InterSystems-

IRIS Data Platform

Using the Windows Terminal

Version 2024.1
2024-07-02

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Windows Terminal

InterSystems IRIS Data Platform Version 2024.1 2024-07-02
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Basics of the Terminal APPIICALTIONcceiiiuiriiieieee e et sae e 1
1.1 Starting the Terminal APPIICALIONcciiiriieieieee e 1
1.2 Overview of Terminal Application FEATUIEScoeviiiiiieiiiere e 2
IR T O] o)V T I T o I8 = TS €1 o SR 2

1.3.1 Keyboard SNOMCULSccccvieieieiirierie et csie ettt se e e e e eneeneens 2

1.3.2 Notes about Copying and PASLINGccecereerieiieiienieie et ste e e e see e e sae e 3
1.4 INtErrupting EXECULIONccuiiiiiieiie ittt ettt bbb e bbbt e e et et 3
1.5 ClEaring The SCIEENocuciieiiieeitee ettt et bbbt bbbttt 3
1.6 Logging the Terminal AppliCation SESSIONccccviiiriiiriierire e 3
I 1 1€ o S 4
1.8 EXITING ©vevveveetreiesiesieste e stestes et e e e e e e e esestestesbesbe s beste b e eeseeseeseeseenseneebeaaeeaeabesteseeneeneeneenteneeseeneenens 4
1.9 TECNNICAL INOTES ...ttt bbb bbb bbbt b e eb et e b ere e 5
1,00 SO AISO ettt bbb bbb e b et e Rt b e Rt Rt b e bbb e e 5

2 CoNNECtiNg 1O REMOLE HOSESeviiiiieie ittt ettt be e sne e e 7
2.1 CONNECE IMENU OPLIONS ..ottt b bbb bbbttt bbbt b e eb e ene s 7
2.2 Remote COoNNECLION EXAMPIEocveieieiieieeceeee sttt e e ne e e snenrenrennens 7

3 Creating and UsiNg TErMINal SCIiPES .ovvieveerieirieerieeniees et st sse s 9
3.1 Contents OF & SCHPL FIIE ..c.eiiiiieies e e sne 9
3.2 SCript CoOMMANG SUMIMAIY ...cueiuiitiiieitisiesie ettt be e b sbe b st sbe b e b e e b e see e e e eneebeaneens 9
3.3 SCript ComMAN AFGUIMENEScuiiviiierierienierieseesieie e et et bestestesbesteseeseesbeseenneneeseeseeneeseanas 11
312 SAMPIE SCIIPL vttt bbbttt bbbt bbbt bttt ettt 11
ISR - 110 = TS o1) 12
I GRS a0 = TS ot 12
KA1 (0] o o1 a0 - N1] o) SRS 13
3i8 SBE AISD .ttt bbb bbb E b e E e e et R e bt e bt ebe b 13

4 Script ComMmMAaNd REFEIENCE ..o bbb 15
O o =T 1S 15
N o | o] 1) S 15
4.3 CASE MALCH ©.viriitiieeiiiteisie sttt ettt b e b et b et b ettt be et e st ek et e s et nb et e nre e 15
o [1S oo S 16
4.5 COMMECT ..ttt ettt etttk b et b et he e bt he e sb e s ae e sb e e sb e s b e e Rk e eb e et e ebe e bt eaeeabeennesbeennesbeenens 16
4.6 EDUG etttk b b bR bR R bbbt 16
Ao ST To T o) 16
G0 1) o] - 16
4.9 BCNO 1oL b e b b ettt ettt et e 17
400 EXECULE .ttt ete ettt sttt sttt b e b s e b e ae e bt e st ehe e Rt s Re e nR e R e e nRe R e e R e e R b e nE e e n e Rt e neeneeneenes 17
O | O SOTROUSOTROUR VSRR 17
412 GOUO 1ottt ettt 18
A L3 0T BMPLY oo bbbt bbb bbb 18
4.14 KEY STAMTLIME ..ocveeveeereteee e st st ste st sttt et e s e e re et e s ae st e st e sa e ne s bese e e et eae e enseneeneeneenenres 18
S =YY (0] o] 1 1 1 USRS 18
G =) 21111 S 19
A (oo | 1 LS UUO TP PTUS USRI 19
418 MUITIWAITE FOF et sb et bbb st e et e e 19
419 NOTITY ettt bbb bbbttt 20
O o] =T (o] TP OSSPSR PRSP PRPRT 20

Using the Windows Terminal

Z.21 PAUSE ..eeutieurete ettt ettt ettt etttk ek ekt h b e R bRt R R £ e R eRe e Re e R e ARe AR e nRe e AR e R e e R b e nE e e b e nR e e neeneenneenes 20

B.22 TEEUITT .ottt ettt ettt sttt b e e e bt e st e e b e e s bt eh £ ek e eh s e bt e Re e eb e e Re e ebeeseesbeenbenbeesbenbeanbenbeans 20
G 1= o o [OOSR 20
4,24 SUDFOULINGvvveeeetestesiestes et te et e e s et eseetestesaestesbesaesbestesteseenseee e eneesaeseaneeneesenseaneneeneenes 21
4,25 TEIMINGALE ...evetiieeteite ittt bbbt b et b bbb bbbt bttt ettt e b et 22
426 TEST 1.ttt ettt sttt h bR R h R R R R R R R e R e et Rt bt bt bbb b erens 22
A (] 1111 SO TSSOSO PP PTURTRPPURORPRRRRO 22
2 111 [T PRRR 22
4,29 WAKE TOF 1.t ettt a et e bbb be bbb e ea et e s neenes 22
5 Customizing the Terminal APPHCALIONc.coueiriiiriiererie e 25
5.1 SPECITYING The FONT c.eiiiieci et re e snesrenes 25
5.2 SPECITYING the COIOIS ...voviieieice ettt re e e nre s 25
5.3 Specifying the WINAOW SIZEc..ooiiiiiiiee e 25
5.4 Defining Custom Key COMDINALIONScciiuiiiirieieieieiisesc sttt e 26
5.5 SPECITYING USEI SELLINGS ..o.vevirieririetiiietiriee ettt sttt 26
5.6 Specifying the Network ENCOUINGcoveireirieiinieeieiseiese s 27
5.6.1 UTF8 ENCOUING ..vvviveieesiisieiisiisiestesteete e ete e s e ste st sttt sae e sa e eneenaenasnessesnesneneas 27
5.6.2 WINAOWS ENCOUING .o.vviviiieiiiiiiiie e sicsiete ettt e e e ettt snensenaeneenesnens 28

I TR 11O I = g ol o [T o USSR 28
5.6.4 EUC ENCOGING ..oottitiitiiiinieitisie ettt sttt ettt st sbe bbb sb e be e sse s anee e eneaneas 28

5.7 Specifying the Physical Character Setting of the DiSplayccccoevreiiriiniiniesesee 29
TS JR LT A o S 29
6 Running the Terminal Application from the Command Linecccccvevrinniinniennienneneeneeens 31
6.1 Starting the Terminal Application from the Command Linecccovvvrvinvieneiennineieneennns 31
6.2 CONNEBCLION OPLIONS ..ttt sttt b bt se bt ettt e bt et e besbesbe b e 32
6.3 AAdItIONA] AFGUMENTScviiiiitiiteite ettt bbbt ettt et be bt b besbesbe b e 33
6.4 EXAMPIES ..ottt bbbttt bt 34
6.4.1 Example: Running a Script in Batch MoOde ..ot 34
6.4.2 Example: RUNNING @ ROULINEcvviiiiiiie sttt s 34

7 Advanced Topics (Terminal APPliCALION) ..cccoeiieriierreree e 35
7.1 Escape Sequences That Affect the Terminal Windowcocociiiininininc e 35
7.2 KEY TIMING IMOUE ..ttt bbb ettt b et be e bt st e b bbb snenas 36
7.3 LEAMNMNING IMOUE ..ottt bbbtk ekt e bbb n e 36
7.4 Disabling the Close Button of the Terminal ..o 36
7.5 Mapping of the Extended KeYbOardcccoueveveirieiiesese et 36
7.6 Using the Terminal application With DDEccccooiiiiiiiiiniene e e 37
7.6.1 DDE Layout CONNECLIONSvocviieeiieeiesieeiiesieesiesieesiesseestesssesteesesseessesseesaessaeseesseeseesssenes 37
7.6.2 DDE SCreen CONNEBCLIONSccueiieiiieiiriesiesiesie sttt seee ettt sbe bbb e st sbe e e seens 38
7.6.3 DDE MesSage CONNECLIONScvcviieririeririeiirieiesieiesieie sttt seere bbb snesesneneas 38

Using the Windows Terminal

Basics of the Terminal Application

The Terminal application (available only on Windows) presents the ObjectScript shell in a window that also provides a
menu bar with additional options. The primary purpose of the Terminal application is to enable you to execute ObjectScript
commands (and see their results), as well as to access various other shells. In the Terminal application, you can also run
scripts that use syntax specific to this application. This page provides a basic introduction.

Note: Throughout the documentation, the term Terminal is often used to mean just the ObjectScript shell (which has
no special menu bar and which is available on all operating systems). Similarly, the phrase Terminal session often
means a session within the ObjectScript shell.

Where necessary to avoid confusing these concepts, the documentation uses the phrase Terminal application to
refer to the Windows-only application.

1.1 Starting the Terminal Application

To start the Terminal application, do one of the following:
» Toconnect to a local database, select the InterSystems Launcher and then select Terminal.
» To connect to a remote server, select the InterSystems Launcher and then select Remote System Access > Terminal.

Then select a server name.

In either case, you may be prompted to log in, or you may instead be logged in under a default username, depending on
the security settings for the associated InterSystems IRIS® data platform server. The Terminal application then displays a
prompt that (by default) displays the name of the current namespace. For example, if you are in the USER namespace, the
default prompt is as follows:

USER>

To switch to a different namespace, use the $namespace variable as in the following example:

Terminal

USER>set $nanespace="SAMPLES"
SAMPLES>

This is the same way that you would switch namespaces within your code; see the $namespace reference page in the
Objectcript Reference for more information.

Using the Windows Terminal 1

Basics of the Terminal Application

1.2 Overview of Terminal Application Features

The Terminal application consists of a window that provides the ObjectScript shell, as well as a title bar and a menu bar.

First, you can use all the options provided by the ObjectScript shell. You can use it to execute ObjectScript commands (and
see their results), as well as to access various other shells. The shell provides an extensive line recall facility as well as
several customization options.

In addition to providing this shell, the Terminal application menu bar provides options for copying and pasting text, clearing
the screen, performing logging, printing, executing scripts, and customization. The Terminal application also provides a
right-click menu with options for copying and pasting.

Note that the title bar indicates the InterSystems IRIS® data platform server to which the Terminal application is connected,
which is especially helpful when you have multiple sessions, each to different server. The title bar also indicates the com-
munication mode currently in use:

* The title bar may display InterSystems IRIS TRM:pid(instancename) where:
— pidis the process ID of the InterSystems IRIS process with which the Terminal application is communicating.
— instancename is the InterSystems IRIS instance in which the process is running.
In this case, the Terminal application is using local, proprietary communication with the InterSystems IRIS server with
which it was installed.

» The title bar may display (server NT — InterSystems IRIS Telnet) where server is the host name of the remote server.
In this case, the Terminal application is using the TELNET protocol over TCP/IP to communicate with either a Windows
InterSystems IRIS server or with a UNIX® host.

On Windows, the communications stack for InterSystems IRIS is Winsock, and errors reported from this communications
mode are the names of the Winsock error codes. For example, WBAECONNREFUSED means the connection was refused.

1.3 Copying and Pasting

To copy and paste text in the Terminal application, you can use the right-click menu, the Edit menu, or various keyboard
shortcuts. On the menus, the following options are available :

* Copy copies the selected text to the clipboard.

* Paste pastes the contents of the clipboard, line by line, to the current position of the cursor (which is the end of the
scrollback buffer). The text becomes visible in the window unless echoing has been disabled.

* Copy + Paste copies the selected text to the clipboard and then pastes it, line by line, to the current location of the cursor.

1.3.1 Keyboard Shortcuts

You can use the following keyboard shortcuts:

Action Basic Shortcut = Windows Shortcut
Copy Ctrl+Ins Ctrl+C
Paste Shift+ins Ctrl+V

2 Using the Windows Terminal

Interrupting Execution

Action Basic Shortcut = Windows Shortcut
Copy and paste Ctrl+Shift+V
The shortcuts listed in the Basic Shortcut column are always enabled.

The shortcuts listed in the Windows Shortcut column are enabled only if you set the windows edit accelerators option to
Yes; for information on this setting, see User Settings.

1.3.2 Notes about Copying and Pasting

» Asnoted above, if you set the windows edit accelerators option to Yes, Ctrl+C copies the selected text to the Windows
clipboard. To interrupt execution, you must instead press Ctrl+Shift+C

» If the host has a mouse request outstanding and you wish to do a local cut and paste, press Ctrl while selecting the
region; that mouse action is not reported to the host.

» If the copied text includes a line boundary, it is saved on the clipboard as a carriage return and a line feed. If you do
not want to paste line feeds, see User Settings.

e The Terminal application can often paste data faster than a host can accept it. See User Settings for settings to control
the speed of pasting. Also, line feeds can be discarded during a paste command.

1.4 Interrupting Execution

To interrupt any foreground execution, use one of the following key combinations:
* Ctrl+C — Use this if the windows edit accelerators option is not enabled.

e Ctrl+Shift+C — Use this if the windows edit accelerators option is enabled.

For information on windows edit accelerators option, see User Settings.

1.5 Clearing the Screen

The Edit menu provides two different options to clear the screen:

» Toreset the screen, select Edit > Reset. This option resets the margins, scroll region and other processing on the current
page, and then repaints the window.

e Toreinitialize the screen, select Edit > Erase or press Ctrl+Del. This option reinitializes the window, erases all session
data, and resets the scrollback region to zero.

1.6 Logging the Terminal Application Session

To start logging the current session:

1. Select File > Logging or select Alt+L.

Using the Windows Terminal 3

Basics of the Terminal Application

The Terminal application displays a dialog box to prompt you for the location and name of the log file. The default
directory is install-dir/mgr. The default filename is TERMINAL.LOG.

The total length of the path and file name cannot exceed 126 characters.
2. Optionally specify a different directory and filename.
3. Select OK.
If the log file exists, a dialog box is displayed asking if you want to overwrite it. Choose one of the following:
* Yes overwrites the file with the new log data
* No appends any new log data to the file

e cCancel leaves the file as is (no logging is done)

Later, to stop logging, select File > Logging or select Alt+L. The Terminal application displays a dialog box to indicate that
the log file is closed; select OK.

The log file contains only the output from a connection (independent of the current wrap mode).

You can also perform logging from a script. Note that if you have started logging by using File > Logging, you cannot start
a script that also performs logging. If you attempt to do so, the behavior is indeterminate.

Also see Learning Mode.

1.7 Printing

To print, use the following options of the File menu:
» Toselect a printer and set it up for use with the Terminal application, select File > Printer Setup.
» To print the contents of the screen, select File > Print.

» To print the log file (or any other ASCI|I file), select File > Print Log. This option lets you select the file to print, and it
does no special processing except to try to be reasonable in processing form feed characters. During printing, mouse
and keyboard input is locked out of the main window and a cancel dialog box appears. Printing is done in draft mode.

1.8 Exiting

To exit the Terminal application, do any of the following:

* Select File > Exit

e Press Alt+F4

» Enter HALT or H (not case-sensitive)

These options cause this copy of the Terminal application to exit, closing any open files and stopping any foreground exe-
cution.

If this Terminal application was connected to a server at startup, it exits on its own when the communications channel is
closed.

4 Using the Windows Terminal

Technical Notes

If you accessed this Terminal application via InterSystems Telnet in the InterSystems Launcher, then it does not exit auto-
matically when the communications channel is closed; instead it remains active so you that can connect again via the
Connect menu.

1.9 Technical Notes

The process is owned by the user that is logged in to Windows and is running the Terminal application (iristerm.exe).

Also, all environment variables and shared drive letter designations are those defined by the user that is running the appli-
cation.

1.10 See Also

e Connecting to Remote Hosts

e Using Terminal Scripts

e Script Command Reference

e Customizing the Terminal Application

* Running the Terminal from the Command Line

* Advanced Topics in Terminal Usage

Using the Windows Terminal 5

Connecting to Remote Hosts

To connect the current Terminal session to a database on a remote host, use the Connect menu.

Note: If you start the Terminal with either the / consol e or the / ser ver control argument, the Connect menu is not
shown; see Connection Options.

2.1 Connect Menu Options

The Connect menu provides the following options.

» To connect to a remote host, select Connect > Host or press Alt+0O. This brings up a dialog box where you can enter the
address of the desired host.

Or select the name of the host from the Connect menu.
* To send a break over the communications channel, select Connect > Send Break Or press Alt+B.

» Todisconnect or to cancel a connection attempt, Connect > Disconnect.

2.2 Remote Connection Example

This example starts an instance of the Terminal and then manually connects it to the TELNET port on the local host to
enable a console session. The example assumes that the default user ID and password are available.

1. Select Connect > Host.

2. Inthe dialog box that appears, enter 127. 0. 0. 1 for the Remote System address and 23 for the Port Number. Select
OK.

The Terminal application then attempts to connect to your local host via the TELNET port.
3. Atthe Username: prompt, enter SYS and press Enter.
4. Then, at the Password: prompt, enter a password and press Enter.
You then see a prompt (%8YS>) that indicates that you are connected and have been placed in the %SYS namespace.

To terminate the session, select Connect >Disconnect. Or, to terminate this Terminal, select the Close box in the upper right
of the window.

Using the Windows Terminal 7

Creating and Using Terminal Scripts

This topic discusses how to create and use script files for the Terminal application.

Note: Terminal scripts are useful on occasion, but it is usually much easier to write and use a routine, because each of
the routine programming languages provides a much richer set of options.

The user environment variables and shared drive letter designations are those defined by the user account in which the
InterSystems IRIS® data platform control service runs.

3.1 Contents of a Script File

Script files are line oriented; there is no line-continuation convention. Each line is separate from any other. Lines beginning
with a semicolon are considered comments. You can use blank lines liberally to improve readability. Normally, invalid
lines are ignored. Script commands may be preceded by spaces and/or tabs.

The format for a line that contains a script command is as follows. Note that arguments are interpreted as strings or numbers:
Scri pt Command: Scri pt Argunent s

Here ScriptCommand is one of the Terminal script commands and ScriptArguments is the argument list for that command
(see details for the specific commands). Note that if script command consists of two or more words, the words of the
command must be separated from each other by a single space. Also note that there is no space between the command and
the colon.

Or, for a command that has no arguments:
Scri pt Comrand

You can use labels to define points of control transfer. A label begins with a dollar sign ($), is not case-sensitive, and can
have embedded spaces. A label must appear by itself on a line.

Also see Learning Mode.

3.2 Script Command Summary

The following table gives the list of available script commands, with links to the reference content for more details:

Using the Windows Terminal 9

Creating and Using Terminal Scripts

Command
break

call script
case match
closelog
connect
debug
disconnect
display
echo
execute

exit

goto

if empty
key_starttime
key stoptime
key_timer
logfile
multiwait for
notify

on error
pause
return

send
subroutine
terminate
test

timer

title

wait for

Action

Transmit a break for those communications devices that support it

Exit the current script and start another
Indicate if the "wait for" string must match in case
Close a log file

Force a host connection if not connected
Enable/disable debugging for scripts

Force a disconnect if connected

Send text to the display

Turn on/off echo of incoming characters
Execute a Windows program

Exit the script

Transfer control to another place in the script
Transfer control if last test string was empty
Simulate key timing start

Simulate key timing stop

Turn key timing on and off

Start a log file

Wait for any of several strings from the communications device
Display a dialog box and wait for user response
Indicate label to branch to if timer fires

Pause the script

Return from a subroutine in the script file

Send text to the communications device

Call a subroutine in the script file

Exit the emulator entirely

Build a string to be tested

Control the timer for "wait for"

Set the window title

Wait for a particular string from the communications device

For reference information on these commands, see Script Command Reference.

10

Using the Windows Terminal

Script Command Arguments

3.3 Script Command Arguments

All spaces and tabs at the beginning and end of arguments are ignored.

All numeric arguments are integers. A required numeric argument defaults to 0 if not provided. Additionally, OFF is
equivalent to 0 and ON is equivalent to 1.

Strings are simply the concatenation of all data on a line after the command (with the exception of the leading and trailing
white space). Quotation marks are not needed. Additionally, parameter substitution is accomplished with the use of one of
the following:

<P1>, <P2>, ..., <Pn>
This substitutes the n-th command line parameter in place of <Pn>.

To ease operation, certain ASCII characters have equivalent shortcut representations as shown in the following table.

Note: Any ASCII (extended) character except NUL (000) can be produced via <ddd> where ddd is the decimal value
of the character.

Character(s) Interpretation Transmitted Sequence
<CR> Carriage return <13>
<F10> F10 key <27>[21-
<F7> F7 key <27>[18-
<DO> Do key <27>[29-
<TAB> Tab key <9>

<LF> Line feed <10>
<ESC> Escape key <27>
<DCS> Device control string introducer <144>
<ST> Stop device control string <156>
<EMU> Start of extended emulator command <144>j
<NL> Newline <CR><LF>
<CSI> Control string introducer <155>

3.4 Sample Script

The following is a sample script:

; initialization -- turn match off to nmake conparisons nore | enient
case match: off

; wait for the termnal to initialize and ask for our identification
echo: off

wai t for: Usernane

send: SYS<CR>

wai t for: Password

send: XXX<CR>

title: Term nal Exanple

echo: on

Using the Windows Terminal 11

Creating and Using Terminal Scripts

; log everything in a |log
logfile: C\Ternmkxanple.log
; wait a second

pause: 10

; display a header to let the user know we are ready
; you need <CR><LF> because "di spl ay" does not

have a pronpt to advance to another line
di spl ay: <CR><LF>

display:------------------------ <CR><LF>
di spl ay: <<< Term nal Exanpl e >>><CR><LF>
display:---------------cmmmmmoo <CR><LF>
; wait a second

pause: 10

; switch to the USER namespace
send: set $namespace="USER'<CR>
wai t for: USER>

; display sone basic infornmati on about the system
; Use the debugging routine to do so

send: Do "USTACK<CR>

wait for: action

; have it outline our options

send: ?<CR>
wait for: action

; wait 5 seconds for user to absorb
pause: 50

; ask for the basic process info
send: *s

pause: 50

send: <CR>

wait for: action

; wait another 10 seconds
pause: 100

; finish the session
send: <CR>

; close the log file
cl osel og

; finished
term nate

3.5 Starting a Script

Script files (with default extension .scr) are normally found in the working directory but could be anywhere.

To run a script, select File > Script or press Alt+S. A standard Windows file lookup box is presented and the selection of a
script is made.

If a script is given as an argument on a command line, it is started immediately if no switch is locking the command mode,
or deferred until after a host connection is made if there is a switch.

Note: If you edit the communications choices to a single mode, that is equivalent to locking the Terminal application
to a single choice and thus any script file is invoked after the host connection is made.

3.6 Pausing a Script

To pause the execution of a script, select File > Pause or press Alt+P. You are prompted to confirm that you want to pause
the current script.

12 Using the Windows Terminal

Stopping a Script

3.7 Stopping a Script

To stop a script, select File > Script or press Alt+S. You are prompted to confirm that you want to stop the current script.

3.8 See Also

e Script Command Reference
* Learning Mode

* Running the Terminal Application from the Command Line

Using the Windows Terminal 13

Script Command Reference

This topic provides reference information for the script commands available for the Terminal application, for use when
you create Terminal scripts.

Note: Scripts are useful on occasion, but it is usually much easier to write and use a routine, because each of the routine
programming languages provides a much richer set of options.

4.1 break

Sends a break for those communications nodes that support a break. Otherwise, it does nothing. It has no arguments. Usage
example:

br eak

4.2 call script

Starts running a script. If a script is executing when this command is executed, the Terminal application terminates that
script before starting the new script. Usage example:

call script: login fred <p3>

This example stops the current script (if one is running) and starts another called login.scr. The first parameter in the sample
script (login.scr) is f r ed. The second parameter is whatever is in the third parameter of the current script file (the one
making the call). The default file extension is assumed to be .scr. The current working directory is searched first for an
instance of login.scr.

4.3 case match

Enables or disables exact case matching in the wait for command. Usage example:

case match: off

Using the Windows Terminal 15

Script Command Reference

By disabling exact case matching, you can match strings even if the individual characters differ from one another in case.
The default for this switch is on.

4.4 closelog

Closes the currently open log file, if any. Usage example:

logfile: nydirect.log
send: dir *.*/FULL<CR>
wait for: <NL>$

cl osel og

4.5 connect

Opens a dialog box to initiate a connection to a remote host. Usage example:

connect

4.6 debug

Enables debug mode, which traps invalid script commands, which the Terminal application usually ignores. When you
enable the debug mode, the first part of an invalid command appears in a message box requiring operator attention. Usage
example:

debug: on

4.7 disconnect

Disconnects from the host. If the Terminal application is not connected, the command does nothing. Usage example:

di sconnect

4.8 display

Writes data to your screen. It is not sent to the communications device. Usage example:
di spl ay: <CSl| >H<CS| >J<LF>Here are the choices for today:

When this example is executed, it moves the cursor to the home position, clears the window, advances by one line, and
writes the text Here are the choi ces for today: and leaves the cursor after the end of the text.

16 Using the Windows Terminal

echo

4.9 echo

Enables or disables displayed output to the window and log file. This is useful if you need to hide output (because it is
uninformative to the user, for example). For an example, see wait for.

4.10 execute

Launches a Windows program with a SHOW attribute for its window. Usage example:
execute: notepad. exe nyfile. not

This example executes the Windows Notepad program and opens the file myfile.not inside that application. Notice that you
could do the following:

logfile: nydat.| st

echo: off

send: dir *.dat/ful

wait for: <NL>$

cl osel og

echo: on

execute: notepad nydat. | st

Note: No test is made to see if the program actually starts and no wait is done for its completion.

4,11 exit

Exits the script. A script normally exits when it reaches the end of its last line, but you may wish to exit if some event (say
a login) does not occur. Usage example:

on error: $byebye
timer: 40

wait for: event:
goto: $Got event

$byebye
notify: Did not find event pronpt, exiting script
exit

$Got event:
timer: O
nor e commuands

Using the Windows Terminal 17

Script Command Reference

4.12 goto

Transfers control to another place in the script file. This is useful for managing control flow for looping, and in response
to timeout branching. Usage example:

on error: $Not There
timer: 30
wait for: abc<CR>
goto: $Got It
$Not There:
;failed to see it, send Ctrl+C
send: <3>
goto: $bad
$CGot It:
;turn timer off because we got abc<CR>
tinmer: O

;more comands ...

4.13 if empty

Causes a branch to the given label if the last test command found an empty string. Usage example:

test: <pl>
if enpty: $No First Arg

The first command determines if the first parameter provided in the command line is missing or empty. The second command
branches to the label $No Fi r st Ar g if this is the case.

4.14 key _starttime

Starts the timing of a key sequence. It takes a single numeric argument. If the argument is zero, the statistics are accumulated
when you press Enter. Otherwise, statistics are accumulated when you press F10. Usage example:

key_starttine: 0

To stop timing, use the key_stoptime command.

4.15 key_stoptime

Stops a timing and accumulates statistics, if timing is currently active. Usage example:

key_starttime: O
wait for: <esc>[14;22H
key_stoptinme

18 Using the Windows Terminal

key_timer

4.16 key_timer

Starts or stops the data collection of key timing information. Alternatively, you can start or stop the timer with Alt+Shift+T.
Usage example:

key timer: on
rest of your script commands
key_timer: off

A file (KEYTIMER.LOG) is constructed in the system manager’s directory that contains a histogram of key timings. You
can use only one such timing sequence because it does not append to the current statistics file but overwrites it.

Note: To drive timings exclusively from a script file, you must use <CR> and <F10> in place of <13> and <27>[21-,
respectively.

4.17 logfile

Starts the collection of received data in the log file specified. If there is currently a log file active, it is quietly stopped. Use
the closelog command to stop the logging. Usage example:

logfile: nydirect.log
send: dir *.*/FULL<CR>
wait for: <NL>$

cl osel og

The default directory is the directory in which the script resides. It can be changed by supplying a full pathname.

Log files are normally opened for overwrite; that is, if they already exist, new data replaces what is already there.

4.18 multiwait for

Synchronizes the script file with the host. Processing is suspended until the data that arrives from the host matches one of
several strings given in the argument. Usage example:

multiwait for: =USER>=***ERROR, =DONE

This example causes the script file to wait (maybe forever) until any one of three strings of characters arrives. The first
non-blank character of the argument (in this instance, the equals sign) is treated as the delimiter that breaks up the argument
into substrings. So this command causes the example script to wait until one of the following sequences arrives:

USER>
*** ERROR,
DONE

You can use a timer to break out of this command.
See the case match command to turn exact case matching on or off.

Because a case match command may have only a single substring argument, the following two script commands are iden-
tical in function:

multiwait for: =USER>
wait for: USER>

Using the Windows Terminal 19

Script Command Reference

4.19 notify

Displays a Windows message box and waits until the user presses OK. You can use this for messages to the user who runs
the script. Usage example:

notify: Ready to send commands. .
send: copy *.lst backup:*.| st <CR>
send: delete *.Ist;*

Note: This box is modal and cannot be interrupted except by the user.

4.20 on error

Establishes the target label for the implied goto that is executed if a timer expires (normally while waiting for text to arrive).
To be strictly correct, you should use this command before using timer, although in practice the order might not matter.

For examples, see wait for, exit, goto, and subroutine.

Also see the timer command.

4.21 pause

Pauses a running script for a number of tenths of seconds. Usage example:
pause: 30

This example pauses execution of the script for three seconds. If the argument is 0, that is equivalent to an indefinite pause;
to resume from an indefinite pause, use Alt+P.

4.22 return

Used with the subroutine command to return to the place in the script from which the subroutine was called. See the sub-
routine command for an example.

4.23 send

Simulates typed data that is sent to the currently connected host. Usage example:
send: set $namespace="%SYS'<CR>

This line changes the namespace to %SYS. The <CR> at the end is necessary because the send command does not implicitly
add a carriage return.

20 Using the Windows Terminal

subroutine

Another usage example is as follows:
send: 1<cr>2<cr>A1234<F10><32>

This command is equivalent to typing the following, in sequence:
* The character 1

e The carriage-return key

* The character 2

* The carriage-return key

* The string of characters A1234

e The F10 key

» Asingle space character

Notice that <32> is the only way to send a leading or trailing space. Those characters are removed by the command interpreter
if typed normally.

Important: It is best practice to include the wait for command after each send command. The wait for command provides
the ability to synchronize later commands in the script with input from the Terminal application. The
Terminal script mechanism sends commands one-after-the-next without regard to the input returning from
InterSystems IRIS® data platform except when a wait for command is encountered.

If you do not include the wait for command after each send command, and you are generating a log file,
the log file will not include information for the later send commands.

4.24 subroutine

Useful if repetitive commands are used in a script. It saves both memory and the possible need to invent many different
labels. Use this command with a return command. Usage example:

subroutine: $Send It Again
; some other processing
exit

$Send It Again:
send: <F7>Q
on error: $skip
tinmer: 30
wait for: [22;5H
timer: O
return

$ski p:
send: <3>
; note on error still set to $skip
timer: 30
wait for: function
timer: O
send: <CR>
exit

Note: The subroutine stack holds 16 addresses. If you try to nest subroutine invocations deeper than that, the script fails.

Using the Windows Terminal 21

Script Command Reference

4.25 terminate

Tells the Terminal application to exit back to Windows. Any open files are closed, extra windows are removed, and the
connections are closed. Usage example:

term nate

4.26 test

Tests if a parameter or window property is non-empty. The command is used in conjunction with the if empty command.
See the if empty command for an example.

4.27 timer

Sets a timer to use with the wait for command. The timer command performs a Windows SetTimer() command. When the
timer fires, the script processor goes to the label specified by on error (if any). The script exits immediately if no label has
been specified by on error.

Usage example:
tinmer: 100

The argument is the number of tenths of a second to wait. The example sets a timer for ten seconds. See the example in the
goto command for another example.

To switch off a timer, use the following:
tiner: O

For an example of timer in context, see wait for.

4.28 title

Sets the Terminal application window title to the specified string. Usage example:
title: This is nmy w ndow

You can also set the title remotely via the extended emulator commands.

4.29 wait for

Synchronizes the script file with data that arrives from the host. Usage example:

wait for: USER>

22 Using the Windows Terminal

wait for

This example causes the script file to wait (maybe forever) until the precise string of characters USER> arrives. This partic-
ular sequence is the default prompt from the Terminal application when in the USER namespace. This means that you can
use this command to wait until the Terminal application is ready for more input.

You can use timer to break out of a wait for command. If the text being looked for is never received, or is missed due to
timing or case match issues, timer is the only way to interrupt a wait for and continue execution of the script. When you
use timer, you can specify a label to receive the flow if the timer expires; see on error. If wait for finds the text it is seeking,
it kills the timer and clears any label set by on error. Usage example:

echo: off

on error: $Failed Login
tinmer: 50

wait for: Name:

send: <pl1><CR>

wait for: Password:
send: <p2><CR>

wait for: <NL>$

echo: on

Notify: Login is conplete
di spl ay: <CSI >H<CSI >J
send: <CR>

goto $Process

$Fai | ed Login:
echo: on
notify: Login failed
exit

$Process
; processi ng begi ns
This example hides the login sequence using a name and password supplied as the first two script parameters, respectively.

If the login succeeds, processing begins at the indicated label. If it fails, the script displays a dialog box indicating the failure
and then exits when you select OK.

The wait for command may or may not consider the case of the text, depending on whether and how you have used the
case match command.

Using the Windows Terminal 23

Customizing the Terminal Application

This topic describes different ways to customize the appearance and behavior of the Terminal application.

5.1 Specifying the Font

To specify the font size, select Edit > Font. This displays a dialog box where you can select a typeface, size, and style
appropriate to your monitor and resolution.

Note: Ifyou choose a font size that would expand the window beyond the borders of your screen, the Terminal application
automatically resizes both screen and font to the largest size available.

Also, whenever you switch to a different size screen, the Terminal application attempts to use the preselected font
for that size.

5.2 Specifying the Colors

To specify the colors, select Edit > Color. This displays a dialog box where you can select the default foreground and
background colors for the Terminal application. Then select one of the following:

e Apply changes only the current session.

» save does not change the current instance but saves the color information for new sessions.

You can adjust the colors from the expected ANSI-named colors to any colors that the display board can deliver. These
colors are saved along with the foreground and background choices. To select the default colors, select Default and then
choose the colors.

5.3 Specifying the Window Size

To specify the Terminal application window size, select Edit >Window Size. This displays a dialog box as follows:

Using the Windows Terminal 25

Customizing the Terminal Application

Page Layout §|

Columnz & a0 Rows ~ o4

E rm ¥ ey
Mumber of Scrollback lines: [1pz4

Mumber of Pages: &

Apply Save | Cancel |

The maximum number of columns is 132 and the maximum number of rows is 64. As you make changes, the dialog box
updates the number of scrollback lines and the number of pages available. Then select one of the following:

* Apply changes only the current session.

* Save does not change the current instance but saves the window size information for new sessions.

Note: When you change the window size, the Terminal application erases all current data in both the current display
page and all back pages. Further, if there is a font selected for that size, the Terminal application selects it.

5.4 Defining Custom Key Combinations

To define custom key combinations, select Edit > User Keys. This displays a dialog box where you can associate an
ObjectScript command with any of the following key combinations: Alt+Shift+F1 through Alt+Shift+F10.

Selecting Ok+Save updates the current instance and saves the key sequences for future sessions.

To include a non-printable characters in the command, use the decimal equivalent (nnn) of the character. You may also
use one of <CR>, <F10>, <F7>, <DO>, <TAB>, <LF>, <ESC>, <CSI>, <NL> (= <CR><LF>).

You can also use <P1>, <P2>, and other command line parameters.

Note: There are known problems with the User Keys facility. For up-to-date information, please contact the InterSystems
Worldwide Response Center (WRC).

5.5 Specifying User Settings

To specify user settings, select Edit > User Settings. This displays a dialog box where you can specify both the current setup
and initial values of various parameters used by the Terminal application. The settings are as follows:

Setting Description
Wrap Automatic wrapping at right hand column
<- Key sends "H Set to have <X> key send Ctrl+H rather than Delete

Application Keypad Enable Application Mode keypad

Force Numeric Pad Force standard PC keypad

26 Using the Windows Terminal

https://www.intersystems.com/support/support.html
https://www.intersystems.com/support/support.html

Specifying the Network Encoding

Setting
Disable Special ID

Disable Mouse
Reports

Enable Fast Paint

Paste Keeps
Linefeed

Pass XOFF Through

Windows edit
accelerators

Paste burst size (in
bytes)

Paste pause time (in
msec)

Description
Do not send special Terminal ID

Do not sent mouse reports

Enable fast paint mode

Set to send line feeds from clipboard (along with carriage return)

Let remote host handle XOFF/XON.

Specifies whether the Terminal application enables the common Windows edit
shortcuts (Ctrl+C, Ctrl+V, Ctrl+Shift+V), in addition to the basic edit shortcuts (Ctrl+Insert
and shift+insert).

If these Windows shortcuts are not enabled, the characters are passed in the data
stream to the InterSystems IRIS® data platform server process.

The number of characters to paste in one transmission

The number of milliseconds between successive transmissions of pasted material
longer than the burst size

Some systems cannot accept data as fast as the Terminal application can send it. Thus, the Paste burst size determines how
much to send at once and the Paste pause time determines the pause time between transmissions. If either setting is less
than 1, the entire clipboard is sent at once.

5.6 Specifying the Network Encoding

The network encoding of the Terminal application controls how characters are translated at the following times:

* When the Terminal application translates keyboard input into its display memory, which uses Unicode. Characters
received from the keyboard are translated from the single or multibyte character stream using the current Windows
input character set. This means that if you change your input language, the application recognizes the change and
adapts to it. This enables you to type in mixed languages; the application recognizes it and translates properly into its
internal Unicode representation. If you use mixed-language input, select UTF8 as your network encoding and the
$ZMODE 1/0 translation table.

» When the Terminal application communicates with a peer server. Characters transmitted to the server are translated
from the internal Unicode representation to a network encoding and characters received from the server are translated
from the network encoding to Unicode.

The default network encoding is UTF8.

To specify the network encoding, select Edit > Network Encoding. This displays a dialog box where you can choose the
network encoding for the Terminal application to use. There are 4 choices: UTF8, Windows, ISO, and EUC. Because these
encodings are not all relevant to every input locale, only the relevant choices are enabled on the menu.

5.6.1 UTF8 Encoding

When you select the UTF8 option, the Terminal application translates the internal Unicode characters to UTF8 on output
to the server and from UTF8 when received from the server. If you select UTF8, the InterSystems IRIS® data platform 1/O

Using the Windows Terminal 27

Customizing the Terminal Application

translation for your principal 1/0 device must be UTF8. You can determine the 1/O translation from $ZM ODE. It is the
fourth field; fields are delimited by backslashes (\).

5.6.2Windows Encoding

When you select the Windows option, the Terminal application uses the current Windows input code page to translate 1/0
between the Terminal application and the server, to and from the internal Unicode character set encoding. When you use
the Windows encoding, make sure to set the InterSystems IRIS 1/O translation ($ZM ODE) to that it expects the character
set represented by the active Windows code page.

5.6.31SO Encoding

When you select the 1SO option, the Terminal application uses the following 1SO 8859-X code pages to translate 1/0 to
and from the peer server. The Terminal application selects the appropriate ISO code page based on the current Windows
input code page. The following mappings are enabled:

Language Region ISO Windows Network
Standard Code Page Code Page
Western European 8859-15 1252 28605
Central European 8859-2 1250 28592
Cyrillic 8859-1 1251 28591
Greek 8859-7 1253 28597
Turkish 8859-9 1254 28599
Hebrew 8859-8 1255 28598
Arabic 8859-6 1256 28596
Baltic Rim 8859-4 1257 28594
Korea i50-2022-kr | 949 50225
Japan (JIS) N/A 932 50220

All other Windows input code pages use the Windows code page if the SO network encoding is selected.

When using the ISO encoding, you must ensure that the InterSystems IRIS 1/O translation shown in $ZM ODE is consistent
with the character set represented by the active 1SO code page used by the Terminal application.

5.6.4 EUC Encoding

The EUC encoding is relevant to far Eastern languages and is used to communicate with certain UNIX® systems. When
you select the EUC option, the Terminal application uses the following code pages to translate 1/O to and from the server.
The Terminal application selects the appropriate EUC code page based on the current Windows input code page. The fol-
lowing mappings are enabled:

Language Region ISO Windows Network
Standard Code Page Code Page
Japanese N/A 932 51932
Simplified Chinese N/A 936 51936
Korean N/A 949 51949

28 Using the Windows Terminal

Specifying the Physical Character Setting of the Display

Japanese (JIS) support is provided under the 1ISO network encoding using the 50220 code page to translate to/from the
internal Unicode.

5.7 Specifying the Physical Character Setting of the
Display

To specify the physical character setting, select Edit > Display Physical Character Setting and then select either Logical and
Physical. This option controls the aspect of the characters displayed in the application window. The difference is apparent
only when using multibyte character sets.

5.8 See Also

e Customizing the ObjectScript Shell

» Advanced Topics

Using the Windows Terminal 29

Running the Terminal Application from
the Command Line

You can start the Terminal application from the Windows command line. When you do this, you have options for specifying
the server to connect to, the namespace to access, code to run, and the window size and position. You can run routines, and
you can also run Terminal scripts.

6.1 Starting the Terminal Application from the Command
Line

To start the Terminal application from a Windows command line, use a command with one of the following general forms:

To connect to the local instance:

iristerm/consol e=ConnectString Argl Arg2 ... ArgN ScriptFilePath
To connect to a remote instance:

iristerm/server=ConnectString Argl Arg2 ... ArgN ScriptFilePath
To start the application without any connection:

iristermArgl Arg2 ... ArgN ScriptFilePath

Note: If you start the Terminal application in this way, the menu bar displays an additional menu — the Connect
menu — which you can use to connect to an instance.

Where:

ConnectSring indicates the instance to connect to. See Connection Options.

Argl ... ArgN are additional optional arguments, separated by spaces. These arguments specify the server to connect
to, and provide other information about the starting environment for the session. You can also specify the name of a
routine to run.

ScriptFilePath is the optional pathname of the script file to execute.

Using the Windows Terminal 31

Running the Terminal Application from the Command Line

If the PATH environment variable includes the location of the InterSystems IRIS® data platform binaries, then use the
command namei ri stermoriri st erm exe. Otherwise, you must use a full or partial path. For a default installation
of InterSystems IRIS, the binaries are in the directory install-dir\Bin

6.2 Connection Options

When you start the Terminal application from the Windows command line, you can include the / consol e argument, the
/ server argument, or neither. The following variations are accepted:
/console=cn_iptcp:HostAddr

This syntax specifies the target system with which the Terminal application is to interact over a TELNET connection.
This is useful for running a script on the local machine. In this case, you specify the local machine IP address and
port as HostAddr. For example:

iristerm/consol e=cn_i ptcp: 127. 0. 0. 1] 23]

/console=cn_ap:Instance[Namespace]

This syntax connects to a local instance and switches to the given namespace (if given). For example:
iristerm/consol e=cn_ap:iris[USER]

In this case, the instance name isi ri s, and the namespace name is USER.

The namespace name is optional. If it is not supplied, the default namespace is used.

/console=cn_ap:Instance[Namespace]:Routine

This syntax connects to a local instance, switches to the given namespace, and executes the given routine. For
example:

iristerm/consol e=cn_ap:iris[USER] : "\ 9%®

In this case, the instance name isi ri s, and the namespace name is USER. The routine name is ~%® (which prints
out the current date).

The namespace name is optional. If it is not supplied, the default namespace is used.

When the routine ends, the session is closed.

/server=ServerName

This syntax connects securely to a remote server. For example:
iristerm/server=TESTIRI S

For ServerName, specify an InterSystems IRIS server. To see the list of available servers, select the InterSystems
Launcher and then select Preferred Server. The system then displays a list of servers.

In order to access the server in this way, make sure of the following:

» On the desired server, the Telnet service (¥Ber vi ce_Tel net) must be enabled. (Note that this service is
not enabled by default.)

For information, see “Services” in the Security Administration Guide.

* The server must be running.

32 Using the Windows Terminal

Additional Arguments

On UNIX®, the server does not need to be running, but you will log in to a shell, not directly in to InterSystems
IRIS.

6.3 Additional Arguments

You can also include the following additional arguments:

/size=RowsxCols

Specifies the initial size of the Terminal application screen, in terms of rows and columns. Both Rows and Cols
must be unsigned integers. The x that separates them is required as shown. No spaces are permitted in the control
argument.

The allowed ranges for Rows and Colsare:
* 5<=Rows<=64

e 20<=Cols<=132

/pos=(X,Y)

Specifies the initial origin of the Terminal application screen in the display device window in pixels. Both X and
Y must be unsigned integers. The parentheses around the pair and the comma separator are required. No spaces
are permitted in the control argument.

Note: Itis possible to place a window outside the displayed area by using values for X and Y that are larger
than the size of the display device. You should avoid doing so.

/ppos=(Xpct,Ypct)

Specifies the initial origin of the Terminal application screen in the display device window in terms of a percentage
of the display area. Both Xpct and Ypct must be unsigned integers. The parentheses around the pair and the comma
separator are required. No spaces are permitted in the control argument.

The allowed ranges for XPct and Ypct are:

+ 0<=Xpct<=40

* 0<=Ypct<=40

That is, the window origin cannot be placed above and to the left of the device origin. Nor can it be placed more
than 40% down or across the display device.

/UnbufferedLogging

Causes output to be written immediately to the log file when logging is active instead of being buffered. This may
be useful if another process is inspecting the output of the log file.

Using the Windows Terminal 33

Running the Terminal Application from the Command Line

6.4 Examples

6.4.1 Example: Running a Script in Batch Mode

This example runs a script in batch mode:

C\InterSystens\iris\bin\iristermexe /consol e=cn_i ptcp: 127.0.0.1[23] C:\Test Scri pt. scr

6.4.2 Example: Running a Routine

This example starts the Terminal application and starts the basic debugging routine ~% STACK to display information
about the current user and the Terminal application process:

C\InterSystens\iris\bin\iristermexe /consol e=cn_ap:iris[USER]: "%STACK

34 Using the Windows Terminal

Advanced Topics (Terminal Application)

This topic discusses advanced subjects applicable to the Terminal application. See also Customizing the ObjectScript Shell,
which has options specific to the ObjectScript shell.

7.1 Escape Sequences That Affect the Terminal Window

The Terminal application supports the following escape sequences, which affect or provide information about the Terminal
window:

Sequence Effect

ESC[1t Restore window.
ESC[2t Minimize window.
ESC [11t Report window state.
ESC [8;rows;colums t Set window size.
ESC [18 t Report window size.

The window state is reported in $ZB of the following READ command as:

e normal:ESC [1t

e minimized:ESC [2 t

If rows or columns is 0 in the set command, the current value is not changed. Range of values supported is rows: 10-120,
columns: 10-160.

The window size is reported in $ZB of the following READ command as ESC [8; r ows; col uims t

One consequence of changing the size is that the scroll-back buffer is cleared by the reset. Another is that for larger row
values the font size is decreased to make the window fit on the screen.

Also, the following sequence sets the window title:

CsC 2; title ST

Where:

e OSC, Operating System Command, is the 7-bit sequence ESC] or the 8-bit character $C(157).

Using the Windows Terminal 35

Advanced Topics (Terminal Application)

e ST, String Terminator, is the 7-bit sequence ESC \ or the 8-bit character $C(156).
The maximum length of the title is 80 characters.
For example, the following statement changes the title of the Terminal window:

wite $C(157)_"2;a new title"_$C(156)

7.2 Key Timing Mode

To enter or exit key timing mode, press Alt+Shift+T.

This mode can help you determine performance of a host system under various load conditions. The output of a timing run
is the file KEYTIMER.LOG in the system manager’s directory.

7.3 Learning Mode

In learning mode, the Terminal application generates a log file that you can quickly convert to a script file, after making
only minor edits. When this mode is enabled, the log file is a sequence of script wait for and send commands. The wait
for commands show up to 16 characters preceding the sent data.

To enter learning mode:
1. Press Alt+L to enable logging. Then specify a log filename and directory, as described in Logging the Session.

2. Press Alt+Shift+L.

To exit learning mode, press Alt+Shift+L.

7.4 Disabling the Close Button of the Terminal

If you need to disable the close button (X) of the Terminal application, add a registry key, as follows:

* On 32-bit Windows machines: HKEY_LOCAL_MACHINE\SOFTWARE\InterSystems\Terminal\NoExit
Notice the space in “Terminal”.

e On 64-bit Windows machines:

HKEY_LOCAL_MACHINE\SOFTWARE\ Wow6432Node \InterSystems\Terminal\NoExit=1

The NoExit value is of type REG_SZ in both cases.

7.5 Mapping of the Extended Keyboard

The Terminal application supports application keyboard mode for the extended keyboard as follows:

36 Using the Windows Terminal

Using the Terminal application with DDE

Key

Num Lock
Keypad-divide
Keypad-times
Keypad-minus
Keypad-plus
Shift+Keypad-plus
F1, F2, F3, F4
Shift+F1 ... Shift+F10

Mapped Value

PF1

PF2

PF3

PF4

Keypad-comma

Keypad-minus

PF1, PF2, PF3, PF4 (respectively)
F11 ... F20 (respectively)

The keypad cluster of the extended keyboard is mapped as follows:

Key Mapped Value
Insert Insert Here
Home Find

Page Up Prev Screen
Delete Remove

End Select

Page Down Next Screen

The Pause key acts as a single XON/XOFF toggle key.

7.6 Using the Terminal application with DDE

The Terminal application supports DDE (Dynamic Data Exchange) links to permit other applications to talk to a remote
host. This section assumes that you are familiar with DDE. The topics here are as follows:

» Layout — Used to obtain status information. Examples are the row and column size, whether there is a connection,

and so on.

e Screen — Used to gather data from the Terminal application screen.

» Message — Used to send data to either the Terminal application screen or the host.

Note: A Windows task cannot discriminate between multiple instances of the Terminal application when it comes to
using DDE. Therefore, use DDE only if one copy of the Terminal application is running.

7.6.1 DDE Layout Connections

The Terminal application supports DDE requests for what could be considered as static information through the Layout

topic.

Using the Windows Terminal

37

https://en.wikipedia.org/wiki/Dynamic_Data_Exchange

Advanced Topics (Terminal Application)

Item
Column
Row

hwnd
Connected

Read

Script
Title

Meaning of Returned Value

The number of columns of the window.

The number of rows of the window.

The decimal equivalent of the main window handle.

A null string if there is no connection, otherwise the equivalent of the title string "mode: node"

A 1 if the last received character was a CTRL/A. Its use is detection of the end of screen
painting.

A 1 if a script is currently running, otherwise 0.

The title of the window.

7.6.2 DDE Screen Connections

The Terminal application supports DDE requests for screen data through the Screen topic. Currently, one POKE command
is available to select which part of a screen line is desired.

Item
Cursor
Line
LeftLine
RightLine
All

Piece

Meaning of Returned Value

The current position of the cursor, in the form row;col.

The current line (without a CR LF).

The left part of the current line up to but not including the character under the cursor.
The right part of the current line including the character under the cursor.

The entire screen, each line is delimited by CR LF.

The currently selected piece of a screen line (without a CR LF).

Note: The item "Piece" can be POKEd with a string of the form "RnnCmmLpp" to cause the Piece request to retrieve
(at most) pp characters on the screen line nn beginning with column mm. The top left corner of the screen is row
1, column 1.

7.6.3 DDE Message Connections

The Terminal application supports DDE requests for data communications through the Message topic. These are implemented
with DDE POKE commands.

Item
Send
Display

Meaning of returned value
The DDE message value is sent to the host if a connection is active.

The DDE message value is sent to the "screen" as if it were received from the host.

38

Using the Windows Terminal

	Table of Contents
	1 Basics of the Terminal Application
	1.1 Starting the Terminal Application
	1.2 Overview of Terminal Application Features
	1.3 Copying and Pasting
	1.3.1 Keyboard Shortcuts
	1.3.2 Notes about Copying and Pasting

	1.4 Interrupting Execution
	1.5 Clearing the Screen
	1.6 Logging the Terminal Application Session
	1.7 Printing
	1.8 Exiting
	1.9 Technical Notes
	1.10 See Also

	2 Connecting to Remote Hosts
	2.1 Connect Menu Options
	2.2 Remote Connection Example

	3 Creating and Using Terminal Scripts
	3.1 Contents of a Script File
	3.2 Script Command Summary
	3.3 Script Command Arguments
	3.4 Sample Script
	3.5 Starting a Script
	3.6 Pausing a Script
	3.7 Stopping a Script
	3.8 See Also

	4 Script Command Reference
	4.1 break
	4.2 call script
	4.3 case match
	4.4 closelog
	4.5 connect
	4.6 debug
	4.7 disconnect
	4.8 display
	4.9 echo
	4.10 execute
	4.11 exit
	4.12 goto
	4.13 if empty
	4.14 key_starttime
	4.15 key_stoptime
	4.16 key_timer
	4.17 logfile
	4.18 multiwait for
	4.19 notify
	4.20 on error
	4.21 pause
	4.22 return
	4.23 send
	4.24 subroutine
	4.25 terminate
	4.26 test
	4.27 timer
	4.28 title
	4.29 wait for

	5 Customizing the Terminal Application
	5.1 Specifying the Font
	5.2 Specifying the Colors
	5.3 Specifying the Window Size
	5.4 Defining Custom Key Combinations
	5.5 Specifying User Settings
	5.6 Specifying the Network Encoding
	5.6.1 UTF8 Encoding
	5.6.2 Windows Encoding
	5.6.3 ISO Encoding
	5.6.4 EUC Encoding

	5.7 Specifying the Physical Character Setting of the Display
	5.8 See Also

	6 Running the Terminal Application from the Command Line
	6.1 Starting the Terminal Application from the Command Line
	6.2 Connection Options
	6.3 Additional Arguments
	6.4 Examples
	6.4.1 Example: Running a Script in Batch Mode
	6.4.2 Example: Running a Routine

	7 Advanced Topics (Terminal Application)
	7.1 Escape Sequences That Affect the Terminal Window
	7.2 Key Timing Mode
	7.3 Learning Mode
	7.4 Disabling the Close Button of the Terminal
	7.5 Mapping of the Extended Keyboard
	7.6 Using the Terminal application with DDE
	7.6.1 DDE Layout Connections
	7.6.2 DDE Screen Connections
	7.6.3 DDE Message Connections

	Index

