InterSystems-

IRIS Data Platform

Using SQL In Productions

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com



Using SQL in Productions

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com



Table of Contents

1INtroduction t0 SQL AGAPLENS ....coiiiriiere ettt sb et et se e e e e e e sesaeeaeeaen 1
2 UsSiNg aN SQL BUSINESS SENVICE ....eveuirieieiteesieesie st st et be s et b e b e se b e b seebeseenesna 3
2.1 Specifying the Data SOUICE NAIME .......cccciiiiiiiiieie et seere e 3

2.2 Specifying INBoUNd QUETIES ......iiieiereieeeeeee e e e re e e nenresrennens 4
2.2.1 SPECITYING the QUETY ..cuviecieeicie ettt ettt st e e eneens 4

2.2.2 SPECITYING PAFAMETEIS ....ouiieiitiiie ettt et 5

2.2.3 Specifying the Maximum Length of String Data ..........cccoceienineienenie e 5

2.3 SQL ProCedUure SEELINGS ...e.veververeriererieterieresietestesesreesre st b e et sr et e b srebesbesesn e b e eresearenea 5

2.4 ADOUL IMESSAJES ....euvveteieiteseite ettt ettt b bbbt b et b et eb bbb bbbt bbbttt eb e eb s 5

3 Using an SQL BUSINESS OPEr @liON ....ccueeeeeerereeeseseseeses e seeseesseseesseseeessessessessesssssessesssssessessssseneen 7
3.1 Specifying the Data SOUICE NAIME ......cccevieiieieiieieiee e a e e renre e 7

3.2 SPECITYING @ QUETY ..oueitiitiiteite ettt b e bbb bbb bbb et et eb e e b e s beebesbesbesne 8

3.3 Specifying Other RUNTIME SELHINGS ....ooveveiiieieieeeie sttt sne 8

3.4 SQL ProCedUre SEELINGS ..c.vevereererieterieierieieriesestese sttt sttt se et sr et et snebesresesne e sne e ereseareneas 9

3.5 ADOUL RESPONSE IMIESSAGES ..vrvverererietereetestetestesesseseste st sbe st ebeseebeseebeseebesbebesbebesbesesbesesbeneebeneaneneas 9

A MOFE ADOUL IMTESSAGES ....uveueereeeeneeeeeesersesesuestestesaestesteseessesessesesseeneenseseesessessessessesseseensesseseensensensens 11
4.1 INCOMING SIFAMS ..uveuveietiriereereeteerestesrestestestestesteseesseseesaeseeseesessesseateseesaessesteseessenseseeseensesensens 11

4.2 INCOMING SEINGS vveveiiieitieiesteeieste et e ste et e ste et e s e s e s e e s tesseesteataesbeasaesbeeseesteensesseensesneensesneeseesnens 11

5 MOreADOUL PrOCEAUIES .....couiiuiiiiiieiie sttt st sb st e bt aeese e eaesbesbesaesbe b nes 13
6 CUStOM SQL BUSINESS SENVICES ....ueiuiiiiriiriiriiniesiesiesieteseeeeseeesessestessesaesbesbeseessesteseeseensenesneesessessesns 15
6.1 OVErall BENAVIOT ....o.vieeeieieeeee ettt ettt e ste st sre et st ese e e eneenens 15

6.2 Creating a Business Service to Use the ADaPLer ......cccvivierivrievesincne e 16

6.3 Implementing the OnProcessINPut() Method ........cccvcvvieiirieiieiesere e 17

6.4 Using the Default SnapShot ODJECT .......coiiiiiiiiie e 18

6.5 INItIAlIZING The AGAPTEL ...vieiieiiee ettt b e 19
6.5.1 Initializing PersiStent ValUES ..........ccooiiiiiriiieirceseeese e 19

B.5.2 EXAMPIES ..ottt e b et 19

6.6 Adding and Configuring the BUSINESS SEIVICE .......c.ciuereereerieieseseseseseseeseesseeeseeseesesessesnens 20

6.7 Processing ONIY NEW ROWS ......ccciviiiriiiisieseses e seestese e ssese e seessesassessessessessessessessessessesseses 20
6.7.1 AVAIIADIE TOOIS ... e e 20

6.7.2 Practical Ways to NOt REProCeSS ROWS ......cceiueriirieieieieiinese st 21

6.8 REPIOCESSING ROWS ....eiuiiitiieiiiteiisteiest etttk b bbbt bbb e et 22

6.9 Examples That Use QUETY SELLINGS .....c.eviviiiiriierieerieie et 22
6.9.1 Example 1: Using KeyFIeldNamE ......cccvcviiiiiiirnse s 22

6.9.2 Example 2: Using &%LastKey or %LastKeY ........ccccvivrrrierienienienenenese e e seenees 22

6.9.3 Example 3: Using DeleteQUETY ......cccoiiiuiriiriiiiieicieiee et 23

6.9.4 Example 4: Working with @ CompoSite KeY .........coceeiiririiiiiine e 23

6.9.5 Example 5: NO KeYFIeldNAmME ..o 24

6.10 Specifying Other RUNIIME SELHINGS .....oviviiiiiieieie et 24
6.11 Resetting Rows Previously Processed by the Inbound Adapter ........ccccvvvvevererereerecieeennnnns 25

7 Custom SQL BUSINESS OPEN @LIONS ...ccueeuirueeeerieresiesteseseestesieseeseessesesseesessessessessessesssssessessessessensessens 27
7.1 DEfaUlt BENAVIOL ....ceiiiiieieccie ettt bbb bbb et 27

7.2 Creating a Business Operation to Use the Adapter ........cocvereieienene e 27

7.3 Creating Methods to Perform SQL OPErations .........c.cceveereiireieneienerinenesie et 28

Using SQL in Productions



7.4 Handling Multiple SQL Statements per IMESSAgE .......cocurererererirerie e 29

7.5 Adding and Configuring the BUSiNess OPEration ..........c.ccceereieriereneneseseesiesieseeesesesesnens 29
8 Creating Adapter MethodS fOr SQL ..ottt 31
ST @ TV 1=V g To [ O] 1 (= S 31
8.2 USING PAIAMELEIS ....vveveieeceesiesiestesie et e e see e e e s ese e e esestestesbesbesteseestesbesaeseeseneeseeneeneeseaneans 31
8.2.1 Parameter AIDULES .....coveirieirieisiiisies ettt 32
8.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array ..................... 32

8.3 EXECULING QUETIES ...uvititeiteititete ettt ettt b ettt st b et s e e e et et e b e e e bt b e et e b b sbesee b eas 34
8.3 L USE IMIOUES ..ottt ettt b e b bt b bt e e e ns 34
8.3.2 Syntax for the MEthOUS ........cvviiiiii s 35
B.3.3 EXAMPIE <. ettt e et reene e 35

8.4 Performing Updates, INSerts, and DEIELES .......cccvvivieiireiirise e 36
B4 L EXAMPIE .ot b et bbb bbb e 36
8.4.2 Example with ExecuteUpdateParmMAITAY .......c.cooieiririeiine e 37

8.5 EXECULING StOred PrOCEAUIES .....c.eveiiieiirieiisieiisteiesie ettt 37
85,1 EXAMPIE et bbb 38

8.6 Specifying Statement AtIDULES ......ccvcveieicece e s 39
8.7 Managing TraNSACLIONS ......ccvcverreiesreresestesesesteseseeseeseesessessesresseseeseesseseesseseseessensesensessensens 39
8.8 Managing the Database CONNECLION ......c.vcuiiieiiiiicse et nas 40
B8 L PIOPEITIES ...ttt sttt sttt sttt ettt b ek e bbb bbb e b sb b et e e e e et er e 40
BL8.2 IMIBLNOUS ...t bbbttt ettt beere e 41

9 Using ResuUlt SetS (SQL AUAPLENS) ...veiiuireeiireeiereeie sttt et s 43
9.1 Creating and Initializing @ RESUIL SEL .......ccoieiriiiieiree e 43
9.2 Getting Basic Information about the RESUIL ST .......covvvriiieiiiiiiese e 43
9.3 Navigating the RESUIT SEE ....c..oeiiiieeeee e 43
9.4 Examining the Current Row Of the ReSUIt Set .......c.ccoiiiiiiiii e 44
10 Using SNapshots (SQL AAPLENS) ....cueiueirieerieerieresieresie sttt sttt 45
10.1 Creating @ SNAPSNOL ......cueiiiiiieiriee ettt sttt b s 45
10.1.1 Creating a Snapshot from a Live CONNECLION ......c.cccvrvvereieierceeeeeee e see e 45
10.1.2 Creating a Snapshot from StatiC Data ..........ccceeeieeirierieieseseseseseseeseeee e ese e 45
10.1.3 Creating @ Snapshot ManUaITY .........coeririeieiiiciee e 48
10.2 Getting Basic Information about the SNapshot .........cccoeiiiiiiiniie e 49
10.3 Navigating the SNAPSNOL .........ciieiiiirere e 49
10.4 Examining the Current Row of the SNapshot ... 50
10.5 ReSELtiNG @ SNAPSNOL .. .ocviiieiiecice s nne 51

Using SQL in Productions



Introduction to SQL Adapters

Using an interoperability production to work with data from an external relational data source is possible by executing an
SQL query or procedure from within the production. The easiest way to execute the query or procedure is to add a pre-built
business service or business operation to your production. These business services and business operations allow your
production to communicate with JDBC- or ODBC-compliant databases using built-in SQL adapters. No custom coding is
required. However, you also have the option of building a custom business service or business operation that uses these
adapters to access the external data source.

Note:  When using the SQL adapters, you should be aware of the particular limitations (syntactical or otherwise) of the
database to which you are connecting, as well as the database driver that you use to do so.

Note:  The SQL adapters used by business services and business operations are clients and perform authentication by
passing calls that include the username and password; they do not use authentication from the operating system.

Using SQL in Productions 1






Using an SQL Business Service

InterSystems provides two pre-built business services that use SQL to bring data into a production, one for queries and
another for stored procedures. To use a business service to run a query, add EnsLib.SQL.Service.GenericService
to your production. If you want to execute a SQL procedure instead of a query, use EnsLib.SQL.Service.ProcService.

These built-in business services use the Inbound SQL Adapter (EnsLib.SQL.InboundAdapter) to access the external data
source. In some cases, you might need to build a custom business service that gives you more control over this adapter and
how its results are processed.

2.1 Specifying the Data Source Name

To specify the data source that contains the data you want to work with in the production, use the Management Portal to
define the following business service settings.
DSN

This data source name specifies the external data source to which to connect. InterSystems IRIS® distinguishes
between these three forms automatically: a defined InterSystems SQL Gateway connection, a JDBC URL, or an
ODBC DSN configured in your operating system.

If this name matches the name of a JDBC or ODBC connection configured from the System Administration >
Configure > Connectivity > SQL Gateway Connections page of the Management Portal, InterSystems IRIS uses
the parameters from that specification. If the entry is not the name of a configured connection and it contains a
colon (:), it assumes a JDBC URL, otherwise it assumes an ODBC DSN.

The following example shows the name of a DSN that refers to a JDBC URL.:

jdbc:IRIS://1ocalhost:9982/Samples
The following example shows the name of an ODBC DSN that refers to a Microsoft Access database:

accessplayground

If this data source is protected by a password, create production credentials to contain the username and password. Then
set the Credentials setting equal to the ID of those credentials; see Specifying Other Runtime Settings for details.

If you are using a JDBC data source, the following settings also apply:

Using SQL in Productions 3



Using an SQL Business Service

Java Gateway Service

Configuration name of the Java Gateway service controlling the Java Gateway server that this business service
uses. The underlying adapter setting is JGService.

Important: This setting is required for all JDBC data sources, even if you are using a working SQL gateway
connection with JDBC. For JDBC connections to work, a business service of type
EnsLib.JavaGateway.Service must be present. The business service’s SQL adapter requires the
name of this configuration item and uses its configured settings to connect to the JVM it manages.

JDBC Driver
JDBC driver class name.
If you use a named SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the value
specified in the named JDBC SQL Gateway Connection set of properties.

JDBC Classpath

Classpath for JDBC driver class name, if needed in addition to the ones configured in the Java Gateway Service.

Connection Attributes
An optional set of SQL connection attribute options. For ODBC, they have the form:
attr - val , attr - val
For example, AutoCommit:1.
For JDBC, they have the form
attr=val ; attr=val
For example, TransactionlsolationLeve lI=TRANSACTION_READ_COMMITTED.

If you use a named JDBC SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the
value specified in the named JDBC SQL Gateway Connection set of properties.

2.2 Specifying Inbound Queries

By default, the SQL business service uses the inbound adapter to execute a query periodically. The adapter sends the results,
row by row, to the business service.

2.2.1 Specifying the Query

To specify the base query used by the business service, you use the Query setting, which specifies the base query string. It
can include the standard SQL ? to represent replaceable parameters, which you specify in a separate setting. Consider the
following examples:

SELECT * FROM Customer
SELECT p1,p2,p3 FROM Customer WHERE updatetimestamp > ?
SELECT * FROM Sample.Person WHERE ID > ?

SELECT * FROM Sample.Person WHERE Age > ? AND PostalCode = ?

4 Using SQL in Productions



SQL Procedure Settings

2.2.2 Specifying Parameters

The Parameters setting specifies any replaceable parameters in the query string. This setting should equal a comma-separated
list of parameter value specifiers, as follows:

value,value,value, ...

For a given value, you can use a constant literal value such as 10 or Gotham City; or you can refer to any of the following:
*  You can refer to a property of the adapter. Within the Parameters setting, use the syntax %property_name.
e You can refer to a property of the business service. Use the syntax $property_name.

For example, you could add a property named LastTS to the business service class to contain a timestamp. Within
the Parameters setting, you would refer to the value of that property as $LastTS

*  You can refer to a special persistent value such as &%LastKey, which contains the IDKey value of the last row processed
by the adapter.

Within the Parameters setting, if a parameter name starts with an ampersand (&), InterSystems IRIS assumes that it is
a special persistent value.

Note:  For information on initializing these values using a custom business service, see Initializing the Adapter.

2.2.3 Specifying the Maximum Length of String Data

The VARCHAR LOB Boundary setting of the business service specifies the maximum length of a string that may be stored
in InterSystems IRIS using the VARCHAR data type. If a column in the source database contains a string longer than the
value you specify, then InterSystems IRIS stores the string using the LOB (Large OBject) data type. The corresponding
property of the business service’s inbound adapter is MaxVarCharLengthAsString.

The default maximum string length is 32767. You can specify a value of -1 to use the maximum string length for Inter-
Systems IRIS, which is currently 3641144 and subject to change in future versions. If you specify a value greater than the
maximum string length for InterSystems IRIS, then the current maximum string length for InterSystems IRIS is used.

2.3 SQL Procedure Settings

For additional information about settings that affect how a business service calls a stored procedure, see More About Pro-
cedures.

2.4 About Messages

You do not need to create a custom message class to receive the data retrieved from the external data source. By default,
the SQL data is placed in a dynamic object with properties for each column of the query. The JSON string describing this
object is inserted as the Stream value of an Ens . StreamContainer, allowing it to be sent through the production to
other business hosts.

If you decide to develop a custom message class that is used to transport data through the production, the property names
must be an exact match with the columns of the SQL query. As a workaround, you can use the SQL As keyword to rename

Using SQL in Productions 5



Using an SQL Business Service

the column to the property name. Once you have defined your message class, open the Management Portal and use the
business service's Message Class setting to select it.

For more information about data types and messages, see More About Messages.

6 Using SQL in Productions



Using an SQL Business Operation

InterSystems provides two pre-built business operations that use SQL to bring data into a production when they receive an
incoming message from another business host. To use a business operation to run a query in response to a message, add
EnsLib.SQL.Operation.GenericOperation to your production. If you want to execute a SQL procedure instead
of a query, use EnsLib.SQL.Operation.ProcOperation.

These built-in business operations use the Outbound SQL Adapter (EnsLib.SQL.OutboundAdapter) to access the external
data source. In some cases, you might need to build a custom business operation that gives you more control over this
adapter and how its results are processed.

By default, a warning is issued the first time that a business operation's query returns multiple rows of results, but this
warning is not repeated the next time. You can change that behavior by disabling the business operation's Only Warn Once
setting. Be aware that the Only Warn Once setting does not affect what happens when a property cannot be set (it only
generates a warning the first time), but does affect what happens when an incoming stream is truncated to fit into a string

property.

3.1 Specifying the Data Source Name

The business operation has a setting that specifies the data source that you want to connect to. When you configure the
business operation, you should set an appropriate value for this setting:

DSN

This data source name specifies the external data source to which to connect. InterSystems IRIS® distinguishes
between these three forms automatically: a defined InterSystems SQL Gateway connection, a JDBC URL, or an
ODBC DSN configured in your operating system.

If this name matches the name of a JDBC or ODBC connection configured from the System Administration >
Configure > Connectivity > SQL Gateway Connections page of the Management Portal, InterSystems IRIS uses
the parameters from that specification. If the entry is not the name of a configured connection and it contains a
colon (:), it assumes a JDBC URL, otherwise it assumes an ODBC DSN.

If this data source is protected by a password, create production credentials to contain the username and password. Then
set the Credentials setting equal to the ID of those credentials; see Specifying Other Runtime Settings for details.

If you are using a JDBC data source, the following settings also apply:

JGService

Configuration name of the Java Gateway service controlling the Java Gateway server this operation uses.

Using SQL in Productions 7



Using an SQL Business Operation

Important: This setting is required for all JDBC data sources, even if you are using a working SQL gateway
connection with JDBC. For JDBC connections to work, a business service of type
EnsLib.JavaGateway.Service must be present. The SQL adapter requires the name of this config-
uration item and uses its configured settings to connect to the JVM it manages.

JDBCDriver
JDBC driver class name.
If you use a named SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the value
specified in the named JDBC SQL Gateway Connection set of properties.

JDBCClasspath

Classpath for JDBC driver class name, if needed in addition to the ones configured in the Java Gateway Service.

ConnectionAttributes
An optional set of SQL connection attribute options. For ODBC, they have the form:
attr - val , attr - val
For example, AutoCommit:1.
For JDBC, they have the form
attr=val ; attr=val
For example, TransactionlsolationLeve |I=TRANSACTION_READ_COMMITTED.

If you use a named JDBC SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the
value specified in the named JDBC SQL Gateway Connection set of properties.

3.2 Specifying a Query

The value for the business operation’s Query setting is a SQL string (such as SELECT or INSERT INTO) that is executed
when the business operation receives an inbound message from another business host in the production. It can include the
standard SQL ? to represent replaceable parameters.

The Input Parameters Setting is a comma-separated string specifying values to pass in as the parameters specified in the
Query setting. You also have the option of passing in a value received as a property of the inbound message. To replace a
parameter with the value of a message property, specify the name of the property preceded by the * character. You can use
this syntax even if the inbound message is a JSON string in an Ens.StringContainer or Ens.StreamContainer,
as long as the specified property is a property of the described dynamic object.

3.3 Specifying Other Runtime Settings

The SQL business operation provides the following additional runtime settings:

Credentials

ID of the production credentials that can authorize a connection to the given DSN. For information on creating
production credentials, see Configuring Productions.

8 Using SQL in Productions



SQL Procedure Settings

StayConnected

Specifies whether to keep the connection open between commands, such as issuing an SQL statement or changing
an ODBC driver setting.

» If this setting is 0, the SQL outbound adapter disconnects immediately after each command.

» If this setting is positive, it specifies the idle time, in seconds, after the command completes. The adapter
disconnects after this idle time.

» If this setting is -1, the adapter auto-connects on startup and then stays connected.

If you are managing database transactions as described in Managing Transactions, do not set StayConnected to 0.

For any settings not listed here, see Configuring Productions.

3.4 SQL Procedure Settings

For additional information about settings that affect how a business operation calls a stored procedure, see More About
Procedures.

3.5 About Response Messages

Like messages used by a business service, you do not need to develop a custom message class to receive data retrieved by
a business operation. By default, a dynamic object is used to return the data to the business host that called the business
operation. This dynamic object has properties for each column of the query, and the JSON string describing the object is
inserted as the Stream value of an Ens.StreamContainer. If the business operation's query returns multiple rows of
results, the JSON string contains all of the rows.

If you prefer to use a custom response message rather than the dynamic object, use the business operation's Response Class
setting to specify the custom message class. The properties of this custom class must match the columns of the SQL query,
but you can use the SQL As keyword to work around this requirement. The value from a column is placed into the corre-
sponding property of the message. If a Select query returns multiple rows, the message contains values from the first row
only.

Regardless of whether you are using a custom message class, when the business operation runs an Update, Insert, or Delete
query, the response message contains only one property: NumRowsAffected.

For more information about data types and response messages, see More About Messages.

Using SQL in Productions 9






More About Messages

For basic information about messages in a production that uses SQL business hosts, see Using a SQL Business Service or
Using a SQL Business Operation.

4.1 Incoming Streams

If a production does not define a message class or response class, and the incoming data from a result set column or output
parameter is a stream (CLOB or BLOB), the stream is added as the value of the corresponding property in the dynamic
object.

Similarly, if the data type of the property of a custom message or response class is a stream, then the incoming stream is
simply set into that property. If, however, the data type of the property is a string, then the behavior will depend on the
length of the incoming data relative to the MAXLEN of the property, and also on the value of the Allow Truncating setting.

If the length of the incoming stream data does not exceed the MAXLEN of the string property, the value is set as a string into
the property. If the length of the incoming data does exceed the MAXLEN of the property, then the default behavior is to
throw an error and quit. However, if the Allow Truncating Setting is set to true, then the first MAXLEN characters of the
incoming value is set into the property as a string, and a warning is issued. By default, a warning is only issued the first
time that the value for any given property needs to be truncated. However, if the Only warn Once setting is disabled, then
warnings are issued every time data is truncated. Be aware that the Only Warn Once setting does not affect what happens
when a property cannot be set (it only generates a warning the first time), but does affect what happens when a business
operation's query returns multiple rows of results.

4.2 Incoming Strings

If incoming data from a result set column or output parameter is a string, but the corresponding property of the message or
response class is a stream, the value is simply written to the stream.

Using SQL in Productions 11






More About Procedures

Both business services and business operations can use a stored procedure to retrieve data from an external data source,
and the approach is the similar regardless of whether you are using a service or operation. After adding
EnsLib.SQL.Service.ProcService or EnsLib.SQL.Operation.ProcOperation to your production, use the
Procedure Setting to specify the name of the procedure, including a ? for each parameter. For example, you could enter
Sample.Stored_Procedure_Test(?,?).

Unlike queries, a call to a store procedure can have return values: input parameters can be passed by reference, there can
be output parameters, and the entire procedure can return a value. To handle these return values, and differentiate between
input and output values, the business service or business operation uses three settings: Parameters (business service) or
Input Parameters (business operation) contain values that are passed to the procedure, Output Parameter Names contains
property names that are set to values returned in a parameter, and Input/Output identifies whether parameters in the procedure
call are input parameters, output parameter, or both.

The Input/Output setting is key to understanding how the business host handles parameters and return values. It accepts
three characters that identify the type of parameter: "i" (input), "o" (ouput), and "b" (both/ByRef). The order of these
characters within the Input/Output setting corresponds to the order of the parameters of the procedure call. For example, if
the procedure call is Sample.Stored_Procedure_Test(?,?,?) and the value of Input/Output is 100, then the first
parameter of the procedure call accepts the value from the Parameters setting, and the second and third parameters are
values returned by the procedure. These parameter return values are assigned to the names specified in the Output Parameter
Name setting.

In cases where the entire procedure returns a value, the first character of Input/Output should be o and the first name in the
Output Parameter Names setting will be assigned the return value.

As an extended example of how this works, suppose your business operation has the following settings:

Setting Value

Procedure Sample.Stored_Procedure_Test(?,?,?,7?)
Input Parameters *Value, x

Output Parameter Names ReturnValue,Response, Stream, TruncatedStream
Input/Output oiboo

Notice that the value of Input/Output is greater than the number of question marks in the procedure because there is also a
return value. That return value corresponds to the first string in Output Parameter Names. The second value in Input/Output
is 1 because the first parameter in the procedure — the first ? — is an input parameter. In this case, we are taking that from
the Value property of the incoming message. The second parameter is both input and output, meaning that it is passed
ByRef. The value x is sent in, but then it also corresponds to the second string in Ouput Parameter Names, S0 the response
message has its Response property set to the value returned in that parameter. The other two parameters are strictly output

Using SQL in Productions 13



More About Procedures

parameters, so nothing is passed into them, and the return values are assigned to the Stream and TruncatedStream properties
of the response message.

14 Using SQL in Productions



Custom SQL Business Services

This topic describes how to build a custom SQL business service, including a detailed discussion of the SQL inbound
adapter (EnsLib.SQL.InboundAdapter) and how to use it in your productions. If you prefer to use a pre-built business service,
see Using an SQL Business Service.

6.1 Overall Behavior

First, it is useful to understand the details that you specify for the adapter. The EnsLib.SQL.InboundAdapter class provides
runtime settings that you use to specify items like the following:

* A polling interval, which controls how frequently the adapter checks for new input

»  The external data source to which the adapter connects

» The ID of the production credentials that provide the username and password for that data source, if needed

* An SQL query to execute

e Optional parameters to use in the query

In general, the inbound SQL adapter (EnsLib.SQL.InboundAdapter) periodically executes a query and then iterates through

the rows of the result set, passing one row at a time to the associated business service. The business service, which you
create and configure, uses this row and communicates with the rest of the production. More specifically:

1. The adapter regularly executes its OnTask () method, which executes the given query. The polling interval is determined
by the Callinterval setting.

2. If the query returns any rows, the adapter iterates through the rows in the result set and does the following for each
row:

« If this row has already been processed and has not changed, the adapter ignores it.

To determine if a given row has already been processed, the adapter uses the information in the KeyFieldName
setting; see Processing Only New Rows.

« If this row has already been processed (as identified by the KeyFieldName setting) and an error occurred, the
adapter ignores it until the next restart.

»  Otherwise, the adapter builds an instance of the EnsLib.SQL.Snapshot class and puts the row data into it. This
instance is the snapshot object. Using the Default Snapshot Object provides details on this object.

The adapter then calls the internal Processinput() method of the associated business service class, passing the
snapshot object as input.

Using SQL in Productions 15



Custom SQL Business Services

The internal Processinput() method of the business service class executes. This method performs basic production tasks
such as setting up a monitor and error logging; these tasks are needed by all business services. You do not customize
or override this method, which your business service class inherits.

The ProcessInput() method then calls your custom OnProcessinput() method, passing the snapshot object as input. The
requirements for this method are described in Implementing the OnProcessinput() Method.

The following figure shows the overall flow:

QOutside Inside Production
Production
business service
OnTask() method: L Process Input{) method:
database ; E’{BCUTE query snapshot | 1- Perform internal
via . For each row, activities
ODBC or create and send 2. Forward snapshot
JDBC snapshot of row
‘:,snap.ﬂmt
OnProcessinput() other parts
method: > of the
1. Receive snapshot production
2. Create and send request
message

6.2 Creating a Business Service to Use the Adapter

To use this adapter in your production, create a new business service class as described here. Later, add it to your production
and configure it. You must also create appropriate message classes, if none yet exist. See Defining Messages.

The following list describes the basic requirements of the business service class:

Your business service class should extend Ens.BusinessService.

In your class, the ADAPTER parameter should equal EnsLib.SQL.InboundAdapter.

Your class should implement the OnProcessinput() method, as described in Implementing the OnProcessinput() Method.
Your class can optionally implement Onl nit(); see Initializing the Adapter.

For other options and general information, see Defining a Business Service Class.

The following example shows the general structure that you need:

16

Using SQL in Productions



Implementing the OnProcessinput() Method

Class Definition

Class ESQL.NewServicel Extends Ens.BusinessService

Parameter ADAPTER = "EnsLib.SQL.InboundAdapter";

Method OnProcesslinput(plnput As EnsLib.SQL.Snapshot, pOutput As %RegisteredObject) As %Status
{

Quit $$SERROR(S$$NotImplemented)

6.3 Implementing the OnProcessinput() Method

Within your custom business service class, your OnProcessl nput() method should have the following signature:

Method OnProcesslinput(plnput As EnsLib.SQL.Snapshot,
pOutput As %RegisteredObject) As %Status

Here plnput is the snapshot object that the adapter sends to this business service; this is an instance of EnsLib.SQL.Snapshot.
Also, pOutput is the generic output argument required in the method signature.

The OnProcessl nput() method should do some or all of the following:
1. Create an instance of the request message, which will be the message that your business service sends.
For information on creating message classes, see Defining Messages.

2. For the request message, set its properties as appropriate, using values in the snapshot object. This object corresponds
to a single row returned by your query; for more information, see Using the Default Snapshot Object.

3. Callasuitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDefer redResponse(). For details, see Sending
Request Messages

Each of these methods returns a status (specifically, an instance of %Status).
4. Optionally check the status of the previous action and act upon it.
5. Optionally examine the response message that your business service has received and act upon it.

6. Return an appropriate status.
The following shows a simple example:

Class Member

Method OnProcesslinput(plnput As EnsLib.SQL.Snapshot,
pOutput As %RegisteredObject) As %Status

set req=##class(ESQL.request) .%New()

set req.CustomerID=plnput.Get(**CustomeriD')

set req.SSN=plnput.Get("'SSN'")

set req.Name=plnput.Get(*'"Name')

set req.City=plnput.Get("City")

set sc=..SendRequestSync("'ESQL.operation,req, .pOutput)

quit sc

Notice that this example uses the Get() method of EnsLib.SQL.Snapshot to get data for specific columns; see Using the
Default Snapshot Object.

Using SQL in Productions 17



Custom SQL Business Services

6.4 Using the Default Snapshot Object

When you create a business service class to work with EnsLib.SQL.InboundAdapter, the adapter passes a snapshot object
(an instance of EnsLib.SQL.Snapshot) to your custom OnProcessinput() method. This instance contains data for one row
of the data returned by your query. Your OnProcessinput() method typically uses the data available in this object.

Note:  The EnsLib.SQL.Snapshot class provides properties and methods to manage multiple rows. However, multiple-
row snapshots are relevant only for operations that use the outbound adapter.

The following list describes the methods that you are most likely to use within your custom OnProcessinput() method:
Get()

method Get(pName As %String, pRow=..%CurrentRow) returns %String

Returns the value of the column that has the name pName, in the current row (which is the only row in this case).
GetColumnld()

method GetColumnld(pName As %String) returns %Ilnteger

Returns the ordinal position of the column that has the name pName. This method is useful when you work with
unfamiliar tables.

GetData()
method GetData(pColumn As %Integer, pRow=..%CurrentRow) returns %String

Returns the value of the column whose position is specified by pColumn in the current row (which is the only row
in this case). From left to right, the first column is 1, the second column is 2, and so on.

GetColumnName()

method GetColumnName(pColumn As %Integer = 0)

Returns the name of the column whose position is specified by pColumn.
GetColumnSize()

method GetColumnSize(pColumn As %Integer = 0)

Returns the size (the width in number of characters) of the database field whose position is specified by pColumn.
GetColumnType()

method GetColumnType(pColumn As %Integer = 0)

Returns the SQL type of the column whose position is specified by pColumn, for example, VARCHAR, DATE,
or INTEGER.

Note:  SQL type names vary between different database vendors.

18 Using SQL in Productions



Initializing the Adapter

The following shows how you might use the Get() method to extract data from the snapshot and use it to populate the
request message:

set req=##class(ESQL.request) . %New()

set req.CustomerID=plnput.Get(*'CustomeriD')
set req.SSN=plnput.Get(''SSN'")

set req.Name=plnput.Get(''Name')

set req.City=plnput.Get("City")

6.5 Initializing the Adapter

To initialize the inbound adapter, customize the Onlnit() method of your custom business service class. This method is
executed during startup of the business host; by default, this method does nothing.

Method OnlInit() As %Status

The most common reason to initialize the adapter is to initialize values for use as parameters of the query, as described in
Specifying Inbound Queries. The following subsections list the relevant methods and provide an example.

6.5.1 Initializing Persistent Values

EnsLib.SQL.InboundAdapter provides the following method to initialize persistent values that are saved between restarts of
the business service:

ClassMethod InitializePersistentValue
(pConfigName As %String,
pPersistentValueName As %String = "%lLastKey",
pNewValue As %String)
As %String

Use this to initialize a name-value pair associated with the adapter and then use the name for a parameter of the query. This
method checks the current value of the given persistent name-value pair. If the value is currently null, this method sets it
equal to pNewValue.

By default, if you omit the name, the method initializes the persistent name-value pair &%LastKey which contains the
IDKey value of the last row processed by the adapter.

In some cases, you might instead need the I nitializeL astK eyValue(), which initializes the transient adapter property
%LastKey. This property is reset each time the business service is started. Also see the class documentation for
EnsLib.SQL.InboundAdapter for information on the related methods SetPer sistentValue() and GetPer sistentValueg().

6.5.2 Examples

To initialize the &%LastKey persistent value, you would customize the Onlnit() method of your business service to include
the following:

Class Member

Method OnlInit() As %Status
{

#; initialize persistent last key value
Do ..Adapter.InitializePersistentValue(..%ConfigName, ,0)
Quit $$$0K

To initialize the &TopSales persistent value, you would customize the Onlnit() method of your business service to include
the following:

Using SQL in Productions 19



Custom SQL Business Services

Class Member

Method OnlInit() As %Status
{

#; must initialize so the query can do a numeric comparison
Do ..Adapter.InitializePersistentValue(..%ConfigName, " TopSales",0)
Quit $$$0K

6.6 Adding and Configuring the Business Service

To add your business service to a production, use the Management Portal to do the following:
1. Add an instance of your custom business service class to the production.
2. Enable the business service.
3. Set the PoolSize setting to 1.
If PoolSize is larger than 1, the adapter will process many records twice.

4. Configure the adapter to communicate with a specific external data source. For details about the configuration settings,
see Using an SQL Business Service.

5. Run the production.

6.7 Processing Only New Rows

Because it is often undesirable to keep executing a query against the same data, the EnsLib.SQL.InboundAdapter provides
several tools that you can use to keep track of the rows that it has processed. This section discusses those tools and then
describes several ways to use them in practice.

CAUTION: Be sure to set the PoolSize setting equal to 1. If it is larger than 1, the adapter will process many records
twice.

6.7.1 Available Tools

The EnsLib.SQL.InboundAdapter provides the following tools to keep track of the rows that it has processed:

» If you specify the KeyFieldName setting, the adapter adds data to an InterSystems IRIS global that indicates which
rows it has processed. This setting should refer to a field that contains values that are not reused over time; this field
must be in the result set returned by the query. The adapter uses the data in that field to evaluate whether a row has
previously been processed.

Note:  If you delete a row, InterSystems IRIS removes its KeyFieldName value from the global that tracks processed
rows. If you subsequently add the row back in with the same KeyFieldName value, InterSystems IRIS processes
the row again.

*  The adapter provides a persistent value, &%LastKey, that contains the value of the Key Field Name for the last row
that was processed. This special persistent value is saved when you restart the business service.

»  The adapter provides a transient property, %LastKey, that contains the value of the KeyFieldName for the last row that
was processed. This adapter property is created each time you restart the associated business service.

20 Using SQL in Productions



Processing Only New Rows

The latter two options are practical only if KeyFieldName refers to a field that increases monotonically for each new row.
Also see Initializing the Adapter.

6.7.2 Practical Ways to Not Reprocess Rows

There are three practical ways that you can ensure that you do not reprocess the same data:

Use the KeyFieldName setting of the adapter. If specified, this setting should refer to a field that contains values that
are not reused over time; this field must be in the result set returned by the query. If you specify a KeyFieldName, the
adapter uses the data in that field to evaluate whether a row has previously been processed. Note that if you specify
the pseudo field %ID in the SELECT and want to specify this field as the KeyFieldName, you should specify the
KeyFieldName as ID and should omit the % (percent sign).

The default is 1D.

For example, you could specify Query as follows:
SELECT 1D,Name,Done from Sample.Person
And then you could specify KeyFieldName as follows:

1D

This technique can be inefficient because InterSystems IRIS might select a large number of rows during each polling
cycle, and only a small number of those rows might be new.

Use a query that uses a query parameter that refers to the special persistent value &%LastKey (or the transient adapter
property %LastKey). For example, you could specify Query as follows:

SELECT ID,Name,Done from Sample.Person WHERE 1D>?
And then you could specify Parameters as follows:
&Y%LastKey

Also see Initializing the Adapter.

After executing the query, delete the source data or update it so that the query will not return the same rows. To do
this, you use the DeleteQuery setting. By default, after the EnsLib.SQL.InboundAdapter executes the main query (the
Query setting), it executes the DeleteQuery once for each row returned by the main query.

This query must include exactly one replaceable parameter (a question mark), which the adapter will replace with value
specified by KeyFieldName.

This query can either delete the source data or can perform an update to ensure that the same rows will not be selected
by the main query of the adapter.

For example, you could specify Query as follows:
SELECT ID,Name,Done from Sample.Person WHERE Done=0
And then you could specify DeleteQuery as follows:

UPDATE Sample.Person SET Done=1 WHERE ID=?

Using SQL in Productions 21



Custom SQL Business Services

6.8 Reprocessing Rows

In many cases, it is necessary to notice changes in a row that has previously been processed by the SQL inbound adapter.
The easiest way to do this is as follows:

* Include a column in the relevant table to record if a given row has been changed.
» Install an update trigger in the data source to update that column when appropriate.

*  Within the query used by the adapter, use the value of this column to determine whether to select a given row.

CAUTION: Be sure to set the PoolSize setting equal to 1. If it is larger than 1, the adapter will process many records
twice.

6.9 Examples That Use Query Settings

This section provides examples that use the preceding settings.

6.9.1 Example 1: Using KeyFieldName

In the simplest example, we select rows from the Customer table. This table has a primary key, the Customer ID field,
an integer that is automatically incremented for each new record. We are interested only in new rows, so we can use this
field as the KeyFieldName. Within our production, we use the following settings for the adapter:

Setting Value

Query SELECT * FROM Customer
DeleteQuery none

KeyFieldName CustomerliD

Parameters none

When the production starts, the adapter will automatically select and process all rows in the Customer table. As it processes
each row, it creates a trace message if tracing is enabled and adds an entry to the Event Log if logging is enabled; this
message will have text like the following:

Processing row "216*

Here "216" refers to the Customer 1D of the row being processed.

After the production startup, during each polling cycle, the adapter will select all rows but will process only the rows that
have a new value in the Customer 1D field.

6.9.2 Example 2: Using &%LastKey or %LastKey

This example is a variation of the preceding. In this case, the main query selects a subset of the rows, which is more efficient
than selecting all the rows.

22 Using SQL in Productions



Examples That Use Query Settings

Setting Value

Query SELECT * FROM Customer WHERE 1D>?
DeleteQuery none

KeyFieldName CustomerliD

Parameters &%LastKey

In each polling cycle, the adapter determines the value of &%LastKey and passes that value to SQL.

Also see Initializing the Adapter.

Note:  When the adapter selects a set of rows, it may or may not process them in the order given by the KeyFieldName.
For example, in a given polling cycle, it may select rows with Customer ID equal to 101, 102, 103, 104, and
105, but it may process customer 103 last (instead of customer 105). After this polling cycle, the value of
&%LastKey equals 103. So in the next cycle, the adapter will select customers 104 and 105 again, although it
will not reprocess them. (This is still more efficient than reselecting all the rows as in the previous example.) To
force the adapter to process the rows in a specific order, include an ORDER BY clause within the query, for
example:

SELECT * FROM Customer WHERE ID>? ORDER BY CustomerlID

In this case, the value of &%LastKey will always be set to the highest Customer ID and no rows will be selected
more than once.

6.9.3 Example 3: Using DeleteQuery

In this example, the Customer table has a field called Done, in which we can record whether the adapter has previously
selected a given row.

Setting Value

Query SELECT * FROM Customer WHERE Done=0

DeleteQuery UPDATE Customer SET Done=1 WHERE CustomerID=?
KeyFieldName CustomerlID

Parameters none

In common with the preceding example, this example selects any given row only once.

Tip:  Using the delete query can be slow, because this query is executed once for each row that is processed. It is more
efficient to perform a batch delete (or batch update) at a regular interval.

6.9.4 Example 4: Working with a Composite Key

In many cases, you might want to treat multiple table fields collectively as the primary key. For example, you might have
atable of statistics that includes the fields Month and Year, and your query might need to treat the month and year together
as the unique key for the adapter. In such a case, you would use a query that concatenates the relevant fields and uses the

AS clause to provide an alias for the composite field.

Using SQL in Productions 23



Custom SQL Business Services

For example, with SQL*Server, you could use a query that starts as follows:
SELECT Stats, Year||Month as ID ...
The result set available in the adapter will have a field named 1D, which you can use for KeyFieldName.

Note:  The syntax for concatenation depends upon the database with which you are working.

6.9.5 Example 5: No KeyFieldName

In some cases, you might not want to use KeyFieldName. If KeyFieldName is null, the adapter does not distinguish rows
and does not skip rows that had either an error or were successfully processed already.

For example:
Setting Value
Query Select * from Cinema.Film Where TicketsSold>?
DeleteQuery none
KeyFieldName none
Parameters &TopSales (this refers to a special persistent value named TopSales that is defined

within the OnProcessinput() method of the business service)

The business service is as follows:

Class Test.SQL.TopSalesService Extends Ens.BusinessService

Parameter ADAPTER = "EnsLib.SQL.InboundAdapter";
Parameter REQUESTCLASSES As %String = "EnsLib.SQL.Snapshot";
Method Onlnit() As %Status

#; must initialize so the query can do a numeric comparison

Do ..Adapter.InitializePersistentValue(..%ConfigName, " TopSales",0)
Quit $$$0K

Method OnProcesslinput(plnput As EnsLib.SQL.Snapshot,
Output pOutput As Ens.Response) As %Status
{

Kill pOutput Set pOutput=$$$SNULLOREF
for j=1:1:plnput.ColCount {
for i=1:1:plnput.RowCount {

for j=1:1:plnput.ColCount {

3

b
Set tSales=plnput.Get("'TicketsSold")
Set:tSales>$G($$$EnsStaticAppData(

- -%ConfigName,"adapter.sqlparam”,"TopSales')) ~("'TopSales')=tSales
Quit $$$0K

6.10 Specifying Other Runtime Settings

EnsLib.SQL.InboundAdapter provides the following additional runtime settings.

24 Using SQL in Productions



Resetting Rows Previously Processed by the Inbound Adapter

Call Interval

Specifies the polling interval, in seconds, for the adapter. This specifies how frequently this adapter checks for
input.

Upon polling, if the adapter finds input, it creates an appropriate InterSystems IRIS object and passes the object
to its associated business service. If several inputs are detected at once, the adapter processes all of them sequentially
until no more are found. The adapter sends one request to the business service for each item of input it finds. The
adapter then waits for the polling interval to elapse before checking for input again. This cycle continues whenever
the production is running and the business service is enabled and scheduled to be active.

It is possible to set a property in the business service so that the adapter delays for the duration of the Callinterval
in between processing each input. For details, see Developing Productions.

The default Callinterval is 5 seconds. The minimum is 0.1 seconds.

Credentials
ID of the production credentials that can authorize a connection to the given DSN. For information on creating
production credentials, see Configuring Productions.

StayConnected

Specifies whether to keep the connection open between commands, such as issuing an SQL statement or changing
an ODBC driver setting.

» If this setting is O, the adapter will disconnect immediately after each SQL command.
» Ifthissetting is—1, the adapter auto-connects on startup and then stays connected. Use this value, for example,

if you are managing database transactions as described in Managing Transactions.

This setting can also be positive (which specifies the idle time after each SQL command, in seconds), but such a
value is not useful for the SQL inbound adapter, which works by polling. (If the idle time is longer than the polling
interval [Callinterval], the adapter stays connected all the time. If the idle time is shorter than the polling interval,
the adapter disconnects and reconnects at every polling interval—meaning that the idle time is essentially ignored.)

For any settings not listed here, see Configuring Productions.

6.11 Resetting Rows Previously Processed by the Inbound
Adapter

During development and testing, you might find it useful to reset the adapter for a given business service in order to repeat
previous tests. To do so, use one of the following methods described here; these are class methods inherited by
EnsLib.SQL.InboundAdapter.

CAUTION:  You do not normally use these methods within a live production.

ClearRuntimeAppData()
ClassMethod ClearRuntimeAppData(pConfigName As %String)

Clears all runtime data for the business service that has the given configured name. Note that you can use the
adapter property %ConfigName to access the name of currently configured business service. This data is cleared
automatically each time the business service starts.

Using SQL in Productions 25



Custom SQL Business Services

ClearStaticAppData()
ClassMethod ClearStaticAppData(pConfigName As %String)

Clears static data for the business service specified by the configured name. This data includes all persistent values
associated with the adapter, such as the persistent last key value.

ClearAllAppData()
ClassMethod ClearAllAppData(pConfigName As %String)

This method just executes the Clear RuntimeAppData() and Clear StaticAppData() class methods.

26 Using SQL in Productions



Custom SQL Business Operations

This topic describes how to build a custom SQL business operation, including a detailed discussion of the SQL outbound
adapter (EnsLib.SQL.OutboundAdapter) and how to use it in your productions. If you prefer to use a pre-built business
operation, see Using an SQL Business Operation.

7.1 Default Behavior

Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

The SQL outbound adapter (EnsLib.SQL.OutboundAdapter) provides settings that you use to specify the data source to
connect to and any login details needed for that data source. It also provides methods to perform common SQL activities
such as the following:

e Executing queries
»  Executing stored procedures

e Performing inserts, updates, and deletes

7.2 Creating a Business Operation to Use the Adapter

To create a business operation to use the EnsLib.SQL.OutBoundAdapter, you create a new business operation class. Later,
add it to your production and configure it.

You must also create appropriate message classes, if none yet exist. See Defining Messages.

The following list describes the basic requirements of the business operation class:

» Your business operation class should extend Ens.BusinessOperation.

»  The ADAPTER parameter should equal EnsLib.SQL.OutboundAdapter.

»  The INVOCATION parameter should specify the invocation style you want to use, which must be one of the following.

—  Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job will be allocated for the task.
This is the most common setting.

Using SQL in Productions 27



Custom SQL Business Operations

— InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

* Your class should define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
<Mapltems>
<Mapltem MessageType='"'messageclass'>
<Method>methodname</Method>
</Mapltem>

</Mébltems>

e Your class should define all the methods named in the message map. These methods are known as message handlers.
In general, these methods will refer to properties and methods of the Adapter property of your business operation.

»  For other options and general information, see Defining a Business Operation Class.
The following example shows the general structure that you need:

Class Definition

Class ESQL.NewOperationl Extends Ens.BusinessOperation

garameter ADAPTER = "EnsLib.SQL.OutboundAdapter™;

Parameter INVOCATION = "'Queue';

Method SampleCall(pRequest As Ens.Request, Output pResponse As Ens.Response) As %Status
Quit $$SERROR(S$$NotImplemented)

XData MessageMap

<Map I tems>
<Mapltem MessageType=""Ens.Request''>
<Method>SampleCal 1</Method>
</Map I tem>
</Mapltems>

}
}

7.3 Creating Methods to Perform SQL Operations

When you create a business operation class for use with EnsLib.SQL.OutboundAdapter, typically your biggest task is writing
message handlers, that is, methods to perform various SQL operations. In general, these methods will refer to properties
and methods of the Adapter property of your business operation. For example:

set tSC = .._Adapter.ExecuteUpdate(.numrows,sql)

28 Using SQL in Productions



Handling Multiple SQL Statements per Message

A method might look like the following.

/// Insert into NewCustomer table
Method Insert(pReq As ESQL.request, Output pResp As ESQL.responsel) As %Status

{
kill pResp
set pResp=$$$NULLOREF

set sql="insert into NewCustomer (Name,SSN,City,SourcelD) values (?,?,?,?)"

//perform the Insert

set tSC = ..Adapter.ExecuteUpdate
(-nrows,sqgl,pReqg.Name,pReq.SSN,pReq.-City,pReq.CustomerlD)

//create the response message

set pResp=##class(ESQL.responsel) .%New()

set pResp.AffectedRows=nrows

if "tSC write " failed ",tSC quit tSC
quit 1

To create these methods, you should become familiar with the methods and properties of the EnsLib.SQL.OutboundAdapter
class. Creating Adapter Methods for SQL provides more detail about these tools.

7.4 Handling Multiple SQL Statements per Message

The adapter configuration is designed to deal with the simple case where the business operation executes one SQL statement
per message it receives. If your business operation needs to execute multiple SQL statements for a given message, use the
following style (or similar) in your OnM essage() method:

%nMessage(..)

Set tStayConn=. .Adapter.StayConnected
Set ..Adapter.StayConnected=-1

//. .. your ._Adapter SQL Operations here...

Set ..Adapter.StayConnected=tStayConn
IT "tStayConn&&. .Adapter.Connected Do ..Adapter._Disconnect()
Quit tSC

7.5 Adding and Configuring the Business Operation

To add your business operation to a production, use the Management Portal to do the following:
1. Add an instance of your custom business operation class to the production.
2. Enable the business operation.

3. Configure the adapter to communicate with a specific external data source. For details on these configuration settings,
see Using an SQL Business Operation.

4. Run the production.

Using SQL in Productions 29






Creating Adapter Methods for SQL

This topic describes how to write adapter methods that perform SQL tasks, by using the tools available within the EnsLib.SQL
package. Typically you write such methods when you use the outbound adapter.

8.1 Overview and Context

In various cases, you need to write methods that perform SQL tasks. The most common cases are as follows:

» If you use the SQL outbound adapter, you write message handlers and add those methods to the message map of the
adapter. Then, for example, if a business operation receives a certain type of message, a message handler could add a
record to a specific table.

» If you customize the startup or teardown of a business host, your custom Onlnit() or OnTear Down() methods could
initialize or clean out certain tables.

To perform such tasks, your custom methods will use the methods of the SQL inbound and outbound adapters, both of
which inherit a core set of methods from the EnsLib.Common class. These methods can execute queries, run stored procedures,
insert records, and so on.

8.2 Using Parameters

If you use parameters when you run queries, perform updates, or execute procedures, you should obtain information on the
ODBC driver you are using. You should look for information on the following:

e Whether this driver supports the ODBC SQL DescribeParam function, as most drivers do.

— If so, you can use the SQL adapter methods ExecuteQuery() and ExecuteUpdate(). Each of these methods accepts
any number of parameter names, calls SQL DescribeParam, and uses the resulting information to automatically
bind those parameters appropriately.

— If not, you must use the alternative methods ExecuteQueryPar mArray() and ExecuteUpdatePar mArray(). In
this case, you must create and pass a multidimensional array that contains the parameters and all their attributes.

»  Whether this driver supports the ODBC SQL DescribeProcedureColumns function, as most of the major drivers do.

Using SQL in Productions 31



Creating Adapter Methods for SQL

— If so, you can use the SQL adapter method ExecuteProcedure(). This method accepts any number of parameter
names, calls SQL DescribeProcedureColumns, and uses the resulting information to automatically bind those
parameters appropriately.

— If not, you must use the alternative method ExecuteProcedureParmArray(). In this case, you must create and
pass a multidimensional array that contains the parameters and all their attributes.

If the driver does not support SQL DescribeProcedureColumns, you will also need to specify whether each
parameter you use is an input, output, or input/output type parameter.

8.2.1 Parameter Attributes

To use parameters in your SQL statements, if the ODBC driver does not support the SQL DescribeParam or

SQL DescribeProcedur eColumns function, you will have to create an InterSystems IRIS® multidimensional array that
contains the parameters and all their appropriate attributes. InterSystems IRIS uses these values to ask the driver how to
bind each parameter appropriately:

SQL data types—These are generally represented in InterSystems IRIS by integers (SqlType values). The InterSystems
IRIS include file EnsSQLTypes.inc contains definitions of the most commonly used values. Here are a few examples:

—  1represents SQL_CHAR

— 4 represents SQL_INTEGER

— 6 represents SQL_FLOAT

— 8represents SQL_DOUBLE

— 12 represents SQL_VARCHAR

Note that the include file also lists extended types such as SqIDB2BLOB and SqIDB2CLOB, which are also supported
by InterSystems IRIS.

However, consult the documentation for your database driver to see if it uses any nonstandard values not known to
InterSystems IRIS.

Precision—For a numeric parameter, this generally refers to the maximum number of digits that are used by the data
type of the parameter. For example, for a parameter of type CHAR(10), the precision is 10. For a nonnumeric parameter,
this generally refers to the maximum length of the parameter.

Scale—For a numeric parameter, this refers to maximum number of digits to the right of the decimal point. Not
applicable to nonnumeric parameters.

8.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array

To use the methods ExecuteQueryParmArray(), ExecuteUpdatePar mArray(), and ExecuteProcedurePar mArray(),
you first create an InterSystems IRIS multidimensional array to hold the parameters and their values. Then use this array
within the argument list as shown in the method signature. The array can contain any number of parameters, and it must
have the following structure:

32

Using SQL in Productions



Using Parameters

Node Contents

arrayname Must indicate the number of parameters.

arrayname (integer) Value of the parameter whose position is integer.
arrayname (integer, "'Sql Type') SqlType of this parameter, if needed. This is a number that

corresponds to an SQL data type. See the preceding section
for options. See SqlType and CType Values for further
information.

arrayname(integer, ""CType'") Local InterSystems IRIS type of this parameter, if needed. This
is a number that corresponds to an SQL data type. See the
preceding section for options. See SqlType and CType Values
for further information.

arrayname(integer, "‘Prec') Precision of this parameter, if needed. See the preceding
section. The default is 255.

arrayname(integer, **Scale'™) Scale of this parameter, if needed. See the preceding section.
The default is 0.

arrayname(integer, " 10Type'") I0Type for this parameter, if you need to override the flags in
the procedure. This is used only by the
ExecuteProcedureParmArray() method.

* 1 represents an input parameter.
e 2 represents an input/output parameter.

. 4 represents an output parameter.

arrayname(integer, "'Sql TypeName'") Used in calls to get parameter values from the driver and in the
calculation to compute CType when only the SqlType subscript
is given.

arrayname (integer, "'LOB"") Boolean value that specifies whether this parameter is a large
object.

arrayname(integer, "'Bin'") Boolean value that specifies whether the parameter contains

binary data rather than character data.

Important: If you execute multiple queries that use the parameter array, kill and recreate the parameter array before
each query.

The methods ExecuteQueryParmArray(), ExecuteUpdatePar mArray(), and ExecuteProcedurePar mArray() first
check to see if the given parameter array has descriptor subscripts. (Specifically InterSystems IRIS checks for the **CType""
or ""'SqlType"" subscript for the first parameter.) Then:

» If the array does not have descriptor subscripts, then the method calls the ODBC function SQL DescribeParam or
SQL DescribeProcedur eColumns function as appropriate and uses the values that it returns.

» If the array does have descriptor subscripts, then the method uses them.

Also note that you can prevent ExecuteProcedure() from calling DescribeProcedureColumns (which it calls by default).
To do so, you append an asterisk (*) to the end of the plO argument. See Executing Stored Procedures.

Using SQL in Productions 33



Creating Adapter Methods for SQL

8.2.2.1 SqlType and CType Values

You can specify both the **'Sql Type* and ""CType"* subscripts for any parameter. It is simpler to use only the **'Sql Type"*
subscript.

For any given parameter, the values used are determined as follows:

Scenario " Sqgl Type" " CType" Actual " Sgl Type" value used Actual " CType" value
subscript subscript used

1 Specified Not specified | Value of ""'SqlType" subscript Computed automatically

2 Not specified Specified Value of "'SqlType"* subscript from "SqlType™ value

(which is automatically defined
by copying from the **CType"
subscript)

3 Not specified Not specified | Value determined automatically
by querying the data source if
possible; otherwise InterSystems
IRIS uses 12 (SQL_VARCHAR)

4 Specified Specified Value of ""'SqlType' subscript Value of ""CType"" subscript

8.3 Executing Queries

You can execute queries within an inbound adapter or within a business service. To execute a query, you use the
ExecuteQuery() or ExecuteQueryParmArray() method of the adapter. These methods use the EnsLib.SQL.GatewayResultSet
and EnsLib.SQL.Snapshot helper classes, which differ as follows:

» Arresult set (an instance of EnsLib.SQL.GatewayResultSet) must be initialized. When it has been initialized, it has a
live data connection to a data source.

» Incontrast, a snapshot (an instance of EnsLib.SQL.Snapshot) is a static object that you can create and populate in var-
ious ways. For example, you can populate it with the data of a result set, either all the rows or a subset of rows (starting
at some row position). Using Snapshots discusses other ways to populate a snapshot.

Note:  This section discusses how to get result sets and snapshots, rather than how to use them. For information on using
these objects, see Using Result Sets and Using Snapshots.

8.3.1 Use Modes

When you use the ExecuteQuery() or the ExecuteQueryParmArray() method, you can receive (by reference) either a
result set or a snapshot, depending on how you invoke the method. To use these methods, you do the following:

1. Ensure that the adapter is connected to a DSN.
2. If you want to receive a snapshot object:
a. Create a new instance of EnsLib.SQL.Snapshot.

b. Optionally specify values for the FirstRow and MaxRowsToGet properties of that instance.

3. Invoke the ExecuteQuery() or the ExecuteQueryPar mArray() method, passing the following arguments to it:

34 Using SQL in Productions



Executing Queries

a. The snapshot instance, if any.
b. A string that contains the query.

c. Parameters as appropriate for the query and for the method (see next section).

If you did not provide a snapshot instance, the method returns a result set. If you did pass a snapshot instance to the method,
the method creates a new result set, uses it to populate your snapshot instance (using the values of the FirstRow and
MaxRowsToGet properties to choose the rows), and then returns the snapshot.

8.3.2 Syntax for the Methods

To execute a query, use one of the following methods:

ExecuteQuery()

Method ExecuteQuery(ByRef pRS As EnsLib.SQL.GatewayResultSet,
pQueryStatement As %String,
pParms...) As %Status

Executes a query. You provide a query string and any number of parameters. The result is returned by reference
in the first argument; the result is an instance of EnsLib.SQL.GatewayResultSet or EnsLib.SQL.Snapshot as described
previously.

The second argument is the query statement to execute. This statement can include the standard SQL ? to represent
replaceable parameters. Note that the statement should not use UPDATE.

ExecuteQueryParmArray/()

Method ExecuteQueryParmArray(ByRef pRS As EnsLib.SQL.GatewayResultSet,
pQueryStatement As %String,
ByRef pParms) As %Status

Executes a query. This method is similar to the preceding method with the exception of how parameters are
specified. For this method, you specify the parameters in an InterSystems IRIS multidimensional array (pParms),
as described in Specifying Parameters in an InterSystems IRIS Multidimensional Array.

Use the ExecuteQueryPar mArray() method if you need to specify parameters and if the ODBC driver that you
are using does not support the ODBC SQL DescribeParam function.

8.3.3 Example

The following shows an example method that executes a query:

Method GetPhone(pRequest As ESQL.GetPhoneNumberRequest,
Output pResponse As ESQL.GetPhoneNumberResponse) As %Status

Set pResponse = ##class(ESQL.GetPhoneNumberResponse).%New()
//need to pass tResult by reference explicitly in ObjectScript
//Use an adapter to run a query in the Employee database.
Set tSC = .._Adapter.ExecuteQuery(.tResult,
"Select "_pRequest.Type_ " from Employee where EmployeelD="_pRequest.ID)

//Get the result
IT tResult.Next() {
Set pResponse.PhoneNumber = tResult.GetData(l)
} Else {
//Handle no phone number for example
Set pResponse.PhoneNumber = "

b
Quit $$$0K

Using SQL in Productions 35



Creating Adapter Methods for SQL

8.4 Performing Updates, Inserts, and Deletes

To perform a database update, insert, or delete, use one of the following methods:

ExecuteUpdate()

Method ExecuteUpdate(Output pNumRowsAffected As %Integer,
pUpdateStatement As %String,
pParms...) As %Status

Executes an INSERT, UPDATE, or DELETE statement. You can pass any number of parameters for use in the
statement. Notes:

*  The number of rows affected is returned as output in the first argument.

»  Thesecond argument is the INSERT, UPDATE, or DELETE statement to execute. This statement can include
the standard SQL ? to represent replaceable parameters.

ExecuteUpdateParmArray()

Method ExecuteUpdateParmArray(Output pNumRowsAffected As %Integer,
pUpdateStatement As %String,
ByRef pParms) As %Status

Executes an INSERT, UPDATE, or DELETE statement. This method is similar to the preceding method with the
exception of how parameters are specified. For this method, you specify the parameters in an InterSystems IRIS
multidimensional array (pParms), as described in Specifying Parameters in an InterSystems IRIS Multidimensional
Array.

You use the ExecuteUpdatePar mArray() method if you need to specify parameters and if the ODBC driver that
you are using does not support the ODBC SQL DescribeParam function.

8.4.1 Example

The following example uses the ExecuteUpdate() method:

/// Insert into NewCustomer table
Method Insert(pReq As ESQL.request,
Output pResp As ESQL.responsel) As %Status

Kill pResp
set pResp= $$$NULLOREF

set sql="insert into NewCustomer (Name,SSN,City) values (?,?,?)"

//perform the Insert
set tSC = .._Adapter.ExecuteUpdate(.nrows,sqgl,pReq.Name,pReq.SSN,pReq.City)

//create the response message
set pResp=##class(ESQL.responsel).%New()
set pResp.AffectedRows=nrows

if "tSC write " failed ",tSC quit tSC
quit 1

36 Using SQL in Productions



Executing Stored Procedures

8.4.2 Example with ExecuteUpdateParmArray

The following example is equivalent to the example for ExecuteUpdate(). This one uses the ExecuteUpdatePar mArray()
method:

/// Insert into NewCustomer table
Method InsertWithParmArray(pReq As ESQL.request,
Output pResp As ESQL.responsel) As %Status

kill pResp
set pResp=$$$NULLOREF

set sql="insert into NewCustomer (Name,SSN,City) values (?,?,?)"

//set up multidimensional array of parameters
//for use in preceding query

set par(1)=pReq.Name

set par(2)=pReq-SSN

set par(3)=pReq.City

//make sure to set top level of array,
//which should indicate parameter count
set par=3

//perform the Insert
set tSC = ..Adapter.ExecuteUpdateParmArray(.nrows,sql, .par)

//create the response message
set pResp=##class(ESQL.responsel).%New()
set pResp.AffectedRows=nrows

if "tSC write " failed ",tSC quit tSC
quit 1

8.5 Executing Stored Procedures

To execute a stored procedure, use one of the following methods:

ExecuteProcedure()

Method ExecuteProcedure(ByRef pResultSnapshots As %ListOfObjects,
Output pOutputParms As %ListOfDataTypes,
pQueryStatement As %String,
plO As %String = "',
plnputParms...) As %Status

Executes an SQL CALL statement that runs a stored procedure. You can pass any number of parameters. Notes:
» The result is returned by reference in the first argument as a list of EnsLib.SQL.Snapshot objects.

* You can create a list of new instances of EnsLib.SQL.Snapshot and pass the list into the method as the first
argument. If you do, the method populates these instances and uses the values of its FirstRow and
MaxRowsToGet properties to choose the set of rows that each will represent. The method then returns the list
of instances.

e The second argument is the list of the output values of all scalar output and input/output parameters. If the
procedure returns a scalar return value and your statement retrieves it, this value will be the first output value.

»  The third argument is the SQL CALL statement that runs a stored procedure. This statement can include the
standard SQL ? to represent replaceable parameters.

Important: The name of the stored procedure is case-sensitive. Also, make sure that the pQuerySatement
statement supplies an argument for every input or input/output parameter that the SQL query
requires.

Using SQL in Productions 37



Creating Adapter Methods for SQL

»  The fourth (optional) argument indicates the type (input, output, or input/output) for each parameter. If you
specify this argument, use a string that consists of the characters i, o, and b; the character at a given position
indicates the type of the corresponding parameter. For example, iob means that the first parameter is input,
the second parameter is output, and the third parameter is both input and output.

Tip: By default, the adapter calls the ODBC function DescribeProcedureColumnsto get information
about the parameters and logs warnings if the parameter types specified here are different from the
types returned by that function. To prevent the adapter from making this check, append an asterisk
(*) to the end of this string.

Not all database support all these types of parameters. Be sure to use only the types that are supported by the
database to which you are connecting.

ExecuteProcedureParmArray/()

Method ExecuteProcedureParmArray(ByRef pResultSnapshots As %ListOfObjects,
Output pOutputParms As %ListOfDataTypes,
pQueryStatement As %Strlng
plO As %String = '™
ByRef plOParms) As %Status

Executes an SQL CALL statement that runs a stored procedure. This method is similar to the preceding method
with the exception of how parameters are specified. For this method, you specify the parameters in an InterSystems
IRIS multidimensional array (pParms), as described in Specifying Parameters in an InterSystems IRIS Multidi-
mensional Array.

You use the ExecuteProcedureParmArray() method if you need to specify parameters and if the ODBC driver
that you are using does not support the ODBC SQL DescribePar am function.

Also note:

»  For a given parameter, if you specify the input/output type within the plOParms array and within the plO
argument, the type given in plOParms array takes precedence.

»  If you specify any input/output types within the plOParmsarray, then for all output parameters, be sure to
leave the corresponding array nodes undefined.

If you have configured your SQL adapter to use JDBC through the Java Gateway, output parameters that have a
large object value are returned as streams. For compatibility with older versions of InterSystems IRIS, you can
set a global to return these large object output parameters as strings. But even with this global set, if the object
exceeds the size allowed for a string, it is returned as a stream. To set this compatibility behavior for a configuration
item SQLservice, set the global ~Ens.Config("JDBC","LOBasString","SQLservice") to 1.

8.5.1 Example

The following code executes a stored procedure that has three parameters: an output parameter, an input parameter, and
another output parameter. The input parameter is extracted from the Parameters property of the request message:
pReq.Parameters.GetAt(1). The output parameters are ignored.

Set tQuery="{ ?=call Sample.Employee_StoredProcTest(?,?) }"
Set tSC = ..Adapter.ExecuteProcedure(.tRTs, .tOutParms,tQuery,'oio",pReq.Parameters.GetAt(1))
Set tRes.ParametersOut = tOutParms

In this example, tRTs represents a result set that was previously created.

38 Using SQL in Productions



Specifying Statement Attributes

8.6 Specifying Statement Attributes

When using the SQL adapters, you can specify any driver-dependent statement attributes. To do so:

» If the connection has not been established, set the StatementAttrs property of the adapter equal to a comma-separated
list of attribute-value pairs as follows:

attribute:value,attribute:value,attribute:value, ...
All subsequently created statements will inherit these attributes.
For example:

Set ..Adapter.StatementAttrs = "QueryTimeout:10"

» If the connection has already been established, call the SetConnectAttr() method of the adapter. This method takes
two arguments (the attribute name and the desired value) and returns a status. For example:

Set tout= ._Adapter.SetConnectAttr(*'querytimeout™,10)

If a network error is detected, by default, the adapter tries to reconnect and start over. If you are setting connection
attributes such as AutoCommit, do the following so that this reconnect/retry logic can occur: test the status returned
from SetConnectAttr() and return that status value from the business operation in the case of an error.

Note: It is your responsibility to ensure that the attributes you use are supported by the ODBC driver for the database
to which you are connecting. It is beyond the scope of the InterSystems documentation to attempt to compile any
such list.

The most useful places to set statement attributes are as follows:

e Within a message handler method of a business operation, if you use the SQL outbound adapter.

e Within the Onlnit() method of a business host.

8.7 Managing Transactions

The SQL adapters provide the following methods that you can use to manage formal database transactions:

SetAutoCommit()
Method SetAutoCommit(pAutoCommit) As %Status [ CodeMode = expression ]

Sets autocommit on or off for this adapter connection. This works only after the DSN connection is established.

If you want to set this at connect time, customize the Onlnit() method of your business service or operation. In
your custom method, set the ConnectAttrs property.

If you switch on autocommit, do not set StayConnected to 0. This setting specifies whether to stay connected to
the remote system between handling commands:

»  For details on how the SQL inbound adapter uses this setting, see Specifying Other Runtime Settings for the
SQL Inbound Adapter.

Using SQL in Productions 39



Creating Adapter Methods for SQL

»  For details on how the SQL outbound adapter uses this setting, see Specifying Other Runtime Settings for
the SQL Outbound Adapter.

If a network error is detected, by default, the adapter tries to reconnect and start over. If you are setting connection
attributes such as AutoCommit, do the following so that this reconnect/retry logic can occur: test the status returned
from SetAutoCommit() and return that status value from the business operation in the case of an error.

Commit()
Method Commit() As %Status

Commits all database activities (within this adapter process) since the last commit.

Rollback()
Method Rollback() As %Status

Rolls back all database activities (within this adapter process) since the last commit.

The following example shows a simple transaction that uses the preceding methods. Of course, production-quality code
includes robust error handling. For example, you could wrap these methods in the Try block of a Try-Catch construct, then
place the Rol Iback method in the Catch block to roll back the transaction in the event of an error.

Class Member

Method TransactionExample(pRequest As common.examples.msgRequest2,
Output pResponse As common.examples.msgResponse) As %Status

#include %occStatus

//initialize variables and objects

set tSC = $$$0K

set pResponse = ##class(common.examples.msgResponse) .%New()

#; start the transaction. Set autocommit to O
set tSC = ._Adapter.SetAutoCommit(0)

//Example UPDATE, INSERT, DELETE

set tQuerylns="insert into common_examples._mytable(name,age,datetime)"
_" values ("SAMPLE"_$random(9999)_"",40,""_$zdt($h,3)_"")"

set tSC = .._Adapter.ExecuteUpdate(.tAffectedRows,tQuerylIns)

// finalize transaction
set tSC=.._Adapter.Commit()

return $$$0K

Note: Itisimportant to consider the database activities that make up a given transaction. If these activities are contained
within a single business host, you can just use the preceding methods to set up transaction management. However,
if the database activities are contained in multiple business hosts, you must write code (typically within a business
process) to simulate a true rollback.

8.8 Managing the Database Connection

To manage the database connection of an adapter, you can use the following properties and methods of the adapter.

8.8.1 Properties

The following properties control or provide information about the database connection:

40 Using SQL in Productions



Managing the Database Connection

Connected

%Boolean

This read-only property indicates if the adapter is currently connected.

ConnectAttrs

%String

An optional set of SQL connection attribute options. For ODBC, they have the form:
attr - val , attr - val

For example, AutoCommit:1.

For JDBC, they have the form

attr=val ; attr=val

For example, TransactionlsolationLeve |I=TRANSACTION_READ_ COMMITTED.

Set this property in the Onlnit() method of your business operation or business service to specify the options to
use at connection time.

ConnectTimeout

%Numeric

This property specifies the number of seconds to wait on each connection attempt. The default value is 5.

StayConnected

%Numeric
This property specifies whether to stay connected to the remote system:

»  For information on how the SQL inbound adapter uses this setting, see Specifying Other Runtime Settings
for the SQL Inbound Adapter.

e For information on how the SQL outbound adapter uses this setting, see Specifying Other Runtime Settings
for the SQL Outbound Adapter.

DSN
%String
This data source name specifies the external data source to connect to. The following example shows the name of
a DSN that refers to a Microsoft Access database:
accessplayground
8.8.2 Methods

Use the following methods to manage the database connection:

Connect()

Method Connect(pTimeout As %Numeric = 30) As %Status

Connects to the data source given by the current value of the DSN property.

Using SQL in Productions 41



Creating Adapter Methods for SQL

Disconnect()
Method Disconnect() As %Status

Disconnects from the data source.

TestConnection()
Method TestConnection()

Tests the connection to the data source.

The adapter classes also provide several setter methods that you can use to set the properties listed in the preceding section.

42 Using SQL in Productions



Using Result Sets (SQL Adapters)

The EnsLib.SQL.GatewayResultSet class represents a special-purpose result set for use by an SQL adapter in a production.
An initialized instance of this class has a live data connection to a data source. The class provides methods to examine the
contents of the result set as well as a method to return a static snapshot.

This topic describes how to use the EnsLib.SQL.GatewayResultSet class.

Note that you can also get a snapshot that contains rows from the result set; see Using Snapshots.

9.1 Creating and Initializing a Result Set

To create and initialize an SQL result set:
1. Within an SQL adapter (either EnsLib.SQL.InboundAdapter or EnsLib.SQL.OutboundAdapter), connect to a DSN.

2. Use the ExecuteQuery() or the ExecuteQueryPar mArray() method of the adapter. You will receive, by reference,
an instance of EnsLib.SQL.GatewayResultSet.

Note:  If you just use the % New() class method, you can create a result set, but it will not be initialized and cannot
contain any data. To initialize the result set, use the procedure described here.

9.2 Getting Basic Information about the Result Set

The following properties of EnsLib.SQL.GatewayResultSet provide basic information about a result set:
*  The ColCount property indicates the number of columns in the result set.

»  The QueryStatement property indicates the query statement used by this result set.

9.3 Navigating the Result Set

A result set consists of rows of data. You can use the following methods to navigate through the rows:

Using SQL in Productions 43



Using Result Sets (SQL Adapters)

Next()

method Next(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row and caches the row data. Returns O if the cursor is at the end of the result set.
SkipNext()

method SkipNext(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row. Returns 0 if the cursor is at the end of the result set.

9.4 Examining the Current Row of the Result Set

Use the following methods to examine the current row of the result set:

Get()

method Get(pName As %String) returns %String

Returns the value of the column that has the name pName, in the current row.
GetData()

method GetData(pColumn As %lInteger) returns %String

Returns the value of the column whose position is specified by pColumn in the current row.

GetColumnName()
method GetColumnName(pColumn As %Integer = 0)
Returns the name of the column whose position is specified by pColumn.

Note:  If the source data contains any unnamed columns, the result set automatically provides names for these
columns in the following form: xCol_n

44 Using SQL in Productions



10

Using Snapshots (SQL Adapters)

The EnsLib.SQL.Snapshot class represents a static object that you create and populate in various ways. This object is meant
for use by an SQL adapter in a production. The class provides methods for examining the data; more methods are available
for this object than for the result set. This topic describes how to use the EnsLib.SQL.Snapshot class.

10.1 Creating a Snapshot

When you use the SQL inbound adapter, by default, you automatically receive snapshot objects within your business service.
For each row in your query, the adapter creates a snapshot object and sends it as an argument when it calls the Processl nput()
method of the business service. As noted previously, by default, this snapshot contains only a single row.

10.1.1 Creating a Snapshot from a Live Connection

In most cases, you will probably have a live connection to the data source. Specifically, you start with an SQL adapter
(either EnsLib.SQL.InboundAdapter or EnsLib.SQL.OutboundAdapter). Within the adapter, connect to a DSN. Then you can
do any of the following:

»  Use the ExecuteProcedure() or ExecuteProcedurePar mArray() method of the adapter. Each of these returns the
results as a snapshot.

These methods are discussed in Using the Result Sets.

e Create a result set (see Using the Result Sets) and then use the GetSnapshot() method of the result set. This method
has the following signature.

method GetSnapshot(ByRef pSnap As EnsLib.SQL.Snapshot,
pFetchAll As %Boolean = 0) returns %Status

Returns a snapshot object by reference in the first argument. If you pass an existing snapshot object to the method, the
method uses the FirstRow and MaxRowsToGet properties of that object to determine which rows to place in the snapshot.
Otherwise, the method uses the default values.

10.1.2 Creating a Snapshot from Static Data

You can also create a snapshot from static data, without having a connection to a DSN. To do so, use any of the following
techniques:

»  Use the CreateFromFile(), CreateFromStream(), or CreateFromResultSet class method.

Using SQL in Productions 45



Using Snapshots (SQL Adapters)

Create a new instance of a snapshot (via the % New() class method), and then use the ImportFile(),
ImportFromsStream(), or ImportFromResultSet() method.

The following list provides the details for these methods, all of which are in the EnsLib.SQL.Shapshot class:

CreateFromFile()

classmethod CreateFromFile(pFilename As %String,

pRowSeparator As %String,
pColumnSeparator As %String,
pColumnWidths As %String,

pLineComment As %String,
pStripPadChars As %String,
pColNamesRow As %Integer,

pFirstRow As %Integer,

pMaxRowsToGet As %Integer,

Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a table-formatted text file. The arguments are as follows:

pFilename specifies the name of the file to import. This is the only required argument.
pRowSeparator is one of the following:
— The character that separates one row from the next row. The default is a line feed character.

— A number, preceded by a minus sign, that indicates the line length in characters.

pColumnSeparator is one of the following:
— The character that separates one column from the next column. There is no default character.

—  The number 0, which means that the columns are determined by the pColumnWdths argument; see the
next argument.

— A number, preceded by a minus sign, that indicates the number of initial characters to skip in each row.
In this case, the columns are determined by the pColumnWdths argument; see the next argument.

pColumnWidths is one of the following:

— A comma-separated list of column widths (number of characters), if the fields in the file are positional.

—  The number of columns, if the file uses column separators.

pLineComment specifies a string after which the rest of a row should be ignored. Within a given row, after

this string is found, the snapshot does not parse the rest of the row into columns.

pStripPadChars means characters to strip from the beginning and end of a field. The default is the space
character.

pCol NamesRow specifies the index of the row that contains column names, if any.
pFirstRow specifies the index of the first row (from the file) to include in the snapshot.
pMaxRowsToGet specifies the maximum number of rows to include in the snapshot.

pSatus is the status that the method returns when it attempts to create the snapshot.

46

Using SQL in Productions



Creating a Snapshot

CreateFromStream()

classmethod CreateFromStream(plOStream As %10.1.CharacterStream,
pRowSeparator As %String,
pColumnSeparator As %String,
pColumnWidths As %String,
pLineComment As %String,
pStripPadChars As %String,
pColNamesRow As %Integer,
pFirstRow As %Integer,
pMaxRowsToGet As %Integer,
Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a table-formatted stream. See the comments for
CreateFromFile().

CreateFromResultSet

classmethod CreateFromResultSet(pRS,
pLegacyMode As %lInteger = 1,
pODBCColumnType As %Boolean = O,
pFirstRow As %Integer,
pMaxRowsToGet As %lnteger,
Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a result set. See the comments for CreateFromFile()
and for ImportFromResultSet.

ImportFile()

method ImportFile(pFilename As %String,
pRowSeparator As %String = $C(10),
pColumnSeparator As %Strlng = $C(9)
pColumnWidths As %String = """
pLineComment As %String = .
pStripPadChars As %String =" "_$C(9),
pColNamesRow As %Integer = 0) as %Status

Imports data from a table-formatted text file. See the comments for CreateFromFile().

ImportFromStream()

method ImportFromStream(plOStream As %10.1.CharacterStream,
pRowSeparator As %String = $C(1 )B
pColumnSeparator As %Strlng $C(9)
pColumnWidths As %String = ,
pLineComment As %String =
pStripPadChars As %Strlng = o _$C(9),
pColNamesRow As %Integer = 0) as %Status

Here plOStream is the stream to import. See the comments for CreateFromFile().

ImportFromResultSet()

method ImportFromResultSet(pRS,
pLegacyMode As %Integer = 1,
pODBCColumnType As %Boolean = 0) as %Status

Imports a result set into a snapshot instance. The arguments are as follows:

* pRSis an instance of EnsLib.SQL.GatewayResultSet, or a result set in the %SQL package such as
%SQL.StatementResult or %SQL.ISelectResult (%SQL.IResult).

» pLegacyMode specifies how to search for meta data. If this argument is O, then InterSystems IRIS® first tries
to use %GetMetadata. This leads to different source of metadata for legacy result set classes. The default is
1, which maintains previous behavior while still supporting %SQL.* and older classes.

Using SQL in Productions 47



Using Snapshots (SQL Adapters)

*  pODBCColumnType controls how the ColumnType is set. If pPODBCColumnTypeis 1, then ColumnType
text is set to the ODBC type column type text and not the clientType.

10.1.2.1 Example

Consider a file that has the following contents:

coll,col2,col3
value Al,value A2,value A3
value B1, value B2 ,value B3

The following code reads this file, uses it to create a snapshot, and writes simple comments to the Terminal. Notice that
the only arguments used are the filename and the column separator:

ObjectScript

set filename='"c:/demo.txt"

set snap=##class(EnsLib.SQL.Snapshot) .%New()
do snap.ImportFile(filename,,",™)

d show

quit

show
w "number of rows in snapshot=",snap.RowCount,!
while snap.Next()

{

w "‘current row=",snap.%CurrentRow,!

w "data in Ffirst column=",snap.GetData(l),!

w "data in second column=",snap.GetData(2),!
w "data in third column=",snap.GetData(3),!

}

quit
The output from this routine is as follows:

number of rows in snapshot=3
current row=1

data in first column=coll

data in second column=col2
data in third column=col3
current row=2

data in first column=value Al
data in second column=value A2
data in third column=value A3
current row=3

data in first column=value Bl
data in second column=value B2
data in third column=value B3

Notice that line feeds are used by default as row separators. Also notice that by default, leading and trailing spaces are
removed from each field.

10.1.3 Creating a Snapshot Manually

You can also create a snapshot manually, as follows:
1. Create a new instance of a snapshot (via the % New() class method).

2. Use the SetColNames(), SetColSizes(), and SetCol Types() methods to specify the names, sizes, and types of the
columns.

3. Use the AddRow() method to add a row of data.

The following list provides the details for these methods, all of which are in the EnsLib.SQL.Shapshot class:

48 Using SQL in Productions



Getting Basic Information about the Snapshot

AddRow()
method AddRow(pCol...) returns %Status

Adds a row that contains the given data. The argument list is the row data, field by field. For example, the following
adds a row to a snapshot. In this case, the column names are 1D, Name, and DOB, respectively:

set sc=snapshot.SetColNames(*'1023","Smith,Bob",""06-06-1986"")
SetColNames()
method SetColNames(pColName...) returns %Status

Sets the names of the columns, in the order given by the arguments. For example, the following sets the column
names as 1D, Name, and DOB, respectively:

set sc=snapshot.SetColNames("'ID", " 'Name',''DOB'")
SetColSizes()
method SetColSizes(pColSize...) returns %Status

Sets the sizes of the columns (the width in number of characters), in the order given by the arguments.

SetColTypes()
method SetColTypes(pColType...) returns %Status
Sets the types of the columns, in the order given by the arguments.

Note:  Remember that the SQL type names vary between different database vendors. Use the type names that
are appropriate for the database with which you are working. The SetCol Types() method does not perform
any checking of your type names.

10.2 Getting Basic Information about the Snapshot

The following properties of the snapshot provide basic information:

»  The %CurrentRow property is an integer that indicates the current row.

* The AtEnd property is true if the current row is the last row; otherwise it is false.
*  The ColCount properties indicates the number of columns in the snapshot.

»  The RowCount properties indicates the number of columns in the snapshot. This property counts only the rows that do
not start with the comment string, if any. To create a snapshot that includes comments, use the CreateFromFile() and
related methods, and specify a value for the pLineComment argument. A row is counted if it begins without the comment
string but includes the comment string in a later position.

10.3 Navigating the Snapshot

A snapshot consists of rows of data. You can use the following methods to navigate through the rows:

Using SQL in Productions 49



Using Snapshots (SQL Adapters)

Next()

method Next(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row. Returns O if the cursor is at the end of the snapshot.
Rewind()

method Rewind() returns %Status

Returns the cursor to the first row of the snapshot.

10.4 Examining the Current Row of the Snapshot

Use the following methods to examine the current row of the snapshot:

Get()

method Get(pName As %String, pRow=..%CurrentRow) returns %String

Returns the value of the column that has the name pName, in the indicated row (by default, the current row).
GetData()

method GetData(pColumn As %Integer, pRow=..%CurrentRow) returns %String

Returns the value of the column whose position is specified by pColumn in the indicated row (by default, the
current row).

GetColumnName()

method GetColumnName(pColumn As %Integer = 0)

Returns the name of the column whose position is specified by pColumn.
GetColumnld()

method GetColumnld(pName As %String) returns %Integer

Returns the ordinal position of the column that has the name pName. This method is useful when you work with
unfamiliar tables.

GetColumnSize()

method GetColumnSize(pColumn As %Integer = 0)

Returns the size (the width in number of characters) of the database field whose position is specified by pColumn.
GetColumnType()

method GetColumnType(pColumn As %Integer = 0)

Returns the type of the column whose position is specified by pColumn.

Note:  SQL type names vary between different database vendors.

50 Using SQL in Productions



Resetting a Snapshot

10.5 Resetting a Snapshot

If you have an existing snapshot object, you can clear the data and definitions from it. To do so, use the Clean() method,
which returns a status. This is slightly more efficient than destroying the snapshot and creating a new one via % New().

Using SQL in Productions 51






	Table of Contents
	1 Introduction to SQL Adapters
	2 Using an SQL Business Service
	2.1 Specifying the Data Source Name
	2.2 Specifying Inbound Queries
	2.2.1 Specifying the Query
	2.2.2 Specifying Parameters
	2.2.3 Specifying the Maximum Length of String Data

	2.3 SQL Procedure Settings
	2.4 About Messages

	3 Using an SQL Business Operation
	3.1 Specifying the Data Source Name
	3.2 Specifying a Query
	3.3 Specifying Other Runtime Settings
	3.4 SQL Procedure Settings
	3.5 About Response Messages

	4 More About Messages
	4.1 Incoming Streams
	4.2 Incoming Strings

	5 More About Procedures
	6 Custom SQL Business Services
	6.1 Overall Behavior
	6.2 Creating a Business Service to Use the Adapter
	6.3 Implementing the OnProcessInput() Method
	6.4 Using the Default Snapshot Object
	6.5 Initializing the Adapter
	6.5.1 Initializing Persistent Values
	6.5.2 Examples

	6.6 Adding and Configuring the Business Service
	6.7 Processing Only New Rows
	6.7.1 Available Tools
	6.7.2 Practical Ways to Not Reprocess Rows

	6.8 Reprocessing Rows
	6.9 Examples That Use Query Settings
	6.9.1 Example 1: Using KeyFieldName
	6.9.2 Example 2: Using &%LastKey or %LastKey
	6.9.3 Example 3: Using DeleteQuery
	6.9.4 Example 4: Working with a Composite Key
	6.9.5 Example 5: No KeyFieldName

	6.10 Specifying Other Runtime Settings
	6.11 Resetting Rows Previously Processed by the Inbound Adapter

	7 Custom SQL Business Operations
	7.1 Default Behavior
	7.2 Creating a Business Operation to Use the Adapter
	7.3 Creating Methods to Perform SQL Operations
	7.4 Handling Multiple SQL Statements per Message
	7.5 Adding and Configuring the Business Operation

	8 Creating Adapter Methods for SQL
	8.1 Overview and Context
	8.2 Using Parameters
	8.2.1 Parameter Attributes
	8.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array

	8.3 Executing Queries
	8.3.1 Use Modes
	8.3.2 Syntax for the Methods
	8.3.3 Example

	8.4 Performing Updates, Inserts, and Deletes
	8.4.1 Example
	8.4.2 Example with ExecuteUpdateParmArray

	8.5 Executing Stored Procedures
	8.5.1 Example

	8.6 Specifying Statement Attributes
	8.7 Managing Transactions
	8.8 Managing the Database Connection
	8.8.1 Properties
	8.8.2 Methods


	9 Using Result Sets (SQL Adapters)
	9.1 Creating and Initializing a Result Set
	9.2 Getting Basic Information about the Result Set
	9.3 Navigating the Result Set
	9.4 Examining the Current Row of the Result Set

	10 Using Snapshots (SQL Adapters)
	10.1 Creating a Snapshot
	10.1.1 Creating a Snapshot from a Live Connection
	10.1.2 Creating a Snapshot from Static Data
	10.1.3 Creating a Snapshot Manually

	10.2 Getting Basic Information about the Snapshot
	10.3 Navigating the Snapshot
	10.4 Examining the Current Row of the Snapshot
	10.5 Resetting a Snapshot

	Index

