
Using File Adapters in
Productions

Version 2025.1
2025-06-03

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using File Adapters in Productions
PDF generated on 2025-06-03
InterSystems IRIS® Version 2025.1
Copyright © 2025 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble®, InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™, HealthShare® Health Connect Cloud™, InterSystems® Data Fabric Studio™, InterSystems IRIS for
Health™, InterSystems Supply Chain Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems
Corporation. TrakCare is a registered trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Congress Street,
Boston, MA 02114, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Using the File Inbound Adapter .. 1
1.1 Overall Behavior .. 1
1.2 Creating a Business Service to Use the Inbound Adapter .. 2
1.3 Implementing the OnProcessInput() Method ... 2

1.3.1 Invoking Adapter Methods ... 3
1.4 Understanding the Adapter Archiving Behavior .. 3
1.5 Example Business Service Classes .. 5

1.5.1 Example 1 .. 5
1.5.2 Example 2 .. 6
1.5.3 Example 3 .. 7

1.6 Adding and Configuring the Business Service ... 7
1.7 See Also .. 8

2 Using the File Outbound Adapter ... 9
2.1 Overall Behavior .. 9
2.2 Creating a Business Operation to Use the Adapter .. 9
2.3 Creating Message Handler Methods .. 10

2.3.1 Calling Adapter Methods from the Business Operation .. 11
2.4 Example Business Operation Class .. 12
2.5 Adding and Configuring the Business Operation ... 14
2.6 See Also .. 14

3 Using the File Passthrough Service and Operation Classes ... 15
3.1 See Also .. 15

File Adapter Settings ... 17
Settings for the File Inbound Adapter .. 18
Settings for the File Outbound Adapter .. 23

Using File Adapters in Productions iii

1
Using the File Inbound Adapter

This topic describes how to use the file inbound adapter (EnsLib.File.InboundAdapter).

Tip: InterSystems IRIS® data platform also provides specialized business service classes that use this adapter, and one
of those might be suitable for your needs. If so, no programming would be needed. See Business Host Classes That
Use File Adapters.

1.1 Overall Behavior
EnsLib.File.InboundAdapter finds a file in the configured location, reads the input, and sends the input as a stream to the
associated business service. The adapter can look for a file by its exact name, or you can use a wildcard specification. The
business service, which you create and configure, uses this stream and communicates with the rest of the production. If the
inbound file adapter finds multiple files in the configured location, it processes them in order of the time, earliest first,
based on when the file was last modified.

Note that the adapter ignores any fractional seconds in the time value. Consequently, if two or more files have a modified
date-time differing only in the fractional second part of the time, the adapter can process them in any order.

In more detail:

1. Each time the adapter encounters input from its configured data source, it calls the internal ProcessInput() method of
the business service class, passing the stream as an input argument.

2. The internal ProcessInput() method of the business service class executes. This method performs basic production tasks
such as maintaining internal information as needed by all business services. You do not customize or override this
method, which your business service class inherits.

3. The ProcessInput() method then calls your custom OnProcessInput() method, passing the stream object as input. The
requirements for this method are described in Implementing the OnProcessInput() Method.

The response message follows the same path, in reverse.

Using File Adapters in Productions 1

1.2 Creating a Business Service to Use the Inbound
Adapter
To use this adapter in your production, create a new business service class as described here. Later, add it to your production
and configure it. You must also create appropriate message classes, if none yet exist. See Defining Messages.

The following list describes the basic requirements of the business service class:

• Your business service class should extend Ens.BusinessService.

• In your class, the ADAPTER parameter should equal EnsLib.File.InboundAdapter.

• Your class should implement the OnProcessInput() method, as described in Implementing the OnProcessInput Method.

• For other options and general information, see Defining a Business Service Class.

The following example shows the general structure that you need:

Class Definition

Class EFILE.Service Extends Ens.BusinessService
{
Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %FileCharacterStream,pOutput As %RegisteredObject) As %Status
{
 set tsc=$$$OK
 //your code here
 Quit tsc
}
}

The first argument to OnProcessInput() could instead be %FileBinaryStream, depending on the contents of the expected file.

Note: The classes %FileCharacterStream and %FileBinaryStream are both deprecated except for use in product APIs
such as this one (the EnsLib.File.InboundAdapter).

1.3 Implementing the OnProcessInput() Method
Within your business service class, your OnProcessInput() method should have the following signature:

Method OnProcessInput(pInput As %FileCharacterStream,pOutput As %RegisteredObject) As %Status

Or:

Method OnProcessInput(pInput As %FileBinaryStream,pOutput As %RegisteredObject) As %Status

Where:

• pInput is the message object that the adapter will send to this business service. This can be of type %FileCharacterStream

or %FileBinaryStream, depending on the contents of the expected file. You use an adapter setting (Charset) to indicate
whether the input file is character or binary; see Settings for the File Inbound Adapter.

In either case, pInput.Attributes("Filename") equals the name of the file.

• pOutput is the generic output argument required in the method signature.

2 Using File Adapters in Productions

Using the File Inbound Adapter

The OnProcessInput() method should do some or all of the following:

1. Examine the input file (pInput) and decide how to use it.

2. Create an instance of the request message, which will be the message that your business service sends.

For information on creating message classes, see Defining Messages.

3. For the request message, set its properties as appropriate, using values in the input.

4. Call a suitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see Sending
Request Messages.

Each of these methods returns a status (specifically, an instance of %Status).

5. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message that you
have received. This step is required.

6. Return an appropriate status. This step is required.

1.3.1 Invoking Adapter Methods

Within your business service, you might want to invoke the following instance methods of the adapter. Each method corre-
sponds to an adapter setting; these methods provide the opportunity to make adjustments following a change in any setting.
For detailed descriptions of each setting, see Settings for the File Inbound Adapter.

ArchivePathSet()

Method ArchivePathSet(pInVal As %String) As %Status

pInVal is the directory where the adapter should place a copy of each file after processing.

FilePathSet()

Method FilePathSet(path As %String) As %Status

path is the directory on the local server in which to look for files.

WorkPathSet()

Method WorkPathSet(path As %String) As %Status

WorkPath

path is the directory on the local server in which to place files while they are being processed.

1.4 Understanding the Adapter Archiving Behavior
After the business service sends a request to some destination within the production, the adapter may archive or delete the
input file that triggered the request. The following table describes the archiving behavior of the adapter given various settings.

You can use the table to choose the combination of settings that best suits your environment. For example, if the production
uses a Message Bank operation to track message bodies from the business service, you can use the first scenario to ensure
that the contents of files are archived to the Message Bank before the file streams are removed. For more information, see
Configuring the Enterprise Message Bank. You can use the third and fourth scenarios to permanently retain archived input

Using File Adapters in Productions 3

Understanding the Adapter Archiving Behavior

files. You can use the sixth scenario to trigger an event on the target host that is independent of the contents of the input
file since the file may be deleted, causing a potential race condition.

Note: The adapter can rename or delete a file sent to host only if the method does not return an error.

In all the scenarios except the third and fourth scenarios, InterSystems IRIS purges the input file during a manual or
scheduled purge if the Include message bodies setting is set to true.

CAUTION: Be careful with message purges in the scenario where:

• The file specification (the File Spec setting) does not include a wildcard.

• And your settings do not cause the system to move a file when processing it.

In this scenario, unless you time the purge appropriately, it would be possible for the system to purge a
file that has not yet been processed.

File LocationFile Sent to HostRequest
Type

ArchivePath
and WorkPath

Scenario

ArchivePath + filename (with
optional timestamp)

Input file renamed ArchivePath

+ filename (with optional
timestamp)

AsyncArchivePath and
WorkPath are the
same, but
different from
FilePath

1

If Delete From Server is true,
none

If Delete From Server is false,
input directory

Input fileSyncArchivePath and
WorkPath are not
set

2

ArchivePath + filename (with
optional timestamp)

Input fileSyncArchivePath is
different from
FilePath, and
WorkPath is not
set

3

ArchivePath + filename (with
optional timestamp)

Input file renamed WorkPath +
filename (with optional
timestamp)

SyncArchivePath is
different from
WorkPath, which
is different from
FilePath

4

If Delete From Server is true,
none

If Delete From Server is false,
WorkPath + filename (with
optional timestamp)

Input file renamed WorkPath +
filename (with optional
timestamp)

SyncArchivePath is not
set, and
WorkPath is
different from
FilePath

5

If Delete From Server is true,
none

If Delete From Server is false,
input directory

Input fileAsyncArchivePath is the
same as FilePath,
and WorkPath is
not set

6

4 Using File Adapters in Productions

Using the File Inbound Adapter

1.5 Example Business Service Classes

1.5.1 Example 1

The following code example shows a business service class that references the EnsLib.File.InboundAdapter. This example
works as follows:

1. The file has a header. The header information is added to each transaction.

2. The file experiences a number of transactions.

3. The header and transaction XML structures are defined by the classes LBAPP.Header and LBAPP.Transaction (not
shown).

4. Some error-handling is shown, but not all.

5. The method RejectBatch() is not shown.

6. The transactions are submitted to the business process asynchronously, so there is no guarantee they are processed in
order as they appear in the file.

7. The entire transaction object is passed as the payload of each message to the business process.

8. All of the transactions in one file are submitted as a single InterSystems IRIS session.

Class Definition

Class LB.MarketOfferXMLFileSvc Extends Ens.BusinessService
{
Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %FileCharacterStream,
 pOutput As %RegisteredObject) As %Status
{
 // pInput is a %FileCharacterStream containing the file xml

 set batch=pInput.Filename // path+name.ext
 set batch=##class(%File).GetFilename(batch) // name.ext

 // Load the data from the XML stream into the database
 set reader = ##class(%XML.Reader).%New()

 // first get the header
 set sc=reader.OpenStream(pInput)
 if 'sc {
 do $this.RejectBatch("Invalid XML Structure",sc,pInput,batch)
 quit 1
 }
 do reader.Correlate("Header","LBAPP.Header")
 if (reader.Next(.object,.sc)) {set header=object}
 else {
 if 'sc {do $this.RejectBatch("Invalid Header",sc,pInput,batch)}
 else {do $this.RejectBatch("No Header found",sc,pInput,batch)}
 quit 1
 }

 // then get the transactions, and call the BP for each one
 do reader.Correlate("Transaction","LBAPP.Transaction")
 while (reader.Next(.object,.sc)) {
 set object.Header=header
 set sc=$this.ValidateTrans(object)
 if sc {set sc=object.%Save()}
 if 'sc {
 do $this.RejectTrans("Invalid transaction",sc,object,batch,tranct)
 set sc=1
 continue
 }

 // Call the BP for each Transaction
 set request=##class(LB.TransactionReq).%New()
 set request.Tran=object

Using File Adapters in Productions 5

Example Business Service Classes

 set ..%SessionId="" // make each transaction a new session
 set sc=$this.SendRequestAsync("LB.ChurnBPL",request)
 }

 do reader.Close()
 quit sc
}
}

1.5.2 Example 2

The following code example shows another business service class that uses the EnsLib.File.InboundAdapter. Code comments
explain the activities within OnProcessInput():

Class Definition

Class training.healthcare.service.SrvFilePerson Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %RegisteredObject,
 pOutput As %RegisteredObject) As %Status
{

 //file must be formatted as set of lines, each field comma separated:
 //externalcode,
 //name, surname, dateBirth, placeBirth, provinceBirth
 //nationality, gender,
 //address, city, province, country,
 //fiscalCode
 //note:
 //fiscalCode may be optional
 //sso is an internal code so must be detected inside InterSystems IRIS Interoperability
 //operation must be detected as well:
 //if the group: name, surname, dateBirth, placeBirth, provinceBirth
 //point to a record then it's an UPDATE; if not it's a NEW
 //no DELETE via files

 Set $ZT="trap"

 set counter=1 //records read
 while 'pInput.AtEnd {
 set line=pInput.ReadLine()

 set req=##class(training.healthcare.message.MsgPerson).%New()
 set req.source="FILE"

 set req.externalCode=$piece(line,",",1)
 set req.name=$piece(line,",",2)
 set req.surname=$piece(line,",",3)
 set req.dateBirth=$piece(line,",",4)
 set req.placeBirth=$piece(line,",",5)
 set req.provinceBirth=$piece(line,",",6)
 set req.nationality=$piece(line,",",7)
 set req.gender=$piece(line,",",8)
 set req.address=$piece(line,",",9)
 set req.city=$piece(line,",",10)
 set req.province=$piece(line,",",11)
 set req.country=$piece(line,",",12)
 set req.fiscalCode=$piece(line,",",13)

 //call the process
 //res will be Ens.StringResponse type message
 set st=..SendRequestAsync(
 "training.healthcare.process.PrcPerson", req)
 if 'st
 $$$LOGERROR("Cannot call PrcMain Process for Person N°" _ counter)

 set counter=counter+1
 }

 $$$LOGINFO("Persons loaded : " _ (counter - 1))
 Set $ZT=""
 Quit $$$OK

trap
 $$$LOGERROR("Error loading for record N°" _ counter _ " - " _ $ZERROR)
 SET $ECODE = ""

6 Using File Adapters in Productions

Using the File Inbound Adapter

 Set $ZT=""
 Quit $$$OK
}

}

1.5.3 Example 3

The following code example shows a business service class that uses the EnsLib.File.InboundAdapter.

Class Definition

Class EnsLib.File.PassthroughService Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.File.InboundAdapter";

/// Configuration item(s) to which to send file stream messages
Property TargetConfigNames As %String(MAXLEN = 1000);

Parameter SETTINGS = "TargetConfigNames";

/// Wrap the input stream object in a StreamContainer message object and
/// send it. If you move the input file to the ArchivePath or delete the file
/// after sending, send the message object synchronously. Doing so prevents
/// a race condition, that is, a situation where the adapter attempts to
/// delete or modify the file while the target Config Item is still processing it.
/// Alternatively, send the object asynchronously.
Method OnProcessInput(pInput As %Stream.Object,
 pOutput As %RegisteredObject) As %Status
{
 Set tSC=$$$OK, tSource=pInput.Attributes("Filename"),
 pInput=##class(Ens.StreamContainer).%New(pInput)
 Set tWorkArchive=(""'=..Adapter.ArchivePath)&&(..Adapter.ArchivePath=
 ..Adapter.WorkPath || (""=..Adapter.WorkPath &&
 (..Adapter.ArchivePath=..Adapter.FilePath)))
 For iTarget=1:1:$L(..TargetConfigNames, ",")
 {
 Set tOneTarget=$ZStrip($P(..TargetConfigNames,",",iTarget),"<>W")
 Continue:""=tOneTarget
 $$$sysTRACE("Sending input Stream ...")
 If tWorkArchive {
 Set tSC1=..SendRequestAsync(tOneTarget,pInput)
 Set:$$$ISERR(tSC1) tSC=$$$ADDSC(tSC,tSC1)
 } Else {
 Set tSC1=..SendRequestSync(tOneTarget,pInput)
 Set:$$$ISERR(tSC1) tSC=$$$ADDSC(tSC,tSC1)
 }
 }
 Quit tSC
}
}

This example sets the tSource variable to the original file name which is stored in the Filename subscript of the Attributes

property of the incoming stream (pInput).

InterSystems recommends sending an asynchronous request only if you do not intend to move or delete the input file. For
additional guidance, see Understanding the Adapter Archiving Behavior.

1.6 Adding and Configuring the Business Service
To add your business service to a production, use the Management Portal to do the following:

1. Add an instance of your business service class to the production.

2. Configure the business service. For information on the settings, see Settings for the File Inbound Adapter.

3. Enable the business service.

Using File Adapters in Productions 7

Adding and Configuring the Business Service

4. Run the production.

1.7 See Also
• Business Host Classes That Use File Adapters

• Using the File Outbound Adapter

• Using the File Passthrough Service and Operation Classes

• Settings for the File Inbound Adapter

8 Using File Adapters in Productions

Using the File Inbound Adapter

2
Using the File Outbound Adapter

This topic describes how to use the file outbound adapter (EnsLib.File.OutboundAdapter).

Tip: InterSystems IRIS® data platform also provides specialized business service classes that use this adapter, and one
of those might be suitable for your needs. If so, no programming would be needed. See Business Host Classes That
Use File Adapters.

2.1 Overall Behavior
Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

2.2 Creating a Business Operation to Use the Adapter
To create a business operation to use EnsLib.File.OutboundAdapter, you create a new business operation class. Later, add
it to your production and configure it.

You must also create appropriate message classes, if none yet exist. See Defining Messages.

The following list describes the basic requirements of the business operation class:

• Your business operation class should extend Ens.BusinessOperation.

• In your class, the ADAPTER parameter should equal EnsLib.File.OutboundAdapter.

• In your class, the INVOCATION parameter should specify the invocation style you want to use, which must be one of
the following.

– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job is allocated for the task. This is
the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

Using File Adapters in Productions 9

• Your class should define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
{
<MapItems>
 <MapItem MessageType="messageclass">
 <Method>methodname</Method>
 </MapItem>
 ...
</MapItems>
}

• Your class should define all the methods named in the message map. These methods are known as message handlers.
Each message handler should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is
the name of a response message class. In general, the method code will refer to properties and methods of the Adapter

property of your business operation.

For information on defining message classes, see Defining Messages.

For information on defining the message handler methods, see Creating Message Handler Methods.

• For other options and general information, see Defining a Business Operation Class.

The following example shows the general structure that you need:

Class Definition

Class EHTP.NewOperation1 Extends Ens.BusinessOperation
{
Parameter ADAPTER = "EnsLib.File.OutboundAdapter";

Parameter INVOCATION = "Queue";

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status
{
 Quit $$$ERROR($$$NotImplemented)
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="RequestClass">
 <Method>Sample</Method>
 </MapItem>
</MapItems>
}
}

2.3 Creating Message Handler Methods
When you create a business operation class for use with EnsLib.File.OutboundAdapter, typically your biggest task is writing
message handlers for use with this adapter, that is, methods that receive production messages and then write files.

Each message handler method should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is the
name of a response message class.

10 Using File Adapters in Productions

Using the File Outbound Adapter

In general, the method should do the following:

1. Examine the inbound request message.

2. Using the information from the inbound request, call a method of the Adapter property of your business operation. The
following example calls the EnsLib.File.OutboundAdapter method PutString():

Class Member

/// Send an approval to the output file
Method FileSendReply(pRequest As Demo.Loan.Msg.SendReply,
 Output pResponse As Ens.Response) As %Status
{
 $$$TRACE("write to file "_pRequest.Destination)
 Set tSC=..Adapter.PutString(pRequest.Destination, pRequest.Text)
 Quit tSC
}

You can use similar syntax to call any of the EnsLib.File.OutboundAdapter methods described in Calling Adapter
Methods from the Business Operation.

3. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message. This
step is required.

4. Return an appropriate status. This step is required.

2.3.1 Calling Adapter Methods from the Business Operation

Your business operation class can use the following instance methods of EnsLib.File.OutboundAdapter.

CreateTimestamp()

ClassMethod CreateTimestamp(pFilename As %String = "",
 pSpec As %String = "_%C") As %String

Using the pFilename string as a starting point, incorporate the time stamp specifier provided in pSpec and return
the resulting string. The default time stamp specifier is _%C which provides the full date and time down to the
millisecond.

For full details about time stamp conventions, see Time Stamp Specifications for Filenames.

Delete()

Method Delete(pFilename As %String) As %Status

Deletes the file.

Exists()

Method Exists(pFilename As %String) As %Boolean

Returns 1 (True) if the file exists, 0 (False) if it does not.

GetStream()

Method GetStream(pFilename As %String,
 ByRef pStream As %AbstractStream = {$$$NULLOREF})
 As %Status

Gets a stream from the file.

Using File Adapters in Productions 11

Creating Message Handler Methods

NameList()

Method NameList(Output pFileList As %ListOfDataTypes,
 pWildcards As %String = "*",
 pIncludeDirs As %Boolean = 0) As %Status

Get a list of files in the directory specified by the FilePath setting. The filenames are returned in a %ListOfDataTypes

object. Each entry in the list is a semicolon-separated string containing:

Filename;Type;Size;DateCreated;DateModified;FullPathName

PutLine()

Method PutLine(pFilename As %String, pLine As %String) As %Status

Writes a string to the file and appends to the string the characters specified in the LineTerminator property. By
default, the LineTerminator is a carriage return followed by a line feed (ASCII 13, ASCII 10).

If your operating system requires a different value for the LineTerminator property, set the value in the OnInit()
method of the business operation. For example:

 Method OnInit() As %Status
 {
 Set ..Adapter.LineTerminator="$C(10)"
 Quit $$$OK
 }

You can also make the property value to be dependent on the operating system:

 Set ..Adapter.LineTerminator="$Select($$$isUNIX:$C(10),1:$C(13,10))"

PutString()

Method PutString(pFilename As %String, pData As %String) As %Status

Writes a string to the file.

PutStream()

Method PutStream(pFilename As %String,
 pStream As %Stream,
 ByRef pLen As %Integer = -1) As %Status

Writes a stream to the file.

Rename()

Method Rename(pFilename As %String,
 pNewFilename As %String,
 pNewPath As %String = "") As %Status

Renames the file in the current path or moves it to the path specified by pNewPath.

2.4 Example Business Operation Class
The following code example shows a business operation class that references the EnsLib.File.OutboundAdapter. This class
can perform two operations: If it receives valid Person data, it files Person information based on Person status. If it receives
invalid Person data, it logs this information separately.

12 Using File Adapters in Productions

Using the File Outbound Adapter

Class Definition

Class training.operation.OpeFilePerson extends Ens.BusinessOperation
{

Parameter ADAPTER = "EnsLib.File.OutboundAdapter";

Parameter INVOCATION = "Queue";

/* write on log file wrong person records */
Method writeMessage(
 pRequest As MyData.Message,
 Output pResponse As Ens.StringResponse)
 As %Status
{
 $$$LOGINFO("called Writer")

 set ..Adapter.FilePath="C:\InterSystems\test\ftp"

 set st=..Adapter.PutLine("person.log",message)

 Quit $$$OK
}

/* write on log file wrong person records */
Method logWrongPerson(
 pRequest As training.healthcare.message.MsgPerson,
 Output pResponse As Ens.StringResponse)
 As %Status
{
 $$$LOGINFO("called OpeFilePerson")

 set ..Adapter.FilePath="C:\InterSystems\test\errorparh"
 set message="some information are missing from record: " _
 pRequest.sso _ ", " _
 pRequest.name _ ", " _
 pRequest.surname

 set st=..Adapter.PutLine("Person.log",message)

 Quit $$$OK
}

/* write in xml format the list of active/inactive/requested Persons */
Method writeSSOList(
 pRequest As Ens.StringRequest,
 Output pResponse As Ens.StringResponse)
 As %Status
{
 set ..Adapter.FilePath="C:\InterSystems\test\ftp"
 set status=pRequest.StringValue

 if status="ACTIVE" set fileName="ActiveSSO.xml"
 if status="INACTIVE" set fileName="InactiveSSO.xml"
 if status="REQUESTED" set fileName="RequestedSSO.xml"

 set st=..Adapter.PutLine(fileName,"<Persons>")

 set rs=
 ##class(training.healthcare.data.TabPerson).selectPersons("",status)
 while rs.Next(){
 set st=..Adapter.PutLine(fileName,"<Person>")
 for i=1:1:rs.GetColumnCount() {
 set st=..Adapter.PutLine(fileName,
 "<"_ rs.GetColumnName(i)_">" _
 rs.GetData(i)_"</"_ rs.GetColumnName(i)_">")
 }
 set st=..Adapter.PutLine(fileName,"<Person>")
 }

 set st=..Adapter.PutLine(fileName,"<Persons>")

 set pResponse=##class(Ens.StringResponse).%New()
 set pResponse.StringValue="done"

 quit $$$OK
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="training.healthcare.message.MsgPerson">
 <Method>logWrongPerson</Method>
 </MapItem>

Using File Adapters in Productions 13

Example Business Operation Class

 <MapItem MessageType="Ens.StringRequest">
 <Method>writeSSOList</Method>
 </MapItem>
</MapItems>
}

}

2.5 Adding and Configuring the Business Operation
To add your business operation to a production, use the Management Portal to do the following:

1. Add an instance of your business operation class to the production.

2. Configure the business operation. For information on the settings, see Settings for the File Outbound Adapter.

3. Enable the business operation.

4. Run the production.

2.6 See Also
• Business Host Classes That Use File Adapters

• Using the File Inbound Adapter

• Using the File Passthrough Service and Operation Classes

• Settings for the File Outbound Adapter

14 Using File Adapters in Productions

Using the File Outbound Adapter

3
Using the File Passthrough Service and
Operation Classes

InterSystems IRIS® data platform also provides two general purpose classes to send and receive files in any format. These
classes are as follows:

• EnsLib.File.PassthroughService receives files of any format

• EnsLib.File.PassthroughOperation sends files of any format

EnsLib.File.PassthroughService provides the setting Target Config Names, which allows you to specify a comma-separated
list of other configuration items within the production to which the business service should relay the message. Usually the
list contains one item, but it can be longer. Target Config Names can include business processes or business operations.

EnsLib.File.PassthroughOperation provides the File Name setting, which allows you to specify an output file name. The
FileName can include InterSystems IRIS Interoperability time stamp specifiers. For full details, see Time Stamp Specifications
for Filenames.

3.1 See Also
• Business Host Classes That Use File Adapters

• Using the File Inbound Adapter

• Using the File Outbound Adapter

• File Adapter Settings

Using File Adapters in Productions 15

File Adapter Settings

This section provides reference information for the file inbound and outbound adapters:

Also see Settings in All Productions.

Using File Adapters in Productions 17

Settings for the File Inbound Adapter
Provides reference information for settings of the file inbound adapter, EnsLib.File.InboundAdapter.

Summary
The inbound file adapter has the following settings:

SettingsGroup

File Path, File Spec, Archive Path, Work Path, Call IntervalBasic Settings

Subdirectory Levels, Charset, Append Timestamp, Semaphore Specification, Fatal
Errors, Header Count, Confirm Complete, File Access Timeout

Additional Settings

The remaining settings are common to all business services. For information, see Settings for All Business Services.

Append Timestamp
Append a time stamp to filenames in the Archive Path and Work Path directories; this is useful to prevent possible name
collisions on repeated processing of the same filename.

• If this value is empty or 0, no time stamp is appended.

• If this setting is 1, then the standard template '%f_%Q' is appended.

• For other possible values, see Time Stamp Specifications for Filenames.

Archive Path
Full pathname of the directory where the adapter should place the input file after it has finished processing the data in the
file. This directory must exist, and it must be accessible through the file system on the local InterSystems IRIS® Interoper-
ability machine. If this setting is not specified, the adapter deletes the input file after its call to ProcessInput() returns.

To ensure that the input file is not deleted while your production processes the data from the file, InterSystems recommends
that you set Archive Path and Work Path to the same directory. Alternatively, use this adapter in a custom business service
and send only synchronous calls from this business service.

Call Interval
The polling interval for this adapter, in seconds. This is the time interval at which the adapter checks for input files in the
specified locations.

Upon polling, if the adapter finds a file, it links the file to a stream object and passes the stream object to the associated
business service. If several files are detected at once, the adapter sends one request to the business service for each individual
file until no more files are found.

If the business service processes each file synchronously, the files will be processed sequentially. If the business service
sends them asynchronously to a business process or business operation, the files might be processed simultaneously.

After processing all the available files, the adapter waits for the polling interval to elapse before checking for files again.
This cycle continues whenever the production is running and the business service is enabled and scheduled to be active.

It is possible to implement a callback in the business service so that the adapter delays for the duration of the Call Interval

between input files. For details, see Defining Business Services.

The default Call Interval is 5 seconds. The minimum is 0.1 seconds.

18 Using File Adapters in Productions

File Adapter Settings

Charset
Specifies the character set of the input file. InterSystems IRIS automatically translates the characters from this character
encoding. The setting value is not case-sensitive. Use Binary for binary files, or for any data in which newline and line
feed characters are distinct or must remain unchanged. Other settings may be useful when transferring text documents.
Choices include:

• Binary—Binary transfer

• Ascii—ASCII mode FTP transfer but no character encoding translation

• Default—The default character encoding of the local InterSystems IRIS server

• Latin1—The ISO Latin1 8-bit encoding

• ISO-8859-1—The ISO Latin1 8-bit encoding

• UTF-8—The Unicode 8-bit encoding

• UCS2—The Unicode 16-bit encoding

• UCS2-BE—The Unicode 16-bit encoding (Big-Endian)

• Any other alias from an international character encoding standard for which NLS (National Language Support) is
installed in InterSystems IRIS

Use a value that is consistent with your implementation of OnProcessInput() in the business service:

• When the Charset setting has the value Binary, the pInput argument of OnProcessInput() is of type %FileBinaryStream

and contains bytes.

• Otherwise, pInput is of type %FileCharacterStream and contains characters.

For information on character sets and translation tables, see Translation Tables.

Note: The classes %FileCharacterStream and %FileBinaryStream are both deprecated except for use in product APIs
such as EnsLib.File.InboundAdapter.

Semaphore Specification
The Semaphore Specification allows you to indicate that the data file or files are complete and ready to be read by creating
an associated second file in the same directory that is used as a semaphore. The inbound file adapter waits until the semaphore
file exists before checking the other conditions specified by the Confirm Complete requirements and then processing the
data file or files. The adapter tests only for the existence of the semaphore file and does not read the semaphore file contents.

If the Semaphore Specification is an empty string, the adapter does not wait for a semaphore file and processes the data
files as soon as the conditions specified by the Confirm Complete requirements are met.

If you are using the Semaphore Specification feature, consider setting the Confirm Complete field to None.

Syntax

Semaphore Specification can be an empty string or can be a series of pairs, each of which associates a data filename speci-
fication with a semaphore filename pattern. The pairs are separated by semicolons:

DataFileSpec=SemaphorePattern;DataFileSpec=SemaphorePattern;...

DataFileSpec is either a plain filename or a filename specification that includes the * wildcard (which matches any character).
SemaphorePattern directly or indirectly specifies the name of the associated semaphore file; it can be either of the following:

• A plain filename (such as SemaphoreFile.SEM). In this case, when the system finds a file that matches DataFileSpec,
the system looks for a file with that exact name.

Using File Adapters in Productions 19

Settings for the File Inbound Adapter

• A string of the form *.extension such as *.sem. In this case, when the system finds a file that matches DataFileSpec,
the system looks for a file with the same name, but with the sem extension instead. For example, if the filename
ABCDEF.txt matches DataFileSpec, the system looks for a semaphore file named ABCDEF.sem

When looking for a semaphore file based on a data filename, the system looks only at the part of the data filename
before the first period. For example, if the filename test.txt.data.zip.tar matches DataFileSpec, if the
semaphore filename pattern is *.sem the system looks for a semaphore file named test.sem

Notes:

• The semaphore file associated with a given data file (or multiple data files) must be in the same directory as those files.

• DataFileSpec and SemaphorePattern do not include the directory name.

• DataFileSpec is always case-sensitive.

• SemaphorePattern is case-sensitive if the operating system is case-sensitive and is not case-sensitive otherwise.

• The pairs are processed left-to-right, and the first matching pair is used; see How the Inbound File Adapter Uses
Semaphore Specification.

Consequently, if you are including multiple specifications that can match the same file, you should specify the more
specific specification before the more general ones.

• If an adapter configured with a FileSpec equal to *, the adapter usually considers all files in the directory as data files.
But if Semaphore Specification is also specified, the adapter can recognize a file as a semaphore file and not treat it as
a data file.

For example, consider the following Semaphore Specification, consisting of a single pair:

ABC*.TXT=ABC*.SEM

In this case, the ABCTest.SEM semaphore file controls when the adapter processes the ABCTest.TXT file and that the
ABCdata.SEM semaphore file controls when the adapter processes the ABCdata.txt file.

In the simplest case, Semaphore Specification can consist only of a single SemaphorePattern, which may or may not include
a wildcard. This means that the presence or absence of that semaphore file controls whether the adapter processes any files.

Files That Do Not Match a Pattern

If a Semaphore Specification is specified and a given data file does not match any of the patterns, then the adapter will not
process this data file. If this is undesirable, specify a final pair that will match any file and that uses its own semaphore file.
For example, consider this Semaphore Specification:

.DAT=.SEM; *.DOC=*.READY; *=SEM.LAST

The SEM.LAST is the semaphore file for all files that do not end with .DAT or .DOC.

How the Inbound File Adapter Uses Semaphore Specification

Within each polling cycle, the inbound file adapter examines all the files found within the configured directory (and any
subdirectories). Then for each file:

1. The adapter reads the Semaphore Specification from left-to-right, finding the first specification whose DataFileSpec
matches the given filename. This indicates the name of the semaphore file to look for.

2. The adapter looks for the semaphore file in the same directory as the file being examined.

Then:

• If it does not find the semaphore file, the adapter skips the file and sets an internal flag that causes the adapter to
wait until the next polling cycle.

20 Using File Adapters in Productions

File Adapter Settings

• If it does find the semaphore file, the adapter processes the file.

After the adapter has processed through all the data files in a polling cycle, it deletes all the corresponding semaphore files.

Fatal Errors
For record map services, determines whether the system stops processing a message when it encounters an error such as a
validation error in an individual record. When configuring the adapter, choose one of the following options:

• Any—This is the default. If InterSystems IRIS encounters an error when saving an individual record, it stops processing
the message.

• ParseOnly—If InterSystems IRIS encounters an error when saving an individual record, it logs the error, skips the
record, and then continues parsing the message. The log includes the position in the stream of the invalid record.
Additionally, if Alert On Error is enabled, the system generates an alert.

Header Count
For record map services, determines the number of lines that the service ignores as prefix lines in incoming documents.
Ignoring prefix lines enables the services to parse reports and comma-separated values (CSV) files with column headers.

Confirm Complete
Indicates the special measures that InterSystems IRIS should take to confirm complete receipt of a file. The options are:

DescriptionInteger
value

List option

Take no special measures to determine if a file is complete.0None

Wait until the reported size of the file in the FilePath directory stops increasing.
This option may not be sufficient when the source application is sluggish. If the
operating system reports the same file size for a duration of the File Access Timeout

setting, then InterSystems IRIS Interoperability considers the file complete.

1Size

Read more data for a file until the operating system allows InterSystems IRIS to
rename the file.

2Rename

Consider the file complete if it can open it in Read mode.4Readable

Consider the file complete if it can open it in Write mode (as a test only; it does
not write to the file).

8Writable

The effectiveness of each option depends on the operating system and the details of the process that puts the file in the File

Path directory.

File Access Timeout
Amount of time in seconds that the system waits for information from the source application before confirming the complete
receipt of a file. For more information, see Confirm Complete.

If you supply a decimal value, the system rounds the value up to the nearest whole number. The default value is 2.

File Path
Full pathname of the directory in which to look for files. This directory must exist, and it must be accessible through the
file system on the local InterSystems IRIS Interoperability machine.

Using File Adapters in Productions 21

Settings for the File Inbound Adapter

File Spec
Filename or wildcard file specification for file(s) to retrieve. For the wildcard specification, use the convention that is
appropriate for the operating system on the local InterSystems IRIS Interoperability machine.

Subdirectory Levels
Number of levels of subdirectory depth under the given directory that should be searched for files.

Work Path
Full pathname of the directory where the adapter should place the input file while processing the data in the file. This
directory must exist, and it must be accessible through the file system on the local InterSystems IRIS Interoperability
machine. This setting is useful when the same filename is used for repeated file submissions. If no WorkPath is specified,
the adapter does not move the file while processing it.

To ensure that the input file is not deleted while your production processes the data from the file, InterSystems recommends
that you set Archive Path and Work Path to the same directory. Alternatively, you can use only synchronous calls from your
business service to process the data.

22 Using File Adapters in Productions

File Adapter Settings

Settings for the File Outbound Adapter
Provides reference information for settings of the file outbound adapter, EnsLib.File.OutboundAdapter.

Summary
The outbound file adapter has the following settings:

SettingsGroup

File PathBasic Settings

Overwrite, Charset, Open TimeoutAdditional Settings

The remaining settings are common to all business operations. For information, see Settings for All Business Operations.

Charset
Specifies the desired character set for the output file. InterSystems IRIS® automatically translates the characters to this
character encoding. See Charset in Settings for the File Inbound Adapter.

File Path
Full pathname of the directory into which to write output files. This directory must exist, and it must be accessible through
the file system on the local InterSystems IRIS Interoperability machine.

Open Timeout
Amount of time for the adapter to wait on each attempt to open the output file for writing.

The default is 5 seconds.

Overwrite
If a file of the same name exists in the FilePath directory, the Overwrite setting controls what happens. If True, overwrite
the file. If False, append the new output to the existing file.

Using File Adapters in Productions 23

Settings for the File Outbound Adapter

	Table of Contents
	1 Using the File Inbound Adapter
	1.1 Overall Behavior
	1.2 Creating a Business Service to Use the Inbound Adapter
	1.3 Implementing the OnProcessInput() Method
	1.3.1 Invoking Adapter Methods

	1.4 Understanding the Adapter Archiving Behavior
	1.5 Example Business Service Classes
	1.5.1 Example 1
	1.5.2 Example 2
	1.5.3 Example 3

	1.6 Adding and Configuring the Business Service
	1.7 See Also

	2 Using the File Outbound Adapter
	2.1 Overall Behavior
	2.2 Creating a Business Operation to Use the Adapter
	2.3 Creating Message Handler Methods
	2.3.1 Calling Adapter Methods from the Business Operation

	2.4 Example Business Operation Class
	2.5 Adding and Configuring the Business Operation
	2.6 See Also

	3 Using the File Passthrough Service and Operation Classes
	3.1 See Also

	File Adapter Settings
	Settings for the File Inbound Adapter
	Settings for the File Outbound Adapter

	Index

