
Using REST Services and
Operations in Productions

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using REST Services and Operations in Productions
InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Creating REST Services in Productions ... 1

2 Creating REST Operations in Productions .. 3
2.1 Basics ... 3
2.2 Example .. 4
2.3 Variation: Posting JSON Data .. 5

Using REST Services and Operations in Productions iii

1
Creating REST Services in Productions

This page describes briefly how to create a Business Service that is also a REST service. This REST service will be able
to receive REST requests and pass them to a Business Process or Business Operation elsewhere in the production.

The approach varies by your needs. If you want to:

• Parse and process the request in the production—use a subclass of %CSP.REST and call the
Ens.Director.CreateBusinessService() method to instantiate the class as a business service. This service uses the
Web port. For details on implementing a subclass of %CSP.REST, see Creating REST Services.

• Pass through a REST URL to an external server with minimal changes—use the pass-through REST service,
EnsLib.REST.GenericService. For details on using the pass-through REST service, see the sections on pass-through
business services in Configuring ESB Services and Operations and Pass-through Service and Operation Walkthrough.

For details on implementing a subclass of %CSP.REST, see Creating REST Services.

Note: InterSystems IRIS provides a built-in business service, EnsLib.REST.Service, that can be used instead of subclassing
%CSP.REST. Because this business service works with the HTTP/REST inbound adapter, the dispatch methods
receive additional arguments containing the input and output streams that the HTTP Adapter relies on. Classes
receiving forwarded <Map> requests should extend %CSP.REST and not EnsLib.REST.Service.

Using REST Services and Operations in Productions 1

2
Creating REST Operations in Productions

This page describes briefly how to create a REST operation: a Business Operation that invokes an external REST service.

2.1 Basics
1. Define the REST operation class. Create a subclass of EnsLib.REST.Operation, which uses the InterSystems IRIS®

outbound HTTP adapter, described in Using the HTTP Outbound Adapter.

2. Within your class, define the behavior of the business operation, as described generally in Defining Business Operations.
Because you want this business operation to invoke an external REST service, invoke one or more of the methods of
the HTTP adapter, depending on which HTTP operation you want to use:

• GetURL()—uses the HTTP GET operation.

• PostURL()—uses the HTTP POST operation.

• PutURL()—uses the HTTP PUT operation.

• DeleteURL()—uses the HTTP DELETE operation.

• SendFormDataArray()—allows you to specify the HTTP operation as a parameter.

Note that these operations all operate relative to the base URL that’s specified by the production configuration.

3. Add the business operation to the production and configure it following the normal practice. Now you can specify the
location of the external REST service. For example, to define a REST operation that calls a weather service, you could
configure the operation as follows:

Using REST Services and Operations in Productions 3

If you do not have a business process running, you can run and test this and other operations in Interoperability > Configure

> Production page by selecting your operation and then selecting Test on the Actions tab.

2.2 Example
For example, the following extension of EnsLib.REST.Operation calls the weather REST service and provides a city name
as a parameter:

Class Definition

Class Test.REST.WeatherOperation Extends EnsLib.REST.Operation
{

Parameter INVOCATION = "Queue";

Method getWeather(
 pRequest As Test.REST.WeatherRequest,
 Output pResponse As Test.REST.WeatherResponse) As %Status
{

 try {
 // Prepare and log the call
 // Append the city to the URL configured for adapter
 Set tURL=..Adapter.URL_"?q="_pRequest.City_"&units=imperial"

 // Execute the call
 Set tSC=..Adapter.GetURL(tURL,.tHttpResponse)

 // Return the response
 If $$$ISERR(tSC)&&$IsObject(tHttpResponse)&&$IsObject(tHttpResponse.Data)&&tHttpResponse.Data.Size
 {
 Set tSC=$$$ERROR($$$EnsErrGeneral,$$$StatusDisplayString(tSC)_":"_tHttpResponse.Data.Read())
 }
 Quit:$$$ISERR(tSC)
 If $IsObject(tHttpResponse) {
 // Instantiate the response object
 set pResponse = ##class(Test.REST.WeatherResponse).%New()
 // Convert JSON into a Proxy Object
 set tSC = ..JSONStreamToObject(tHttpResponse.Data, .tProxy)
 if (tSC){
 // Set response properties from the Proxy Object
 set pResponse.Temperature = tProxy.main.temp_"F"
 set pResponse.Humidity = tProxy.main.humidity_"%"
 set pResponse.MaxTemp = tProxy.main."temp_max"_"F"
 set pResponse.MinTemp = tProxy.main."temp_min"_"F"
 set pResponse.Pressure = tProxy.main.pressure_" mbar"

4 Using REST Services and Operations in Productions

Creating REST Operations in Productions

 set pResponse.WindSpeed = tProxy.wind.speed_" MPH"
 set pResponse.WindDirection = tProxy.wind.deg_" degrees"
 // Convert from POSIX time
 set pResponse.Sunrise = $ZT($PIECE($ZDTH(tProxy.sys.sunrise, -2),",",2),3)
 set pResponse.Sunset = $ZT($PIECE($ZDTH(tProxy.sys.sunset, -2),",",2),3)
 }
 }
 }catch{
 Set tSC=$$$SystemError
 }
 Quit tSC
}

XData MessageMap
{

<MapItems>
 <MapItem MessageType="Test.REST.WeatherRequest">
 <Method>getWeather</Method>
 </MapItem>
</MapItems>
}

}

The message sent to the operation specifies the city:

Class Definition

Class Test.REST.WeatherRequest Extends (%Persistent, Ens.Util.MessageBodyMethods)
{
 Property City As %String;
}

This operation calls the JSONStreamToObject() method and returns an InterSystems IRIS object that makes the elements
of the JSON accessible. The message returned by this sample returns the following properties taken from the JSON stream:

Class Definition

Class Test.REST.WeatherResponse Extends (%Persistent, Ens.Util.MessageBodyMethods)
{
 Property Temperature As %String;
 Property MinTemp As %String;
 Property MaxTemp As %String;
 Property Pressure As %String;
 Property Humidity As %String;
 Property WindSpeed As %String;
 Property WindDirection As %String;
 Property Sunrise As %String;
 Property Sunset As %String;
 }

2.3 Variation: Posting JSON Data
If you need the REST operation to post JSON data, some adaptations are needed.

1. The HTTP adapter needs to specify the HTTP ContentType header appropriately. This means that you will need to
create your own HTTP adapter class as follows:

Using REST Services and Operations in Productions 5

Variation: Posting JSON Data

Class Definition

Class My.REST.Client.HTTPOutboundAdapter Extends EnsLib.HTTP.OutboundAdapter
{
/// Send a POST to the configured Server, Port and URL, sending form data to the named form variables.
Method Post(Output pHttpResponse As %Net.HttpResponse, pFormVarNames As %String, pData...) As
%Status {
 quit ..SendFormDataArray(.pHttpResponse, "POST", ..GetRequest(), .pFormVarNames, .pData)
}

ClassMethod GetRequest() As %Net.HttpRequest
{
 set request = ##class(%Net.HttpRequest).%New()
 set request.ContentType = "application/json"
 quit request
}

}

2. Create a custom business operation class that uses your new adapter class.

3. Create a JSON-formatted string:

a. Create an instance of %DynamicObject.

b. Set properties of that object.

c. Use the %ToJSON() method to serialize the object.

For example:

ObjectScript

 //Use a %Library.DynamicObject to prepare the REST POST request
 Set tRequest = ##class(%DynamicObject).%New()
 Set tRequest.transactionid=pRequest.transactionid
 Set tRequest.participantid=pRequest.participantid
 Set tRequest.authstatus=pRequest.authstatus
 Set tRequest.reason=pRequest.reason
 set tPayload = tRequest.%ToJSON()

4. Post that string to the REST service by calling the Post method of the adapter. The following shows an example:

ObjectScript

 Set tSC=..Adapter.Post(.tHttpResponse, , tPayload)

Note that the second parameter is blank in this case.

6 Using REST Services and Operations in Productions

Creating REST Operations in Productions

	Table of Contents
	1 Creating REST Services in Productions
	2 Creating REST Operations in Productions
	2.1 Basics
	2.2 Example
	2.3 Variation: Posting JSON Data

