InterSystems-

IRIS Data Platform

Using ObjectScript

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using ObjectScript

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

11INtroduCing ODJECESCIIPL ...ooueiiiitirierie ettt e se e e e et eaesae bt sbesbesbeseesbenbeseans 1
L0 FRALUIES vttt ettt ettt et ettt e e ekt e e et et e s ba e e e ebbe e e aateeesabeee e bbeeeaabaeesabeeeabbeeeasteeesabeaeabeeens 1
1.2 LANQUAGE OVEIVIEW ..ottt ettt sttt sttt sb et b et b et eb et ebe bbb et st ebe et e srebesnesennas 2
1.3 Introduction to Language EIEMENLSccccevvreiiiiecieieee s 2

1.3.1 Statements and COMMEANGSocveiveirieiiiieireeienre et sre e rre e sresbeesbesbe e b e sbaesbesreenns 3
L.3.2 FUNCLIONS .uviciiiitie ettt ettt et ettt e e st e et e e staesabe e sabesabeesbeesbeesaeeeabeesreesnbeeens 3
1.3.3 EXPIESSIONS ..eeutieititeteieeieeiiete ettt s e s be bbb bt e e s e s e e e st ebe et e beebeebesbesbesbesbese e e et e e e e e 4
R Y T e T o] [T SRR 4
1.3.5 OPBIALOISveveieieterieste st see etttk r bt h e R e e n e e et r e n e nenrs 5
L SEE AUSO vttt ettt b e he e be e he e b b be et be e b e abe e beaba e beebe e beearenbeenns 5

B Y 1= G U= SRS 7
2.1 Left-10-RIGNt PreCEUBNCEveiveeieeeie ettt ettt et sneebesne e e 7
2.2 CASE SENSILIVILY ..eiueieietirieite ittt sttt sttt b e b e bbb e b sb e b e b se e e e b e e et e bt et e bt ebeebe e e 7

2.2.1 TABNTITIEIS veiivi ettt ettt ettt ettt e e sab e e s be e sat e e ebe s e abeeebeesabeesbeesabeesbeesareesbeean 8
2.2.2 KEYWOIT NBMES ..ttt bbbttt b et b et b e 8
2.2.3 ClaSS INAMES ...veeviirieiteitieiteetieete ettt steeresbeetesbeestesbeesbesbeesbesbaesbestsesbesssesbeensesbeensesbeensesteesrens 8
2.2.4 NAMESPACE INAMES ...vveuviieeeieieesiesieestee e seetesteestesteetesseestesseesseaseesseaneeseeaseesreessessenssnssenns 8
2.3 UNICOUE ©.ivieciie ettt ettt ettt b e e et e et e e s beesabe e s beesabe e sbe e s abe e beestbeebeesaeeesbeesaeeesbeesaeeenbeesrnas 8
2.3. 1 LEtterS iN UNICOOEveiiviiitieiie ittt ettt et sbe e st et e s beesae e snbe e sbaeeabeesbeesnbeesneean 9
2.3.2 LSt COMPIESSION .vtuvvieetirtetistereetes st ete et sttt et se et sr et bbb st b et b et eb et et ne et e nr et e neebennas 9
2.4 WRITESPACE ...ttt bbbtttk bbbt bbbt bbb 9
B2 OX0] 41 0 4T o] (U 10
2.5.1 Comments in INT Code for Routines and Methodscccccvveeviiievinieneceecre e 10
2.5.2 Comments in MAC Code for Routines and Methodsccoceveeeiiiiiieecee e 11
2.5.3 Comments in Class Definitions Outside of Method Codeccoceeevveiieecieeiie e, 11
2.6 SENG LITEIAIS .o.veeiiiie ettt ettt ettt be bbbt be e e 11
2 A N[00 T (o I (=Y 13
2.8 TABNLITIETS 1eteeiticie ittt sttt st e et e s b e e tbesbeeabeebeeabesbeebesbeesbesreesbesreesbenreens 14
2.8.1 Punctuation Characters Within Identifiersccocevviiiieiiiieieciecre e 14
2.9 LADEIS ..t he e eare e be e eae e be e sabeebe e stbeereesareen 14
2.9.1 USING LADEIS ...ttt bbb bbb sttt nne 15
2.9.2 Ending a Labelled Section 0f COUEccoviiriiirieiriirereee e 15
2.10 NAMESPACESvevveneeieeieeieeteeresreare st st e sr s e e s et e e ebe e s e s b e eb e b e nb e aR e er e s R e sn e e r e nenn e e e e e eneeneanes 17
2.10.1 EXtENAEA RETFEIENCES ...viiviitiiitictiecte ettt ettt ettt sttt st sbeerbesbeenresbeenns 17
2.11 RESEIVEA WOTTS ..ecvviivieiteitieirectie ettt ettt ere et sbe st ste e sbestae st estaesbestbesbesabesbeentesbeenbesbeebesaeesbesrees 18

3 DAta TYPES ANA VAIUESooceeeieceeesie ettt st e s et e e e et e ae e s e e aesaeeseesaeentesaaeseessaesesnnensenns 19

3L SEIINQS ettt bttt b bbb et bt a e £ e R £ E £ Rt Rt b e Rt Rt bt ebe bR e be et e e e e e e neens 19
3.1.1 NUll String / SCHAR(D) ..eveveveiiiereieieieieiereserereeereeseseresenas 19
3.1.2 Escaping QUOLALION IMAIKSc.eiiiviriiiiieiirieie et 20
3.1.3 CoNCAENALING STIINGS 1.vviveiveriereiriireriereeiereee st e e st st e te e e eree e esesressesresresrennens 20
3.1.4 StriNg COMPATISONS ..e.veiveieeriisiisieseesieieeeseesesesesessessestestestessesseseseessessessesesssasessessessenses 20
TR = 1 T 1SR 21

3.2 INUMDETS vttt te e et e e st e e be e s beeeabeeebeesabeebeesabeeebeesabeesbeesaseesbessabeenbeesbeeenbeesareans 22
3.2.1 Fundamentals 0f NUMDETScoviiiiiiii ittt et be e 22
3.2.2 Canonical FOrm Of NUMDELScviiiieiie ettt ettt et sttt e ere st res e ers 23
3.2.3 StriNGS @S NUMDETSeciviiiciesiesiesie ettt st e e e sneenesrenrennens 24

Using ObjectScript

3.2.4 Concatenating NUMDELSc.iiieieceece ettt e e sre e s teeaesre e e 26

3.2.5 Floating POINt NUMDELScciiiiiiiiisieie ettt e sn 26
3.2.6 SCIENLITIC NOTATION ..ecviiiiiieiiiieie et ere s 28
3.2.7 Extremely Large NUMDEFScooiiiiiiiiee ettt 28

KT T o] T £ 30
3.4 Persistent Multidimensional Arrays (GIODalS)ccccccvveieviieieicce e 31
3.5 UNAEFINEA VAIUES ...ttt bbb bbb e e e ene s 31
3.6 BOOIEAN WAIUES ...ttt bbb bbb bbbttt be et 32
3.7 DALES ..ttt bbbt Rt Rt E £ e b e eE £ e be k£ e bt e Re e eb e e Rt e bt enneeheenteeaeenaenreas 32
Y V= o 1= 35
4.1 Categories Of Variables ...t e 35
4.2 LOCAI VATTADIESveviiviieieet sttt st b et ettt et e 35
o R = Vo T T To T @0 01V 0 T SR 36
4.2.2 Scope Of LOCAI VATADIEScueiviieiieiie e e 36

4.3 GIODAIS ..ttt bbb bbb et e et neeneas 37
4.4 Process-Private GIODAIScooviiiiiiiices et 38
4.4.1 NamMING CONVENTIONS ...vviveiviierierieieieieeeeresesesrestestesreste e seessesaeseessessesessessessessessessessenes 38
4.4.2 Listing Process-Private GIODaISccccevevieiiiieeiicisiere s 39

4.5 RUIES ADOUL SUDSCIIPLS ...vivititiieieseeieie ettt sttt bbbt ettt sbe b b 40
4.6 Variable Typing and CONVEISIONcccciiiieiiriirie ittt st s bbb e e e 40
4.7 HAIM (OPLIONAI vttt bbbt sr e sn b enas 41
4.8 Global Variables and JOUMEIING ..o 41
4.9 SPECIAL VaITADIEScevevieiececti ettt sttt e neens 42
5 Operators and EXPrESSIONSccuieiirereriereeeeeeieeessesesrestestesaessestesaessessesseseessssessssssssessessessessessessens 43
5.1 Introduction to Operators and EXPreSSIONSccocereierererinienie e 43
5. 1.1 ASSIGNIMENT .ttt ettt b et st b e b b e b et b e e et e b e e b e e bt ebeebeebesbesbesbeseeeas 43

5.2 OPEIatOr PrECEUBINCEeueiviritiietirietert ettt bbbttt b ettt bbb bbb nrne 44
5.2.2 Unary NegativVe OPEIALOFScccoeiriririeirieierieisieesteesieesb e ss e sse s 44
5.2.2 Parentheses and PrECEUBNCEccoiiiiriiiriiireerieie e 44
5.2.3 FUNCLIONS @Nd PrECEUBINCE ...cvvviiieiiiiiiiiteisie sttt 45

5.3 String-to-NUMDEr CONVEISIONcuviiiiiiiciecie sttt ettt e te e s reeeesreenesreesnesreeneens 46
5.3.1 NUMEKIC SEIINQS .vevtitiitiiteiteste ettt sttt ettt sttt besbesbesbesbesbeseesse b e e e e eneaneas 46
5.3.2 NON-NUMEFIC SIFNGS ..ecveveverieririeiirieesieest ettt ettt sttt r e ne e ene e 47

5. EXPIESSIONS ..ttt sttt ettt bttt ettt et bbb bbbt e bt b et b et b e ekt e et et et b b nnas 47
5.4.1 LOQICAl EXPIESSIONS ...ecuveurevesiesieriesiestesieieseeseseeseeessessessessessestessessessessessessesssssessssessensens 49

5.5 ArthMELIC OPEIALOIS ..vvcuvcereiisisie st se s se ettt e et e st e s r e re e sre st e besae e et e e e e eneeneenes 50
5.6 Numeric Relational OPEratorscooioeiirieiieieeicieeeeee ettt s 52
5.7 Logical CompPariSON OPEIALOTScc.eruereeeeuererieuesiesiestestestestestesaeseessessessesesssesessessessessessessesees 53
5.7.1 Precedence and Logical OPEratorscoueireiiriiierisienieiesieie s 53
5.7.2 LOQICAl OPEIALOLSeviviiteieiteiitesietereete sttt sttt ettt bbbttt 54

5.8 String Concatenate OPEIator () .iveceverereruereereeeeesesreseeseeseessesseseessesseseessessessesesssesessessessesses 55
5.9 String Relational OPEratOrSccciveieeieieiieeesesieseste e sre s e ste e sr et e e e e e e esae e s e enesresresnesreseenes 55
5.10 Pattern MatCh OPEIator () «..ec.eoerereererie ettt bbb et 56
5.11 INdirection OPEIrAtOr (@) ..eveevesvereereerrereeieeeesesieseatestesiestesresteseesbesbeseessesseseeseeseeseesessessessesseses 57
B COIMIMANTS ...ttt ettt sttt st s et et et et eseese e st saeebesbesaesbesbeseeseenbeneeneentaneeneeneesessennesaens 59
6.1 COMMANT KEYWOITSeveieiirieiesieie ettt ettt sttt bbbttt 59
6.2 COMMANT ATGUITIENTS ...veveieieriiieteseeteteeeeeseeres e ssestessessesressestesseseseessensesseseeneessesessesnensessees 60
6.2.1 MUILIPIE ATGUMENTS ...oviiieieesiece ettt st s ae e e e s eneereeneenens 60
6.2.2 Arguments with Parameters and Postconditionalsc.ccccvvievevieninienc e 61

Using ObjectScript

6.2.3 Argumentless COMMEANGScceieerieiieerieseesie et e se e te e ste e sre e sreesae e e aesteeseesraesee e 61

6.3 Command Postconditional EXPreSSIONScccceiiererereiierienieie et 62
6.3.1 POSICONTITIONAI SYNTAX ...veveiveniieiictirietcree e 63
6.3.2 Evaluation of POStCONMITIONAISc.coeeiiiiiciicie e e 63

6.4 Multiple Commands 0N @ LINEccvvviiiieieieeiese ettt ens 64

B.5 VATTADIES ..vieeiiieiie ettt bbb 64

6.6 ETOI PrOCESSING ..vevietieitieiiite et st ste s e ste st s te s s te et e s e st este e st e sbe e st e steentesneeaesaeentesnaeseesneeseenneens 65

6.7 TranSACTION PrOCESSINGveveueeieieiieierie ettt sttt sttt sttt b et b ettt et e be b sbesbesbesbe b e 65

6.8 Locking and ConcurrenCy CONIOLcooveiiiireiieieiese et 66

6.9 INVOKING COUE ...ttt bbbttt ettt et 66
B.9.1 DO ittt bbb bbb R bbb e b et et et e 66
B.9.2 JOB ...ttt bbb e b bRt bRttt bbbt ne e 67
B.9.3 XECUTE .ottt sttt ettt sttt bbbt sb e b et b e be e be e be st eteneebe e 67
6.9.4 QUIT and RETURNciiiiiiiiiiieie ettt sttt sae e saese b sse e 67

6.10 CONIOIIING FIOW ..ot 68
6.10.1 Conditional EXECULIONciviiieiiiiie ettt ettt st sttt et sbeene s 68
B.00.2 FOR .ttt ettt et ek bbbt bbbt b e b et et et neas 69
6.10.3 WHILE and DO WHILEcoiiiiiiirieisesese st e 71

LTS R @o a1 0] 11T T 1L SRR 71
6.11.1 Display (Write) COMMANGScrueruirieriereinieieieeeeiisi sttt st be e e e e ie e sneas 71
B.11.2 READ oottt sttt ettt ettt n et n ettt bbbt n e nenn 75
6.11.3 OPEN, USE, and CLOSEcciiiiiiieeeceecectete ettt ettt sttt 75

7 Callable User-defined Code MOUUIES ..ottt st st st seebe e 77

7.1 Procedures, Routines, Subroutines, Functions, and Methods: What Are They?cccceveee. 78
7. 1L ROULINES .ttt bbbttt b bbbt bt bt eb bt b e sb b et e et e s e b e s e 78
R TN o (0 TU T T=T RS 79
T.1.3 FUNCHIONS ©ootieitictie ettt sttt sttt sttt et ebe et e e be e sbeeaeesbeeseesaeebesteesbesteebenneenes 80

7.2 DEfINING PrOCEAUIES ..ottt bbbttt bbb 81
7.2.1 INVOKING PrOCEAUIES ...vcveieeitesiesiesiesiesie et eie e et e s te sttt sne e aesaenseneeneenesnenees 81
7.2.2 PrOCEAUIE SYNTAX ©rvvivriresiesiestesiestestestestessessesseseessesassessessessessessessessessessessessessensessessessssens 82
7.2.3 Procedure Variablescocooi i 83
7.2.4 Public and Private PrOCEAUIEScuciiieieiieieite ettt ste et sie ettt st snn e 85

7.3 PAraMELET PASSING ...veveveiiiteieiteiiteiete ettt sttt bbbt b et b e bt b e et et ne et e sn bt sn b e aneneanas 86
7.3.1 PaSSING BY VAIUEc.ocuiiiiiiiiiee ettt bbb 87
7.3.2 Passing BY RETEIENCE ...c.vcveviiieiice ettt ens 87
7.3.3 Variable NUMber of Parameterscccoceviiriieiee et 88

7.4 PrOCEAUIE COOE ...oveiiieiite ittt ettt bbb e bbb ettt bbbt bbb e 90

7.5 Indirection, XECUTE Commands, and JOB Commands within Proceduresccccceeueaee. 92

7.6 Error Traps WIthin PrOCEAUIEScoiviiriciiiiisicisie sttt 92

7.7 Legacy UsSer-Defined COUE ..ottt 93
T.7.0 SUDFOULINES ...vvveiiitisiiteiete ettt sttt b bbbttt bbbttt ettt es 93
T.7.2 FUNCEIONS vttt sttt ettt b bbbt b ettt ettt enn 94

8 UsiNg Macros and INCIUAE FIlES ..o e e e 99

8.1 IMIACTO BASICS ...vveveitieiisiieiteetie st et e s te et e s e et e steeste s teestesteesteste e bests et e eseesbeensesteeasesteentesseeseesrneneens 99

ST 1 o [[=I o T= = T Lot SRS 100

8.3 DEFINING IMIACTOS ...ttt sttt sttt ettt st e te st sae st e e e e e eneesenneeneerenreans 100
8.3.1 Where t0 DefiNe MACIOScveirieiiriiiriiinieisieese sttt 101
8.3.2 Allowed Macro DEfiNItIONScccoveirieirieiriiiseise e 101
8.3.3 Macro Naming CONVENTIONSc.ciiruirieieieieieiieeeie st sr et 102
8.3.4 Macro Whitespace CONVENTIONScciiuerierieriereeieieeee sttt st sbe e e e eneas 102

Using ObjectScript

8.3.5 Macro Comments and STUAIO ASSISEoiuveeiiiiieiieie et saee e s srbee s 102

8.4 INCIUAING INCIUAE FIIES ... e et 103
8.5 Where t0 See EXPaNded IMIACIOScueiriiiriiiiiiieiirieiesieitsiee sttt 104
ST ORI A o TSSO 104
S a0 <o [0 [0 S O L TSP 105
TR = 4] o T=To [0 o S ST 105
9.2 Other FOrmMS OF QUEKIES ...veviiiieitieieite et sttt st ste st e e te s e e s e e sre et esreebesnsentesneesresneeseeeneens 105
10 MUItIAIMENSION@I ATTAYS «..eivirteieietisiesie sttt se et e st sresae st bt sbesbesaesbesbese e s e se e e e eneeaesaesbesbesaesnens 107
10.1 What Multidimensional AITAYS ATcuieireirieireinieesie et 107
10.1.1 Multidimensional Tree STIUCLUIEScc.eovevereeeieiieeeeeiese e e see e e e e enesre e e 107
10.1.2 Sparse Multidimensional STOragecccerereereeieieie e ees 108
10.1.3 Kinds of Multidimensional AITAYScccceveiererererieieeeeiesiesesrese e sre e ssessesseseenens 108
10.2 Manipulating Multidimensional ATTAYS ..o e 108
10.3 SEE AISO .ttt bbbttt E et b et b nenaens 109
11 SEFING OPEIALIONS ..cveueetireeterieteriet ettt ettt et e e ebeseebesae bt s b e st sbese s b e e ebe st ebeseebeseebeseeneneas 111
11.1 Basic String Operations and FUNCHIONS ..o e 111
11.1.1 Advanced Features 0f SEXTRACT ...coovirriireireienieese ettt 112
A 1= 1T T (=T S [PP 113
11.2.1 Advanced SPIECE FEALUIESccuivierieirieirieisieisieis ettt ettt 114
11.3 List-Structure String OPEratiONSccccoeeverieieieeieiisene sttt see et e e sbe e 114
11.3.1 Sparse LiSts and SUDTISSceieiieiiieiiseisiese e 116
11.4 Lists and Delimited StringS COMPArEdcccceriirririeiieese e 116
I AN AV = T = To =TS)) £ 116
11.4.2 Advantages of Delimited StrNGS ...ccccvviiieieiiriceieeece e 116

12 Locking and ConcurrenCy CONLIOlocveceiieie ettt re e snean 119
12,7 INEFOTUCTION .ttt ittt bbb bbb et e e et e bt sb e bt bt et e b e sbesbe b e 119
12.2 LOCK INAIMES vttt ete sttt sttt s et se et st e s be st e beste s b e bese e e e st eseaneeneebesaesbesbenbeneens 119
12.3 The LOCK TaBIE ..c.eeeieeieece ettt sttt eneeneenens 120
12.4 LOCKS AN ATTAYS ..ecvvevvereeeeetesiesestestestestestestessesesseseessessesessasssssessessessessessessessessessensensessensesens 120
12.5 Using the LOCK COMMANGocviieiieiiiieieieeeeeese e sresie e ste e stessesae e ssensessesesnsesessessessens 121
12.5.1 Adding an INCremental LOCKccoveiieeieiieeie ettt sre e 121
12.5.2 Adding an Incremental Lock with & TIMEOULcccceieiiiiiiiiciieeeree e 122
12.5.3 REMOVING @ LOCK ...ocveieiiieieiieesiee ettt 122
12.5.4 Other Basic Variations of the LOCK Commandcccccocvvevivninnirneninneneneenereeneans 123
G T I Tod G 1Y/ 1= 123
12.6.1 Exclusive and Shared LOCKSccveriiiiiininineiniecsiesecse e 124
12.6.2 Non-Escalating and EScalating LOCKScccccviieeiiiieiiniesccese st 124
12.6.3 SUMMArY Of LOCK TYPES ...ouvieiiiieiieeeiceies ettt 124
12.7 ESCAIALING LOCKS ...euvevirieiirieiiiteiiiteiete ettt et bennenennas 125
12.7.1 Lock EScalation EXAMPIEc..ceiiiiiiiiieirieeneesie ettt 125
12.7.2 Removing ESCalating LOCKSccvivreiiiirese ettt sne e 126
12.8 Locks, Globals, and NAMESPACESccververveieieieeseeresesiesiesteseseessesseseessessesseseesesessessessens 127
12.8.1 Scenario 1: Multiple Namespaces with the Same Globals Databaseccc........ 127
12.8.2 Scenario 2: Namespace Uses a Mapped GIobal ... 128
12.8.3 Scenario 3: Namespace Uses a Mapped Global Subscriptcccceoevennenniennennnn 129
12.8.4 Scenario 4: Extended Global REfEIrENCESccevveveieieieicere e 130
IV I A\ o To [T 1o T =T Uo | oo TSP 130
12.10 PractiCal USES FOr LOCKScveiiuiririiiriiiiinisinie sttt sttt 131
12.10.1 Controlling Access to Application Dataccoeveireriiineicsene e 131

vi

Using ObjectScript

12.10.2 Preventing SiIMultaneous ACLIVILYcccvviveiiiiieiieie e se e s 131

12.11 Locking and Concurrency in SQL and Persistent CIaSSeScccerererereerieieeieeieeenenennens 132
12,12 SEE AISO .ottt bttt bbb Rt b ettt n et et eneerenneare s 132

13 Details of Lock Requests and DEAAIOCKScc.cirieerieirieirerieseese et 135
13.1 Waiting LOCK REQUESESveiveeeeiiesierieriesiisieieseeieste e se s te e teste e ste st st e snenae e seensenaesesnesnens 135
13.2 Queuing of Array NOde LOCK REQUESEScvieiiriirieriesesieseesresiesieseeseesessnssesesee e seeseeseens 136
13.3 ECP Local and Remote LOCK REQUESEScveueeieiieiirieriesiesie et sre e 137
13.4 AVOIAING DEAAIOCKeiviiiiiitieie ettt bbb bbb e 137
135 SO AISO ettt bbb bR b b e et n b et et eneerenneere s 138

14 Managing the LOCK TaDI@ ... 139
14.1 Available Tools for Managing the LOCK Tablecccoviviiiriiniinine e 139
14.2 Viewing Locks in the Management POrtalcccccoevvereneiincieieieceeesiese e 139
14.3 Removing Locks in the Management Portalcccooviieiiiiiie i 142
14.4 NLOCKTAB ULHILY oviviiiiiiciesiee ettt es 142
LA.5 SBE AISO et b bbbt R b bttt n et eneerenneere s 143

15 TranSACtiON PrOCESSING ...coveervreruirertiertirsstesteuestesessesesseessesesseessessssessesesbesesbe e sbe e sbesessenessessssessns 145
15.1 About Transactions in INterSystems IRISccceviiieiirienereseeee e 145
15.2 Managing Transactions Within APPliCAtiONSccevvereirrieriesrsese e 145
15.2.1 Transaction COMMENGSciiiirerienieieieeieiei ettt e e sb e 146

15.2.2 UsINg LOCK N TranSACTIONScoueruirieieiieieieiceeeic sttt sttt st 146

15.2.3 Using $INCREMENT and $SEQUENCE in Transactionscccueevereresererenenienas 147

15.2.4 Transaction Rollback within an AppliCation ..o 147

15.2.5 Examples of Transaction Processing Within Applicationscccccceevevvvivviesinrininninns 148

15.3 Automatic Transaction ROHDACKccviiiriiniiieiinrssees e 149
15.4 System-Wide Issues with Transaction ProCESSINGccccvvvivereiieeiesiesieseesieseesie e sreeneennas 149
15.4.1 Backups and Journaling with Transaction ProCesSingccoceverereeneeienienienenienienne 149

15.4.2 Asynchronous Error NOEIfICAtIONSccvveirieincireenee e 149

15.5 Suspending All Current TranSaCIONSecviveiieriierieineese e 150

16 WOorking With % SEAEUS VAIUEScveveeeeiceeece sttt st e e s sre st e snennan 151
16.1 Basics of Working With Status ValUEScc.ccveveieieiieiene s e eresneenens 151
16.2 EXAMPIES ..ttt bbb e b et ettt b et b bbb nre b e 152
16.3 Variation (Y00DJIASTEITON)c.eciiiiiieiie ittt ettt e e 152
16.4 Multiple Errors Reported in @ Status VAUcccoeiiiiiiiiineeee e 152
16.5 REUMNING 8 Y0STALUScvivieiiirtisiiteict ettt bbbttt 153
16.6 YOSY STEIVLEITOL ..ottt e et sn e 154
16.7 SEE AISO .ttt bbb bbbttt bbb 154

IS LT oo T I = 8 O A I SRS 155
17. 0 INEFOTUCTION .ttt bbb bbb et et e et b e et e bt bt b e be bbb e 155
17.2 Using THROW With TRY-CATCHcccoiiiiiiiiiisisi sttt 156
17.3 Using $$$ThrowOnError and $$EThrowStatus IMACIOScceevveeererrererireeieresisieiee e 157
17.4 Using the %Exception.SystemException and %Exception.AbstractException Classes 158
17.5 Other Considerations With TRY-CATCHccccviiiiiniiiineesises s 158
17.5.1 QUIT within @ TRY=-CATCH BIOCKccoceiiieiiiiceiceseeeee e 158

17.5.2 TRY-CATCH and the EXeCULION StACKc.ccoireririineiierieeiee e e 159

17.5.3 Using TRY-CATCH with Traditional Error ProCcessingccoceeevevereierereneeneennens 159

LB EXTOr LOUGING +ervveeenertenertenerteneetereeteseeteseeseseesessesessesessesessene et eeesesseseseeseseesessesessanessenessensssensesessenas 161
S T8 T o T oA o) o] o LA o] T =l (] RS SPRRS 161
18.2 Using Management Portal to View Application Error LOGSccceceveverereereeieeiesiesesesnnnens 161

Using ObjectScript vii

18.3 Using "%ERN to View Application Error LOGScoccoveeeeeirieneienesie s 162

18.4 SO AISO ..ttt bt bbb bbbt e bbbt 163
19 Command-Line ROUtiNE DEDUGTING «..veververirieririeierieiirieerieesiees et 165
19.1 Secure DeBUG SNlouoiiiiiiieee bbb 165
19.1.1 Restricted Commands and FUNCLIONScovivrrireriiinneeenseeee s 166
19.2 Debugging with the ObjectScript DEDUGUETccvivieiirereiesiceee e 167
19.2.1 Using Breakpoints and WatChpOointsccocvirerineieiieneescse s 168
19.2.2 Establishing Breakpoints and WatChpOintsccoccovveiiieniennensensesse e 168
19.2.3 Disabling Breakpoints and WatChpOINtsccccoerrerniniineeseese e 172
19.2.4 Delaying Execution of Breakpoints and WatChpointscccoeirnienniennieneienenens 173
19.2.5 Deleting Breakpoints and WatChpointsccccevivrivvinninninnis e 173
19.2.6 Single-step Breakpoint ACHIONSccccvieiiriiieierieeieese e et sre e 173
19.2.7 TraCing EXECULION ...cuveiiiiieiicie sttt sttt sttt st et ne et e eneenneenes 174
19.2.8 INTERRUPT Keypress and Breakccocuerrerrinninsineesiee e 175
19.2.9 Displaying Information About the Current Debug Environmentc.ccccocevrennen. 175
19.2.10 Using the DeBUG DEVICEcovuiiriiiiieiiieicienee et 177
19.2.11 ObjectScript Debugger EXamPIEocoviviiiieiiiiire e 178
19.2.12 Understanding ObjectScript Debugger EITOrScccvceiveveesieiesesiesesese e seesie s 179
19.3 Debugging With BREAK ..ottt 179
19.3.1 Using Argumentless BREAK to Suspend Routine EXECULIONcccccvveereenieenen 180
19.3.2 Using Argumented BREAK to Suspend Routine EXeCUtioncccceevvvevivnencninnn 180
19.3.3 Terminal Prompt Shows Program Stack INformationc.ccccoeevvveniennienniennennns 181
19.3.4 FOR L0OP and WHILE LOOP ...vcviviviirieriesiisiese e sie s st sne e eneens 182
19.3.5 Resuming Execution after a BREAK OF @n EITOrc.cccovvivvieriennnie e 182
19.3.6 The NEW Command at the Terminal Promptcccooeiiiniininenenene e 184
19.3.7 The QUIT Command at the Terminal Promptcccovvireeneineieneeneeseeseesneeas 184
19.3.8 InterSystems IRIS Error MESSAQESccorvriirirerereiieieecceise s 184
19.4 Using %STACK t0 Display the StACKcccoeriiriiiiiiieee e 185
19.4.1 RUNNING Y0STACK .ottt neenes 185
19.4.2 Displaying the Process EXeCUtiON STACKcccoveveveiiniesrsnsn s se e 185
19.4.3 Understanding the Stack DiSPIaYccoeiuerieieiiiiiiire st 186
19.5 Other DebuGgiNg TOOISc.civiiiiiiiiiiiete e 191
19.5.1 Displaying References to an Object with $SYSTEM.OBJ.ShowReferences 191
19.5.2 Error Trap ULHITIES ..ccoeiieiiese e e 191
Appendix A: (Legacy) Using "% ETN for Error Logging ... 193
Appendix B: (Legacy) Traditional Error ProCESSINGccccveeeeeerereresrsiesieseeseeseeseesessessesessessessenns 195
B.1 How Traditional Error Processing WOTKSccccveiiiieiieiieie e 195
B.1.1 Internal Error-Trapping BENAVIOLcccoeiiieiiiiiiieneesense e 195
B.1.2 CUITeNt CONEXE LEVEIeeiiiciiiecetctesie ettt s 196
B.1.3 EITOr COUES ..oveiveiveieiiesiiieieseeieee ettt te st ste st seesae e seeaeseeneeneeneesesseesestessesneseeseeseens 197

B.2 Handling Errors With SZTRAPcvoiiiiiie ettt 199
B.2.1 Setting $ZTRAP in @ PrOCEAUIEoeviiieererisieeenese et sensenas 199
B.2.2 Setting $ZTRAP N @ ROULINEcoviiiiiiieiriec et 199
B.2.3 WIItiNg SZTRAP COUEcoviuiuiiiiiiitieiisisieiet ittt s 200
B.2.4 USING SZTRAP ...ttt bbbt bbbt nntas 200
B.2.5 Unstacking NEW Commands With Error Trapsccoeoeveereieneienene e 200
B.2.6 $ZTRAP Flow of Control OPLiONScccoeirieinieiinieiie s 201

B.3 Handling Errors With SETRAPccvovciieiirieceiisse ettt sesns 202
B.3.1 SETRAP Error HANAIEISc.ceiriiiieirisieieiesiieeesie ettt 203

viii Using ObjectScript

B.3.2 Context-specific SETRAP Error Handlerscooveovinneininnieeinseeeesseee s 203

B.3.3 SETRAP Flow 0f CONtrol OPLIONScccerireiieirinirieieisisieee st 204
B.4 Handling Errors in an Error HandIer ..o 205
B.4.1 Errors in @ SZTRAP Error HaNAIErccovveiiieiiiiceesec e 205
B.4.2 Errors in @ SETRAP Error HandIer ..o 206
B.4.3 Error Information in the $ZERROR and $SECODE Special Variablescccovvue. 206
B.5 FOICING QN EITOF ..vviuieiticiicei ettt e sttt st et e aaesbeena e s seeaesteeseestaestestaeseeanaenreans 206
B.5.1 Setting SECODEccoviiiiiiiiisieses ettt sb et 206
B.5.2 Creating Application-SPecifiC EITOrS ... 207
B.6 Processing Errors at the Terminal PrOMPLcooiriiniiniineieee e 207
B.6.1 Understanding Error Message FOMALScccrveveeeerinsesnseseesieseseeseessesesseesessessenns 207
B.6.2 Understanding the Terminal PromPtccoov o see e 208
B.6.3 Recovering from the EITOr ..ot s 208

Using ObjectScript

List of Figures

Figure H1=1: Frames 0N @ Call StACKccccuiiiiiiiiiiie it e 196
Figure 11=2: $ZTRAP Error HANGIETScoooviueiiiiiiicenrstce ittt 202
Figure 11-3: SETRAP Error HANGIEISccoiiiiiiiiie ettt 204

Using ObjectScript

List of Tables

TabIEe 3—1: DALE FOIMALSeieiiieiieieeie ettt et ettt ettt b e b b e b s b be b se et e b e e e ene s 33
Table 4-1: ObjectScript Type CONVErsion RUIESccoviiiiiriiinereeneere et 41
Table 6-1: DiSplay FOMAIINGcoieiiiireeiee bbbttt et 72
Table 6-2: HOW Values are DISPIAYEAcccererieriericieeeecesesese s see st s e s e nesnesresnesnens 73
Table 15—-1: Transaction COMMANTSc.civrirrireririrrireieen e nnenas 146
Table 19-1: Stack Error Codes at the Terminal PrOMPtcccooveoieiriiiiiiniene e 181
Table 19-2: %STACK Utility INFOrMAationccooiiiiiiiiie e e 187
Table 19-3: Frame Types and Values Available ... 187

Using ObjectScript

Xi

Introducing ObjectScript

ObjectScript is a built-in, fully general programming language in InterSystems IRIS® data platform. ObjectScript source
code is compiled into object code that executes within the InterSystems IRIS Virtual Machine. This object code is highly
optimized for operations typically found within business applications, including string manipulations and database access.
ObjectScript programs are completely portable across all platforms supported by InterSystems IRIS.

You can use ObjectScript in any of the following contexts:

* Asthe implementation language for methods of InterSystems IRIS classes. (Note that class definitions are not formally
part of ObjectScript. Rather, you can use ObjectScript within specific parts of class definitions).

» Asthe implementation language for stored procedures and triggers within InterSystems SQL.
e To create ObjectScript routines: individual programs contained and executed within InterSystems IRIS.

» Interactively from the command line of the ObjectScript shell.

Important: Operator precedence in ObjectScript is strictly left-to-right; within an expression, operations are performed
in the order in which they appear. Use explicit parentheses within an expression to force certain operations
to be carried out ahead of others.

1.1 Features

Some of the key features of ObjectScript include:

» Native support for objects including methods, properties, and polymorphism
» Support for concurrency control

e A set of commands for dealing with 1/0O devices

» Support for multidimensional, sparse arrays: both local and global (persistent)
» Support for efficient, Embedded SQL

» Support for indirection as well as runtime evaluation and execution of commands

Using ObjectScript 1

Introducing ObjectScript

1.2 Language Overview

ObijectScript does not define any reserved words: you are free to use any word as an identifier (such as a variable name).
In order to accomplish this, ObjectScript uses a set of built-in commands as well as special characters (such as the “$”
prefix for function names) in order to distinguish identifiers from other language elements.

For example, to assign a value to a variable, you can use the SET command:

ObjectScript

SET x = 100
WRITE X

In ObjectScript it is possible (though not recommended) to use any valid name as an identifier name, as shown in the fol-
lowing program, which is functionally identical to the previous example:
ObjectScript

SET SET = 100
WRITE SET

Some components of ObjectScript, such as command names and function names, are not case-sensitive. Other components
of ObjectScript, such as variable names, labels, class names and method names are case-sensitive. For details, see Case
Sensitivity.

You can insert or omit whitespace almost anywhere in ObjectScript. However, two uses of whitespace are significant:

1. A command and its arguments must be separated by at least one space.

2. Each command line must be indented by at least one space. A command cannot start or continue on the first character
position of a line.

Comments must also be indented. Some other syntaxes, such as macro preprocessor statements, can begin on the first

character position of a line. For details, see Whitespace.

ObjectScript does not use a command terminator character or a line terminator character.

1.3 Introduction to Language Elements

ObjectScript syntax, in its simplest form, involves invoking commands on expressions, such as:

ObjectScript

WRITE x

which invokes the WRITE command on the variable x (this displays the value of x). In the example above, x is an
expression; an ObjectScript expression is one or more “tokens” that can be evaluated to yield a value. Each token can be
a literal, a variable, the result of the action of one or more operators (such as the total from adding two numbers), the return
value that results from evaluating a function, some combination of these, and so on. The valid syntax for a statement involves
its commands, functions, expressions, and operators.

2 Using ObjectScript

Introduction to Language Elements

1.3.1 Statements and Commands

An ObjectScript program consists of a number of statements. Each statement defines a specific action for a program to
undertake. Each statement consists of a command and its arguments.

Consider the following ObjectScript statement:

ObjectScript

SET x="World"
WRITE "Hello",!,x

WRITE is a command. It does exactly what its name implies: it writes whatever you specify as its argument(s) to the
current principal output device. In this case, WRITE writes three arguments: the literal string “Hello”; the “!” character,
which is a symbolic operator specific to the WRITE command that issues a line feed/carriage return; and the local variable
X, which is replaced during execution by its current value. Arguments are separated by commas; you may also add whitespace
between arguments (with some restrictions). For information on whitespace, see Syntax.

Most ObjectScript commands (and many functions and special variables) have a long form and a short (abbreviated) form
(typically one or two characters). For example, the following program is identical to the previous one, but uses the abbre-
viated command names:

ObjectScript

S x="World"
W ""Hello",!,x

Older code commonly used the short forms (see Abbreviations Used in ObjectScript). For clarity, it is best to use the long
forms.

For more information on commands, see Commands or the individual reference page within the ObjectScript Reference.

1.3.2 Functions

A function is code that performs an operation (for example, converting a string to its equivalent ASCII code values) and
returns a value. A function is invoked within a command line. This invocation supplies parameter values to the function,
which uses these parameter values to perform some operation. The function then returns a single value (the result) to the
invoking command. You can use a function any place you can use an expression.

InterSystems IRIS provides a large number of system-supplied functions (sometimes known as “intrinsic” functions),
which you cannot modify. These functions are identifiable, as they always begin with a single dollar sign (“$”) and enclose
their parameters within parentheses; even when no parameters are specified, the enclosing parentheses are mandatory.
(Special variable names also begin with a single dollar sign, but they do not have parentheses.)

Many system-supplied function names have abbreviations. In the text of this manual, the full function names are used. The
abbreviation is shown on the function’s reference page and a complete list is provided in Abbreviations Used in ObjectScript.

A function always returns a value. Commonly, this return value is supplied to a command, such as SET
namelen=$LENGTH("'Fred Flintstone'™) or WRITE $LENGTH("'Fred Flintstone'), or to another function,
suchas WRITE $LENGTH($PIECE("'Flintstone”Fred","~",1)). Failing to provide a recipient for the return value
usually results in a <SYNTAX> error. However, in a few functions, providing a recipient for the return value is not required.
An operation performed by executing the function or the setting of one of the function’s parameters is the relevant operation.
In these cases, you can invoke a function without receiving its return value by using the DO or JOB command. For example,
DO $CLASSMETHOD(clname,clmethodname,singlearg).

A function can have no parameters, a single parameter, or multiple parameters. Function parameters are positional and
separated by commas. Many parameters are optional. If you omit a parameter, InterSystems IRIS uses that parameter’s

Using ObjectScript 3

Introducing ObjectScript

default. Because parameters are positional, you commonly cannot omit a parameter within a list of specified parameters.
In some cases (such as $L1STTOSTRING) you can omit a parameter within a parameter list and supply a placeholder
comma. You do not have to supply placeholder commas for optional parameters to the right of the last specified parameter.

For most functions, you cannot specify multiple instances of the same parameter. The exceptions are $CASE, $CHAR,
and $SELECT.

Commonly, a parameter can be specified as a literal, a variable, or the return value of another function. In a few cases, a
parameter must be supplied as a literal. In most cases, a variable must be defined before it can be specified as a function
parameter, or an <UNDEFINED> error is generated. In a few cases (such as $DATA) the parameter variable does not have
to be defined.

Commonly, function parameters are input parameters that supply a value to the function. In a few cases, a function both
returns a value and sets an output parameter. For example, $L 1 STDATA returns a boolean value indicating whether there
is a list element at the specified position; it also sets its third parameter (if included in the parameter list) equal to the value
of that list element.

All functions can be specified on the right side of a SET command (for example, SET x=$LENGTH(y)). A few functions
can also be specified on the left side of a SET command (for example, SET $LIST(list,position,end)=x).Functions
that can be specified on the left side of a SET are identified as such in their reference page syntax block.

System-supplied functions are provided as part of InterSystems IRIS. The ObjectScript Language Reference describes each
of the system-supplied functions. A function provided in a class is known as a method. Methods provided in InterSystems
IRIS are described in the InterSystems Class Reference.

In addition to its system-supplied functions, ObjectScript also supports user-defined functions (sometimes known as
“extrinsic” functions). For information on defining and calling user-defined functions, refer to User-Defined Code.

1.3.3 Expressions

An expression is any set of tokens that can be evaluated to yield a single value. For example, the literal string, “hello”, is
an expression. Sois I + 2. Variables such as x, functions such as $LENGTH, and special variables such as $ZVERSION
also evaluate to an expression.

Within a program, you use expressions as arguments for commands and functions:

ObjectScript

SET x = "Hello™
WRITE x,!

WRITE 1 + 2,!
WRITE $LENGTH(X),!
WRITE $ZVERSION

1.3.4 Variables

In ObjectScript, a variable is the name of a location in which a runtime value can be stored. Variables must be defined, for
example, by using the SET command.

Variables in ObjectScript are untyped; that is, they do not have an assigned data type and can legally take any data value.
No syntax error occurs when you assign a string value to a variable that previously held a numeric value, or vice versa.
(Syntax errors do occur, however, if you attempt to use a variable inappropriately, such as if you try to set an object property
when the variable does not contain an instance of an object , or when you pass a non-list value to a function that requires
a list, and so on. That is, many ObjectScript functions expect specific kinds of input.)

ObjectScript supports several kinds of variables, characterized by differing scopes and features:

» Local variables — A variable that is accessible only by the InterSystems IRIS process that created it, and which is
automatically deleted when the process terminates.

4 Using ObjectScript

/csp/documatic/%25CSP.Documatic.cls

See Also

Process-private globals — A variable that is accessible only by the InterSystems IRIS process and is deleted when the
process ends. Process-private globals are especially useful for temporary storage of large data values.

Globals — A persistent variable that is stored within the InterSystems IRIS database. A global is accessible from any
process, and persists after the process that created it terminates.

Array variables — A variable with one or more subscripts. All user-defined variables can be used as arrays, including
local variables, process-private globals, globals, and object properties.

Special variables (also known as system variables) — One of a special set of built-in variables that contain a value for
a particular aspect of the InterSystems IRIS operating environment. All special variables always have values. Some
special variables can be set by the user, others can only be set by InterSystems IRIS. Special variables are not array
variables.

Obiject properties — A value associated with, and stored within, a specific instance of an object.

ObjectScript supports various operations on or among variables. Variables are described in more detail in Variables.

1.3.5 Operators

ObijectScript defines a number of built-in operators. These include arithmetic operators, logical operators, and pattern match
operators. For details, see Operators.

1.4 See Also

To learn more about ObjectScript, you can also refer to:

The ObjectScript Tutorial for an interactive introduction to most language elements.

The ObjectScript Reference for details on individual commands and functions.

Using ObjectScript 5

Syntax Rules

This topic describes the basic rules of ObjectScript syntax.

2.1 Left-to-Right Precedence

Operator precedence in ObjectScript is strictly left-to-right; within an expression, operations are performed in the order in
which they appear. This is different from other languages in which certain operators have higher precedence than others.
For more information, see Operator Precedence.

2.2 Case Sensitivity

Some parts of ObjectScript are case-sensitive while others are not. Generally speaking, the user-definable parts of ObjectScript
are case-sensitive while keywords are not:

Case-sensitive: variable names (local, global, and process-private global) and variable subscripts, class names, method
names, property names, the i% preface for an instance variable for a property, routine names, macro names, macro
include file (.inc file) names, label names, lock names, passwords, embedded code directive marker strings, Embedded
SQL host variable names.

Not case-sensitive: command names, function names, special variable names, namespace names (see below), user
names and role names, preprocessor directives (such as #include), letter codes (for LOCK, OPEN, or USE), keyword
codes (for $STACK), pattern match codes, and embedded code directives (&html, &js, &sql). Custom language elements
that you add by customizing the %ZLANG routine are not case-sensitive; when you create them you must use uppercase,
when you refer to them you can use any case. Because indexing for text analytics normalizes text by converting it to
lowercase, most NLP values, including domain names, are not case-sensitive.

Usually not case-sensitive: Case sensitivity of the following is platform-dependent: device names, file names, directory
names, disk drive names. The exponent symbol is usually not case-sensitive. Uppercase “E” is always a valid exponent
symbol; lowercase “e” can be configured as valid or invalid for the current process using the ScientificNotation()
method of the %SYSTEM.Process, or system-wide using the ScientificNotation property of the Config.Miscellaneous
class.

Using ObjectScript 7

Syntax Rules

2.2.1 |dentifiers

User-defined identifiers (variable, routine, and label names) are case-sensitive. String, string, and STRING all refer to dif-
ferent variables. Global variable names are also case-sensitive, whether user-defined or system-supplied.

Note: SQL identifiers, in contrast, are not case-sensitive.

2.2.2 Keyword Names

Command, function, and system variable keywords (and their abbreviations) are not case-sensitive. You can use Write,
write, WRITE, W, or w; all refer to the same command.

2.2.3 Class Names

All identifiers related to classes (class names, property names, method names, etc.) are case-sensitive. For purposes of
uniqueness, however, such names are considered to be not case-sensitive; that is, two class names cannot differ by case
alone.

2.2.4 Namespace Names

Namespace names are not case-sensitive, meaning that you can input a namespace name in any combination of uppercase
and lowercase letters. Note however, that InterSystems IRIS® data platform always stores namespace names in uppercase.
Therefore, InterSystems IRIS may return a namespace name to you in uppercase rather than in the case which you specified.
For further details on namespace naming conventions, see Namespaces.

2.3 Unicode

InterSystems IRIS supports the Unicode international character set. Unicode characters are 16-bit characters, also known
as wide characters. The $ZVERSION special variable (Bui Id nnnU) and the $SY STEM .Ver sion.I sUnicode() method
show that the InterSystems IRIS installation supports Unicode.

For most purposes, InterSystems IRIS only supports the Unicode Basic Multilingual Plane (hex 0000 through FFFF) which
contains the most commonly-used international characters. Internally, InterSystems IRIS uses the UCS-2 encoding, which
for the Basic Multilingual Plane, is the same as UTF-16. You can work with characters that are not in the Unicode Basic
Multilingual Plane by using $WCHAR, $WISWIDE, and related functions.

InterSystems IRIS encodes Unicode strings into memory by allocating 16 bits (two bytes) per character, as is standard with
UTF-16 encodings. However, when saving a Unicode string to a global, if all characters have numerical values of 255 or
lower, InterSystems IRIS stores the string using 8 bits (one byte) per character. If the string contains characters with
numerical values greater than 255, InterSystems IRIS applies a compression algorithm to reduce the amount of space the
string takes up in storage.

For conversion between Unicode and UTF-8, and conversions to other character encodings, refer to the $ZCONVERT
function. You can use ZZDUMP to display the hexadecimal encoding for a string of characters. You can use $CHAR to
specify a character (or string of characters) by its decimal (base 10) encoding. You can use $ZHEX to convert a hexadecimal
number to a decimal number, or a decimal number to a hexadecimal number.

8 Using ObjectScript

Whitespace

2.3.1 Letters in Unicode

On InterSystems IRIS, some names can contain Unicode letter characters, while other names cannot contain Unicode letters.
Unicode letters are defined as alphabetic characters with decimal character code values higher than 255. For example, the
Greek lowercase lambda is $CHAR(955), a Unicode letter.

Unicode letter characters are permitted throughout InterSystems IRIS, with the following exceptions:

e Variable names: local variable names can contain Unicode letters. However, global variable names and process-private
global names cannot contain Unicode letters. Subscripts for variables of all types can be specified with Unicode char-
acters.

» Administrator user names and passwords used for database encryption cannot contain Unicode characters.

The locale identifier is not taken into account when dealing with Unicode characters. That is, if a identifier consisting of
Unicode characters is valid in one locale, the identifier is valid in any locale. Note that the above exceptions still apply.

Note: The Japanese locale does not support accented Latin letter characters in InterSystems IRIS names. Japanese names
may contain (in addition to Japanese characters) the Latin letter characters A-Z and a-z (65-90 and 97-122), and
the Greek capital letter characters (913-929 and 931-937).

2.3.2 List Compression

ListFormat controls whether Unicode strings should be compressed when stored in a SLIST encoded string. The default is
to not compress. Compressed format is automatically handled by InterSystems IRIS. Do not pass compressed lists to
external clients, such as Java or C#, without verifying that they support the compressed format.

The per-process behavior can be controlled using the ListFormat() method of the %SYSTEM.Process class.

The system-wide default behavior can be established by setting the ListFormat property of the Config.Miscellaneous class
or the InterSystems IRIS Management Portal, as follows: from System Administration, select Configuration, Additional
Settings, Compatibility.

2.4 \Whitespace

Under certain circumstances, ObjectScript treats whitespace as syntactically meaningful. Unless otherwise specified,
whitespace refers to blank spaces, tabs, and line feeds interchangeably. In brief, the rules are:

* Whitespace must appear at the beginning of each line of code and each single-line comment. Leading whitespace is
not required for:

— Label (also known as a tag or an entry point): a label must appear in column 1 with no preceding whitespace
character. If a line has a label, there must be whitespace between the label and any code or comment on the same
line. If a label has a parameter list, there can be no whitespace between the label name and the opening parenthesis
for the parameter list. There can be whitespace before, between, or after the parameters in the parameter list.

— Macro directive: a macro directive such as #define can appear in column 1 with no preceding whitespace character.
This is a recommended convention, but whitespace is permitted before a macro directive.

— Multiline comment: the first line of a multiline comment must be preceded by one or more spaces. The second
and subsequent lines of a multiline comment do not require leading whitespace.

— Blank line: if a line contains no characters, it does not need to contain any spaces. A line consisting only of
whitespace characters is permitted and treated as a comment.

Using ObjectScript 9

Syntax Rules

» There must be one and only one space (not a tab) between a command and its first argument; if a command uses a
postconditional, there are no spaces between the command and its postconditional.

» If a postconditional expression includes any spaces, then the entire expression must be parenthesized.
» There can be any amount of whitespace between any pair of command arguments.
« Ifaline contains code and then a single-line comment, there must be whitespace between them.

e Typically, each command appears on its own line, though you can enter multiple commands on the same line. In this
case, there must be whitespace between them; if a command is argumentless, then it must be followed by two spaces
(two spaces, two tabs, or one of each). Additional whitespace may follow these two required spaces.

2.5 Comments

It is good practice to use comments to provide in-line documentation in code, as they are a valuable resource when modifying
or maintaining code. ObjectScript supports several types of comments which can appear in several kinds of locations:

e Comments in INT Code for Routines and Methods
e Comments in MAC Code for Routines and Methods

e Comments in Class Definitions Outside of Method Code

2.5.1 Comments in INT Code for Routines and Methods

ObjectScript code is written as MAC code, from which INT (intermediate) code is generated. Comments written in MAC
code are generally available in the corresponding INT code. You can use the ZLOAD command to load an INT code routine,
then use the ZPRINT command or the $TEXT function to display INT code, including these comments. The following
types of comments are available, all of which must start in column 2 or greater:

e The /* */ multiline comment can appear within a line or across lines. /* can be the first element on a line or can
follow other elements; */ can be the final element on the line or can precede other elements. All linesina /* */
appear in the INT code, including lines that consist of just the /* or */, with the exception of completely blank lines.
A blank line within a multi-line comment is omitted from the INT code, and can thus affect the line count.

e The // comment specifies that the remainder of the line is a comment; it can be the first element on the line or follow
other elements.

» The ; comment specifies that the remainder of the line is a comment; it can be the first element on the line or can follow
other elements.

» The ;; comment — a special case of the ; comment type — makes the comment available to the $STEXT function
when the routine is distributed as object code only; the comment is only available to $TEXT if no commands precede
it on the line.

Note: Because InterSystems IRIS retains ; ; comments in the object code (the code that is actually interpreted and
executed), there is a performance penalty for including them and they should not appear in loops.

A multiline comment (/* comment */) can be placed between command or function arguments, either before or after
a comma separator. A multiline comment cannot be placed within an argument, or be placed between a command keyword
and its first argument or a function keyword and its opening parenthesis. It can be placed between two commands on the
same line, in which case it functions as the single space needed to separate the commands. You can immediately follow

10 Using ObjectScript

String Literals

the end of a multiline comment (*/) with a command on the same line, or follow it with a single line comment on the same
line. The following example shows these insertions of /7* comment */ within a line:

ObjectScript

WRITE $PIECE("Fred&Ginger"/* WRITE "world" */,"&",2),!
WRITE "hello”,/* WRITE "world™ */" sailor”,!

SET x="Fred"/* WRITE "world" */WRITE x,!

WRITE "hello"/* WRITE "world" */// WRITE " sailor"

2.5.2 Comments in MAC Code for Routines and Methods

The following comment types can be written in MAC code but have different behaviors in the corresponding INT code:

e The #; comment can start in any column but must be the first element on the line. #: comments do not appear in INT
code. Neither the comment nor the comment marker (#;) appear in the INT code and no blank line is retained. Therefore,
the #; comment can change INT code line numbering.

e The ##; comment can start in any column. It can be the first element on the line or can follow other elements. ##;
comments do not appear in INT code. ##: can be used in ObjectScript code, in Embedded SQL code, or on the same
line as a #define, #deflarg or ##continue macro preprocessor directive.

If the ##; comment starts in column 1, neither the comment nor the comment marker (##;) appear in the INT code
and no blank line is retained. However, if the ##; comment starts in column 2 or greater, neither the comment nor the
comment marker (##;) appear in the INT code, but a blank line is retained. In this usage, the ##; comment does not
change INT code line numbering.

e The /// comment can start in any column but must be the first element on the line. If /// starts in column 1, it does
not appear in INT code and no blank line is retained. If /// starts in column 2 or greater, the comment appears in INT
code and is treated as if it were a // comment.

2.5.3 Comments in Class Definitions Outside of Method Code

Within class definitions, but outside of method definitions, several comment types are available, all of which can start in
any column:

e The// and /7* */ comments are for comments within the class definition.

» The /// comment serves as class reference content for the class or class member that immediately follows it. For
classes themselves, the /// comment preceding the beginning of the class definition provides the description of the
class for the class reference content which is also the value of description keyword for the class). Within classes, all
/77 comments immediately preceding a member (either from the beginning of the class definition or after the previous
member) provide the class reference content for that member, where multiple lines of content are treated as a single
block of HTML. For more information on the rules for /// comments and the class reference, see Creating Class
Documentation.

2.6 String Literals

A string literal is a set of zero or more characters delimited by quotation marks (in contrast, numeric literals do not need a
surrounding pair of delimiters). ObjectScript string literals are delimited with double quotation marks (for example,
"myliteral™); InterSystems SQL string literals are delimited with single quotation marks (for example, "myliteral ®).
These quotation mark delimiters are not counted in the length of the string.

Using ObjectScript 11

Syntax Rules

A string literal can contain any characters, including whitespace and control characters. There is a maximum permitted
length (see String Length Limit). If a string contains only characters with codes from 0 to 255 (also known as Latin-1 or
ASCII Extended characters), then each characters takes up 8 bits (one byte). If a string contains at least one character with
a code greater than 255 (also known as Unicode or wide characters), then each character takes up 16 bits (two bytes). To
view the bytes used to store string characters, you can use the ZZDUM P command, as shown in the next example.

The following example shows a string of 8-bit characters, a string of 16-bit Unicode characters (Greek letters), and a
combined string:
ObjectScript

DO Asciiletters
DO GreekUnicodelLetters
DO CombinedAsciiUnicode

RETURN
AsciilLetters()
SET a="abc"
WRITE a
WRITE !,"the length of string a is ",$LENGTH(a)
ZZDUMP a
QUIT

GreekUnicodeLetters()
SET b=$CHAR(945)_ $CHAR(946)_ $CHAR(947)
WRITE 11,b
WRITE !,"the length of string b is ",$LENGTH(b)
ZZDUMP b
QUIT
CombinedAsciiUnicode()
SET c=a_b
WRITE 1!,c
WRITE !,"the length of string c is ",$LENGTH(c)
ZZDUMP c
QUIT

Not all string characters are typeable. You can specify non-typeable characters using the $CHAR function, as shown in
the following Unicode example:

ObjectScript

SET greekstr=$CHAR(952,945,955,945,963,963,945)
WRITE greekstr

Not all string characters are displayable. They can be non-printing characters or control characters. The WRITE command
represents non-printing characters as a box symbol. The WRITE command causes control characters to execute. In the
following example, a string contains printable characters alternating with the Null ($CHAR(0)), Tab ($CHAR(9)) and
Carriage Return ($CHAR(13)) characters:

ObjectScript

SET a="a"_$CHAR(0)_"b" $CHAR(9)_''c"_ $CHAR(13)_"d"
WRITE !,"the length of string a is ",$LENGTH(a)
ZZDUMP a

WRITE !,a

Note that the WRITE command executes some control characters from the Terminal command line which WRITE exe-
cuting in a program displays as non-printing characters. For example, the Bell ($CHAR(7)) and Vertical Tab ($SCHAR(11))
characters.

To include the quotation mark character (") within a string, double the character, as shown in the following example:

ObjectScript

SET x="This quote"

SET y="This """ quote"

WRITE x,!," string length="",$LENGTH(X)
ZZDUMP x

WRITE 11,y,1." string length=",$LENGTH(y)
ZZDUMP y

12 Using ObjectScript

Numeric Literals

A string that contains no value is known as a null string. It is represented by two quotation mark characters ("™"). A null
string is considered to be a defined value. It has a length of 0. Note that the null string is not the same as a string consisting
of the null character ($CHAR(0)), as shown in the following example:

ObjectScript

SET x=""

WRITE “string=",x," length="",$LENGTH(x)," defined="",$DATA(X)
ZZDUMP x

SET y=$CHAR(O)

WRITE 11,"string=",y," length="",$LENGTH(Y)," defined="",$DATA(Y)
ZZDUMP y

For further details on strings, see Strings.

2.7 Numeric Literals

Numeric literals are values that ObjectScript evaluates as numbers. In contrast to string literals, they do not require a sur-
rounding pair of delimiters. InterSystems IRIS converts numeric literals to canonical form (their simplest numeric form):

ObjectScript

SET x = ++0007.00

WRITE "length: " ,$LENGTH(X), !
WRITE "value: "X, !
WRITE "equality: ", x =7,1

WRITE "arithmetic: ",x + 1

You can also represent a number as a string literal delimited with quotation marks; a numeric string literal is not converted
to canonical form, but can be used as a number in arithmetic operations:

ObjectScript

SET y = "++0007.00"

WRITE "length: " $LENGTH(Y), !
WRITE "value: "Lyt
WRITE “equality: ",y = 7,1

WRITE "arithmetic: ",y + 1

For further details refer to Strings as Numbers.

ObjectScript treats as a number any value that contains the following (and no other characters):

Value Quantity
The digits 0 through 9. Any quantity, but at least one.
Sign operators: Unary Minus (-) and Unary Plus (+). | Any quantity, but must precede all other characters.

The decimal_separator character (by default this is At most one.
the period or decimal point character; in European
locales this is the comma character).

The Letter E (used in scientific notation). At most one. Must appear between two numbers.

For further details on the use and interpretation of these characters, refer to Fundamentals of Numbers.
ObjectScript can work with the following types of numbers:

» Integers (whole numbers such as 100, 0, or -7).

Using ObjectScript 13

Syntax Rules

e Fractional numbers: decimal numbers (real numbers such as 3.767) and decimal fractions (real numbers such as .0442).
ObjectScript supports two internal representations of fractional numbers: standard InterSystems IRIS floating point
numbers ($DECIMAL numbers) and IEEE double-precision floating point numbers (SDOUBLE numbers). For further
details, refer to the $DOUBLE function.

» Scientific notation: numbers placed in exponential notation (such as 2.8E2).

2.8 Identifiers

An identifier is the name of a variable, a routine, or a label. In general, legal identifiers consist of letter and number characters;
with few exceptions, punctuation characters are not permitted in identifiers. Identifiers are case-sensitive.

The naming conventions for user-defined commands, functions, and special variables are more restrictive (only letters
permitted) than identifier naming conventions. See Extending Languages with “%ZLANG Routines.

For naming conventions for local variables, process-private globals, and globals, see Variables.

2.8.1 Punctuation Characters within Identifiers

Certain identifiers can contain one or more punctuation characters. These include:

» The first character of an identifier can be a percent (%) character. InterSystems IRIS names beginning with a % char-
acter (except those beginning with %Z or %z) are reserved as system elements. For further details, see Rules and
Guidelines for Identifiers.

» Adglobal or process-private global name (but not a local variable name) may include one or more period (.) characters.
A routine name may include one or more period (.) characters. A period cannot be the first or last character of an
identifier.

Note that globals and process-private globals are identified by a caret (*) prefix of one or more characters, such as the fol-
lowing:

Globals: Process-Private Globals:
~globname ~| Ippgname
A|:"|globname o ""Al"A"lppgname
~|"mynspace’ | globname AT, | ppgname
~["'mynspace']globname AN] ppgname

These prefix characters are not part of the variable name; they identify the type of storage and (in the case of globals) the
namespace used for this storage. The actual name begins after the final vertical bar or closing square bracket.

2.9 Labels

Any line of ObjectScript code can optionally include a label (also known as a tag). A label serves as a handle for referring
to that line location in the code. A label is an identifier that is not indented; it is specified in column 1. All ObjectScript
commands must be indented.

Labels have the following naming conventions:

e The first character must be an alphanumeric character or the percent character (%). Note that labels are the only
ObjectScript names that can begin with a number. The second and all subsequent characters must be alphanumeric
characters. A label may contain Unicode letters.

14 Using ObjectScript

Labels

» They can be up to 31 characters long. A label may be longer than 31 characters, but must be unique within the first 31
characters. A label reference matches only the first 31 characters of the label. However, all characters of a label or
label reference (not just the first 31 characters) must abide by label character naming conventions.

* They are case-sensitive.

Note: A block of ObjectScript code specified in an SQL command such as CREATE PROCEDURE or CREATE
TRIGGER can contain labels. In this case, the first character of the label is prefixed by a colon (:) specified in
column 1. The rest of the label follows the naming and usage requirements describe here.

A label can include or omit parameter parentheses. If included, these parentheses may be empty or may include one or
more comma-separated parameter names. A label with parentheses identifies a procedure block.

A line can consist of only a label, a label followed by one or more commands, or a label followed by a comment. If a
command or a comment follows the label on the same line, they must be separated from the label by a space or tab character.

The following are all unique labels:

ObjectScript

maximum
Max

MAX

86
agent86
86agent
%control

You can use the $ZNAME function to validate a label name. Do not include parameter parentheses when validating a label
name.

You can use the ZINSERT command to insert a label name into source code.

2.9.1 Using Labels

Labels are useful for identifying sections of code and for managing flow of control.

The DO and GOTO commands can specify their target location as a label. The $ZTRAP special variable can specify the
location of its error handler as a label. The JOB command can specify the routine to be executed as a label.

Labels are also used by the PRINT, ZPRINT, ZZPRINT, ZINSERT, ZREMOVE, and ZBREAK commands and the $TEXT
function to identify source code lines.

However, you cannot specify a label on the same line of code as a CATCH command, or between a TRY block and a
CATCH block.

2.9.2 Ending a Labelled Section of Code

A label provides an entry point, but it does not define an encapsulated unit of code. This means that once the labelled code
executes, execution continues into the next labelled unit of code unless execution is stopped or redirected elsewhere. There
are three ways to stop execution of a unit of code:

» Execution encounters a QUIT or RETURN.

» Execution encounters the closing curly brace (“}”) of a TRY. When this occurs, execution continues with the next line
of code following the associated CAT CH block.

» Execution encounters the next procedure block (a label with parameter parentheses). Execution stops when encountering
a label line with parentheses, even if there are no parameters within the parentheses.

Using ObjectScript 15

Syntax Rules

In the following example, code execution continues from the code under labelO to that under labell:

ObjectScript

SET x = $RANDOM(2)
IF x=0 {DO labelO
WRITE "Finished RoutineO",! }
ELSE {DO labell
WRITE "Finished Routinel™,! }
QUIT
labelO
WRITE "In Routine0",!
FOR i=1:1:5 {
WRITE "x = ",x,!
SET x = x+1 }
WRITE "At the end of RoutineQ",!
labell
WRITE "In Routinel”,!
FOR i=1:1:5 {
WRITE "x = ",x,!
SET x = x+1 }
WRITE "At the end of Routinel",!

In the following example, the labeled code sections end with either a QUIT or RETURN command. This causes execution
to stop. Note that RETURN always stops execution, QUIT stops execution of the current context:

ObjectScript

SET x = $RANDOM(2)
IF x=0 {DO labelO
WRITE "Finished RoutineO",! }
ELSE {DO labell
WRITE "Finished Routinel™,! }
QUIT
labelO

WRITE "In Routine0",!
FOR i=1:1:5 {

WRITE "x = ",x,1!

SET x = x+1

QUIT }
WRITE "Quit the FOR loop, not the routine",!
WRITE "At the end of Routine0",!
QUIT
WRITE "This should never print"

labell

WRITE "In Routinel™,!
FOR i=1:1:5 {

WRITE "x = ",x,1!

SET x = x+1 }
WRITE "At the end of Routinel",!
RETURN
WRITE "This should never print"”

In the following example, the second and third labels identify procedure blocks (a label specified with parameter parentheses).
Execution stops when encountering a procedure block label:

16 Using ObjectScript

Namespaces

ObjectScript

SET x = $RANDOM(2)
IF x=0 {DO labelO
WRITE "Finished RoutineO",! }
ELSE {DO labell
WRITE "Finished Routinel™,! }
QUIT
labelO
WRITE "In Routine0",!
FOR i=1:1:5 {
WRITE "x = ",x,1!

SET x = x+1 }
WRITE "At the end of Routine0",!
labell()

WRITE "In Routinel™,!
FOR i=1:1:5 {
WRITE "'x = *,x,!

SET x = x+1 }
WRITE "At the end of Routinel",!
label2()

WRITE "This should never print"

2.10 Namespaces

A namespace name may be an explicit namespace name or an implied namespace name. An explicit namespace name is
not case-sensitive; regardless of the case of the letters with which it is input, it is always stored and returned in uppercase
letters.

In an explicit namespace name, the first character must be a letter or a percent sign (%). The remaining characters must be
letters, numbers, hyphens (=), or underscores (_). The name cannot be longer than 255 characters.

When InterSystems IRIS translates an explicit namespace name to a routine or class name (for example, when creating a
cached query class/routine name), it replaces punctuation characters with lowercase letters, as follows: % =p, =u,—-=
d. An implied namespace name may contain other punctuation characters; when translating an implied namespace name,
these punctuation characters are replaced by a lowercase "s". Thus the following seven punctuation characters are replaced
asfollows: @ =s,:=5s,/=s5,\=5,[=5,] =5, =s.

The following namespace names are reserved: %SYS, BIN, BROKER, and DOCUMATIC.

When using the InterSystems SQL CREATE DATABASE command, creating an SQL database creates a corresponding
InterSystems IRIS namespace.

A namespace exists as a directory in your InterSystems IRIS instance. To return the full pathname of the current namespace,
you can invoke the NormalizeDirectory() method, as shown in the following example:
ObjectScript

WRITE ##class(%Library.File)_NormalizeDirectory('"")

For information on using namespaces, see Namespaces and Databases. For information on creating namespaces, see Con-
figuring Namespaces.

2.10.1 Extended References

An extended reference is a reference to an entity that is located in another namespace. The namespace name can be specified
as a string literal enclosed in quotes, as a variable that resolves to a namespace name, as an implied namespace name, or
as a null string (") a placeholder that specifies the current namespace. There are three types of extended references:

» Extended Global Reference: references a global variable in another namespace. The following syntactic forms are
supported: ~[*'namespace’]global and ~]'namespace’ |global. For further details, see Global Variables.

Using ObjectScript 17

Syntax Rules

» Extended Routine Reference: references a routine in another namespace.

— The DO command, the STEXT function, and user-defined functions support the following syntactic form:
| "namespace | routine.

— The JOB command supports the following syntactic forms: routine| " namespace’|,
routine["namespace'], or routine:namespace".

In all these cases, the extended routine reference is prefaced by a » (caret) character to indicate that the specified entity
is a routine (rather than a label or an offset). This caret is not part of the routine name. For example, DO
~]""'SAMPLES" | fFibonacci invokes the routine named fibonacci, which is located in the SAMPLES namespace.
The command WRITE $$fun”]"SAMPLES" | house invokes the user-defined function fun() in the routine house,
located in the SAMPLES namespace.

» Extended SSVN Reference: references a structured system variable (SSVN) in another namespace. The following
syntactic forms are supported: ~*$[""namespace']ssvn and *$| ""‘namespace’’ | ssvn. For further details, refer to
the "$GLOBAL, "$LOCK, and “$ROUTINE structured system variables.

All extended references can, of course, specify the current namespace, either explicitly by name, or by specifying a null
string placeholder.

2.11 Reserved Words

There are no reserved words in ObjectScript; you can use any valid identifier as a variable name, function name, or label.
At the same time, it is best to avoid using identifiers that are command names, function names, or other such strings. Also,
since ObjectScript code includes support for embedded SQL, it is prudent to avoid naming any function, object, variable,
or other entity with an SQL reserved word, as this may cause difficulties elsewhere.

18 Using ObjectScript

Data Types and Values

ObijectScript is a typeless language — you do not have to declare the types of variables. Any variable can have a string,
numeric, or object value. That being said, there is important information to know when using different kinds of data in
ObijectScript.

3.1 Strings

A string is a set of characters: letters, digits, punctuation, and so on delimited by a matched set of quotation marks (*):

ObjectScript

SET string = "This is a string”
WRITE string

Topics about strings include:

e Null String / $CHAR(0)

» Escaping Quotation Marks
» Concatenating Strings

e String Comparisons

e Bit Strings

Also see String Length Limit.

3.1.1 Null String / $CHAR(0)

* SET mystr="": sets a null or empty string. The string is defined, is of zero length, and contains no data:

ObjectScript

SET mystr=""

WRITE "defined:",$DATA(mystr),!
WRITE "length: " ,$LENGTH(mystr),!
ZZDUMP mystr

* SET mystr=$CHAR(O0): sets a string to the null character. The string is defined, is of length 1, and contains a single
character with the hexadecimal value of 00:

Using ObjectScript 19

Data Types and Values

ObjectScript

SET mystr=$CHAR(O)

WRITE "defined:",$DATA(mystr),!
WRITE "length: *,$LENGTH(mystr),!
ZZDUMP mystr

Note that these two values are not the same. However, a bitstring treats these values as identical.

Note that InterSystems SQL has its own interpretation of these values; see NULL and the Empty String.

3.1.2 Escaping Quotation Marks

You can include a " (double quote) character as a literal within a string by preceding it with another double quote character:

ObjectScript

SET string = "This string has ""quotes" in it."”
WRITE string

There are no other escape character sequences within ObjectScript string literals.

Note that literal quotation marks are specified using other escape sequences in other InterSystems software. Refer to the
$ZCONVERT function for a table of these escape sequences.

3.1.3 Concatenating Strings
You can concatenate two strings into a single string using the concatenate operator:

ObjectScript

SET a = "Inter™
SET b = "Systems"
SET string = a_b
WRITE string

By using the concatenate operator you can include non-printing characters in a string. The following string includes the
linefeed (SCHAR(10)) character:
ObjectScript

SET If = $CHAR(10)
SET string = "This"_If_"is"_If_"a string”
WRITE string

Note: How non-printing characters display is determined by the display device. For example, the Terminal differs from
browser display of the linefeed character, and other positioning characters. In addition, different browsers display
the positioning characters $CHAR(11) and $CHAR(12) differently.

InterSystems IRIS encoded strings — bit strings, List structure strings, and JSON strings — have limitations on their use
of the concatenate operator. For further details, see Concatenate Encoded Strings.

Some additional considerations apply when concatenating numbers. For further details, see “Concatenating Numbers™.

3.1.4 String Comparisons

You can use the equals (=) and does not equal (‘=) operators to compare two strings. String equality comparisons are case-
sensitive. Exercise caution when using these operators to compare a string to a number, because this comparison is a string

20 Using ObjectScript

Strings

comparison, not a numeric comparison. Therefore only a string containing a number in canonical form is equal to its corre-
sponding number. (*-0" is not a canonical number.) This is shown in the following example:

ObjectScript

WRITE "Fred" = "Fred",! // TRUE
WRITE "Fred"™ = "FRED",! // FALSE
WRITE "-7" = -007.0,! // TRUE
WRITE "-007.0" = -7,1 // FALSE
WRITE 0" = -0,! // TRUE
WRITE "-0" = 0,! // FALSE
WRITE "-0" = -0,! // FALSE

The <, >, <=, or >= operators cannot be used to perform a string comparison. These operators treat strings as numbers and
always perform a numeric comparison. Any non-numeric string is assigned a numeric value of 0 when compared using
these operators.

3.1.4.1 Lettercase and String Comparisons

String equality comparisons are case-sensitive. You can use the $ZCONVERT function to convert the letters in the strings
to be compared to all uppercase letters or all lowercase letters. Non-letter characters are unchanged.

A few letters only have a lowercase letter form. For example, the German eszett (SCHAR(223)) is only defined as a lowercase
letter. Converting it to an uppercase letter results in the same lowercase letter. For this reason, when converting alphanumeric
strings to a single letter case it is always preferable to convert to lowercase.

3.1.5 Bit Strings

A bit string represents a logical set of numbered bits with boolean values. Bits in a string are numbered starting with bit
number 1. Any numbered bit that has not been explicitly set to boolean value 1 evaluates as 0. Therefore, referencing any
numbered bit beyond those explicitly set returns a bit value of 0.

» Bitvalues can only be set using the bit string functions $BIT and $BITLOGIC.
e Bit values can only be accessed using the bit string functions $BIT, $BITLOGIC, and $BITCOUNT.

A bit string has a logical length, which is the highest bit position explicitly set to either 0 or 1. This logical length is only
accessible using the $BITCOUNT function, and usually should not be used in application logic. To the bit string functions,
an undefined global or local variable is equivalent to a bitstring with any specified numbered bit returning a bit value 0,
and a $BITCOUNT value of 0.

A bit string is stored as a normal ObjectScript string with an internal format. This internal string representation is not
accessible with the bit string functions. Because of this internal format, the string length of a bit string is not meaningful
in determining anything about the number of bits in the string.

Because of the bit string internal format, you cannot use the concatenate operator with bit strings. Attempting to do so
results in an <INVALID BIT STRING> error.

Two bit strings in the same state (with the same boolean values) may have different internal string representations, and
therefore string representations should not be inspected or compared in application logic.

To the bit string functions, a bitstring specified as an undefined variable is equivalent to a bitstring with all bits 0, and a
length of 0.

Unlike an ordinary string, a bit string treats the empty string and the character SCHAR(O) to be equivalent to each other
and to represent a 0 bit. This is because $BIT treats any non-numeric string as 0. Therefore:

Using ObjectScript 21

Data Types and Values

ObjectScript

SET $BIT(bstri,1)=""

SET $BIT(bstr2,1)=$CHAR(0O)

SET $BIT(bstr3,1)=0

IF $BIT(bstrl,1)=$BIT(bstr2,1) {WRITE "bitstrings are the same'} ELSE {WRITE "bitstrings different"}

WRITE $BITCOUNT(bstrl),$BITCOUNT(bstr2),$BITCOUNT(bstr3)

A bit set in a global variable during a transaction will be reverted to its previous value following transaction rollback.
However, rollback does not return the global variable bit string to its previous string length or previous internal string rep-
resentation. Local variables are not reverted by a rollback operation.

A logical bitmap structure can be represented by an array of bit strings, where each element of the array represents a "chunk™
with a fixed number of bits. Since undefined is equivalent to a chunk with all 0 bits, the array can be sparse, where array
elements representing a chunk of all 0 bits need not exist at all. For this reason, and due to the rollback behavior above,
application logic should avoid depending on the length of a bit string or the count of 0-valued bits accessible using
$BITCOUNT(str) or $BITCOUNT (str,0).

3.2 Numbers

Topics related to numbers include:
» Fundamentals of Numbers

e Canonical Form of Numbers
e Strings as Numbers

» Concatenating Numbers

* Floating Point Numbers

e Scientific Notation

e Extremely Large Numbers

3.2.1 Fundamentals of Numbers

Numeric literals do not require any enclosing punctuation. You can specify a number using any valid numeric characters.
InterSystems IRIS evaluates a number as syntactically valid, then converts it to canonical form.

The syntactic requirements for a numeric literal are as follows:

» Itcan contain the decimal numbers 0 through 9, and must contain at least one of these number characters. It can contain
leading or trailing zeros. However, when InterSystems IRIS converts a number to canonical form it automatically
removes leading integer zeros. Therefore, numbers for which leading integer zeros are significant must be input as
strings. For example, United State postal Zip Codes can have a leading integer zero, such as 02142, and therefore must
be handled as strings, not numbers.

» It can contain any number of leading plus and minus signs in any sequence. However, a plus sign or minus sign cannot
appear after any other character, except the “E” scientific notation character. In a numeric expression a sign after a
non-sign character is evaluated as an addition or subtraction operation. In a numeric string a sign after a non-sign
character is evaluated as a non-numeric character, terminating the number portion of the string.

InterSystems IRIS uses the PlusSign and MinusSign property values for the current locale to determine these sign
characters (“+” and “-” by default); these sign characters are locale-dependent. To determine the PlusSign and
MinusSign characters for your locale, invoke the GetFor matltem() method:

22 Using ObjectScript

Numbers

ObjectScript

WRITE ##class(%SYS.NLS.Format) .GetFormatltem("'PlusSign'™),!
WRITE ##class(%SYS.NLS.Format) .GetFormatltem(**MinusSign™)

It can contain at most one decimal separator character. In a numeric expression a second decimal separator results in
a <SYNTAX> error. In a numeric string a second decimal separator is evaluated as the first non-numeric character,
terminating the number portion of the string. The decimal separator character may be the first character or the last
character of the numeric expression. The choice of decimal separator character is locale-dependent: American format
uses a period (.) as the decimal separator, which is the default. European format uses a comma (,) as the decimal sepa-
rator. To determine the DecimalSeparator character for your locale, invoke the GetFor matltem() method:

ObjectScript

WRITE ##class(%SYS.NLS.Format) .GetFormatltem("'DecimalSeparator')

It can contain at most one letter “E” (or “e”) to specify a base-10 exponent for scientific notation. This scientific
notation character (“E” or “e”) must be preceded by a integer or fractional number, and followed by an integer.

Numeric literal values do not support the following:

They cannot contain numeric group separators. These are locale-dependent; American format uses commas, European
format uses periods. You can use the SINUMBER function to remove numeric group separators, and the $SFNUMBER
function to add numeric group separators.

They cannot contain currency symbols, hexadecimal letters, or other nonnumeric characters. They cannot contain blank
spaces, except before or after arithmetic operators.

They cannot contain trailing plus or minus signs. However, the SFNUMBER function can display a number as a string
with a trailing sign, and the SNUMBER function can take a string in this format and convert it to a number with a
leading sign.

They cannot specify enclosing parentheses to represent a number as a negative number (a debit). However, the
$FNUMBER function can display a negative number as a string with a enclosing parentheses, and the SNUMBER
function can take a string in this format and convert it to a number with a leading negative sign.

A number or numeric expression can containing pairs of enclosing parentheses. These parentheses are not part of the
number, but govern the precedence of operations. By default, InterSystems IRIS performs all operations in strict left-to-
right order.

3.2.2 Canonical Form of Numbers

ObjectScript performs all numeric operations on numbers in their canonical form. For example, the length of the number
+007.00 is 1; the length of the string **+007 .00 is 7.

When InterSystems IRIS converts a number to canonical form, it performs the following steps:

1.
2.

Scientific notation exponents are resolved. For example 3E4 converts to 30000 and 3E-4 converts to .0003.

Leading signs are resolved. First, multiple signs are resolved to a single sign (for example, two minus signs resolve to
a plus sign). Then, if the leading sign is a plus sign, it is removed. You can use the SFNUMBER function to explicitly
specify (prepend) a plus sign to a positive InterSystems IRIS canonical number.

Note: ObjectScript resolves any combination of leading plus and minus signs. In SQL, two consecutive minus signs
are parsed as a single-line comment indicator. Therefore, specifying a number in SQL with two consecutive
leading minus signs results in an SQLCODE -12 error.

Using ObjectScript 23

Data Types and Values

All leading and trailing zeros are removed. This includes removing leading integer zeroes, including the leading integer
zero from fractions smaller than 1. For example 0.66 becomes - 66.

» To append an integer zero to a canonical fraction use the SFNUMBER or $JUSTIFY function. .66 becomes
0.66.

» Toremove integer zeroes from a non-canonical fraction use the Unary Plus operator to force conversion of a
number string to a canonical number. In the following example, the fractional seconds portion of a timestamp,
+$PIECE("'65798,00000.66",",",2). 00000.66 becomes .66.

As part of this conversion, zero fractions are simplified to 0. Regardless of how expressed (0.0, .0, -000) all zero
values are converted to O.

A trailing decimal separator is removed.

-0 is converted to 0.

Arithmetic operations and numeric concatenation are performed. InterSystems IRIS performs these operations in strict
left-to-right order. Numbers are in their canonical form when these operations are performed. For further details, see
Concatenating Numbers below.

InterSystems IRIS canonical form numbers differ from other canonical number formats used in InterSystems software:

ODBGC: Integer zero fractions converted to ODBC have a zero integer. Therefore, .66 and 000 .66 both become
0.66. You can use the SFNUMBER or $JUSTIFY function to prepend an integer zero to an InterSystems IRIS
canonical fractional number.

JSON: Only a single leading minus sign is permitted; a leading plus sign or multiple signs are not permitted.
Exponents are permitted but not resolved. 3E4 is returned as 3E4.
Leading zeros are not permitted. Trailing zeros are not removed.

Integer zero fractions must have a zero integer. Therefore, .66 and 000 .66 are not valid JSON numbers, but 0.66
and 0.660000 are valid JSON numbers.

A trailing decimal separator is not permitted.

Zero values are not converted: 0.0, -0, and -0.000 are returned unchanged as valid JSON numbers.

3.2.3 Strings as Numbers

The following are the general rules for handling strings as numbers. For further details, see String-to-Number Conversion.
For special processing, see Extremely Large Numeric Strings.

For all numeric operations, a string containing a number in canonical form is functionally identical to the corresponding
number. For example, '3" = 3,"-2.5" = -2_5. (Note that -0 is not a canonical number.)

For arithmetic operations, a string containing only numeric characters in non-canonical form is functionally identical
to the corresponding number. For example, **003" + 3 = 6, "++-2.5000" + -2.5 = -5.

For greater-than/less-than operations, a string containing only numeric characters in non-canonical form is functionally
identical to the corresponding number. For example, the following statements are true: *003"* > 2, "++-2_.5000""
>= -2.5.

For equality operations (=, '=), a string containing only numeric characters in non-canonical form is treated as a string,
not a number. For example, the following statements are true: **003'* = '*003', "'003" "= 3,''+003" "= "003".

Some further guidelines concerning parsing strings as numbers:

24

Using ObjectScript

Numbers

* Amixed numeric string is a string that begins with numeric characters, followed by one or more non-numeric characters.
For example “7 dwarves”. InterSystems IRIS numeric and boolean operations (other than equality operations) commonly
parse a mixed numeric string as a number until they encounter a non-numeric character. At that point the rest of the
string is ignored. The following example shows arithmetic operations on mixed numeric strings:

ObjectScript
WRITE "7dwarves™ + 2,1 // returns 9
WRITE "+24/7" + 2,1 // returns 26
WRITE "'7,000" + 2,1 // returns 9
WRITE "7.0.99" + 2,1 // returns 9
WRITE "7.5.99" + 2,1 // returns 9.5

e A non-numeric string is any string in which a non-numeric character is encountered before encountering a numeric
character. Note that a blank space is considered a non-numeric character. InterSystems IRIS numeric and boolean
operations (other than equality operations) commonly parse this string as having a numeric value of 0 (zero). The fol-
lowing example shows arithmetic operations on non-numeric strings:

ObjectScript

WRITE "dwarves 7" + 2,1 // returns 2
WRITE "'+ 24/7" + 2,1 // returns 2
WRITE ""$7000" + 2,1 // returns 2

* You can prefix a string with a plus sign to force its evaluation as a number for equality operations. A numeric string
is parsed as a number in canonical form; a non-numeric string is parsed as 0. (A minus sign prefix also forces evaluation
of a string as a number for equality operations; the minus sign, of course, inverts the sign for a non-zero value.) The
following example shows the plus sign forcing numeric evaluation for equality operations:

ObjectScript

WRITE +"7" = 7,1 // returns 1 (TRUE)
WRITE +"+007" = 7,1 // returns 1 (TRUE)
WRITE +"7 dwarves"” = 7,1 // returns 1 (TRUE)
WRITE +"dwarves"™ = 0,1 // returns 1 (TRUE)
WRITE +"** = 0,! // returns 1 (TRUE)

Numeric string handling exceptions for individual commands and functions are common, as noted in the ObjectScript
Reference.

3.2.3.1 Extremely Large Numeric Strings

Usually, a numeric string is converted to an ObjectScript Decimal value. However, with extremely large numbers (larger
than 9223372036854775807E127) it is not always possible to convert a numeric string to a Decimal value. If converting
a numeric string to its Decimal value would result in a <MAXNUMBER> error, InterSystems IRIS instead converts it to
an IEEE Binary value. InterSystems IRIS performs the following operations in converting a numeric string to a number:

1. Convert numeric string to Decimal floating point number. If this would result in <MAXNUMBER> go to Step 2.
Otherwise, return Decimal value as a canonical number.

2. Check the $SY STEM .Process.TruncateOver flow() method boolean value. If 0 (the default) go to Step 3. Otherwise,
return an overflow Decimal value (see method description).

3. Convert numeric string to IEEE Binary floating point number. If this would result in <MAXNUMBER> go to Step 4.
Otherwise, return IEEE Binary value as a canonical number.

4. Check the $SY STEM .Process.| EEEError () method boolean value. Depending on this value either return INF / -INF,
or issue a <MAXNUMBER> error.

Using ObjectScript 25

Data Types and Values

3.2.4 Concatenating Numbers

A number can be concatenated to another number using the concatenate operator (_). InterSystems IRIS first converts each
number to its canonical form, then performs a string concatenation on the results. Thus, the following all result in 1234:
12 34,12 +34,12 --34,12.0_34, 12 0034.0, 12E0_34. The concatenation 12._34 results in 1234, but the concatenation
12 .34 results in 12.34. The concatenation 12_-34 results in the string “12-34".

InterSystems IRIS performs numeric concatenation and arithmetic operations on numbers after converting those numbers
to canonical form. It performs these operations in strict left-to-right order, unless you specify parentheses to prioritize an
operation. The following example explains one consequence of this:

ObjectScript

WRITE 7_-6+5 // returns 12

In this example, the concatenation returns the string “7-6”. This, of course, is not a canonical number. InterSystems IRIS
converts this string to a canonical number by truncating at the first non-numeric character (the embedded minus sign). It
then performs the next operation using this canonical number 7 + 5 =12,

3.2.5 Floating Point Numbers

InterSystems IRIS supports two different numeric types that can be used to represent floating point numbers:

» Decimal floating-point: By default, InterSystems IRIS represents fractional numbers using its own decimal floating-
point standard ($DECIMAL numbers). This is the preferred format for most uses. It provides a higher level of precision
than IEEE Binary floating-point. It is consistent across all system platforms that InterSystems IRIS supports. Decimal
floating-point is preferred for data base values. In particular, a fractional number such as 0.1 can be exactly represented
using decimal floating-point notation, while the fractional number 0.1 (as well as most decimal fractional numbers)
can only be approximated by IEEE Binary floating-point.

Internally, Decimal arithmetic is performed using numbers of the form M*(10**N), where M is the integer significand
containing an integer value between -9223372036854 775808 and 9223372036854 775807 and N is the decimal exponent
containing an integer value between -128 and 127. The significand is represented by a 64-bit signed integer and the
exponent is represented by an 8-bit signed byte.

The average precision of Decimal floating point is 18.96 decimal digits. Decimal numbers with a significand between
1000000000000000000 and 9223372036854775807 have exactly 19 digits of precision and a Decimal significant
between 922337203685477581 and 999999999999999999 have exactly 18 digits of precision. Although IEEE Binary
floating-point is less precise (with an accuracy of approximately 15.95 decimal digits), the exact, infinitely precise
value of IEEE Binary representation as a decimal string can have over 1000 significant decimal digits.

In the following example, $SDECIM AL functions take a fractional number and an integer with 25 digits and return a
Decimal number rounded to 19 digits of precision / 19 significant digits:

Terminal

USER>WRITE $DECIMAL(1234567890.123456781818181)
1234567890.123456782

USER>WRITE $DECIMAL(1234567890123456781818181)
1234567890123456782000000

» |EEE Binary floating-point: IEEE double-precision binary floating point is an industry-standard way of representing
fractional numbers. IEEE floating point numbers are encoded using binary notation. Binary floating-point representation
is usually preferred when doing high-speed calculations because most computers include high-speed hardware for
binary floating-point arithmetic.

26 Using ObjectScript

Numbers

Internally, IEEE Binary arithmetic is performed using numbers of the form S*M*(2**N), where S is the sign containing
the value -1 or +1, M is the significand containing a 53-bit binary fractional value with the binary point between the
first and second binary bit, and N is the binary exponent containing an integer value between -1022 and 1023. Therefore,
the representation consists of 64 bits, where S is a single sign bit, the exponent N is stored in the next 11 bits (with
two additional values reserved), and the significand M is >=1.0 and <2.0 containing the last 52 bits with a total of 53
binary bits of precision. (Note that the first bit of M is always a 1, so it does not need to appear in the 64-bit represen-
tation.)

Double-precision binary floating point has a precision of 53 binary bits, which corresponds to approximately 15.95
decimal digits of precision. (The corresponding decimal precision varies between 15.35 and 16.55 digits.)

Binary representation does not correspond exactly to a decimal fraction because a fraction such as 0.1 cannot be repre-
sented as a finite sequence of binary fractions. Because most decimal fractions cannot be exactly represented in this
binary notation, an IEEE floating point number may differ slightly from the corresponding InterSystems Decimal
floating point number. When an IEEE floating point number is displayed as a fractional number, the binary bits are
often converted to a fractional number with far more than 18 decimal digits. This does not mean that IEEE floating
point numbers are more precise than InterSystems Decimal floating point numbers. IEEE floating point numbers are
able to represent larger and smaller numbers than InterSystems Decimal numbers.

In the following example, the $DOUBL E function take a sequence of 17-digit integers and returns values with roughly
16 significant digits of decimal precision:

Terminal

USER>FOR 1=12345678901234558:1:12345678901234569 {W $DOUBLE(i),!}
12345678901234558
12345678901234560
12345678901234560
12345678901234560
12345678901234562
12345678901234564
12345678901234564
12345678901234564
12345678901234566
12345678901234568
12345678901234568
12345678901234568

IEEE Binary floating-point supports the special values INF (infinity) and NAN (not a number). For further details, see
the $SDOUBLE function.

You can configure processing of IEEE floating point numbers using the IEEEError setting for handling of INF and
NAN values, and the ListFormat setting for handling compression of IEEE floating point numbers in $LIST structured
data. Both can be viewed and set for the current process using %SYSTEM.Process class methods

($SYSTEM .Process.| EEEError (). System-wide defaults can be set using the InterSystems IRIS Management Portal,
as follows: from System Administration, select Configuration, Additional Settings, Compatibility.

You can use the $SDOUBLE function to convert an InterSystems IRIS standard floating-point number to an IEEE floating
point number. You can use the SDECIMAL function to convert an IEEE floating point number to an InterSystems IRIS
standard floating-point number.

By default, InterSystems IRIS converts fractional numbers to canonical form, eliminating all leading zeros. Therefore,
0.66 becomes .66. SFNUMBER (most formats) and $JUSTIFY (3-parameter format) always return a fractional number
with at least one integer digit; using either of these functions, .66 becomes 0. 66.

$FNUMBER and $JUSTIFY can be used to round or pad a numeric to a specified number of fractional digits. InterSystems
IRIS rounds up 5 or more, rounds down 4 or less. Padding adds zeroes as fractional digits as needed. The decimal separator
character is removed when rounding a fractional number to an integer. The decimal separator character is added when zero-
padding an integer to a fractional number.

Using ObjectScript 27

Data Types and Values

3.2.6 Scientific Notation

To specify scientific (exponential) notation in ObjectScript, use the following format:
[-Imant i ssaE[-]exponent
where

Element Description

- Optional — One or more Unary Minus or Unary Plus operators. These PlusSign and
MinusSign characters are configurable. Conversion to canonical form resolves these
operators after resolving the scientific notation.

mantissa An integer or fractional number. May contain leading and trailing zeros and a trailing
decimal separator character.

E An operator delimiting the exponent. The uppercase “E” is the standard exponent
operator; the lowercase “e” is a configurable exponent operator, using the
ScientificNotation() method of the %SYSTEM.Process class.

- Optional — A single Unary Minus or Unary Plus operator. Can be used to specify a
negative exponent. These PlusSign and MinusSign characters are configurable.

exponent An integer specifying the exponent (the power of 10). Can contain leading zeros.
Cannot contain a decimal separator character.

For example, to represent 10, use 1E1. To represent 2800, use 2 - 8E3. To represent .05, use 5E-2.

No spaces are permitted between the mantissa, the E, and the exponent. Parentheses, concatenation, and other operators
are not permitted within this syntax.

Because resolving scientific notation is the first step in converting a number to canonical form, some conversion operations
are not available. The mantissa and exponent must be numeric literals, they cannot be variables or arithmetic expressions.
The exponent must be an integer with (at most) one plus or minus sign.

See the ScientificNotation() method of the %SYSTEM.Process class.

3.2.7 Extremely Large Numbers

The largest integers that can be represented exactly are the 19-digit integers -9223372036854775808 and
9223372036854775807. This is because these are the largest numbers that can be represented with 64 signed bits. Integers
larger than this are automatically rounded to fit within this 64-bit limit. This is shown in the following example:

ObjectScript

SET x=9223372036854775807
WRITE x, !

SET y=x+1

WRITE y

Similarly, exponents larger that 128 may also result in rounding to permit representation within 64 signed bits. This is
shown in the following example:
ObjectScript

WRITE 9223372036854775807e-128,!
WRITE 9223372036854775807e-129

28 Using ObjectScript

Numbers

Because of this rounding, arithmetic operations that result in numbers larger than these 19-digit integers have their low-
order digits replaced by zeros. This can result in situations such as the following:

ObjectScript

SET longnum=9223372036854775790

WRITE longnum,!

SET add17=longnum+17

SET add21=longnum+21

SET add24=longnum+24

WRITE add17,!,add24,!,add21,!

IF add24=add21 {WRITE "adding 21 same as adding 24"}

The largest InterSystems IRIS decimal floating point number supported is 9.223372036854775807E145. The largest supported
$DOUBLE value (assuming IEEE overflow to INFINITY is disabled) is 1.7976931348623157081E308. The $DOUBLE

type supports a larger range of values than the InterSystems IRIS decimal type, while the InterSystems IRIS decimal type
supports more precision. The InterSystems IRIS decimal type has a precision of approximately 18.96 decimal digits (usually
19 digits but sometimes only 18 decimal digits of precision) while the $DOUBLE type usually has a precision around 15.95
decimal digits (or 53 binary digits). By default, InterSystems IRIS represents a numeric literal as a decimal floating-point
number. However, if the numeric literal is larger than what can be represented in InterSystems IRIS decimal (larger than

9.223372036854775807E145) InterSystems IRIS automatically converts that numeric value to $SDOUBLE representation.

A numeric value larger than 1.7976931348623157081E308 (308 or 309 digits) results in a <MAXNUMBER> error.

Because of the automatic conversion from decimal floating-point to binary floating-point, rounding behavior changes at
9.223372036854775807E145 (146 or 147 digits, depending on the integer). This is shown in the following examples:

ObjectScript

TRY {
SET a=1
FOR i=1:1:310 {SET a=a_1 WRITE i+1," digits = ",+a,! }

}
CATCH exp { WRITE "In the CATCH block",!
IF 1=exp.%IsA("'%Exception.SystemException') {
WRITE "System exception™,!
WRITE "Name: ",$ZCVT(exp-Name,"0",""HTML"),!
WRITE "Location: ",exp.Location,!
WRITE "Code: "

}
ELSE { WRITE "Some other type of exception™,! RETURN }
WRITE exp.Code,!
WRITE "Data: '",exp.Data,!
RETURN

}

ObjectScript

TRY {
SET a=9
FOR §=1:1:310 {SET a=a_9 WRITE i+1," digits = ",+a,! }

}
CATCH exp { WRITE "In the CATCH block",!
IF 1=exp.%IsA("'%Exception.SystemException') {
WRITE "System exception™,!
WRITE "Name: ",$ZCVT(exp-.Name,"0",""HTML"),!
WRITE "Location: ",exp.Location,!
WRITE "Code: "

}

ELSE { WRITE "Some other type of exception™,! RETURN }
WRITE exp.Code,!

WRITE "Data: '",exp.Data,!

RETURN

}

You can represent a number longer than 309 digits as a numeric string. Because this value is stored as a string rather than
a number, neither rounding nor the <MAXNUMBER> error apply:

Using ObjectScript 29

Data Types and Values

ObjectScript

SET a="1"
FOR 1=1:1:360 {SET a=a_"1" WRITE i+l1," characters = ",a,! }

Exponents that would result in a number with more than the maximum permitted number of digits generate a
<MAXNUMBER> error. The largest permitted exponent depends on the size of the number that is receiving the exponent.
For a single-digit mantissa, the maximum exponent is 307 or 308.

For further details on large number considerations when using InterSystems IRIS decimal numbers or IEEE double numbers,
see Numeric Computing in InterSystems Applications.

3.3 Objects

An object value refers to an instance of an in-memory object. You can assign an object reference (OREF) to any local
variable:

ObjectScript

SET myperson = ##class(Sample.Person) .%New()
WRITE myperson

To refer to the methods and properties of an object instance, use dot syntax:

ObjectScript

SET myperson.Name = "El Vez"

To determine if a variable contains an object, use the $ISOBJECT function:

ObjectScript

SET str = "A string”
SET myperson = ##class(Sample.Person) .%New()

IF $1SOBJECT(myperson) {

WRITE "myperson is an object.",!
} ELSE {

WRITE "myperson is not an object."
}

IF $ISOBJECT(str) {

WRITE "str iIs an object."
} ELSE {

WRITE "str is not an object.”
}

You cannot assign an object value to a global. Doing so results in a runtime error.

Assigning an object value to a variable (or object property) has the side effect of incrementing the object’s internal reference
count, as shown in the following example:

ObjectScript

SET X
WRITE
SET y
WRITE
SET z
WRITE

#class(Sample.Person) .%New()
1

’##class(Sample.Person).%New()
1

N I 11X 1l

'##class(Sample.Person).%New()
!

When the number of references to an object reaches 0, the system automatically destroys the object (invoke its %0OnClose()
callback method and remove it from memory).

30 Using ObjectScript

Persistent Multidimensional Arrays (Globals)

3.4 Persistent Multidimensional Arrays (Globals)

A global is a sparse, multidimensional database array. A global is not different from any other type of array, with the
exception that the global variable name starts with a caret (*). Data can be stored in a global with any number of subscripts;
subscripts in InterSystems IRIS are typeless.

The following is an example of using a global. Once you set the global ~x, you can examine its value:

ObjectScript

SET ~x = 10

WRITE "The value of ~x is: ", 7x,!

SET ~x(2,3,5) = 17

WRITE "The value of ~x(2,3,5) is: ", ™x(2,3,5)

For more information on globals, see Multidimensional Arrays and Using Globals.

3.5 Undefined Values

ObjectScript variables do not need to be explicitly declared or defined. As soon as you assign a value to a variable, the
variable is defined. Until this first assignment, all references to this variable are undefined. You can use the $DATA function
to determine if a variable is defined or undefined.

$DATA takes one or two arguments. With one argument, it simply tests if a variable has a value:

ObjectScript

WRITE "Does ""MyVar"" exist?",!
IF $DATA(MyVar) {

WRITE "1t sure does!"™
} ELSE {

WRITE "1t sure doesn"t!"
b

SET Myvar = 10
WRITE 1,!,"How about now?",!
IF $DATA(MyVar) {
WRITE "1t sure does!"
} ELSE {
WRITE "1t sure doesn"t!"
T

$DATA returns a boolean that is True (1) if the variable has a value (that is, contains data) and that is False (0) if the variable
has no value (that is, contains no data). With two arguments, it performs the test and sets the second argument’s variable
equal to the tested variable’s value:

ObjectScript

IF $DATA(Varl,Var2) {
WRITE "Varl has a value of ",var2,".",!
} ELSE {
WRITE "Varl is undefined.”,!
}

SET Varl = 3
IF $DATA(Varl,vVar2) {
WRITE "Varl has a value of ",var2,”.",!
} ELSE {
WRITE "Varl is undefined.”,!
s

Using ObjectScript 31

Data Types and Values

3.6 Boolean Values

In certain cases, such as when used with logical commands or operators, a value may be interpreted as a boolean (true or
false) value. In such cases, an expression is interpreted as 1 (true) if evaluates to a nonzero numeric value or 0 (false) if it
evaluates to a zero numeric value. A numeric string evaluates to its numeric value; a non-numeric string evaluates to 0

(false).

For example, the following values are interpreted as true:

ObjectScript

IF 1 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false",! }
IF 8.5 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false™,! }
IF "1 banana™ { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false",! }
IF 1+1 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false™,! }
IF -7 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false”,! }
IF +"007"=7 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false",! }

The following values are interpreted as false:

ObjectScript

IF O { WRITE "evaluates as true",! }
ELSE { WRITE "evaluates as false",! }
F 3-3 { WRITE "evaluates as true",! }
ELSE { WRITE "evaluates as false",! }

IF "one banana™ { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false",! }
IF " { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false™,! }
IF -0 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false™,! }
IF "007"=7 { WRITE "evaluates as true",! }

ELSE { WRITE "evaluates as false",! }

For further details on the evaluation of a string as a number, see String-to-Number Conversion.

3.7 Dates

ObijectScript has no built-in date type; instead it includes a number of functions for operating on and formatting date values

represented as strings. These date formats include:

32

Using ObjectScript

Dates

Table 3-1: Date Formats

Format Description

$HOROLOG This is the format returned by the SHOROLOG ($H) special variable. It is a string
containing two comma-separated integers: the first is the number of days since
December 31, 1840; the second is the number of seconds since midnight of the current
day. $HOROLOG does not support fractional seconds. The $NOW function provides
$HOROLOG-format dates with fractional seconds. InterSystems IRIS provides a
number of functions for formatting and validating dates in $SHOROLOG format.

ODBC Date This is the format used by ODBC and many other external representations. It is a string
of the form: “YYYY-MM-DD HH:MM:SS”. ODBC date values will collate; that is, if you
sort data by ODBC date format, it will automatically be sorted in chronological order.

Locale Date This is the format used by the current locale. Locales differ in how they format dates
as follows:

“American” dates are formatted mm/dd/yyyy (dateformat 1). “European” dates are
formatted dd/mm/yyyy (dateformat 4). All locales use dateformat 1 except the following
— csyw, deuw, engw, espw, eurw, fraw, itaw, mitw, ptbw, rusw, skyw, svnw, turw,
ukrw — which use dateformat 4.

American dates use a period (.) as a decimalseparator for fractional seconds. European
dates use a comma (,) as a decimalseparator for fractional seconds, except the following
— engw, eurw, skyw — which use a period.

All locales use a slash (/) as the dateseparator character, except the following, which
use a period (.) as the dateseparator character — Czech (csyw), Russian (rusw),
Slovak (skyw), Slovenian (svnw), and Ukrainian (ukrw).

System Time This is the format returned by the $ZHOROLOG ($ZH) special variable. It is a floating
point number containing the number of seconds (and parts thereof) that the system
has been running. Stopping and restarting InterSystems IRIS resets this number.
Typically this format is used for timing and testing operations.

The following example shows how you can use the different date formats:

ObjectScript

SET now = $HOROLOG
WRITE "Current time and date ($H): ",now,!

SET odbc = $ZDATETIME(now,3)
WRITE "Current time and date (ODBC): ",odbc,!

SET ldate = $ZDATETIME(now,-1)
WRITE "Current time and date in current locale format: ", ldate,!

SET time = $ZHOROLOG
WRITE "Current system time ($ZH): ", time,!

Using ObjectScript 33

Variables

A variable is the name of a location in which a value can be stored. Within ObjectScript, a variable does not have data type
associated with it and you do not have to declare it.

Commonly, you use the SET command to define a variable by assigning it a value. You can assign a null string (") value
to a variable. Most commands and functions require a variable to be defined before it is referenced. If the variable is
undefined, by default referencing it generates an <UNDEFINED> error. You can change InterSystems IRIS® data platform
behavior to not generate an <UNDEFINED> error when referencing an undefined variable by setting the

% SY STEM .Process.Undefined() method.

You can use an undefined variable in some operations, such as the READ command, the $INCREMENT function, the
$BIT function, and the two-argument form of the $GET function. These operations assign a value to the variable. The
$DATA function can take an undefined or defined variable and returns its status.

Unlike many computer languages, ObjectScript does not require variables to be declared. A variable is created when it is
assigned a value. ObjectScript is a “typeless” language; a variable can receive data of any type. See Variable Declaration
and Variable Typing and Conversion.

4.1 Categories of Variables

Within ObjectScript, there are several kinds of variables, as follows:
* Local variables

» Global variables or globals

* Process-private global variables or PPGs

» i%property instance variables (discussed on another page)

e Special variables or system variables

4.2 Local Variables

A local variable is a variable that is available in memory within the current InterSystems IRIS process. It is accessible only
to the process that created it. It is accessible from all namespaces; that is, if the process changes namespaces, the variable
is still available. When a process ends, all of its local variables are deleted.

Using ObjectScript 35

Variables

4.2.1 Naming Conventions

Rules and Guidelines for Identifiers provides all the details, but briefly:

For a local variable name, the first character must be either a letter or the percent (%) character.

Variable names starting with the % character are known as “percent variables” and have different scoping rules. In your
code, for a local percent variable, start the name with %Z or %z; other names are reserved for system use.

All variable names are case-sensitive, and this includes local variable names. For example: MYVAR, MyVar, and myvar
are three different local variables.

Local variable names must be unique for the current process. Other processes may have local variables with the same
name.

A process-private global or a global may have the same (apparent) name as a local variable. For example: myvar,
~| Imyvar, and ~myvar are three different variables.

Local variables can take subscripts. See Rules About Subscripts.

A local variable name that does not follow the rules generates a <SYNTAX> error. There is one exception: if an attempted
variable name begins with an underscore character followed by a letter, the system generates a < CALLBACK SYNTAX>
error. For example, SET x=_a.

4.2.2 Scope of Local Variables

In ObjectScript code, all local variables are public, and can thus be accessed by any operation executed by that process in
the current context. Access to a local variable value is restricted as follows:

The NEW command creates a new local variable context. An argumentless NEW creates a new context in which none
on the existing local variables are defined. NEW var creates a new context in which the local variable var is not
defined. The QUIT command reverts to the prior local variable context.

Within a procedure block local variables are private by default. A private local variable is only defined within that
procedure block.

Local variables within a procedure block behave as follows:

— Private variables. A local variable used within a procedure block is a private variable and is only defined within
that procedure block, unless it is declared a public variable or it is a % variable. By default, all object methods
created with Studio use procedure blocks (the ProcedureBlock class keyword is set within the class definition)
and so, by default, all variables created in methods are private variables. You cannot use the NEW command on
a private variable in a procedure block.

— Public variables. A procedure block can explicitly declare a list of local variables as public variables. These
variables values are accessible outside the procedure block. This comma-separated list of public variables can
include non-existent variables and % variables. You can use the NEW command on a public variable in a procedure
block.

A public variables list for the two local variables varl and var2 is specified as follows: MyProc(x,y)
[varl,var2] PUBLIC { code body }. (Note that the PUBLIC keyword specifies that the procedure is
public; it has nothing to do with the public variables list.) Public variables are specified as a comma-separated list.
Only unsubscripted local variables can be specified; specifying an unsubscripted variable in the public variables
lists makes all of its subscript levels public as well. Only a simple object reference (OREF) can be specified;
specifying an OREF in the public variables lists makes all of its object properties public as well. The list of public
variables can include undefined variables.

36

Using ObjectScript

Globals

— % Variables. A local variable whose name starts with “%? is automatically declared a public variable. This makes
it possible to define variables that are visible to all code within a process without having to explicitly list these
variables as public. Only variables that begin with “%Z” or “%z” are available for application code; all other
% variables are reserved for system use according to the rules described in Rules and Guidelines for Identifiers.
You can use the NEW command on a % variable in a procedure block.

These mechanisms are described in greater detail in Procedure Variables.

» The XECUTE command defines local variables as public by default. You can explicitly define a local variable as private
within the XECUTE command. Refer to XECUTE for more on explicitly defining local variables as either private or
public.

You can use the WRITE or ZWRITE command, with no arguments, to list all currently defined local variables. You can
use the KILL command to delete local variables.

4.3 Globals

A global is a special kind of variable that is automatically stored within the InterSystems IRIS database. It is mapped to a
specific namespace, and can only be accessed within that namespace, unless an extended reference is used. A global can
be accessed by any process. A global persists after the termination of the process that created it. It persists until explicitly
deleted.

Within ObjectScript code, you can use a global in the same way as any other variable. Syntactically, a global name is dis-
tinguished by an initial caret (») character:
ObjectScript

SET mylocal = "This is a local variable"”
SET ~myglobal = "This is a global stored in the current namespace"

For complete information on names, see Rules and Guidelines for Identifiers. Briefly:
e The first character after the caret must be either a letter or the percent (%) character.

Global names starting with ~% are known as “percent variables” and are available in all namespaces. In your code, for
these variables, start the name with ~%Z or ~%z; other names are reserved for system use.

» The second and subsequent characters of a global name may be letters, numbers, or the period character. A period
cannot be used as the first or last character of the name.

* Unlike local variables, no global name can contain Unicode letters — letter characters above ASCII 255. Attempting
to include a Unicode letter in a global name results in a <WIDE CHAR> error.

» Global names are case-sensitive.
e A global name must be unique within its namespace.

* Global names are limited to 31 characters, exclusive of the prefix characters. You may specify a name longer than 31
characters, but only the first 31 characters are used. Therefore, a global name must be unique within its first 31 characters.

» Like other variables, globals can take subscripts. See Rules About Subscripts.
» Some global names are reserved for InterSystems use. See Global Variable Names to Avoid.
It is possible to use an extended reference to refer to a global in another namespace. The syntax uses a pair of vertical bars

or square brackets immediately after the caret characters (for example: 2| "'samples' |myglobal or 2] """ | myglobal).
These syntaxes should not be confused with process-private globals.

Using ObjectScript 37

Variables

For more information on globals, refer to Using Globals.

4.4 Process-Private Globals

A process-private global is a variable that is only accessible by the process that created it. When the process ends, all of its
process-private globals are deleted.

» Process-specific: a process-private global can only be accessed by the process that created it, and it ceases to exist
when the process completes. This is similar to local variables.

» Always public: a process-private global is always a public variable. This is similar to global variables.

» Namespace-independent: a process-private global is accessible from all namespaces.

* Unaffected by argumentless KILL, NEW, WRITE, or ZWRITE. A process-private global can be specified as an
argument to KILL, WRITE, or ZWRITE. This is similar to global variables.

Process-private globals are intended to be used for large data values. They can serve, in many cases, as a replacement for
the use of the Mgr/Temp directory, providing automatic cleanup at process termination.

4.4.1 Naming Conventions

A process-private global name takes one of the following forms:

These four prefix forms are equivalent, and all four refer to the same process-private global. The first form (*||name) is the
most common, and the one recommended for new code. The second, third, and fourth forms are provided for compatibility
with existing code that defines globals.

Apart from the prefix, process-private globals use the same naming conventions as regular globals, as given in Rules and
Guidelines for Identifiers. Briefly:

e The first character (after the second vertical bar) must be either a letter or the percent (%) character.

Process-private variable names starting with % are known as “percent variables” and have different scoping rules. In
your code, for these variables, start the name with %Z or %z; other names are reserved for system use. For example:
N 1%zmyvar.

» Unlike local variables, no global name (including process-private globals) can contain Unicode letters — letter characters
above ASCII 255. Attempting to include a Unicode letter in a process-private global name results in a <WIDE CHAR>
error.

» All variable names are case-sensitive, and this includes process-private global names.
» A process-private global name must be unique within its process.

* Unlike local variables, process-private global names are limited to 31 characters, exclusive of the prefix characters.
You may specify a name longer than 31 characters, but only the first 31 characters are used. Therefore, a process-private
global name must be unique within its first 31 characters.

» Like other variables, process-private globals can take subscripts. See Rules About Subscripts.

38 Using ObjectScript

Process-Private Globals

4.4.2 Listing Process-Private Globals
You can use the *$||GL OBAL () syntax form of ~$GLOBAL() to return information about process-private globals
belonging to the current process.

You can use the *GETPPGINFO routine to display the names of all current process-private globals and their space allo-
cation, in blocks. "GETPPGINFO does not list the subscripts or values for process-private globals. You can display process-
private globals for a specific process by specifying its process Id (pid), or for all processes by specifying the "*" wildcard
string. You must be in the %SYS namespace to invoke *GETPPGINFO.

The following example uses *GETPPGINFO to list the process-private globals for all current processes:

ObjectScript

SET ~||flintstones(1)="Fred"
SET ~]|flintstones(2)="Wilma"
NEW $NAMESPACE

SET $NAMESPACE=""%SYS"

DO ~GETPPGINFO("™*'")

The "GETPPGINFO routine takes arguments as follows:

ObjectScript

do NGETPPGINFO("'pdf',"options","outfile'™)

These arguments are as follows:
» pdf can be a process Id or the * wildcard.
» options can be a string containing any combination of the following characters:
— b (return values in bytes)
— Mnn (list only processes with process-private globals that use nn or more blocks)
Use MO to include processes without any process-private globals in the listing.

Use M1 to exclude processes without any process-private globals from the listing, but include processes having
only a global directory block. (This is the default.)

Use M2 to exclude processes without any process-private globals from the listing, as well as those having only a
global directory block.

— S (suppress screen display; used with outfile)
— T (display process totals only).

« ouftfile is the file path for a file in CSV (comma-separated values) format that will be used to receive *GETPPGINFO
output.

The following example writes process-private globals to an output file named ppgout. The S option suppresses screen
display; the M500 option limits output to only processes with process-private globals that use 500 or more blocks:

ObjectScript

NEW $NAMESPACE
SET $NAMESPACE=""%SYS"
DO ~AGETPPGINFO(''*",""'SM500", "' /home/myspace/ppgout')

Using ObjectScript 39

Variables

4.5 Rules About Subscripts

Local variables, process-private variables, and global variables can all take subscripts. In all cases, note the following
points:

* A ssubscript can be a numeric or a string. It can include any characters, including Unicode characters. Valid numeric
subscripts include positive and negative numbers, zero, and fractional numbers.

* The empty string (****) is not a valid subscript.
e Subscript values are case-sensitive.

* Any numeric subscript is converted to canonical form. Thus, for example, the global nodes ~a(7), ~a(007),
~a(7.000), and ~a(7.) are all the same because the subscript is actually the same in all cases.

» Astring subscript is not converted to canonical form. Thus, for example, ~a(**'7'"), ~a(*'007'"), ~a(*'7.000"),
and ~a(*'7.") are all different global nodes because these subscripts are all different. Also, ~a(**7'") and ~a(7)
both refer to the same global node, because these subscripts are the same.

» There are limits on the length of a subscript and on the number of subscript levels. See Subscript Limits.

Also see General System Limits.
Lock name subscripts follow the same conventions as variable subscripts.

You can use the $QSUBSCRIPT function to return the components (name and subscripts) of a specified variable, or the
$QLENGTH function to return the number of subscript levels.

4.6 Variable Typing and Conversion

Variables in ObjectScript are untyped — there are no specified data types. (This is also true of JavaScript, VBScript, and
Document Data Base/JSON.) This means that you can assign a string value to a variable and, later on, assign a numeric
value to the same variable. As an optimization, InterSystems IRIS may use different internal representations for strings,
integers, numbers, and objects, but this is not visible to the application programmer. InterSystems IRIS automatically
converts (or interprets) the value of a variable based on the context in which it is used.

Some examples:

ObjectScript

// set some variables
SET a = "This is a string”
SET b = "3 little pigs"

22

SET int =
SET num = 2.2
SET obj = ##class(Sample.Person).%New()

// Display them

WRITE "Here are the variables themselves: ",!
WRITE "a: ",a,!

WRITE "b: *,b,!
WRITE "int: ",int,!
WRITE "‘num: **,num,!
WRITE "obj: ",obj,!,!

// Now use them as other "types"

WRITE "Here are the numeric interpretation of",!
WRITE "a, b, and obj: ",!

WRITE "+a: ",+a,!

WRITE "+b: ",+b,!

WRITE "+obj: ",+obj,!,!

40 Using ObjectScript

#dim (Optional)

WRITE "Here are concatenations of int and num:*,!
WRITE "Concatenating int: ","l1 found " int _ " apples.”,!

WRITE "Concatenating num: ","There are ™ _ num _ " pounds per kilogram.",!

InterSystems IRIS converts values as follows:

Table 4-1: ObjectScript Type Conversion Rules

From To Rules

Number String A string of characters that represents the numeric value is used, such as
2.2 for the variable num in the previous example.

String Number Leading characters of the string are interpreted as a numeric literal, as
described in String-to-Number Conversion. For example, “—1.20abc” is
interpreted as -1.2 and “abc123” is interpreted as O.

Object Number The internal object instance number of the given object reference is used.
The value is an integer.

Object String A string of the form n@cls is used, where n is the internal object instance
number and cls is the class name of the given object.

Number Object Not allowed.

String Object Not allowed.

4.7 #dim (Optional)

Unlike other languages, you do not need to declare variables in ObjectScript. You can, however, use the #dim preprocessor
directive as an aid to documenting and writing code; IDEs can take advantage of this and provide code-completion assistance.

The syntax forms of #dim are:

ObjectScript

#dim VariableName As DataTypeName
#dim VariableName As List OF DataTypeName
#dim VariableName As Array Of DataTypeName

where VariableName is the variable for which you are naming a data type and DataTypeName specifies that data type.

4.8 Global Variables and Journaling

InterSystems IRIS treats a SET or KILL of a global as a journaled transaction event; rolling back the transaction reverses
these operations. Locks may be used to prevent access by other processes until the transaction that made the changes has
been committed. Refer to Transaction Processing for further details.

In contrast, InterSystems IRIS does not treat a SET or KILL of a local variable or a process-private global as a journaled
transaction event; rolling back the transaction has no effect on these operations.

Using ObjectScript 41

Variables

4.9 Special Variables

ObjectScript includes special variables (also referred to as system variables) that are used to make certain system information
available to applications. All special variables are supplied with InterSystems IRIS and are named with a $ character prefix.
Users cannot define additional special variables. The special variables are available in all namespaces.

The value of a special variable is set to the current state of some aspect of your operating environment. Some special variables
are initially set to the null string ("*"); referencing a special variable should never generate an <UNDEFINED> error. The
value of a special variable is specific to the current process and cannot be accessed from another process.

Users can set some special variables with the SET command; other special variables are not user-modifiable. Refer to the
individual special variables for further details.

The following example uses the special variable $HOROLOG:

ObjectScript

SET starttime = $HOROLOG

HANG 5

WRITE !,$ZDATETIME(starttime)
WRITE 1,$ZDATETIME($HOROLOG)

The special variable SHOROLOG stores the current system date and time. The SET command uses this special variable
to set the user-defined local variable starttime to this value. The HANG command then suspends the program for 5 seconds.
Finally, the two $ZDATETIME functions return starttime and the current system date and time in a user-readable format.

Other examples of special variables include:

ObjectScript

WRITE 1,"$JOB = ",$J0B // Current process ID
WRITE 1,"$ZVERSION = " ,$ZVERSION // Version info

Many special variables are read-only; they cannot be set using the SET command. Other special variables, such as $DEVICE,
are read-write, and can be set using the SET command.

Special variables cannot take subscripts. Special variables cannot be incremented using the $INCREMENT function or
killed using the KIL L command. Special variables can be displayed using the WRITE, ZWRITE, ZZWRITE, or ZZDUMP
commands, as described in Display (Write) Commands.

Refer to the ObjectScript Reference for a list and detailed descriptions of the special variables.

42 Using ObjectScript

Operators and Expressions

ObijectScript supports many different operators, which perform various actions, including mathematical actions, logical
comparisons, and so on. Operators act on expressions, which are variables or other entities that ultimately evaluated to a
value. This topic describes expressions and the operators.

5.1 Introduction to Operators and Expressions

Operators are symbolic characters that specify the action to be performed on their associated operands. Each operand
consists of one or more expressions or expression atoms. When used together, an operator and its associated operands have
the following form:

[operand] operator operand

Some operators take only one operand and are known as unary operators; others take two operands and are known as binary
operators.

An operator and any of its operands taken together constitute an expression.

5.1.1 Assignment

Within ObjectScript the SET command is used along with the assignment operator (=) to assign a value to a variable. The
right-hand side of an assignment command is an expression:
ObjectScript

SET value
SET value

0
a+b

Within ObjectScript it is also possible to use certain functions on the left-hand side of an assignment command:

ObjectScript

SET pies = "apple,banana,cherry"
WRITE "Before: ",pies,!

// set the 3rd comma-delimited piece of pies to coconut
SET $Piece(pies,”,",3) = "coconut"
WRITE "After: ",pies

Using ObjectScript 43

Operators and Expressions

5.2 Operator Precedence

Operator precedence in ObjectScript is strictly left-to-right; within an expression operations are performed in the order in
which they appear. This is different from other languages in which certain operators have higher precedence than others.
You can use explicit parentheses within an expression to force certain operations to be carried ahead of others.

ObjectScript

WRITE "1 + 2 *3 =",1+ 2 * 3,1 // returns 9
WRITE "2 * 3 + 1 = 2*3+ 1, // returns 7
WRITE "1 + (2 *3) =", 1+ (2 *3),! // returns 7
WRITE "2 * (3 + 1) = 2* (3 +1),! // returns 8

Note that in InterSystems SQL operator precedence is configurable, and may (or may not) match the operator precedence
in ObjectScript.

5.2.1 Unary Negative Operators

ObjectScript gives the unary negative operator precedence over the binary arithmetic operators. ObjectScript first scans a
numeric expression and performs any unary negative operations. Then, ObjectScript evaluates the expression and produces
a result.

ObjectScript

WRITE -123 - 3,1 // returns -126
WRITE -123 + -3,! // returns -126
WRITE -(123 - 3),! // returns -120

5.2.2 Parentheses and Precedence

You can change the order of evaluation by nesting expressions within each other with matching parentheses. The parentheses
group the enclosed expressions (both arithmetic and relational) and control the order in which ObjectScript performs
operations on the expressions. Consider the following expression:

ObjectScript

SET TorF = ((4 + 7) > (6 + 6)) // False (0)
WRITE TorF

Here, because of the parentheses, four and seven are added, as are six and six; this results in the logical expression 11 >
12, which is false. Compare this to:
ObjectScript

SET Value = (4 + 7 >6 +6) // 7
WRITE Value

In this case, precedence proceeds from left to right, so four and seven are added. Their sum, eleven, is compared to six;
since eleven is greater than six, the result of this logical operation is one (TRUE). One is then added to six, and the result
is seven.

Note that the precedence even determines the result type, since the first expression’s final operation results in a boolean
and the second expression’s final operation results in a numeric.

The following example shows multiple levels of nesting:

44 Using ObjectScript

Operator Precedence

ObjectScript

WRITE 1+2*3-4*5,1 // returns 25
WRITE 1+(2*3)-4*5,1! // returns 15
WRITE 1+(2*(3-4))*5,! // returns -5
WRITE 1+(((2*3)-4)*5),! // returns 11

Precedence from the innermost nested expression and proceeds out level by level, evaluating left to right at each level.

Tip: For all but the simplest ObjectScript expressions, it is good practice to fully parenthesize expressions. This is to
eliminate any ambiguity about the order of evaluation and to also eliminate any future questions about the original
intention of the code.

For example, because the && operator, like all operators, is subject to left-to-right precedence, the final statement in the
following code fragment evaluates to O:

ObjectScript

SET x = 3

SET y =2

IF x & y =2 {
WRITE "True",! }

ELSE {

WRITE "False",! }

This is because the evaluation occurs as follows:

1. The first action is to check if x is defined and has a non-zero value. Since x equals 3, evaluation continues.

2. Next, there is a check if y is defined and has a non-zero value. Since y equals 2, evaluation continues.

3. Next, the value of 3 && 2 is evaluated. Since neither 3 nor 2 equal 0, this expression is true and evaluates to 1.

4. The next action is to compare the returned value to 2. Since 1 does not equal 2, this evaluation returns 0.

For those accustomed to many programming languages, this is an unexpected result. If the intent is to return True if X is
defined with a non-zero value and if y equals 2, then parentheses are required:

ObjectScript

SET x
SET y =
IF x && (y = 2) {
WRITE "True",! }
ELSE {
WRITE "False",! }

[l
N W

5.2.3 Functions and Precedence
Some types of expressions, such as functions, can have side effects. Suppose you have the following logical expression:

ObjectScript
IF varl = ($$ONE + (var2 * 5)) {
) DO "Test

ObjectScript first evaluates varl, then the function $30NE, then var2. It then multiplies var2 by 5. Finally, ObjectScript
tests to see if the result of the addition is equal to the value in varl. If it is, it executes the DO command to call the Test
routine.

As another example, consider the following logical expression:

Using ObjectScript 45

Operators and Expressions

ObjectScript

SET var8=25,var7=23

IF var8 = 25 * (var7 < 24) {
WRITE 1,"True" }

ELSE {

WRITE I,"False" }

ObjectScript evaluates expressions strictly left-to-right. The programmer must use parentheses to establish any precedence.
In this case, ObjectScript first evaluates var8=25, resulting in 1. It then multiplies this 1 by the results of the expression in
parentheses. Because var7 is less than 24, the expression in parentheses evaluates to 1. Therefore, ObjectScript multiplies
1* 1, resulting in 1 (true).

5.3 String-to-Number Conversion

A string can be numeric, partially numeric, or non-numeric.
* Anumeric string consists entirely of numeric characters. For example, **123", "*+123", ** 123" ""++0007"", "'-0"".

* A partially numeric string is a string that begins with numeric symbols, followed by non-numeric characters. For
example, '3 blind mice", "-12 degrees".

e Anon-numeric string begins with a non-numeric character. For example, ** 123", "*the 3 blind mice", "three
blind mice".

5.3.1 Numeric Strings

When a numeric string or partially numeric string is used in an arithmetic expression, it is interpreted as a number. This
numeric value is obtained by scanning the string from left to right to find the longest sequence of leading characters that
can be interpreted as a numeric literal. The following characters are permitted:

e Thedigits 0 through 9.

» The PlusSign and MinusSign property values. By default these are the + and - characters, but are locale-dependent.
Use the % SY S.NL S.For mat.GetFor matltem() method to return the current settings.

* The DecimalSeparator property value. By default this is the . character, but is locale-dependent. Use the
% SY S.NL S.Format.GetFormatltem() method to return the current setting.

» The letters e, and E may be included as part of a numeric string when in a sequence representing scientific notation,
such as 4E3.
Note that the NumericGroupSeparator property value (the , character, by default) is not considered a numeric character.

Therefore, the string **123,456"" is a partially numeric string that resolves to the number **123"".

Numeric strings and partial numeric strings are converted to canonical form prior to arithmetic operations (such as addition
and subtraction) and greater than/less than comparison operations (<, >, <=, >=). Numeric strings are not converted to
canonical form prior to equality comparisons (=, '=), because these operators are also used for string comparisons.

The following example shows arithmetic comparisons of numeric strings:

ObjectScript

WRITE 3" + 4,1 // returns 7
WRITE "003.0" + 4,1 // returns 7
WRITE ""++--3" + 4,1 // returns 7
WRITE "3 blind mice" + 4,1 // returns 7

46 Using ObjectScript

Expressions

The following example shows less than (<) comparisons of numeric strings:

ObjectScript

WRITE "3" < 4,1 // returns 1
WRITE "003.0" < 4,1 // returns 1
WRITE "++--3" < 4,1 // returns 1
WRITE "3 blind mice" < 4,! // returns 1

The following example shows <= comparisons of numeric strings:

ObjectScript

WRITE 4" <= 4,1 // returns 1
WRITE "004.0" <= 4,1 // returns 1
WRITE "++--4" <= 4,1 // returns 1
WRITE "4 horsemen" <= 4,1 // returns 1

The following example shows equality comparisons of numeric strings. Non-canonical numeric strings are compared as
character strings, not as numbers. Note that —0 is a non-canonical numeric string, and is therefore compared as a string, not
a number:

ObjectScript

WRITE 4" = 4.00,! // returns 1
WRITE ""004.0" = 4,1 // returns 0
WRITE "++--4" = 4,1 // returns 0
WRITE "4 horsemen™ = 4,1 // returns O
WRITE ""-4" = -4,1 // returns 1
WRITE 0" = 0,! // returns 1
WRITE "-0" = 0,! // returns O
WRITE "-0" = -0,! // returns 0

5.3.2 Non-Numeric Strings

If the leading characters of the string are not numeric characters, the string’s numeric value is 0 for all arithmetic operations.
For <, >, ">, <=, '<, and >= comparisons a non-numeric string is also treated as the number 0. Because the equal sign is
used for both the numeric equality operator and the string comparison operator, string comparison takes precedence for =
and '= operations. You can prepend the PlusSign property value (+ by default) to force numeric evaluation of a string; for
example, "*+123". This results in the following logical values, when x and y are different non-numeric strings (for example
x="Fred”, y="Wilma”).

X,y X, X +X, Y +X, Ty +X, +X

x=y is FALSE x=x is TRUE +x=y is FALSE +x=+y is TRUE +x=+x is TRUE

x "=y is TRUE X "=x is FALSE +x "=y is TRUE +x "=+y is FALSE +x "=+x is FALSE
x<y is FALSE x<x is FALSE +x<y is FALSE +x<+y is FALSE +x<+x is FALSE
x<=y is TRUE x<=x is TRUE +x<=y is TRUE +x<=+y is TRUE +x<=+x is TRUE

5.4 Expressions

An ObjectScript expression is one or more tokens that can be evaluated to yield a value. The simplest expression is simply
a literal or variable:

Using ObjectScript 47

Operators and Expressions

ObjectScript

SET expr = 22
SET expr = "hello"”
SET expr = X

You can create more complex expressions using arrays, operators, or one of the many ObjectScript functions:

ObjectScript

SET expr = +Xx

SET expr = x + 22

SET expr = array(l)

SET expr = ~data(''x',1)
SET expr = $Length(x)

An expression may consist of, or include, an object property, instance method call, or class method call:

ObjectScript

SET expr = person.Name
SET expr = obj.Add(1,2)
SET expr = ##class(MyApp.-MyClass) .Method()

You can directly invoke an ObjectScript routine call within an expression by placing $$ in front of the routine call:

ObjectScript

SET expr = $$MyFunc”MyRoutine(1)

Expressions can be classified according to what kind of value they return:

* An arithmetic expression contains arithmetic operators, gives a numeric interpretation to the operands, and produces
a numeric result:

ObjectScript

SET expr =1 + 2
SET expr = +Xx
SET expr = a + b

Note that a string used within an arithmetic expression is evaluated as a numeric value (or 0 if it is not a valid numeric
value). Also note that using the unary addition operator (+) will implicitly convert a string value to a numeric value.

» Astring expression contains string operators, gives a string interpretation to the operands, and produces a string result.

ObjectScript

SET expr = "hello™
SET expr = "hello" _ x

» Alogical expression contains relational and logical operators, gives a logical interpretation to the operands, and produces
a boolean result: TRUE (1) or FALSE (0):

ObjectScript

SET expr
SET expr
SET expr

o
[
V Ro Ro
T O

» An object expression produces an object reference as a result:

48 Using ObjectScript

Expressions

ObjectScript

SET expr = object
SET expr = employee.Company
SET expr = ##class(Person).%New()

5.4.1 Logical Expressions

Logical expressions use logical operators, numeric relational operators, and string relational operators. They evaluate
expressions and result in a Boolean value: 1 (TRUE) or 0 (FALSE). Logical expressions are most commonly used with:

e The IF command
The $SELECT function

» Postconditional Expressions

In a Boolean test, any expression that evaluates to a non-zero numeric value returns a Boolean 1 (TRUE) value. Any
expression that evaluates to a zero numeric value returns a Boolean 0 (FALSE) value. InterSystems IRIS® data platform
evaluates a non-numeric string as having a zero numeric value. For further details, refer to String-to-Number Conversion.

You can combine multiple Boolean logical expressions by using logical operators. Like all InterSystems IRIS expressions,
they are evaluated in strict left-to-right order. There are two types of logical operators: regular logical operators (& and !)
and short-circuit logical operators (&& and |]).

When regular logical operators are used to combine logical expressions, InterSystems IRIS evaluates all of the specified
expressions, even when the Boolean result is known before all of the expressions have been evaluated. This assures that
all expressions are valid.

When short-circuit logical operators are used to combine logical expressions, InterSystems IRIS evaluates only as many
expressions as are needed to determine the Boolean result. For example, if there are multiple AND tests, the first expression
that returns 0 determines the overall Boolean result. Any logical expressions to the right of this expression are not evaluated.
This allows you to avoid unnecessary time-consuming expression evaluations.

Some commands allow you to specify a comma-separated list as an argument value. In this case, InterSystems IRIS handles
each listed argument like an independent command statement. Therefore, 1F x=7,y=4,z=2 is parsed as IF x=7 THEN
IF y=4 THEN IF z=2, which is functionally identical to the short-circuit logical operators statement IF
(X=7)&&(y=4)8&(z=2).

In the following example, the IF test uses a regular logical operator (&). Therefore, all functions are executed even though
the first function returns 0 (FALSE) which automatically makes the result of the entire expression FALSE:

ObjectScript

LogExp
IF $30ne() & $$Two() {
WRITE 1I,"Expression is TRUE." }
ELSE {
WRITE !,"Expression is FALSE." }
one()
WRITE I,"one"
QUIT O
Two ()
WRITE I,"two"
QUIT 1

In the following example, the IF test uses a short-circuit logical operator (&&). Therefore, the first function is executed
and returns 0 (FALSE) which automatically makes the result of the entire expression FALSE. The second function is not
executed:

Using ObjectScript 49

Operators and Expressions

ObjectScript

LogExp
IF $30ne() && $$Two() {
WRITE 1,"Expression is TRUE." }
ELSE {
WRITE !,"Expression is FALSE." }
One()
WRITE !,"one"
QUIT O
Two()
WRITE I,"two"
QUIT 1

In the following example, the IF test specifies comma-separated arguments. The comma is not a logical operator, but has
the same effect as specifying the short-circuit && logical operator. The first function is executed and returns 0 (FALSE)
which automatically makes the result of the entire expression FALSE. The second function is not executed:

ObjectScript

LogExp
IF $30ne(),$$Two() {
WRITE 1I,"Expression is TRUE." }
ELSE {
WRITE !,"Expression is FALSE." }
one()
WRITE !,"one™
QUIT O
Two ()
WRITE 1I,"two™
QUIT 1

5.5 Arithmetic Operators

The arithmetic operators interpret their operands as numeric values and produce numeric results. When operating on a
string, an arithmetic operators treats the string as its numeric value, according to the rules described in String-to-Number
Conversion. ObjectScript provides the following arithmetic operators:
Unary Positive (+)
The unary positive operator (+) gives its single operand a numeric interpretation. It does this by sequentially
parsing the characters of the string as a number, until it encounters a character that cannot be interpreted as a
number. It then returns whatever leading portion of the string was a well-formed numeric (or it returns 0 if no such
interpretation was possible). For example:
ObjectScript

WRITE + "32 dollars and 64 cents" // 32
For details, see the Unary Positive (+) reference page.

Unary Negative (-)

The unary negative operator (-) reverses the sign of a numerically interpreted operand. For example:

ObjectScript

SET x = -60
WRITE "™ x: ", x,! // -60
WRITE "-x: ",-x,! // 60

ObjectScript gives the unary negative operator precedence over the binary (two-operand) arithmetic operators.

50 Using ObjectScript

Arithmetic Operators

For details, see the Unary Negative (-) reference page.

To return the absolute value of a numeric expression, use the $ZABS function.

Addition (+)

The addition operator adds two numeric values. For example:

ObjectScript

WRITE 2936.22 + 301.45 // 3237.67

For details, see the Addition (+) reference page.

Subtraction (-)

The subtraction operator subtracts one numeric value from another. For example:

ObjectScript

WRITE 2936.22 - 301.45 // 2634.77
For details, see the Subtraction (-) reference page.

Multiplication (*)

The multiplication operator multiplies two numeric values. For example:

ObjectScript

WRITE 9 * 5.5 // 49.5
For details, see the Multiplication (*) reference page.

Division (/)

The division operator divides one numeric value with another. For example:

ObjectScript

WRITE 9 / 5.5 // 1.636363636363636364
For details, see the Division (/) reference page.

Integer Division (\)

The integer operator divides one numeric value with another and discards any fractional value. For example:

ObjectScript

WRITE ™355 \ 113 = ", 355 \ 113 // 3

For details, see the Integer Division (\) reference page.

Modulo (#)

When the two operands are positive, then the modulo operation is the remainder of the left operand integer divided
by the right operand. For example:

Using ObjectScript 51

Operators and Expressions

ObjectScript

WRITE ™37 # 10 = ",37 # 10,V // 7
WRITE "12.5 # 3.2 = ",12.5 # 3.2,V // 2.9

For details, see the Modulo (#) reference page.

Exponentiation (**)

The exponentiation operator raises one numeric value to the power of the other numeric value. For example:

ObjectScript
WRITE "9 ** 2 = ™,9 ** 2.1 // 81

For details, see the Exponentiation (**) reference page. Exponentiation can also be performed using the $ZPOWER
function.

Note: InterSystems IRIS supports two representations of numbers: ObjectScript decimal floating-point (referred to as
decimal format) and IEEE double-precision binary floating-point (referred to as $DOUBLE, generally used for
special purposes). ObjectScript automatically converts a decimal value to the corresponding $DOUBLE value in
the following situations:

« If an arithmetic operation involves a $DOUBLE value, ObjectScript converts all numbers in the operation
to SDOUBLE.

< Ifanoperation results in a number that is too large to be represented in decimal format, ObjectScript automat-
ically converts this number to $DOUBLE, rather than issuing a <MAXNUMBER> error.

For details on these formats, see Numeric Computing in InterSystems Applications.

5.6 Numeric Relational Operators

Numeric relational operators use the numeric values of the operands to produce a Boolean result. When operating on
strings, a numeric relational operator treats each of the strings as its numeric value, according to the rules described in
String-to-Number Conversion.

Numeric relational operators should not be used to compare non-numeric strings.

ObjectScript provides the following numeric relational operators:

Less Than Operator (<)

The less than operator tests whether the left operand is less than the right operand. For example:

ObjectScript

WRITE 9 < 6 // 0

For details, see the Less Than (<) reference page.

Greater Than Operator (>)

The greater than operator tests whether the left operand is greater than the right operand. For example:

52 Using ObjectScript

Logical Comparison Operators

ObjectScript

WRITE 15 > 15 // O

For details, see the Greater Than (<) reference page.

Less Than or Equal To Operator (<= or ">)
The less than or equal to operator tests whether the left operand is less or equal to than the right operand. For
example:
ObjectScript

WRITE 9 <= 6 // 0

See the Less Than or Equal To (<= or '>) reference page.

Greater Than or Equal To Operator (>= or '<)
The greater than or equal to operator tests whether the left operand is greater than or equal to the right operand.
For example:
ObjectScript

WRITE 15 >= 15 // 1
See the Greater Than or Equal To (<= or ">) reference page.

Note: InterSystems IRIS supports two representations of numbers: ObjectScript decimal floating-point (referred to as
decimal format) and IEEE double-precision binary floating-point (referred to as $DOUBLE format, generally
used for special purposes).

Less-than/greater-than comparisons between these formats are performed exactly, without rounding. However,
equality comparisons between decimal and $DOUBLE numbers often yield unexpected results, and should be
avoided. For further details, see Numeric Computing in InterSystems Applications.

5.7 Logical Comparison Operators

The logical comparison operators compare the values of their operands and return a boolean value: TRUE (1) or FALSE

(0).

5.7.1 Precedence and Logical Operators

Because ObjectScript performs a strict left-to-right evaluation of operators, logical comparisons involving other operators
must use parentheses to group operations to achieve the desired precedence. For example, you would expect the logical Or
(1) test in the following program to return TRUE (1):

ObjectScript

SET x=1,y=0

IF x=1 1 y=0 {WRITE "TRUE"}

ELSE {WRITE "FALSE" }

// Returns 0 (FALSE), due to evaluation order

However, to properly perform this logical comparison, you must use parentheses to nest the other operations. The following
example gives the expected results:

Using ObjectScript 53

Operators and Expressions

ObjectScript

SET x=1,y=0

IF (x=1) ! (y=0) {WRITE "TRUE"}
ELSE {WRITE "FALSE" }

// Returns 1 (TRUE)

5.7.2 Logical Operators

ObjectScript provides the following logical operators:

Not ()

Not inverts the truth value of the boolean operand. If the operand is TRUE (1), Not gives it a value of FALSE (0).
If the operand is FALSE (0), Not gives it a value of TRUE (1).

For example, the following statements produce a result of FALSE (0):

ObjectScript

SET x=0
WRITE x

See the Not (") reference page.

And (& or &&)

And tests whether both its operands have a truth value of TRUE (1). If both operands are TRUE (that is, have
nonzero values when evaluated numerically), ObjectScript produces a value of TRUE (1). Otherwise, ObjectScript
produces a value of FALSE (0).

There are two forms to And:

» The & operator evaluates both operands and returns a value of FALSE (0) if either operand evaluates to a
value of zero. Otherwise it returns a value of TRUE (1).

e The && operator evaluates the left operand and returns a value of FALSE (0) if it evaluates to a value of zero.
Only if the left operand is nonzero does the && operator then evaluate the right operand. It returns a value
of FALSE (0) if the right operand evaluates to a value of zero. Otherwise it returns a value of TRUE (1).

The following examples evaluate two nonzero-valued operands as TRUE and produces a value of TRUE (1).

ObjectScript

SET A=-4,B=1
WRITE A&B // TRUE (1)

See the And (& or &&) reference page. Also see the Not And (NAND) (‘&) reference page.

Or(tor]])

Or produces a result of TRUE (1) if either operand has a value of TRUE or if both operands have a value of TRUE
(1). Or produces a result of FALSE (0) only if both operands are FALSE (0).

There are two forms to Or:

e The ! operator evaluates both operands and returns a value of FALSE (0) if both operand evaluates to a value
of zero. Otherwise it returns a value of TRUE (1).

54

Using ObjectScript

String Concatenate Operator ()

» The || operator evaluates the left operand. If the left operand evaluates to a nonzero value, the || operator returns
a value of TRUE (1) without evaluating the right operand. Only if the left operand evaluates to zero does the
|| operator then evaluate the right operand. It returns a value of FALSE (0) if the right operand also evaluates
to a value of zero. Otherwise it returns a value of TRUE (1).

The following examples evaluate two TRUE (nonzero) operands, apply the Or to them, and produces a TRUE
result:
ObjectScript

SET A=5,B=7

WRITE "AIB = " AIB,I
SET A=5,B=7

WRITE “A[IB = ",A]|B,!

See the Or (! or ||) reference page. Also see the Not Or (NOR) ('!) reference page.

5.8 String Concatenate Operator ()

The string Concatenate operator (_) interprets its two operands as strings and returns a string value that appends the second
string to the first string.

The following example writes the string Highchai r to the current device.

ObjectScript

WRITE "High"_"chair"

For details, see the String Concatenate () reference page.

5.9 String Relational Operators

String relational operators use the string interpretation of the operands to produce a Boolean result. You can precede any
of the string relational operators with the NOT logical operator () to obtain the negation of the logical result. ObjectScript
provides the following string relational operators:

Equals (=)

The Equals operator tests two operands for string equality. When you apply Equals to two strings, ObjectScript
returns a result of TRUE (1) if the two operands are identical strings with identical character sequences and no
intervening characters, including spaces; otherwise it returns a result of FALSE (0). For example:

ObjectScript

WRITE ""SEVEN"="'SEVEN" /7 1
WRITE "SEVEN"="seven" // 0
WRITE "SEVEN"=" SEVEN " // O

For details, see the Equals (=) reference page. Also see the Not Equals ('=) reference page.

Using ObjectScript 55

Operators and Expressions

Contains (])

Contains tests whether the sequence of characters in the right operand is a substring of the left operand. If the left
operand contains the character string represented by the right operand, the result is TRUE (1). If the left operand
does not contain the character string represented by the right operand, the result is FALSE (0). If the right operand
is the null string, the result is always TRUE.

For example:

ObjectScript

SET L="Steam Locomotive"
SET S="Steam"
WRITE L[S /// 1

For details, see the Contains ([) reference page. Also see the Does Not Contain (') reference page.

Follows (])

Follows tests whether the characters in the left operand come after the characters in the right operand in ASCII
collating sequence. Follows tests both strings starting with the left most character in each.

For example:

ObjectScript

WRITE "LAMPOON"]"LAMP" // 1

For details, see the Follows (]) reference page. Also see the Not Follows (') reference page.

Sorts After (]])

Sorts After tests whether the left operand sorts after the right operand in numeric subscript collation sequence. In
numeric collation sequence, the null string collates first, followed by canonical numbers in numeric order with
negative numbers first, zero next, and positive numbers, followed lastly by nonnumeric values.

For example:

ObjectScript

WRITE 122]12 // 1

For details, see the Sorts After (]]) reference page. Also see the Not Sorts After (']]) reference page.

5.10 Pattern Match Operator (?)

The ObjectScript pattern match operator tests whether the characters in its left operand are correctly specified by the pattern
in its right operand.

For example, the following tests if the string ssn contains a valid U.S. Social Security Number (3 digits, a hyphen, 2 digits,
a hyphen, and 4 digits):
ObjectScript

SET ssn=''123-45-6789"
SET match = ssn ? 3N1"-""2N1"-""4N
WRITE match

For pattern syntax and other details, see the Pattern Match (?) reference page.

56 Using ObjectScript

Indirection Operator (@)

Note: ObjectScript also supports regular expressions, a pattern match syntax supported (with variants) by many software
vendors. Regular expressions can be used with the $LOCATE and $MATCH functions, and with methods of the
%Regex.Matcher class. For details, see the Regular Expressions reference page.

These pattern match systems are wholly separate and use different syntaxes with different patterns and flags.

5.11 Indirection Operator (@)

Indirection is a technique that provides dynamic runtime substitution of part or all of a command line, a command, or a
command argument by the contents of a data field.

Indirection is specified by the indirection operator (@) and, except for subscript indirection, takes the form:
@variable

where variable identifies the variable from which the substitution value is to be taken. All variables referenced in the sub-
stitution value are public variables, even when used in a procedure. The variable can be an array node.

The following routine illustrates that indirection looks at the entire variable value to its right.

ObjectScript

IndirectionExample
SET X = "ProcA"
SET x(3) = "ProcB"
; The next line will do ProcB, NOT ProcA(3)
DO @x(3)

QUIT

ProcA(var)

WRITE !,"At ProcA"
QUIT

ProcB(var)

WRITE !,"At ProcB"
QUIT

For details, see the Indirection (@) reference page.

Note: Although indirection can promote more economical and more generalized coding than would be otherwise
available, it is never essential. You can always duplicate the effect of indirection by other means, such as by using
the XECUTE command.

Using ObjectScript 57

Commands

The command is the basic unit of code in ObjectScript programming. All of the execution tasks in ObjectScript are performed
by commands. Every command consists of a command keyword followed by (in most cases) one or more command argu-
ments.

This topic provides an overview of the most commonly used commands; also see the ObjectScript Reference.

6.1 Command Keywords

In ObjectScript all command statements are explicit; every executable line of ObjectScript code must begin with a command
keyword. For example, to assign a value to a variable, you must specify the SET keyword, followed by the arguments for
the variable and the value to be assigned.

A command always begins with a keyword. Consider the following:

ObjectScript

WRITE "Hello"

The word WRITE is the command keyword. It specifies the action to perform. The WRITE command does exactly what
its name implies: it writes to the principal device whatever you specify as its argument. In this case, WRITE writes the
string Hello.

ObjectScript command names are not case-sensitive. Most command names can be represented by an abbreviated form.
Therefore, WRITE, Write, write, W, and w are all valid forms of the WRITE command. For a list of command abbreviations,
see Table of Abbreviations.

Command keywords are not reserved words. It is therefore possible to use a command keyword as a user-assigned name
for a variable, label, or other identifier.

In an ObjectScript program, the first command on a code line must be indented; the command keyword cannot appear in
column 1. When issuing a command from the Terminal command line prompt, or from an XECUT E command, no indent
is required (indent is permitted).

An executable line of code can contain one or more commands, each with their own command keyword. Multiple commands
on a line are separated by one or more spaces. One or more commands may follow a label on the same line; the label and
the command are separated by one or more spaces.

In ObjectScript no end-of-command or end-of-line delimiter is required or permitted. You can specify an in-line comment
following a command, indicating that the rest of the command line is a comment. A blank space is required between the

Using ObjectScript 59

Commands

end of a command and comment syntax, with the exception of ##; and /* comment */ syntax. A /7* comment */
multiline comment can be specified within a command as well as at the end of one.

6.2 Command Arguments

Following a command keyword, there can be zero, one, or multiple arguments that specify the object(s) or the scope of the
command. If acommand takes one or more arguments, you must include exactly one space between the command keyword
and the first argument. For example:

ObjectScript

SET x = 2

Spaces can appear within arguments or between arguments, so long as the first character of the first argument is separated
from the command itself by exactly one space (as appears above). Thus the following are all valid:

ObjectScript

SET e=5 , T =6
= 7
WRITE a,b,c,d,e,f,g

If a command takes a postconditional expression, there must be no spaces between the command keyword and the postcon-
ditional, and there must be exactly one space between the postconditional and the beginning of the first argument. Thus,
the following are all valid forms of the QUIT command:

ObjectScript

QUIT x+y

QUIT x + vy
QUIT:x<0
QUIT:x<0 x+y
QUIT:x<0 x + vy

No spaces are required between arguments, but multiple blank spaces can be used between arguments. These blank spaces
have no effect on the execution of the command. Line breaks, tabs, and comments can also be included within or between
command arguments with no effect on the execution of the command. For further details, see White Space.

6.2.1 Multiple Arguments

Many commands allow you to specify multiple independent arguments. The delimiter for command arguments is the comma
,- That is, you specify multiple arguments to a single command as a comma-separated list following the command. For
example:

ObjectScript

SET x=2,y=4,z=6

This command uses three arguments to assign values to the three specified variables. In this case, these multiple arguments
are repetitive; that is, the command is applied independently to each argument in the order specified. Internally, InterSystems
IRIS® data platform parses this as three separate SET commands. When debugging, each of these multiple arguments is
a separate step.

60 Using ObjectScript

Command Arguments

In the command syntax provided in the command reference pages, arguments that can be repeated are followed by a comma
and ellipsis: , - - .. The comma is a required delimiter character for the argument, and the ellipsis (...) indicates that an
unspecified number of repetitive arguments can be specified.

Repetitive arguments are executed in strict left-to-right order. Therefore, the following command is valid:

ObjectScript

SET x=2,y=x+1,z=y+X
but the following command is not valid:

ObjectScript

SET y=x+1,Xx=2,z=y+X
Because execution is performed independently on each repetitive argument, in the order specified, valid arguments are
executed until the first invalid argument is encountered. In the following example, SET x assigns a value to x, SET y
generates an <UNDEFINED> error, and because SET z is not evaluated, the <DIVIDE> (divide-by-zero) error is not
detected:
ObjectScript

KILL X,y,z
SET x=2,y=z,z=5/0
WRITE "'x is:",x

6.2.2 Arguments with Parameters and Postconditionals
Some command arguments accept parameters (not to be confused with function parameters). If a given argument can take
parameters, the delimiter for the parameters is the colon :).
The following sample command shows the comma used as the argument delimiter and the colon used as the parameter
delimiter. In this example, there are two arguments, with four parameters for each argument.
ObjectScript

VIEW X:y:z:a,B:a:y:z

For a few commands (DO, XECUTE, and GOTO), a colon following an argument specifies a postconditional expression
that determines whether or not that argument should be executed.

6.2.3 Argumentless Commands

Commands that do not take an argument are referred to as argumentless commands. A postconditional expression appended
to the keyword is not considered an argument.

There are a small number of commands that are always argumentless. For example, HALT, CONTINUE, TRY, TSTART,
and TCOMMIT are argumentless commands.

Several commands are optionally argumentless. For example, BREAK, CATCH, FOR, GOTO, KILL, LOCK, NEW,
QUIT, RETURN, TROLLBACK, WRITE, and ZWRITE all have argumentless syntactic forms. In such cases, the
argumentless command may have a slightly different meaning than the same command with an argument.

If you use an argumentless command at the end of the line, trailing spaces are not required. If you use an argumentless
command on the same code line as other commands, you must place two (or more) spaces between the argumentless command
and any command that follows it. For example:

Using ObjectScript 61

Commands

ObjectScript

QUIT:x=10 WRITE "not 10 yet"

In this case, QUIT is an argumentless command with a postconditional expression, and a minimum of two spaces is required
between it and the next command.

6.2.3.1 Argumentless Commands and Curly Braces
Argumentless commands when used with command blocks delimited by curly braces do not have whitespace restrictions:

e Anargumentless command that is immediately followed by an opening curly brace has no whitespace requirement
between the command name and the curly brace. You can specify none, one, or more than one spaces, tabs, or line
returns. This is true both for argumentless commands that can take an argument, such as FOR, and argumentless
commands that cannot take an argument, such as EL SE.

ObjectScript

FOR {
WRITE 1,"Quit out of 1st endless loop"
QUIT

¥

FOR{
WRITE !1,"Quit out of 2nd endless loop"
QUIT

1

FOR

WRITE 1,"Quit out of 3rd endless loop"
QUIT
}

» Anargumentless command that is immediately followed by a closing curly brace does not require trailing spaces,
because the closing curly brace acts as a delimiter. For example, the following is a valid use of the argumentless QUIT:

ObjectScript

IF 1=2 {
WRITE "Math error'}

ELSE {
WRITE "Arthmetic OK"
QUIT}

WRITE !,""Done"

6.3 Command Postconditional Expressions

In most cases, when you specify an ObjectScript command you can append a postconditional.

A postconditional is an optional expression that is appended to a command or (in some cases) a command argument that
controls whether InterSystems IRIS executes that command or command argument. If the postconditional expression
evaluates to TRUE (defined as nonzero), InterSystems IRIS executes the command or the command argument. If the
postconditional expression evaluates to FALSE (defined as zero), InterSystems IRIS does not execute the command or
command argument, and execution continues with the next command or command argument.

All ObjectScript commands can take a postconditional expression, except the flow-of-control commands (I F, EL SEIF,
and EL SE; FOR, WHILE, and DO WHILE) and the block structure error handling commands (TRY, THROW, CATCH).

The ObjectScript commands DO and XECUTE can append postconditional expressions both to the command keyword
and to their command arguments. A postconditional expression is always optional; for example, some of the command’s
arguments may have an appended postconditional while its other arguments do not.

62 Using ObjectScript

Command Postconditional Expressions

If both a command keyword and one or more of that command’s arguments specify a postconditionals, the keyword post-
conditional is evaluated first. Only if this keyword postconditional evaluates to TRUE are the command argument postcon-
ditionals evaluated. If a command keyword postconditional evaluates to FALSE, the command is not executed and program
execution continues with the next command. If a command argument postconditional evaluates to FALSE, the argument
is not executed and execution of the command continues with the next argument in left-to-right sequence.

6.3.1 Postconditional Syntax

To add a postconditional to a command, place a colon (:) and an expression immediately after the command keyword, so
that the syntax for a command with a postconditional expression is:

Command:pc

where Command is the command keyword, the colon is a required literal character, and pc can be any valid expression.
A command postconditional must follow these syntax rules:

* No spaces, tabs, line breaks, or comments are permitted between a command keyword and its postconditional, or
between a command argument and its postconditional. No spaces are permitted before or after the colon character.

* No spaces, tabs, line breaks, or comments are permitted within a postconditional expression, unless either an entire
postconditional expression is enclosed in parentheses or the postconditional expression has an argument list enclosed
in parentheses. Spaces, tabs, line breaks, and comments are permitted within parentheses.

e Spacing requirements following a postconditional expression are the same as those following a command keyword:
there must be exactly one space between the last character of the keyword postconditional expression and the first
character of the first argument; for argumentless commands, there must be two or more spaces between the last char-
acter of the postconditional expression and the next command on the same line, unless the postconditional is immediately
followed by a close curly brace. (If parentheses are used, the closing parenthesis is treated as the last character of the
postconditional expression.)

Note that a postconditional expression is not technically a command argument (though in the ObjectScript reference pages
the explanation of the postconditional is presented as part of the Arguments section). A postconditional is always optional.

6.3.2 Evaluation of Postconditionals

InterSystems IRIS evaluates a postconditional expression as either True or False. Most commonly these are represented
by 1 and 0, which are the recommended values. However, InterSystems IRIS performs postconditional evaluation on any
value, evaluating it as False if it evaluates to 0 (zero), and True if it evaluates to a nonzero value.

e InterSystems IRIS evaluates as True any valid nonzero numeric value. It uses the same criteria for valid numeric values
as the arithmetic operators. Thus, the following all evaluate to True: 1, “1”, 007, 3.5, -.007, 7.0 , 3 little pigs, $SCHAR(49),
0_"1"

» InterSystems IRIS evaluates as False the value zero (0), and any nonnumeric value, including a null string (") or a

string containing a blank space ("'). Thus, the following all evaluate to False: 0, -0.0, A, -, $, The 3 little pigs, $CHAR(0),

$CHAR(48), "0_1".

» Standard equivalence rules apply. Thus, the following evaluate to True: 0=0, 0="0", "a"=$CHAR(97), 0=$CHAR(48),
and (" "=$CHAR(32)). The following evaluate to False: 0="", 0=$CHAR(0), and (""=$CHAR(32)).

In the following example, which WRITE command is executed depends on the value of the variable count:

Using ObjectScript 63

Commands

ObjectScript

FOR count=1:1:10 {
WRITE:count<5 count," is less than 5",!
WRITE:count=5 count," is 5",!
WRITE:count>5 count," is greater than 5",!

}

6.4 Multiple Commands on a Line

A single line of ObjectScript source code may contain multiple commands and their arguments. They are executed in strict
left-to-right order, and are functionally identical to commands appearing on separate lines. A command with arguments
must be separated from the command following it by one space character. An argumentless command must be separated
from the command following it by two space characters. A label can be followed by one or more commands on the same
line. A comment can follow one or more commands on the same line.

For the maximum length of a line of source code, see General System Limits. Note that if you are using Studio to write or
edit source code, this limit may differ.

6.5 Variables

To assign a value to a variable, use the SET command.
The SET command assigns values to variables. It can assign a value to a single variable or to multiple variables at once.

The most basic syntax of SET is:
ObjectScript
SET variable = expression

This sets the value of a single variable. It also involves several steps:

» ObjectScript evaluates the value expression, determining its value (if possible). This step can generate errors, if the
expression contains an undefined variable, invalid syntax (such as division by zero), or other errors.

« Ifthe variable does not already exist, ObjectScript creates it.

» Once the variable has been created, or if it already exists, ObjectScript sets its value to that of the expression.
To set the value for each of multiple variables, use the following syntax:

ObjectScript

SET variablel = expressionl, variable2 = expression2, variable3 = expression3
To set multiple variables equal to a single expression use the following syntax:
ObjectScript

SET (variablel,variable2,variable3)= expression

For example, to set the value of the Gender property of an instance of the Person class use the following code:

64 Using ObjectScript

Error Processing

ObjectScript

SET person.Gender = "Female"

where person is the object reference to the relevant instance of the Person class.

You can also set the Gender property of multiple Person objects at the same time:

ObjectScript

SET (perl.Gender, per2.Gender, per3.Gender) = "Male"

where perl, per2, and per3 are object references to three different instances of the Person class.

You can use SET to invoke a method that returns a value. When invoking methods, SET allows you to set a variable, global
reference, or property equal to the return value of a method. The form of the argument depends on whether the method is
an instance or a class method. To invoke a class method, use the following construction:

ObjectScript

SET retval = ##class(PackageName.ClassName) .ClassMethodName()

Where ClassM ethodName() is the name of the class method that you wish to invoke, ClassName is the name of the class
containing the method, and PackageName is the name of the package containing the class. The method’s return value is
assigned to the retval local variable. The ##class() construction is a required literal part of the code.

To invoke an instance method, you need only have a handle to the locally instantiated object:
ObjectScript
SET retval = InstanceName. InstanceMethodName()

Where I nstanceM ethodName() is the name of the instance method that you wish to invoke, and InstanceName is the name
of the instance containing the method. The method’s return value is assigned to the retval local variable.

For further details, see SET.

Note: Inolder code that does not use procedure blocks, the KILL and NEW commands are useful for controlling variable
scope. For details, see the reference for those commands.

6.6 Error Processing

Use the TRY / CATCH block structure for error processing: It is recommended that you use the TRY and CATCH com-
mands to create block structures for error processing.

See The TRY-CATCH Mechanism, and see TRY, THROW, and CATCH.

6.7 Transaction Processing

Use the TSTART, TCOMMIT, and TROLLBACK commands for transaction processing. See Transaction Processing,
and see TSTART, TCOMMIT, and TROLLBACK.

Using ObjectScript 65

Commands

6.8 Locking and Concurrency Control

Use the LOCK command for locking and unlocking resources. See Locking and Concurrency Control and see LOCK.

Locking is also relevant in transaction processing; see Transaction Processing.

6.9 Invoking Code

This section describes commands used for invoking the execution of one or more commands:

« DO
« JOB
» XECUTE

* QUIT and RETURN

6.9.1 DO

To invoke a routine, procedure, or method in ObjectScript, use the DO command. The basic syntax of DO is:

ObjectScript

DO ~CodeTolnvoke

where CodeTolnvoke can be an InterSystems IRIS system routine or a user-defined routine. The caret character * must
appear immediately before the name of the routine.

You can run procedures within a routine by referring to the label of the line (also called a tag) where the procedure begins
within the routine. The label appears immediately before the caret. For example,
ObjectScript

SET %X = 484
DO INTA%SQROOT
WRITE %Y

This code sets the value of the %X system variable to 484; it then uses DO to invoke the INT procedure of the InterSystems
IRIS system routine % SQROOT, which calculates the square root of the value in %X and stores it in %Y. The code then
displays the value of %Y using the WRITE command.

When invoking methods, DO takes as a single argument the entire expression that specifies the method. The form of the
argument depends on whether the method is an instance or a class method. To invoke a class method, use the following
construction:

ObjectScript

DO ##class(PackageName.ClassName) .ClassMethodName()

where ClassM ethodName() is the name of the class method that you wish to invoke, ClassName is the name of the class
containing the method, and PackageName is the name of the package containing the class. The ##class() construction
is a required literal part of the code.

To invoke an instance method, you need only have a handle to the locally instantiated object:

66 Using ObjectScript

Invoking Code

ObjectScript

DO InstanceName. InstanceMethodName()
where I nstanceM ethodName() is the name of the instance method that you wish to invoke, and InstanceName is the name
of the instance containing the method.

For further details, see DO.

6.9.2 JOB

While DO runs code in the foreground, JOB runs it in the background. This occurs independently of the current process,
usually without user interaction. A jobbed process inherits all system defaults, except those explicitly specified.

For further details, see JOB.

6.9.3 XECUTE

The XECUTE command runs one or more ObjectScript commands; it does this by evaluating the expression that it receives
as an argument (and its argument must evaluate to a string containing one or more ObjectScript commands). In effect, each
XECUTE argument is like a one-line subroutine called by a DO command and terminated when the end of the argument
is reached or a QUIT command is encountered. After InterSystems IRIS executes the argument, it returns control to the
point immediately after the XECUTE argument.

For further details, see XECUTE.

6.9.4 QUIT and RETURN

The QUIT and RETURN commands both terminate execution of a code block, including a method. Without an argument,
they simply exit the code from which they were invoked. With an argument, they use the argument as a return value. QUIT
exits the current context, exiting to the enclosing context. RETURN exits the current program to the place where the program
was invoked.

The following table shows how to choose whether to use QUIT RETURN:

Using ObjectScript 67

Commands

Location

Routine code (not block structured)

TRY or CATCH block

DO or XECUTE

IF

FOR, WHILE, DO WHILE

QUIT

Exits routine, returns to the calling
routine (if any).

Exits TRY / CATCH block structure
pair to next code in routine. If
issued from a nested TRY or
CATCH block, exits one level to
the enclosing TRY or CATCH
block.

Exits routine, returns to the calling
routine (if any).

Exits routine, returns to the calling
routine (if any). However, if nested
in a FOR, WHILE, or DO WHILE
loop, exits that block structure and
continues with the next line after
the code block.

Exits the block structure and
continues with the next line after
the code block. If issued from a
nested block, exits one level to the
enclosing block.

For further details, see QUIT and RETURN.

6.10 Controlling Flow

RETURN

Exits routine, returns to the calling
routine (if any).

Exits routine, returns to the calling
routine (if any).

Exits routine, returns to the calling
routine (if any).

Exits routine, returns to the calling
routine (if any).

Exits routine, returns to the calling
routine (if any).

In order to establish the logic of any code, there must be flow control; conditional executing or bypassing blocks of code,
or repeatedly executing a block of code. To that end, ObjectScript supports the following commands:

* |IF, ELSEIF, and ELSE
* FOR
* WHILE and DO WHILE

6.10.1 Conditional Execution

To conditionally execute a block of code, based on boolean (true/false) test, you can use the I|F command. (You can perform
conditional execution of individual ObjectScript commands by using a postconditional expression.)

| F takes an expression as an argument and evaluates that expression as true or false. If true, then the block of code that
follows the expression is executed; if false, the block of code is not executed. Most commonly these are represented by 1
and 0, which are the recommended values. However, InterSystems IRIS performs conditional execution on any value,
evaluating it as False if it evaluates to O (zero), and True if it evaluates to a nonzero value. For further details, see Operators

and Expressions.

You can specify multiple I F boolean test expressions as a comma-separated list. These tests are evaluated in left-to-right
order as a series of logical AND tests. Therefore, an | F evaluates as true when all of its test expressions evaluate as true.

68

Using ObjectScript

Controlling Flow

An | F evaluates as false when the one of its test expressions evaluates as false; the remaining test expressions are not
evaluated.

The code usually appears in a code block containing multiple commands. Code blocks are simply one or more lines of code
contained in curly braces; there can be line breaks before and within the code blocks. Consider the following:

6.10.1.1 IF, ELSEIF, and ELSE

The IF construct allows you to evaluate multiple conditions, and to specify what code is run based on the conditions. A
construct, as opposed to a simple command, consists of a combination of one or more command keywords, their conditional
expressions and code blocks. The I F construct consists of:

* One IF clause with one or more conditional expressions.

* Any number of EL SEIF clauses, each with one or more conditional expressions. The EL SEIF clause optional; there
can be more than one EL SEIF clause.

» At most one EL SE clause, with no conditional expression. The EL SE clause is optional.
The following is an example of the I F construct:

ObjectScript

READ "Enter the number of equal-length sides in the polygon: *,x
IF x=1 {WRITE !,"It"s so far away that it looks like a point"}
ELSEIF x=2 {WRITE !,"1 think that"s a line, not a polygon"}
ELSEIF x=3 {WRITE !,"1t"s an equalateral triangle"}

ELSEIF x=4 {WRITE !,"It"s a square'"}
ELSE {WRITE !,"1t"s a polygon with ",x," number of sides" }

WRITE !,"Finished the IF test"

For further details, refer to the reference for IF.

6.10.2 FOR

You use the FOR construct to repeat sections of code. You can create a FOR loop based on numeric or string values.

Typically, FOR executes a code block zero or more times based on the value of a numeric control variable that is incremented
or decremented at the beginning of each loop through the code. When the control variable reaches its end value, control
exits the FOR loop; if there is no end value, the loop executes until it encounters a QUIT command. When control exits
the loop, the control variable maintains its value from the last loop executed.

The form of a numeric FOR loop is:

ObjectScript
FOR ControlVariable = StartValue:IncrementAmount:EndValue {

// code block content
}

All values can be positive or negative; spaces are permitted but not required around the equals sign and the colons. The
code block following the FOR will repeat for each value assigned to the variable.

For example, the following FOR loop will execute five times:

ObjectScript

WRITE "The first five multiples of 3 are:",!
FOR multiple = 3:3:15 {

WRITE multiple,!
}

Using ObjectScript 69

Commands

You can also use a variable to determine the end value. In the example below, a variable specifies how many iterations of
the loop occur:

ObjectScript

SET howmany = 4
WRITE "The first " ,howmany," multiples of 3 are "
FOR multiple = 1:1:howmany {
WRITE (multiple*3),", "
IF multiple = (howmany - 1) {
WRITE "and "

}

IF multiple = howmany {
WRITE "and that"s it!"

}

QUIT

Because this example uses multiple, the control variable, to determine the multiples of 3, it displays the expression
multiple*3. It also uses the IF command to insert and before the last multiple.

Note: The IF command in this example provides an excellent example of the implications of order of precedence in
ObjectScript (order of precedence is always left to right with no hierarchy among operators). If the | F expression
were simply multiple = howmany - 1, without any parentheses or parenthesized as a whole, then the first part of
the expression, multiple = howmany, would be evaluated to its value of False (0); the expression as a whole would
then be equal to 0 - 1, which is -1, which means that the expression will evaluate as true (and insert and for every
case except the final iteration through the loop).

The argument of FOR can also be a variable set to a list of values; in this case, the code block will repeat for each item in
the list assigned to the variable.

ObjectScript

FOR item = "A", "B", "C", "D" {
WRITE I, "Now examining item: "_item
3

You can specify the numeric form of FOR without an ending value by placing a QUIT within the code block that triggers
under particular circumstances and thereby terminates the FOR. This approach provides a counter of how many iterations
have occurred and allows you to control the FOR using a condition that is not based on the counter’s value. For example,
the following loop uses its counter to inform the user how many guesses were made:

ObjectScript

FOR i = 1:1 {

READ !, "Capital of MA? ", a

IF a = "Boston" {
WRITE "...did it in ", i, " tries”
QUIT
¥

3

If you have no need for a counter, you can use the argumentless FOR:

ObjectScript

FOR
READ !, “Know what? ™, wh
QUIT:(wh = "No!')

WRITE ™ That"s what!"

b

For further details, see FOR.

70 Using ObjectScript

Controlling I/0

6.10.3 WHILE and DO WHILE

Two related flow control commands are WHILE and DO WHIL E commands, each of which loops over a code block and
terminates based on a condition. The two commands differ in when they evaluate the condition: WHILE evaluates the
condition before the entire code block and DO WHI L E evaluates the condition after the block. As with FOR, a QUIT
within the code block terminates the loop.

The syntax for the two commands is:

DO {code} WHILE condition
WHILE condition {code}

The following example displays values in the Fibonacci sequence up to a user-specified value twice — first using DO
WHILE and then using WHILE:

ObjectScript

fibonacci() PUBLIC { // generate Fibonacci sequences
READ !, "Generate Fibonacci sequence up to where? ', upto
SET t1 =1, t2 =1, fib =1
WRITE !
DO {
WRITE fib,” " set fib = t1 + t2, t1 = t2, t2 = fib

¥
WHILE (fib "> upto)
SET t1 =1, t2 =1, fib =1

WRITE 1
WHILE (fib "> upto) {
WRITE fib," "

SET fib = t1 + t2, t1 = t2, t2 = fib
}
}

The distinction between WHILE, DO WHILE, and FOR is that WHIL E necessarily tests the control expression’s value
before executing the loop, DO WHILE necessarily tests the value after executing the loop, and FOR can test it anywhere
within the loop. This means that if you have two parts to a code block, where execution of the second depends on evaluating
the expression, the FOR construct is best suited; otherwise, the choice depends on whether expression evaluation should
precede or follow the code block.

For further details, see WHILE and DO WHILE.

6.11 Controlling I/O

ObjectScript input/output commands provide the basic functionality for getting data in and out of InterSystems IRIS. These
are:

e Write Commands
e READ
« OPEN, USE, and CLOSE

6.11.1 Display (Write) Commands

ObjectScript supports four commands to display (write) literals and variable values to the current output device:
* WRITE command
 ZWRITE command

Using ObjectScript 71

Commands

e ZZDUMP command

e ZZWRITE command

6.11.1.1 Argumentless Display Commands

» Argumentless WRITE displays the name and value of each defined local variable, one variable per line. It lists both
public and private variables. It does not list global variables, process-private globals, or special variables. It lists variables
in collation sequence order. It lists subscripted variables in subscript tree order.

It displays all data values as quoted strings delimited by double quote characters, except for canonical numbers and
object references. It displays a variable assigned an object reference (OREF) value as variable=<OBJECT
REFERENCE>[oref]. It displays a %L.ist format value or a bitstring value in their encoded form as a quoted string.
Because these encoded forms may contain non-printing characters, a %L.ist or bitstring may appear to be an empty

string.

WRITE does not display certain non-printing characters; no placeholder or space is displayed to represent these non-
printing characters. WRITE executes control characters (such as line feed or backspace).

* Argumentless ZWRITE is functionally identical to argumentless WRITE.

* Argumentless ZZDUMP is an invalid command that generates a <SYNTAX> error.

e Argumentless ZZWRITE is a no-op that returns the empty string.

6.11.1.2 Display Commands with Arguments

The following tables list the features of the argumented forms of the four commands. All four commands can take a single
argument or a comma-separated list of arguments. All four commands can take as an argument a local, global, or process-
private variable, a literal, an expression, or a special variable:

The following tables also list the % Library.Utility.FormatString() method default return values. The FormatString()
method is most similar to ZZWRITE, except that it does not list %val= as part of the return value, and it returns only the
object reference (OREF) identifier. For matString() allows you to set a variable to a return value in ZWRITE / ZZWRITE

format.

Table 6-1: Display Formatting

Each value on
a separate line?

Variable names
identified?

Undefined
variable results
in
<UNDEFINED>
error?

All four commands evaluate expressions and return numbers in canonical form.

WRITE
NO

NO

YES

ZWRITE ZZDUMP

YES YES (16
characters per
line)

YES NO

NO (skipped, YES
variable name
not returned)

ZZWRITE
YES

Represented by
%val=

YES

FormatString()
One input value
only

NO

YES

72

Using ObjectScript

Controlling I/O

Table 6-2: How Values are Displayed

Using ObjectScript 73

Commands

Hexadecimal
representation?

Strings quoted
to distinguish
from numerics?

Subscript nodes
displayed?

Global variables
in another
namespace
(extended
global
reference)
displayed?

Non-printing
characters
displayed?

List value
format

%Status format

Bitstring format

WRITE
NO

NO

NO

YES

NO, not
displayed;
control
characters
executed

encoded string

string
containing
encoded Lists

encoded string

ZWRITE
NO

YES

YES

YES (extended
global reference
syntax shown)

YES, displayed
as $c(n)

$lb(val)
format

string
containing
$lb(val)
format Lists,
with appended
[*...*/ comment
specifying error
and message.

$zwc format
with appended
I* $bit() */
comment listing
1 bits. For
example:

s U2 o2 s

ZZDUMP
YES

NO

NO

YES

YES, displayed
as hexadecimal

encoded string

string
containing
encoded Lists

encoded string

ZZWRITE
NO

YES (a string
literal is
returned as
Y%val="value")

NO

YES

YES, displayed
as $c(n)

$Ib(val)
format

string
containing
$lb(val)
format Lists,
with appended
[*...*/ comment
specifying error
and message.

$zwc format
with appended
* $bit() */
comment listing
1 bits. For
example:

ROy

FormatString()
NO

YES

NO

YES

YES, displayed
as $c(n)

$lb(val)
format

string
containing
$lb(val)
format Lists,
with (by default)
appended /*...*/
comment
specifying error
and message.

$zwc format
with (by default)
appended /*
$hit() */
comment listing
1 bits. For
example:

AR @7RAY

74

Using ObjectScript

Controlling I/0

WRITE ZWRITE ZZDUMP ZZWRITE FormatString()

Object OREF only OREF in OREF only OREF in OREF only, as
Reference <OBJECT <OBJECT quoted string
(OREF) format REFERENCE>[oref] REFERENCE>[oref]

format. General format. General

information, information,

attribute values, attribute values,

etc. details etc. details

listed. All listed.

subnodes listed

JSON dynamic arrays and JSON dynamic objects are returned as OREF values by all of these commands. To return the
JSON contents, you must use % ToJSONY(), as shown in the following example:

SET jobj={"name":"Fred","city":"Bedrock"}
WRITE "JSON object reference:",!

ZWRITE jobj

WRITE I!1,"JSON object value:",!

ZWRITE jobj.%ToJSONQ

For further details, see WRITE, ZWRITE, ZZDUMP, and ZZWRITE.

6.11.2 READ

The READ command allows you to accept and store input entered by the end user via the current input device. The READ
command can have any of the following arguments:

ObjectScript

READ format, string, variable

Where format controls where the user input area will appear on the screen, string will appear on the screen before the input
prompt, and variable will store the input data.

The following format codes are used to control the user input area:

Format Code Effect

! Starts a new line.

Starts a new page. On a terminal it clears the current screen and starts at the top of a new
screen.
2n Positions at the nth column position where n is a positive integer.

For further details, see READ.

6.11.3 OPEN, USE, and CLOSE

For more sophisticated device handling, InterSystems IRIS provides a wealth of options. In short, you can take ownership
of an open device with the OPEN command; specify the current device with the USE command; and close an open device
with the CLOSE command. This process as a whole is described in the 1/0 Device Guide.

For further details, see OPEN, USE, and CLOSE.

Using ObjectScript 75

Callable User-defined Code Modules

This topic describes how to create and invoke user-defined modules of ObjectScript code on InterSystems IRIS® data
platform: methods, functions, procedures, routines, or subroutines. The most common form of code is methods, which you
define in classes. This topic does not describe methods specifically, but by default, methods are procedures. Because of
this, all content on procedures also applies to methods.

As in other languages, ObjectScript allows you to create named code blocks that you can invoke directly. Such blocks are
known as procedures. Strictly speaking, in ObjectScript terminology, a code block that is a procedure has a specific syntax
and structure.

The syntax of a procedure definition is as follows:

ObjectScript

ProcedureName(Parameters) [PublicVariables]

/* code goes here */

RETURN ReturnValue

The elements of the procedure, here called ProcedureName, are:

» Parameters (zero or more) — These can be of any type and, as is typical of ObjectScript, you do not need to declare
their types when you define the procedure. By default, they are passed by value (not by reference). Unless otherwise
specified, their scope is local to the procedure. For more information on parameters generally, see Procedure Parameters.

» References to public variables (zero or more) — These, too, can be of any type. The procedure can both reference and
set such a variable’s value. For more information on public variable references, see Procedure Variables.

» Declaration that the procedure is public (optional) — By default, procedures are private, which means that you can
only call them from elsewhere in the same routine (in ObjectScript terminology, a routine is a file containing one or
more procedures or other user-defined code blocks). You can also create procedures that are public, using the PUBLIC
keyword after the procedure name. Public procedures can be called from other routines or methods. For more information
on public and private procedures, see Public and Private Procedures.

e Code — The code in a procedure has all the features available in ObjectScript. Procedure code can also include Java.
The code is delimited by curly braces and is also known as a procedure block.

» Return value (optional) — This is the value that the procedure returns, and, must be a standard ObjectScript expression.
Flow control within a procedure can specify various return values using computed expression values, multiple RETURN
statements, or both.

Using ObjectScript 77

Callable User-defined Code Modules

Note: Writing procedures is generally preferable to writing subroutines or user-defined functions. Procedure parameters
are automatically local in scope within the procedure. They do not require a NEW command to ensure that they
do not overwrite other values, since they are private to the procedure and do not interact with the symbol table.
Also, the explicit declaration of public variables allows you to refer to global variables within an application, such
a bank-wide interest rate; it also allows you to create and set values for variables within the procedure that are
available to the rest of an application.

Procedures are a particular kind of ObjectScript routine.

InterSystems IRIS also provides a large number of system-supplied functions, all of which are described in the ObjectScript
Language Reference; these are sometimes known as intrinsic functions. Calls to system functions are identified by a $
prefix.

7.1 Procedures, Routines, Subroutines, Functions, and
Methods: What Are They?

This topic describes how to implement your own code using procedures, which are the recommended form for implementing
user-defined functionality. InterSystems documentation describes procedures, routines, subroutines, functions, and methods.
Though all these entities share features, each has its own characteristics.

The most flexible, most powerful, and recommended form of named, user-defined code block is the procedure. The features
of a procedure includes that it:

e Can be private or public.

e Can accept zero or more parameters.

» Automatically maintains any variables created within it as local in scope.
» Can refer to and alter variables outside it.

e Canreturn a value of any type or no return value.

By contrast:
e Asubroutine is always public and cannot return a value.

» Afunction is always public, requires explicit declaration of local variables (and, otherwise, overwrites external variables),
and must have a return value.

* By default, a method is a procedure that is specified as part of a class definition and that you can invoke on one or
more objects or on a class. If you explicitly declare it a function, it is then a function with all the accompanying char-
acteristics; this is not recommended.

e Avrroutine is an ObjectScript program. It can include one or more procedures, subroutines, and functions, as well as
any combination of the three.

Note: ObjectScript also supports a related form of user-defined code through its macro facility.

7.1.1 Routines

A routine is a callable block of user-written code that is an ObjectScript program. A routine performs commonly needed
operations. Its name is determined by the name of the .MAC file that you choose for saving it. Depending on if a routine
returns a value, you can invoke a routine with one or both of the following sets of syntax:

78 Using ObjectScript

Procedures, Routines, Subroutines, Functions, and Methods: What Are They?

ObjectScript

DO ~RoutineName
SET x = $$”RoutineName

A routine is defined within a namespace. You can use an extended routine reference to execute a user-defined routine
defined in a namespace other than the current namespace:
ObjectScript

DO ~]"USER"]RoutineName

Generally, routines serve as containers for subroutines, methods, and procedures.

The routine is identified by a label (also referred to as a tag) at the beginning of the block of code. This label is the name
of the routine. This label is (usually) followed by parentheses which contain a list of parameters to be passed from the
calling program to the routine.

When you save a routine to a file, the file name cannot include the underscore (_), hyphen (=), or semicolon (;) characters;
names that include such characters are not valid.

7.1.2 Subroutines

A subroutine is a named block of code within a routine. Typically, a subroutine begins with label and ends with a QUIT
statement. It can accept parameters and does not return a value. To invoke a subroutine, use the following syntax:

DO Subroutine”™Routine

where Subroutine is a code block within the Routine file (Routine.MAC).

The form of a subroutine is:

ObjectScript

Label (parameters) // comment
// code
QUIT // note that QUIT has no arguments

For more details on subroutines, see the section below on subroutines as legacy code.

If you enclose the code and QUI T statement within curly braces, the subroutine is a procedure and can be treated as such.
In such a case, a QUIT statement is redundant and can be omitted. For example, the following two subroutine definitions
are equivalent:

ObjectScript

Label (parameters) PUBLIC {
// code
QUIT

}

And:

ObjectScript

Label (parameters) PUBLIC {
// code

}

Using ObjectScript 79

Callable User-defined Code Modules

7.1.3 Functions

InterSystems IRIS comes with many system-supplied functions (sometimes known as intrinsic functions), which are
described in the ObjectScript Language Reference. This section describes user-defined (extrinsic) functions.

A function is a named block of code within a routine. Typically, a function begins with label and ends with a RETURN
statement. It can accept parameters and can also return a value. To invoke a function, there are two valid forms of the syntax:

ObjectScript

SET rval=$$Function() /* returning a value */
DO Function”™Routine /* ignoring the return value */

where Function is a code block within the Routine file (Routine.MAC). In both syntactic forms you can use an extended
routine reference to execute a function located in a different namespace.

The form of a function is:

ObjectScript

Label (parameters)
// code
RETURN ReturnValue

If you enclose the code and its RETURN statement within curly braces, the function is a procedure and can be treated as
such. Note that because a procedure is private by default, you may wish to specify the PUBLIC keyword, as follows:

ObjectScript

Label (parameters) PUBLIC {
/ code
RETURN ReturnvValue }

The following example defines a simple function (MyFunc) and calls it, passing two parameters and receiving a return
value:

ObjectScript

Main ;
TRY {
KILL X
SET x=$$MyFunc(7,10)
WRITE "returned value is ",x,!
RETURN

CATCH { WRITE $ZERROR,!
T
MyFunc(a,b)

SET c=a+b
RETURN c

The code invoking the function can ignore the return value, but a function’s RETURN command must specify a return
value. Attempting to exit a function with an argumentless RETURN generates a <COMMAND> error. The <COMMAND>
error specifies the location of the call that invoked the function, followed by a message that specifies the offset location of
the argumentless RETURN command within the called function. Refer to $ZERROR for further details.

For more details on functions, see the section below on functions as legacy code.

80 Using ObjectScript

Defining Procedures

7.2 Defining Procedures

As in other languages, a procedure is a series of ObjectScript commands (a section of a larger routine) that accomplishes
a specific task. Similar to constructs such as If, the code of a procedure is contained within curly braces.

Procedures allow you to define each variable as either public or private. For example, the following procedure, is called
MyProc:

ObjectScript

MyProc(x,y) [a,bl PUBLIC {

Write "X + y =", X +y

defines a public procedure named MyProc which takes two parameters, x and y. It defines two public variables, a and b.
All other variables used in the procedure (in this case, x and y) are private variables.

By default, procedures are private, which means that you can only call them from elsewhere in the same routine. You can
also create procedures that are public, using the Public keyword after the procedure name. Public procedures can be called
from other routines.

Procedures do not need to have defined parameters. To create procedures with parameters, place a parenthesized list of
variables immediately after the label.

7.2.1 Invoking Procedures

To invoke a procedure, either issue a DO command that specifies the procedure, or call it as a function using the $$ syntax.
You can control whether a procedure can be invoked from any program (public), or only from the program in which it is
located (private). If invoked with DO, a procedure does not return a value; if invoked as a function call, a procedure returns
a value. The $$ form provides the most functionality, and is generally the preferred form.

7.2.1.1 Using the $$ Prefix

You can invoke a user-defined function in any context in which an expression is allowed. A user-defined function call takes
the form:

$$name([param[,...11)

where:

* name specifies the name of the function. Depending on where the function is defined, name can be specified as:
— label is a line label within the current routine.
— label*routine is a line label within the named routine that resides on disk.

— “routine is a routine that resides on disk. The routine must contain only the code for the function to be performed.

« param specifies the values to be passed to the function. The supplied parameters are known as the actual parameter
list. They must match the formal parameter list defined for the function. For example, the function code may expect
two parameters, with the first being a numeric value and the second being a string literal. If you specify the string literal
for the first parameter and the numeric value for the second, the function may yield an incorrect value or possibly
generate an error. Parameters in the formal parameter list always have NEW invoked by the function. See the NEW
command. Parameters can be passed by value or by reference. See Parameter Passing. If you pass fewer parameters
to the function than are listed in the function’s formal parameter list, parameter defaults are used (if defined); if there
are no defaults, these parameters remain undefined.

Using ObjectScript 81

Callable User-defined Code Modules

7.2.1.2 Using the DO Command

You can invoke a user-defined function using the DO command. (You cannot invoke a system-supplied function using the
DO command.) A function invoked using DO does not return a value. That is, the function must generate a return value,
but the DO command ignores this return value. This greatly limits the use of DO for invoking user-defined functions.

To invoke a user-defined function using DO, you issue a command in the following syntax:

DO label(param(,...])

The DO command calls the function named label and passes it the parameters (if any) specified by param. Note that the
$3 prefix is not used, and that the parameter parentheses are mandatory. The same rules apply for specifying the label and
param as when invoking a user-defined function using the $$ prefix.

A function must always return a value. However, when a function is called with DO, this returned value is ignored by the

calling program.

7.2.2 Procedure Syntax

Procedure syntax:

I?bel([paran[:default]][,...]) [[pubvar [,---11]1 [access]

code

Invoking syntax:

DO label([param[,...11)

or

command $$label ([param][,---1)

where

Argument

label

param

default

Description

The procedure name. A standard label. It must start in column one. The parameter
parentheses following the label are mandatory.

A variable for each parameter expected by the procedure. These expected parameters are
known as the formal parameter list. The parameters themselves are optional (there may
be none, one, or more than one param) but the parentheses are mandatory. Multiple param
values are separated by commas. Parameters may be passed to the formal parameter list
by value or by reference. Procedures that are routines do not include type information about
their parameters; procedures that are methods do include this information. The maximum
number of formal parameters is 255.

An optional default value for the param preceding it. You can either provide or omit a default
value for each parameter. A default value is applied when no actual parameter is provided
for that formal parameter, or when an actual parameter is passed by reference and the
local variable in question does not have a value. This default value must be a literal: either
a number, or a string enclosed in quotation marks. You can specify a null string () as a
default value. This differs from specifying no default value, because a null string defines
the variable, whereas the variable for a parameter with no specified or default value would
remain undefined. If you specify a default value that is not a literal, InterSystems IRIS issues
a <PARAMETER> error.

82

Using ObjectScript

Defining Procedures

Argument Description

pubvar Public variables. An optional list of public variables used by the procedure and available to
other routines and procedures. This is a list of variables both defined within this procedure
and available to other routines and defined within another routine and available to this
procedure. If specified, pubvar is enclosed in square brackets. If no pubvar is specified, the
square brackets may be omitted. Multiple pubvar values are separated by commas. All
variables not declared as public variables are private variables. Private variables are available
only to the current invocation of the procedure. They are undefined when the procedure is
invoked, and destroyed when the procedure is exited. If the procedure calls any code outside
of that procedure, the private variables are preserved, but are unavailable until the call
returns to the procedure. All % variables are always public, whether or not they are listed
here. The list of public variables can include one or more of the param specified for this
routine.

access An optional keyword that declares whether the procedure is public or private. There are
two available values: PUBLIC, which declares that this procedure can be called from any
routine. PRIVATE, which declares that this procedure can only be called from the routine
in which it is defined. PRIVATE is the default.

code A block of code, enclosed in curly braces. The opening curly brace ({) must be separated
from the characters preceding and following it by at least one space or a line break. The
closing curly brace (}) must not be followed by any code on the same line; it can only be
followed by blank space or a comment. The closing curly brace can be placed in column
one. This block of code is only entered by the label.

You cannot insert a line break between a command and its arguments.
Each procedure is implemented as part of a routine; each routine can contain multiple procedures.

In addition to standard ObjectScript syntax, there are special rules governing routines. A line in a routine can have a label
at the beginning (also called a tag), ObjectScript code, and a comment at the end; but all of these elements are optional.

InterSystems recommends that the first line of a routine have a label matching the name of the routine, followed by a tab
or space, followed by a short comment explaining the purpose of the routine. If a line has a label, you must separate it from
the rest of the line with a tab or a space. This means that as you add lines to your routine using Studio, you either type a
label and a tab/space, followed by ObjectScript code, or you skip the label and type a tab or space, followed by ObjectScript.
So in either case, every line must have a tab or space before the first command.

To denote a single-line comment use either a double slash (//) or a semicolon (;). If a comment follows code, there must
be a space before the slashes or semicolon; if the line contains only a comment, there must be a tab or space before the
slashes or semicolon. By definition, there can be no line break within a single-line comment; for a multiline comment, mark
the beginning of the comment with /* and the end with */.

7.2.3 Procedure Variables

Procedures and methods both support private and public variables; all of the following statements apply equally to procedures
and methods:

Variables used within procedures are automatically private to that procedure. Hence, you do not have to declare them as
such and they do not require a NEW command. To share some of these variables with procedures that this procedure calls,
pass them as parameters to the other procedures.

You can also declare public variables. These are available to all procedures and methods; those that this procedure or
method calls and those that called this procedure or method. A relatively small number of variables should be defined in
this way, to act as environmental variables for an application. To define public variables, list them in square brackets fol-
lowing the procedure name and its parameters.

Using ObjectScript 83

Callable User-defined Code Modules

The following example defines a procedure with two declared public variables [a, b] and two private variables (c, d):

ObjectScript

publicvarsexample))
; examples of public variables

DO procl(Q) ; call a procedure
QUIT ; end of the main routine

proci(Q) [a, bl
; a private procedure
; "¢ and "d" are private variables

SET d
WRITE

}

a+b+c
, "The sum is: ", d

{

WRITE I, "setting a" SET a =1

WRITE I, "setting b" SET b = 2

WRITE I, "setting c" SET c = 3
'

Terminal

USER>WRITE
USER>DO “publicvarsexample

setting a
setting b
setting c
The sum is: 6
USER>WRITE

a=1
b=2
USER>

7.2.3.1 Public versus Private Variables

Within a procedure, local variables may be either public or private. The public list [pubvar] declares which variable references
in the procedure are added to the set of public variables; all other variable references in the procedure are to a private set
seen only by the current invocation of the procedure.

Private variables are undefined when a procedure is entered, and they are destroyed when a procedure is exited.

When code within a procedure calls any code outside of that procedure, the private variables are restored upon the return
to the procedure. The called procedure or routine has access to public variables (as well as its own private ones.) Thus,
[pubvar] specifies both the public variables seen by this procedure and the variables used in this procedure that are capable
of being seen by a routine that the procedure calls.

If the public list is empty, then all variables are private. In this case, the square brackets are optional.

Variables whose name starts with the percent (%) character are typically variables used by the system or for some special
purpose. InterSystems IRIS reserves all % variables (except %z and %Z variables) for system use; user code should only
use % variables that begin with %z or %Z. All % variables are implicitly public. They can be listed in the public list (for
documentation purposes) but this is not necessary.

7.2.3.2 Private Variables versus Variables Created with NEW

Note that private variables are not the same as variables newly created with NEW. If a procedure wants to make a variable
directly available to other procedures or subroutines that it calls, then it must be a public variable and it must be listed in
the public list. If it is a public variable being introduced by this procedure, then it makes sense to perform a NEW on it.
That way it will be automatically destroyed when the procedure exits, and also it protects any previous value that public
variable may have had. For example, the code:

84 Using ObjectScript

Defining Procedures

ObjectScript

MyProc(x,y)[name]{
NEW name

SET name="John"
DO xyz”~abc

enables procedure xyz in routine abc to see the value John for name, because it is public. Invoking the NEW command
for name protects any public variable named name that may already have existed when the procedure MyProc was called.

The NEW command does not affect private variables; it only works on public variables. Within a procedure, it is illegal
to specify NEW x or NEW (X) if x is not listed in the public list and x is not a % variable.
7.2.3.3 Making Formal List Parameters Public

If a procedure has a formal list parameter, (such as x ory in MyProc(x,y)) that is needed by other procedures it calls, then
the parameter should be listed in the public list.

Thus,

ObjectScript

MyProc(x,y)[x] {
DO abc”™rou

}

makes the value of x, but not y, available to the routine abc”rou.

7.2.4 Public and Private Procedures

A procedure can be public or private. A private procedure can only be called from within the routine in which the procedure
is defined, whereas a public procedure can be called from any routine. If the PUBLIC and PRIVATE keywords are omitted,
the default is private.

For instance,

ObjectScript

MyProc(x,y) PUBLIC { }

defines a public procedure, while

ObjectScript
MyProc(x,y) PRIVATE { }
and

ObjectScript
MyProc(x,y) { }

both define a private procedure.

Using ObjectScript 85

Callable User-defined Code Modules

7.3 Parameter Passing

An important features of procedures is their support for parameter passing. This is the mechanism by which you can pass
values (or variables) to a procedure as parameters. Of course, parameter passing is not required; for example, procedures
with no parameter passing could be used to generate a random number or to return the system date in a format other than
the default format. Commonly, however, procedures do use parameter passing.

To set up parameter passing, specify:
* An actual parameter list on the procedure call.

» Aformal parameter list on the procedure definition.

When InterSystems IRIS executes a user-defined procedure, it maps the parameters in the actual list, by position, to the
corresponding parameters in the formal list. Thus, the value of the first parameter in the actual list is placed in the first
variable in the formal list; the second value is placed in the second variable; and so on. The matching of these parameters
is done by position, not name. Thus, the variables used for the actual parameters and the formal parameters are not required
to have (and usually should not have) the same names. The procedure accesses the passed values by referencing the
appropriate variables in its formal list.

The actual parameter list and the formal parameter list may differ in the number of parameters:

» If the actual parameter list has fewer parameters than the formal parameter list, the unmatched elements in the formal
parameter list are undefined. You can specify a default value for an undefined formal parameter, as shown in the fol-
lowing example:

ObjectScript

Main
/* Passes 2 parameters to a procedure that takes 3 parameters */
SET a="apple',b="banana",c="carrot”,d="dill"
DO ListGroceries(a,b)
WRITE I,"all done"
ListGroceries(x=""?",y="2?",z="?") {
WRITE x," ",y," ",z,! }

» If the actual parameter list has more parameters than the formal parameter list, a <PARAMETER> error occurs, as
shown in the following example:

ObjectScript

Main
/* Passes 4 parameters to a procedure that takes 3 parameters.
This results in a <PARAMETER> error */
SET a="apple",b="banana",c="carrot",d="dill"
DO ListGroceries(a,b,c,d)
WRITE I,"all done"
ListGroceries(x=""?",y="?",z="?") {
WRITE x," ",y," ",z,! }

If there are more variables in the formal list than there are parameters in the actual list, and a default value is not provided
for each, the extra variables are left undefined. Your procedure code should include appropriate | F tests to make sure that
each procedure reference provides usable values. To simplify matching the number of actual parameters and formal
parameters, you can specify a variable number of parameters.

The maximum number of actual parameters is 254.

When passing parameters to a user-defined procedure, you can use passing by value or passing by reference. You can mix
passing by value and passing by reference within the same procedure call.

» Procedures can be passed parameters by value or by reference.

86 Using ObjectScript

Parameter Passing

» Subroutines can be passed parameters by value or by reference.
» User-defined functions can be passed parameters by value or by reference.

» System-supplied functions can be passed parameters by value only.

7.3.1 Passing By Value

To pass by value, specify a literal value, an expression, or a local variable (subscripted or unsubscripted) in the actual
parameter list. In the case of an expression, InterSystems IRIS first evaluates the expression and then passes the resulting
value. In the case of a local variable, InterSystems IRIS passes the variable’s current value. Note that all specified variable
names must exist and must have a value.

The procedure’s formal parameter list contains unsubscripted local variable names. It cannot specify an explicit subscripted
variable. However, specifying a variable number of parameters implicitly creates subscripted variables.

InterSystems IRIS implicitly creates and declares any non-public variables used within a procedure, so that already-existing
variables with the same name in calling code are not overwritten. It places the existing values for these variables (if any)
on the program stack. When it invokes the QUIT or RETURN command, InterSystems IRIS executes an implicit KILL
command for each of the formal variables and restores their previous values from the stack.

In the following example, the SET commands use three different forms to pass the same value to the referenced Cube
procedure.

ObjectScript

DO Start()

WRITE "all done"
Start() PUBLIC {

SET varl=6

SET a=$$Cube(6)

SET b=$$Cube(2*3)

SET c=$$Cube(varl)
WRITE 1,"a: ",a," b: "
RETURN 1

T
Cube(num) PUBLIC {

SET result = num*num*num
RETURN result

}

7.3.2 Passing By Reference

To pass by reference, specify a local variable name or the name of an unsubscripted array in the actual parameter list, using
the form:

-hame

With passing by reference, a specified variable or array name does not have to exist before the procedure reference. You
typically pass arrays by reference only. You cannot pass a subscripted variable by reference.

» Actual parameter list: The period preceding the local variable or array name in the actual parameter list is required. It
specifies that the variable is being passed by reference, not passed by value.

» Formal parameter list: No special syntax is required in the formal parameter list to receive a variable passed by reference.
The period prefix is not permitted in the formal parameter list. However, an ampersand (&) prefix is permitted before
the name of a variable in the formal parameter list; by convention this & prefix is used to indicate that this variable is
being passed in by reference. The & prefix is optional and performs no operation; it is a useful convention for making
your source code easier to read and maintain.

A method definition can specify passing by reference, as described in Indicating How Arguments Are to Be Passed.

Using ObjectScript 87

Callable User-defined Code Modules

In passing by reference, each variable or array name in the actual list is bound to the corresponding variable name in the
function’s formal list. Passing by reference provides an effective mechanism for two-way communication between the
referencing routine and the function. Any change that the function makes to a variable in its formal list is also made to the
corresponding by-reference variable in the actual list. This also applies to the KILL command. If a by-reference variable
in the formal list is killed by the function, the corresponding variable in the actual list is also killed.

If a variable or array name specified in the actual list does not already exist, the function reference treats it as undefined.
If the function assigns a value to the corresponding variable in the formal list, the actual variable or array is also defined
with this value.

The following example compares passing by reference with passing by value. The variable a is passed by value, the variable
b is passed by reference:

ObjectScript

Main
SET a="6",b=""7"
WRITE "Initial values:",!
WRITE "a=",a," b=",b,!
DO DoubleNums(a, -b)
WRITE "Returned to Main:*,!
WRITE "a=",a," b=",b
DoubleNums(foo,&bar) {
WRITE "Doubled Numbers:*,!
SET foo=foo*2
SET bar=bar*2
WRITE "foo=",fo0," bar=",bar,!
T

The following example uses passing by reference to achieve two-way communication between the referencing routine and
the function through the variable result. The period prefix specifies that result is passed by reference. When the function
is executed, result in the actual parameter list is created and bound to z in the function’s formal parameter list. The calculated
value is assigned to z and passed back to the referencing routine in result. The & prefix to z in the formal parameter list is
optional and non-functional, but helps to clarify the source code. Note that num and powr are passed by value, not reference.
This is an example of mixing passing by value and passing by reference:

ObjectScript

Start ; Raise an integer to a power.
READ !,"Integer= ",num RETURN:num="""
READ 1,"Power= " ,powr RETURN: powr="""
SET output=$$Expo(num,powr, .result)
WRITE I,"Result= "",output
GOTO Start

Expo(X,y,&z)

SET z=x
FOR i=1:1:y {SET z=z*x}
RETURN z

7.3.3 Variable Number of Parameters

A procedure can specify that it accepts a variable number of parameters. You do this by appending three dots to the name
of the final parameter; for example, vals. . .. This parameter must be the final parameter in the parameter list. It can be

the only parameter in the parameter list. This - . . syntax can pass multiple parameters, a single parameter, or zero param-
eters.

Spaces and new lines are permitted between parameters in the list, as well as before the first parameter and after the final
parameter in the list. Whitespace is not permitted between the three dots.

To use this syntax, specify a signature where the name of the final parameter is followed by The multiple parameters
passed to the method through this mechanism can have values from data types, be object-valued, or be a mix of the two.
The parameter that specifies the use of a variable number of parameters can have any valid identifier name.

88 Using ObjectScript

Parameter Passing

ObjectScript handles passing a variable number of parameters by creating a subscripted variable, creating one subscript
for each passed variable. The top level of the variable contains the number of parameters passed. The variable subscripts
contain the passed values.

This is shown in the following example. It uses invals... as the only parameter in the formal parameter list. ListGro-
ceries(invals...) receives a variable number of values passed by value:

ObjectScript

Main
SET a="apple',b="banana",c="carrot”,d="dill",e="endive"
DO ListGroceries(a,b,c,d,e)
WRITE 1,"all done"
ListGroceries(invals...) {
WRITE invals,” parameters passed”,!
FOR 1=1:1:invals {
WRITE invals(i),! }

The following example uses morenums... as the final parameter, following two defined parameters. This procedure can
receive a variable number of additional parameters, starting with the third parameter. The first two parameters are required,
either as defined parameters DO AddNumbers(a,b,c,d,e) or as placeholder commas DO AddNumbers(, ,c,d,e):

ObjectScript

Main
SET a=7,b=8,c=9,d=100,e=2000
DO AddNumbers(a,b,c,d,e)
WRITE "all done"
AddNumbers(x,y,morenums...) {
SET sum = x+
FOR i=1:1:$GET(morenums, 0) {
SET sum = sum + $GET(morenums(i)) }
WRITE "'The sum is *,sum,!

}

The following example uses morenums... as the final parameter, following two defined parameters. This procedure receives
exactly two parameter values; the morenums... variable number of additional parameters is O:

ObjectScript

Main
SET a=7,b=8,c=9,d=100,e=2000
DO AddNumbers(a,b)
WRITE "all done"
AddNumbers(x,y,morenums...) {
SET sum = X+
FOR i1=1:1:$GET(morenums, 0) {
SET sum = sum + $GET(morenums(i)) }
WRITE "The sum is ",sum,!

}

As specified, AddNumbers(x,y,morenums. . .) can receive a minimum of two parameters and a maximum of 255. If
you supply defaults for the defined parameters AddNumbers(x=0,y=0,morenums. . .) this procedure can receive a
minimum of no parameters and a maximum of 255.

The following example uses nums... as the only parameter. It receives a variable number of values passed by reference:

Using ObjectScript 89

Callable User-defined Code Modules

ObjectScript

Main
SET a=7,b=8,c=9,d=100,e=2000
DO AddNumbers(.a,-b,.c,.d,.e)
WRITE "all done"
AddNumbers(&nums...) {
SET sum = O
FOR i=1:1:$GET(nums, 0) {
SET sum = sum + $GET(nums(i)) }
WRITE "The sum is *,sum,!
RETURN sum

When a variable parameter list params... receives parameters passed by reference and passes the params... to a routine, the
intermediate routine can add additional parameters (additional nodes in the params array) that will also be passed by reference.

This is shown in the following example:

ObjectScript

Main
SET a(1)=10,a(2)=20,a(3)=30
DO MoreNumbers(.a)
WRITE I,"all done™
MoreNumbers(¶ms...) {
SET params(1,6)=60
SET params(1,8)=80
DO ShowNumbers(.params) }
ShowNumbers(&tens...)
SET key=$0ORDER(tens(1,1,'"),1,targ)
WHILE key"="" {
WRITE key,"™ = ",targ,!
SET key=$0RDER(tens(1,1,key),1,targ)

}

The following example shows that this args... syntax can be used in both the formal parameter list and in the actual
parameter list. In this example, a variable number of parameters (invals...) are passed by value to ListNums, which doubles

their values then passes them as invals... to ListDoubleNums:

ObjectScript

Main
SET a="1",b="2",c="3",d="4"
DO ListNums(a,b,c,d)
WRITE !,"back to Main, all done"
ListNums(invals...) {
FOR i=1:1:invals {
WRITE invals(i),!
SET invals(i)=invals(i)*2 }
DO ListDoubleNums(invals...)
WRITE "back to ListNums™",!

ListDoubleNums(twicevals...) {
WRITE "Doubled Numbers:*,!
FOR i=1:1:twicevals {

WRITE twicevals(i),! }

by
uIT

Also see Variable Numbers of Arguments in Methods.

7.4 Procedure Code

The body of code between the braces is the procedure code, and it differs from traditional ObjectScript code in the following

ways:

90

Using ObjectScript

Procedure Code

A procedure can only be entered at the procedure label. Access to the procedure through label+offset syntax is not
allowed.

Any labels in the procedure are private to the procedure and can only be accessed from within the procedure. The
PRIVATE keyword can be used on labels within a procedure, although it is not required. The PUBLIC keyword cannot
be used on labels within a procedure — it yields a syntax error. Even the system function $TEXT cannot access a
private label by name, although $TEXT does support label+offset using the procedure label name.

Duplicate labels are not permitted within a procedure but, under certain circumstances, are permitted within a routine.
Specifically, duplicate labels are permitted within different procedures. Also, the same label can appear within a pro-
cedure and elsewhere within the routine in which the procedure is defined. For instance, the following three occurrences
of Label1 are permitted:

ObjectScript

Roul // Roul routine

Procl(x,y) {

Labell // Labell within the procl procedure within the Roul routine
3

Proc2(a,b,c) {
Labell // Labell within the Proc2 procedure (local, as with previous Labell)
}

Labell // Labell that is part of Roul and neither procedure

If the procedure contains a DO command or user-defined function without a routine name, it refers to a label within
the procedure, if one exists. Otherwise, it refers to a label in the routine but outside of the procedure.

If the procedure contains a DO or user-defined function with a routine name, it always identifies a line outside of the
procedure. This is true even if that name identifies the routine that contains the procedure. For example:
ObjectScript

ROU1 ;
PROC1(x,y) {

DO Labell”ROU1
Labell ;

T
Labell ; The DO calls this label

If a procedure contains a GOTO, it must be to a private label within the procedure. You cannot exit a procedure with
a GOTO.

label+offset syntax is not supported within a procedure, with a few exceptions:
— $TEXT supports label+offset from the procedure label.

— GOTO label+offset is supported in direct mode lines from the procedure label as a means of returning to the
procedure following a Break or error.

— The ZBREAK command supports a specification of label+offset from the procedure label.

When the procedure ends, the system restores the $TEST state that had been in effect when the procedure was called.

The } that denotes the end of the procedure can be in any character position on the line, including the first character
position. Code can precede the } on the line, but cannot follow it on the line.

An implicit QUIT is present just before the closing brace.

Indirection and XECUTE commands behave as if they are outside of a procedure.

Using ObjectScript 91

Callable User-defined Code Modules

7.5 Indirection, XECUTE Commands, and JOB Commands
within Procedures

Name indirection, argument indirection, and XECUTE commands that appear within a procedure are not executed within
the scope of the procedure. Thus, XECUTE acts like an implied DO of a subroutine that is outside of the procedure.

Indirection and XECUTE only access public variables. As a result, if indirection or an XECUTE references a variable x,
then it references the public variable x regardless of whether or not there is also a private x in the procedure. For example:
ObjectScript

SET x='"'set a=3" XECUTE x ; sets the public variable a to 3
SET x="labell"™ DO @x ; accesses the public subroutine labell

Similarly, a reference to a label within indirection or an XECUTE is to a label outside of the procedure. Hence GOTO @A
is not supported within a procedure, since a GOTO from within a procedure must be to a label within the procedure.

Other parts of the documentation contain more detail on indirection and the XECUTE command.

Similarly, when you issue a JOB command within a procedure, it starts a child process that is outside the method. This
means that for code such as the following:

ObjectScript

KILL “MyVar

JOB MyLabel

QUIT $$$0K
MyLabel

SET ~MyVar=1

QUIT

In order for the child process to be able to see the label, the method or the class cannot be contained in a procedure block.

7.6 Error Traps within Procedures

If an error trap gets set from within a procedure, it needs to be directly to a private label in the procedure. (This is unlike
in legacy code, where it can contain +offset or a routine name. This rule is consistent with the idea that executing an error
trap essentially means unwinding the stack back to the error trap and then executing a GOTO.)

If an error occurs inside a procedure, $ZERROR gets set to the procedure label+offset, not to a private label+offset.

To set an error trap, the normal $ZTRAP is used, but the value must be a literal. For instance:

ObjectScript

SET $ZTRAP = "abc™
// sets the error trap to the private label "abc"™ within this block

For more information on error traps, see Using Try-Catch.

92 Using ObjectScript

Legacy User-Defined Code

7.7 Legacy User-Defined Code

Before the addition of procedures to InterSystems IRIS, there was support for user-defined code in the form of subroutines
and functions (which themselves can now be implemented as procedures). These legacy entities are described here, primarily
to help explicate already-written code; their ongoing use is not recommended.

7.7.1 Subroutines

7.7.1.1 Syntax

Routine syntax:

label [(param [= default J[, ---1) 1
code
QUIT

Invoking syntax:

DO label [(param [, ---1) 1]
or
GOTO label
Argument Description
label The name of the subroutine. A standard label. It must start in column one. The parameter

parentheses following the label are optional. If specified, the subroutine cannot be invoked
using a GOTO call. Parameter parentheses prevent code execution from “falling through”
into a subroutine from the execution of the code that immediately precedes it. When
InterSystems IRIS encounters a label with parameter parentheses (even if they are empty)
it performs an implicit QUIT, ending execution rather than continuing to the next line in the
routine.

param The parameter value(s) passed from the calling program to the subroutine. A subroutine
invoked using the GOTO command cannot have param values, and must not have
parameter parentheses. A subroutine invoked using the DO command may or may not
have param values. If there are no param values, empty parameter parentheses may be
specified or omitted. Specify a param variable for each parameter expected by the
subroutine. The expected parameters are known as the formal parameter list.. There may
be none, one, or more than one param. Multiple param values are separated by commas.
InterSystems IRIS automatically invokes NEW on the referenced param variables.
Parameters may be passed to the formal parameter list by value or by reference.

default An optional default value for the param preceding it. You can either provide or omit a default
value for each parameter. A default value is applied when no actual parameter is provided
for that formal parameter, or when an actual parameter is passed by reference and the
local variable in question does not have a value. This default value must be a literal: either
a number, or a string enclosed in quotation marks. You can specify a null string (*"**) as a
default value. This differs from specifying no default value, because a null string defines
the variable, whereas the variable for a parameter with no specified or default value would
remain undefined. If you specify a default value that is not a literal, InterSystems IRIS
issues a <PARAMETER> error.

Using ObjectScript 93

Callable User-defined Code Modules

Argument Description

code A block of code. This block of code is normally accessed by invoking the label. However,
it can also be entered (or reentered) by calling another label within the code block or issuing
a label + offset GOTO command. A block of code can contain nested calls to other
subroutines, functions, or procedures. It is recommended that such nested calls be
performed using DO commands or function calls, rather than a linked series of GOTO
commands. This block of code is normally exited by an explicit QUIT command; this QUIT
command is not always required, but is a recommended coding practice. You can also exit
a subroutine by using a GOTO to an external label.

7.7.1.2 Description

A subroutine is a block of code identified by a label found in the first column position of the first line of the subroutine.
Execution of a subroutine most commonly completes by encountering an explicit QUIT statement.

A subroutine is invoked by either the DO command or the GOTO command.

» A DO command executes a subroutine and then resumes execution of the calling routine. Thus, when InterSystems
IRIS encounters a QUIT command in the subroutine, it returns to the calling routine to execute the next line following
the DO command.

A GOTO command executes a subroutine but does not return control to the calling program. When InterSystems IRIS
encounters a QUIT command in the subroutine, execution ceases.

You can pass parameters to a subroutine invoked by the DO command; you cannot pass parameters to a subroutine invoked
by the GOTO command. You can pass parameters by value or by reference. See Parameter Passing.

The same variables are available to a subroutine and its calling routine.

A subroutine does not return a value.

7.7.2 Functions

A function, by default and recommendation, is a procedure. You can, however, define a function that is not a procedure.
This section describes such functions.

7.7.2.1 Syntax

Non-procedure function syntax:

label ([param [= default 11 L[, ---1)
code
QUIT expression

Invoking syntax:
command $$label ([param[,...11)
or

DO label([param[,-..11)

94 Using ObjectScript

Legacy User-Defined Code

Argument Description

label The name of the function. A standard label. It must start in column one. The
parameter parentheses following the label are mandatory.

param A variable for each parameter expected by the function. The expected parameters
are known as the formal parameter list . There may be none, one, or more than one
param. Multiple param values are separated by commas. InterSystems IRIS
automatically invokes NEW for the referenced param variables. Parameters may
be passed to the formal parameter list by value or by reference.

default An optional default value for the param preceding it. You can either provide or omit
a default value for each parameter. A default value is applied when no actual
parameter is provided for that formal parameter, or when an actual parameter is
passed by reference and the local variable in question does not have a value. This
default value must be a literal: either a number, or a string enclosed in quotation
marks. You can specify a null string () as a default value. This differs from specifying
no default value, because a null string defines the variable, whereas the variable
for a parameter with no specified or default value would remain undefined. If you
specify a default value that is not a literal, InterSystems IRIS issues a
<PARAMETER> error.

code A block of code. This block of code can contain nested calls to other functions,
subroutines, or procedures. Such nested calls must be performed using DO
commands or function calls. You cannot exit a function’s code block by using a
GOTO command. This block of code can only be exited by an explicit QUIT
command with an expression.

expression The function’s return value, specified using any valid ObjectScript expression. The
QUIT command with expression is a mandatory part of a user-defined function. The
value that results from expression is returned to the point of invocation as the result
of the function.

7.7.2.2 Description

User-defined functions are described in this section. Calls to user-defined functions are identified by a $$ prefix. (A user-
defined function is also known as an extrinsic function.)

User-defined functions allow you to add functions to those supplied by InterSystems IRIS. Typically, you use a function
to implement a generalized operation that can be invoked from any number of programs.

A function is always called from within an ObjectScript command. It is evaluated as an expression and returns a single
value to the invoking command. For example:
ObjectScript

SET x=$$myfunc()

7.7.2.3 Function Parameters

As arule, user-defined functions use parameter passing. A function, however, can work without externally supplied values.
For example, you can define a function to generate a random number or to return the system date in a format other than
the default format. Note that in these cases, too, you must supply the parameter parentheses in both the function definition
and the function call, even though the parameter list is empty.

Parameter passing requires:

Using ObjectScript 95

Callable User-defined Code Modules

* An actual parameter list on the function call.

» Aformal parameter list on the function definition.

When InterSystems IRIS executes a user-defined function, it maps the parameters in the actual list, by position, to the cor-
responding parameters in the formal list. For example, the value of the first parameter in the actual list is placed in the first
variable in the formal list; the second value is placed in the second variable; and so on. The matching of these parameters
is done by position, not name. Thus, the variables used for the actual parameters and the formal parameters are not required
to have (and usually should not have) the same names. The function accesses the passed values by referencing the appro-
priate variables in its formal list.

If there are more variables in the formal list than there are parameters in the actual list, and a default value is not provided
for each, the extra variables are left undefined. Your function code should include appropriate I f tests to make sure that
each function reference provides usable values.

When passing parameters to a user-defined function, you can use passing by value or passing by reference. You can mix
passing by value and passing by reference within the same function call. See Parameter Passing.

7.7.2.4 Return Value

The syntax for defining a user-defined function is as follows:

| abel (paraneters)
code
QUIT expression

The function must contain a QUIT command followed by an expression. InterSystems IRIS terminates the execution of
the function when it encounters the QUI T, and returns the single value that results from the associated expression to the
invoking program.

If you specify a QUIT command without an expression, InterSystems IRIS issues an error.

7.7.2.5Variables

The invoking program and the called function use the same set of variables, with the following special considerations.

* InterSystems IRIS executes an implicit NEW command for each parameter in the formal list. This is shown in the
following example, where x is reinitialized when myfunc is invoked:

ObjectScript

mainprog
SET x=7
SET y=$$myfunc(99)
myfunc(x)
WRITE X
QUIT 66

e The system saves the current value of the system variable $TEST when it enters the function and restores it when the
function terminates. Any change in the $TEST value during execution of the function will be discarded when the
function exits, unless you include code to explicitly save it by some other means.

7.7.2.6 Location of Functions

You can define a user-defined function within the routine that references it, or in a separate routine where multiple programs
can reference it. Recommended practice is to use one routine to contain all your user-defined function definitions. In this
way, you can easily locate any function definition to examine or update it.

96 Using ObjectScript

Legacy User-Defined Code

7.7.2.7 Invoking a User-defined Function

You can invoke a user-defined function using either the $$ prefix, or by using the DO command. The $$ form provides
the most functionality, and is generally the preferred form.

Using the 3 Prefix

You can invoke a user-defined function in any context in which an expression is allowed. A user-defined function call takes
the form:

$$name([param [,..-11)

where

* name specifies the name of the function. Depending on where the function is defined, name can be specified as:
— label — A line label within the current routine.
— label*routine — A line label within the named routine that resides on disk.

— “routine — A routine that resides on disk. The routine must contain only the code for the function to be performed.

A routine is defined within a namespace. You can use an extended routine reference to execute a user-defined function
that is located in a routine defined in a namespace other than the current namespace:

ObjectScript

WRITE $$myfunc”™|"USER"|routine

» param specifies the values to be passed to the function. The supplied parameters are known as the actual parameter
list. They must match the formal parameter list defined for the function. For example, the function code may expect
two parameters, with the first being a numeric value and the second being a string literal. If you specify the string literal
for the first parameter and the numeric value for the second, the function may yield an incorrect value or possibly
generate an error. Parameters in the formal parameter list always have NEW invoked by the function. See the NEW
command. Parameters can be passed by value or by reference. See Parameter Passing. If you pass fewer parameters
to the function than are listed in the function’s formal parameter list, parameter defaults are used (if defined); if there
are no defaults, these parameters remain undefined.

Using the DO Command

You can invoke a user-defined function using the DO command. (You cannot invoke a system-supplied function using the
DO command.) A function invoked using DO does not return a value. That is, the function must generate a return value,
but the DO command ignores this return value. This greatly limits the use of DO for invoking user-defined functions.

To invoke a user-defined function using DO, you issue a command in the following syntax:
DO label(param[,---1)

The DO command calls the function named label and passes it the parameters (if any) specified by param. Note that the
$3 prefix is not used, and that the parameter parentheses are mandatory. The same rules apply for specifying the label and
param as when invoking a user-defined function using the $$ prefix.

A function must always return a value. However, when a function is called with DO, this returned value is ignored by the
calling program.

Using ObjectScript 97

Using Macros and Include Files

This page describes how to define and use macros and include files (which contain macros). InterSystems IRIS® data
platform provides system macros that you can use as well.

Important: The phrase include file is used for historical reasons but unfortunately also creates some confusion. In
InterSystems IRIS, an include file is not actually a file (a separate standalone file in the operating system).
As with classes and routines, an include file is a unit of code stored within an InterSystems IRIS database.

A suitable IDE will provide an option for creating an include file, and will store the code correctly in the
database — the same as with any other code element. Similarly, if the IDE is connected to a source control
system, each code element is projected to an external file that is managed via source control.

8.1 Macro Basics

A macro is a convenient substitution that you can define and use as follows:

1. You define the macro via special syntax, typically the #define directive. For example:

ObjectScript

#define StringMacro "Hello, World!"

This syntax defines a macro called StringMacro. Note that macro names are case-sensitive.
2. Later, you invoke the macro with the syntax $$$macroname, for example:

ObjectScript

write $$$StringMacro
The previous is equivalent to the following:

ObjectScript

write "Hello, World!™

The substitution occurs when the code (a class or routine) is compiled. Specifically, the class or routine itself is unchanged,
but the generated .INT code shows the substitutions. (For a fuller picture of how code is compiled, see How These Code
Elements Work Together.)

Using ObjectScript 99

Using Macros and Include Files

Remember that macros are text substitutions. After the substitution is performed, the resulting statement must be syntactically
correct. Therefore, the macro defining an expression should be invoked in a context requiring an expression; the macro for
a command and its argument can stand as an independent line of ObjectScript; and so on.

8.2 Include File Basics

Typically, you define macros within an include file, which you then include within other code, which enables that code to
refer to the macros. This works as follows:

1. Aninclude file is a specific kind of unit of code stored in the database. The following shows a partial example:

ObjectScript

#; Optional comment lines

#define RELEASEID $GET(“MyGlobal ("'ReleaselD™),"")

#define RELEASENUMBER $GET(~MyGlobal (*'ReleaseNumber™),"")
#define PRODUCT $GET(”MyGlobal (*"Product™),"")

#define LOCALE $GET(“MyGlobal (*'Locale™),"en-us")

Notice that each line is either a comment line or starts with a #define directive. Blank lines are also permitted. There
are alternatives to #define that enable you to define more complex macros; these are discussed elsewhere in more
detail.

In the typical scenario, you create an include file in your IDE and save it with a specific name, such as MyMacros.

2. Within a class or routine that needs to use the macros, include the include file. For example:

Class Definition

include MyMacros

Class
MyPackage.MyClass {

//
3

In this example, the name of the include file is MyMacros.
This step makes macros of MyMacros available for use within the class or routine.
For all the syntax variations, which are different for routines, see Including Include Files.

3. Within that same class or routine, use the syntax $$$macroname to refer to the macro. For example:

ObjectScript

set title=$$$PRODUCT_" "'_$$SRELEASENUMBER

Note: Inrunning text, itis common to append . inc to the include file name; for example, a set of useful system macros
are defined in the %occStatus.inc and %occMessages.inc include files.

8.3 Defining Macros

In their most basic form, macros are created with a #define directive as shown in Macro Basics.

100 Using ObjectScript

Defining Macros

There are additional directives that enable you to define macros that accept arguments and that support more complex
scenarios. Also you can use ##continue to continue a #define directive to the next line. See Preprocessor Directives Reference
for more.

This section provides information on where you can define macros, what macro definitions can contain, the rules that macro
names must follow, use of whitespace in macros, and macro comments.

8.3.1 Where to Define Macros

You can define macros in the following locations, each of which affects the availability of the macros:

* You can define macros in an include file. In this case, the macros are available within any code that includes the nec-
essary include file.

Note that when a class includes an include file, any subclass of that class automatically includes the same include file.
* You can define macros within a method. In this case, the macros are available within that method.

* You can define macros within a routine. In this case, the macros are available within that routine.

8.3.2 Allowed Macro Definitions

Supported functionality includes:
» String substitutions, as demonstrated above.

* Numeric substitutions:

ObjectScript

#define NumberMacro 22

ObjectScript

#define 25M ##expression(25*1000*1000)

As is typical in ObjectScript, the definition of the numeric macro does not require quoting the number, while the string
must be quoted in the string macro’s definition.

e Variable substitutions:

ObjectScript

#define VariableMacro Variable

Here, the macro name substitutes for the name of a variable that is already defined. If the variable is not defined, there
is an <UNDEFINED> error.

e Command and argument invocations:

ObjectScript

#define CommandArgumentMacro(%Arg) WRITE %Arg,!

Macro argument names must start with the % character, such as the %Arg argument above. Here, the macro invokes
the WRITE command, which uses the %Arg argument.

» Use of functions, expressions, and operators:

Using ObjectScript 101

Using Macros and Include Files

ObjectScript

#define FunctionExpressionOperatorMacro ($ZDate(+$Horolog))

Here, the macro as a whole is an expression whose value is the return value of the $ZDate function. $ZDate operates
on the expression that results from the operation of the + operator on the system time, which the system variable
$Horolog holds. As shown above, it is a good idea to enclose expressions in parentheses so that they minimize their
interactions with the statements in which they are used.

References to other macros:

ObjectScript

#define ReferenceOtherMacroMacro WRITE $$$ReferencedMacro

Here, the macro uses the expression value of another macro as an argument to the WRITE command.

Note: If one macro refers to another, the referenced macro must appear on a line of code that is compiled before
the referencing macro.

8.3.3 Macro Naming Conventions

The first character must be an alphanumeric character or the percent character (%).

The second and subsequent characters must be alphanumeric characters. A macro name may not include spaces,
underscores, hyphens, or other symbol characters.

Macro names are case-sensitive.
Macro names can be up to 500 characters in length.

Macro names can contain Japanese ZENKAKU characters and Japanese HANKAKU Kana characters. For further
details, refer to the “Pattern Codes” table in Pattern Match Operator.

Macro names should not begin with 1SC, because 1SCname.inc files are reserved for system use.

8.3.4 Macro Whitespace Conventions

By convention, a macro directive is not indented and appears in column 1. However, a macro directive may be indented.

One or more spaces may follow a macro directive. Within a macro, any number of spaces may appear between macro
directive, macro name, and macro value.

A macro directive is a single-line statement. The directive, macro name, and macro value must all appear on the same
line. You can use ##continue to continue a macro directive to the next line.

#if and #elself directives take a test expression. This test expression may not contain any spaces.

An #if expression, an #elself expression, the #else directive, and the #endif directive all appear on their own line.
Anything following one of these directives on the same line is considered a comment and is not parsed.

8.3.5 Macro Comments and Studio Assist

Macros can include comments, which are passed through as part of their definition. Comments delimited with /* and */,
//,#;, ;,and ;; all behave in their usual way. See Comments.

102

Using ObjectScript

Including Include Files

Comments that begin with the /// indicator have a special functionality. If you wish to use Studio Assist with a macro
that is in an include file, then place a /// comment on the line that immediately precedes its definition; this causes its name
to appear in the Studio Assist popup. (All macros in the current file appear in the Studio Assist popup.) For example, if the
following code were referenced through an #include directive, then the first macro would appear in the Studio Assist popup
and the second would not:

ObjectScript

/// A macro that is visible with Studio Assist
#define MyAssistMacro 100
//

// ...

//

// A macro that is not visible with Studio Assist
#define MyOtherMacro -100

For information on making macros available through include files, see Including Include Files.

8.4 Including Include Files

This section describes how to include include files in your code.

» Toinclude an include file in a class or at the beginning of a routine, use a directive of the form:

ObjectScript

#include MacrolncFile

where MacrolncFile refers to an included file containing macros that is called MacroincFile.inc. Note that the .inc suffix
is not included in the name of the referenced file when it is an argument of #include. The #include directive is not
case-sensitive.

Note that when a class includes an include file, any subclass of that class automatically includes the same include file.

For example, if you have one or more macros in the file MyMacros.inc, you can include them with the following call:
ObjectScript
#include MyMacros

» To include multiple include files in a routine, use multiple directives of the same form. For example:

ObjectScript

#include MyMacros
#include YourMacros

» To include multiple include files at the beginning of a class definition, the syntax is of the form:
include (MyMacros, YourMacros)
Note that this include syntax does not have a leading pound sign; this syntax cannot be used for #include.

See the reference section on #include.

Note that when you compile a class definition, that process normalizes the class definition in various ways such as removing
whitespace. One of these normalizations converts the capitalization of the include directive.

Using ObjectScript 103

Using Macros and Include Files

The ObjectScript compiler provides a /defines qualifier that permits including external macros. For further details refer
to the Compiler Qualifiers table in the $SY STEM reference page.

8.5 Where to See Expanded Macros

As noted above, when you compile classes and routines, the system generates INT code (intermediate ObjectScript) code,
which you can display and read the INT code, which is a useful way to perform some kinds of troubleshooting.

Note: The preprocessor expands macros before the ObjectScript parser handles any Embedded SQL. The preprocessor
supports Embedded SQL in either embedded or deferred compilation mode; the preprocessor does not expand
macros within Dynamic SQL.

The ObjectScript parser removes multiple line comments before parsing preprocessor directives. Therefore, any
macro preprocessor directive specified within a /* . . . */ multiple line comment is not executed.
Also, the following globals contain MAC code (the original source code). Use ZWRITE to display these globals and their

subscripts:

* ~rINDEX(routinename,” MAC") contains the timestamp when the MAC code was last saved after being modified,
and the character count for this MAC code file. The character count including comments and blank lines. The timestamp
when the MAC code was last saved, when it was compiled, and information about #include files used are recorded in
the "ROUTINE global for the INT code. For further details about INT code, refer to the ZLOAD command.

* ~rMAC(routinename) contains a subscript node for each line of code in the MAC routine, as well as
~rMAC(routinename,0,0) containing the line count, "rMAC(routinename, Q) containing the timestamp when
it was last saved, and ~*rMAC(routinename,0, ' SIZE'™) containing the character count.

~rMACSAVE(routinename) contains the history of the MAC routine. It contains the same information as
~rMAC(routinename) for the past five saved versions of the MAC routine. It does not contain information about the
current MAC version.

8.6 See Also

o #define
o #include
» Preprocessor Directives Reference

e System Macros

104 Using ObjectScript

Embedded SQL

You can embed SQL within ObjectScript.

9.1 Embedded SQL

Embedded SQL allows you to include SQL code within an ObjectScript program. The syntax is &sql (). For example:

ObjectScript

&sql (SELECT Name INTO :n FROM Sample.Person)
WRITE "name is: ",n

Embedded SQL is not compiled when the routine that contains it is compiled. Instead, compilation of Embedded SQL
occurs upon the first execution of the SQL code (runtime).

For further details, see Using Embedded SQL.

9.2 Other Forms of Queries

You can include SQL queries in other ways within ObjectScript, by using the API provided by the %SQL classes. See Using
Dynamic SQL.

Using ObjectScript 105

10

Multidimensional Arrays

InterSystems IRIS® data platform includes support for multidimensional arrays. A multidimensional array is a persistent
variable consisting of one or more elements, each of which has a unique subscript. You can intermix different kinds of
subscripts. An example is the following MyVar array:

e MyVar
MyVar(22)
* MyVar(-3)

e MyVar(*MyString”)

e MyVar(-123409, “MyString”)

e MyVar(“MyString”, 2398)

o MyVar(1.2, 3, 4, “Five”, “Six”, 7)

The array node MyVar is an ObjectScript variable and follows the conventions for that variable type.

The subscripts of MyVar are positive and negative numbers, strings, and combinations of these. A subscript can include
any characters, including Unicode characters. A numeric subscript is stored and referenced as a canonical number. A string
subscript is stored and referenced as a case-sensitive literal. A canonical number (or a number that reduces to a canonical
number) and a string containing that canonical number are equivalent subscripts.

10.1 What Multidimensional Arrays Are

Succinctly, multidimensional arrays are persistent, n-dimensional arrays that are denoted through the use of subscripts.
Individual nodes are also known as “globals” and are the building block of InterSystems IRIS data storage. They have
other characteristics as well:

e They exist in tree structures.
e They are sparse.

e They are one of three basic kinds.

10.1.1 Multidimensional Tree Structures

The entire structure of a multidimensional array is called a tree; it begins at the top and grows downwards. The root, MyVar
above, is at the top. The root, and any other subscripted form of it, are called nodes. Nodes that have no nodes beneath

Using ObjectScript 107

Multidimensional Arrays

them are called leaves. Nodes that have nodes beneath them are called parents or ancestors. Nodes that have parents are
called children or descendants. Children with the same parents are called siblings. All siblings are automatically sorted
numerically or alphabetically as they are added to the tree.

10.1.2 Sparse Multidimensional Storage

Multidimensional arrays are sparse. This means that the example above uses only seven reserved memory locations, one
for each defined node. Further, since there is no need to declare arrays or specify their dimensions, there are additional
memory benefits: no space is reserved for them ahead of time; they use no space until needing it; and all the space that they
use is dynamically allocated. As an example, consider an array used to keep track of players’ pieces for a game of checkers;
a checkerboard is 8 by 8. In a language that required an 8-by-8 checkerboard-sized array would use 64 memory locations,
even though no more than 24 positions are ever occupied by checkers; in ObjectScript, the array would require 24 positions
only at the beginning, and would need fewer and fewer during the course of the game.

10.1.3 Kinds of Multidimensional Arrays

Multidimensional arrays can be one of three basic kinds. In all of these cases, an array can be differentiated from a scalar
by virtue of the fact that an array has one or more subscripts.

» Any local variable with subscripts is an array. For example, creating x(1) defines x as an array.

» Any global with subscripts is an array. For example, creating “y(1) defines "y as an array.

e A property in a class can be a multidimensional array if it has the Mul tiDimensional keyword in its definition, for
example:

Property MyProp as %String [MultiDimensional];
You can then set its value with a statement such as:
myObj -MyProp(1) = "hello world"

Note that multidimensional properties in persistent or serial classes are not saved to disk when an object is saved,
unless custom code is written to save the property.

10.2 Manipulating Multidimensional Arrays

You can write to and read from them using the Read and Write commands respectively.

InterSystems IRIS provides a comprehensive set of commands and functions for working with multidimensional arrays:
e Set places values in an array.

e Kill removes all or part of an array structure.

» Merge copies all or part of an array structure to a second array structure.

* $Order and $Query allows you to iterate over the contents of an array.

» $Data allows you to test for the existence of nodes in an array.

This set of commands and functions can operate on multidimensional globals and multidimensional local variables. Globals
can be easily identified by their leading “~” (caret) character.

108 Using ObjectScript

See Also

10.3 See Also

For further information on multidimensional arrays, see Using Globals.

Using ObjectScript 109

11

String Operations

ObijectScript provides several groups of operations related to strings, each with its own purpose and features. These are
basic string operations and functions; delimited string operations; and list-structure string operations.

11.1 Basic String Operations and Functions

ObjectScript basic string operations allow you to perform various manipulations on a string. They include:

* The $LENGTH function returns the number of characters in a string: For example, the code:

ObjectScript

WRITE $LENGTH('How long is this?")

returns 17, the length of a string. For more details, see $LENGTH.

e S$JUSTIFY returns aright-justified string, padded on the left with spaces (and can also perform operations on numeric

values). For example, the code:
ObjectScript

WRITE "one",!,$JUSTIFY("two",8),!," "three"
justifies string two within eight characters and returns;

one
two
three

For more details, see $JUSTIFY.

* $ZCONVERT converts a string from one form to another. It supports both case translations (to uppercase, to lowercase,

or to title case) and encoding translation (between various character encoding styles). For example, the code:

ObjectScript
WRITE $ZCONVERT("'CRAZy CcAPs","t')
returns:

CRAZY CAPS

Using ObjectScript 111

String Operations

For more details, see $ZCONVERT.

» The $FIND function searches for a substring of a string, and returns the position of the character following the substring.
For example, the code:
ObjectScript

WRITE $FIND("'Once upon a time...", "upon'™)

returns 10 character position immediately following “upon.” For more details, see $FIND.

* The $TRANSLATE function performs a character-by-character replacement within a string. For example, the code:

ObjectScript

SET text = "11/04/2008"
WRITE $TRANSLATE(text,'/","-'"")

replaces the date’s slashes with hyphens. For more details, see $TRANSLATE.

» The $REPL ACE function performs string-by-string replacement within a string; the function does not change the
value of the string on which it operates. For example, the following code performs two distinct operations:

ObjectScript

SET text = "green leaves, brown leaves"
WRITE text,!

WRITE $REPLACE(text,"leaves","eyes™),!
WRITE $REPLACE(text,"leaves”,hair",15),!
WRITE text,!

In the first call, S(REPL ACE replaces the string Ieaves with the string eyes. In the second call, SREPL ACE discards
all the characters prior to the fifteenth character (specified by the fourth argument) and replaces the string leaves
with the string hai r. The value of the text string is not changed by either SREPL ACE call. For more details, see
$REPLACE.

* The $EXTRACT function, which returns a substring from a specified position in a string. For example, the code:

ObjectScript

WRITE $EXTRACT('Nevermore'),$EXTRACT("'prediction”,5),$EXTRACT("'xon/xoff"",1,3)

returns three strings. The one-argument form returns the first character of the string; the two-argument form returns
the specified character from the string; and the three-argument form returns the substring beginning and ending with
specified characters, inclusive. In the example above, there are no line breaks, so the return value is:

Nixon

For more details, see the next section or see SEXTRACT.

11.1.1 Advanced Features of $SEXTRACT

You can use the SEXTRACT function in conjunction with the SET command pad a string on the left with spaces.

ObjectScript

SET x = "abc"

WRITE x,!

SET $EXTRACT(y, 3) = x
SET x = y

WRITE x

112 Using ObjectScript

Delimited Strings

This code takes the string abc and places at the third character of string y. Because y has no specified value, SEXTRACT
assumes that its characters are blank, which acts to pad the string.

You can also use $EXTRACT to insert a new string at a particular point in variable. It extracts the characters specified
and replaces them with the supplied substring, whether or not the lengths of the old and new strings match. For example:
ObjectScript

SET x = "1234"

WRITE x,1!
SET $EXTRACT(X, 3) = "abc"
WRITE x,1!

SET $EXTRACT(y, 3) = "abc"
WRITE y

This code sets x to 1234; it then extracts the third character of x using $EXTRACT and inserts abc in its place, making
the string 12abc4.

11.2 Delimited Strings

ObijectScript includes functions that allow you to work with strings as a set of substrings, so that you can pass related pieces
of data as a single string. These are functions are:

» $PIECE — Returns a specific piece of a string based on a specified delimiter. It can also return a range of pieces, as
well as multiple pieces from a single string, based on multiple delimiters.

e $LENGTH — Returns the number of pieces in a string based on a specified delimiter.
The $PIECE function provides uniquely important functionality because it allows you to use a single string that contains

multiple substrings, with a special delimiter character (such as ”) to separate them. The large string acts as a record, and
the substrings are its fields.

The syntax for $PIECE is:

ObjectScript

WRITE $PIECE(ListString","QuotedDelimiter", ItemNumber)

where ListString is a quoted string that contains the full record being used; QuotedDelimiter is the specified delimited,
which must appear in quotes; and ItemNumber is the specified substring to be returned. For example, to display the second
item in the following space-delimited list, the syntax is:

ObjectScript

WRITE $PIECE("'Kennedy Johnson Nixon",™ ",2)

which returns Johnson.

You can also return multiple members of the list, so that the following:
ObjectScript
WRITE $PIECE("'Nixon***Ford***Carter***Reagan","***" 1,3)

returns Nixon***Ford***Carter. Note that both values must refer to actual substrings and the third argument (here
1) must be a smaller value than that of the fourth argument (here 3).

The delimiter can be anything you choose, such as with the following list:

Using ObjectScript 113

String Operations

ObjectScript

SET x = $PIECE(''Reagan,Bush,Clinton,Bush,Obama™,",",3)
SET y = $PIECE(''Reagan,Bush,Clinton,Bush,Obama', " Bush",2)
WRITE x,1,y

which returns

Clinton
,Clinton,

In the first case, the delimiter is the comma; in the second, it is the string Bush, which is why the returned string includes
the commas. To avoid any possible ambiguities related to delimiters, use the list-related functions, described in the next
section.

11.2.1 Advanced $PIECE Features

A call to $PI ECE that sets the value of a delimited element in a list will add enough list items so that it can place the substring
as the proper item in an otherwise empty list. For instance, suppose some code sets the first, then the fourth, then the
twentieth item in a list,

ObjectScript

SET_$PIECE(Alphalist, "~", 1) =

WRITE "First, the length of the Ilst is ",$LENGTH(Alphalist, ") ," "1
SET $PIECE(AIphaIISt At 4) = de

WRITE "Then, the length of the list is ",$LENGTH(Alphalist,"~),".",1
SET $PIECE(AIphaI|st At 20) = Ut

WRITE "Finally, the length of the list is ",$LENGTH(Alphalist,"»'),".",1

The $LENGTH function returns a value of 1, then 4, then 20, since it creates the necessary number of delimited items.
However, items 2, 3, and 5 through 19 do not have values set. Hence, if you attempt to display any of their values, nothing
appears.

A delimited string item can also contain a delimited string. To retrieve a value from a sublist such as this, nest $PIECE
function calls, as in the following code:

ObjectScript

SET $PIECE(Powers, "~", 1) = "1::1::1::1::1"
SET $PIECE(Powers, "/, 2) = "2::4::8::16::32"
SET $PIECE(Powers, "/, 3) = "3::9::27::81::243"
WRITE Powers,!

WRITE $PIECE($PIECE(Powers, "/, 2), "::", 3)

This code returns two lines of output: the first is the string Powers, including all its delimiters; the second is 8, which is
the value of the third element in the sublist contained by the second element in Powers. (In the Powers list, the nth item is
a sublist of two raised to the first through fifth powers, so that the first item in the sublist is n to the first power, and so on.)

For more details, see $PIECE.

11.3 List-Structure String Operations

ObjectScript defines a special kind of string called a list, which consists of an encoded list of substrings, known as elements.
These InterSystems IRIS lists can only be handled using the following list functions:

e Listcreation:

— S$LISTBUILD creates a list by specifying each element as a parameter value.

114 Using ObjectScript

List-Structure String Operations

SLISTFROMSTRING creates a list by specifying a string that contains delimiters. The function uses the delimiter
to divide the string into elements.

$LIST creates a list by extracting it as a sublist from an existing list.

List data retrieval:

SLIST returns a list element value by position. It can count positions from the beginning or the end of the list.

SLISTNEXT returns list element values sequentially from the beginning of the list. While both $LIST and
$LISTNEXT can be used to sequentially return elements from a list, $L1STNEXT is significantly faster when
returning a large number of list elements.

SLISTGET returns a list element value by position, or returns a default value.

SLISTTOSTRING returns all of the element values in a list as a delimited string.

List manipulation:

SET $LIST inserts, updates, or deletes elements in a list. SET $LIST replaces a list element or a range of list
elements with one or more values. Because SET $LIST can replace a list element with more than one element,
you can use it to insert elements into a list. Because SET $L1ST can replace a list element with a null string, you
can use it to delete a list element or a range of list elements.

e List evaluation:

SLISTVALID determines if a string is a valid list.

$LISTLENGTH determines the number of elements in a list.

$LISTDATA determines if a specified list element contains data.

$LISTFIND determines if a specified value is found in a list, returning the list position.

$LISTSAME determines if two lists are identical.

Because a list is an encoded string, InterSystems IRIS treats lists slightly differently than standard strings. Therefore, you
should not use standard string functions on lists. Further, using most list functions on a standard string generates a <LIST>

error

The following procedure demonstrates the use of the various list functions:

ObjectScript

ListTest() PUBLIC {
// set values for list elements
SET Addr="0One Memorial Drive"
SET City="Cambridge"
SET State="MA"
SET Zip="02142"

// create list
SET Mail = $LISTBUILD(Addr,City,State,Zip)

// get user input
READ "Enter a string: ",input,!,k!

// if user input is part of the list, print the list"s content
IF $LISTFIND(Mail,input) {

}

FOR i=1:1:$LISTLENGTH(Mail) {
WRITE SLIST(Mail,1),!

This procedure demonstrates several notable aspects of lists:

Using ObjectScript 115

String Operations

* S$LISTFIND only returns 1 (True) if the value being tested matches the list item exactly.
* SLISTFIND and $LISTLENGTH are used in expressions.

For more detailed information on list functions see the corresponding reference pages in the ObjectScript Reference.

11.3.1 Sparse Lists and Sublists

A function that adds an element value to a list by position will add enough list elements to place the value in the proper
position. For example:

ObjectScript

SET $LIST(Alphalist,1)="a"
SET $LIST(Alphalist,20)="t"
WRITE $LISTLENGTH(Alphalist)

Because the second $L 1 ST in this example creates list element 20, $L 1 STLENGTH returns a value of 20. However, elements
2 through 19 do not have values set. Hence, if you attempt to display any of their values, you will receive a <NULL VALUE>
error. You can use $LISTGET to avoid this error.

An element in a list can itself be a list. To retrieve a value from a sublist such as this, nest $L1ST function calls, as in the
following code:

ObjectScript

SET $LIST(Powers,2)=$LI1STBUILD(2,4,8,16,32)
WRITE $LIST($LIST(Powers,2),5)

This code returns 32, which is the value of the fifth element in the sublist contained by the second element in the Powers
list. (In the Powers list, the second item is a sublist of two raised to the first through fifth powers, so that the first item in
the sublist is two to the first power, and so on.)

11.4 Lists and Delimited Strings Compared

11.4.1 Advantages of Lists

o Lists do not require a designated delimiter. Though the $PIECE function allows you to manage a string containing
multiple data items, it depends on setting aside a character (or character string) as a dedicated delimiter. When using
delimiters, there is always the chance that one of the data items will contain the delimiter character(s) as data, which
will throw off the positions of the pieces in the delimited string. A list is useful for avoiding delimiters altogether, and
thus allowing any character or combination of characters to be entered as data.

» Data elements can be retrieved faster from a list (using $L1ST or $L1STNEXT) than from a delimited string (using
$PIECE). For sequential data retrieval, $L I STNEXT is significantly faster than $L1ST, and both are significantly
faster than $PIECE.

11.4.2 Advantages of Delimited Strings

» Adelimited string allows you to more flexibly search the contents of data, using the $FIND function. Because
$LISTFIND requires an exact match, you cannot search for partial substrings in lists. Hence, in the example above,
using $L I STFIND to search for the string One in the Mail list return 0 (indicating failure), even though the address
One Memorial Drive begins with the characters One.

116 Using ObjectScript

Lists and Delimited Strings Compared

» Because a delimited string is a standard string, you can use all of the standard string functions on it. Because an Inter-
Systems IRIS list is an encoded string, you can only use $List functions on an InterSystems IRIS list.

Using ObjectScript 117

12

Locking and Concurrency Control

An important feature of any multi-process system is concurrency control, the ability to prevent different processes from
changing a specific element of data at the same time, resulting in corruption. Consequently, InterSystems IRIS® data
platform provides a lock management system. This page provides an overview.

12.1 Introduction

The basic locking mechanism is the LOCK command. The purpose of this command is to delay activity in one process
until another process has signaled that it is OK to proceed.

In InterSystems IRIS, a lock does not, by itself, prevent activity. Locking works only by convention: it requires that mutually
competing processes all implement locking with the same lock names. For example, the following describes a common
scenario:

1. Process A issues the LOCK command, and InterSystems IRIS creates a lock (by default, an exclusive lock).
Typically, process A then makes changes to nodes in a global. The details are application-specific.

2. Process B issues the LOCK command with the same lock name. Because there is an existing exclusive lock, process
B pauses. Specifically, the LOCK command does not return, and no successive lines of code can be executed.

3. When the process A releases the lock, the LOCK command in process B finally returns and process B continues.

Typically, process B then makes changes to nodes in the same global.

12.2 Lock Names

One of the arguments for the LOCK command is the lock name. Lock names are arbitrary, but by universal convention,
programmers use lock names that are identical to the names of the item to be locked. Usually the item to be locked is a
global or a node of a global. Thus lock names usually look like names of global names or names of nodes of globals. (This
page discusses only lock names that start with carets, because those are the most common; for details on locks with name
that do not start with carets, see LOCK.)

Formally, lock names follow the same naming conventions as local variables and global variables, as described in Variables.
Like variables, lock names are case-sensitive and can have subscripts. Do not use process-private global names as lock
names (you would not need such a lock anyway because by definition only one process can access such a global).

Using ObjectScript 119

Locking and Concurrency Control

Tip: Because locking works by convention and because lock names are arbitrary, it is not necessary to define a given
variable before creating a lock with the same name.

The form of the lock name has an effect on performance, because of how InterSystems IRIS allocates and manages memory.
Locking is optimized for lock names that use subscripts. An example is ~sample.person(id).

In contrast, InterSystems IRIS is not optimized for lock names such as “name_concatenated_identifier. Non-
subscripted lock names can also cause performance problems related to ECP.

12.3The Lock Table

InterSystems IRIS maintains a system-wide, in-memory table that records all current locks and the processes that have own
them. This table — the lock table — is accessible via the Management Portal, where you can view the locks and (in rare
cases, if needed) remove them. Note that any given process can own multiple locks, with different lock names (or even
multiple locks with the same lock name).

When a process ends, the system automatically releases all locks that the process owns. Thus it is not generally necessary
to remove locks via the Management Portal, except in the case of an application error.

The lock table cannot exceed a fixed size, which you can specify using the locksiz setting. For information, see Monitoring
Locks. Consequently, it is possible for the lock table to fill up, such that no further locks are possible. If this occurs, Inter-
Systems IRIS writes the following message to the messages.log file:

LOCK TABLE FULL

Filling the lock table is not generally considered to be an application error; InterSystems IRIS also provides a lock queue,
and processes wait until there is space to add their locks to the lock table. (However, deadlock is considered an application
programming error. See Avoiding Deadlock.)

12.4 Locks and Arrays

When you lock an array, you can lock either the entire array or one or more nodes in the array. When you lock an array
node, other processes are blocked from locking any node that is subordinate to that node. Other processes are also blocked
from locking the direct ancestors of the locked node.

The following figure shows an example:

120 Using ObjectScript

Using the LOCK Command

“MyGlobal(“config”)

“MyGlobal

"MyGlobal(“sales™)
L -

“MyGlobal(“staff")

"MyGlobal(“sales”,“Americas™)

“MyGlobal(“sales™,“APAC")

"MyGlobal(“sal

Diagram Key

locked

cannot be |
another

can be loc
another p

Implicit locks are not included in the lock table and thus do not affect the size of the lock table.

The InterSystems IRIS lock queuing algorithm queues all locks for the same lock name in the order received, even when
there is no direct resource contention. For an example and details, see Queuing of Array Node Locks.

12.5 Using the LOCK Command

This section discusses how to use the LOCK command to add and remove locks.

12.5.1 Adding an Incremental Lock

To add a lock, use the LOCK command as follows:
LOCK +lockname

Where lockname is the literal lock name. The plus sign (+) creates an incremental lock, which is the common scenario; see
Creating Simple Locks for a less common alternative.

This command does the following:

1. Attempts to add the given lock to the lock table. That is, this entry is added to the lock queue.

Using ObjectScript 121

Locking and Concurrency Control

2. Pauses execution until the lock can be acquired.

There are different types of locks, which behave differently. To add a lock of a non-default lock type, use the following
variation:

LOCK +lockname#locktype

Where locktype is a string of lock type codes enclosed in double quotes; see Lock Types.

Note that a given process can add multiple incremental locks with the same name; these locks can be of different types or
can all be the same type.

12.5.2 Adding an Incremental Lock with a Timeout

If used incorrectly, incremental locks can result in an undesirable situation known as deadlock, discussed later in Avoiding
Deadlock. One way to avoid deadlock is to specify a timeout period when you create a lock. To do so, use the LOCK
command as follows:

LOCK +lockname#locktype :timeout

Where timeout is the timeout period in seconds. The space before the colon is optional. If you specify timeout as 0, Inter-
Systems IRIS makes one attempt to add the lock (but see the note, below).

This command does the following:

1. Attempts to add the given lock to the lock table. That is, this entry is added to the lock queue.

2. Pauses execution until the lock can be acquired or until the timeout period ends, whichever comes first.

3. Sets the value of the $TEST special variable. If the lock is acquired, InterSystems IRIS sets STEST equal to 1. Otherwise,
InterSystems IRIS sets $TEST equal to 0.

This means that if you use the timeout argument, your code should next check the value of the $TEST special variable and
use the value to choose whether to proceed. The following shows an example:

ObjectScript

Lock +"ROUTINE(routinename):0
IT "$TEST { Return $$SERROR(*'Cannot lock the routine: ",routinename)}

12.5.2.1 A Note on the Zero Timeout

As noted above, if you specify timeout as 0, InterSystems IRIS makes one attempt to add the lock. However, if you try to
take a lock on a parent node using a zero timeout, and you already have a lock on a child node, the zero timeout is ignored
and there is an internal 1 second timeout, which is used instead.

12.5.3 Removing a Lock

To remove a lock of the default type, use the LOCK command as follows:
LOCK -lockname

If the process that executes this command owns a lock (of the default type) with the given name, this command removes
that lock. Or if the process owns more than one lock (of the default type), this command removes one of them.

Or to remove a lock of another type:

LOCK -lockname#locktype

122 Using ObjectScript

Lock Types

Where locktype is a string of lock type codes; see Lock Types. The lock type codes do not have to be in the same order as
when the lock was created.

12.5.4 Other Basic Variations of the LOCK Command

For completeness, this section discusses the other basic variations of the LOCK command: using it to create simple locks
and using it to remove all locks. These variations are uncommon in practice.

12.5.4.1 Creating Simple Locks

For the LOCK command, if you omit the + operator, the LOCK command first removes all existing locks held by this
process and then attempts to add the new lock. In this case, the lock is called a simple lock rather than an incremental lock.
It is possible for a process to own multiple simple locks, if that process creates them all at the same time with syntax like
the following:

LOCK (“MyVarl, MyVar2, MyVar3)

Simple locks are not common in practice, because it is usually necessary to hold multiple locks and to acquire them at dif-
ferent steps in your code. Thus it is more practical to use incremental locks.

However, if simple locks are appropriate for you, note that you can specify the locktype and timeout arguments when you
create a simple lock. Also, to remove a simple lock, you can use the LOCK command with a minus sign (-).

12.5.4.2 Removing All Locks

To remove all locks held by the current process, use the LOCK command with no arguments. In practice, it is not common
to use the command this way, for two reasons:

e Itis best to release specific locks as soon as possible.

* When the process ends, all its locks are automatically released.

12.6 Lock Types

The locktype argument specifies the type of lock to add or remove. When adding a lock, include this argument as follows:
LOCK +lockname#locktype
Or when removing a lock:

LOCK -lockname#locktype

In either case, locktype is one or more lock type codes (in any order) enclosed in double quotes. Note that if you specify
the locktype argument, you must include a pound character (#) to separate the lock name from the lock type.

There are four lock type codes, as follows. Note that these are not case-sensitive.
* S — Adds ashared lock. See Exclusive and Shared Locks.

e E— Adds an escalating lock. See Non-Escalating and Escalating Locks.

* 1 —Adds a lock with immediate unlock.

e D — Adds a lock with deferred unlock.

Using ObjectScript 123

Locking and Concurrency Control

The lock type codes D and 1 have special behavior in transactions. For details, see LOCK. You cannot use these two
lock type codes at the same time for the same lock name.

The next sections discuss the most common variations, and the last subsection summarizes all the lock types.

12.6.1 Exclusive and Shared Locks

Any lock is either exclusive (the default) or shared. These types have the following significance:

e While one process owns an exclusive lock (with a given lock name), no other process can acquire any lock with that
lock name.

* While one process owns a shared lock (with a given lock name), other processes can acquire shared locks with that
lock name, but no other process can acquire an exclusive lock with that lock name.

The typical purpose of an exclusive lock is to indicate that you intend to modify a value and that other processes should
not attempt to read or modify that value. The typical purpose of a shared lock is to indicate that you intend to read a value
and that other processes should not attempt to modify that value; they can, however, read the value. Also see Practical Uses
for Locks.

12.6.2 Non-Escalating and Escalating Locks
Any lock is also either non-escalating (the default) or escalating. The purpose of escalating locks is to make it easier to
manage large numbers of locks, which consume memory and which increase the chance of filling the lock table.

You use escalating locks when you lock multiple nodes of the same array. For escalating locks, if a given process has created
more than a specific number (by default, 1000) of locks on parallel nodes of a given array, InterSystems IRIS replaces the
individual lock names and replaces them with a new lock that contains the lock count. (In contrast, InterSystems IRIS never
does this for non-escalating locks.) For an example and additional details, see Escalating Locks.

Note: You can create escalating locks only for lock names that include subscripts. If you attempt to create an escalating
lock with a lock name that has no subscript, InterSystems IRIS issues a <COMMAND> error.

12.6.3 Summary of Lock Types

The following table lists all the possible lock types with their descriptions:

Exclusive Locks Shared Locks (#"S" locks)

Non-escalating | * locktype omitted — Default lock type e #"S" — Shared lock

Locks e #"I1" — Exclusive lock with immediate | « #"SI1" — Shared lock with immediate

unlock unlock

e #"D" — Exclusive lock with deferred e #"SD" — Shared lock with deferred

unlock unlock
Escalating * #"E" — Exclusive escalating lock e #'"SE" — Shared escalating lock
Locks (#"& * #"EI'" — Exclusive escalating lock with | « #"SE1'" — Shared escalating lock with
locks)

immediate unlock immediate unlock

e #"ED" — Exclusive escalating lock with | = #''SED" — Shared escalating lock with
deferred unlock deferred unlock

124 Using ObjectScript

Escalating Locks

For any lock type that uses multiple lock codes, the lock codes can be in any order. For example, the lock type #*'S1*" is
equivalent to #"1S"".

For details on immediate unlock and deferred unlock, see LOCK. You cannot use these two lock type codes at the same
time for the same lock name.

12.7 Escalating Locks

You use escalating locks to manage large numbers of locks. They are relevant when you lock nodes of an array, specifically
when you lock multiple nodes at the same subscript level.

When a given process has created more than a specific number (by default, 1000) of escalating locks at a given subscript
level in the same array, InterSystems IRIS removes all the individual lock names and replaces them with a new lock. The
new lock is at the parent level, which means that this entire branch of the array is implicitly locked. The example (shown
next) demonstrates this.

Your application should release locks for specific child nodes as soon as it is suitable to do so (exactly as with non-escalating
locks). As you release locks, InterSystems IRIS decrements the corresponding lock count. When your application removes
enough locks, InterSystems IRIS removes the lock on the parent node. The second subsection shows an example.

For information on specifying the lock threshold (which by default is 1000), see LockThreshold.

12.7.1 Lock Escalation Example

Suppose that you have 1000 locks of the form ~MyGlobal ("'sales","EU", salesdate) where salesdate represents
dates. The lock table might look like this:

Owner ModeCount Reference Directory

1284 Exclusive "%SYS("CSP","Daemon") c:lintersystemslirisimgr\

26324 Exclusive MSC.LMFMON("License Monitor") chintersystemsliris\mgr\

23400 Exclusive ASC.Monitor.System c:lintersystemslirisimgr\

23180 Exclusive "TASKMGR c:lintersystemsliris\mgr\

23948 Exclusive "%cspSession("vgMJ4iLMCL") c:lintersystemsliris\imgriirislocaldata\

19776 Exclusive_e "MyGlobal("sales","EU","2015-07-03") c:\intersystems\irisimgriusert
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-04") c:\intersystemsl\iris\imgr\user\
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-05") c:intersystems\irisimgriusert
19776 Exclusive_e “MyGlobal("sales","EU","2015-07-08") c:\intersystemsliris\mgriuser\
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-07") c:\intersystems\irisimgriusert
19776 Exclusive_e "MyGlobal("sales","EU","2015-07-08") c:\intersystems\iris\imgriuser\
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-09") c:\intersystems\iris\imgriusert
19776 Exclusive_ e "MyGlobal("sales","EU","2015-07-10") c:\intersystems\iris\imgr\user\
19776 Exclusive e "*MyGlobal("sales","EU","2015-07-11") c:lintersystems\iris\imgriusert
19776 Exclusive e "MyGlobal("sales","EU","2015-07-12") c:\intersystems\iris\imgriuser\

Notice the entries for owner 19776 (this is the process that owns the lock). The ModeCount column indicates that these are
exclusive, escalating locks.

When the same process attempts to create another lock of the same form, InterSystems IRIS escalates them. It removes
these locks and replaces them with a single lock of the name “MyGlobal (*'sales', ""EU'"). Now the lock table might
look like this:

Using ObjectScript 125

Locking and Concurrency Control

Owner ModeCount Reference Directory

1284 Exclusive AeSYS("CSP","Daemon") c:\intersystemshiris\imgri

26324 Exclusive *MSC.LMFMON("License Monitor") c:\intersystemshiris\imgri

23400 Exclusive ASC.Monitor.System clintersystemshiris\imgr\

23180 Exclusive ATASKMGR c\intersystemshiris\imgri

23948 Exclusive "ocspSession("vgMJ4iLMCL") c:\intersystemshiris\mgniirislocaldata\
19776 Exclusive/1001E “MyGlobal("sales","EU") c\intersystemshiris\imgriuser\

The ModeCount column indicates that this is a shared, escalating lock and that its count is 1001.
Note the following key points:

e All child nodes of "MyGlobal (*'sales","EU™) are now implicitly locked, following the basic rules for array
locking.

» The lock table no longer contains information about which child nodes of ~MyGlobal (*'sales™, " EU') were
specifically locked. This has important implications when you remove locks; see the next subsection.

When the same process adds more lock names of the form ~MyGlobal (*'sales™,"EU",salesdate), the lock table
increments the lock count for the lock name “"MyGlobal (*'sales',""EU™). The lock table might then look like this:

Owner ModeCount Reference Directory

1284 Exclusive A%SYS("CSP","Daemon") c:lintersystemsliris\imgr\

26324 Exclusive *MSC.LMFMON("License Monitor") c:lintersystemslirisimgr\

23400 Exclusive ASC.Monitor.System c:\intersystemslirisimgr\

23180 Exclusive "TASKMGR clintersystemsliris\mgr\

23948 Exclusive "Y%cspSession("vgMJ4iLMCL") clintersystemslirisimgriirislocaldata\
19776 Exclusive/1026E "“MyGlobal("sales","EU") clintersystemslirisimgriusert

The ModeCount column indicates that the lock count for this lock is now 1026.

12.7.2 Removing Escalating Locks

In exactly the same way as with non-escalating locks, your application should release locks for specific child nodes as soon
as possible. As you do so, InterSystems IRIS decrements the lock count for the escalated lock. For example, suppose that
your code removes the locks for "MyGlobal (*'sales","EU", salesdate) where salesdate corresponds to any date
in 2011 — thus removing 365 locks. The lock table now looks like this:

Owner ModeCount Reference Directory

1284 Exclusive "%SYS("CSP","Daemon") c:intersystemshiris\mgr\

26324 Exclusive AMSC.LMFMON("License Monitor") c:intersystemstiris\imgri

23400 Exclusive *SC.Monitor.System c:\intersystemshiris\mgr\

23180 Exclusive ATASKMGR chintersystemsiiris\imgri

23948 Exclusive "%cspSession("vgMJ4iLMCL") c:\intersystemshiris\mgriirislocaldata\
19776 Exclusive/660E "MyGlobal("sales","EU") cintersystems\iris\mgriuser\

Notice that even though the number of locks is now below the threshold (1000), the lock table does not contain individual
entries for the locks for *MyGlobal (*'sales', "'EU",salesdate).

The node “MyGlobal (*'sales'™) remains explicitly locked until the process removes 661 more locks of the form
“MyGlobal ("'sales","EU",salesdate).

126 Using ObjectScript

Locks, Globals, and Namespaces

Important: There is a subtle point to consider, related to the preceding discussion. It is possible for an application to
“release” locks on array nodes that were never locked in the first place, thus resulting in an inaccurate
lock count for the escalated lock — and possibly releasing the escalated lock before it is desirable to do
SO.

For example, suppose that the process locked nodes in "MyGlobal (*'sales’,"EU",salesdate) for
the years 2010 through the present. This would create more than 1000 locks and this lock would be escalated,
as planned. Suppose that a bug in the application removes locks for the nodes for the year 1970. InterSystems
IRIS would permit this action, even though those nodes were not previously locked, and InterSystems IRIS
would decrement the lock count by 365. The resulting lock count would not be an accurate count of the
desired locks. If the application then removed locks for other years, the escalated lock could potentially
be removed unexpectedly early.

12.8 Locks, Globals, and Namespaces

Locks are typically used to control access to globals. Because a global can be accessed from multiple namespaces, Inter-
Systems IRIS provides automatic cross-namespace support for its locking mechanism. The behavior is automatic and needs
no intervention, but is described here for reference. There are several scenarios to consider:

» Any namespace has a default database which contains data for persistent classes and any additional globals; this is the
globals database for this namespace. When you access data (in any manner), InterSystems IRIS retrieves it from this
database unless other considerations apply. A given database can be the globals database for more than one namespace.
See Scenario 1.

* A namespace can include mappings that provide access to globals stored in other databases. See Scenario 2.

» A namespace can include subscript level global mappings that provide access to globals partly stored in other databases.
See Scenario 3.

« Code running in one namespace can use an extended reference to access a global not otherwise available in this
namespace. See Scenario 4.

Although lock names are intrinsically arbitrary, when you use a lock name that starts with a caret (), InterSystems IRIS
provides special behavior appropriate for these scenarios. The following subsections give the details. For simplicity, only
exclusive locks are discussed; the logic is similar for shared locks.

12.8.1 Scenario 1: Multiple Namespaces with the Same Globals Database

As noted earlier, while process A owns an exclusive lock with a given lock name, no other process can acquire any lock
with the same lock name.

If the lock name starts with a caret, this rule applies to all namespaces that use the same globals database.

For example, suppose that the namespaces ALPHA and BETA are both configured to use database GAMMA as their globals
database. The following shows a sketch:

Using ObjectScript 127

Locking and Concurrency Control

ALPHA namespace BETA namespace

default database
for globals for this
namespace

default database
for globals for this
namespace

GAMMA
database

Then consider the following scenario:

1. In namespace ALPHA, process A acquires an exclusive lock with the name “MyGlobal (15).

2. In namespace BETA, process B tries to acquire a lock with the name ~“MyGlobal (15). This LOCK command does
not return; the process is blocked until process A releases the lock.

In this scenario, the lock table contains only the entry for the lock owned by Process A. If you examine the lock table, you
will notice that it indicates the database to which this lock applies; see the Directory column. For example:

Owner ModeCount Reference Directory

1284 Exclusive % SYS("CSP","Daemon") c:\intersystems\iris\imgr\

26324 Exclusive AMSC.LMFMON("License Monitor") c:\intersystems\iris\imgrh

23400 Exclusive *SC.Monitor.System c:\intersystems\iris\imgri

23180 Exclusive *TASKMGR clintersystemsiiris\imgr\

19776 Exclusive_ e *MyGlobal(15) c:\intersystems\iris\mgrigammadb\

23948 Exclusive MocspSession("vgMJ4iLMCL") c:\intersystems\iris\imgniirislocaldata\

12.8.2 Scenario 2: Namespace Uses a Mapped Global

If one or more namespaces include global mappings, the system automatically enforces the lock mechanism across the
applicable namespaces. InterSystems IRIS automatically creates additional lock table entries when locks are acquired in
the non-default namespace.

For example, suppose that namespace ALPHA is configured to use database ALPHADB as its globals database. Suppose that
namespace BETA is configured to use a different database (BETADB) as its globals database. The namespace BETA also
includes a global mapping that specifies that “MyGlobal is stored in the ALPHADB database. The following shows a sketch:

128 Using ObjectScript

Locks, Globals, and Namespaces

ALPHA namespace

default database
for globals for this
namespace

ALPHADB
database

Then consider the following scenario:

1. In namespace ALPHA, process A acquires an exclusive lock with the name ~“MyGlobal (15).

-
-

location Cr/f
"MyGlobal

BETA namespace

default database
for globals for this
namespace

BETADB
database

As with the previous scenario, the lock table contains only the entry for the lock owned by Process A. This lock applies
to the ALPHADB database:

19776 Exclusive_e "MyGlobal(15)

c\intersystemshiris\mgr\alphadb\

2. In namespace BETA, process B tries to acquire a lock with the name ~"MyGlobal (15). This LOCK command does
not return; the process is blocked until process A releases the lock.

12.8.3 Scenario 3: Namespace Uses a Mapped Global Subscript

If one or more namespaces include global mappings that use subscript level mappings, the system automatically enforces
the lock mechanism across the applicable namespaces. In this case, InterSystems IRIS also automatically creates additional
lock table entries when locks are acquired in a non-default namespace.

For example, suppose that namespace ALPHA is configured to use the database ALPHADB as its globals database. Namespace
BETA uses the BETADB database as its globals database.

Also suppose that the namespace BETA also includes a subscript-level global mapping so that *MyGlobal (15) is stored
in the ALPHADB database (while the rest of this global is stored in the namespace’s default location). The following shows

a sketch:

ALPHA namespace

default database
for globals for this
namespace

ALPHADB
database

Then consider the following scenario:

location of
My Global(15)

BETA namespace

default database
for globals for this
namespace, also
lacation of the rest
of "MyGlobal

BETADB
database

Using ObjectScript

129

Locking and Concurrency Control

1. In namespace ALPHA, process A acquires an exclusive lock with the name ~“MyGlobal (15).

As with the previous scenario, the lock table contains only the entry for the lock owned by Process A. This lock applies
to the ALPHADB database (c:\InterSystems\IR1S\mgr\alphadb, for example).

2. In namespace BETA, process B tries to acquire a lock with the name ~"MyGlobal (15). This LOCK command does
not return; the process is blocked until process A releases the lock.

When a non-default namespace acquires a lock, the overall behavior is the same, but InterSystems IRIS handles the details
slightly differently. Suppose that in namespace BETA, a process acquires a lock with the name “MyGlobal (15). In this

case, the lock table contains two entries, one for the ALPHADB database and one for the BETADB database. Both locks are
owned by the process in namespace BETA.

19776 Exclusive_e “MyGlobal(15) c:\intersystemshiris\mgrialphadb'
19776 Exclusive_e “MyGlobal(15) clintersystems\iris\imgr\betadb\

When this process releases the lock name ~“MyGlobal (15), the system automatically removes both locks.

12.8.4 Scenario 4: Extended Global References

Code running in one namespace can use an extended reference to access a global not otherwise available in this namespace.
In this case, InterSystems IRIS adds an entry to the lock table that affects the relevant database. The lock is owned by the
process that created it. For example, consider the following scenario. For simplicity, there are no global mappings in this

scenario.

1. Process A is running in the ALPHA namespace, and this process uses the following command to acquire a lock on a
global that is available in the BETA namespace:
ObjectScript

lock "["'beta'"]MyGlobal (15)

2. Now the lock table includes the following entry:

19776 Exclusive_e “MyGlobal(15) c:\intersystemshiris\mgribetadb\

Note that this shows only the global name (rather than the reference used to access it). Also, in this scenario, BETADB
is the default database for the BETA namespace.

3. In namespace BETA, process B tries to acquire a lock with the name “MyGlobal (15). This LOCK command does
not return; the process is blocked until process A releases the lock.

A process-private global is technically a kind of extended reference, but InterSystems IRIS does not support using a process-
private global names as lock names; you would not need such a lock anyway because by definition only one process can
access such a global.

12.9 Avoiding Deadlock

Incremental locking is potentially dangerous because it can lead to a situation known as deadlock. This situation occurs
when two processes each assert an incremental lock on a variable already locked by the other process. Because the attempted
locks are incremental, the existing locks are not released. As a result, each process hangs while waiting for the other process
to release the existing lock.

As an example:

130 Using ObjectScript

Practical Uses for Locks

1. Process A issues this command: lock + ~MyGlobal (15)

2. Process B issues this command: lock + ~MyOtherGlobal (15)

3. Process A issues this command: lock + ~MyOtherGlobal (15)
This LOCK command does not return; the process is blocked until process B releases this lock.

4. Process B issues this command: lock + ~MyGlobal (15)
This LOCK command does not return; the process is blocked until process A releases this lock. Process A, however,
is blocked and cannot release the lock. Now these processes are both waiting for each other.

There are several ways to prevent deadlocks:

* Always include the timeout argument.

» Follow a strict protocol for the order in which you issue incremental LOCK commands. Deadlocks cannot occur as
long as all processes follow the same order for lock names. A simple protocol is to add locks in collating sequence
order.

» Use simple locking rather than incremental locking; that is, do not use the + operator. As noted earlier, with simple
locking, the LOCK command first releases all previous locks held by the process. (In practice, however, simple locking
is not often used.)

If a deadlock occurs, you can resolve it by using the Management Portal or the ~ LOCKTAB routine. See Monitoring Locks
in the Monitoring Guide.

12.10 Practical Uses for Locks

This section presents the basic ways in which locks are used in practice.

12.10.1 Controlling Access to Application Data

Locks are used very often to control access to application data, which is stored in globals. Your application might need to
read or modify a particular piece or pieces of this data, and your application would create one or more locks before doing
s0, as follows:

e Ifyour application needs to read one or more global nodes, and you do not want other processes to modify the values
during the read operation, create shared locks for those nodes.

» If your application needs to modify one or more global nodes, and you do not want other processes to read these nodes
during the modification, create exclusive locks for those nodes.
Then either read or make the modifications as planned. When you are done, remove the locks.

Remember that the locking mechanism works purely by convention. Any other code that would read or modify these nodes
must also attempt to acquire locks before performing those operations.

12.10.2 Preventing Simultaneous Activity

Locks are also used to prevent multiple processes from performing the same activity. In this scenario, you also use a global,
but the global contains data for the internal purposes of your application, rather than pure application data. As a simple
example, suppose that you have a routine (*"NightlyBatch) that should never be run by more than one process at any
given time. This routine could do the following, at a very early stage in its processing:

Using ObjectScript 131

Locking and Concurrency Control

1. Create an exclusive lock on a specific global node, for example, “"AppStateData(**NightlyBatch'). Specify a
timeout for this operation.

2. If the lock is acquired, set nodes in a global to record that the routine has been started (as well as any other relevant
information). For example:

ObjectScript

set MAppStateData(*'NightlyBatch'™)=1
set MAppStateData(‘'NightlyBatch™, "user')=$USERNAME

Or, if the lock is not acquired within the timeout period, quit with an error message that indicates that this routine has
already been started.

Then, at the end of its processing, the same routine would clear the applicable global nodes and release the lock.

The following partial example demonstrates this technique, which is adapted from code that InterSystems IRIS uses internally:

ObjectScript

lock MAppStateData(*'NightlyBatch'):0

if "$TEST {
write "You cannot run this routine right now.™
write !, "This routine is currently being run by user: "_"AppStateData(’NightlyBatch","user')
quit

set MAppStateData(*'NightlyBatch'™)=1

set MAppStateData(‘'NightlyBatch', "user')=$USERNAME

set "MAppStateData('NightlyBatch”, starttime')=$h

//main routine activity omitted from example

kill ~AppStateData(*’'NightlyBatch')
lock -~AppStateData("'NightlyBatch'™)

12.11 Locking and Concurrency in SQL and Persistent
Classes

When you work with InterSystems SQL or persistent classes, you do not need to directly use the ObjectScript LOCK
command because there are alternatives suitable for your use cases. (Internally these alternatives all use LOCK.)

» InterSystems SQL provides commands for working with locks. For details, see the InterSystems SQL Reference. Sim-
ilarly, the system automatically performs locking on INSERT, UPDATE, and DELETE operations (unless you specify
the %NOLOCK keyword).

» The %Persistent class provides a way to control concurrent access to objects, namely, the concurrency argument to
% Openld() and other methods of this class. All persistent objects inherit these methods. See Object Concurrency.

The %Persistent class also provides the methods % GetL ock(), % Releasel ock(), % L ockl d(), % Unlockld(),
% L ockExtent(), and % Unlock Extent(). For details, see the class reference for %Persistent.

12.12 See Also

e LOCK command reference

* "$LOCK (“$LOCK is a structured system variable that contains information about locks.)

132 Using ObjectScript

See Also

» Transaction Processing
» Details of Lock Requests and Deadlocks
* Managing the Lock Table

» Monitoring Locks

Using ObjectScript 133

13

Details of Lock Requests and Deadlocks

This topic provides more detailed information on how lock requests are handled in InterSystems IRIS® data platform, as
well as a detailed look at deadlock scenarios.

13.1 Waiting Lock Requests

When a process holds an exclusive lock, it causes a wait condition for any other process that attempts to acquire the same
lock, or a lock on a higher level node or lower level node of the held lock. When locking subscripted globals (array nodes)
it is important to make the distinction between what you lock, and what other processes can lock:

» What you lock: you only have an explicit lock on the node you specify, not its higher or lower level nodes. For example,
if you lock ~"student(1,2) you only have an explicit lock on “student(1,2). You cannot release this node by
releasing a higher level node (such as ~“student (1)) because you don’t have an explicit lock on that node. You can,
of course, explicitly lock higher or lower nodes in any sequence.

» What they can lock: the node that you lock bars other processes from locking that exact node or a higher or lower level
node (a parent or child of that node). They cannot lock the parent ~student(1) because to do so would also
implicitly lock the child ~student(1,2), which your process has already explicitly locked. They cannot lock the
child ~student (1,2, 3) because your process has locked the parent ~student(1,2). These other processes wait
on the lock queue in the order specified. They are listed in the lock table as waiting on the highest level node specified
ahead of them in the queue. This may be a locked node, or a node waiting to be locked.

For example:

1. Process A locks “student(1,2).

2. Process B attempts to lock *student (1), but is barred. This is because if Process B locked ~student (1), it would
also (implicitly) lock ~student(1,2). But Process A holds a lock on ~*student(1,2). The lock Table lists it as
WaitExclusiveParent *student (1, 2).

3. Process C attempts to lock ~student(1,2,3), but is barred. The lock Table lists it as WaitExclusiveParent
~student(1,2). Process A holds a lock on “student(1,2) and thus an implicit lock on ~*student(1,2, 3).
However, because Process C is lower in the queue than Process B, Process C must wait for Process B to lock and then
release “student(l).

4. Process A locks “student(1, 2, 3). The waiting locks remain unchanged.
5. Process A locks “student(1). The waiting locks change:

» Process B is listed as WaitExclusiveExact ~*student(1). Process B is waiting to lock the exact lock
(*student(1)) that Process A holds.

Using ObjectScript 135

Details of Lock Requests and Deadlocks

* Process C is listed as WaitExclusiveChild ~student(1). Process C is lower in the queue than Process B, so it
is waiting for Process B to lock and release its requested lock. Then Process C will be able to lock the child of the
Process B lock. Process B, in turn, is waiting for Process A to release ~*student(1).

6. Process A unlocks ~student(1). The waiting locks change back to WaitExclusiveParent ~student(l1,2). (Same
conditions as steps 2 and 3.)

7. Process A unlocks ~student(1, 2). The waiting locks change to WaitExclusiveParent *student(1,2,3). Process
B is waiting to lock *student (1), the parent of the current Process A lock *student(1,2,3). Process C is
waiting for Process B to lock then unlock ~*student(1), the parent of the *student(1, 2, 3) lock requested by
Process C.

8. Process A unlocks “student(1,2,3). Process B locks “student(1). Process C is now barred by Process B.
Process C is listed as WaitExclusiveChild ~student(1). Process C is waiting to lock *student(1, 2, 3), the child
of the current Process B lock.

13.2 Queuing of Array Node Lock Requests

The basic queuing algorithm for array locks is to queue lock requests for the same resource strictly in the order received,
even when there is no direct resource contention. This is illustrated in the following example, in which three locks on the
same global array are requested by three different processes in the sequence shown:

Process A: LOCK ™x(1,1)

Process B: LOCK ~x(1)
Process C: LOCK ™x(1,2)

The status of these requests is as follows:
» Process A holds a lock on *x(1,1).
» Process B cannot lock ~x (1) until Process A to releases its lock on ~x(1,1).

» Process C is also blocked, but not by Process A’s lock; rather, it is the fact that Process B is waiting to explicitly lock
~x (1), and thus implicitly lock ~x(1,2), that blocks Process C.

This approach is designed to speed the next job in the sequence after the one holding the lock. Allowing Process C to jump
Process B in the queue would speed Process C, but could unacceptably delay Process B, especially if there are many jobs
like Process C.

The exception to the general rule that requests are processed in the order received is that a process holding a lock on a
parent node is immediately granted any requested lock on a child of that node. For example, consider the following extension
of the previous example:

Process A: LOCK ~x(1,1)

Process B: LOCK "~x(1)

Process C: LOCK ™x(1,2)
Process A: LOCK ~x(1,2)

In this case, Process A is immediately granted the requested lock on ~x (1, 2), ahead of both Process B and Process C,
because it already holds a lock on ~*x(1,1).

Note: This process queuing algorithm applies to all subscripted lock requests. However, the release of a nonsubscripted
lock, such as LOCK “~x, when there are both nonsubscripted (LOCK +7x) and subscripted (LOCK +~x(1,1))
requests waiting is a special case, in which the lock request granted is unpredictable and may not follow process
queuing.

136 Using ObjectScript

ECP Local and Remote Lock Requests

13.3 ECP Local and Remote Lock Requests

When releasing a lock, an ECP client may donate the lock to a local waiter in preference to waiters on other systems in
order to improve performance. The number of times this is allowed to happen is limited in order to prevent unacceptable
delays for remote lock waiters.

13.4 Avoiding Deadlock

Requesting a (+) exclusive lock when you hold an existing shared lock is potentially dangerous because it can lead to a
situation known as "deadlock". This situation occurs when two processes each request an exclusive lock on a lock name
already locked as a shared lock by the other process. As a result, each process hangs while waiting for the other process to
release the existing shared lock.

The following example shows how this can occur (numbers indicate the sequence of operations):

Process A Process B
1. LOCK Ma(1)#'"S"

Process A acquires shared lock.

2.LOCK ~a(l)#"s"

Process B acquires shared lock.

3.LOCK +"a(l)
Process A requests exclusive lock and waits for Pro-
cess B to release its shared lock.

4.L0CK +Ma(l)

Process B requests exclusive lock and waits for Pro-
cess A to release its shared lock. Deadlock occurs.

This is the simplest form of deadlock. Deadlock can also occur when a process is requesting a lock on the parent node or
child node of a held lock.

To prevent deadlocks, request the exclusive lock without the plus sign, which unlocks your shared lock. In the following
example, both processes release their prior locks when requesting an exclusive lock to avoid deadlock (numbers indicate
the sequence of operations). Note which process acquires the exclusive lock:

Using ObjectScript 137

Details of Lock Requests and Deadlocks

Process A Process B
1.LOCK Ma(l)#"s"

Process A acquires shared lock.

2.LOCK ~a(l)#"s"

Process B acquires shared lock.

3.LOCK ~a(l)

Process A releases shared lock, requests exclusive
lock, and waits for Process B to release its shared
lock.

4.L0CK ~a(l)

Process B releases shared lock and requests exclu-
sive lock. Process A immediately acquires its
requested shared lock. Process B waits for Process
A to release its shared lock.

Another way to avoid deadlocks is to follow a strict protocol for the order in which you issue LOCK + and LOCK -
commands. Deadlocks cannot occur as long as all processes follow the same order. A simple protocol is for all processes
to apply and release locks in collating sequence order.

To minimize the impact of a deadlock situation, include the timeout argument when using plus sign locks. For example,
the LOCK +"a(1):10 operation times out after 10 seconds.

If a deadlock occurs, you can resolve it by using the Management Portal or the "L OCK TAB to remove one of the locks
in question. From the Management Portal, open the Manage Locks window, and then select the Remove option for the
deadlocked process.

13.5 See Also

e Locking and Concurrency Control

* Managing the Lock Table

138 Using ObjectScript

14

Managing the Lock Table

This topic discusses tools for viewing and managing the lock table in InterSystems products. (Also see Monitoring Locks.)

14.1 Available Tools for Managing the Lock Table

You may find it necessary to view locks and (occasionally) remove them. InterSystems provides the following tools for
this:

* The Locks page of the Management Portal. Here you can view locks and remove locks.
* The "LOCKTAB utility.
» The %SYS.LockQuery class, which lets you read lock table information.

* The SYS.Lock class, which is available in the %SYS namespace

For information on the latter two classes, see the class reference.

14.2 Viewing Locks in the Management Portal

You can view all of the locks currently held or requested (waiting) system-wide using the Management Portal. From the
Management Portal, select System Operation, Select Locks, then select View Locks. The View Locks window displays a list
of locks (and lock requests) in alphabetical order by directory (Directory) and within each directory in collation sequence
by lock name (Reference). Each lock is identified by its process id (Owner), displays the user name that the operating system
gave to the process when it was created (OS User Name), and has a ModeCount (lock mode and lock increment count). You
may need to use the Refresh icon to view the most current list of locks and lock requests. For further details on this interface
see Monitoring Locks.

ModeCount can indicate a held lock by a specific Owner process on a specific Reference. The following are examples of
ModeCount values for held locks:

Using ObjectScript 139

Managing the Lock Table

ModeCount Description

Exclusive An exclusive lock, non-escalating (LOCK +~a(1))

Shared A shared lock, non-escalating (LOCK +~a(1)#''S")

Exclusive_e An exclusive lock, escalating (LOCK +~a(1)#"E")

Shared_e A shared lock, escalating (LOCK +~a(1)#"'SE")

Exclusive->Delock An exclusive lock in a delock state. The lock has been unlocked, but release

of the lock is deferred until the end of the current transaction. This can be
caused by either a standard unlock (LOCK -~a(1)) or a deferred unlock
LOCK -~a(1)#"'D™).

Exclusive,Shared Both a shared lock and an exclusive lock (applied in any order). Can also
specify escalating locks; for example, Exclusive_e,Shared_e

Exclusive/n An incremented exclusive lock (LOCK +~a(1) issued n times). If the lock
count is 1, no count is shown (but see below). Can also specify an
incrementing shared lock; for example, Shared/2.

Exclusive/n->Delock An incremented exclusive lock in a delock state. All of the increments of the
lock have been unlocked, but release of the lock is deferred until the end of
the current transaction. Within a transaction, unlocks of individual increments
release those increments immediately; the lock does not go into a delock
state until an unlock is issued when the lock count is 1. This ModeCount
value, a incremented lock in a delock state, occurs when all prior locks are
unlocked by a single operation, either by an argumentless LOCK command
or a lock with no lock operation indicator (LOCK ~xyz(1)).

Exclusive/1+1e Two exclusive locks, one non-escalating, one escalating. Increment counts
are kept separately on these two types of exclusive locks. Can also specify
shared locks; for example, Shared/1+1e.

Exclusive/n,Shared/m Both a shared lock and an exclusive lock, both with integer increments.

A held lock ModeCount can, of course, represent any combination of shared or exclusive, escalating or non-escalating locks
— with or without increments. An Exclusive lock or a Shared lock (escalating or non-escalating) can be in a Delock state.

ModeCount can indicate a process waiting for a lock, such as WaitExclusiveExact. The following are ModeCount
values for waiting lock requests:

140 Using ObjectScript

Viewing Locks in the Management Portal

ModeCount Description

WaitSharedExact Waiting for a shared lock on exactly the same lock, either held or
previously-requested: LOCK +"a(1,2)#"S" is waiting on lock ~a(1,2)

WaitExclusiveExact Waiting for an exclusive lock on exactly the same lock, either held or
previously-requested: LOCK +"a(1,2) is waiting on lock ~a(1,2)

WaitSharedParent Waiting for a shared lock on the parent of a held or previously-requested lock:
LOCK +"Ma(1)#'"S" is waiting on lock ~a(1,2)

WaitExclusiveParent Waiting for an exclusive lock on the parent of a held or previously-requested
lock: LOCK +7a() is waiting on lock ~a(1,2)

WaitSharedChild Waiting for a shared lock on the child of a held or previously-requested lock:
LOCK +"a(l1,2)#"S" is waiting on lock ~a(1)

WaitExclusiveChild Waiting for an exclusive lock on the child of a held or previously-requested
lock: LOCK +7a(1,2) is waiting on lock ~a(1)

ModeCount indicates the lock (or lock request) that is blocking this lock request. This is not necessarily the same as Reference,
which specifies the currently held lock that is at the head of the lock queue on which this lock request is waiting. Reference
does not necessarily indicate the requested lock that is immediately blocking this lock request.

ModeCount can indicate other lock status values for a specific Owner process on a specific Reference. The following are
these other ModeCount status values:

ModeCount Description

LockPending An exclusive lock is pending. This status may occur while the
server is in the process of granting the exclusive lock. You
cannot delete a lock that is in a lock pending state.

SharePending A shared lock is pending. This status may occur while the
server is in the process of granting the shared lock. You cannot
delete a lock that is in a lock pending state.

DelockPending An unlock is pending. This status may occur while the server
is in the process of unlocking a held lock. You cannot delete
a lock that is in a lock pending state.

Lost A lock was lost due to network reset.

Select Display Owner’s Routine Information to enable the Routine column, which provides the name of the routine that the
owner process is executing, prepended with the current line number being executed within that routine.

Select Show SQL Options, and then select a namespace from the Show SQL Table Names for Namespace list, to enable the
SQL Table Name column. This column provides the name of the SQL table associated with each process in the selected
namespace. If the process is not associated with an SQL table, this column value is empty.

The View Locks window cannot be used to remove locks.

Using ObjectScript 141

Managing the Lock Table

14.3 Removing Locks in the Management Portal

Important: Rather than removing a lock, the best practice is to identify and then terminate the process that created the
lock. Removing a lock can have a severe impact on the system, depending on the purpose of the lock.

To remove (delete) locks currently held on the system, go to the Management Portal, select System Operation, select Locks,
then select Manage Locks. For the desired process (Owner) click either Remove or Remove All Locks for Process.

Removing a lock releases all forms of that lock: all increment levels of the lock, all exclusive, exclusive escalating, and
shared versions of the lock. Removing a lock immediately causes the next lock waiting in that lock queue to be applied.

You can also remove locks using the SY S.L ock.DeleteOnel ock() and SY S.L ock.DeleteAllL ocks() methods.

Remoaving a lock requires WRITE permission. Lock removal is logged in the audit database (if enabled); it is not logged
in messages.log.

14.4 "LOCKTAB Utility

You can also view and delete (remove) locks using the *L OCK TAB utility in the %SYS namespace.

Important: Rather than removing a lock, the best practice is to identify and then terminate the process that created the
lock. Removing a lock can have a severe impact on the system, depending on the purpose of the lock.
You can execute "L OCKTAB in either of the following forms:

» DO "LOCKTAB: allows you to view and delete locks. It provides letter code commands for deleting an individual
lock, deleting all locks owned by a specified process, or deleting all locks on the system.

DO View®"LOCKTAB: allows you to view locks. It does not provide options for deleting locks.

Note that these utility names are case-sensitive.

The following Terminal session example shows how *"L OCK TAB displays the current locks:

%SYS>DO ~LOCKTAB

Node Name: MYCOMPUTER
LOCK table entries at 07:22AM 01/13/2018
16767056 bytes usable, 16774512 bytes available.

Entry Process X# S# Flg W# Item Locked
1) 4900 1 A Me:\intersystems\iris\mgr\""J%SYS(*'CSP", "Daemon’")
2) 4856 1 A Me:\intersystems\iris\mgr\"]JISC.LMFMON("'License Monitor')
3) 5016 1 A" Me:\intersystems\iris\mgr\'"]I1SC.Monitor.System
4) 5024 1 A Me:\intersystems\iris\mgr\'"] TASKMGR
5) 6796 1 A Me:\intersystems\iris\mgr\user\']a(l)
6) 6796 le A" Me:\intersystems\iris\mgri\user\']a(1,1)
7) 6796 2 1 ~"Me:\intersystems\iris\mgr\user\"]b(1)Waiters: 3120(XC)
8) 3120 2 A Me:\intersystems\iris\mgr\user\'"]c(1)
9) 2024 1 1 A" Mce:\intersystems\iris\mgr\user\'"]d(1)
Command=>

In the "LOCKTAB display, the X# column lists exclusive locks held, the S# column lists shared locks held. The X# or
S# number indicates the lock increment count. An “e” suffix indicates that the lock is defined as escalating. A “D” suffix
indicates that the lock is in a delock state; the lock has been unlocked, but is not available to another process until the end
of the current transaction. The W# column lists number of waiting lock requests. As shown in the above display, process
6796 holds an incremented shared lock ~b(1). Process 3120 has one lock request waiting this lock. The lock request is for
an exclusive (X) lock on a child (C) of ~b(1).

142 Using ObjectScript

See Also

Enter a question mark (?) at the Command=> prompt to display the help for this utility. This includes further description
of how to read this display and letter code commands to delete locks (if available).

Note: You cannot delete a lock that is in a lock pending state, as indicated by the Flg column value.

Enter Q to exit the "LOCKTAB utility.

14.5 See Also

» Locking and Concurrency Control

e Details of Lock Requests and Deadlocks

Using ObjectScript 143

15

Transaction Processing

This page describes transaction processing in InterSystems IRIS® data platform. A transaction is a logical unit of work
that combines multiple atomic operations in a specific sequence. An atomic operation is one that is always fully executed
in any circumstance, including error conditions; such an operation typically corresponds to a single command.

15.1 About Transactions in InterSystems IRIS

In InterSystems IRS, atomic operations include a single SQL INSERT, UPDATE, or DELETE statement, or a single global
SET or KILL.

However, an application typically needs to combine multiple atomic operations in order to accomplish a task. For example,
when transferring money from one account to another, a bank may need to subtract an amount from a field in one table and
add the same amount to a field in another table. By specifying that both updates form a single transaction, you ensure that
either both operations are performed or neither is performed, which means that one cannot be executed without the other.

In such cases, you use transaction processing commands to define the sequence of operations that forms a complete trans-
action. One command marks the beginning of the transaction; after a sequence of possibly many commands, another command
marks the end of the transaction.

Under normal circumstances, the transaction executes in its entirety. If a program error or system malfunction leads to an
incomplete transaction, then the part of the transaction that was completed is rolled back.

Application developers should handle transaction rollback within their applications. InterSystems IRIS also handles trans-
action rollback automatically in the event of a system failure and at various junctures, such as recovery and during HALT
or ResJob.

InterSystems IRIS records rollbacks in the messages.log file if the LogRollback configuration option is set. You can use
the Management Portal, System Operation, System Logs, Messages Log option to view messages.log.

15.2 Managing Transactions Within Applications

In InterSystems IRIS, you define transactions within either SQL or ObjectScript, depending on your use case.

Using ObjectScript 145

Transaction Processing

Important: These techniques are not fully interchangeable; you should manage any given transaction entirely within
ObjectScript or entirely within SQL. For example, if you start a transaction in ObjectScript, then use
ObjectScript commands to handle the rest of that transaction, matching TSTART to TCOMMIT, and so
on. If you use the SQL commands, then you should use the SQL commands and match START TRANS-
ACTION to COMMIT, and so on. You can, however, have these pieces of code call each other, and these
pieces of code can be nested.

15.2.1 Transaction Commands

InterSystems IRIS supports the ANSI SQL operations COMMIT WORK and ROLLBACK WORK (in InterSystems
SQL the keyword WORK is optional). It also supports the InterSystems SQL extensions SET TRANSACTION, START
TRANSACTION, SAVEPOINT, and % INTRANS. In addition, InterSystems IRIS implements some of the transaction
commands that are part of the M Type A standard.

These SQL and ObjectScript commands are summarized in the following table.

Table 15-1: Transaction Commands

SQL Command ObjectScript Definition
Command
SET TRANSACTION Set transaction parameters without starting a
transaction.
START TRANSACTION TSTART Marks the beginning of a transaction.
%INTRANS $TLEVEL Detects whether a transaction is currently in
progress:

e <0used by %INTRANS to mean in a transaction,
but journaling disabled. Not used by $TLEVEL.

« 0 means not in a transaction.

« >0 means in a transaction.

SAVEPOINT Mark a point within a transaction. Can be used for
partial rollback to a savepoint.

COMMIT TCOMMIT Signals a successful end of transaction.

ROLLBACK TROLLBACK Signals an unsuccessful end of transaction; all the

database updates performed since the beginning of
transaction should be rolled back or undone.

These ObjectScript and SQL commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

15.2.2 Using LOCK inTransactions

Whenever you access a global which might be accessed by more than one process, you need to protect the integrity of the
database by using the LOCK command on that global. You issue a lock corresponding to the global variable, change the

146 Using ObjectScript

Managing Transactions Within Applications

value of the global, then unlock the lock. The LOCK command is used to both lock and unlock a specified lock. Other
processes wishing to change the value of the global request a lock which waits until the first process releases the lock.

There are three important considerations when using locks in transactions:
» Lock/unlock operations do not roll back.
« Within a transaction, when you unlock a lock held by the process, one of two things may occur:
— The lock is immediately unlocked. The lock can be immediately acquired by another process.
— Thelockis placed in a delock state. The lock is unlocked, but cannot be acquired by another process until the end

of the current transaction.

If the lock is in a delock state, InterSystems IRIS defers the unlock until the transaction is committed or rolled back.
Within the transaction, the lock appears to be unlocked, permitting a subsequent lock of the same value. Outside of
the transaction, however, the lock remains locked. For further details, refer to Lock Management.

» Lock operations that time out set STEST. A value set in $STEST during a transaction does not roll back.

15.2.3 Using $INCREMENT and $SEQUENCE in Transactions

A call to the $SINCREMENT or $SEQUENCE function is not considered part of a transaction. It is not rolled back as part
of transaction rollback. These functions can be used to get an index value without using the LOCK command. This is
advantageous for transactions where you may not want to lock the counter global for the duration of the transaction.

$INCREMENT allocates individual integer values in the order that increment requests are received from one or more
processes. $SEQUENCE provides a fast way for multiple processes to obtain unique (non-duplicate) integers for the same
global variable by allocating a sequence (range) of integer values to each incrementing process.

Note: $INCREMENT may be incremented by one process within a transaction and, while that transaction is still pro-
cessing, be incremented by another process in a parallel transaction. If the first transaction rolls back, there may
be a “skipped” increment, “wasting” a number.

15.2.4 Transaction Rollback within an Application

If you encounter an error during a transaction, you can roll it back in three ways:
e Issue the SQL rollback command, ROLLBACK WORK

e Issue the ObjectScript rollback command, TROL L BACK

+ Makeacallto %ETN

Note: When you roll back a transaction, the IDKey for any default class is not decremented. Rather, the value of the
IDKey is automatically modified by the $INCREMENT function.

15.2.4.1 Issue an SQL or ObjectScript Rollback Command

Application developers can use two types of rollback commands to designate the unsuccessful end of a transaction and
automatically roll back incomplete transactions:

» Use ##sgl(ROLLBACK WORK), in the macro source routine.

e Use the ObjectScript TROLLBACK command, in macro or intermediate source code.

The rollback command must cooperate with an error trap, as in the following example:

Using ObjectScript 147

Transaction Processing

ObjectScript

ROU ##sql (START TRANSACTION) set $ZT="ERROR"

SET ~ZGLO(1)=100

SET ~ZGLO=error

SET ~ZGLO(1,1)=200

##sql (COMMIT WORK) Write !,"Transaction Committed” Quit
ERROR ##sql (ROLLBACK WORK)

Write !,"Transaction failed."” Quit

In the example code, $ZT is set to run the subroutine ERROR if a program error occurs before the transaction is committed.
Line ROU begins the transaction and sets the error trap. Lines ROU+1 and ROU+3 set the nodes of the global ~ZGLO.
However, if the variable error is undefined, ROU+2 causes a program error and line ROU+3 does not execute. Program
execution goes to the subroutine ERROR and the set of ~ZGLO(1) is undone. If line ROU+2 were deleted, ~ZGLO would
have its value set both times, the transaction would be committed, and the message “Transaction committed” would be
written.

15.2.4.2 Make a Call To %ETN

If you have not handled transaction rollback with a rollback command, the error trap utility % ETN detects incomplete
transactions and prompts the user to either commit or rollback the transaction. You should handle rollback within your
application, since committing an incomplete transaction usually leads to degradation of logical database integrity.

If you run % ETN after an error when a transaction is in progress, the following rollback prompt is displayed:

You have an open transaction.
Do you want to perform a Commit or Rollback?
Rollback =>

If there is no response within a 10-second timeout period, the system defaults to rollback. In a jobbed job or an application
mode job, the transaction is rolled back with no message.

% ETN itself does not do anything to trigger transaction rollback, but it typically ends by halting out of InterSystems IRIS.
Transaction rollback occurs when you halt out of ObjectScript and the system runs % HALT to perform InterSystems IRIS
process cleanup. There is an entry point into % ETN, called BACK"%ETN, which ends with a quit, rather than a halt. If
aroutine calls BACK”%ETN, rather than "% ETN or FORE"%ETN, it will not perform transaction rollback as part of
the error handling process.

15.2.5 Examples of Transaction Processing Within Applications

The following example shows how transactions are handled in macro source routines. It performs database modifications
with SQL code. The SQL statements transfer funds from one account to another:

ObjectScript

Transfer(from, to,amount) // Transfer funds from one account to another

TSTART
&SQL(UPDATE A.Account
SET A_Account.Balance = A_Account.Balance - :amount
WHERE A_Account.AccountNum = :from)
IT SQLCODE TRollBack Quit "Cannot withdraw, SQLCODE = *_SQLCODE

&SQL(UPDATE A.Account
SET A.Account.Balance = A.Account.Balance + :amount
WHERE A_Account.AccountNum = :to)
IT SQLCODE TROLLBACK QUIT "Cannot deposit, SQLCODE = '_SQLCODE
TCOMMIT
QUIT "Transfer succeeded"

148 Using ObjectScript

Automatic Transaction Rollback

15.3 Automatic Transaction Rollback

Transaction rollback occurs automatically during:

e InterSystems IRIS startup, if recovery is needed. When you start InterSystems IRIS and it determines that recovery is
needed, any transaction on the computer that was incomplete will be rolled back.

» Process termination using the HALT command (for the current process) or the "RESJOB utility (for other processes).
Halting a background job (non-interactive process) automatically rolls back the changes made in the current transaction-
in-progress. Halting an interactive process prompts you whether to commit or roll back the changes made in the current
transaction-in-progress. If you issue a*RESJOB on a programmer mode user process, the system displays a message
to the user, asking whether they want the current transaction committed or rolled back.

In addition, system managers can roll back incomplete transactions in cluster-specific databases by running the *JOURNAL
utility. When you select the Restore Globals From Journal option from the *JOURNAL utility main menu, the
journal file is restored and all incomplete transactions are rolled back.

15.4 System-Wide Issues with Transaction Processing

This section describes various system-wide issues related to transaction processing. For more information on issues related
to backups, see Backup and Restore; for more information on issues related to ECP, see ECP Recovery Process, Guarantees,
and Limitations.

15.4.1 Backups and Journaling with Transaction Processing

Consider the following backup and journaling procedures when you implement transaction processing.

Each instance of InterSystems IRIS keeps a journal. The journal is a set of files that keeps a time-sequenced log of changes
that have been made to the database since the last backup. InterSystems IRIS transaction processing works with journaling
to maintain the logical integrity of data.

The journal contains SET and KILL operations for globals in transactions regardless of the journal setting of the databases
in which the affected globals reside, as well as all SET and KIL L operations for globals in databases whose Global Journal
State you set to “Yes.”

Backups can be performed during transaction processing; however, the resulting backup file may contain partial transactions.
In the event of a disaster that requires restoring from a backup, first restore the backup file, and then apply journal files to
the restored copy of the database. Applying journal files restores all journaled updates from the time of the backup, up to

the time of the disaster. Applying journals is necessary to restore the transactional integrity of your database by completing
partial transactions and rolling back uncommitted transactions, since the databases may have contained partial transactions
at the time of the backup. For detailed information, see:

* Journaling

* Importance of Journals

15.4.2 Asynchronous Error Notifications

You can specify whether a job can be interrupted by asynchronous errors using the AsynchError () method of the
%SYSTEM.Process class:

Using ObjectScript 149

Transaction Processing

* %SYSTEM.Process.AsynchError (1) enables the reception of asynchronous errors.

* %SYSTEM.Process.AsynchError (0) disables the reception of asynchronous errors.

The AsynchError property of the Config.Miscellaneous class sets a system-wide default for new processes for whether
processes are willing to be interrupted by asynchronous errors. It defaults to 1, meaning “YES.”

If multiple asynchronous errors are detected for a particular job, the system triggers at least one such error. However, there
is no guarantee which error will be triggered.

The asynchronous errors currently implemented include:

» <LOCKLOST> — Some locks once owned by this job have been reset.

» <DATALOST> — Some data modifications performed by this job have received an error from the server.

e <TRANLOST> — A distributed transaction initiated by this job has been asynchronously rolled back by the server.
Even if you disable a job receiving asynchronous errors, the next time the job performs a ZSync command, the asynchronous
error is triggered.

At each TStart, TCommit, or LOCK operation, and at each network global reference, InterSystems IRIS checks for
pending asynchronous errors. Since SET and KILL operations across the network are asynchronous, an arbitrary number
of other instructions may interpose between when the SET is generated and when the asynchronous error is reported.

15.5 Suspending All Current Transactions

You can use the TransactionsSuspended() method of the %SYSTEM.Process class to suspend all current transactions for
the current process. This is a boolean method: 1 = suspend all current transactions, 0 = resume all current transactions. The
default is 0.

While transactions are suspended changes are not logged to the transaction log and therefore cannot be rolled back. Change
made in the current transaction before or after an interval when transactions were suspended can be rolled back.

If you change a global variable in a transaction, and then change it again while that transaction is suspended may result in
an error when rollback is attempted.

Invoking TransactionsSuspended() without specifying a boolean parameter returns the current boolean setting without
changing that setting.

150 Using ObjectScript

16

Working with %Status Values

When working with an API that returns %Status values (a status), it is best practice to check the status before proceeding,
and continue with normal processing only in the case of success. In your own code, you can also return status values (and
check them elsewhere as appropriate).

This page discusses status values and how to work with them.

Note: Status checking is not error checking per se. Your code should also use TRY-CATCH processing to trap unexpected,
unforeseen errors.

16.1 Basics of Working with Status Values

Methods in many InterSystems IRIS® data platform classes return a %Status (%Library.Status) value to indicate success
or error. If the status represents an error or errors, the status also includes information about the errors. For example, the
% Save() method in %Library.Persistent returns a status. For any such method, be sure to obtain the returned status. Then
check the status and then proceed appropriately. There are two possible scenarios:

« Inthe case of success, the status equals 1.

* Inthe case of failure, the status is an encoded string containing the error status and one or more error codes and text
messages. Status text messages are localized for the language of your locale. InterSystems IRIS provides methods and
macros for processing the value so that you can understand the nature of the failure.

The basic tools are as follows:

» To check whether the status represents success or error, use any of the following:

— The $$$1S0K and $$$1SERR macros, which are defined in the include file %occStatus.inc. This include file is
automatically available in all object classes.

— The $SYSTEM .Status.| SOK () and $SY STEM .Status.I sError () methods.

» Todisplay the error details, use $SY STEM .Status.DisplayError () or $SYSTEM.OBJ.DisplayError(). These
methods are equivalent to each other. They write output to the current device.

» To obtain a string that contains the error details, use $SY STEM .Status.GetError Text().

The special variable $SYSTEM is bound to the %SYSTEM package. This means that the methods in the previous list are in
the %SYSTEM.Status and %SYSTEM.OBJ classes; see the class reference for details.

Using ObjectScript 151

Working with %Status Values

16.2 Examples

For example:

Set object=##class(Sample.Person).%New()
Set object.Name="Smith,Janie"
Set tSC=object.%Save()
If $$$ISERR(LSC) {
Do $SYSTEM.Status.DisplayError(tSC)
Quit

Here is a partial example that shows use of $SY STEM .Status.GetError Text():

I $$$ISERR(LSC) {
// if error, log error message so users can see them
Do ..LogMsg($System.Status.GetErrorText(tSC))

Note: Some ObjectScript programmers use the letter t as a prefix to indicate a temporary variable, so you might see
tSC used as a variable name in code samples, meaning “temporary status code.” You are free to use this convention,
but there is nothing special about this variable name.

16.3 Variation (%objlasterror)

Some methods, such as % New(), do not return a %Status but instead update the % objlasterror variable to contain the
status. % New() either returns an OREF to an instance of the class upon success, or the null string upon failure. You can
retrieve the status value for methods of this type by accessing the % objlasterror variable, as shown in the following
example.

ObjectScript

Set session = ##class(%CSP.Session).%New()
IT session="" {

Write "session OREF not created",!

Write "%New error is ",!,$System.Status.GetErrorText(%objlasterror),!
} Else {

Write "session OREF is ",session,!

For more information, refer to the %SYSTEM.Status class.

16.4 Multiple Errors Reported in a Status Value

If a status value represents multiple errors, the previous techniques give you information about only the latest.
%SYSTEM.Status provides methods you can use to retrieve individual errors: GetOneError Text() and GetOneStatusText().
For example:

152 Using ObjectScript

Returning a %Status

ObjectScript

CreateCustomErrors
SET stl = $System.Status.Error(83,'my unique error')
SET st2 = $System.Status.Error(5001,"my unique error')
SET allstatus = $System.Status.AppendStatus(stl,st2)
DisplayErrors
WRITE "All together:",!
WRITE $System.Status.GetErrorText(allstatus),!!
WRITE "One by one",!
WRITE "First error format:",!
WRITE $System.Status.GetOneStatusText(allstatus,1),!
WRITE "Second error format:",!
WRITE $System.Status.GetOneStatusText(allstatus,2),!

Another option is $SY STEM .Status.DecomposeStatus(), which returns an array of the error details (by reference, as the
second argument). For example:

Do $SYSTEM.Status.DecomposeStatus(tSC, -errorlist)
//then examine the errorlist variable

The variable errorlist is a multidimensional array that contains the error information. The following shows a partial example
with some artificial line breaks for readability:

ZWRITE errorlist

errorlist=2

errorlist(1)="ERROR #5659: Property "Sample.Person::SSN(1@Sample.Person,ID=)" required"
errorlist(l," " caller)="%ValidateObject+9”Sample.Person.1"
errorlist(l, " code')=5659

errorlist(l,"dcode™)=5659

errorlist(l, " domain")="%0bjectErrors"

errorlist(l, "namespace')=""SAMPLES"

errorlist(l,"param')=1

errorlist(l,"param',1)="Sample.Person: :SSN(1@Sample.Person, ID=)"
errorlist(2)="ERROR #7209: Datatype value "" does not match

PATTERN "3N1'***-""""2N1""**-"""AN"""_$c(13,10)_" >

ERROR #5802: Datatype validation failed on property "Sample.Person:SSN*®,
with value equal to """

errorlist(2," " caller')="zSSNIsValid+1~Sample.Person.1"
errorlist(2,"code')=7209

If you wanted to log each error message, you could adapt the previous logging example as follows:

I $$$ISERR(ESC) {
// if error, log error message so users can see them
Do $SYSTEM.Status.DecomposeStatus(tSC, .errorlist)
For i=1l:1:errorlist {
Do ..LogMsg(errorlist(i))
b

}

Note: If you call DecomposeStatus() again and pass in the same error array, any new errors are appended to the array.

16.5 Returning a %Status

You can return your own custom status values. To create a %Status, use the following construction:
$SSERROR($$%$GeneralError,"your error text here™,"parm",anotherparm™)
Or equivalently:

$SYSTEM. Status.Error($$$GeneralError, your error text here','parm','anotherparm')

Using ObjectScript 153

Working with %Status Values

Where "parm™ and ""anotherparm' represent optional additional error arguments, such as filenames or identifiers for
records where the processing did not succeed.

For example:
quit $$SERROR($$SGeneralError,'Not enough information for request'™)

To include information about additional errors, use $SY STEM .Status.AppendStatus() to modify the status value. For
example:

set tSC=$SYSTEM.Status.AppendStatus(tSCFfirst,tSCsecond)
quit tSC

16.6 %SYSTEM.Error

The %SYSTEM.Error class is a generic error object. It can be created from a %Status error, from an exception object, a
$ZERROR error, or an SQLCODE error.

You can use %SYSTEM.Error class methods to convert a %Status to an exception, or to convert an exception to a %Status.

16.7 See Also

For more information, see the class reference for the %SYSTEM.Status class and the %Status (%Library.Status) class.

154 Using ObjectScript

17

Using TRY-CATCH

Managing the behavior of code when an error (particularly an unexpected error) occurs is called error handling or error
processing. Error handling includes the following operations:

» Correcting the condition that caused the error
» Performing some action that allows execution to resume despite the error
» Diverting the flow of execution

* Logging information about the error

InterSystems IRIS® data platform supports a TRY-CATCH mechanism for handling errors. Note that in code migrated
from older applications, you might see traditional error processing, which is still fully supported, but is not intended for
use in new applications.

Also see %Status Processing, which is not error handling in a strict sense. Typically status processing is fully contained
within a TRY block.

17.1 Introduction

With TRY-CATCH, you can establish delimited blocks of code, each called a TRY block; if an error occurs during a TRY
block, control passes to the TRY block’s associated CATCH block, which contains code for handling the exception. A
TRY block can also include THROW commands; each of these commands explicitly issues an exception from within a
TRY block and transfers execution to a CATCH block.

To use this mechanism in its most basic form, include a TRY block within ObjectScript code. If an exception occurs within
this block, the code within the associated CATCH block is then executed. The form of a TRY-CATCH block is:

TRY {
protected statements

} CATCH [ErrorHandle] {
error statements

further statements

where:

» The TRY command identifies a block of ObjectScript code statements enclosed in curly braces. TRY takes no arguments.
This block of code is protected code for structured exception handling. If an exception occurs within a TRY block,
InterSystems IRIS sets the exception properties (oref.Name, oref.Code, oref.Data, and oref.Location), $ZERROR,
and $ECODE, then transfers execution to an exception handler, identified by the CATCH command. This is known
as throwing an exception.

Using ObjectScript 155

Using TRY-CATCH

» The protected statements are ObjectScript statements that are part of normal execution. (These can include calls to the
THROW command. This scenario is described in the following section.)

* The CATCH command defines an exception handler, which is a block of code to execute when an exception occurs
in a TRY block.

e The ErrorHandle variable is a handle to an exception object. This can be either an exception object that InterSystems
IRIS has generated in response to a runtime error or an exception object explicitly issued by invoking the THROW
command (described in the next section).

» The error statements are ObjectScript statements that are invoked if there is an exception.

» The further statements are ObjectScript statements that either follow execution of the protected statements if there is
no exception or follow execution of the error statements if there is an exception and control passes out of the CATCH
block.

Depending on events during execution of the protected statements, one of the following events occurs:

» Ifan error does not occur, execution continues with the further statements that appear outside the CATCH block.

» Ifanerror does occur, control passes into the CAT CH block and error statements are executed. Execution then depends
on contents of the CATCH block:

— If the CATCH block contains a THROW or GOTO command, control goes directly to the specified location.

— If the CATCH block does not contain a THROW or GOTO command, control passes out of the CAT CH block
and execution continues with the further statements.

17.2 Using THROW with TRY-CATCH

InterSystems IRIS issues an implicit exception when a runtime error occurs. To issue an explicit exception, the THROW
command is available. The THROW command transfers execution from the TRY block to the CAT CH exception handler.
The THROW command has a syntax of:

THROW expression

where expression is an instance of a class that inherits from the %Exception.AbstractException class, which InterSystems
IRIS provides for exception handling. For more information on %Exception.AbstractException, see the following section.

The form of the TRY/CATCH block with a THROW is:

TRY {
protected statements
THROW expression
protected statements

CATCH exception {
error statements

bs
further statements

where the THROW command explicitly issues an exception. The other elements of the TRY-CATCH block are as described
in the previous section.

The effects of THROW depends on where the throw occurs and the argument of THROW:
« A THROW within a TRY block passes control to the CATCH block.

156 Using ObjectScript

Using $$$ThrowOnError and $$$ThrowStatus Macros

A THROW within a CATCH block passes control up the execution stack to the next error handler. If the exception
is a %Exception.SystemException object, the next error handler can be any type (CATCH or traditional); otherwise
there must be a CAT CH to handle the exception or a <NOCATCH> error will be thrown.

If control passes into a CATCH block because of a THROW with an argument, the ErrorHandle contains the value from
the argument. If control passes into a CATCH block because of a system error, the ErrorHandle is a
%Exception.SystemException object. If no ErrorHandle is specified, there is no indication of why control has passed into
the CATCH block.

For example, suppose there is code to divide two numbers:

div(num,div) public {

TRY {
SET ans=num/div

} CATCH errobj {
IF errobj.Name="<DIVIDE>" { SET ans=0 }
ELSE { THROW errobj }

b e
QUIT ans

If a divide-by-zero error happens, the code is specifically designed to return zero as the result. For any other error, the
THROW sends the error on up the stack to the next error handler.

17.3 Using $$$ThrowOnError and $$$ThrowStatus Macros

InterSystems IRIS provides macros for use with exception handling. When invoked, these macros throw an exception object
to the CATCH block.

The following example invokes the $$$ThrowOnError() macro when an error status is returned by the % Prepare()
method:

ObjectScript

#include %occStatus

TRY {
SET myquery = "SELECT TOP 5 Name,Hipness,DOB FROM Sample.Person"
SET tStatement = ##class(%SQL.Statement) .%New()
SET status = tStatement.%Prepare(myquery)
$$$ThrowOnError(status)
WRITE "%Prepare succeeded",!
RETURN

b e
CATCH sc {
WRITE "In Catch block",!
WRITE "error code: ",sc.Code,!
WRITE "error location: ",sc.Location,!
WRITE "error data:",$LISTGET(sc.Data,2),!
RETURN

}

The following example invokes $$$ThrowStatus after testing the value of the error status returned by the % Prepare()
method:

Using ObjectScript 157

Using TRY-CATCH

ObjectScript

#include %occStatus
TRY {
SET myquery = "SELECT TOP 5 Name,Hipness,DOB FROM Sample.Person
SET tStatement = ##class(%SQL.Statement) .%New()
SET status = tStatement.%Prepare(myquery)
IF ($System.Status.IsError(status)) {
WRITE "%Prepare failed",!
$$$ThrowStatus(status) }
ELSE {WRITE "%Prepare succeeded",!
RETURN }

b e
CATCH sc {
WRITE "In Catch block",!
WRITE "error code: ",sc.Code,!
WRITE "error location: ",sc.Location,!
WRITE "error data:",$LISTGET(sc.Data,2),!
RETURN

}

See System Macros for more information.

17.4 Using the %Exception.SystemException and
%Exception.AbstractException Classes

InterSystems IRIS provides the %Exception.SystemException and %Exception.AbstractException classes for use with
exception handling. %Exception.SystemException inherits from the %Exception.AbstractException class and is used for
system errors. For custom errors, create a class that inherits from %Exception.AbstractException. %Exception.AbstractException
contains properties such as the name of the error and the location at which it occurred.

When a system error is caught within a TRY block, the system creates a new instance of the %Exception.SystemException
class and places error information in that instance. When throwing a custom exception, the application programmer is
responsible for populating the object with error information.

An exception object has the following properties:

* Name — The error name, such as <UNDEFINED>

» Code — The error number

» Location — The label+offset*routine location of the error

» Data — Any extra data reported by the error, such as the name of the item causing the error

17.5 Other Considerations with TRY-CATCH

The following describe conditions that may arise when using a TRY-CATCH block.

17.5.1 QUIT within aTRY-CATCH Block

A QUIT command within a TRY or CATCH block passes control out of the block to the next statement after the
TRY-CATCH as a whole.

158 Using ObjectScript

Other Considerations with TRY-CATCH

17.5.2 TRY-CATCH and the Execution Stack

The TRY block does not introduce a new level in the execution stack. This means that it is not a scope boundary for NEW
commands. The error statements execute at the same level as that of the error. This can result in unexpected results if there
are DO commands within the protected statements and the DO target is also within the protected statements. In such cases,
the $ESTACK special variable can provide information about the relative execution levels.

17.5.3 Using TRY-CATCH with Traditional Error Processing

TRY-CATCH error processing is compatible with $ZTRAP error traps used at different levels in the execution stack. The
exception is that $ZTRAP may not be used within the protected statements of a TRY clause. User-defined errors with a
THROW are limited to TRY-CATCH only. User-defined errors with the ZTRAP command may be used with any type
of error processing.

Using ObjectScript 159

18

Error Logging

Each namespace can have an application error log, which records errors encountered when running code in that namespace.
Some system code automatically writes to this log, and your code can do so as well.

18.1 Logging Application Errors

To log an exception to the application error log, use the % Exception.AbstractException.L og() method. Typically you
would do this within the CATCH block of a TRY-CATCH.

18.2 Using Management Portal to View Application Error
Logs

From the Management Portal, select System Operation, then System Logs, then Application Error Log. This displays the
Namespace list of those namespaces that have application error logs. You can use the header to sort the list.

Select Dates for a namespace to display those dates for which there are application error logs, and the number of errors
recorded for that date. You can use the headers to sort the list. You can use Filter to match a string to the Date and Quantity
values.

Select Errors for a date to display the errors for that date. Error # integers are assigned to errors in chronological order.
Error # *COM is a user comment applied to all errors for that date. You can use the headers to sort the list. You can use
Filter to match a string.

Select Details for an error to open an Error Details window that displays state information at the time of the error including
special variables values and Stacks details. To see the stack trace corresponding to the error, click the Stacks or scroll to
the bottom of the page. Then click the + icon in the row of this table and look for the %objlasterror variable, which (if
present) contains information about the error.

You can specify a user comment for an individual error.

The Namespaces, Dates, and Errors listings include check boxes that allow you to delete the error log for the corresponding
error or errors. Check what you wish to delete, then select the Delete button.

Using ObjectScript 161

Error Logging

18.3 Using “"%ERN to View Application Error Logs

The "% ERN utility examines application errors and lets you see all errors logged for the current namespace. This is an
alternative to using the Management Portal.

Take the following steps to use the *% ERN utility:

1.

In an ObjectScript shell, enter DO ~% ERN. The name of the utility is case-sensitive; responses to prompts within the
utility are not case-sensitive.

At any prompt you may enter ? to list syntax options for the prompt, or ?L to list all of the defined values. You may
use the Enter key to exit to the previous level.

Atthe For Date: prompt, enter ?L to see a list of all the dates when errors occurred.

Then at the same prompt, enter one of those dates (in the format mm/dd/yyyy); if you omit the year, the current year
is assumed. The routine then displays the date and the number of errors logged for that date. Alternative, you can
retrieve lists of errors from this prompt using the following syntax:

» 7L lists all dates on which errors occurred, most recent first, with the number of errors logged. The (T) column
indicates how many days ago, with (T) = today and (T-7) = seven days ago. If a user comment is defined for
all of the day’s errors, it is shown in square brackets. After listing, it re-displays the For Date: prompt. You
can enter a date or T-n.

» [text lists all errors that contain the substring text. <text lists all errors that contain the substring text in the
error name component. ~text lists all errors that contain the substring text in the error location component. After
listing, it re-displays the For Date: prompt. Enter a date.

Error: at this prompt supply the integer number for the error you want to examine: 1 for the first error of the day, 2
for the second, and so on. Or enter a question mark (?) for a list of available responses. The utility displays the following
information about the error: the Error Name, Error Location, time, system variable values, and the line of code executed
at the time of the error.

You can specify an * at the Error: prompt for comments. * displays the current user-specified comment applied to
all of the errors of that day. It then prompts you to supply a new comment to replace the existing comment for all of
these errors.

Variable: at this prompt you can specify numerous options for information about variables. If you specify the name
of a local variable (unsubscipted or subscripted), *% ERN returns the stack level and value of that variable (if defined),
and all its descendent nodes. You cannot specify a global variable, process-private variable, or special system variable.

You may enter ? to list other syntax options for the Variable: prompt.
» *A: when specified at the Variable: prompt, displays the Device: prompt; press Return to display results.

e *V: when specified at the Variable: prompt, displays the Variable(s) : prompt. At this prompt specify an
unsubscripted local variable or a comma-separated list of unsubscripted local variables; subscripted variables are
rejected. "% ERN then displays the Device: prompt; press Return to display results. *% ERN returns the value
of each specified variable (if defined) and all its descendent nodes.

* *L:when specified at the Variable: prompt, loads the variables into the current partition. It loads all private
variables (as public) and then all public variables that don't conflict with the loaded private variables.

162

Using ObjectScript

See Also

18.4 See Also

* %SYS.ProcessQuery.ExamStackByPid() method, which provides details on the “mtemp global used by *% ERN

Using ObjectScript 163

19

Command-Line Routine Debugging

This topic describes techniques for testing and debugging Object Script code. InterSystems IRIS® data platform gives you
two ways to debug code:

e Use the BREAK command in routine code to suspend execution and allow you to examine what is happening.
» Use the ZBREAK command to invoke the ObjectScript Debugger to interrupt execution and allow you to examine

both code and variables.

InterSystems IRIS includes the ability to suspend a routine and enter a shell that supports full debugging capabilities, as
described in this topic. InterSystems IRIS also includes a secure debug shell, which has the advantage of ensuring that users
are prevented from exceeding or circumventing their assigned privileges.

19.1 Secure Debug Shell

The secure debug shell helps better control access to sensitive data. It is an environment that allows users to perform basic
debugging, such as stepping and displaying variables, but does not allow them to do anything that changes the execution
path or results of a routine. This protects against access that can lead to issues such as manipulation, malicious role escalation,
and the injection of code to run with higher privileges.

By default, users at the debug prompt maintain their current level of privileges. To enable the secure shell for the debug
prompt and thereby restrict the commands that the user may issue, you must enable the secure debug shell for that user.

If enabled for the current user, the secure debug shell starts when a BREAK command is executed, a breakpoint or
watchpoint is encountered, or an uncaught error is issued.

Within the secure debug shell, the user cannot invoke:

* Any command that can modify a variable.

» Any function that can modify a variable.

e Any command that can call other routines.

* Any command that affects the flow of the routine or the environment.

Within the secure debug shell, when a user attempts to invoke a restricted command or function, InterSystems IRIS throws
a <COMMAND?> or <FUNCTION> error, respectively.

Using ObjectScript 165

Command-Line Routine Debugging

19.1.1 Restricted Commands and Functions

This section lists the restricted activities within the secure debug shell:
» Restricted ObjectScript Commands
» Restricted ObjectScript Functions

» Restricted Object Constructions

19.1.1.1 Restricted ObjectScript Commands

The following are the restricted ObjectScript commands for the secure debug shell:

+ CLOSE
« DO
* FOR

e GOTO with an argument

« KILL
. LOCK

- MERGE

. OPEN

. QUIT

- READ

- RETURN

. SET

- TCOMMIT

« TROLLBACK
« TSTART

. VIEW

. XECUTE

« ZINSERT

. ZKILL

- ZREMOVE

. ZSAVE

e user commands except ZW and ZZDUMP

19.1.1.2 Restricted ObjectScript Functions

The following are the restricted ObjectScript functions for the secure debug shell:
* $CLASSMETHOD

* $COMPILE

166 Using ObjectScript

Debugging with the ObjectScript Debugger

» $DATA(,var) — two-argument version only

* S$INCREMENT

+ S$METHOD

* $ORDER(,,var) — three-argument version only
* $PROPERTY

* $QUERY/(,var) — three-argument version only

 $XECUTE
s $ZF
+ $ZSEEK

e any extrinsic function

19.1.1.3 Restricted Object Constructions

No method or property references are allowed. Property references are restricted because they could invoke a propertyGet
method. Some examples of the object method and property syntax constructions that are restricted are:

» #class(classname).ClassM ethod()
oref.Method()

e oref.Property
$SY STEM .Class.M ethod()
..Method()

e ..Property

Note: Even without passing a variable by reference, a method can modify public variables. Since a property reference
could invoke a propGet method, no property access is allowed.

19.2 Debugging with the ObjectScript Debugger

The ObjectScript Debugger lets you test routines by inserting debugging commands directly into your routine code. Then,
when you run the code, you can issue commands to test the conditions and the flow of processing within your application.
Its major capabilities are:

» Setbreakpoints with the ZBREAK command at code locations and take specified actions when those points are reached.
» Set watchpoints on local variables and take specified actions when the values of those variables change.

e Interact with InterSystems IRIS during a breakpoint/watchpoint in a separate window.

» Trace execution and output a trace record (to a terminal or other device) whenever the path of execution changes.

» Display the execution stack.

* Run an application on one device while debugging 1/0 goes to a second device. This enables full screen InterSystems
IRIS applications to be debugged without disturbing the application’s terminal 1/0.

Using ObjectScript 167

Command-Line Routine Debugging

19.2.1 Using Breakpoints and Watchpoints

The ObjectScript Debugger provides two ways to interrupt program execution:

* Breakpoints

* Watchpoints

A breakpoint is a location in an InterSystems IRIS routine that you specify with the ZBREAK command. When routine
execution reaches that line, InterSystems IRIS suspends execution of the routine and, optionally, executes debugging actions

you define. You can set breakpoints in up to 20 routines. You can set a maximum of 20 breakpoints within a particular
routine.

A watchpoint is a variable you identify ina ZBREAK command. When its value is changed with a SET or KILL command,
you can cause the interruption of routine execution and/or the execution of debugging actions you define within the ZBREAK
command. Note that you cannot set watchpoints for system variables.

Breakpoints and watchpoints you define are not maintained from one session to another. Therefore, you may find it useful
to store breakpoint/watchpoint definitions in a routine or XECUTE command string so it is easy to reinstate them between
sessions.

19.2.2 Establishing Breakpoints and Watchpoints

You use the ZBREAK command to establish breakpoints and watchpoints.

19.2.2.1 Syntax

ZBREAK location[:action:condition:execute_code]

where:

168 Using ObjectScript

Debugging with the ObjectScript Debugger

Argument

location

action

condition

execute_code

Description

Required. Specifies a code location (that sets a breakpoint) or local or system
variable (which sets a watchpoint). If the location specified already has a
breakpoint/watchpoint defined, the new specification completely replaces the old
one. Note that you cannot watchpoints for system variables.

Optional — Specifies the action to take when the breakpoint/watchpoint is triggered.
For breakpoints, the action occurs before the line of code is executed. For
watchpoints, the action occurs after the command that modifies the local variable.
Actions may be upper- or lowercase, but must be enclosed in quotation marks.

Optional — A boolean expression, enclosed in curly braces or quotes, that is
evaluated when the breakpoint/watchpoint is triggered.

e When condition is true (1), the action is carried out.

*« When condition is false, the action is not carried out and the code in
execute_code is not executed.

If condition is not specified, the default is true.

Optional — Specifies ObjectScript code to be executed if condition is true. If the
code is a literal, it must be surrounded by curly braces or quotation marks. This
code is executed before the action being carried out. Before the code is executed,
the value of the $TEST special system variable is saved. After the code has
executed, the value of $TEST as it existed in the program being debugged is
restored.

Note: Using ZBREAK with a ? (question mark) displays help.

19.2.2.2 Setting Breakpoints with Code Locations

You specify code locations as a routine line reference that you can use in a call to the $TEXT function. A breakpoint occurs
whenever execution reaches this point in the code, before the execution of the line of code. If you do not specify a routine
name, InterSystems IRIS assumes the reference is to the current routine.

19.2.2.3 Argumentless GOTO in Breakpoint Execution Code

An argumentless GOTO is allowed in breakpoint execution code. Its effect is equivalent to executing an argumentless
GOTO at the debugger BREAK prompt and execution proceeds until the next breakpoint.

For example, if the routine you are testing is in the current namespace, you can enter location values such as these:

Value
label*rou
label+3”rou

+3”rou

Break Location
Break before the line at the line label label in the routine rou.
Break before the third line after the line label label in routine rou.

Break before the third line in routine rou.

If the routine you are testing is currently loaded in memory (that is, an implicit or explicit ZLOAD was performed), you
can use location values such as these:

Using ObjectScript

169

Command-Line Routine Debugging

Value Break Location

label Break before the line label at label.
label+3 Break before the third line after label.
+3 Break before the third line.

19.2.2.4 Setting Watchpoints with Local and System Variable Names
Local variable names cause a watchpoint to occur in these situations:

* When the local variable is created

* When a SET command changes the value of the local variable

e When aKILL command deletes the local variable

Variable names are preceded by an asterisk, as in *a.

If you specify an array-variable name, the ObjectScript Debugger watches all descendant nodes. For instance, if you
establish a watchpoint for array a, a change to a(5) or a(5,1) triggers the watchpoint.

The variable need not exist when you establish the watchpoint.

You can also use the following special system variables:

System Variable Trigger Event

$ZERROR Triggered whenever an error occurs, before invoking the error trap.
$ZTRAP Triggered whenever an error trap is set or cleared.

$10 Triggered whenever explicitly SET.

19.2.2.5 Action Argument Values

The following table describes the values you can use for the ZBREAK action argument.

Argument Description

"B" Default, except if you include the "T" action, then you must also explicitly include the "B"
action, as in ZBREAK *a:"TB", to actually cause a break. Suspends execution and
displays the line at which the break occurred along with a caret () indicating the point
in the line. Then displays the Terminal prompt and allows interaction. Execution resumes
with an argumentless GOTO command.

"L Same as "B", except GOTO initiates single-step execution, stopping at the beginning of
each line. When a DO command, user-defined function, or XECUTE command is
encountered, single-step mode is suspended until that command or function completes.

"L+ Same as "B", except GOTO initiates single-step execution, stopping at the beginning of
each line. DO commands, user-defined functions, and XECUTE commands do not
suspend single-step mode.

'St Same as "B", except GOTO initiates single-step execution, stopping at the beginning of
each command. When a DO command, user-defined function, FOR command, or
XECUTE command is encountered, single-step mode is suspended until that command
or function completes.

170 Using ObjectScript

Debugging with the ObjectScript Debugger

Argument Description

"S+" Same as "B", except GOTO initiates single-step execution, stopping at the beginning of
each command. DO commands, user-defined functions, FOR commands, and XECUTE
commands do not suspend single-step mode.

"T" Can be used together with any other argument. Outputs a trace message to the trace
device. This argument works only after you have set tracing to be ON with the ZBREAK
ITRACE:ON command, described later. The trace device is the principal device unless
you define it differently in the ZBREAK /TRACE command. If you use this argument with
a breakpoint, you see the following message: TRACE: ZBREAK at label2*rou?2. If you
use this argument with a watchpoint, you see a trace message that names the variable
being watched and the command being acted upon. In the example below, the variable
a was being watched. It changed at the line test+1 in the routine test. TRACE: ZBREAK
SET a=2 at test+1”test. If you include the "T" action, you must also explicitly include the
"B" action as in ZBREAK *a:"TB", to have an actual break occur.

"N" Take no action at this breakpoint/watchpoint. The condition expression is always evaluated
and determines if the execute_code is executed.

19.2.2.6 ZBREAK Examples

The following example establishes a watchpoint that suspends execution whenever the local variable a is killed. No action
is specified, so "B" is assumed.

ZBREAK *a::"""$DATA(a)"

The following example illustrates the above watchpoint acting on a direct mode ObjectScript command (rather than on a
command issued from within a routine). The caret (*) points to the command that caused execution to be suspended:

Terminal

USER>KILL a
KILL a
N

<BREAK>
USER 1s0>

The following example establishes a breakpoint that suspends execution and sets single-step mode at the beginning of the
line label2”rou.

ZBREAK label2”rou:"L"

The following example shows how the break would appear when the routine is run. The caret () indicates where execution
was suspended.

Terminal

USER>DO “rou
label2 SET x=1
N

<BREAK>label2”rou
USER 2d0>

In the following example, a breakpoint at line label3”*rou does not suspend execution, because of the "N" action. However,
if x<1 when the line label3”rou is reached, then flag is SET to x.

ZBREAK label3”rou:"N":"x<1":"SET flag=x"

Using ObjectScript 171

Command-Line Routine Debugging

The following example establishes a watchpoint that executes the code in “GLO whenever the value of a changes. The
double colon indicates no condition argument.

ZBREAK *a:"N"::"XECUTE ~GLO"™

The following example establishes a watchpoint that causes a trace message to display whenever the value of b changes.
The trace message will display only if trace mode has been turned on with the ZBREAK /TRACE:ON command.

ZBREAK *b:z"T"
The following example establishes a watchpoint that suspends execution in single-step mode when variable a is set to 5.
ZBREAK *a:"S":"a=5"

When the break occurs in the following example, a caret (*) symbol points to the command that caused the variable a to
be set to 5.
Terminal

USER>DO "test
FOR #=1:1:6 SET a=a+l
N

<BREAK>
test+3test

USER 3fO>WRITE a
5

19.2.3 Disabling Breakpoints and Watchpoints

You can disable either:
» Specific breakpoints and watchpoints

» All breakpoints or watchpoints

19.2.3.1 Disabling Specific Breakpoints and Watchpoints

You can disable a breakpoint or watchpoint by preceding the location with a minus sign. The following command disables
a breakpoint previously specified for location label2”*rou:

ZBREAK -label2”rou

A disabled breakpoint is “turned off”, but InterSystems IRIS remembers its definition. You can enable the disabled
breakpoint by preceding the location with a plus sign. The following command enables the previously disabled breakpoint:

ZBREAK +label2”rou

19.2.3.2 Disabling All Breakpoints and Watchpoints

You can disable all breakpoints or watchpoints by using the plus or minus signs without a location:

Sign Description
ZBREAK - Disable all defined breakpoints and watchpoints.
ZBREAK + Enable all defined breakpoints and watchpoint.

172 Using ObjectScript

Debugging with the ObjectScript Debugger

19.2.4 Delaying Execution of Breakpoints and Watchpoints

You can also delay the execution of a break/watchpoint for a specified number of iterations. You might have a line of code
that appears within a loop that you want to break on periodically, rather than every time it is executed. To do so, establish
the breakpoint as you would normally, then disable with a count following the location argument.

The following ZBREAK command causes the breakpoint at label2”rou to be disabled for 100 iterations. On the 101st time
this line is executed, the specified breakpoint action occurs.

ZBREAK label2”rou ; establish the breakpoint
ZBREAK -label2”~rou#100 ; disable it for 100 iterations

Important: A delayed breakpoint is not decremented when a line is repeatedly executed because it contains a FOR
command.

19.2.5 Deleting Breakpoints and Watchpoints

You can delete individual break/watchpoints by preceding the location with a double minus sign; for example:

ZBREAK --label2”rou

After you have deleted a breakpoint/watchpoint, you can only reset it by defining it again.

To delete all breakpoints, issue the command:
ZBREAK /CLEAR

This command is performed automatically when an InterSystems IRIS process halts.

19.2.6 Single-step Breakpoint Actions

You can use single step execution to stop execution at the beginning of each line or of each command in your code. You
can establish a single step breakpoint to specify actions and execution code to be executed at each step. Use the following
syntax to define a single step breakpoint:

ZBREAK $:action[:condition:execute_code]

Unlike other breakpoints, ZBREAK $ does not cause a break, because breaks occur automatically as you single-step.
ZBREAK $ lets you specify actions and execute code at each point where the debugger breaks as you step through the
routine. It is especially useful in tracing executed lines or commands. For example, to trace executed lines in the application
ATEST:

Terminal

USER>ZBREAK /TRACE:ON
USER>BREAK *"L+"
USER>ZBREAK $:"'T"

The "T" action specified alone (that is, without any other action code) suppresses the single step break that normally occurs
automatically. (You can also suppress the single-step break by specifying the "N™ action code — either with or without
any other action codes.)

Establish the following single-step breakpoint definition if both tracing and breaking should occur:

Terminal

USER>ZBREAK $:"TB"

Using ObjectScript 173

Command-Line Routine Debugging

19.2.7 Tracing Execution

You can control whether or not the "T" action of the ZBREAK command is enabled by using the following form of
ZBREAK:

ZBREAK /TRACE:state[:device]

where state can be:

State Description

ON Enables tracing.

OFF Disables tracing.

ALL Enables tracing of application by performing the equivalent of: ZBREAK /TRACE:ON[:device]

BREAK "L+" ZBREAK $:"T"

When device is used with the ALL or ON state keywords, trace messages are redirected to the specified device rather than
to the principal device. If the device is not already open, InterSystems IRIS attempts to open it as a sequential file with
WRITE and APPEND options.

When device is specified with the OFF state keyword, InterSystems IRIS closes the file if it is currently open.

Note: ZBREAK /TRACE:OFF does not delete or disable the single-step breakpoint definition set up by ZBREAK
/TRACE:ALL, nor does it clear the L+ single stepping set up by ZBREAK /TRACE:ALL. You must also issue
the commands ZBREAK --$ and BREAK "C"* to remove the single stepping; alternatively, you can use the single
command BREAK *"OFF'" to turn off all debugging for the process.

Tracing messages are generated at breakpoints associated with a T action. With one exception, the trace message format
is as follows for all breakpoints:

Trace: ZBREAK at line_reference

where line_reference is the line reference of the breakpoint.

The trace message format is slightly different for single step breakpoints when stepping is done by command:

Trace: ZBREAK at line_reference source_offset

where line_reference is the line reference of the breakpoint and source_offset is the 0-based offset to the location in the
source line where the break has occurred.

Operating System Notes:

e Windows — Trace messages to another device are supported on Windows platforms for terminal devices connected
to a COM port, such as COML1:. You cannot use the console or a terminal window. You can specify a sequential file
for the trace device

* UNIX® — To send trace messages to another device on UNIX® platforms:
1. Log in to /dev/tty01.

2. Verify the device name by entering the tty command:

$ tty
/dev/tty01

3. Issue the following command to avoid contention for the device:

$ exec sleep 50000

174 Using ObjectScript

Debugging with the ObjectScript Debugger

4. Return to your working window.
5. Start and enter InterSystems IRIS.

6. Issue your trace command:
ZBREAK /T:ON:"/dev/tty01"

7. Run your program.

If you have set breakpoints or watchpoints with the T action, you see trace messages appear in the window connected
to /dev/tty01.

19.2.7.1 Trace Message Format

If you set a code breakpoint, the following message appears:
Trace: ZBREAK at label2”rou2
If you set a variable watchpoint, one of the following messages appears:

Trace: ZBREAK SET var=val at label2”rou2
Trace: ZBREAK SET var=Array Val at label2”rou2
Trace: ZBREAK KILL var at label2”rou2

e var is the variable being watched.
e val is the new value being set for that variable.
If you issue a NEW command, you receive no trace message. However, the trace on the variable is triggered the next time

you issue a SET or KILL on the variable at the NEW level. If a variable is passed by reference to a routine, then that
variable is still traced, even though the name has effectively changed.

19.2.8 INTERRUPT Keypress and Break

Normally, pressing the interrupt key sequence (typically CTRL-C) generates a trapable (KINTERRUPT>) error. To set
interrupt processing to cause a break instead of an <INTERRUPT> error, use the following ZBREAK command: ZBREAK
/ 1 NTERRUPT: Br eak

This causes a break to occur when you press the INTERRUPT key even if you have disabled interrupts at the application
level for the device.

If you press the INTERRUPT key during a read from the terminal, you may have to press RETURN to display the break-
mode prompt. To reset interrupt processing to generate an error rather than cause a break, issue the following command:
ZBREAK /| NTERRUPT: NORVAL

19.2.9 Displaying Information About the Current Debug Environment

To display information about the current debug environment, including all currently defined break or watchpoints, issue
the ZBREAK command with no arguments.

The argumentless ZBREAK command describes the following aspects of the debug environment:

* Whether CTRL-C causes a break

e Whether trace output specified with the "T" action in the ZBREAK command displays

» The location of all defined breakpoints, with flags describing their enabled/disabled status, action, condition and exe-
cutable code

Using ObjectScript 175

Com

mand-Line Routine Debugging

» Allvariables for which there are watchpoints, with flags describing their enabled/disabled status, action, condition and
executable code

Output from this command is displayed on the device you have defined as your debug device, which is your principal
device unless you have defined the debug device differently with the ZBREAK /DEBUG command described in the Using
the Debug Device section.

The following table describes the flags provided for each breakpoint and watchpoint:

Display Section

Identification of break/watchpoint

Meaning

Line in routine for breakpoint. Local variable for
watchpoint.

Flag providing information about the type of action
defined in the ZBREAK command.

Number of iterations to delay execution of a
breakpoint/watchpoint defined in a ZBREAK -
command.

Condition argument set in ZBREAK command.

Execute_code argument set in ZBREAK command.

The following table describes how to interpret the F: value in a breakpoint/watchpoint display. The F: value is a list of the
applicable values in the first column.

Va
E
D
B
L
L+

S+

lue

19.2.9.1 Default Display

When you first enter InterSystems IRIS and use ZB, the output is as follows:

Terminal

USER>ZBREAK
BREAK:

No breakpoints
No watchpoints

This

means:
Trace execution is OFF

There is no break if CTRL-C is pressed

Meaning

Breakpoint or watchpoint enabled
Breakpoint or watchpoint disabled
Perform a break

Perform an "L"

Perform an "L+"

Perform an "S"

Perform an "S+"

Output a Trace Message

176

Using ObjectScript

Debugging with the ObjectScript Debugger

* No break/watchpoints are defined

19.2.9.2 Display When Breakpoints and Watchpoints Exist

This example shows two breakpoints and one watchpoint being defined:

Terminal

USER>ZBREAK +3"test:::{WRITE "IN test"}
USER>ZBREAK -+3"test#5

USER>ZBREAK +57test:"L"

USER>ZBREAK -+5"test

USER>ZBREAK *a:"'T":"a=5"

USER>ZBREAK /TRACE:ON

USER>ZBREAK

BREAK: TRACE ON
+3”test F:EB S:5 C:
+5”test F:DL S:0 C:
a F:ET S:0 C:"a=5" E:

E:"WRITE "IN test"
E:

The first two ZBREAK commands define a delayed breakpoint; the second two ZBREAK commands define a disabled
breakpoint; the fifth ZBREAK command defines a watchpoint. The sixth ZBREAK command enables trace execution.
The final ZBREAK command, with no arguments, displays information about current debug settings.

In the example, the ZBREAK display shows that:
e Tracing is ON

e There is no break if CTRL-C is pressed.

The output then describes the two breakpoints and one watchpoint:

» The Fflag for the first breakpoint equals EB and the S flag equals 5, which means that a breakpoint will occur the fifth
time the line is encountered. The E flag displays executable code, which will run before the Terminal prompt for the
break is displayed.

e The F flag for the second breakpoint equals DL, which means it is disabled, but if enabled will break and then single-
step through each line of code following the breakpoint location.

» The Fflag for the watchpoint is ET, which means the watchpoint is enabled. Since trace execution is ON, trace messages
will appear on the trace device. Because no trace device was defined, the trace device will be the principal device.

» The C flag means that trace is displayed only when condition is true.

19.2.10 Using the Debug Device

The debug device is the device where:
e The ZBREAK command displays information about the debug environment.

» The Terminal prompt appears if a break occurs.

Note: On Windows platforms, trace messages to another device are supported only for terminal devices connected to a
COM port, such as COM1.:

When you enter InterSystems IRIS, the debug device will automatically be set to your principal device. At any time,
debugging I/O can be sent to an alternate device with the command: ZBREAK /DEBUG:"'devi ce™.

Using ObjectScript 177

Command-Line Routine Debugging

Note: There are also operating-system-specific actions that you can take.

On UNIX® systems, to cause the break to occur on the tty01 device, issue the following command:

ZBREAK /D:"'/dev/tty01/"

When a break occurs, because of a CTRL-C or to a breakpoint or watchpoint being triggered, it appears in the window
connected to the device. That window becomes the active window.

If the device is not already open, an automatic OPEN is performed. If the device is already open, any existing OPEN
parameters are respected.

Important: If the device you specify is not an interactive device (such as a terminal), you may not be able to return
from a break. However, the system does not enforce this restriction.

19.2.11 ObjectScript Debugger Example

First, suppose you are debugging the simple program named test shown below. The goal is to put 1 in variable a, 2 in
variable b, and 3 in variable c.

test; Assign the values 1, 2, and 3 to the variables a, b, and c
SET a=1

SET b=2

SET c=3 KILL a WRITE "in test, at end"

QUIT

However, when you run test, only variables b and ¢ hold the correct values:

Terminal

USER>DO ~test
in test, at end
USER>WRITE

b=2

c=3

USER>

The problem in the program is obvious: variable a is KILLed on line 4. However, assume you need to use the debugger to
determine this.

You can use the ZBREAK command to set single-stepping through each line of code ("L" action) in the routine test. By
a combination of stepping and writing the value of a, you determine that the problem lies in line 4:

Terminal

USER>NEW

USER 1S1>ZBREAK

BREAK

No breakpoints

No watchpoints

USER 1S1>ZBREAK "test:"'L"
USER 1S1>DO ~test

SET a=1

N

<BREAK>test+1"test
USER 3d3>WRITE a
<UNDEFINED>"test
USER 3d3>GOTO

SET b=2

N

<BREAK>test+2"test

USER 3d3>WRITE a

1

USER 3d3>GOTO

SET c=3 KILL a WRITE "in test, at end"
N

<BREAK>test+3"test
USER 3d3>WRITE a

178 Using ObjectScript

Debugging With BREAK

1

USER 3d3>GOTO
in test, at end
QUIT

N

<BREAK>test+4"test
USER 3d3>WRITE a
WRITE a

N

<UNDEF INED>"test
USER 3d3>GOTO
USER 1S1>

You can now examine that line and notice the KILL a command. In more complex code, you might now want to single-
step by command ("S" action) through that line.

If the problem occurred within a DO, FOR, or XECUTE command or a user-defined function, you would use the "L+" or
"S+" actions to single-step through lines or commands within the lower level of code.

19.2.12 Understanding ObjectScript Debugger Errors
The ObjectScript Debugger flags an error in a condition or execute argument with an appropriate InterSystems IRIS error
message.

If the error is in the execute_code argument, the condition surrounds the execute code when the execute code is displayed
before the error message. The condition special variable (STEST) is always set back to 1 at the end of the execution code
so that the rest of the debugger processing code works properly. When control returns to the routine, the value of STEST
within the routine is restored.

Suppose you issue the following ZBREAK command for the example program test:

Terminal

USER>ZBREAK test+1/ test:"B":"a=5":"WRITE b"
In the program test, variable b is not defined at line test+1, so there is an error. The error display appears as follows:

IF a=5 XECUTE "WRITE b"™ IF 1
N
<UNDEFINED>test+1"test

If you had not defined a condition, then an artificial true condition would be defined before and after the execution code;
for example:
Terminal

USER>IF 1 WRITE b IF 1

19.3 Debugging With BREAK

InterSystems IRIS includes three forms of the BREAK command:

« BREAK without an argument inserted into routine code establishes a breakpoint at that location. When encountered
during code execution this breakpoint suspend execution and returns to the Terminal prompt.

» BREAK with a letter string argument establishes or deletes breakpoints at that enable stepping through code on a line-
by-line or command-by-command basis.

» The BREAK command with an integer argument enables or disables CTRL-C user interrupts. (Refer to the BREAK
command for further details.)

Using ObjectScript 179

Command-Line Routine Debugging

19.3.1 Using Argumentless BREAK to Suspend Routine Execution

To suspend a running routine and return the process to the Terminal prompt, enter an argumentless BREAK into your
routine at points where you want execution to temporarily stop.

When InterSystems IRIS encounters a BREAK, it takes the following steps:
1. Suspends the running routine

2. Returns the process to the Terminal prompt. When debugging an application that uses 1/0 redirection of the principal
device, redirection will be turned off at the debug prompt so output from a debug command will be shown on the
Terminal.

You can now issue ObjectScript commands, modify data, and execute further routines or subroutines, even those with
errors or additional BREAKS. If you issue an ObjectScript command from the debug Terminal prompt, this command
is immediately executed. It is not inserted into the running routine. This command execution is the same behavior as
the ordinary Terminal prompt, with one difference: a command proceeded by a Tab character is executed from the
debug Terminal prompt; a command proceeded by a Tab character is not executed from the ordinary Terminal prompt.

To resume execution at the point at which the routine was suspended, issue an argumentless GOTO command.

You may find it useful to specify a postconditional on an argumentless BREAK command so that you can rerun the same
code simply by setting the postconditional variable rather than having to change the routine. For example, you may have
the following line in a routine:

CHECK BREAK : $DATA(debug)

You can then set the variable debug to suspend the routine and return the job to the Terminal prompt or clear the variable
debug to continue running the routine.

For further details, see Command Postconditional Expressions.

19.3.2 Using Argumented BREAK to Suspend Routine Execution

You do not have to place argumentless BREAK commands at every location where you want to suspend your routine.
InterSystems IRIS provides several argument options that allow you to step through the execution of the code. You can
step through the code by single steps (BREAK ““S”) or by command line (BREAK “L”"). For a full list of these letter code
arguments, see the BREAK command.

One difference between BREAK “S” and BREAK ““L” is that many command lines consist of more than one step. This
is not always obvious. For example, the following are all one line (and one ObjectScript command), but each is parsed as
two steps: SET x=1,y=2, KILL x,y, WRITE “hello”,!, IF x=1,y=2.

Both BREAK “S” and BREAK ““L” ignore label lines, comments, and TRY statements (though both break at the closing
curly brace of a TRY block). BREAK “S” breaks at a CAT CH statement (if the CATCH block is entered); BREAK “L”
does not.

When a BREAK returns the process to the Terminal prompt, the break state is not stacked. Thus you can change the break
state and the new state remains in effect when you issue an argumentless GOTO to return to the executing routine.

InterSystems IRIS stacks the break state whenever a DO, XECUTE, FOR, or user-defined function is entered. If you
choose BREAK " C" to turn off breaking, the system restores the break state at the end of the DO, XECUTE, FOR, or
user-defined function. Otherwise, InterSystems IRIS ignores the stacked state.

Thus if you enable breaking at a low subroutine level, breaking continues after the routine returns to a higher subroutine
level. In contrast, if you disable breaking at a low subroutine level that was in effect at a higher level, breaking resumes
when you return to that higher level. You can use BREAK " C-" to disable breaking at all levels.

180 Using ObjectScript

Debugging With BREAK

You can use BREAK “L+” or BREAK “S+” to enable breaking withina DO, XECUTE, FOR, or a user-defined function.

You can use BREAK “L - to disable breaking at the current level but enables line breaking at the previous level. You can
use BREAK *“S-” to disable breaking at the current level but enables single-step breaking at the previous level.

19.3.2.1 Shutting Off Debugging

To remove all debugging that has been established for a process, use the BREAK ""OFF'* command. This command removes
all breakpoints and watchpoints and turns off stepping at all program stack levels. It also removes the association with the
debug and trace devices, but does not close them.

Invoking BREAK ""OFF" is equivalent to issuing the following set of commands:

ObjectScript

ZBREAK /CLEAR
ZBREAK /TRACE:OFF
ZBREAK /DEBUG:"""*
ZBREAK /ERRORTRAP:ON
BREAK "C-"

19.3.3 Terminal Prompt Shows Program Stack Information

When a BREAK command suspends execution of a routine or when an error occurs, the program stack retains some stacked
information. When this occurs, a brief summary of this information is displayed as part of the Terminal prompt (namespace>
). For example, this information might take the form: USER 5d3>, where:

Character Description

5 Indicates there are five stack levels. A stack level can be caused by a DO, FOR, XECUTE,
NEW, user-defined function call, error state, or break state.

d Indicates that the last item stacked is a DO.

3 Indicates there are 3 NEW states, parameter passing, or user-defined functions on the stack.
This value is a zero if no NEW commands, parameter passing, or user-defined functions are
stacked.

Terminal prompt letter codes are listed in the following table.

Table 19-1: Stack Error Codes at the Terminal Prompt

Prompt Definition

d DO

e user-defined function
f FOR loop

X XECUTE

B BREAK state

E Error state

N NEW state

S Sign-on state

Using ObjectScript 181

Command-Line Routine Debugging

In the following example, command line statements are shown with their resulting Terminal prompts when adding stack
frames:

Terminal

USER>NEW

USER 1S1>NEW

USER 2N1>XECUTE "NEW WRITE 123 BREAK™
<BREAK>

USER 4x1>NEW

USER 5B1>BREAK

<BREAK>

USER 6N2>

You can unwind the program stack using QUIT 1. The following is an example of Terminal prompts when unwinding the
stack:

Terminal

USER 6F0>QUIT
USER 5x0>QUIT
USER 4F0>QUIT
USER 3f0>QUIT
USER 2d0O>QUIT
USER 1SO>QUIT
USER>

/* an error occurred in a FOR loop. */

/* the FOR loop was in code invoked by XECUTE. */

/* the XECUTE was in a FOR loop. */

/* that FOR loop was nested inside another FOR loop. */
/* the DO command was used to execute the program. */
/* sign on state. */

RPRRRRR

19.3.4 FOR Loop and WHILE Loop

You can use either a FOR or a WHILE to perform the same operation: loop until an event (usually a counter increment)
causes execution to break out of the loop. However, which loop construct you use has consequences for performing single-
step (BREAK " S+" or BREAK " L+") debugging on the code module.

A FOR loop pushes a new level onto the stack. A WHILE loop does not change the stack level. When debugging a FOR
loop, popping the stack from within the FOR loop (using BREAK ''C'* GOTO or QUIT 1) allows you to continue single-
step debugging with the command immediately following the end of the FOR command construct. When debugging a
WHILE loop, issuing a using BREAK "'C'* GOTO or QUIT 1 does not pop the stack, and therefore single-step debugging
does not continue following the end of the WHIL E command. The remaining code executes without breaking.

19.3.5 Resuming Execution after a BREAK or an Error

When returned to the Terminal prompt after a BREAK or an error, InterSystems IRIS keeps track of the location of the
command that caused the BREAK or error. Later, you can resume execution at the next command simply by entering an
argumentless GOTO at the Terminal prompt:

Terminal

USER 4f0>GOTO

By typing a GOTO with an argument, you can resume execution at the beginning of another line in the same routine with
the break or error, as follows:

Terminal

USER 4f0>GOTO label3

You can also resume execution at the beginning of a line in a different routine:

Terminal

USER 4f0>GOTO label3”rou

182 Using ObjectScript

Debugging With BREAK

Alternatively, you may clear the program stack with an argumentless QUIT command:

Terminal

USER 4f0>QUIT
USER>

19.3.5.1 Sample Dialogs

The following routines are used in the examples below:

MAIN ; 03 Jan 2019 11:40 AM
SET x=1,y=6,z=8

DO ~SUB1 WRITE !,"sum="",sum
QUIT

SUB1 ; 03 Jan 2019 11:42 AM
SET sum=x+y+z
QUIT

With BREAK "L", breaking does not occur in the routine SUB1.

Terminal

USER>BREAK *"L"
USER>DO ~MAIN
SET x=1,y=6,z=8
N

<BREAK>MAIN+1~MAIN

USER 2d0>GOTO

DO ~SUB1 WRITE 1!,"'sum="",sum
N

<BREAK>MAIN+2~"MAIN
USER 2d0>GOTO
sum=15

QUIT

N

<BREAK>MAIN+3"MAIN
USER 2d0>GOTO
USER>

With BREAK "L+", breaking also occurs in the routine SUB1.

Terminal

USER>BREAK ""L+"
USER>DO ~MAIN
SET x=1,y=6,z=8
N

<BREAK>MAIN+1"MAIN

USER 2d0>GOTO

DO ~SUB1 WRITE !,"sum="",sum
N

<BREAK>MAIN+2~MAIN
USER 2d0>GOTO

SET sum=x+y+z

N

<BREAK>SUB1+1/SUB1
USER 3d0>GOTO
QUIT

N

<BREAK>SUB1+2"SUB1
USER 3d0>GOTO
sum=15

QUIT

N

<BREAK>MAIN+3"MAIN
USER 2d0>GOTO
USER>

Using ObjectScript 183

Command-Line Routine Debugging

19.3.6 The NEW Command at the Terminal Prompt

The argumentless NEW command effectively saves all symbols in the symbol table so you can proceed with an empty
symbol table. You may find this command particularly valuable after an error or BREAK.

To run other routines without disturbing the symbol table, issue an argumentless NEW command at the Terminal prompt.
The system then:

» Stacks the current frame on the program stack.

» Returns the Terminal prompt for a new stack frame.
For example:

Terminal

USER 4d0>NEW
USER 5B1>DO "%T
3:49 PM

USER 5B1>QUIT 1
USER 4d0>GOTO

The 5B1> prompt indicates that the system has stacked the current frame entered through a BREAK. The 1 indicates that
a NEW command has stacked variable information, which you can remove by issuing a QUIT 1. When you wish to resume
execution, issue a QUIT 1 to restore the old symbol table, and a GOTO to resume execution.

Whenever you use a NEW command, parameter passing, or user-defined function, the system places information on the
stack indicating that later an explicit or implicit QUIT at the current subroutine or XECUTE level should delete certain
variables and restore the value of others.

You may find it useful to know if any NEW commands, parameter passing, or user-defined functions have been executed
(thus stacking some variables), and if so, how far back on the stack this information resides.

19.3.7 The QUIT Command at the Terminal Prompt

From the Terminal prompt you can remove all items from the program stack by entering an argumentless QUIT command:

Terminal

USER 4f0>QUIT
USER>

To remove only a couple of items from the program stack (for example, to leave a currently executing subroutine and return
to a previous DO level), use QUIT with an integer argument. QUIT 1 removes the last item on the program stack, QUIT
3 removes the last three items, and so forth, as illustrated below:

Terminal

9fo>QUIT 3
6d0>

19.3.8 InterSystems IRIS Error Messages

InterSystems IRIS displays error messages within angle brackets, as in <ERROR>, followed by a reference to the line that
was executing at the time of the error and by the routine. A caret () separates the line reference and routine. Also displayed

184 Using ObjectScript

Using %STACK to Display the Stack

is the intermediate code line with a caret character under the first character of the command executing when the error
occurred. For example:

SET x=y+3 DO ~ABC
N
<UNDEFINED>l1abel+3"rou

This error message indicates an <UNDEFINED> error (that refers to the variable y) in line label+3 of routine rou. At this
point, this message is also the value of the special variable $ZERROR.

19.4 Using %STACK to Display the Stack

You can use the %STACK utility to:
» Display the contents of the process execution stack.

» Display the values of local variables, including values that have been “hidden” with the NEW command or through
parameter passing.

» Display the values of process state variables, such as $10 and $JOB.

19.4.1 Running %STACK

You execute %STACK by entering the following command:

Terminal

USER>DO "%STACK

As shown in this example, the %STACK utility displays the current process stack without variables.

Level Type Line Source
1 SIGN ON
2 DO ~D0 "StackTest
3 NEW ALL/EXCL NEW (E)
4 DO TEST+1/”StackTest SET A=1 ~DO TEST1 QUIT ;level=2
5 NEW NEW A
6 DO TEST1+1"StackTest ~DO TEST2 ;level = 3
7 ERROR TRAP SET $ZTRAP="TrapLabel”StackTest"
8 XECUTE TEST2+2"StackTest ~XECUTE '"'SET A=$$TEST3I("
9 $BEXTFUNC ~StackTest ~SET A=$$TEST3()
10 PARAMETER AA
11 DIRECT BREAK TEST3+1"StackTest ~BREAK
12 DO NStackTest ~DO ~%STACK

Under the current execution stack display, %STACK prompts you for a Stack Display Action. You can get help by entering
a question mark (?) at this prompt. You can exit %STACK by pressing the Return key at this prompt.

19.4.2 Displaying the Process Execution Stack

Depending on what you enter at the Stack Display Action prompt, you can display the current process execution stack in
four forms:

* Without variables, by entering *F
» With a specific local variable, by entering *V
» With all local variables, by entering *P

« With all local variables, preceded by a list of process state variables, by entering *A

Using ObjectScript 185

Command-Line Routine Debugging

%STACK then displays the Display on Device prompt, enabling you to specify where you want this information to go. Press
the Return key to display this information to the current device.

19.4.2.1 Displaying the Stack without Variables
The process execution stack without variables appears when you first enter the %STACK utility or when you type *F at
the Stack Display Action prompt.

19.4.2.2 Displaying the Stack with a Specific Variable

Enter *V at the Stack Display Action prompt. This will prompt you for the name(s) of the local variable(s) you want to track
through the stack. Specify a single variable or a comma-separated list of variables. It returns the names and values of all
local variables. In the following example, the variable e is being tracked and the display is sent to the Terminal by pressing
Return

Stack Display Action: *V

Now loading variable information ... 2 done.
Variable(s): e

Display on

Device: <RETURN>

19.4.2.3 Displaying the Stack with All Defined Variables

Enter *P at the Stack Display Action prompt to see the process execution stack together with the current values of all defined
local variables.

19.4.2.4 Displaying the Stack with All Variables, including State Variables
Enter *A at the Stack Display Action prompt to display all possible reports. Reports are issued in the following order:
» Process state intrinsic variables

* Process execution stack with the names and values of all local variables

19.4.3 Understanding the Stack Display

Each item on the stack is called a frame. The following table describes the information provided for each frame.

186 Using ObjectScript

Using %STACK to Display the Stack

Table 19-2: %STACK Utility Information

Heading

Level

Type

Line

Source

Description

Identifies the level within the stack. The oldest item on the stack is number 1. Frames without
an associated level number share the level that first appears above them.

Identifies the type of frame on the stack, which can be: DIRECT BREAK: A BREAK
command was encountered that caused a return to direct mode. DIRECT CALLIN: An
InterSystems IRIS process was initiated from an application outside of InterSystems IRIS,
using the InterSystems IRIS call-in interface. DIRECT ERROR: An error was encountered
that caused a return to direct mode. DO: A DO command was executed. ERROR TRAP:
If a routine sets $ZTRAP, this frame identifies the location where an error will cause execution
to continue. FOR: A FOR command was executed. NEW: A NEW command was executed.
If the NEW command had arguments, they are shown. SIGN ON: Execution of the
InterSystems IRIS process was initiated. XECUTE: An XECUTE command was executed.
An $XECUTE function was executed. $SEXTFUNC: A user-defined function was executed.

Identifies the ObjectScript source line associated with the frame, if available, in the format
label+offset*routine.

Shows the source code for the line, if it is available. If the source is too long to display in
the area provided, horizontal scrolling is available. If the device is line- oriented, the source
wraps around and continued lines are preceded with

The following table shows whether level, line, and source values are available for each frame type. A "No" under Level
indicates that the level number is not incremented and no level number appears in the display.

Table 19-3: Frame Types and Values Available

Frame Type
DIRECT BREAK
DIRECT CALL IN
DIRECT ERROR
DO

ERROR TRAP

FOR
NEW

PARAMETER

SIGN ON

Level Line Source

Yes Yes Yes

Yes No No

Yes Yes Yes

Yes Yes* Yes

No No No, but the new $ZTRAP
value is shown.

No Yes Yes

No No Shows the form of the

NEW (inclusive or
exclusive) and the
variables affected.

No No Shows the formal
parameter list. If a
parameter is passed by
reference, shows what
other variables point to
the same memory
location.

Yes No No

Using ObjectScript

187

Command-Line Routine Debugging

Frame Type Level Line Source
XECUTE Yes Yes* Yes
$SEXTFUNC Yes Yes* Yes

* The LINE value is blank if these are invoked from the Terminal prompt.

19.4.3.1 Moving through %STACK Display

If a %STACK display fills more than one screen, you see the prompt -—- more -- in the bottom left corner of the screen.
At the last page, you see the prompt —— Fini --. Type ? to see key presses you use to maneuver through the %STACK
display.

- - - Filter Help - - -

<space> Display next page.

<return> Display one more line.

T Return to the beginning of the output.

B Back up one page (or many if arg>1l).

R Redraw the current page.

/text Search for \qtext\q after the current page.
A View all the remaining text.

Q Quit.

? Display this screen

specify an argument for B, L, or W actions.
L set the page length to the current argument.
W set the page width to the current argument.

You enter any of the commands listed above whenever you see the -- more --or-- fini -- prompts.

For the B, L and W commands, you enter a numeric argument before the command letter. For instance, enter 2B to move
back two pages, or enter 20L to set the page length to 20 lines.

Be sure to set your page length to the number of lines which are actually displayed; otherwise, when you do a page up or
down, some lines may not be visible. The default page length is 23.

19.4.3.2 Displaying Variables at Specific Stack Level

To see the variables that exist at a given stack frame level, enter ?# at the Stack Display Action prompt, where # is
the stack frame level. The following example shows the display if you request the variables at level 1.

Stack Display Action: ?1
The following Variables are defined for Stack Level: 1

E
Stack Display Action:

You can also display this information using the %SYS.ProcessQuery VariableL.ist class query.

19.4.3.3 Displaying Stack Levels with Variables

You can display the variables defined at all stack levels by entering ?? at the Stack Display Action prompt. The
following example shows a sample display if you select this action.

Stack Display Action: ??

Now loading variable information ... 19
Base Stack Level: 5

A

Base Stack Level: 3

ABCD

Base Stack Level: 1

E
Stack Display Action:

188 Using ObjectScript

Using %STACK to Display the Stack

19.4.3.4 Displaying Process State Variables

To display the process state variables, such as $1 O, enter *S at the “Stack Display Action” prompt. You will see these
defined variables (Process State Intrinsics) as listed in the following table:

Process State Intrinsics

Documentation

$D = $DEVICE special variable
$EC = ,M9, $ECODE special variable
$ES =4 $ESTACK special variable
$ET =

$H = 64700,50668

$HOROLOG special variable

$| = [TRM|:|5008

$10 special variable

$J = 5008

$JOB special variable

$K = $c(13)

$KEY special variable

$P = [TRM]:|5008

$PRINCIPAL special variable

$Roles = %All $ROLES special variable
$S = 268315992 $STORAGE special variable
$T=0 $TEST special variable
$TL=0 $TLEVEL special variable

$USERNAME = glenn

SUSERNAME special variable

$X =0 $X special variable

$Y =17 $Y special variable

$ZA=0 $ZA special variable

$ZB = $c(13) $ZB special variable

$zC=0 $ZCHILD special variable
$ZE = <DIVIDE> $ZERROR special variable
$2J=5 $ZJOB special variable

$ZM = RY\Latin]\K\UTF8\ $ZMODE special variable
$zZP =0 $ZPARENT special variable
$ZR ="||a $ZREFERENCE special variable
$ZS = 262144 $ZSTORAGE special variable
$ZT = $ZTRAP special variable

$ZTS = 64700,68668.58

$ZTIMESTAMP special variable

$ZU(5) = USER

$NAMESPACE

$ZU(12) = c:\intersystemsl\iris\mgr\

NormalizeDirectory()

$2U(18)=0

Undefined()

$7U(20) = USER

UserRoutinePath()

Using ObjectScript

189

Command-Line Routine Debugging

Process State Intrinsics
$ZU(23,1) =5
$ZU@B4)=0

$ZU(39) = USER
$ZU(55) = 0

$7U(56,0) = $Id:
/liris/2018.1.1/kernel/common/src/emath.c#1 $ 0

$ZU(56,1) = 1349
$ZU(61) = 16
$2U(61,30,n) = 262160
$2U(67,10,$J) = 1
$ZU(67,11,%J) = glenn
$2U(67,12,$J) = TRM:
$2U(67,13,$J) =
$2U(67,14,$J) =
$2U(67,15,$J) = 127.0.0.1
$ZU(67,4,$J) = 0°0"0
$7U(67,5,$J) = %STACK
$2U(67,6,$J) = USER
$2U(67,7,$J) = [TRM|:|5008
$2U(67,8,$J) = 923
$2U(67,9,$J) = 46
$2U(68,1) = 0

$27U(68,21) = 0
$7U(68,25) = 0
$2U(68,27) = 1

Documentation

SysRoutinePath()
LanguageMode()

JobType
UserName
ClientNodeName
ClientExecutableName
CSPSessionID
ClientIPAddress
State

Routine
NameSpace
CurrentDevice
LinesExecuted
GlobalReferences
NullSubscripts()
SynchCommit()

$2U(68,32) = 0 ZDateNull()
$7U(68,34) =1 AsynchError()
$ZU(68,36) = 0
$ZU(68,40) =0 SetZEOF()
$2U(68,41) = 1
$7U(68,43) = 0 OldzUs()
$zU(68,5) = 1 BreakMode()
$ZU(68,6) =0
$2U(68,7) = 0 ReflnKind()
190 Using ObjectScript

Other Debugging Tools

Process State Intrinsics Documentation
$ZU(131,0) = MYCOMPUTER
$zU(131,1) = MYCOMPUTER:IRIS

$ZV = IRIS for Windows (x86-64) 2018.1.0 (Build $ZVERSION special variable
527U) Tue Feb 20 2018 22:47:10 EST

19.4.3.5 Printing the Stack and/or Variables

When you select the following actions, you can choose the output device:
e *p

. *A

e *V after selecting the variables you want to display.

19.5 Other Debugging Tools

There are also other tools available to aid in the debugging process. These include:
» Displaying References to an Object with $SYSTEM.OBJ.ShowReferences
e Error Trap Utilities — %ETN and %ERN

19.5.1 Displaying References to an Object with $SYSTEM.OBJ.ShowReferences

To display all variables in the process symbol table that contain a reference to a given object, use the ShowRefer ences(or ef)
method of the %SYSTEM.OBJ class. The oref is the OREF (object reference) for the given object. For details on OREFs,
see OREF Basics.

19.5.2 Error Trap Utilities

The error trap utilities, %ETN and %ERN, help in error analysis by storing variables and recording other pertinent infor-
mation about an error.

19.5.2.1 %ETN Application Error Trap

You may find it convenient to set the error trap to execute the utility % ETN on an application error. This utility saves
valuable information about the job at the time of the error, such as the execution stack and the value of variables. This
information is saved in the application error log, which you can display with the % ERN utility or view in the Management
Portal on the View Application Error Log page (System Operation, System Logs, Application Error Log).

Use the following code to set the error trap to this utility:
SET $ZTRAP=""%ETN'"

Note: Inaprocedure, you cannot set $ZTRAP to an external routine. Because of this restriction, you cannot use "% ETN
in procedures (including class methods that are procedures). However, you can set $ZTRAP to a local label that
calls Y% ETN.

Using ObjectScript 191

Command-Line Routine Debugging

When an error occurs and you call the %ETN utility, you see a message similar to the following message:
Error has occurred: <SYNTAX> at 10:30 AM

Because % ETN ends with a HALT command (terminates the process) you may want to set the % ETN error trap only if
the routine is used in Application Mode. When an error occurs at the Terminal prompt, it may be useful for the error to be
displayed on the terminal and go into the debugger prompt to allow for immediate analysis of the error. The following code
sets an error trap only if InterSystems IRIS is in Application Mode:

SET $ZTRAP=$SELECT($ZJ#2:"""",1:" HETN')

19.5.2.2 %ERN Application Error Report

The %ERN utility examines application errors recorded by the %ETN error trap utility. See Using %ERN to View Appli-
cation Error Logs.

In the following code, a ZL OAD of the routine REPORT is issued to illustrate that by loading all of the variables with
*LOAD and then loading the routine, you can recreate the state of the job when the error occurred except that the program
stack, which records information about DOs, etc., is empty.

Terminal

USER>DO "%ERN
For Date: 4/30/2018 3 Errors
Error: ?L

1) "<DIVIDE>zMyTest+2"Sample_MyStuff.1" at 10:27 am. $I=|TRM]:]10044 ($X=0 $Y=17)
$J=10044 ~$ZA=0 $ZB=$c(13) $75=262144 ($5=268242904)
WRITE 5/0

2) <SUBSCRIPT>REPORT+4"REPORT at 03:16 pm. $I=|TRM]:]10044 ($X=0 $Y=57)
$J=10044 $ZA=0 $ZB=$c(13) $2S=2147483647 ($5=2199023047592)
SET ~REPORT(%DAT, TYPE)=I

3) <UNDEFINED>zMyTest+2/"Sample_MyStuff.1 *undef" at 10:13 pm. $I1=]TRM] : 112416 ($X=0 $Y=7)
$J=12416 $ZA=0 $7B=$c(13) $7S=262144 ($S=268279776)
WRITE undef

Error: 2

2) <SUBSCRIPT>REPORT+4"REPORT at 03:16 pm. $I=|TRM]:]10044 ($X=0 $Y=57)
$J=10044 $ZA=0 $ZB=$c(13) $25=2147483647 ($5=2199023047592)
SET ~REPORT(%DAT, TYPE)=I

Variable: %DAT
%DAT=""Apr 30 2018"

Variable: TYPE
TYPE="""

Variable: *LOAD
USER>ZLOAD REPORT

USER>WRITE

%DAT="Apr 30 2018"

%DS="""

%TG=""REPORT+1""

1=88

TYPE="""

XY="SET $X=250 WRITE *27,*91,DY+1,*59,DX+1,*72 SET $X=DX,$Y=DY"
USER>

192 Using ObjectScript

(Legacy) Using “%ETN for Error Logging

An older style of error logging uses the "% ETN utility, described here for reference.

The "% ETN utility logs an exception to the application error log and then exits. You can invoke "% ETN (or one of its
entry points) as a utility:

ObjectScript

DO "%ETN

Or you can set the $ZTRAP special variable equal to “%ETN (or one of its entry points):

ObjectScript

SET $ZTRAP="""%ETN"

You can specify *"%ETN or one of its entry points:

* FOREM%ETN (foreground) logs an exception to the standard application error log, and then exits with a HALT. This
invokes a rollback operation. This is the same operation as *% ETN.

« BACK"%ETN (background) logs an exception to the standard application error log, and then exits with a QUIT. This
does not invoke a rollback operation.

» LOG"%ETN logs an exception to the standard application error log, and then exits with a QUIT. This does not invoke
a rollback operation. The exception can be a standard %Exception.SystemException, or a user-defined exception.

To define an exception, set $ZERROR to a meaningful value prior to calling LOG"% ETN; this value will be used
as the Error Message field in the log entry. You can also specify a user-defined exception directly into LOG*"%ETN:
DO LOGMETN(*"This is my custom exception™); this value will be used as the Error Message field in the
log entry. If you set $ZERROR to the null string (SET $ZERROR=""") LOG"%ETN logs a <LOG ENTRY> error.
If you set $ZERROR to <INTERRUPT> (SET $ZERROR=""<INTERRUPT>") LOG"%ETN logs an <INTERRUPT
LOG> error.

LOG"%ETN returns a %L.ist structure with two elements: the SHOROLOG date and the Error Number.

The following example uses the recommended coding practice of immediately copying $ZERROR into a variable.
LOG"%ETN returns a %L.ist value:

ObjectScript

SET err=$ZERROR

/* error handling code */

SET rtn = $$LOGMUETN(err)

WRITE "logged error date: ",$LIST(rtn,1),!
WRITE "logged error number: ",$LIST(rtn,2)

Using ObjectScript 193

(Legacy) Using "%ETN for Error Logging

Calling LOG"%ETN or BACK"%ETN automatically increases the available process memory, does the work, and then
restores the original $ZSTORAGE value. However, if you call LOG"% ETN or BACK"%ETN following a <STORE>
error, restoring the original $ZSTORAGE value might trigger another <STORE> error. For this reason, the system retains
the increased available memory when these *% ETN entry points are invoked for a <STORE> error.

194 Using ObjectScript

(Legacy) Traditional Error Processing

This page describes error processing that uses $ZTRAP, a form of error processing that may be encountered in legacy
applications. New applications should use TRY-CATCH instead.

B.1 How Traditional Error Processing Works

For traditional error processing, InterSystems IRIS® data platform enables your application to have an error handler. An
error handler processes any error that may occur while the application is running. A special variable specifies the ObjectScript
commands to be executed when an error occurs. These commands may handle the error directly or may call a routine to
handle it.

To set up an error handler, the basic process is:

1. Create one or more routines to perform error processing. Write code to perform error processing. This can be general
code for the entire application or specific processing for specific error conditions. This allows you to perform customized
error handling for each particular part of an application.

2. Establish one or more error handlers within your application, each using specific appropriate error processing.
If an error occurs and no error handler has been established, the behavior depends on how the InterSystems IRIS session
was started:

1. Ifyousigned onto InterSystems IRIS at the Terminal prompt and have not set an error trap, InterSystems IRIS displays
an error message on the principal device and returns the Terminal prompt with the program stack intact. The programmer
can later resume execution of the program.

2. If you invoked InterSystems IRIS in Application Mode and have not set an error trap, InterSystems IRIS displays an
error message on the principal device and executes a HALT command.

B.1.1 Internal Error-Trapping Behavior

To get the full benefit of InterSystems IRIS error processing and the scoping issues surrounding the $ZTRAP special
variable (as well as $ETRAP), it is helpful to understand how InterSystems IRIS transfers control from one routine to
another.

InterSystems IRIS builds a data structure called a “context frame” each time any of the following occurs:

* Avroutine calls another routine with a DO command. (This kind of frame is also known as a “DO frame.”)

Using ObjectScript 195

(Legacy) Traditional Error Processing

* An XECUTE command argument causes ObjectScript code to execute. (This kind of frame is also known as a
“XECUTE frame.”)

» A user-defined function is executed.

The frame is built on the call stack, one of the private data structures in the address space of your process. InterSystems
IRIS stores the following elements in the frame for a routine:

* The value of the $ZTRAP special variable (if any)

» The value of the SETRAP special variable (if any)

» The position to return from the subroutine

When routine A calls routine B with DO B, InterSystems IRIS builds a DO frame on the call stack to preserve the context

of A. When routine B calls routine C, InterSystems IRIS adds a DO frame to the call stack to preserve the context of B,
and so forth.

Figure II-1: Frames on a Call Stack

—»| Routine C
Call Stack
{;__________f}
-+ Routine B
Creates . ED rrsimgfa
.............. ontext of
DAC ©
Routine A —_
DO Frame
Creates
mrenanmassaneses g Context of:
|| D "B >

— e

If routine A in the figure above is invoked at the Terminal prompt using the DO command, then an extra DO frame, not
described in the figure, exists at the base of the call stack.

B.1.2 Current Context Level

You can use the following to return information about the current context level:
e The $STACK special variable contains the current relative stack level.

* The $ESTACK special variable contains the current stack level. It can be initialized to 0 (level zero) at any user-
specified point.

» The $STACK function returns information about the current context and contexts that have been saved on the call
stack

196 Using ObjectScript

How Traditional Error Processing Works

B.1.2.1 The $STACK Special Variable

The $STACK special variable contains the number of frames currently saved on the call stack for your process. The
$STACK value is essentially the context level number (zero based) of the currently executing context. Therefore, when
an image is started, but before any commands are processed, the value of $STACK is 0.

See the $STACK special variable in the ObjectScript Reference for details.

B.1.2.2 The $SESTACK Special Variable

The SESTACK special variable is similar to the $STACK special variable, but is more useful in error handling because
you can reset it to O (and save its previous value) with the NEW command. Thus, a process can reset SESTACK in a par-
ticular context to mark it as a SESTACK level O context. Later, if an error occurs, error handlers can test the value of
$ESTACK to unwind the call stack back to that context.

See the SESTACK special variable in the ObjectScript Reference for details.

B.1.2.3The $STACK Function

The $STACK function returns information about the current context and contexts that have been saved on the call stack.
For each context, the $STACK function provides the following information:

* The type of context (DO, XECUTE, or user-defined function)

» The entry reference and command number of the last command processed in the context

» The source routine line or XECUTE string that contains the last command processed in the context

e The $ECODE value of any error that occurred in the context (available only during error processing when $SECODE

is non-null)

When an error occurs, all context information is immediately saved on your process error stack. The context information
is then accessible by the $STACK function until the value of $ECODE is cleared by an error handler. In other words,
while the value of $ECODE is non-null, the $STACK function returns information about a context saved on the error
stack rather than an active context at the same specified context level.

See the $STACK function in the ObjectScript Reference for details.

When an error occurs and an error stack already exists, InterSystems IRIS records information about the new error at the
context level where the error occurred, unless information about another error already exists at that context level on the
error stack. In this case, the information is placed at the next level on the error stack (regardless of the information that may
already be recorded there).

Therefore, depending on the context level of the new error, the error stack may extend (one or more context levels added)
or information at an existing error stack context level may be overwritten to accommodate information about the new error.

Keep in mind that you clear your process error stack by clearing the SECODE special variable.

B.1.3 Error Codes

When an error occurs, InterSystems IRIS sets the $ZERROR and $ECODE special variables to a value describing the
error. The $ZERROR and $ECODE values are intended for use immediately following an error. Because these values
may not be preserved across routine calls, users who wish to preserve a value for later use should copy it to a variable.

B.1.3.1 $ZERROR Value
InterSystems IRIS sets $ZERROR to a string containing:

» The InterSystems IRIS error code, enclosed in angle brackets.

Using ObjectScript 197

(Legacy) Traditional Error Processing

* The label, offset, and routine name where the error occurred.

» (For some errors): Additional information, such as the name of the item that caused the error.

The AsSystemError () method of the %Exception.SystemException class returns the same values in the same format as
$ZERROR.

The following examples show the type of messages to which $ZERROR is set when InterSystems IRIS encounters an
error. In the following example, the undefined local variable abc is invoked at line offset 2 from label PrintResult of routine
MyTest. $ZERROR contains:

<UNDEFINED>PrintResult+2"MyTest *abc
The following error occurred when a non-existent class is invoked at line offset 3:
<CLASS DOES NOT EXIST>PrintResult+3"MyTest *%SYSTEM.XXQL
The following error occurred when a non-existent method of an existing class is invoked at line offset 4:
<METHOD DOES NOT EXIST>PrintResult+4~MyTest *BadMethod,%SYSTEM.SQL
You can also explicitly set the special variable $ZERROR as any string up to 128 characters; for example:
ObjectScript
SET $ZERROR="Any String"

The $ZERROR value is intended for use immediately following an error. Because a $ZERROR value may not be preserved
across routine calls, users that wish to preserve a $ZERROR value for later use should copy it to a variable. It is strongly
recommended that users set $ZERROR to the null string (") immediately after use. See the $ZERROR special variable
in the ObjectScript Reference for details. For further information on handling $ZERROR errors, refer to the %SYSTEM.Error
class methods in the InterSystems Class Reference.

B.1.3.2 $ECODE Value

When an error occurs, InterSystems IRIS sets SECODE to the value of a comma-surrounded string containing the ANSI
Standard error code that corresponds to the error. For example, when you make a reference to an undefined global variable,
InterSystems IRIS sets $ECODE set to the following string:

M7,

If the error has no corresponding ANSI Standard error code, InterSystems IRIS sets $SECODE to the value of a comma-
surrounded string containing the InterSystems IRIS error code preceded by the letter Z. For example, if a process has
exhausted its symbol table space, InterSystems IRIS places the error code <STORE> in the $ZERROR special variable
and sets SECODE to this string:

,ZSTORE,

After an error occurs, your error handlers can test for specific error codes by examining the value of the $ZERROR special
variable or the $ECODE special variable.

Note: Error handlers should examine $ZERROR rather than $ECODE special variable for specific errors.

See the $ECODE special variable in the ObjectScript Reference for details.

198 Using ObjectScript

Handling Errors with $ZTRAP

B.2 Handling Errors with $ZTRAP

To handle errors with $ZTRAP, you set the $ZTRAP special variable to a location, specified as a quoted string. You set
the $ZTRAP special variable to an entry reference that specifies the location to which control is to be transferred when an
error occurs. You then write $Z TRAP code at that location.

When you set $ZTRAP to a non-empty value, it takes precedence over any existing $ETRAP error handler. InterSystems
IRIS implicitly performs a NEW $ETRAP command and sets SETRAP equal to """

B.2.1 Setting $ZTRAP in a Procedure

Within a procedure, you can only set the $ZTRAP special variable to a line label (private label) within that procedure. You
cannot set $ZTRAP to any external routine from within a procedure block.

When displaying the $ZTRAP value, InterSystems IRIS does not return the name of the private label. Instead, it returns
the offset from the top of the procedure where that private label is located.

For further details see the $ZTRAP special variable in the ObjectScript Reference.

B.2.2 Setting $ZTRAP in a Routine

Within a routine, you can set the $ZTRAP special variable to a label in the current routine, to an external routine, or to a
label within an external routine. You can only reference an external routine if the routine is not procedure block code. The
following example establishes LogErrErrRou as the error handler. When an error occurs, InterSystems IRIS executes the
code found at the LogErr label within the “ErrRou routine:

ObjectScript

SET $ZTRAP="'LogErr”~ErrRou"

When displaying the $ZTRAP value, InterSystems IRIS displays the label name and (when appropriate) the routine name.
A label name must be unique within its first 31 characters. Label names and routine names are case-sensitive.

Within a routine, $ZTRAP has three forms:

» SET $ZTRAP="location"

» SET $ZTRAP="*location" which executes in the context in which the error occurred that invoked it.

» SET $ZTRAP=""%ETN" which executes the system-supplied error routine ~% ETN in the context in which the error
occurred that invoked it. You cannot execute “%ETN (or any external routine) from a procedure block. Either specify
the code is [Not ProcedureBlock], or use a routine such as the following, which invokes the *% ETN entry point
BACK"%ETN:

ClassMethod MyTest() as %Status

SET $ZTRAP="Error"
SET ans = 5/0 /* divide-by-zero error */
WRITE “Exiting ##class(User.A) MyTest()",!
QUIT ans
Error
SET err=$ZERROR
SET $ZTRAP="""*
DO BACK™%ETN
QUIT $$SERROR($$$CacheError,err)
b

For more information on "% ETN and its entry points, see (Legacy) Using “%ETN for Error Logging. For details on
its use with $ZTRAP, see SET $ZTRAP="%ETN.

Using ObjectScript 199

(Legacy) Traditional Error Processing

For further details see the $ZTRAP special variable in the ObjectScript Reference.

B.2.3Writing $ZTRAP Code

The location that $Z TRAP points to can perform a variety of operations to display, log, and/or correct an error. Regardless
of what error handling operations you wish to perform, the $ZTRAP code should begin by performing two tasks:

» Set $ZTRAP to another value, either the location of an error handler, or the empty string (""). (You must use SET,
because you cannot KILL $ZTRAP.) This is done because if another error occurs during error handling, that error
would invoke the current $ZTRAP error handler. If the current error handler is the error handler you are in, this would
result in an infinite loop.

» Setavariable to $ZERROR. If you wish to reference a $ZERROR value later in your code, refer to this variable, not
$ZERROR itself. This is done because $ZERROR contains the most-recent error, and a $ZERROR value may not
be preserved across routine calls, including internal routine calls. If another error occurs during error handling, the
$ZERROR value would be overwritten by that new error.

It is strongly recommended that users set $ZERROR to the null string (") immediately after use.

The following example shows these essential $Z TRAP code statements:

ObjectScript

MyErrHandler
SET $ZTRAP="""
SET err=$ZERROR
/* error handling code
using err as the error
to be handled */

B.2.4 Using $ZTRAP

Each routine in an application can establish its own $ZTRAP error handler by setting $ZTRAP. When an error trap occurs,
InterSystems IRIS takes the following steps:

1. Sets the special variable $ZERROR to an error message.

2. Resets the program stack to the state it was in when the error trap was set (when the SET $ZTRAP= was executed).
In other words, the system removes all entries on the stack until it reaches the point at which the error trap was set.
(The program stack is not reset if $ZTRAP was set to a string beginning with an asterisk (*).)

3. Resumes the program at the location specified by the value of $ZTRAP. The value of $ZTRAP remains the same.

Note: You can explicitly set the variable $ZERROR as any string up to 128 characters. Usually you would set
$ZERROR to a null string, but you can set $ZERROR to a value.

B.2.5 Unstacking NEW Commands With Error Traps

When an error trap occurs and the program stack entries are removed, InterSystems IRIS also removes all stacked NEW
commands back to the subroutine level containing the SET $ZTRAP=. However, all NEW commands executed at that
subroutine level remain, regardless of whether they were added to the stack before or after $ZTRAP was set.

For example:

200 Using ObjectScript

Handling Errors with $ZTRAP

ObjectScript

Main
SET A=1,B=2,C=3,D=4,E=5,F=6
NEW A,B
SET $ZTRAP="ErrSub"
NEW C,D
DO Subl
RETURN
Sub1()
NEW E,F
WRITE 670 // Error: division by zero
RETURN
ErrSub(Q
WRITE !,"Error is: ",$ZERROR
WRITE
RETURN

When the error in Sub1l activates the error trap, the former values of E and F stacked in Subl are removed, but A, B, C,
and D remain stacked.

B.2.6 $ZTRAP Flow of Control Options

After a $ZTRAP error handler has been invoked to handle an error and has performed any cleanup or error logging operations,
the error handler has three flow control options:

* Handle the error and continue the application.
» Pass control to another error handler

e Terminate the application

B.2.6.1 Continuing the Application

After a ZTRAP error handler has handled an error, you can continue the application by issuing a GOTO. You do not
have to clear the values of the $ZERROR or $ECODE special variables to continue normal application processing.
However, you should clear $ZTRAP (by setting it to the empty string) to avoid a possible infinite error handling loop if
another error occurs. See “Handling Errors in an Error Handler™ for more information.

After completing error processing, your $ZTRAP error handler can use the GOTO command to transfer control to a pre-
determined restart or continuation point in your application to resume normal application processing.

When an error handler has handled an error, the $ZERROR special variable is set to a value. This value is not necessarily
cleared when the error handler completes. Some routines reset $ZERROR to the null string. The $ZERROR value is
overwritten when the next error occurs that invokes an error handler. For this reason, the $ZERROR value should only be
accessed within the context of an error handler. If you wish to preserve this value, copy it to a variable and reference that
variable, not $ZERROR itself. Accessing $ZERROR in any other context does not produce reliable results.

B.2.6.2 Passing Control to Another Error Handler

If the error condition cannot be corrected by a $ZTRAP error handler, you can use a special form of the ZTRAP command
to transfer control to another error handler. The command ZTRAP $ZERROR re-signals the error condition and causes
InterSystems IRIS to unwind the call stack to the next call stack level with an error handler. After InterSystems IRIS has
unwound the call stack to the level of the next error handler, processing continues in that error handler. The next error
handler may have been set by either a $ZTRAP or a $SETRAP.

The following figure shows the flow of control in $ZTRAP error handling routines.

Using ObjectScript 201

(Legacy) Traditional Error Processing

Figure 1l-2: $ZTRAP Error Handlers

—® Routine D

Error » CERR
—»
* Routine C GD:I‘G » Anywhere
SET $ZT=""CERR’ QuiT
Error ZTRAP Hfmj
DO Dy
»= BERR
* Routine B :
. GOTO ————» Anywhere
SET $ZT=""BERR’ -
: auT
Error -
. ZTRAP $3ZERROR—
DO ,-;
el
Routine A AERR
SE'I.' $ZT=""AERR’ GOTO » Anywhere
Errn;br = QUIT
L po*B HALT i
Interpreter (=} The Job
Programmer Mode Terminates

B.3 Handling Errors with SETRAP

When an error trap occurs and you have set $ETRAP, InterSystems IRIS takes the following steps:

1. Sets the values of SECODE and $ZERROR.

2. Processes the commands that are the value of SETRAP.

By default, each DO, XECUTE, or user-defined function context inherits the $ETRAP error handler of the frame that

invoked it. This means that the designated $ETRAP error handler at any context level is the last defined $SETRAP, even
if that definition was made several stack levels down from the current level.

202 Using ObjectScript

Handling Errors with $SETRAP

B.3.1 $ETRAP Error Handlers

The $ETRAP special variable can contain one or more ObjectScript commands that are executed when an error occurs.
Use the SET command to set $SETRAP to a string that contains one or more InterSystems IRIS commands that transfer
control to an error-handling routine. This example transfers control to the LogError code label (which is part of the routine
ErrRoutine):

ObjectScript
SET $ETRAP="DO LogError”~ErrRoutine"
The commands in the $ETRAP special variable are always followed by an implicit QUIT command. The implicit QUIT

command quits with a null string argument when the $ETRAP error handler is invoked in a user-defined function context
where a QUIT with arguments is required.

$ETRAP has a global scope. This means that setting $ETRAP should usually be preceded by NEW $ETRAP. Otherwise,
if the value of SETRAP is set in the current context, then, after passing beyond the scope of that context, the value stored
in SETRAP is still present while control is in a higher-level context. Thus, if you do not specify the NEW $ETRAP, then
$ETRAP could be executed at an unexpected time when the context that set that it no longer exists.

See the SETRAP special variable in the ObjectScript Reference for details.

B.3.2 Context-specific $ETRAP Error Handlers

Any context can establish its own $ETRAP error handler by taking the following steps:
1. Use the NEW command to create a new copy of SETRAP.
2. Set SETRAP to a new value.

If a routine sets SETRAP without first creating a new copy of $ETRAP, a new $ETRAP error handler is established for
the current context, the context that invoked it, and possibly other contexts that have been saved on the call stack. Therefore
InterSystems recommends that you create a new copy of $ETRAP before you set it.

Keep in mind that creating a new copy of $SETRAP does not clear $ETRAP. The value of $ETRAP remains unchanged
by the NEW command.

The figure below shows the sequence of $ETRAP assignments that create the stack of $SETRAP error handlers. As the
figure shows:

* Routine A creates a new copy of SETRAP, sets it to “GOTO ~"ERR”, and contains the DO command to call routine
B.

» Routine B does nothing with $ETRAP (thereby inheriting the $ETRAP error handler of Routine A) and contains the
DO command to call routine C.

* Routine C creates a new copy of $ETRAP, sets itto “GOTO ~*CERR”, and contains the DO command to call routine
D.

* Routine D creates a new copy of SETRAP and then clears it, leaving no $ETRAP error handler for its context.

If an error occurs in routine D (a context in which no $ETRAP error handler is defined), InterSystems IRIS removes the
DO frame for routine D from the call stack and transfers control to the SETRAP error handler of Routine C. The $ETRAP
error handler of Routine C, in turn, dispatches to * CERR to process the error. If an error occurs in Routine C, InterSystems
IRIS transfers control to the $ETRAP error handler of Routine C, but does not unwind the stack because the error occurs
in a context where a SETRAP error handler is defined.

Using ObjectScript 203

(Legacy) Traditional Error Processing

Figure 11-3: SETRAP Error Handlers

- Routine D
N $ETRAP
S SETRAP="
Error
CERR
» Routine C $ETRAP Code Error.-HandIing
SETRAP /v Routine
N i ' '
S $ETRAP='G "CERR' |- ..I.E.Eftapl!.s.h‘.a.d., G "CERR Invoked at the same
. context level as "C
D™D ERR
$ETRAP Code Error.-Handllng
—» Routine B o Routine
: ‘G "ERR’ Invoked at the same
. i context level as "B
D*C E
Inherited
. : ERR
Routine A $ETRAP Code | Error-Handling
Routine
N SETRAP , By
' ' Established 'G *ERR'
S SETRAP='G "ERR" |.. =22 > Invoked at the same
: context level as A
L b

B.3.3 $SETRAP Flow of Control Options

When the $ETRAP error handler has been invoked to handle an error and perform any cleanup or error-logging operations,
it has the following flow-of-control options:

» Handle the error and continue the application.
» Pass control to another error handler.

* Terminate the application.

B.3.3.1 Handling the Error and Continuing the Application

When a $ETRAP error handler is called to handle an error, InterSystems IRIS considers the error condition active until
the error condition is dismissed. You dismiss the error condition by setting the SECODE special variable to the null string:

ObjectScript

SET $ECODE=""

Clearing $ECODE also clears the error stack for your process.

204 Using ObjectScript

Handling Errors in an Error Handler

Typically, you use the GOTO command to transfer control to a predetermined restart or continuation point in your appli-
cation after the error condition is dismissed. In some cases, you may find it more convenient to quit back to the previous
context level after dismissing the error condition.

B.3.3.2 Passing Control to Another Error Handler

If the error condition is not dismissed, InterSystems IRIS passes control to another error handler on the call stack when a
QUIT command terminates the context at which the $ETRAP error handler was invoked. Therefore, you pass control to
a previous level error handler by performing a QUIT from a $ETRAP context without clearing $ECODE.

If routine D, called from routine C, contains an error that transfers control to "CERR, the QUIT command in *"CERR that
is not preceded by setting $SECODE to " (the empty string) transfers control to the SETRAP error handler at the previous
context level. In contrast, if the error condition is dismissed by clearing $ECODE, a QUIT from *CERR transfers control
to the statement in routine B that follows the DO ~C command.

B.3.3.3 Terminating the Application

If no previous level error handlers exist on the call stack and a SETRAP error handler performs a QUI T without dismissing
the error condition, the application is terminated. In Application Mode, InterSystems IRIS is then run down and control is
passed to the operating system. The Terminal prompt then appears.

Keep in mind that you use the QUIT command to terminate a $ETRAP error handler context whether or not the error
condition is dismissed. Because the same $ETRAP error handler can be invoked at context levels that require an argumentless
QUIT and at context levels (user-defined function contexts) that require a QUIT with arguments, the $QUI T special
variable is provided to indicate the QUIT command form required at a particular context level.

The $QUIT special variable returns 1 (one) for contexts that require a QUIT with arguments and returns 0 (zero) for contexts
that require an argumentless QUIT.

A SETRAP error handler can use $QUIT to provide for either circumstance as follows:

ObjectScript

QuUIt:-$QUIT ™ Quit

When appropriate, a $ETRAP error handler can terminate the application using the HALT command.

B.4 Handling Errors in an Error Handler

When an error occurs in an error handler, the flow of execution depends on the type of error handler that is currently exe-
cuting.

B.4.1 Errors in a $ZTRAP Error Handler

If the new error occurs in a $ZTRAP error handler, InterSystems IRIS passes control to the first error handler it encounters,
unwinding the call stack only if necessary. Therefore, if the $ZTRAP error does not clear $ZTRAP at the current stack
level and another error subsequently occurs in the error handler, the $ZTRAP handler is invoked again at the same context
level, causing an infinite loop. To avoid this, Set $ZTRAP to another value at the beginning of the error handler.

Using ObjectScript 205

(Legacy) Traditional Error Processing

B.4.2 Errors in a SETRAP Error Handler

If the new error occurs in a SETRAP error handler, InterSystems IRIS unwinds the call stack until the context level at
which the $ETRAP error handler was invoked has been removed. InterSystems IRIS then passes control to the next error
handler (if any) on the call stack.

B.4.3 Error Information in the $ZERROR and $ECODE Special Variables

If another error occurs during the handling of the original error, information about the second error replaces the information
about the original error in the $ZERROR special variable. However, InterSystems IRIS appends the new information to
the SECODE special variable. Depending on the context level of the second error, InterSystems IRIS may append the new
information to the process error stack as well.

If the existing value of the SECODE special variable is non-null, InterSystems IRIS appends the code for the new error to
the current SECODE value as a new comma piece. Error codes accrue in the SECODE special variable until either of the
following occurs:

* You explicitly clear $ECODE, for example:

ObjectScript

SET $ECODE = """

* The length of SECODE exceeds the maximum string length.

Then, the next new error code replaces the current list of error codes in SECODE.

When an error occurs and an error stack already exists, InterSystems IRIS records information about the new error at the
context level where the error occurred, unless information about another error already exists at that context level on the
error stack. In this case, the information is placed at the next level on the error stack (regardless of the information that may
already be recorded there).

Therefore, depending on the context level of the new error, the error stack may extend (one or more context levels added)
or information at an existing error stack context level may be overwritten to accommodate information about the new error.

Keep in mind that you clear your process error stack by clearing the $SECODE special variable.

See the $ECODE and $ZERROR special variables in the ObjectScript Reference for details. For further information on
handling $ZERROR errors, refer to the %SYSTEM.Error class methods in the InterSystems Class Reference.

B.5 Forcing an Error

You set the SECODE special variable or use the ZTRAP command to cause an error to occur under controlled circumstances.

B.5.1 Setting $ECODE

You can set the SECODE special variable to any non-null string to cause an error to occur. When your routine sets SECODE
to a non-null string, InterSystems IRIS sets SECODE to the specified string and then generates an error condition. The
$ZERROR special variable in this circumstance is set with the following error text:

<ECODETRAP>

Control then passes to error handlers as it does for normal application-level errors.

206 Using ObjectScript

Processing Errors at the Terminal Prompt

You can add logic to your error handlers to check for errors caused by setting $SECODE. Your error handler can check
$ZERROR for an <ECODETRAP> error (for example, “$ZE["ECODETRAP" ™) or your error handler can check $SECODE
for a particular string value that you choose.

B.5.2 Creating Application-Specific Errors

Keep in mind that the ANSI Standard format for SECODE is a comma-surrounded list of one or more error codes:

e Errors prefixed with “Z” are implementation-specific errors

» Errors prefixed with “U” are application-specific errors

You can create your own error codes following the ANSI Standard by having the error handler set $SECODE to the appro-
priate error message prefixed witha “U”.

ObjectScript

SET $ECODE=",Upassword expired,"

B.6 Processing Errors at the Terminal Prompt

When you generate an error after you sign onto InterSystems IRIS at the Terminal prompt with no error handler set, Inter-
Systems IRIS takes the following steps when an error occurs in a line of code you enter:

1. InterSystems IRIS displays an error message on the process’s principal device.
2. The process breaks at the call stack level where the error occurred.

3. The process returns the Terminal prompt.

B.6.1 Understanding Error Message Formats

As an error message, InterSystems IRIS displays three lines:
1. The entire line of source code in which the error occurred.
2. Below the source code line, a caret (*) points to the command that caused the error.

3. Aline containing the contents of $ZERROR.
In the following Terminal prompt example, the second SET command has an undefined local variable error:

Terminal

USER>WRITE *"hello™,! SET x="world" SET y=zzz WRITE x,!
hello

WRITE "hello™,! SET x="world" SET y=zzz WRITE x,!
N

<UNDEFINED> *zzz
USER>

In the following example, the same line of code is in a program named mytest executed from the Terminal prompt:

Using ObjectScript 207

(Legacy) Traditional Error Processing

Terminal

USER>DO "mytest
hello

WRITE "hello",! SET x="world" SET y=zzz WRITE x,!
N

<UNDEFINED>WriteOut+2”mytest *zzz
USER 2d0>

In this case, $Z ERROR indicates that the error occurred in mytest at an offset of 2 lines from the a label named Wr i teOut.
Note that the prompt has changed, indicating that a new program stack level has been initiated.

B.6.2 Understanding the Terminal Prompt

By default, the Terminal prompt specifies the current namespace. If one or more transactions are open, it also includes the
$TLEVEL transaction level count. This default prompt can be configured with different contents, as described in the
ZNSPACE command documentation. The following examples show the defaults:

Terminal

USER>

Terminal

TL1:USER>

If an error occurs during the execution of a routine, the system saves the current program stack and initiates a new stack
frame. An extended prompt appears, such as:
Terminal

USER 2d0>

This extended prompt indicates that there are two entries on the program stack, the last of which is an invoking of DO (as
indicated by the “d”). Note that this error placed two entries on the program stack. The next DO execution error would
result in the prompt:

Terminal

USER 4d0>

For a more detailed explanation, see Terminal Prompt Shows Program Stack Information.

B.6.3 Recovering from the Error

You can then take any of the following steps:

* Issue commands from the Terminal prompt

* View and modify your variables and global data

» Edit the routine containing the error or any other routine

» Execute other routines

Any of these steps can even cause additional errors.

After you have taken these steps, your most likely course is to either resume execution or to delete all or part of the program
stack.

208 Using ObjectScript

Processing Errors at the Terminal Prompt

B.6.3.1 Resuming Execution at the Next Sequential Command

You can resume execution at the next command after the command that caused the error by entering an argumentless
GOTO from the Terminal prompt:

Terminal

USER>DO "mytest
hello

WRITE "hello™,! SET x="world" SET y=zzz WRITE x,!
N

<UNDEFINED>WriteOut+2™mytest *zzz
USER 2d0>GOTO
world

USER>

B.6.3.2 Resuming Execution at Another Line

You can resume execution at another line by issuing a GOTO with a label argument from the Terminal prompt:

Terminal

USER 2d0>GOTO ErrSect

B.6.3.3 Deleting the Program Stack

You can delete the entire program stack by issuing an argumentless QUIT command from the Terminal prompt:

Terminal

USER 4dO>QUIT
USER>

B.6.3.4 Deleting Part of the Program Stack

You can issue QUIT n with an integer argument from the Terminal prompt to delete the last (or last several) program stack
entry:

Terminal

USER 8d0>QUIT
USER 7EO>QUIT
USER 4d0>QUIT
USER 3EO>QUIT
USER 2d0>QUIT

[S S S S VR

USER 1SO>QUIT
USER>

Note that in this example because the program error created two program stack entries, you must be on a “d” stack entry
to resume execution by issuing a GOTO. Depending on what else has occurred, a “d” stack entry may be even-numbered
(USER 2d0>) or odd-numbered (USER 3d0>).

By using NEW $ESTACK, you can quit to a specified program stack level:

Using ObjectScript 209

(Legacy) Traditional Error Processing

Terminal

USER 4dO0>NEW $ESTACK

USER 5E1>
/* more errors create more stack frames */

USER 11d7>QUIT $ESTACK
USER 4d0>

Note that the NEW $ESTACK command adds one entry to the program stack.

210 Using ObjectScript

	Table of Contents
	1 Introducing ObjectScript
	1.1 Features
	1.2 Language Overview
	1.3 Introduction to Language Elements
	1.3.1 Statements and Commands
	1.3.2 Functions
	1.3.3 Expressions
	1.3.4 Variables
	1.3.5 Operators

	1.4 See Also

	2 Syntax Rules
	2.1 Left-to-Right Precedence
	2.2 Case Sensitivity
	2.2.1 Identifiers
	2.2.2 Keyword Names
	2.2.3 Class Names
	2.2.4 Namespace Names

	2.3 Unicode
	2.3.1 Letters in Unicode
	2.3.2 List Compression

	2.4 Whitespace
	2.5 Comments
	2.5.1 Comments in INT Code for Routines and Methods
	2.5.2 Comments in MAC Code for Routines and Methods
	2.5.3 Comments in Class Definitions Outside of Method Code

	2.6 String Literals
	2.7 Numeric Literals
	2.8 Identifiers
	2.8.1 Punctuation Characters within Identifiers

	2.9 Labels
	2.9.1 Using Labels
	2.9.2 Ending a Labelled Section of Code

	2.10 Namespaces
	2.10.1 Extended References

	2.11 Reserved Words

	3 Data Types and Values
	3.1 Strings
	3.1.1 Null String / $CHAR(0)
	3.1.2 Escaping Quotation Marks
	3.1.3 Concatenating Strings
	3.1.4 String Comparisons
	3.1.5 Bit Strings

	3.2 Numbers
	3.2.1 Fundamentals of Numbers
	3.2.2 Canonical Form of Numbers
	3.2.3 Strings as Numbers
	3.2.4 Concatenating Numbers
	3.2.5 Floating Point Numbers
	3.2.6 Scientific Notation
	3.2.7 Extremely Large Numbers

	3.3 Objects
	3.4 Persistent Multidimensional Arrays (Globals)
	3.5 Undefined Values
	3.6 Boolean Values
	3.7 Dates

	4 Variables
	4.1 Categories of Variables
	4.2 Local Variables
	4.2.1 Naming Conventions
	4.2.2 Scope of Local Variables

	4.3 Globals
	4.4 Process-Private Globals
	4.4.1 Naming Conventions
	4.4.2 Listing Process-Private Globals

	4.5 Rules About Subscripts
	4.6 Variable Typing and Conversion
	4.7 #dim (Optional)
	4.8 Global Variables and Journaling
	4.9 Special Variables

	5 Operators and Expressions
	5.1 Introduction to Operators and Expressions
	5.1.1 Assignment

	5.2 Operator Precedence
	5.2.1 Unary Negative Operators
	5.2.2 Parentheses and Precedence
	5.2.3 Functions and Precedence

	5.3 String-to-Number Conversion
	5.3.1 Numeric Strings
	5.3.2 Non-Numeric Strings

	5.4 Expressions
	5.4.1 Logical Expressions

	5.5 Arithmetic Operators
	5.6 Numeric Relational Operators
	5.7 Logical Comparison Operators
	5.7.1 Precedence and Logical Operators
	5.7.2 Logical Operators

	5.8 String Concatenate Operator (_)
	5.9 String Relational Operators
	5.10 Pattern Match Operator (?)
	5.11 Indirection Operator (@)

	6 Commands
	6.1 Command Keywords
	6.2 Command Arguments
	6.2.1 Multiple Arguments
	6.2.2 Arguments with Parameters and Postconditionals
	6.2.3 Argumentless Commands

	6.3 Command Postconditional Expressions
	6.3.1 Postconditional Syntax
	6.3.2 Evaluation of Postconditionals

	6.4 Multiple Commands on a Line
	6.5 Variables
	6.6 Error Processing
	6.7 Transaction Processing
	6.8 Locking and Concurrency Control
	6.9 Invoking Code
	6.9.1 DO
	6.9.2 JOB
	6.9.3 XECUTE
	6.9.4 QUIT and RETURN

	6.10 Controlling Flow
	6.10.1 Conditional Execution
	6.10.2 FOR
	6.10.3 WHILE and DO WHILE

	6.11 Controlling I/O
	6.11.1 Display (Write) Commands
	6.11.2 READ
	6.11.3 OPEN, USE, and CLOSE

	7 Callable User-defined Code Modules
	7.1 Procedures, Routines, Subroutines, Functions, and Methods: What Are They?
	7.1.1 Routines
	7.1.2 Subroutines
	7.1.3 Functions

	7.2 Defining Procedures
	7.2.1 Invoking Procedures
	7.2.2 Procedure Syntax
	7.2.3 Procedure Variables
	7.2.4 Public and Private Procedures

	7.3 Parameter Passing
	7.3.1 Passing By Value
	7.3.2 Passing By Reference
	7.3.3 Variable Number of Parameters

	7.4 Procedure Code
	7.5 Indirection, XECUTE Commands, and JOB Commands within Procedures
	7.6 Error Traps within Procedures
	7.7 Legacy User-Defined Code
	7.7.1 Subroutines
	7.7.2 Functions

	8 Using Macros and Include Files
	8.1 Macro Basics
	8.2 Include File Basics
	8.3 Defining Macros
	8.3.1 Where to Define Macros
	8.3.2 Allowed Macro Definitions
	8.3.3 Macro Naming Conventions
	8.3.4 Macro Whitespace Conventions
	8.3.5 Macro Comments and Studio Assist

	8.4 Including Include Files
	8.5 Where to See Expanded Macros
	8.6 See Also

	9 Embedded SQL
	9.1 Embedded SQL
	9.2 Other Forms of Queries

	10 Multidimensional Arrays
	10.1 What Multidimensional Arrays Are
	10.1.1 Multidimensional Tree Structures
	10.1.2 Sparse Multidimensional Storage
	10.1.3 Kinds of Multidimensional Arrays

	10.2 Manipulating Multidimensional Arrays
	10.3 See Also

	11 String Operations
	11.1 Basic String Operations and Functions
	11.1.1 Advanced Features of $EXTRACT

	11.2 Delimited Strings
	11.2.1 Advanced $PIECE Features

	11.3 List-Structure String Operations
	11.3.1 Sparse Lists and Sublists

	11.4 Lists and Delimited Strings Compared
	11.4.1 Advantages of Lists
	11.4.2 Advantages of Delimited Strings

	12 Locking and Concurrency Control
	12.1 Introduction
	12.2 Lock Names
	12.3 The Lock Table
	12.4 Locks and Arrays
	12.5 Using the LOCK Command
	12.5.1 Adding an Incremental Lock
	12.5.2 Adding an Incremental Lock with a Timeout
	12.5.3 Removing a Lock
	12.5.4 Other Basic Variations of the LOCK Command

	12.6 Lock Types
	12.6.1 Exclusive and Shared Locks
	12.6.2 Non-Escalating and Escalating Locks
	12.6.3 Summary of Lock Types

	12.7 Escalating Locks
	12.7.1 Lock Escalation Example
	12.7.2 Removing Escalating Locks

	12.8 Locks, Globals, and Namespaces
	12.8.1 Scenario 1: Multiple Namespaces with the Same Globals Database
	12.8.2 Scenario 2: Namespace Uses a Mapped Global
	12.8.3 Scenario 3: Namespace Uses a Mapped Global Subscript
	12.8.4 Scenario 4: Extended Global References

	12.9 Avoiding Deadlock
	12.10 Practical Uses for Locks
	12.10.1 Controlling Access to Application Data
	12.10.2 Preventing Simultaneous Activity

	12.11 Locking and Concurrency in SQL and Persistent Classes
	12.12 See Also

	13 Details of Lock Requests and Deadlocks
	13.1 Waiting Lock Requests
	13.2 Queuing of Array Node Lock Requests
	13.3 ECP Local and Remote Lock Requests
	13.4 Avoiding Deadlock
	13.5 See Also

	14 Managing the Lock Table
	14.1 Available Tools for Managing the Lock Table
	14.2 Viewing Locks in the Management Portal
	14.3 Removing Locks in the Management Portal
	14.4 ^LOCKTAB Utility
	14.5 See Also

	15 Transaction Processing
	15.1 About Transactions in InterSystems IRIS
	15.2 Managing Transactions Within Applications
	15.2.1 Transaction Commands
	15.2.2 Using LOCK in Transactions
	15.2.3 Using $INCREMENT and $SEQUENCE in Transactions
	15.2.4 Transaction Rollback within an Application
	15.2.5 Examples of Transaction Processing Within Applications

	15.3 Automatic Transaction Rollback
	15.4 System-Wide Issues with Transaction Processing
	15.4.1 Backups and Journaling with Transaction Processing
	15.4.2 Asynchronous Error Notifications

	15.5 Suspending All Current Transactions

	16 Working with %Status Values
	16.1 Basics of Working with Status Values
	16.2 Examples
	16.3 Variation (%objlasterror)
	16.4 Multiple Errors Reported in a Status Value
	16.5 Returning a %Status
	16.6 %SYSTEM.Error
	16.7 See Also

	17 Using TRY-CATCH
	17.1 Introduction
	17.2 Using THROW with TRY-CATCH
	17.3 Using $$$ThrowOnError and $$$ThrowStatus Macros
	17.4 Using the %Exception.SystemException and %Exception.AbstractException Classes
	17.5 Other Considerations with TRY-CATCH
	17.5.1 QUIT within a TRY-CATCH Block
	17.5.2 TRY-CATCH and the Execution Stack
	17.5.3 Using TRY-CATCH with Traditional Error Processing

	18 Error Logging
	18.1 Logging Application Errors
	18.2 Using Management Portal to View Application Error Logs
	18.3 Using ^%ERN to View Application Error Logs
	18.4 See Also

	19 Command-Line Routine Debugging
	19.1 Secure Debug Shell
	19.1.1 Restricted Commands and Functions

	19.2 Debugging with the ObjectScript Debugger
	19.2.1 Using Breakpoints and Watchpoints
	19.2.2 Establishing Breakpoints and Watchpoints
	19.2.3 Disabling Breakpoints and Watchpoints
	19.2.4 Delaying Execution of Breakpoints and Watchpoints
	19.2.5 Deleting Breakpoints and Watchpoints
	19.2.6 Single-step Breakpoint Actions
	19.2.7 Tracing Execution
	19.2.8 INTERRUPT Keypress and Break
	19.2.9 Displaying Information About the Current Debug Environment
	19.2.10 Using the Debug Device
	19.2.11 ObjectScript Debugger Example
	19.2.12 Understanding ObjectScript Debugger Errors

	19.3 Debugging With BREAK
	19.3.1 Using Argumentless BREAK to Suspend Routine Execution
	19.3.2 Using Argumented BREAK to Suspend Routine Execution
	19.3.3 Terminal Prompt Shows Program Stack Information
	19.3.4 FOR Loop and WHILE Loop
	19.3.5 Resuming Execution after a BREAK or an Error
	19.3.6 The NEW Command at the Terminal Prompt
	19.3.7 The QUIT Command at the Terminal Prompt
	19.3.8 InterSystems IRIS Error Messages

	19.4 Using %STACK to Display the Stack
	19.4.1 Running %STACK
	19.4.2 Displaying the Process Execution Stack
	19.4.3 Understanding the Stack Display

	19.5 Other Debugging Tools
	19.5.1 Displaying References to an Object with $SYSTEM.OBJ.ShowReferences
	19.5.2 Error Trap Utilities

	Appendix A: (Legacy) Using ^%ETN for Error Logging
	Appendix B: (Legacy) Traditional Error Processing
	B.1 How Traditional Error Processing Works
	B.1.1 Internal Error-Trapping Behavior
	B.1.2 Current Context Level
	B.1.3 Error Codes

	B.2 Handling Errors with $ZTRAP
	B.2.1 Setting $ZTRAP in a Procedure
	B.2.2 Setting $ZTRAP in a Routine
	B.2.3 Writing $ZTRAP Code
	B.2.4 Using $ZTRAP
	B.2.5 Unstacking NEW Commands With Error Traps
	B.2.6 $ZTRAP Flow of Control Options

	B.3 Handling Errors with $ETRAP
	B.3.1 $ETRAP Error Handlers
	B.3.2 Context-specific $ETRAP Error Handlers
	B.3.3 $ETRAP Flow of Control Options

	B.4 Handling Errors in an Error Handler
	B.4.1 Errors in a $ZTRAP Error Handler
	B.4.2 Errors in a $ETRAP Error Handler
	B.4.3 Error Information in the $ZERROR and $ECODE Special Variables

	B.5 Forcing an Error
	B.5.1 Setting $ECODE
	B.5.2 Creating Application-Specific Errors

	B.6 Processing Errors at the Terminal Prompt
	B.6.1 Understanding Error Message Formats
	B.6.2 Understanding the Terminal Prompt
	B.6.3 Recovering from the Error

	Index

