY_INSERT Permitted values are SET IDENTITY_INSERT ON and SET IDENTITY_INSERT OFF.
If ON, an INSERT statement can specify an identity field value. This variable applies exclusively to the current process
and cannot be set on linked tables. Therefore, to use this option you should define a procedure in TSQL to perform
both the SET IDENTITY_INSERT and the INSERT, then link the procedure and execute the procedure in InterSystems
IRIS via the gateway.

• SET NOCOUNT Permitted values are SET NOCOUNT ON and SET NOCOUNT OFF. When set to ON, messages indi-
cating the number of rows affected by a query are suppressed. This can have significant performance benefits.

• SET QUOTED_IDENTIFIER Permitted values are SET QUOTED_IDENTIFIER ON and SET QUOTED_IDENTIFIER
OFF. When SET QUOTED_IDENTIFIER is on, double quotes are parsed as delimiting a quoted identifier. When SET
QUOTED_IDENTIFIER is off, double quotes are parsed as delimiting a string literal. The preferable delimiters for
string literals are single quotes. See the QUOTED_IDENTIFIER TSQL system-wide configuration setting.

• SET ROWCOUNT Set to an integer. Affects subsequent SELECT, INSERT, UPDATE, or DELETE statements to limit
the number of rows affected. In a SELECT statement, ROWCOUNT takes precedence over TOP: if ROWCOUNT is
less than TOP, the ROWCOUNT number of rows is returned; if TOP is less than ROWCOUNT, the TOP number of
rows is returned. ROWCOUNT remains set for the duration of the process or until you revert it to default behavior.
To revert to default behavior, SET ROWCOUNT 0. If you specify a fractional value, ROWCOUNT is set to the next
larger integer.

• SET TRANSACTION ISOLATION LEVEL See Transaction Statements below.

The following SET environment setting is parsed, but ignored:

• SET TEXTSIZE integer

40 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.6 Transaction Statements
InterSystems TSQL provides support for transactions, including named transaction names. It does not support savepoints.
Distributed transactions are not supported.

4.6.1 SET TRANSACTION ISOLATION LEVEL

Supported for the following forms only:

• SET TRANSACTION ISOLATION LEVEL READ COMMITTED

• SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

READ VERIFIED and other options are not supported.

Sybase SET TRANSACTION ISOLATION LEVEL n integer option codes (0, 1, 2, 3) are not supported.

4.6.2 BEGIN TRANSACTION

Begins the current transaction.

BEGIN TRAN [name]
BEGIN TRANSACTION [name]

Initiates a transaction. The optional name argument can be used to specify a named transaction, also known as a savepoint.
The name value must be supplied as a literal; it cannot be a variable.

You can issue multiple BEGIN TRANSACTION statements to create multiple nested transactions. You can use the
@@trancount special variable to determine the current transaction level. Each transaction level must be resolved by a
COMMIT statement or a ROLLBACK statement.

Note: A Data Management Language (DML) statement that is within an explicit transaction cannot resolve an unqualified
table name using a schema search path.

4.6.3 COMMIT TRANSACTION

Commits the current transaction.

COMMIT
COMMIT TRAN
COMMIT TRANSACTION
COMMIT WORK

These four syntactical forms are functionally identical; the COMMIT keyword, as specified below, refers to any of these
syntactical forms. A COMMIT statement commits all work completed during the current transaction, resets the transaction
level counter, and releases all locks established. This completes the transaction. Work committed cannot be rolled back.

If multiple BEGIN TRANSACTION statements have created nested transactions, COMMIT completes the current nested
transaction. A transaction is defined as the operations since and including the BEGIN TRANSACTION statement. A
COMMIT restores the transaction level counter to its state immediately prior to the BEGIN TRANSACTION statement
that initialized the transaction. You can use the @@trancount special variable to determine the current transaction level.

A COMMIT cannot specify a named transaction. If you specify a transaction name as part of a COMMIT statement, the
presence of this name is parsed without issuing an error, but the transaction name is not validated and it is ignored.

Sybase performs no operation and does not issue an error if a COMMIT is issued when not in a transaction.

Transact-SQL (TSQL) Migration Guide 41

Transaction Statements

4.6.4 ROLLBACK TRANSACTION

Rolls back the specified transaction or all current transactions.

ROLLBACK [name]
ROLLBACK TRAN [name]
ROLLBACK TRANSACTION [name]
ROLLBACK WORK [name]

These four syntactical forms are functionally identical; the ROLLBACK keyword, as specified below, refers to any of
these syntactical forms. The optional name argument specifies a named transaction, as specified by a BEGIN
TRANSACTION name statement. The name value must be supplied as a literal; it cannot be a variable.

A ROLLBACK rolls back a transaction, undoing work performed but not committed, decrementing the transaction level
counter, and releasing locks. It is used to restore the database to a previous consistent state.

• A ROLLBACK rolls back all work completed during the current transaction (or series of nested transactions), resets
the transaction level counter to zero and releases all locks. This restores the database to its state before the beginning
of the outermost nested transaction.

• A ROLLBACK name rolls back all work done since the specified named transaction (savepoint) and decrements the
transaction level counter by the number of savepoints undone. When all savepoints have been either rolled back or
committed and the transaction level counter reset to zero, the transaction is completed. If the named transaction does
not exist, or has already been rolled back, ROLLBACK rolls back the entire current transaction.

Sybase performs no operation and does not issue an error if a ROLLBACK is issued when not in a transaction.

4.6.5 SAVE TRANSACTION

The SAVE TRANSACTION [savepoint-name] statement is parsed but ignored in InterSystems TSQL. It performs no
operation.

4.6.6 LOCK TABLE

Enables the current user to lock a table.

LOCK TABLE tablename IN {SHARE | EXCLUSIVE} MODE [WAIT numsecs | NOWAIT]

The LOCK TABLE statement locks all of the records in the specified table. You can lock a table in SHARE MODE or in
EXCLUSIVE MODE. The optional WAIT clause specifies the number of seconds to wait in attempting to acquire the table
lock. The LOCK TABLE statement immediately releases any prior lock held by the current user on the specified table.

LOCK TABLE is only meaningful within a transaction. It locks the table for the duration of the current transaction. When
not in a transaction, LOCK TABLE performs no operation.

Specify tablename as described in Table References. LOCK TABLE supports locking a single table; it does not support
locking multiple tables.

LOCK TABLE supports SHARE and EXCLUSIVE modes; it does not support WRITE mode.

LOCK TABLE does not support the WITH HOLD clause.

WAIT time is specified as an integer number of seconds; LOCK TABLE does not support WAIT time specified as clock
time.

42 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.7 Procedure Statements
The following standard Transact-SQL statements are supported.

4.7.1 CREATE PROCEDURE / CREATE FUNCTION

Creates a named executable procedure.

CREATE PROCEDURE procname [[@var [AS] datatype [= | DEFAULT value] [,...]] [RETURNS datatype] [AS] code
CREATE PROC procname [[@var [AS] datatype [= | DEFAULT value] [,...]] [RETURNS datatype] [AS] code
CREATE FUNCTION procname [[@var [AS] datatype [= | DEFAULT value] [,...]] [RETURNS datatype] [AS] code

You can return a single scalar value result from either a PROCEDURE or a FUNCTION. OUTPUT parameters and default
values are also supported. These commands convert the return type from a TSQL type declaration to an InterSystems IRIS
type descriptor. Currently, result sets and tables can't be returned.

Supported as either CREATE PROCEDURE or CREATE PROC. CREATE FUNCTION is very similar to CREATE
PROCEDURE, but the routine type argument value is "FUNCTION", rather than "PROCEDURE".

• Any statements can be used in a CREATE FUNCTION.

• The RETURN keyword is allowed in a CREATE PROCEDURE. If a procedure completes without invoking a
RETURN or RAISERROR statement, it returns an integer value of 0.

• The WITH EXECUTE keyword clause is allowed in a CREATE PROCEDURE and CREATE FUNCTION. It
must appear after the RETURN keyword.

A CREATE PROCEDURE can specify a formal parameter list. Formal parameters are specified as a comma-separated
list. Enclosing parentheses are optional. The AS keyword between the parameter variable and its data type is optional.
Optionally, you can use the DEFAULT keyword or = symbol to assign a default value to a formal parameter; if no actual
parameter value is specified, this default value is used. In TSQL an input formal parameter has no keyword indicator; an
output formal parameter can be specified by the OUTPUT keyword following the data type. Alternatively, these formal
parameters can be prefaced by the optional keywords IN, OUT, or INOUT.

The following example shows the creation of the procedure AvgAge with two formal parameters:

TSQL

CREATE PROCEDURE AvgAge @min INT, @max INT
AS
BEGIN TRY
 SELECT AVG(Age) FROM Sample.Person
 WHERE Age > @min AND Age < @max
END TRY
BEGIN CATCH
 PRINT 'error!'
END CATCH

The following statement executes this procedure. In this case, the specified actual parameter values limit the averaging to
ages 21 through 65:

TSQL

EXEC AvgAge 20,66

Transact-SQL (TSQL) Migration Guide 43

Procedure Statements

The following example creates a procedure that returns the results of a division operation. The RETURNS keyword limits
the number of decimal digits in the return value:

CREATE PROCEDURE SQLUser.MyDivide @a INTEGER, @b INTEGER, OUT @rtn INTEGER RETURNS DECIMAL(2,3)
BEGIN
SET @rtn = @a / @b;
RETURN @rtn;
END

The following statement executes this procedure:

TSQL

SELECT SQLUser.MyDivide(7,3)

The following example shows the creation of procedure OurReply:

TSQL

CREATE PROCEDURE OurReply @var CHAR(16) DEFAULT 'No thanks' AS PRINT @var

When executed without a parameter, OurReply prints the default text (“No thanks”); when executed with a parameter
OurReply prints the actual parameter value specified in the EXEC statement.

Note that CREATE FUNCTION and CREATE PROCEDURE cannot be issued from a stored procedure.

The ALTER PROCEDURE statement is not supported.

4.7.1.1 Importing a CREATE PROCEDURE

If imported TSQL source contains a CREATE PROC statement, then a class method containing the CREATE PROC source
will be created. This class method is either placed in an existing class, or in a new class whose name is based on the schema
and procedure name.

If the procedure already exists, the existing implementation is replaced. If a class matching the class name generated from
the schema and procedure already exists, it is used if it was previously generated by the TSQL utility. If not, then a unique
class name is generated, based on the schema and procedure name. The schema defaults to the default schema defined in
the system configuration. The resulting class is compiled once the procedure has been successfully created.

If logging is requested, the source statements are logged along with the name of the containing class, class method, and the
formal arguments generated. Any errors encountered by the process are also reported in the log. If errors are detected during
CREATE PROC processing and a new class was generated, that class is deleted.

4.7.2 ALTER FUNCTION

Supported. The WITH EXECUTE keyword clause is supported.

4.7.3 DROP FUNCTION

Deletes a function or a comma-separated list of functions.

DROP FUNCTION funcname [,funcname2 [,...]]

The IF EXISTS clause is not supported.

44 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.7.4 DROP PROCEDURE

Deletes a procedure or a comma-separated list of procedures.

DROP PROCEDURE [IF EXISTS] procname [,procname2 [,...]]
DROP PROC [IF EXISTS] procname [,procname2 [,...]]

The optional IF EXISTS clause suppresses errors if you specify a non-existent procname. If this clause is not specified, an
SQLCODE -362 error is generated if you specify a non-existent procname. DROP PROCEDURE is an atomic operation;
either all specified procedures are successfully deleted or none are deleted.

4.7.5 RETURN

Halts execution of a query or procedure. Can be argumentless or with an argument. Argumentless RETURN must be used
when exiting a TRY or CATCH block. When returning from a procedure, RETURN can optionally return an integer status
code. If you specify no status code, it returns the empty string ("").

4.7.6 EXECUTE

Executes a procedure, or executes a string of TSQL commands.

EXECUTE [@rtnval =] procname [param1 [,param2 [,...]]]

EXECUTE ('TSQL_commands')

EXEC is a synonym for EXECUTE.

• EXECUTE procname can be used to execute a stored procedure. Parameters are supplied as a comma-separated list.
This parameter list is not enclosed in parentheses. Named parameters are supported.

EXECUTE procname can optionally receive a RETURN value, using the EXECUTE @rtn=Sample.MyProc
param1,param2 syntax.

EXECUTE procname is similar to the CALL statement, which can also be used to execute a stored procedure. CALL
uses an entirely different syntax.

TSQL

CREATE PROCEDURE Sample.AvgAge @min INT, @max INT
 AS
 SELECT Name,Age,AVG(Age) FROM Sample.Person
 WHERE Age > @min AND Age < @max
 RETURN 99

TSQL

DECLARE @rtn INT;
EXECUTE @rtn=Sample.AvgAge 18,65
SELECT @rtn

If the specified procedure does not exist, an SQLCODE -428 error (Stored procedure not found) is issued.

The WITH RECOMPILE clause is parsed, but ignored.

The following EXECUTE procname features are not supported: procedure variables, and procedure numbers (i.e.
';n').

• EXECUTE (TSQL commands) can be used to execute dynamic SQL. The TSQL command(s) are enclosed in paren-
theses. The TSQL commands to be executed are specified as a string enclosed in single quote characters. A TSQL
command string can contain line breaks and white space. Dynamic TSQL runs in the current context.

Transact-SQL (TSQL) Migration Guide 45

Procedure Statements

TSQL

EXECUTE('SELECT TOP 4 Name,Age FROM Sample.Person')

or

TSQL

DECLARE @DynTopSample VARCHAR(200)
SET @DynTopSample='SELECT TOP 4 Name,Age FROM Sample.Person'
EXECUTE (@DynTopSample)

The following example shows an EXECUTE that returns multiple result sets:

TSQL

EXECUTE('SELECT TOP 4 Name FROM Sample.Person
 SELECT TOP 6 Age FROM Sample.Person')

4.7.7 EXECUTE IMMEDIATE

Executes a string of TSQL commands.

EXECUTE IMMEDIATE "TSQL_commands"

The WITH QUOTES ON/OFF, WITH ESCAPES ON/OFF, and WITH RESULT SET ON/OFF Boolean options are not
supported.

4.7.8 CALL

Executes a procedure.

[@var =] CALL procname ([param1 [,param2 [,...]]])

The CALL statement is functionally identical to the EXECUTE procname statement. It differs syntactically.

The procedure parameters are optional. The enclosing parentheses are mandatory.

The optional @var variable receives the value returned by the RETURN statement. If execution of the stored procedure
does not conclude with a RETURN statement, @var is set to 0.

The following example calls a stored procedure, passing two input parameters. It receives a value from the procedure’s
RETURN statement:

DECLARE @rtn INT
@rtn=CALL Sample.AvgAge(18,34)
SELECT @rtn

4.8 Other Statements

4.8.1 CREATE USER

CREATE USER creates a new user.

CREATE USER username

46 Transact-SQL (TSQL) Migration Guide

TSQL Commands

Executing this statement creates an InterSystems IRIS user with its password set to the specified user name. You can then
use the Management Portal System Administration interface to change the password. You cannot explicitly set a password
using CREATE USER.

User names are not case-sensitive. InterSystems TSQL and InterSystems SQL both use the same set of defined user names.
InterSystems IRIS issues an error message if you try to create a user that already exists.

By default, a user has no privileges. Use the GRANT command to give privileges to a user.

The DROP USER statement is not supported.

4.8.2 GRANT

Grants privileges to a user or list of users.

GRANT privilegelist ON tablelist TO granteelist

GRANT EXECUTE ON proclist TO granteelist
GRANT EXEC ON proclist TO granteelist

• privilegelist: a single privilege or a comma-separated list of privileges. The available privileges are SELECT, INSERT,
DELETE, UPDATE, REFERENCES, and ALL PRIVILEGES. ALL is a synonym for ALL PRIVILEGES. The ALTER
privilege is not supported directly, but is one of the privileges granted by ALL PRIVILEGES.

• tablelist: a single table name (or view name) or a comma-separated list of table names and view names. Specify a table
name as described in Table References.

• proclist: a single SQL procedure or a comma-separated list of SQL procedures. All listed procedures must exist, otherwise
an SQLCODE -428 error is returned.

• granteelist: a single grantee (user to be assigned privileges) or a comma-separated list of grantees. A grantee can be a
user name, "PUBLIC" or "*". Specifying * grants the specified privileges to all existing users. A user created using
CREATE USER initially has no privileges. Specifying a non-existent user in a comma-separated list of grantees has
no effect; GRANT ignore that user and grants the specified privileges to the existing users in the list.

Specifying privileges for specified fields is not supported.

The WITH GRANT OPTION clause is parsed but ignored.

Granting a privilege to a user that already has that privilege has no effect and no error is issued.

4.8.3 REVOKE

Revokes granted privileges from a user or list of users.

REVOKE privilegelist ON tablelist FROM granteelist CASCADE

REVOKE EXECUTE ON proclist FROM granteelist
REVOKE EXEC ON proclist FROM granteelist

Revoking a privilege from a user that does not have that privilege has no effect and no error is issued.

See GRANT for further details.

4.8.4 PRINT

Displays the specified text to the current device.

PRINT expression [,expression2 [,...]]

Transact-SQL (TSQL) Migration Guide 47

Other Statements

An expression can be a literal string enclosed in single quotes, a number, or a variable or expression that resolves to a string
or a number. You can specify any number of comma-separated expressions.

PRINT does not support the Sybase arg-list syntax. A placeholder such as %3! in an expression string is not substituted
for, but is displayed as a literal.

4.8.5 RAISERROR

RAISERROR errnum 'message'
RAISERROR(error,severity,state,arg) WITH LOG

Both syntactic forms (with and without parentheses) are supported. Both spellings, RAISERROR and RAISEERROR, are
supported and synonymous. RAISERROR sets the value of @@ERROR to the specified error number and error message
and invokes the %SYSTEM.Error.FromXSQL() method.

The Sybase-compatible syntax (without parentheses) requires an errnum error number, the other arguments are optional.

TSQL

RAISERROR 123 'this is a big error'
PRINT @@ERROR

A RAISERROR command raises an error condition; it is left to the user code to detect this error. However, if RAISERROR
appears in the body of a TRY block, it transfers control to the paired CATCH block. If RAISERROR appears in a CATCH
block it transfers control either to an outer CATCH block (if it exists) or to the procedure exit. RAISERROR does not
trigger an exception outside of the procedure. It is up to the caller to check for the error.

When an AFTER statement level trigger executes a RAISEERROR, the returned %msg value contains the errnum and
message values as message string components separated by a comma: %msg="errnum,message".

The Microsoft-compatible syntax (with parentheses) requires an error (either an error number or a quoted error message).
If you do not specify an error number, it defaults to 50000. The optional severity and state arguments take integer values.

TSQL

RAISERROR('this is a big error',4,1) WITH LOG
PRINT @@ERROR

4.8.6 UPDATE STATISTICS

Optimizes query access for a specified table. The specified table can be a standard table or a # temporary table (see CREATE
TABLE for details.) InterSystems IRIS passes the specified table name argument to the
$SYSTEM.SQL.Stats.Table.GatherTableStats() method for optimization. UPDATE STATISTICS calls
GatherTableStats(). All other UPDATE STATISTICS syntax is parsed for compatibility only and ignored. In a batch
or stored procedure, only the first UPDATE STATISTICS statement for a given table generates a call to Tune Table. For
further details, see Tune Table in SQL Optimization Guide.

If an INSERT, UPDATE, or DELETE has a @@ROWCOUNT of more than 100,000, executing that command automatically
invokes an UPDATE STATISTICS (TuneTable) of the table.

If the TSQL TRACE configuration option is set, the trace log file will contain records of the tables that were tuned.

4.8.7 USE database

Supported, also an extension: USE NONE to select no database. Effective at generation-time, persists as long as the transform
object exists (e.g. in the shell or loading a batch).

48 Transact-SQL (TSQL) Migration Guide

TSQL Commands

4.9 InterSystems Extensions
TSQL supports a number of InterSystems extensions to Transact-SQL. To allow for the inclusion of these InterSystems-
only statements in portable code, InterSystems TSQL also supports a special form of the single-line comment: two hyphens
followed by a vertical bar. This operator is parsed as a comment by Transact-SQL implementations, but is parsed as an
executable statement in InterSystems TSQL.

TSQL includes the following InterSystems extensions:

4.9.1 OBJECTSCRIPT

This extension allows you to include ObjectScript code or InterSystems SQL code in the compiled output. It takes one or
more lines of InterSystems code inside curly brackets.

The following Dynamic SQL example uses OBJECTSCRIPT because TSQL does not support the InterSystems SQL
%STARTSWITH predicate:

 SET myquery = "OBJECTSCRIPT {SELECT Name FROM Sample.Person "
 _"WHERE Name %STARTSWITH 'A'}"
 SET tStatement = ##class(%SQL.Statement).%New(,,"Sybase")
 WRITE "language mode set to ",tStatement.%Dialect,!
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {
 WRITE "%Prepare failed:"
 DO $System.Status.DisplayError(qStatus)
 QUIT
 }
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses OBJECTSCRIPT to include ObjectScript code in a TSQL routine:

 SET tempDDL="CREATE TABLE Sample.MyTest(Name VARCHAR(40),Age INTEGER)"

 SET newtbl=2
 SET newtbl(1)=tempDDL
 SET newtbl(2)="OBJECTSCRIPT
 DO $SYSTEM.SQL.Stats.Table.GatherTableStats(""Sample.MyTest"")
 WRITE ""TuneTable Done"",!"
 SET tStatement = ##class(%SQL.Statement).%New(,,"Sybase")
 WRITE "language mode set to ",tStatement.%Dialect,!
 SET qStatus = tStatement.%Prepare(.newtbl)
 IF qStatus'=1 {
 WRITE "%Prepare failed:"
 DO $System.Status.DisplayError(qStatus)
 QUIT
 }
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Note that in the above example the WRITE command specifies a new line (,!); this is necessary because the
OBJECTSCRIPT extension does not issue a new line following execution.

4.9.2 IMPORTASQUERY

This extension forces a stored procedure to be imported as a query rather than as a class method. This is useful for stored
procedures that contain only an EXEC statement, because InterSystems IRIS cannot otherwise determine at import whether
such a stored procedure is a query or not.

Transact-SQL (TSQL) Migration Guide 49

InterSystems Extensions

5
TSQL Settings

Settings are used to tailor the behavior of the compiler and colorizer. The TSQL configuration options are part of the standard
InterSystems IRIS® data platform configuration.

InterSystems IRIS supports the following TSQL settings:

• DIALECT

• ANSI_NULLS

• CASEINSCOMPARE (String comparison is not case-sensitive.)

• QUOTED_IDENTIFIER

• Equal Literal Replacement

• TRACE

These values are used to set the corresponding ^%SYS("tsql","SET",...) global array values.

You can view and modify these settings using the InterSystems IRIS Management Portal and/or the %SYSTEM.TSQL Get
and Set class methods.

• Go into the InterSystems IRIS Management Portal. Go to System Administration, Configuration, SQL and Object Settings,
TSQL Compatibility. Here you can specify the DIALECT (Sybase or MSSQL, default is Sybase), and turn on or off the
ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings.

If you change one or more configuration settings, this is indicated by an asterisk (*) in the upper left-hand corner of
the screen immediately following the Management Portal path. For example, System > Configuration > TSQL
Settings (configuration settings)*. You must press the Save button for configuration changes to take
effect.

• Invoke the $SYSTEM.TSQL.CurrentSettings() method to display the settings:

ObjectScript

 DO ##class(%SYSTEM.TSQL).CurrentSettings()

You can use %SYSTEM.TSQL class methods to get or set these settings. These methods take a dialect string and change
both the current dialect and the specified setting. There are not separate settings for each TSQL dialect. For example,
changing CaseInsCompare changes this configuration setting for both Sybase and MSSQL.

You can also change InterSystems IRIS configuration settings to be more compatible with TSQL and to provide better
performance. The following configurable options are described on this page:

• Save cached query source

Transact-SQL (TSQL) Migration Guide 51

• Data collation and string truncation

• Timestamp data types and time precision

• Settings for temporary databases

5.1 DIALECT
The DIALECT configuration option allows you to select the Transact-SQL dialect. The available options are Sybase and
MSSQL. The default is Sybase. You can return the current setting using $SYSTEM.TSQL.GetDialect(). This option is
set system-wide using the InterSystems IRIS Management Portal or by using the $SYSTEM.TSQL.SetDialect() method:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetDialect("Sybase")

This method returns the prior Dialect setting.

If DIALECT=MSSQL: a DECLARE statement binds host variable values.

If DIALECT=Sybase: host variable values are refreshed for each cursor OPEN.

Note: You can also set InterSystems SQL to handle Transact-SQL source code by overriding the InterSystems SQL
default:

To set the Transact-SQL dialect in InterSystems Dynamic SQL.

To set the Transact-SQL dialect in the Management Portal SQL interface

To set the Transact-SQL dialect in the InterSystems SQL Shell.

To set the Transact-SQL dialect in JDBC.

5.2 ANSI_NULLS
The ANSI_NULLS configuration option allows you to specify whether comparisons to a null value return true or false.
The default is OFF.

• ON: All comparisons to a null value evaluate to Unknown. For example, Age = Null returns false, even when Age is
null. Null is unknown, so it is false/unknown to specify null=null.

• OFF: For each row, a comparison of a field value to NULL evaluates to True if the field does not contain a value. For
example, Age = Null returns True for each row where Age does not contain a value. However, you cannot use
ANSI_NULLS OFF to compare null values in two different fields. Comparisons of two fields that do not contain a
value are always false. For example, Age = DateOfBirth and Age != DateOfBirth both return False when both fields
do not contain a value.

You can determine the current ANSI_NULLS setting using %SYSTEM.TSQL class methods, or from the TSQLAnsiNulls
property, as follows:

ObjectScript

 SET context=##class(%SYSTEM.Context.SQL).%New()
 WRITE "ANSI_NULLS is = ",context.TSQLAnsiNulls

52 Transact-SQL (TSQL) Migration Guide

TSQL Settings

You can return the current setting using $SYSTEM.TSQL.GetAnsiNulls(). This method returns both the current default
dialect and the current ANSI_NULLS setting as a comma-separated string: for example, MSSQL, ON.

You can activate (ON) or deactivate (OFF) ANSI_NULLS system-wide using the InterSystems IRIS Management Portal
or by using the $SYSTEM.TSQL.SetAnsiNulls() method:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetAnsiNulls("Sybase","OFF")

This method sets both the default dialect and the ANSI_NULLS setting, returns the prior settings as a comma-separated
string: for example, MSSQL, ON.

5.3 CASEINSCOMPARE
The CASEINSCOMPARE setting specifies non-case-sensitive equality comparisons, such as 'A'='a'. The default is OFF.
If this option is set to ON, the comparison operators = and <> operate without regard to case in most contexts. However,
there are a few contexts where such insensitivity does not apply:

• Where a comparison is the ON condition for a JOIN.

• Where either operand is a subquery.

These exceptions exist because InterSystems SQL does not accept the %SQLUPPER operator in these contexts.

You can determine the current CASEINSCOMPARE setting using %SYSTEM.TSQL class methods, or from the
TSQLCaseInsCompare property, as follows:

ObjectScript

 SET context=##class(%SYSTEM.Context.SQL).%New()
 WRITE "ANSI_NULLS is = ",context.TSQLCaseInsCompare

You can return the current setting using $SYSTEM.TSQL.GetCaseInsCompare(). You can activate (ON) or deactivate
(OFF) CASEINSCOMPARE system-wide using using the InterSystems IRIS Management Portal or by using the
$SYSTEM.TSQL.SetCaseInsCompare() method:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetCaseInsCompare("Sybase","OFF")

This method returns the prior CASEINSCOMPARE setting.

5.4 QUOTED_IDENTIFIER
The QUOTED_IDENTIFIER configuration option allows you to select whether quoted identifiers are supported. The
default is OFF (not supported). This option is set using the InterSystems IRIS Management Portal. When
QUOTED_IDENTIFIER is on, double quotes are parsed as delimiting an identifier. When QUOTED_IDENTIFIER is off,
double quotes are parsed as alternative delimiters for string literals. The preferable delimiters for string literals are single
quotes.

You can determine the current QUOTED_IDENTIFIER setting using %SYSTEM.TSQL class methods, or from the
TSQLQuotedIdentifier property, as follows:

Transact-SQL (TSQL) Migration Guide 53

CASEINSCOMPARE

ObjectScript

 SET context=##class(%SYSTEM.Context.SQL).%New()
 WRITE "ANSI_NULLS is = ",context.TSQLQuotedIdentifier

You can return the current setting using $SYSTEM.TSQL.GetQuotedIdentifier(). You can activate (ON) or deactivate
(OFF) QUOTED_IDENTIFIER system-wide using using the InterSystems IRIS Management Portal or by using the
$SYSTEM.TSQL.SetQuotedIdentifier() method:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetQuotedIdentifier("Sybase","OFF")

This method returns the prior QUOTED_IDENTIFIER setting.

5.5 Equal Literal Replacement
The Equal Literal Replacement configuration option is set using a method; is not available from the Management Portal.
It controls the behavior of the TSQL compiler. You can return the current setting using
$SYSTEM.TSQL.GetEqualLiteralReplacement(). The default is ON.

You can activate (ON) or deactivate (OFF) Equal Literal Replacement system-wide using the
$SYSTEM.TSQL.SetEqualLiteralReplacement() method:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetEqualLiteralReplacement("Sybase","OFF")

Setting SetEqualLiteralReplacement("Sybase","OFF") means TSQL queries with a WHERE clause equal sign (=)
predicate or an IN(...) predicate will not perform literal substitution for literal values on the left or right side of the equal
sign, or for any literal value in the IN predicate. This can help the query optimizer choose a better plan when the condition
includes fields that have an outlier value.

5.6 TRACE
The TRACE configuration option creates a log file of the execution of TSQL procedures. When a TSQL stored procedure
(method or system stored procedure) is compiled with TRACE active, running a TSQL procedure will log trace messages
to the active tsql log file.

A separate tsql trace log file is created for each process from which TSQL procedures are run. Trace is activated system-
wide; trace log files are namespace-specific.

TRACE is not set using the Management Portal. This option is set system-wide using the $SYSTEM.TSQL.SetTrace()
method. No dialect is specified:

ObjectScript

 WRITE ##class(%SYSTEM.TSQL).SetTrace("ON")

You can return the current setting using $SYSTEM.TSQL.GetTrace().

You can also activate (1) or deactivate (0) TRACE system-wide using the following ObjectScript command:

54 Transact-SQL (TSQL) Migration Guide

TSQL Settings

ObjectScript

 SET ^%SYS("tsql","TRACE")=1

To return the current trace setting:

ObjectScript

 WRITE ^%SYS("tsql","TRACE")

The TRACE log file records a timestamp for each operation, the elapsed time for each operation, a global references count
and a %ROWCOUNT (where applicable). Note that TRUNCATE TABLE always returns a %ROWCOUNT of -1. If an
operation involves sharded tables, the global references count is only for the process the procedure is executed on. Work
sent to the other shards is not included in the global reference count.

The TRACE log file represents a temporary table using the internal temporary table name; it displays the corresponding
user-specified #TempTable name in a /* mytemptable */ comment.

The TRACE log file is created in your InterSystems IRIS instance in the mgr directory, in the subdirectory for the current
namespace. It is named using the current process number. For example: IRIS/mgr/user/ tsql16392.log. The following is a
typical TRACE log file:

IRIS TSQL Log, created 07/06/2020 13:44:41.020101 by process 16392
Version: IRIS for Windows (x86-64) 2020.2 (Build 211U) Fri Jun 26 2020 13:19:52 EDT

 User: glenn

 07/06/2020 13:44:41.020488
PREPARE EXECUTEPROC: Sample.StuffProc
 07/06/2020 15:02:44.270773
PREPARE EXECUTEPROC: sp_addtype
 07/06/2020 15:04:50.625108
PREPARE EXECUTEPROC: sp_addtype

Log restarted: 07/06/2020 15:15:42
 07/06/2020 15:15:42.623033
CALLSP:: CreateMyTableProc()
 07/06/2020 15:15:42.624807
EXECUTE CREATE TABLE Sample.MyTable (Name SHORTSTR, BigName MIDSTR):
 Elapsed time = .313114s # Global Refs = 17,446
RETURN:: CreateMyTable with value = 0
 07/06/2020 15:15:42.938084
 context object: 154@%Library.ProcedureContext

 Context status is OK

 07/06/2020 15:23:42.171761
CALLSP:: CreateMyTable()
 07/06/2020 15:23:42.174175
EXECUTE CREATE TABLE Sample.MyTable (Name SHORTSTR, BigName MIDSTR):
 ERROR: -201 Table 'Sample.MyTable' already exists
 SQLCODE = -400 Elapsed time = .002356s # Global Refs = 151
RETURN:: CreateMyTable with value = 0
 07/06/2020 15:23:42.176979
 context object: 485@%Library.ProcedureContext

 Error:
ERROR #5540: SQLCODE: -201 Message: Table 'Sample.MyTable' already exists

5.6.1 Cached Query Source

To aid in debugging, it is also desirable to retain cached query source code as well as the generated cached queries. You
can configure this option as follows:

ObjectScript

 SET status=$SYSTEM.SQL.Util.SetOption("CachedQuerySaveSource",1,.oldval)

Transact-SQL (TSQL) Migration Guide 55

TRACE

5.7 Data Collation and String Truncation
The default collation for InterSystems SQL is SQLUPPER. This is not the best match for the collation order native to
TSQL.

Sybase supports several different collation sort orders. The default is binary. This default is described as follows: “Sorts
all data according to numeric byte values for that character set. Binary order sorts all ASCII uppercase letters before lowercase
letters. Accented or ideographic (multibyte) characters sort in their respective standards order, which may be arbitrary. All
character sets have binary order as the default.”

This binary collating order best matches the InterSystems IRIS SQLSTRING collating order. Therefore, changing the SQL
collation sequence from SQLUPPER to SQLSTRING is likely the best compatibility option, though it is not guaranteed
to be correct for all characters.

• To set the default collation for the current namespace: SET
status=$$SetEnvironment^%apiOBJ("COLLATION","%Library.String","SQLSTRING")

• To set the default collation system-wide: SET ^%oddENV("collation","%Library.String")="SQLSTRING"

SQLSTRING collation preserves trailing blank spaces in strings when data is loaded in the database. When these strings
are processed by stored procedures, these trailing blank spaces can cause errors. It is therefore recommended that you
configure string data types to truncate strings when they are read. You can configure string data types as follows:

ObjectScript

 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"CHAR","%Library.String(MAXLEN=1,TRUNCATE=1)")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"CHAR(%1)","%Library.String(MAXLEN=%1,TRUNCATE=1)")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"VARCHAR","%Library.String(MAXLEN=1,TRUNCATE=1)")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"VARCHAR(%1)","%Library.String(MAXLEN=%1,TRUNCATE=1)")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"VARCHAR(%1,%2)","%Library.String(MAXLEN=%1,TRUNCATE=1)")

5.8 Timestamp and Time Precision
The default timestamp data type for InterSystems SQL is %TimeStamp. If a TSQL database has many datetime fields (as
is often the case with financial databases) using %PosixTime as the default timestamp data type can reduce the amount of
disk space required, therefore increasing row access speed, both for reading and writing. You can configure timestamp data
types as follows:

ObjectScript

 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"DATETIME","%Library.PosixTime")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"DATETIME2","%Library.PosixTime")
 SET status=$$SetSysDatatypes^%SYS.CONFIG(,"TIMESTAMP","%Library.PosixTime")

You should also configure the default time precision to the desired number of decimal places of precision, as shown in the
following example:

ObjectScript

 SET status=$SYSTEM.SQL.Util.SetOption("DefaultTimePrecision",6,.oldval)

56 Transact-SQL (TSQL) Migration Guide

TSQL Settings

5.9 Settings for Temporary Databases
For improved performance, it may be advantageous to change temporary database settings and work database settings to
remove standard checks. These changes may not be appropriate for all TSQL environments. Note that work tables are
temporary in nature, but could survive from one stored procedure run to another.

Transact-SQL (TSQL) Migration Guide 57

Settings for Temporary Databases

6
TSQL Functions

This page describes TSQL functions supported by InterSystems IRIS® data platform.

6.1 ABS
ABS(num)

Returns the absolute value of num. Thus both 123.99 and –123.99 return 123.99.

6.2 ACOS
ACOS(float)

Arc cosine: returns the angle in radians whose cosine is float. Thus 1 returns 0.

6.3 ASCII
ASCII(char)

Returns the integer value corresponding to the first character in string char. Thus, ASCII('A') returns 65.

ASCII is functionally identical to UNICODE. The reverse of this function is CHAR.

6.4 ASIN
ASIN(float)

Arc sine: returns the angle in radians whose sine is float. Thus 1 returns 1.570796326...

Transact-SQL (TSQL) Migration Guide 59

6.5 ATAN
ATAN(float)

Arc tangent: returns the angle in radians whose tangent is float. Thus 1 returns .785398163...

6.6 AVG
AVG(numfield)
AVG(DISTINCT numfield)

Aggregate function: used in a query to return the average of the values in the numfield column. For example, SELECT
AVG(Age) FROM Sample.Person. AVG(DISTINCT numfield) averages the number of unique values in the numfield
column. Fields with NULL are ignored.

6.7 CAST
CAST(expression AS datatype)

Returns the expression converted to the specified datatype. CAST can be used with any supported data type. For further
details, refer to Data Types in the InterSystems SQL Reference. CAST supports user-defined data types created using the
sp_addtype stored procedure.

When expression is a date value string, such as '2004–11–23' and datatype is TIMESTAMP or DATETIME, a time value
of '00:00:00' is supplied.

When expression is a time value string, such as '1:35PM' and datatype is TIMESTAMP or DATETIME, the time is converted
to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the default date
value of '1900–01–01' is supplied. Thus '1:35PM' is converted to '1900–01–01 13:35:00'.

When expression is a date value string, such as '2004–11–23' and datatype is DATE, the date is returned in InterSystems
IRIS $HOROLOG date format, such as 60703 (March 14, 2007).

InterSystems TSQL does not support data type XML. However, instead of generating an error during compilation, CAST(x
AS XML) in SQL mode generates CAST(x AS VARCHAR(32767)). In procedure mode, CAST(x AS XML) does not
generate any conversion.

See CONVERT.

6.8 CEILING
CEILING(num)

Returns the closest integer greater than or equal to num. Thus 123.99 returns 124, –123.99 returns –123.

The Sybase CEIL synonym is not supported.

60 Transact-SQL (TSQL) Migration Guide

TSQL Functions

6.9 CHAR
CHAR(num)

Returns the character corresponding to the integer value num. Thus CHAR(65) returns A.

CHAR is functionally identical to NCHAR. The reverse of this function is ASCII.

6.10 CHAR_LENGTH / CHARACTER_LENGTH
CHAR_LENGTH(string)
CHARACTER_LENGTH(string)

Returns the number of characters in string.

6.11 CHARINDEX
CHARINDEX(seekstring,target[,startpoint])

Returns the position in target (counting from 1) corresponding to first character of the first occurrence of seekstring. You
can use the optional startpoint integer to specify where to begin the search. The return value counts from the beginning of
target, regardless of the startpoint. If startpoint is not specified, specified as 0, 1, or as a negative number, target is searched
from the beginning. CHARINDEX returns 0 if seekstring is not found.

6.12 COALESCE
COALESCE(expression1,expression2,...)

Returns the first non-null expression from the specified list of expressions.

6.13 COL_NAME
COL_NAME(object_id,column_id)

Returns the name of the column. Can be used in procedure code or trigger code.

TSQL supports the two-argument form of this function. It does not support a third argument.

The following example returns the column name of the 4th column of Sample.Person:

Transact-SQL (TSQL) Migration Guide 61

CHAR

ObjectScript

 SET sql=2
 SET sql(1)="SELECT 'column name'=COL_NAME(id,4) FROM Sample.Person"
 SET sql(2)="WHERE id=OBJECT_ID('Sample.Person')"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

COL_NAME does not support the Sybase third argument.

6.14 CONVERT
CONVERT(datatype,expression [,style])

Returns the expression converted to the specified datatype.

• BIT: When datatype is BIT and expression is a boolean value: if the input value is a non-zero number, the result is 1.
if the input value is 0, the result is 0. If the input value is the string 'TRUE' (case insensitive), the result is 1. If the input
value is the string 'FALSE' (case insensitive), the result is 0. If the input value is NULL, the result is NULL. Any other
input value generates an SQLCODE -141 error.

• CHAR: When the length of CHAR is not specified, converts to a length of 30 characters.

• DATETIME: When datatype is datetime or timestamp:

– When expression is a date value string, such as '2004–11–23', a time value of '00:00:00' is supplied.

– When expression is a time value string, such as '1:35PM' and datatype is datetime or timestamp, the time is converted
to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the
default date value of '1900–01–01' is supplied. Thus '1:35PM' is converted to '1900–01–01 13:35:00'.

– When expression is the empty string or a string of one or more blank spaces, CONVERT returns '1900–01–01
00:00:00'.

By default DATETIME data type is mapped to %Library.TimeStamp. CONVERT also supports data type mapping of
DATETIME to %Library.PosixTime.

CONVERT supports the DATETIME2 data type. InterSystems IRIS maps DATETIME2 to system-defined DDL
mapping %Library.TimeStamp. This mapping is supplied with new installs; if you are using an upgrade install, you
may need to create this mapping.

CONVERT supports user-defined data types created using the sp_addtype stored procedure.

The optional style argument is used to specify a date/time format when converting a datetime or timestamp value to a string.
By specifying various style codes you can return a dates and times in a variety of different formats. The available style
codes are 100 through 116, 120 through 123, 126, 130 and 131, 136 through 140. (the corresponding codes 0 through 7
and 10 through 40 return the same values with two-digit years); The default style for a datetime is 0:

mon dd yyyy hh:mmAM

The following are some of the supported datetime styles for Sybase:

62 Transact-SQL (TSQL) Migration Guide

TSQL Functions

15 / 115 = format dd/[yy]yy/mm
16 / 116 = format mon dd yyyy HH:mm:ss
22 / 122 = format [yy]yy/mm/dd HH:mm AM (or PM)
23 / 123 = format [yy]yy-mm-ddTHH:mm:ss
36 / 136 = format hh:mm:ss.zzzzzzAM(PM)
37 / 137 = format hh:mm.ss.zzzzzz
38 / 138 = format mon dd [yy]yy hh:mm:ss.zzzzzzAM(PM)
39 / 139 = format mon dd [yy]yy HH:mm:ss.zzzzzz
40 / 140 = format yyyy-mm-dd hh:mm:ss.zzzzzz

The 20 & 21 (120 & 121) style codes return the ODBC timestamp format; 20 truncates to whole seconds, 21 returns fractional
seconds:

yyyy-mm-dd hh:mm:ss.fff

For further details, refer to the functionally identical InterSystems SQL CONVERT function in the InterSystems SQL Ref-
erence.

See CAST.

6.15 COS
COS(float)

Cosine: returns the cosine of the angle specified in float. Thus 1 returns .540302305...

6.16 COT
COT(float)

Cotangent: returns the cotangent of the angle specified in float. Thus 1 returns .64209261593...

6.17 COUNT
COUNT(field)
COUNT(DISTINCT field)
COUNT(*)
COUNT(1)

Aggregate function: used in a query to return the count of the values in the field column. Fields with NULL are not counted.
For example, SELECT COUNT(Name) FROM Sample.Person. COUNT(*) and COUNT(1) are synonyms, they count
all rows. COUNT(DISTINCT field) counts the number of unique values in the field column. Fields with NULL are not
counted.

6.18 CURRENT_DATE
CURRENT_DATE
CURRENT DATE

Returns the current local date in the following format:

Transact-SQL (TSQL) Migration Guide 63

COS

yyyy-mm-dd

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

6.19 CURRENT_TIME
CURRENT_TIME
CURRENT TIME

Returns the current local time in the following format:

hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

6.20 CURRENT_TIMESTAMP
CURRENT_TIMESTAMP
CURRENT TIMESTAMP

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

6.21 CURRENT_USER
CURRENT_USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.22 DATALENGTH
DATALENGTH(expression)

Returns an integer specifying the number of bytes used to represent expression. Thus 'fred' returns 4, and +007.500 returns
3.

64 Transact-SQL (TSQL) Migration Guide

TSQL Functions

6.23 DATEADD
DATEADD(code,num,date)

Returns the value of date modified by adding the interval specified in code the num number of times. The date can be a
date, time, or date/time string in a variety of formats. You can specify any of the following code values, either the abbrevi-
ation (left column) or the name (right column):

NameAbbreviation

Yearyy

Quarterqq

Monthmm

DayofYeardy

Daydd

Weekdaydw, w

Weekwk

Hourhh

Minutemi

Secondss

Millisecondms

Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.

The value returned by DATEADD always includes both date and time in the format:

yyyy-mm-dd hh:mm:ss.n

Fractional seconds are only returned if the source contained fractional seconds.

If a date is not specified (that is, if date contains only a time value), it defaults to 1/1/1900.

If a time is not specified in date, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock.

6.24 DATEDIFF
DATEDIFF(code,startdate,enddate)

Returns the number of code intervals between startdate and enddate. The two dates can be a date, a time, or a date/time
string. in the following format:

yyyy-mm-dd hh:mm:ss.n

You can specify any of the following code values, either the abbreviation (left column) or the name (right column):

Transact-SQL (TSQL) Migration Guide 65

DATEADD

NameAbbreviation

Yearyy

Monthmm

Daydd

Weekdaydw, w

Weekwk

Hourhh

Minutemi

Secondss

Millisecondms

Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.

If a date is not specified (that is, if startdate or enddate contains only a time value), it defaults to 1/1/1900.

If a time is not specified in startdate or enddate, it defaults to 00:00:00.

6.25 DATENAME
DATENAME(code,date)

Returns the value of the part of the date specified by code as a string. The date can be a date, time, or date/time string in a
variety of formats. date must be specified as a quoted string; code permits, but does not require enclosing quotes. Available
code values are:

66 Transact-SQL (TSQL) Migration Guide

TSQL Functions

DescriptionValue

Year. Returns a four-digit year. If a two-digit year is
specified, DATENAME supplies '19' as first two digits.

yyyy, yy

year

Quarter. Returns an integer 1 through 4.qq, q

quarter

Month. Returns the full name of the month. For
example, 'December'.

mm, m

month

Day of Year. Returns an integer count of days 1
through 366.

dy, y

dayofyear

Day of Month. Returns an integer count 1 through 31.dd, d

day

Week of Year. Returns an integer count 1 through 53.wk, ww

week

Day of Week. Returns the number of the day of the
week, counting from Sunday. For example, 3 is
Tuesday.

dw, w

weekday

Hour. Returns the hour of the day (24–hour clock),
an integer 0 through 23.

hh

hour

Minute. Returns an integer 0 through 59.mi, n

minute

Second. Returns a decimal number 0 through 59
which may have a fractional part representing
milliseconds.

ss, s

second

Millisecond. Returns the fractional part of a second
as an integer.

ms

millisecond

Code values are not case-sensitive.

If a date is not specified, it defaults to 1/1/1900. Two-digit years default to 19xx.

If a time is not specified, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock. Seconds are always
returned with fractional seconds, if fractional seconds are defined. Milliseconds are returned as an integer, not a decimal
fraction.

6.26 DATEPART
DATEPART(code,date)

Transact-SQL (TSQL) Migration Guide 67

DATEPART

Returns the value of the part of the date specified in code as an integer. The date can be a date, time, or date/time string in
a variety of formats. Available code values are listed in DATENAME.

6.27 DAY
DAY(date)

Returns the day portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date must contain a date component. The date separator must be a hyphen (-).

The date can also be specified in InterSystems IRIS $HOROLOG date format, such as 60703 (March 14, 2007).

6.28 DB_NAME
DB_NAME(database-id)

Returns the current namespace name. The database-id argument is optional.

6.29 DEGREES
DEGREES(float)

Converts an angle measurement in radians to the corresponding measurement in degrees.

6.30 ERROR_MESSAGE
When invoked from within a CATCH block, returns the current error message. Otherwise, returns NULL.

6.31 ERROR_NUMBER
When invoked from within a CATCH block, returns the current SQLCODE error. Otherwise, returns NULL.

6.32 EXEC
EXEC(@var)

Executes dynamic SQL at runtime, as shown in the following example:

68 Transact-SQL (TSQL) Migration Guide

TSQL Functions

TSQL

DECLARE @dyncode VARCHAR(200)
SELECT @dyncode='SELECT TOP 4 Name,Age FROM Sample.Person'
EXEC(@dyncode)

Compare this dynamic execution with the EXECUTE command that executes a stored procedure.

6.33 EXP
EXP(num)

Returns the exponential of num. This is the e constant (2.71828182) raised to the power of num. Thus EXP(2) returns
7.3890560989.

6.34 FLOOR
FLOOR(num)

Returns the closest integer less than or equal to num. Thus 123.99 returns 123, –123.99 returns –124.

6.35 GETDATE
GETDATE()

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.36 GETUTCDATE
GETUTCDATE()

Returns the current UTC (Greenwich Mean Time) date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.37 HOST_NAME
HOST_NAME()

Transact-SQL (TSQL) Migration Guide 69

EXP

Returns the system name of the current host system.

6.38 INDEX_COL
INDEX_COL(table_name,index_id,key,[,user_id])

Returns the name of the indexed column in the specified table. table_name can be fully qualified. index_id is the number
of the table's index. key is a key in the index, a value between 1 and sysindexes.keycnt (for a clustered index) or sysin-
dexes.keycnt+1 (for a non-clustered index). user_id is parsed but ignored.

6.39 ISNULL
ISNULL(expr,default)

If expr is NULL, returns default. If expr is not NULL, returns expr.

6.40 ISNUMERIC
ISNUMERIC(expression)

A boolean function that returns 1 if expression is a valid numeric value; otherwise, returns 0.

If the specified expression is a field with a null value, ISNUMERIC returns null.

6.41 LEFT
LEFT(string,int)

Returns int number of characters from string, counting from the left. If int is larger than string, the full string is returned.
See RIGHT.

6.42 LEN
LEN(string)

Returns the number of characters in string.

6.43 LOG
LOG(num)

70 Transact-SQL (TSQL) Migration Guide

TSQL Functions

Returns the natural logarithm of num. Thus LOG(2) returns .69314718055.

6.44 LOG10
LOG10(num)

Returns the base-10 logarithm of num. Thus LOG10(2) returns .301029995663.

6.45 LOWER
LOWER(string)

Returns string with all uppercase letters converted to lowercase. See UPPER.

6.46 LTRIM
LTRIM(string)

Removes leading blanks from string.

If string consists entirely of blank spaces, the dialect determines behavior:

• Sybase: returns NULL.

• MSSQL: returns the empty string.

See RTRIM.

6.47 MAX
MAX(numfield)

Aggregate function: used in a query to return the largest (maximum) of the values in the numfield column. For example:

TSQL

SELECT MAX(Age) FROM Sample.Person

Fields with NULL are ignored.

6.48 MIN
MIN(numfield)

Aggregate function: used in a query to return the smallest (minimum) of the values in the numfield column. For example:

Transact-SQL (TSQL) Migration Guide 71

LOG10

TSQL

SELECT MIN(Age) FROM Sample.Person

Fields with NULL are ignored.

6.49 MONTH
MONTH(date)

Returns the month portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator must be a hyphen (-). Dates in any other format return 0.

The date can also be specified in InterSystems IRIS $HOROLOG date format, such as 60703 (March 14, 2007).

6.50 NCHAR
NCHAR(num)

Returns the character corresponding to the integer value num. Thus NCHAR(65) returns A.

NCHAR is functionally identical to CHAR. The reverse of this function is ASCII.

6.51 NEWID
NEWID()

Returns a unique value of a type compatible with the SQL Server UNIQUEIDENTIFIER data type. UNIQUEIDENTIFIER
is a system-generated 16-byte binary string, also known as a a globally unique ID (GUID). A GUID is used to synchronize
databases on occasionally connected systems. A GUID is a 36-character string consisting of 32 hexadecimal numbers
separated into five groups by hyphens. InterSystems TSQL does not support UNIQUEIDENTIFIER; it instead uses
VARCHAR(36) as the data type for a Globally Unique ID.

The NEWID function takes no arguments. Note that the argument parentheses are required.

NEWID() can be used to specify the DEFAULT value when defining a field.

The corresponding InterSystems SQL function is $TSQL_NEWID:

SQL

SELECT $TSQL_NEWID()

6.52 NOW
NOW(*)

72 Transact-SQL (TSQL) Migration Guide

TSQL Functions

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

Note that the asterisk within the parentheses is required.

6.53 NULLIF
NULLIF(expr1,expr2)

Returns NULL if expr1 is equivalent to expr2. Otherwise, returns expr1.

6.54 OBJECT_ID
OBJECT_ID(objname,objtype)

Takes the object name as a quoted string, and optionally the object type, and returns the corresponding object ID of the
specified object as an integer. The available objtype values are as follows: RI = FOREIGN KEY constraint; K = PRIMARY
KEY or UNIQUE constraint; P = Stored procedure; S = System table; TR = Trigger; U = User table; V = View. If objtype
is omitted, OBJECT_ID tests all object types and returns the first match.

TSQL

CREATE PROCEDURE GetObjIds
AS SELECT OBJECT_ID('Sample.Person','U'),OBJECT_ID('Sample.Person_Extent','P')
GO

Returns NULL if objname does not exist, or if the optional objtype is specified and does not match the objname. Can be
used within procedure code or trigger code. The inverse of OBJECT_NAME.

6.55 OBJECT_NAME
OBJECT_NAME(id)

Takes the object ID integer and returns the corresponding object name of the specified object. Returns the empty string if
id does not exist. Can be used within procedure code or trigger code. The inverse of OBJECT_ID.

TSQL

CREATE PROCEDURE GetObjName
AS SELECT OBJECT_NAME(22)
GO

6.56 PATINDEX
PATINDEX(pattern,string)

Transact-SQL (TSQL) Migration Guide 73

NULLIF

Returns an integer specifying the beginning position of the first occurrence of pattern in string, counting from 1. If pattern
is not found in string, 0 is returned. Specify pattern as a quoted string. Comparisons are case-sensitive. The pattern can
contain the following wildcard characters:

DescriptionCharacter

Zero or more characters. For example, '%a%' returns
the position of the first occurrence of 'a' in string,
including 'a' as the first character in string.

%

Any single character. For example, '_l%' returns 1 if
string begins with a substring such as 'Al', 'el', and 'il'.

_

Any single character from the specified list of
characters. For example, '[ai]l%' returns 1 if string
begins with the substring 'al' or 'il', but not 'el' or 'Al'.

[xyz]

Any single character from the specified range of
characters. For example, '%s[a-z]t%' matches 'sat',
'set', and 'sit'. A range must be specified in ascending
ASCII sequence.

[a-z]

The caret (^) character is a not a wildcard character; if included within square brackets it is treated as a literal. A pattern
commonly consists of a search string enclosed in percent (%) characters '%Chicago%' indicating that the entire string
should be searched.

PATINDEX is supported for sharded, parallel, and linked table queries.

6.57 PI
PI()

Returns the constant pi. The parentheses are required; no argument is permitted. Thus PI() returns 3.141592653589793238.

6.58 POWER
POWER(num,exponent)

Returns the value num raised to exponent.

6.59 QUOTENAME
QUOTENAME(value)

Returns value as a delimited identifier. TSQL supports double quotes ("value") as delimiter characters. For example:

74 Transact-SQL (TSQL) Migration Guide

TSQL Functions

TSQL

PRINT 123
 // returns 123
PRINT QUOTENAME(123)
 // returns "123"

6.60 RADIANS
RADIANS(float)

Converts an angle measurement in degrees to the corresponding measurement in radians.

6.61 RAND
RAND([seed])

Returns a random number as a fractional number less than 1. The optional seed integer argument is ignored; it is provided
for compatibility. If RAND is used more than once in a query it returns different random values.

6.62 REPLACE
REPLACE(target,search,replace)

Finds every instance of the search string in the target string and replaces it with the replace string, and returns the resulting
string. To remove the search string from the target string, specify replace as an empty string.

6.63 REPLICATE
REPLICATE(expression,repeat-count)

REPLICATE returns a string of repeat-count instances of expression, concatenated together.

If expression is NULL, REPLICATE returns NULL. If expression is the empty string, REPLICATE returns an empty
string.

If repeat-count is a fractional number, only the integer part is used. If repeat-count is 0, REPLICATE returns an empty
string. If repeat-count is a negative number, NULL, or a non-numeric string, REPLICATE returns NULL.

6.64 REVERSE
REVERSE(string)

Reverses the order of the characters in string.

Transact-SQL (TSQL) Migration Guide 75

RADIANS

6.65 RIGHT
RIGHT(string,int)

Returns int number of characters from string, counting from the right. If int is larger than string, the full string is returned.
See LEFT.

6.66 ROUND
ROUND(num,length)

Returns num rounded to the number of decimal digits specified by the integer length. If length is greater than the number
of decimal digits, no rounding is performed. If length is 0, num is rounded to an integer. If the length argument is omitted,
it defaults to 0. If length is a negative integer, num is rounded to the left of the decimal point. A third argument is not
accepted by ROUND.

6.67 RTRIM
RTRIM(string)

Removes trailing blanks from string.

If string consists entirely of blank spaces, the dialect determines behavior:

• Sybase: returns NULL.

• MSSQL: returns the empty string.

See LTRIM.

6.68 SCOPE_IDENTITY
Returns the last identity value inserted into an IDENTITY column in the same scope. However, the last IDENTITY is not
limited to the scope of the current procedure. Therefore, you should only use SCOPE_IDENTITY when you know that
a statement within the current procedure has generated an IDENTITY value. For example, SCOPE_IDENTITY should
be used after an INSERT command in the same procedure.

The following Dynamic SQL example returns the IDENTITY value from the second INSERT:

76 Transact-SQL (TSQL) Migration Guide

TSQL Functions

ObjectScript

 SET sql=6
 SET sql(1)="CREATE TABLE #mytest (MyId INT IDENTITY(1,1),"
 SET sql(2)="Name VARCHAR(20))"
 SET sql(3)="INSERT INTO #mytest(Name) VALUES ('John Smith')"
 SET sql(4)="INSERT INTO #mytest(Name) VALUES ('Walter Jones')"
 SET sql(5)="PRINT SCOPE_IDENTITY()"
 SET sql(6)="DROP TABLE #mytest"
 SET statement=##class(%SQL.Statement).%New()
 SET statement.%Dialect="MSSQL"
 SET status=statement.%Prepare(.sql)
 SET result=statement.%Execute()
 DO result.%Display()

6.69 SIGN
SIGN(num)

Returns a value indicating the sign of num. If num is negative (for example, -32), it returns -1. If num is positive (for
example, 32 or +32), it returns 1. If num is zero (for example, 0 or -0), it returns 0.

6.70 SIN
SIN(float)

Sine: returns the sine of the angle specified in float. Thus 1 returns .841470984807...

6.71 SPACE
SPACE(num)

Returns a string of blank spaces of length num.

6.72 SQRT
SQRT(num)

Returns the square root of num. Thus SQRT(9) returns 3.

6.73 SQUARE
SQUARE(num)

Returns the square of num. Thus SQUARE(9) returns 81.

Transact-SQL (TSQL) Migration Guide 77

SIGN

6.74 STR
STR(num,[length[,precision]])

Returns a string of length characters. If the integer length is equal to or greater than the number of characters in the numeric
num (including decimal point and sign characters), STR returns num converted to a string and padded with leading blanks
to make the resulting string of length characters.

If the optional integer precision is specified, num is truncated to the specified number of decimal digits before string con-
version. If precision is omitted, num is truncated to its integer portion. If precision is larger than the number of decimal
digits, num is padded with trailing zeros before string conversion.

If length is omitted, it defaults to 10. If length is less than the number of characters in num (after adjustment by precision)
a dummy string consisting of all asterisks of length number of characters is returned.

6.75 STUFF
STUFF(string,start,length,replace)

Returns string with length number of characters removed and the replace string inserted. The point of removal and insertion
is specified by the start integer, counting from the beginning of string. If length is 0, no characters are removed. If replace
is the empty string, no characters are inserted.

If start is greater than the number of characters in string, no value is returned. If start is 1, length number of characters are
removed from the beginning of string and the replace string inserted. If start is 0, length minus 1 number of characters are
removed from the beginning of string and the replace string inserted.

If length is greater than or equal to the number of characters in string, the replace string is returned. The replace string
length is not limited by the length of string or length.

6.76 SUBSTRING
SUBSTRING(string,start,length)

Returns a substring of string beginning at the location start for the length number of characters. If start is greater than the
length of string, or if length is 0, no string is returned.

6.77 SUM
SUM(numfield)
SUM(DISTINCT numfield)

Aggregate function: used in a query to return the sum of the values in the numfield column. For example:

TSQL

SELECT SUM(Age) FROM Sample.Person

78 Transact-SQL (TSQL) Migration Guide

TSQL Functions

SUM(DISTINCT numfield) sums the unique values in the numfield column. Fields with NULL are ignored.

6.78 SUSER_NAME
SUSER_NAME()

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the InterSystems SQL USER function, and the ObjectScript $USERNAME special variable.

6.79 SUSER_SNAME
SUSER_SNAME()

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the InterSystems SQL USER function, and the ObjectScript $USERNAME special variable.

6.80 TAN
TAN(float)

Tangent: returns the tangent of the angle specified in float. Thus 1 returns 1.55740772465...

6.81 TEXTPTR
TEXTPTR(field)

Returns an internal pointer to the image or text column data specified in field. The data type of this pointer is
VARBINARY(16).

6.82 TEXTVALID
TEXTVALID('table.field',textpointer)

Takes an internal pointer to an image or text column from TEXTPTR, and compares it to a specified in table.field. Returns
1 if the pointer points to the specified table.field. Otherwise, returns 0.

6.83 UNICODE
UNICODE(char)

Transact-SQL (TSQL) Migration Guide 79

SUSER_NAME

Returns the Unicode integer value corresponding to the first character in the string char. Thus, UNICODE('A') returns
65.

UNICODE is functionally identical to ASCII. The reverse of this function is CHAR.

6.84 UPPER
UPPER(string)

Returns string with all lowercase letters converted to uppercase. See LOWER.

6.85 USER
USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.86 USER_NAME
USER_NAME([userid])

Returns the name of the user specified by user ID. If the optional userid is omitted, returns the name of the current user.
The argument is optional; the parentheses are mandatory.

6.87 YEAR
YEAR(date)

Returns the year portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator can be either a hyphen (-) or a slash (/).

The date can also be specified in InterSystems IRIS $HOROLOG date format, such as 60703 (March 14, 2007).

6.88 Unsupported Functions
The following Microsoft Transact-SQL functions are not supported: APP_NAME, ATN2, BINARY_CHECKSUM,
CHECKSUM, COL_LENGTH, COLLATIONPROPERTY, COLUMNPROPERTY, CURSOR_STATUS, DATABASE-
PROPERTY, DATABASEPROPERTYEX, DB_ID, DIFFERENCE, FILE_ID, FILE_NAME, FILEGROUP_ID, FILE-
GROUP_NAME, FILEGROUPPROPERTY, FILEPROPERTY, FORMATMESSAGE, FULLTEXTCATALOGPROPERTY,

80 Transact-SQL (TSQL) Migration Guide

TSQL Functions

FULLTEXTSERVICEPROPERTY, GETANSINULL, HOST_ID, IDENT_CURRENT, IDENT_INCR, IDENT_SEED,
IDENTITY, INDEXKEY_PROPERTY, INDEXPROPERTY, ISDATE, IS_MEMBER, IS_SRVROLEMEMBER,
OBJECTPROPERTY, PARSENAME, PERMISSIONS, ROWCOUNT_BIG, SERVERPROPERTY, SESSIONPROPERTY,
SESSION_USER, SOUNDEX, SQL_VARIANT_PROPERTY, STATS_DATE, STDEV, STDEVP, SYSTEM_USER,
TYPEPROPERTY.

Transact-SQL (TSQL) Migration Guide 81

Unsupported Functions

7
TSQL Variables

7.1 Local Variables
By default, TSQL local variables are specified using an at sign (@) prefix, for example, @myvar. You can override this
default to also allow PLAINLOCALS, TSQL local variables specified without an at sign (@) prefix. For example, myvar.

7.1.1 Declaring a Local Variable

A local variable must be declared (using DECLARE or as a formal parameter) before use. A variable name must be a valid
identifier. Local variable names are not case-sensitive. The declaration must specify a data type, though strict data typing
is not enforced in InterSystems TSQL. For a list of supported data types, see TSQL Constructs.

The DECLARE command has the following syntax:

DECLARE @var [AS] datatype [= initval]

If declaring variables is inconvenient, you can switch this check off using the NDC setting. However, cursors must be
declared, even if NDC is used.

Stored procedure arguments are automatically declared as local variables.

7.1.2 Setting a Local Variable

A local variable can be set using either the SET command or the SELECT command. A local variable can be displayed
using either the PRINT command or the SELECT command. The following Dynamic SQL examples show two local
variables being declared, set, and displayed:

ObjectScript

 SET myquery = 3
 SET myquery(1) = "DECLARE @a CHAR(20),@b CHAR(20) "
 SET myquery(2) = "SET @a='hello ' SET @b='world!' "
 SET myquery(3) = "PRINT @a,@b"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

Transact-SQL (TSQL) Migration Guide 83

ObjectScript

 SET myquery = 3
 SET myquery(1) = "DECLARE @a CHAR(20),@b CHAR(20) "
 SET myquery(2) = "SELECT @a='hello ', @b='world!'"
 SET myquery(3) = "SELECT @a,@b"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

7.1.3 Initial and Default Values

By default, DECLARE initializes local variables to "" (SQL NULL). Optionally, you can specify an initial value (initval)
for a local variable in the DECLARE command.

If a declared variable is set to the results of a scalar subquery, and the subquery returns no rows, InterSystems TSQL sets
the variable to "" (SQL NULL). This default is compatible with MS SQLServer; it is not compatible with Sybase.

7.1.4 Plain Local Variables

By default, local variables require an @ prefix. However, you can specify plain locals, local variables that do not require
an @ prefix. The following command activates plain local variables:

TSQL

SET PLAINLOCALS ON

You must activate plain local variables before declaring these variables. With plain local variables activated you can declare
both local variables with an @ prefix and local variables without an @ prefix. However, you cannot declare two variables
that only differ by the @ prefix. For example, @myvar and myvar are considered the same variable. When declaring,
selecting, or printing a plain local variable, you can specify the same variable with or without the @ prefix.

Plain local variables follow all of the other TSQL variable conventions.

The following TSQL class method specifies PLAINLOCALS ON and declares and uses both an @ local variable and a
plain local variable:

ClassMethod Hello() As %String [Language=tsql,ReturnResultsets,SqlProc]
{ SET PLAINLOCALS ON;
 DECLARE @a CHAR(20),b CHAR(20);
 SET @a='hello ' SET b='world!';
 PRINT @a,b;
}

7.2 @@ Special Variables
TSQL special variables are identified by an @@ prefix. @@ variables are system-defined; they cannot be created or
modified by user processes. @@ variables are global in scope (available to all processes). They are thus sometimes referred
to elsewhere in the Transact-SQL literature as “global variables.” Because the term “global variable” is used widely in
InterSystems IRIS and differs significantly in meaning, these TSQL @@ variables are referred to here as “special variables”
to avoid confusion.

The following special variables are implemented. Invoking an unimplemented special variable generates a #5001 '@@nnn'
unresolved symbol error or a #5002 <UNDEFINED> error. The corresponding ObjectScript and InterSystems SQL
generated code for each special variable is provided:

84 Transact-SQL (TSQL) Migration Guide

TSQL Variables

7.2.1 @@ERROR

Contains the error number of the most recent TSQL error. 0 indicates that no error has occurred. A 0 value is returned when
either SQLCODE=0 (successful completion) or SQLCODE=100 (no data, or no more data). To differentiate these two
results, use @@SQLSTATUS.

ObjectScript SQLCODE

SQL :SQLCODE

7.2.2 @@FETCH_STATUS

Contains an integer specifying the status of the last FETCH cursor statement. The available options are: 0=row successfully
fetched; –1=no data could be fetched; –2 row fetched is missing or some other error occurred. A value of –1 can indicate
that there is no data to FETCH, or that the fetch has reached the end of the data.

ObjectScript

 SET myquery = "SELECT @@FETCH_STATUS AS FetchStat"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_FETCH_STATUS()

ObjectScript $Case($Get(SQLCODE,0),0:0,100:-1,:-2)

SQL CASE :SQLCODE WHEN 0 THEN 0 WHEN 100 THEN –1 ELSE –2 END

7.2.3 @@IDENTITY

Contains the IDENTITY field value of the most recently inserted, updated, or deleted row.

ObjectScript %ROWID

SQL :%ROWID

7.2.4 @@LOCK_TIMEOUT

Contains an integer specifying the timeout value for locks, in seconds. Lock timeout is used when a resource needs to be
exclusively locked for inserts, updates, deletes, and selects. The default is 10.

ObjectScript

 SET myquery = "SELECT @@LOCK_TIMEOUT AS LockTime"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

Transact-SQL (TSQL) Migration Guide 85

@@ Special Variables

SQL

SELECT $TSQL_LOCK_TIMEOUT()

ObjectScript LOCK command

SQL SET OPTION LOCK_TIMEOUT

7.2.5 @@NESTLEVEL

Contains an integer specifying the nesting level of the current process.

ObjectScript

 SET myquery = "PRINT @@NESTLEVEL"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_NESTLEVEL()

ObjectScript $STACK

7.2.6 @@ROWCOUNT

Contains the number of rows affected by the most recent SELECT, INSERT, UPDATE, or DELETE command. A single-
row SELECT always returns a @@ROWCOUNT value of either 0 (no row selected) or 1.

When invoking an AFTER statement level trigger, the @@ROWCOUNT value upon entering the trigger is the
@@ROWCOUNT immediately prior to the trigger. Rows affected within the scope of the trigger code are reflected in the
@@ROWCOUNT value. Upon completion of the trigger code, @@ROWCOUNT reverts to the value immediately prior
to the trigger invocation.

ObjectScript %ROWCOUNT

SQL :%ROWCOUNT

7.2.7 @@SERVERNAME

Contains the InterSystems IRIS instance name.

ObjectScript

 SET myquery = "SELECT @@SERVERNAME AS CacheInstance"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_SERVERNAME()

86 Transact-SQL (TSQL) Migration Guide

TSQL Variables

ObjectScript $PIECE($system,":",2)

7.2.8 @@SPID

Contains the server process ID of the current process.

ObjectScript

 SET myquery = "SELECT @@SPID AS ProcessID"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_SPID()

ObjectScript $JOB

7.2.9 @@SQLSTATUS

Contains an integer specifying the completion status of the most recent SQL statement. Available values are: 0=successful
completion; 1=failure; 2=no (more) data available.

ObjectScript

 SET myquery = "SELECT @@SQLSTATUS AS SQLStatus"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_SQLSTATUS()

ObjectScript $Case($Get(SQLCODE,0),0:0,100:2,:1)

SQL CASE :SQLCODE WHEN 0 THEN 0 WHEN 100 THEN 2 ELSE 1 END

7.2.10 @@TRANCOUNT

Contains the number of currently active transactions.

ObjectScript

 SET myquery = "SELECT @@TRANCOUNT AS ActiveTransactions"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

Transact-SQL (TSQL) Migration Guide 87

@@ Special Variables

SQL

SELECT $TSQL_TRANCOUNT()

ObjectScript $TLEVEL

7.2.11 @@VERSION

Contains the InterSystems IRIS version number and date and time of its installation.

ObjectScript

 SET myquery = "SELECT @@VERSION AS CacheVersion"
 SET tStatement = ##class(%SQL.Statement).%New(,,"MSSQL")
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The corresponding InterSystems SQL function is:

SQL

SELECT $TSQL_VERSION()

ObjectScript $ZVERSION

88 Transact-SQL (TSQL) Migration Guide

TSQL Variables

8
TSQL System Stored Procedures

InterSystems IRIS® data platform provides TSQL system stored procedures to help you administer and track database
objects in your system. TSQL system stored procedures can be executed in any namespace and schema. The scope of all
stored procedures is the current namespace.

Stored procedures are executed using the TSQL EXECUTE or EXEC command. For a stored procedure with a name such
as sp_xxx, this execute command can be explicit or implicit. Thus the following TSQL statements are functionally identical:

EXECUTE sp_addtype 'shortstr','varchar(6)','not null'
EXEC sp_addtype 'shortstr','varchar(6)','not null'
sp_addtype 'shortstr','varchar(6)','not null'

InterSystems TSQL supports the following system stored procedures:

• sp_addtype

• sp_droptype

• sp_procxmode

8.1 sp_addtype
This system stored procedure adds a user-defined data type.

sp_addtype typename, phystype [(length) | (precision [, scale])]
 [, "identity" | nulltype]

typename is a user-defined data type name. phystype is the physical datatype on which to base the user-defined datatype.
You can optionally specify either IDENTITY or nulltype. The optional IDENTITY keyword specifies that the user-defined
data type has the IDENTITY property, which by definition is NOT NULL. The optional nulltype specifies whether a column
with this data type should have a NOT NULL constraint: options are NULL (allow nulls) and NOT NULL or NONULL
(do not allow nulls).

A typename can only be used for table columns. A typename is defined within the current namespace; mapping of a typename
across namespaces is not supported.

The SQL compiler looks up type mapping in the DDL Datatype Mapping definitions in the system configuration before
looking up in the typename table. Therefore, if you define a typename using sp_addtype named My_Type, but you also
have a My_Type defined in the User DDL Datatype Mappings, the mapping of My_Type comes from the User DDL
Datatype Mapping definition.

This lookup of typename is done at runtime, so typename does not need to be defined at DDL compile time.

Transact-SQL (TSQL) Migration Guide 89

A data type defined using sp_addtype with a specified nulltype behaves as follows:

• If the DDL field specifies NULL, a value for the field is not required, even if sp_addtype specified NOT NULL.

• If the DDL field specifies NOT NULL, a value for the field is required, even if sp_addtype specified NULL.

• If the DDL field does not specify NULL or NOT NULL, a value for the field is required if sp_addtype specified NOT
NULL.

• If the DDL field does not specify NULL or NOT NULL, a value for the field is not required if sp_addtype either
specified NULL or did not specify a nulltype.

The following example creates the data type shortstr, which requires a value (NOT NULL) and this value must be six or
less characters:

EXEC sp_addtype 'shortstr','varchar(6)','not null'

8.2 sp_droptype
This system stored procedure deletes a user-defined data type.

sp_droptype typename

typename is a user-defined data type name defined within the current namespace.

See sp_addtype.

8.3 sp_procxmode (Sybase only)
This system stored procedure displays or changes the execution mode associated with stored procedures.

sp_procxmode [procname [, tranmode]]

procname is the name of a stored procedure. tranmode is the transaction execution mode: Values are "chained", "unchained"
(the default), and "anymode".

When called with no arguments, sp_procxmode returns a result set of all procedures defined for the namespace, their user
name and transaction mode (1=unchained). When called with just the procname argument, sp_procxmode returns the user
name and transaction mode of the specified procedure.

The following tranmode values are supported:

• Chained: implicitly begins a transaction before any data-retrieval or modification statement: delete, insert, open, fetch,
select, or update. You must still explicitly end the transaction with commit transaction or rollback transaction. A pro-
cedure defined to run in chained mode will set autocommit_off at the beginning of the procedure, and restore the prior
setting at the end of the procedure.

• Unchained: (the default) requires the user to explicit begin a transaction before any data-retrieval or modification
statement. You must explicitly end the transaction with commit transaction or rollback transaction. A procedure defined
to run in unchained mode will set autocommit_on at the beginning of the procedure, and restore the prior setting at the
end of the procedure.

• Anymode: If the mode is not defined, or if it is defined as anymode, no change is made to the autocommit setting.

90 Transact-SQL (TSQL) Migration Guide

TSQL System Stored Procedures

InterSystems IRIS does not support a SET [UN]CHAINED option to change process settings. The setting used is the current
setting of the process's auto-commit mode.

InterSystems IRIS does not report an error if a procedure defined as chained is called by a process in autocommit_on mode,
nor does it report an error if a procedure defined as unchained is called by a process in autocommit_off mode.

The tranmode metadata is not part of the actual method definition. This means that changing the tranmode does not require
a recompile. It also means that when exporting/importing classes containing TSQL (Sybase) stored procedures, the tranmode
setting for the procedure is not exported with the class definition. Upon import, if a procedure needs to be defined in Chained
mode, you must call EXEC sp_procxmode 'procname', 'chained' for the procedure.

Transact-SQL (TSQL) Migration Guide 91

sp_procxmode (Sybase only)

	Table of Contents
	1 Planning and Performing TSQL Migration
	1.1 Why Migrate to InterSystems IRIS?
	1.1.1 Running your TSQL Applications on InterSystems IRIS
	1.1.2 Migrating off Sybase Products
	1.1.3 Migrating off Microsoft Products

	1.2 Planning your Migration
	1.2.1 Planning the Infrastructure
	1.2.2 Reviewing your Application Schema and Code
	1.2.3 Reviewing your Data
	1.2.4 Project Planning
	1.2.5 Testing the Migration

	1.3 Executing the Plan
	1.3.1 Setting Up the System
	1.3.2 Migrating the Code
	1.3.3 Migrating the Data
	1.3.4 Troubleshooting

	1.4 Writing and Executing TSQL on InterSystems IRIS
	1.4.1 Working with TSQL via SQL Interfaces
	1.4.2 Working with TSQL via Class Definitions

	2 InterSystems TSQL Constructs
	2.1 Table References
	2.2 Temporary Tables
	2.3 System Tables
	2.4 Transactions
	2.5 Cursor Name Management
	2.6 SYSOBJECTS References

	3 InterSystems TSQL Language Elements
	3.1 Literals
	3.1.1 String Literals
	3.1.2 Empty Strings
	3.1.3 NULL
	3.1.4 Hexadecimal
	3.1.5 Reserved Words
	3.1.6 Comments, Blank Lines, and Semicolons

	3.2 Variables
	3.3 Identifiers
	3.3.1 Delimited and Quoted Identifiers

	3.4 Data Types
	3.5 Operators
	3.5.1 Arithmetic and Equality Operators
	3.5.2 Concatenation Operator
	3.5.3 Comparison Operators
	3.5.4 NOT Logical Operator
	3.5.5 Bitwise Logical Operators

	4 TSQL Commands
	4.1 Data Definition Language (DDL) Statements
	4.1.1 CREATE TABLE
	4.1.2 ALTER TABLE
	4.1.3 DROP TABLE
	4.1.4 CREATE INDEX
	4.1.5 DROP INDEX
	4.1.6 CREATE TRIGGER
	4.1.7 DROP TRIGGER
	4.1.8 CREATE VIEW
	4.1.9 DROP VIEW
	4.1.10 CREATE DATABASE
	4.1.11 DROP DATABASE

	4.2 Data Management Language (DML) Statements
	4.2.1 DELETE
	4.2.2 INSERT
	4.2.3 UPDATE
	4.2.4 READTEXT
	4.2.5 WRITETEXT
	4.2.6 UPDATETEXT
	4.2.7 TRUNCATE TABLE

	4.3 Query Statements
	4.3.1 SELECT
	4.3.2 JOIN
	4.3.3 UNION
	4.3.4 FETCH Cursor

	4.4 Flow of Control Statements
	4.4.1 IF
	4.4.2 WHILE
	4.4.3 CASE
	4.4.4 GOTO and Labels
	4.4.5 WAITFOR

	4.5 Assignment Statements
	4.5.1 DECLARE
	4.5.2 SET

	4.6 Transaction Statements
	4.6.1 SET TRANSACTION ISOLATION LEVEL
	4.6.2 BEGIN TRANSACTION
	4.6.3 COMMIT TRANSACTION
	4.6.4 ROLLBACK TRANSACTION
	4.6.5 SAVE TRANSACTION
	4.6.6 LOCK TABLE

	4.7 Procedure Statements
	4.7.1 CREATE PROCEDURE / CREATE FUNCTION
	4.7.2 ALTER FUNCTION
	4.7.3 DROP FUNCTION
	4.7.4 DROP PROCEDURE
	4.7.5 RETURN
	4.7.6 EXECUTE
	4.7.7 EXECUTE IMMEDIATE
	4.7.8 CALL

	4.8 Other Statements
	4.8.1 CREATE USER
	4.8.2 GRANT
	4.8.3 REVOKE
	4.8.4 PRINT
	4.8.5 RAISERROR
	4.8.6 UPDATE STATISTICS
	4.8.7 USE database

	4.9 InterSystems Extensions
	4.9.1 OBJECTSCRIPT
	4.9.2 IMPORTASQUERY

	5 TSQL Settings
	5.1 DIALECT
	5.2 ANSI_NULLS
	5.3 CASEINSCOMPARE
	5.4 QUOTED_IDENTIFIER
	5.5 Equal Literal Replacement
	5.6 TRACE
	5.6.1 Cached Query Source

	5.7 Data Collation and String Truncation
	5.8 Timestamp and Time Precision
	5.9 Settings for Temporary Databases

	6 TSQL Functions
	6.1 ABS
	6.2 ACOS
	6.3 ASCII
	6.4 ASIN
	6.5 ATAN
	6.6 AVG
	6.7 CAST
	6.8 CEILING
	6.9 CHAR
	6.10 CHAR_LENGTH / CHARACTER_LENGTH
	6.11 CHARINDEX
	6.12 COALESCE
	6.13 COL_NAME
	6.14 CONVERT
	6.15 COS
	6.16 COT
	6.17 COUNT
	6.18 CURRENT_DATE
	6.19 CURRENT_TIME
	6.20 CURRENT_TIMESTAMP
	6.21 CURRENT_USER
	6.22 DATALENGTH
	6.23 DATEADD
	6.24 DATEDIFF
	6.25 DATENAME
	6.26 DATEPART
	6.27 DAY
	6.28 DB_NAME
	6.29 DEGREES
	6.30 ERROR_MESSAGE
	6.31 ERROR_NUMBER
	6.32 EXEC
	6.33 EXP
	6.34 FLOOR
	6.35 GETDATE
	6.36 GETUTCDATE
	6.37 HOST_NAME
	6.38 INDEX_COL
	6.39 ISNULL
	6.40 ISNUMERIC
	6.41 LEFT
	6.42 LEN
	6.43 LOG
	6.44 LOG10
	6.45 LOWER
	6.46 LTRIM
	6.47 MAX
	6.48 MIN
	6.49 MONTH
	6.50 NCHAR
	6.51 NEWID
	6.52 NOW
	6.53 NULLIF
	6.54 OBJECT_ID
	6.55 OBJECT_NAME
	6.56 PATINDEX
	6.57 PI
	6.58 POWER
	6.59 QUOTENAME
	6.60 RADIANS
	6.61 RAND
	6.62 REPLACE
	6.63 REPLICATE
	6.64 REVERSE
	6.65 RIGHT
	6.66 ROUND
	6.67 RTRIM
	6.68 SCOPE_IDENTITY
	6.69 SIGN
	6.70 SIN
	6.71 SPACE
	6.72 SQRT
	6.73 SQUARE
	6.74 STR
	6.75 STUFF
	6.76 SUBSTRING
	6.77 SUM
	6.78 SUSER_NAME
	6.79 SUSER_SNAME
	6.80 TAN
	6.81 TEXTPTR
	6.82 TEXTVALID
	6.83 UNICODE
	6.84 UPPER
	6.85 USER
	6.86 USER_NAME
	6.87 YEAR
	6.88 Unsupported Functions

	7 TSQL Variables
	7.1 Local Variables
	7.1.1 Declaring a Local Variable
	7.1.2 Setting a Local Variable
	7.1.3 Initial and Default Values
	7.1.4 Plain Local Variables

	7.2 @@ Special Variables
	7.2.1 @@ERROR
	7.2.2 @@FETCH_STATUS
	7.2.3 @@IDENTITY
	7.2.4 @@LOCK_TIMEOUT
	7.2.5 @@NESTLEVEL
	7.2.6 @@ROWCOUNT
	7.2.7 @@SERVERNAME
	7.2.8 @@SPID
	7.2.9 @@SQLSTATUS
	7.2.10 @@TRANCOUNT
	7.2.11 @@VERSION

	8 TSQL System Stored Procedures
	8.1 sp_addtype
	8.2 sp_droptype
	8.3 sp_procxmode (Sybase only)

