
Defining Workflows

Version 2024.1
2024-07-02

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Defining Workflows
InterSystems IRIS Data Platform   Version 2024.1    2024-07-02   
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

1 Overview of Workflow within Productions ...................................................................................... 1
1.1 Introduction ................................................................................................................................ 1

1.1.1 Integration into InterSystems IRIS ................................................................................... 1
1.1.2 Support for Composite Applications ................................................................................ 1
1.1.3 Productivity Features ....................................................................................................... 2

1.2 Workflow Components in a Production ..................................................................................... 2
1.3 Workflow Roles and Users ......................................................................................................... 3
1.4 User Interfaces for Workflow ..................................................................................................... 3

1.4.1 Implementers and Supervisors ......................................................................................... 3
1.4.2 End Users ......................................................................................................................... 3

1.5 Life Cycle of a Task ................................................................................................................... 4
1.6 Task Forms and Customization Options ..................................................................................... 5
1.7 Task Distribution Options ........................................................................................................... 5

1.7.1 Custom Task Distribution ................................................................................................. 6

2 Developing a Workflow ...................................................................................................................... 7
2.1 Overview .................................................................................................................................... 7
2.2 Designing the Business Process ................................................................................................. 8
2.3 Creating the Workflow Process .................................................................................................. 8

2.3.1 Defining the Task Request ............................................................................................... 9
2.3.2 Using the Task Response ................................................................................................ 10
2.3.3 Adding the Workflow Process to the Production ........................................................... 10

2.4 Adding the Workflow Operations to a Production ................................................................... 11
2.5 Next Steps ................................................................................................................................. 11

3 Including Custom Features in a Workflow .................................................................................... 13
3.1 Extending the Standard Task Form .......................................................................................... 13
3.2 Using a Custom Task Form ...................................................................................................... 14
3.3 Customizing the Task Distribution Strategy ............................................................................. 15

3.3.1 Creating a Custom Task Response Class ....................................................................... 15
3.3.2 Invoking the Custom Task Response Class .................................................................... 16

4 Testing a Workflow ........................................................................................................................... 17
4.1 Test Checklist ........................................................................................................................... 17
4.2 Viewing Workflow Activity in the Visual Trace ....................................................................... 17

Appendix A: Exploring the Workflow Sample .................................................................................. 19
A.1 Overview of the Sample .......................................................................................................... 19
A.2 Setup Tasks .............................................................................................................................. 19
A.3 Sample Request Message ........................................................................................................ 20
A.4 Sample Business Process Class ............................................................................................... 20
A.5 Sample Control Flow ............................................................................................................... 24
A.6 Dashboards and Metrics .......................................................................................................... 25

Appendix B: Available Workflow Metrics ......................................................................................... 27

Defining Workflows                                                                                                                                                                 iii





1
Overview of Workflow within Productions

This topic provides an overview of workflow features in InterSystems IRIS® data platform.

1.1 Introduction
A workflow management system automates the distribution of tasks among users. Automating the distribution of tasks
according to a predefined strategy makes task assignment more efficient and task execution more accountable. A typical
example is a help desk application that accepts problem reports from customers, routes the reports to members of the
appropriate organizations for action, and upon resolution of the problem, reports the results to the customer.

The InterSystems IRIS Workflow Engine provides a much higher level of functionality than traditional, stand-alone
workflow management systems, as the next subsections explain.

1.1.1 Integration into InterSystems IRIS

The Workflow Engine takes full advantage of the InterSystems IRIS architecture. As a result, it can seamlessly interoperate
with enterprise applications, technology, and data, as well as human participants. Highlights of this collaboration include
the following:

• Straight-through business processes (that is, completely automated business processes) can incorporate human
involvement to handle exception cases, such as approval for especially large orders.

• An InterSystems IRIS workflow can call out to enterprise applications: to notify them of events within the human
workflow, or to obtain additional information needed by the human workflow.

• Persistence: The Workflow Engine leverages InterSystems IRIS persistent storage features to support long-running
business processes that may take days or weeks to complete.

1.1.2 Support for Composite Applications

InterSystems IRIS provides a richly stocked development environment that allows developers to easily create composite
applications that span disparate systems and technologies across the enterprise. Because the Workflow Engine is fully
integrated within InterSystems IRIS:

• Composite applications can easily incorporate complex manual interactions that reach across geographical, technolog-
ical, and departmental divisions.

• User-based process definitions can be separated from business logic, allowing developers and analysts to define each
segment distinctly within a cohesive whole.

Defining Workflows                                                                                                                                                                 1



• Workflow systems are more versatile, more powerful, easier to create, and simpler to maintain.

1.1.3 Productivity Features

The InterSystems IRIS Workflow Engine provides automatic integration with productivity tools such as the following:

• Business Process Designer: Workflow analysts can create workflows using the Business Process Designer, the Inter-
Systems IRIS graphical editing tool that automatically generates full-fledged, working code from a business process
diagram.

• Business Activity Monitoring: Developers can easily create corporate dashboards and event triggers to display current
workflow status to enterprise analysts.

• Visual Trace: All tasks are sent as messages, so system administrators can view the status of tasks using the powerful
Visual Trace message tracing tool.

1.2 Workflow Components in a Production
The following figure shows workflow components in a production:

A workflow process is a BPL process that sends task requests to workflow operations. This process is responsible for
coordinating work among these workflow operations. It might also invoke standard business operations (that is, ones that
do not require human intervention). Both types of element may be required to complete the business process.

A workflow operation is a special-purpose business operation that represents a workflow role . The workflow operation
sends tasks, via the Workflow Inbox, to all users who belong to the associated role.

2                                                                                                                                                                 Defining Workflows

Overview of Workflow within Productions



A workflow process sends a task request to a workflow operation in exactly the same way as business processes send other
kinds of request messages to other kinds of business operation.

In InterSystems IRIS terms, a workflow task is an item of work that is performed offline in support of an ongoing business
process. InterSystems IRIS represents a task with a special-purpose production message object called a task request that
carries information about that work. The workflow process sends task requests and receives task responses. As with all
other messages, these messages are saved in the database until purged (if ever).

1.3 Workflow Roles and Users
In a typical organization, multiple people might be able to fulfill a certain kind of task. Therefore, to organize distribution
of tasks to people, InterSystems IRIS uses workflow roles. A workflow role is a list of users that can fulfill a certain kind
of task.

In theory, there may be any number of workflow roles defined within an enterprise. In practice, roles map to departments
or job positions within in the enterprise, such as Accounting, Finance, Teller, Manager, Supervisor, or Director.

Any number of workflow users may be members of a workflow role. Assignment of users to roles should make sense from
a practical and organizational standpoint. If a person is authorized to perform a task, that person should be a member of
the corresponding workflow role.

Workflow roles are defined per interoperability-enabled namespace, not per production. This means that the same workflow
role definitions are available to all the productions in the same interoperability-enabled namespace. The same is true for
workflow users when they correspond to InterSystems IRIS user accounts (as is typically done).

1.4 User Interfaces for Workflow
InterSystems IRIS provides two user interfaces to support workflow. These are intended for different sets of users.

1.4.1 Implementers and Supervisors

The Management Portal provides pages that implementers and supervisors can use to manage workflow roles, users, and
tasks. To access them, select Interoperability, click Manage, and then click Workflow.

These pages are not meant for end users. Supervisors can assign or cancel tasks, but other actions (such as marking tasks
complete) are not available here.

For details, see Managing Workflow Roles, Users, and Tasks.

1.4.2 End Users

Users manage their workflow tasks within the InterSystems User Portal, which also displays InterSystems IRIS dashboards
(and Analytics dashboards). The InterSystems User Portal is accessible from the Management Portal, but it is more likely
that your application would provide a link directly to it. (Also note that the User Portal does not have a title; it is suitably
generic for all users.)

For an InterSystems IRIS workflow user, the main area of the User Portal displays the Workflow Inbox. For example:

Defining Workflows                                                                                                                                                                 3

Workflow Roles and Users



When the user clicks Workflow Inbox, the User Portal displays something like the following:

When a user clicks a task, the system displays the corresponding task form, which you can configure or customize. For
example:

For details, see Using the Portal Features.

1.5 Life Cycle of a Task
The life cycle of a task within a production is as follows:

1. A workflow process receives some input and then creates a task request (a message).

2. The workflow process sends the task request to a workflow operation.

3. The workflow operation submits the task request to the Workflow Engine.

4. The Workflow Engine instantiates the appropriate task response object. This object includes the fields from the original
task request, and oversees task distribution to some user.

5. Task distribution follows either the default strategy or a custom distribution strategy. See Task Distribution Options,
later in this topic, for details.

6. Once the task is assigned and completed, the Workflow Engine returns the task response to the business process.

4                                                                                                                                                                 Defining Workflows

Overview of Workflow within Productions



1.6 Task Forms and Customization Options
The InterSystems User Portal (mentioned earlier) provides a Workflow Inbox for each user. When a user clicks a task, the
system displays a form that is specific to that task. You can customize this form, as follows:

• The form is generated from metadata, which may be contained within reusable template files or defined at runtime by
enterprise staff.

• The form is easily styled to fit within corporate standards.

• If the enterprise wishes to use in-house technologies to drive the user experience, workflow tasks can be connected to
such technologies in a variety of ways, via XML documents, web services, .NET, Java, or as relational structures.

1.7 Task Distribution Options
When a workflow operation receives a task request, it turns the request over to the InterSystems IRIS Workflow Engine
to distribute the task to one of the users defined for that role. The strategy used to distribute tasks can be the InterSystems
IRIS default, which works as follows:

• For each workflow user, there is a worklist that lists all the tasks currently assigned to or associated with that user.
Only active tasks for the specific user appear on the worklist. Once the task is completed, discarded, cancelled, or
reassigned to another user, it disappears from the list.

• The Workflow Engine posts any task requests that it receives on the worklist for each user in the workflow role to
which the request was sent. When a task is first posted, it has the status Unassigned. The task is said to be associated
with all these users. While it remains Unassigned, each of the associated users sees the task on his or her worklist.

• It is possible for a user to acquire ownership of a task through assignment by a supervisor, or by default, but in general
the user must accept the task to acquire ownership. Any user in the workflow role can accept any task on his or her
worklist, on a first-come, first-served basis, using the Workflow Inbox.

• Once a user has acquired ownership of a task, the task is said to be assigned to that user. The status of the task changes
from Unassigned to Assigned. The task remains in the Workflow Inbox for the user who accepted it, but disappears
from the Workflow Inboxes of the other users in that workflow role.

• A task request has a property that allows it to express a preference for a specific user. If that user is inactive or not
defined at the time the task request is received, the Workflow Engine returns an error to the workflow operation and
the task is not performed.

• A supervisor can reassign an active task from the workflow pages of Management Portal. In this case, the task leaves
the worklist for the previously assigned user and appears on the worklist for the newly assigned user.

• The assigned user may relinquish a task without completing it. If a user relinquishes a task unfinished, the task reverts
to its original Unassigned status, and the Workflow Engine posts it to the Workflow Inbox for each associated user
(each user in the workflow role).

• If a supervisor deletes a user definition or marks a user inactive while workflow is proceeding, the result is the same
as if that user suddenly relinquished all of his or her tasks. That is, each task that was on the user’s worklist acquires
an Unassigned status, and the Workflow Engine posts each task on the Workflow Inbox of every user in the workflow
role to which the task was originally sent.

• If a supervisor deletes a workflow role definition while workflow is proceeding, outstanding requests to that role are
allowed to complete, but future requests to that role cause an error, due to a mismatch between the workflow operation
name and the (nonexistent) role definition name.

Defining Workflows                                                                                                                                                                 5

Task Forms and Customization Options



• Each task request specifies one or more actions. Each action is a string that the associated task form displays as a button:
Accept, Relinquish, and so on. The assigned user can click one of these buttons to complete the task and send a response
back to the business process.

• When the assigned user clicks an action button for a task, the Workflow Engine fills in the various properties of the
task response object—including the name of the user-selected action—and returns this response to the workflow
operation, which relays it to the original requesting business process. The Workflow Engine marks the task Completed
and removes it from all worklists.

• After completion, a full record of any task remains in the message warehouse for the production, and are visible from
the Management Portal. Task details relating directly to workflow are visible from the Workflow Management Portal.
This is true even if the message was not properly completed, but was discarded or cancelled, or encountered an error.

The strategy used to distribute tasks is embedded in the OnNewTask() method of the task response class
EnsLib.Workflow.TaskResponse. You can subclass this class and the methods to change the logic, if desired. For instructions,
see Including Custom Features in a Workflow.

1.7.1 Custom Task Distribution

Workflow designers can make use of a wide variety of task distribution strategies within a workflow definition. The following
strategies are built into the InterSystems IRIS Workflow Engine:

• First come, first served (FCFS)

• Assignment by job title

• Assignment by name

• Assignment by a user-defined ranking

• Assignment by current user workload

• ...and more.

It is also possible to create new, custom task distribution strategies.

6                                                                                                                                                                 Defining Workflows

Overview of Workflow within Productions



2
Developing a Workflow

This topic describes how to develop a workflow and add it to a production. Optional customizations are described separately.

Exploring the Workflow Sample presents a simple example.

2.1 Overview
The following diagram shows workflow elements in a production:

Defining Workflows                                                                                                                                                                 7



These components are as follows, from left to right:

• A message request class carries the specific details of the workflow from its originator elsewhere in the production.
This is a standard message request class that you define, that is, a subclass of Ens.Request or some (less often) another
persistent class.

• A message response class carries the specific details of the workflow back to the originator, once the task has been
completed or otherwise handled. This is a standard message response class that you define, that is, a subclass of
Ens.Response or some (less often) another persistent class.

• A workflow process that serves as the coordinator of the communications. To create this:

1. Use the Business Process Designer and create a business process based on the class Ens.BusinessProcess.BPL. It
must contain the logic to receive the inbound messages and to call (asychronously) to business operations in the
same production, as needed.

2. Add the business process to the production as usual.

• A special message class EnsLib.Workflow.TaskRequest carries requests from the business process.

Likewise, the special message class EnsLib.Workflow.TaskResponse carries replies from the Workflow Engine.

You can create and use subclasses, but that is not generally necessary, because these classes are designed to carry
information in a flexible manner.

• Each workflow operation receives task requests and communicates with the Workflow Engine, which makes tasks
visible to specific users. In particular, each workflow operation has exactly one associated workflow role. The workflow
operation makes tasks visible to all users who belong to that workflow role; other users do not see these tasks.

To create each of these, you add a business operation based on EnsLib.Workflow.Operation. Little configuration is
needed.

Or you can subclass EnsLib.Workflow.Operation and implement its callback methods to interact with the Workflow
Engine in a custom way.

2.2 Designing the Business Process
The first step is to design the business process class and make some key decisions.

1. Identify where calls to workflow (human processes) will occur.

2. Each of these calls is a task; name each task.

3. Name each workflow role to which a task is sent.

4. Decide on a task distribution strategy for each task (perhaps the default strategy).

5. Create any message types needed to invoke the business process.

6. Create the business process class as described in the next section.

2.3 Creating the Workflow Process
To create the workflow process, use the Business Process Designer.

For each task in the business process:

8                                                                                                                                                                 Defining Workflows

Developing a Workflow



• Provide a <call> to invoke the workflow operation asynchronously.

• In the <call> identify the destination workflow operation by name. Each workflow operation is associated with exactly
one workflow role, which in turn corresponds to a configurable set of users.

• In the <call> use the correct task request object (EnsLib.Workflow.TaskRequest or a subclass) and sets its properties.

The <call> should also examine the task response object (EnsLib.Workflow.TaskResponse or a subclass), and use it to
set the BPL context variable for use in later processing.

• Provide a <sync> to catch the results of the asynchronous <call>.

For an example, see Exploring the Workflow Sample.

2.3.1 Defining the Task Request

Each <call> in the process should use EnsLib.Workflow.TaskRequest or a subclass as its message class. To define the request,
the <call> should set properties of the callrequest variable.

The following table lists the available properties in EnsLib.Workflow.TaskRequest. These properties are all optional, but of
course your business process must send all the information that the Workflow Engine needs.

PurposeProperty

Optional. Comma-delimited list of Actions defined for this task. For example:
"Approve,Reject,NeedMoreInfo" These determine the action buttons displayed when a user
reviews a task. The selected user action is returned as part of the task response.

%Actions

Optional. Command string to be passed to the Workflow Engine.You can use this to provide
additional data-driven custom behavior for tasks.

%Command

Optional. Name of an InterSystems IRIS® web page that provides the HTML form template
for this task.

%FormTemplate

Optional. Comma-separated list of fields that should appear in the form associated with this
task.

%FormFields

Optional. Collection of values to display within the form displayed for this task.%FormValues

Optional. Detailed message body for this task. This is displayed when the user reviews a
task.

%Message

Optional. Priority of the requested task: 1 is highest. This value is used to sort items in the
user worklist.

%Priority

Optional. Short summary of this task. This is displayed in the User worklist.%Subject

Optional. Name of response class that is used to manage the distribution of this task. It is
also used as the response type for this request. The class named in %TaskHandler must be
a subclass of EnsLib.Workflow.TaskResponse.

%TaskHandler

Optional. The name of the title within the given that is preferred for handling this task.
Whether or not this user actually is assigned to the task depends on how the distribution
strategy used for this task.

%Title

Optional. The name of the user that is preferred for handling this task. Whether or not this
user actually is assigned to the task depends on how the distribution strategy used for this
task.

%UserName

Defining Workflows                                                                                                                                                                 9

Creating the Workflow Process



2.3.2 Using the Task Response

As noted earlier, the <call> for a given task should also examine the task response object (EnsLib.Workflow.TaskResponse

or a subclass), and use it to set the BPL context variable for use in later processing. EnsLib.Workflow.TaskResponse defines
the following properties:

PurposeProperty

Optional. Once the task is complete, this property will contain the value of the action that
the user selected to complete the task. See %Actions.

%Action

Optional. A comma-delimited list of actions defined for this task. For example:
"Approve,Reject,NeedMoreInfo" These determine the action buttons displayed when a user
reviews a task. The selected user action is returned in the %Action property of the task
response.

%Actions

Optional. Comma-separated list of fields that should appear in the form associated with this
task. This is a copy of the value provided from the initial task request.

%FormFields

Optional. Name of the CSP page that provides the form template for this task.This is a copy
of the value provided from the initial task request.

%FormTemplate

Optional. A collection of values from the form associated with this task (if any).%FormValues

Optional. Detailed message body for this task. This is a copy of the value provided from the
initial task request.

%Message

Optional.The priority of the requested task: 1 is highest.This is a copy of the value provided
from the initial task request.

%Priority

Optional. The name of the role that handled this task. This is a copy of the value provided
from the initial task request.

%RoleName

Optional. The external status of this task. Used to query the current status of a task.%Status

Optional. Short summary of this task. This is a copy of the value provided from the initial
task request.

%Subject

Optional. The internal status of this task (Assigned, Unassigned, Cancelled, Discarded,
Deleted). Used by the Workflow Engine to manage the task. Custom code should not modify
the value of this property.

%TaskStatus

Optional. The name of the user that last handled this task. This value is set when the task
is completed.

%UserName

Optional. The ranking associated with the user that last handled this task (if the user has a
role-assigned ranking).

%UserRanking

Optional. The title associated with the user that last handled this task (if the user has a
role-assigned title).

%UserTitle

2.3.3 Adding the Workflow Process to the Production

To add the workflow process to a production, do the following:

1. Display the production in the Interoperability > Configure > Production page of the Management Portal.

2. In the Processes column, select the Add button (a plus sign).

InterSystems IRIS displays a dialog box.

10                                                                                                                                                               Defining Workflows

Developing a Workflow



3. For Business Process Class, select the class you created in the Business Process Editor.

4. For Process Name, type a suitable name.

5. Click OK.

For information on other settings, see Configuring Productions.

2.4 Adding the Workflow Operations to a Production
To add a workflow operation to a production, do the following:

1. Display the production in the Interoperability > Configure > Production page of the Management Portal.

2. In the Operations column, select the Add button (a plus sign).

InterSystems IRIS displays a dialog box.

3. Select the Workflow tab.

4. Select the EnsLib.Workflow.Operation class from the Class Name list.

Or select your custom subclass.

5. For Operation Name, type the name of this business operation. The name must match the target attribute in the corre-
sponding <call> from the BPL business process.

6. Optionally select Auto-Create Role. If enabled, this option causes InterSystems IRIS to automatically create a workflow
role whose name is identical to Operation Name.

You can enable this setting later, if wanted.

7. Select OK.

For information on other settings, see Configuring Productions.

2.5 Next Steps
• Associate workflow users with the appropriate workflow roles. See Managing Workflow Roles, Users, and Tasks.

• Test the workflow as described in Testing a Workflow.

• Optionally add a dashboard so supervisors can monitor workflow progress. InterSystems IRIS automatically collects
certain workflow metrics. The general development and configuration tasks are as usual:

1. Create one or more business metric classes. See Defining Business Metrics.

Each class can invoke methods of the class EnsLib.Workflow.Engine, which provides methods that report statistics
about workflow roles.

For quick reference, these are listed in Available Workflow Metrics.

2. When configuring the production, add each business metric as a business service.

3. Define dashboards. See Defining Dashboards in Configuring Productions.

Defining Workflows                                                                                                                                                               11

Adding the Workflow Operations to a Production





3
Including Custom Features in a Workflow

This topic describes how to include custom features in a workflow.

3.1 Extending the Standard Task Form
Each task has an associated task form that displays (at a minimum) a standard set of items, as follows:

• The read-only TaskId, Owner, %Subject and %Message properties of the task

• The Accept button (when the task is unassigned)

• The Relinquish and Save buttons (when the task is assigned)

To add additional buttons (which are visible only when the task is assigned), provide a comma-separated list of button
names in the %Actions property of the task request.

To add additional editable values (which are visible only when the task is assigned), set one of the following properties in
the task request object:

• %FormFields—Provides a list of fields for the task form to display.

The task request and response objects have a %FormFields property. Upon making the call to a task request, set the
%FormFields value to a comma-delimited list of the fields that you want to display on the task form. For now, these
are all assumed to be simple string values (if you need more control, use a form template).

• %FormTemplate—Identifies a file that defines the HTML form template to be displayed.

The task request and response objects have a %FormTemplate property. Upon making the call to a task request, set the
%FormTemplate value to the name of a CSP file that defines a form to be displayed. This CSP page should only define
the form and contents: it should not have HTML, HEAD, or BODY sections. The CSP page can overload certain
JavaScript Event methods. When this form is processed, the variable %task is the current task response object.

If you use %FormFields or %FormTemplate, you can specify default values to be shown in the fields. To do so, specify the
%FormValues property of the task request object. This property is an array of strings, subscripted by field name. Use the
array interface to add values to the property.

When the Workflow Engine processes a task, it makes a copy of all the form-related properties from the task request into
the task response, including the array collection %FormValues. As fields in the form acquire new values, the Workflow
Engine keeps updating the values in the %FormValues collection of the task response object.

Forms always display the current values in the %FormValues collection. This allows dynamic operation of forms within a
specific task: by modifying the values of the form-related properties, the task response callback methods can influence how

Defining Workflows                                                                                                                                                               13



form processing takes place. The %FormValues collection of the task response object is available to the original caller when
the final task response is sent back to it.

3.2 Using a Custom Task Form
It is possible to display a custom form to a user for a workflow task. The steps are as follows:

1. Create an HTML template file that defines the contents of the customized form.

2. Set the %FormTemplate property of the task request object to the name of this CSP page. For example, the <call>
statement sending the task request to the workflow operation would contain:

<assign property='callrequest.%FormTemplate'
        value='"MyForm.csp"'
        action='set' />

3. Set the %FormFields property of the task request object to a comma-delimited list of field names. This is the list of
fields that will be defined for the form. For example:

<assign property='callrequest.%FormFields'
        value='"Details,CustomerName"'
        action='set' />

4. If you wish to provide initial values for the form fields, set the corresponding element (that is,. the array key is the
name of the field) of the %FormValues collection property of the task request object to the desired value. For example:

<assign property='callrequest.%FormValues'
        value='request.CustomerName'
        action='set'
        key='"CustomerName"' />

As described in previous sections, whenever a workflow user reviews a task that he or she currently owns, the system displays
a the associated task form. By default, this form is automatically generated using the fields defined by the values in the
%FormFields property of the task request object. The calling business process provides these values. However, there is a
way to use a custom-designed template instead of this generated form.

A workflow form template defines a block of HTML that is injected into the standard task form. This HTML block can
include any number of form fields; these fields will be automatically submitted and processed by the Workflow Engine
whenever a user performs an action on the workflow task. The HTML contained in a template file is not a complete HTML
document; it is simply the HTML needed to display the custom portion of the form. Specifically, the resulting HTML
generated by the task form looks like this:

<html>
  <body>
    <form>
      —TEMPLATE CONTENTS INJECTED HERE—
    </form>
  </body>
</html>

The following template defines an HTML table that displays two HTML input controls: a text box and a select (combobox).
The names of the controls correspond to the fields defined by the %FormFields property. This example also uses a server-

14                                                                                                                                                               Defining Workflows

Including Custom Features in a Workflow



side expression to get the initial value for the Details property. The %task variable is always pre-set to the current task
response object:

<!— workflow template —>
<table>
  <tr>
    <td>Details:</td>
    <td>
      <input type="text"
             name="Details"
             value="#(%task.%FormValues.GetAt("Details"))#">
    </td>
  </tr>
  <tr>
    <td>Company:</td>
    <td>
      <select name="CustomerName">
        <option value="ABC Corp">ABC Corp</option>
        <option value="XYZ Corp">XYZ Corp</option>
      </select>
    </td>
  </tr>
</table>

In addition to HTML, the workflow template file can contain the following, optional, JavaScript callback functions:

• onLoad()—called when the workflow form is loaded into the browser.

• onAction()—called when the user clicks on one of the action buttons displayed by the form.

To add these callbacks to a workflow template file, simply place the function definition within a <script> tag in the template
file; for example:

<script language="JavaScript">
        function onLoad(form)
        {
                // form is the workflow form object
                return true;
        }

        function onAction(form,action)
        {
                // form is the workflow form object
                // action is a string containing the user's action
                // returning false will cancel this action
                return true;
        }
        </script>

3.3 Customizing the Task Distribution Strategy
The task distribution strategy is specified in the task response class. To implement a custom task distribution strategy, do
the following:

• Create a subclass of EnsLib.Workflow.TaskResponse and override its OnNewTask() callback method (and possibly
other methods). The first subsection provides details on the options.

• Make sure to invoke the custom task response class. This is discussed in the second subsection.

3.3.1 Creating a Custom Task Response Class

When you create a subclass of EnsLib.Workflow.TaskResponse, you override its OnNewTask() callback method (and pos-
sibly other methods). The following is a list of the callback methods that you can override:

• OnAction()—Called when a user selects an action from the worklist form. Typically this marks the end of a task.

Defining Workflows                                                                                                                                                               15

Customizing the Task Distribution Strategy



• OnAssign()—Called when a user requests ownership of a task associated with it. Typically this method performs the
assignment.

• OnCancel()—Called when a task is cancelled, for example when it times out.

• OnFormSubmit()—Called when the task form associated with this task is submitted.

• OnNewTask()—Called when a new task is received by the Workflow Engine. Typically this method associates the
task with members of the current role.

• OnRelinquish()—Called when a user requests giving up ownership of a task associated with it. Typically this method
unassigns the task and then sends the task back to others in the role.

• OnRoleChange()—Called when a user or role definition associated with this task is changed, for example when the
list of users within a role changes.

EnsLib.Workflow.TaskResponse callback methods control the distribution of tasks by calling a number of API methods
defined in the Workflow Engine (EnsLib.Workflow.Engine).

The following is a list of the class methods in EnsLib.Workflow.Engine that you can use when you override the callbacks
listed previously.

1. AssignTask()—Assign a task to a specific user.

2. CompleteTask()—Mark a task as Completed and return the response to the caller.

3. FindLeastBusyUser()—Return the name of the “least busy” user. This is the user with the fewest assigned tasks in
the system.

4. SendTask()—Send a task to a specific user.

5. SendTaskToAll()—Send a task to all users in the current role.

6. SendTaskToTitle()—Send a task to one or more users with the given title in the current role.

7. SendTaskToTop()—Send a task to the top n users in the current role, according to their respective ranking in the role.

8. UnassignTask()—Remove task assignment.

For details on these methods, see the InterSystems Class Reference.

3.3.2 Invoking the Custom Task Response Class

A task request message has class parameter (RESPONSECLASSNAME) that specifies which response class to use. You
can override this by setting the %TaskHandler property of the request class.

This means that you have two ways to cause the task request to use the desired task response:

• Optionally create a subclass of EnsLib.Workflow.TaskRequest and override its RESPONSECLASSNAME parameter to
equal the name of your custom task response class. For example:

Class MyApp.MyWorkflowRequest Extends EnsLib.Workflow.TaskRequest
{

Parameter RESPONSECLASSNAME = "MyApp.MyWorkflowResponse";

}

Then use this message class in the appropriate parts of the workflow process.

• In the workflow process, when making the call to the workflow operation, set the value of the %TaskHandler property
of the request instance so that it gives the name of the desired task response class name. For example:

 set callrequest.%TaskHandler="MyApp.MyWorkflowResponse"

16                                                                                                                                                               Defining Workflows

Including Custom Features in a Workflow



4
Testing a Workflow

This topic discusses items relevant to testing your workflows.

4.1 Test Checklist
At a minimum, when you test the workflow, test these items:

• Test task distribution.

• Test task cancellation.

• Test task escalation.

• Test exception cases.

• Test timeout behavior.

• View dashboards (if any).

You can monitor the activity via the Management Portal as described in Managing Workflow Roles, Users, and Tasks.
You can also use the Visual Trace, as discussed next.

4.2 Viewing Workflow Activity in the Visual Trace
All the statistical, maintenance, and display features that InterSystems IRIS® supports for messages and business operations
also apply to workflow tasks and workflow roles, respectively. These features include the Message Viewer, Message Purge,
and the Visual Trace. For details, see Managing Productions.

Of particular interest, you can trace workflow task requests and responses with Visual Trace, as for other types of message.
For example:

Defining Workflows                                                                                                                                                               17



This example shows a session in which a task request was sent to the Demo-Development role and was addressed by a user
in that role. Then the workflow process (HelpDesk) sent another task request to the Demo-Testing role. A user in that role
addressed the request and the workflow process sent a response to the process EnsLib.Testing.Process.

For information on this example, see Exploring the Workflow Sample.

18                                                                                                                                                               Defining Workflows

Testing a Workflow



A
Exploring the Workflow Sample

This topic presents a workflow sample.

A.1 Overview of the Sample
The Demo.Workflow sample includes a business process called Demo.Workflow.HelpDesk. This accepts an incoming request
that contains the basic information required for a problem report; that is, the name of the sender and a description of the
problem. On receiving this request for action, HelpDesk begins a sequence of actions that continues until one of these actions
resolves the problem.

HelpDesk first sends the problem report, as a task, to the development group. When a member of this group reports that the
problem was solved, HelpDesk adds a note to the problem report and sends it, as a task, to the testing group. When a
member of this group reports that the repairs were satisfactory, HelpDesk sends a final response to its caller, with a flag
indicating that the reported problem was resolved.

A.2 Setup Tasks
To set up and work with this sample, do the following:

1. Create several users as described in Users.

2. Configure each of these users as a workflow user, as described in Managing Workflow Roles, Users, and Tasks.

3. When you start the production, InterSystems IRIS® creates two workflow roles: Demo-Development and Demo-
Testing. (It creates these roles because the Auto Create Role setting is enabled for the two workflow operations in the
production.)

4. Assign the workflow users to these workflow roles, as described in Managing Workflow Roles, Users, and Tasks.

Some users can be in both roles.

5. Use the Testing Service page to send a few messages to HelpDesk:

a. Select Interoperability > Test > Business Hosts.

b. For Target Type, click Business Process.

c. For Target Name, click HelpDesk.

d. Click Test.

Defining Workflows                                                                                                                                                               19



e. Type suitable values into the ReportedBy and Problem fields.

f. Click Invoke Testing Service.

Send several messages to make the scenario interesting.

6. Log in to the InterSystems User Portal as each of the users and use the Workflow Inbox to manage the tasks.

First log in as a user in the Demo-Development role and mark some tasks as complete; this generates additional testing
tasks. Then log in as a user in the Demo-Testing role and mark the testing tasks complete.

Tip: You might need to configure the namespace's default web application so that it accepts password authentication
but does not accept unauthenticated access. For details, see Applications.

A.3 Sample Request Message
The following request message class defines the request message that comes into the HelpDesk sample business process.
It represents a technical problem submitted by a customer. The request message class definition is as follows:

Class Definition

Class Demo.Workflow.ProblemReport
{
/// Name of customer reporting the problem.
Property ReportedBy As %String(MAXLEN = 60);

/// Description of the problem.
Property Problem As %String(MAXLEN = 200);
}

A.4 Sample Business Process Class
On receiving a Demo.Workflow.ProblemReport request message, the sample BPL business process Demo.Workflow.HelpDesk

begins a sequence of actions that continues until one of these actions resolves the problem.

The HelpDesk business process consists of a while loop, during which a problem report is sent, first to the development
group for a problem to be fixed, and next to the testing group for the fix to be tested. Upon completion of this sequence,
the while condition Resolved is satisfied, and the business process ends, returning its final response to its caller.

When viewed in the Business Process Designer, the HelpDesk business process looks like this:

20                                                                                                                                                               Defining Workflows

Exploring the Workflow Sample



The top area of the expanded while loop appears as follows:

The bottom section is as follows:

Defining Workflows                                                                                                                                                               21

Sample Business Process Class



The code within the while loop makes two calls to workflow, using the built-in task request and task response classes for
each call. The difference between the two <call> elements is easier to see in the BPL source code:

Class Definition

Class Demo.Workflow.HelpDesk Extends Ens.BusinessProcessBPL 
{

XData BPL
{
<process request='Demo.Workflow.ProblemReport'
         response='Ens.Response' >
  <context>
    <property name='Resolved' type='%Boolean' initialexpression='0' />
    <property name='DevelopmentAction' type='%String' />
    <property name='TestingAction' type='%String' />
  </context>

  <sequence>
    <while name='while'
           condition='context.Resolved=0' >
      <annotation>
        Work on this problem until it is resolved.
        (Click on the loop icon to see details of this while loop.)
      </annotation>

      <call name='Notify Development'
            target='Demo-Development'
            async='1' >

22                                                                                                                                                               Defining Workflows

Exploring the Workflow Sample



        <annotation>
          Send the problem report to Development for review.
        </annotation>
        <request type='EnsLib.Workflow.TaskRequest' >
          <assign property='callrequest.%Actions'
                  value='"Corrected,Ignored"'
                  action='set' />
          <assign property='callrequest.%Subject'
                  value='"Problem reported by "_request.ReportedBy'
                  action='set' />
          <assign property='callrequest.%Message'
                  value='request.Problem'
                  action='set' />
          <assign property='callrequest.%FormFields'
                  value='"Comments"'
                  action='set' />
        </request>
        <response type='EnsLib.Workflow.TaskResponse' >
          <assign property='context.DevelopmentAction'
                  value='callresponse.%Action'
                  action='set' />
        </response>
      </call>

      <sync name='WaitForDevelopment' calls='Notify Development' type='all' />

      <if name='Fixed?' condition='context.DevelopmentAction="Corrected"' >
        <annotation>
          If Development fixed the problem, test it.
        </annotation>

        <true>
          <call name='Notify Testing'
                target='Demo-Testing'
                async='1' >
            <annotation>
              Send the problem to Testing for confirmation.
            </annotation>
            <request type='EnsLib.Workflow.TaskRequest' >
              <assign property='callrequest.%Actions'
                      value='"Corrected,Retest"'
                      action='set' />
              <assign property='callrequest.%Subject'
                      value='"Test this problem from "_request.ReportedBy'
                      action='set' />
              <assign property='callrequest.%Message'
                      value='request.Problem'
                      action='set' />
            </request>
            <response type='EnsLib.Workflow.TaskResponse' >
              <assign property='context.TestingAction'
                      value='callresponse.%Action'
                      action='set' />
            </response>
          </call>

          <sync name='WaitForTesting' calls='Notify Testing' type='all' />

          <if name='Corrected?' condition='context.TestingAction="Corrected"' >
            <annotation>Has the problem been corrected?</annotation>
            <true>
              <assign name='Resolved'
                      property='context.Resolved'
                      value='1'
                      action='set' />
            </true>
          </if>
        </true>

        <false>
          <assign name='Not a problem'
                  property='context.Resolved'
                  value='1'
                  action='set' />
        </false>

      </if>
    </while>
  </sequence>
</process>
}
}

Defining Workflows                                                                                                                                                               23

Sample Business Process Class



A.5 Sample Control Flow
When the production is running, the BPL business process example Demo.Workflow.HelpDesk works as follows. Try com-
paring the steps in this control flow with the corresponding statements in the BPL source code, shown in the previous section:

1. A message of type Demo.Workflow.ProblemReport tells the business process who reported the problem, and provides
a brief text string to describes the problem. The values for both these properties are provided by the business host that
invokes this business process.

2. In preparing the <call> to the Demo-Development workflow operation, the Demo.Workflow.HelpDesk business process
uses the incoming request properties ReportedBy and Problem to fill in the task request fields %Subject and %Message,
respectively. Two other built-in task properties come into play as well: The call creates a list of possible user actions
by assigning the %Actions field a value of Corrected,Ignored. The call also prepares a form field called Comments
in which the person reviewing this task can enter data.

3. The business process makes the <call> to Demo-Development asynchronously, and provides a <sync> element to
catch the task response.

4. The Workflow Engine associates the task with each workflow user in the Demo-Development workflow role.

5. One of the workflow users accepts the task. The Workflow Engine assigns the task to that user.

6. The assigned user edits the Comments field and clicks one of the actions Corrected or Ignored.

7. The task response returns. Its %Action field contains the value of the user action that completed the task (Corrected
or Ignored). The business process saves this value into a execution context property called DevelopmentAction.

8. The business process uses an <if> element to test the DevelopmentAction value. The results are as follows:

• When DevelopmentAction is Corrected, this value signals to the help desk business process that it should execute
the <true> portion of its <if> element. The <true> element issues a <call> to the Demo-Testing workflow role as
described in the next step.

• When DevelopmentAction is not Corrected, this value signals to the help desk business process that it should
execute the <false> portion of its <if> element, near the end of the BPL source code. Control reaches this statement
when the DevelopmentAction is Ignored by the user. The business process returns its final response to its caller,
commenting that the reported problem is Not a problem and setting the Boolean response value Resolved to
1 (true).

9. In preparing the <call> to the Demo-Testing workflow operation, the business process uses the original, incoming
request properties ReportedBy and Problem to fill in the task request fields %Subject and %Message, respectively.
However, unlike the previous <call>, the <call> to Demo-Testing has no form fields defined. Also, the list of possible
user actions is different: %Actions is different: This <call> assigns the %Actions field a value of Corrected,Retest.

10. The business process makes the <call> to Demo-Testing asynchronously, and provides a <sync> element to catch the
task response.

11. The Workflow Engine associates the task with each workflow user in the Demo-Testing workflow role.

12. One of the workflow users accepts the task. The Workflow Engine assigns the task to that user.

13. The assigned user clicks either Corrected or Retest.

14. The task response returns. Its %Action field contains the value of the user action that completed the task (Corrected
or Retest). The business process saves this value into a execution context property called TestingAction.

15. The business process uses an <if> element to test the TestingAction value. The results are as follows:

24                                                                                                                                                               Defining Workflows

Exploring the Workflow Sample



• When TestingAction is Corrected, the business process returns its final response to its caller, commenting that
the reported problem is Resolved and setting the Boolean response value Resolved to 1 (true).

• When TestingAction is not Corrected, the Boolean response value Resolved retains its initial value of 0 (false).
The business process enters the top of the <while> loop again.

A.6 Dashboards and Metrics
The following sample code from the business metric class Demo.Workflow.WFMetric calls three of the available statistical
methods and assigns their return values to metric properties. Available Workflow Metrics describes the available methods.

Class Definition

/// Sample business metric class for Workflow demo
Class Demo.Workflow.WFMetric Extends Ens.BusinessMetric
{

/// Active Tasks
Property ActiveTasks As Ens.DataType.Metric(AUTOHISTORY = 10, RANGELOWER = 0,
                                     RANGEUPPER = 50, UNITS = "Tasks")
                                     [ MultiDimensional ];

/// Active Load
Property Load As Ens.DataType.Metric(AUTOHISTORY = 10, RANGELOWER = 0,
                                     RANGEUPPER = 100, THRESHOLDUPPER = 90,
                                     UNITS = "%") [ MultiDimensional ];

/// Completed Tasks (since previous day)
Property CompletedTasks As Ens.DataType.Metric(AUTOHISTORY = 10, RANGELOWER = 0,
                                     RANGEUPPER = 100, UNITS = "Tasks")
                                     [ MultiDimensional ];

/// Calculate and update the set of metrics for this class
Method OnCalculateMetrics() As %Status
{
  // set the values of our metrics
  // %Instance is the current instance (RoleName in this case)
  Set tRole = ..%Instance

  Set ..ActiveTasks = ##class(EnsLib.Workflow.Engine).BamActiveTasks(tRole)
  Set ..Load = ##class(EnsLib.Workflow.Engine).BamActiveLoad(tRole)

  // Get task since start of previous day
  Set tStart = $ZDT($H-1,3)

  Set ..CompletedTasks =
      ##class(EnsLib.Workflow.Engine).BamCompletedTasks(tRole,tStart)

  Quit $$$OK
}

/// Set of instances for this metric class
/// There is one instance for every defined role.
Query MetricInstances() As %SQLQuery
{
  SELECT Name FROM EnsLib_Workflow.RoleDefinition
}

}

For information about the ObjectScript functions $ZDT ($ZDATETIME) and $H ($HOROLOG) used here, see the
ObjectScript Reference.

Defining Workflows                                                                                                                                                               25

Dashboards and Metrics





B
Available Workflow Metrics

The EnsLib.Workflow.Engine class provides methods that reporting statistics about workflow roles.

You can use these when you define business metrics, so that workflow progress can be tracked and analyzed by users. (For
detailed instructions, see Defining Business Metrics. Also see Exploring the Workflow Sample, which presents an example.)

These methods are as follows:

BamActiveTasks()

ClassMethod BamActiveTasks(pRole As %String) As %Integer

Returns the number of active tasks for a given workflow role. The input argument pRole is the configured name
of a workflow role. This method calculates the number of active tasks by getting the list of tasks assigned to this
role and determining which of these tasks are not yet complete.

BamActiveLoad()

ClassMethod BamActiveLoad(pRole As %String) As %Integer

Returns a value indicating the active load for a given workflow role. The input argument pRole is the configured
name of a workflow role. This method calculates the active load by getting the current number of active tasks for
the workflow role, comparing it with the Capacity property from the workflow role definition, and presenting the
result as a percentage of total capacity for the workflow role. The formula is:

(ActiveTasks/Capacity)*100

BamCompletedTasks()

ClassMethod BamCompletedTasks(pRole As %String,
                              pStart As %TimeStamp = "",
                              pEnd As %TimeStamp = "") As %Integer

Returns the number of completed tasks for a given workflow role, where:

• pRole is the configured name of a workflow role.

• pStart and pEnd are in %TimeStamp format: yyyy-mm-dd

This method calculates the number of completed tasks by getting the list of tasks assigned to this role and deter-
mining which of these tasks has a status of Complete. BamCompletedTasks() considers only those tasks that
started within the time period specified by pStart and pEnd. The task may have completed after the pEnd time.

Defining Workflows                                                                                                                                                               27



BamTasksWithStatus()

ClassMethod BamTasksWithStatus(pRole As %String,
                               pStatus As %String,
                               pStart As %TimeStamp = "",
                               pEnd As %TimeStamp = "") As %Integer

Returns the number of tasks that have a particular status for a given workflow role, where:

• pRole is the configured name of a workflow role.

• pStatus is one of the following strings indicating the status of the role:

– Unassigned

– Assigned

– Discarded

– Cancelled

– Completed

• pStart and pEnd are in %TimeStamp format: yyyy-mm-dd

This method gets the list of tasks assigned to the role and determines how many of them currently have the given
status. BamTasksWithStatus() considers only those tasks that started within the time period specified by pStart
and pEnd. The task may have ended (for whatever reason) after the pEnd time.

If the status you are interested in is Completed, it is simpler to use BamCompletedTasks().

BamAvgTaskTime()

ClassMethod BamAvgTaskTime(pRole As %String,
                           pStart As %TimeStamp = "",
                           pEnd As %TimeStamp = "") As %Integer

Returns the average duration (in seconds) of completed tasks for a given workflow role, where:

• pRole is the configured name of a workflow role.

• pStart and pEnd are in %TimeStamp format: yyyy-mm-dd

This method considers only those tasks that started within the time period specified by pStart and pEnd. The task
may have completed after the pEnd time.

BamMinTaskTime()

ClassMethod BamMinTaskTime(pRole As %String,
                           pStart As %TimeStamp = "",
                           pEnd As %TimeStamp = "") As %Integer

Returns the minimum duration (in seconds) of completed tasks for a given workflow role, where:

• pRole is the configured name of a workflow role.

• pStart and pEnd are in %TimeStamp format: yyyy-mm-dd

This method considers only those tasks that started within the time period specified by pStart and pEnd. The task
may have completed after the pEnd time.

28                                                                                                                                                               Defining Workflows

Available Workflow Metrics



BamMaxTaskTime()

ClassMethod BamMaxTaskTime(pRole As %String,
                           pStart As %TimeStamp = "",
                           pEnd As %TimeStamp = "") As %Integer

Returns the maximum duration (in seconds) of completed tasks for a given workflow role, where:

• pRole is the configured name of a workflow role.

• pStart and pEnd are in %TimeStamp format: yyyy-mm-dd

This method considers only those tasks that started within the time period specified by pStart and pEnd. The task
may have completed after the pEnd time.

Defining Workflows                                                                                                                                                               29

Available Workflow Metrics




	Table of Contents
	1 Overview of Workflow within Productions
	1.1 Introduction
	1.1.1 Integration into InterSystems IRIS
	1.1.2 Support for Composite Applications
	1.1.3 Productivity Features

	1.2 Workflow Components in a Production
	1.3 Workflow Roles and Users
	1.4 User Interfaces for Workflow
	1.4.1 Implementers and Supervisors
	1.4.2 End Users

	1.5 Life Cycle of a Task
	1.6 Task Forms and Customization Options
	1.7 Task Distribution Options
	1.7.1 Custom Task Distribution


	2 Developing a Workflow
	2.1 Overview
	2.2 Designing the Business Process
	2.3 Creating the Workflow Process
	2.3.1 Defining the Task Request
	2.3.2 Using the Task Response
	2.3.3 Adding the Workflow Process to the Production

	2.4 Adding the Workflow Operations to a Production
	2.5 Next Steps

	3 Including Custom Features in a Workflow
	3.1 Extending the Standard Task Form
	3.2 Using a Custom Task Form
	3.3 Customizing the Task Distribution Strategy
	3.3.1 Creating a Custom Task Response Class
	3.3.2 Invoking the Custom Task Response Class


	4 Testing a Workflow
	4.1 Test Checklist
	4.2 Viewing Workflow Activity in the Visual Trace

	Appendix A: Exploring the Workflow Sample
	A.1 Overview of the Sample
	A.2 Setup Tasks
	A.3 Sample Request Message
	A.4 Sample Business Process Class
	A.5 Sample Control Flow
	A.6 Dashboards and Metrics

	Appendix B: Available Workflow Metrics
	Index

