InterSystems-

IRIS Data Platform

Using Embedded Python

Version 2025.1
2025-06-03

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Embedded Python

PDF generated on 2025-06-03
InterSystems IRIS® Version 2025.1
Copyright © 2025 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble®, InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™, HealthShare® Health Connect Cloud™, InterSystems® Data Fabric Studio™, InterSystems IRIS for
Health™, InterSystems Supply Chain Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems
Corporation. TrakCare is a registered trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Congress Street,
Boston, MA 02114, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

11INtroduction and Prer@QUISITESc.ii ittt s e e eaesae e b b sae e 1
1.1 Recommended PYENON VEISIONcoviiiiiiiiiirietinieie ettt ettt 1

1.2 REQUITEA SEIVICE ..oviitiietiiete sttt ettt bbbt b et bbbttt 2

1.3 Flexible Python RUNTIME FEALUIEcceverierieieieeiece ettt st 2

2 Install and IMport PYthon PaCKageSccuiererieieeieeeerese e stesie s e e seessese e seeseesss e snessessesssssesss 5
2.1 InsStall PYthon PACKAGEScvvcveiiiciiciiec ettt sttt e sre e s te e sae e seennaens 5
2.1.1 Install Python Packages on a UNIX-Based System (except AIX)ccccooeveinieniencnenienn 5

2.1.2 Install Python Packages 0N ALX ... 5

2.1.3 Install Python Packages 0n WINAOWScooiiriirieineiriesese e 6

2.1.4 Install Python Packages in @ CONLAINETccevveveiriesinnse e 6

2.2 IMPOrt PYthON PACKAGES ...eveiveiiieieieeeeieese e se e ste e st ste sttt e e e e s ene e e snsenessesnesnesresresnens 7
2.2.1 Import Python Packages from ODJECISCIIPLc.cveieieiiirecrr e 7

2.2.2 Import Python Packages from a Method Written in Python ... 7

2.2.3 Import Python Packages via an XData BIOCKccccoereireiiieiieiiesesee e 7

3 RUN EMDEAAEI PYLNON ..ottt st et 9
3.1 From the PYthon SHellc.oceiiieiecceecce s e nne 9
3.1.1 Start the Python Shell from Terminalccocoveieieicicis e 9

3.1.2 Start the Python Shell from the Command LiNec.cccevviieiieiieeiie s 10

3.2 1N @ PYthon SCrIPt FIlE (LPY) «eereerterieieeieieee ettt et ettt 10

3.3 In a Method in an INterSystems TRIS CIASSc.coeiieiiiiieiierce e 11

3.4 In SQL Functions and Stored ProCEAUIESc.ccvvovrrrerererineneseeieee e ese et see e s 12

4 Call Embedded Python Code from ObBJECESCriPt .ovvvvrereveerereeeee e 13
4.1 USE @ PYtNON PACKAJEcveiveieeiieiieiiisieie e stesiee et e sttt sttt sttt e e sn et e e neeneeneeneens 13

4.2 Call a Method of an InterSystems IRIS Class Written in Pythonccccooeviienievvcnccinnn, 14

4.3 Run an SQL Function or Stored Procedure Written in Python ... 15

4.4 Run an Arbitrary Python COMMANGcooeirieiriiiieisieseeseei et 16

5 Call Inter Systems IRIS from Embedded Python ... 17
5.1 USe the i1S IMOUUIEveiiireeeer e 17

5.2 Use an INterSystemMS TRIS CIASS ...ccuvvviiieieiiiricieieciecr ettt sttt st se e ne e ens 18

5.3 USE INTEISYSIEMS SQL oviiieiiiiiiiiie ittt sttt sttt sttt sae bbb eebeesbr e e nbeessneenne s 19

5.4 Run an Arbitrary ObjectScript COmMMANGcccoveiiiiriiiiiie e 20

6 Bridge the Gap Between ObjectScript and Embedded Pythoncccoccveiiiininnennicnccieee 21
6.1 Access an INterSystems TRIS CIaSScc.cviiiiiiiiiiieisie e 21

6.2 Refer to the Current INterSystems IRIS CIaSscccvveveiveieirieiecese s 22

6.3 Use ObjectScript and Python Identifier Namescccovvevieieieiieninsinse e 23

6.4 Use Python BUIltin FUNCLIONSccviiiieiie ettt st sttt nnee 23

6.5 Use Keyword or Named AFGUIMENESooueiiierieieeeeieeeeees st sie b st e e see e s se e e 24

6.6 Pass Arguments BY RETEIENCEcoiiiuiriiiiee e 25

6.7 Pass Values for True, False, and NONEc.oooeviciecii ettt et sbe s ree s es 26

6.8 USE DICLIONAIIESvveeecresrereees ettt 26

8.9 USE LLISES vttt 27
B.10 USE GIODAISveeeiiecie e 28
6.11 Change NAMESPACESeververuertertertertertasteseeseeseeses e esestesbesaeebesbesbesbesbesbesbesbeseeseensenseseeneaneesesseans 30
6.12 Run an ObjectScript Routine from Embedded PYthon ... 31
6.13 HaNdIe EXCEPLIONS ...oveviiiiiiiieiiteieie ettt ettt ettt sb e sn e enas 32

Using Embedded Python

6.14 BYLES QN0 SEINGS ©ovveveieeiieiie ettt e st s e e s te e e e s teesaeste e s e steenbesteenbeeneeteaneennas 32

6.15 Standard Output and Standard Error Mappingscccoceoeeereerneneeneeneesreesre s 33

7 Use Embedded Python in Interoperability ProducCtionscccoeeveinennennienneseeeseeeseeseeens 35
8 Usethe Flexible Python RUNTIME FEAIUNEc.oiueiiiiiiireeeree e 37
8.1 Overview of the Flexible Python Runtime FEAtUreccccovvviiviernsesinere e 37
8.1.1 Embedded Python and SyS.pathcccceceieicicieeieerse e 38

8.1.2 Check Python Version INfOrmationc.cccveceiieii e 39

8.2 Flexible Python Runtime Example: Python 3.11 on WINAOWSccoevreienerenenineneseneeieneas 40

8.3 Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04cccccoeiienieniiennennne 41

8.4 Flexible Python Runtime Example: Anaconda on WINAOWSccceoveerienneneeneienieienieeens 43

8.5 Flexible Python Runtime Example: Anaconda on Ubuntu 22.04cccccvevvvivveviinncnsnnnneneens 44
Inter Systems RIS Python M odule REFENENCEccvvviereresereeees s eneas 47
InterSystems IRIS Python Module COre AP ..ot 48
GlODAI RETEIENCE AP ...ttt b bt bbb b bbb e e e e 54
IRIS SYSLEM AP ..o 61

Using Embedded Python

Introduction and Prerequisites

Embedded Python allows you to use Python as a native option for programming InterSystems IRIS applications. If you are
new to Embedded Python, read Introduction to Embedded Python, and then read this document for a deeper dive into
Embedded Python.

While this document will be helpful to anyone who is learning Embedded Python, some level of ObjectScript familiarity
will be beneficial to the reader. If you are a Python developer who is new to InterSystems IRIS and ObjectScript, also see
the Orientation Guide for Server-Side Programming.

1.1 Recommended Python Version

The version of Python recommended when using Embedded Python depends on the platform you are running. In most
cases, this is the default version of Python for your operating system. See Other Supported Features for a complete list of
operating systems and the corresponding supported version of Python.

Note: On some operating systems, you can override the recommended version of Python using the Flexible Python
Runtime feature.

Microsoft Windows does not come with a default version of Python, and as of InterSystems IRIS 2024.2, the InterSystems
IRIS installer for Windows no longer installs Python for you. See Flexible Python Runtime Feature for information on
setting up Embedded Python for Windows.

Many flavors of UNIX-based operating systems come with Python installed. If you need to install it, use the version rec-
ommended for your operating system by your package manager, for example:

e Ubuntu: apt install python3
» Red Hat Enterprise Linux or Oracle Linux: yum install python3
e SUSE: zypper install python3
* macOS: Install Python 3.11 using Homebrew.
brew install python@3.11

You should also make sure you are using the current version of OpenSSL.:

brew unlink openssl
brew install openssl@3
brew link --force openssl@3

e AIX: Install Python 3.9.18+ using dnf (dandified yum) from the AIX Toolbox for Open Source Software

Using Embedded Python 1

https://brew.sh/
https://www.ibm.com/support/pages/node/883796

Introduction and Prerequisites

If you get an error that says “Failed to load python,” it means that you either don’t have Python installed or an unexpected
version of Python is detected on your system. Check Other Supported Features and make sure you have the required version
of Python installed, and if necessary, install it or reinstall it using one of the above methods. Or, override the recommended
Python version by using the Flexible Python Runtime feature. (Not available on all platforms.)

If you are on a platform that does not support the Flexible Python Runtime feature, your computer has multiple versions
of Python installed, and you try to run Embedded Python from the command line, irispython will run the first python3
executable that it detects, as determined by your path environment variable. Make sure that the folders in your path are set
appropriately so that the required version of the executable is the first one found. For more information on using the
irispython command, see Start the Python Shell from the Command Line.

1.2 Required Service

Toprevent IRIS_ACCESSDENIED errors while running Embedded Python, enable %Service_Cal lin. Inthe Management
Portal, go to System Administration > Security > Services, select %Service_Callin, and check the Service Enabled box.

1.3 Flexible Python Runtime Feature

The Flexible Python Runtime Feature allows you to choose which version of Python you want to use with Embedded
Python. Flexible Python Runtime is not supported on all operating systems. See Other Supported Features for a complete
list of platforms that support the feature.

Important: There are known incompatibilities between InterSystems IRIS and Python 3.13, so you are advised to
avoid Python 3.13 at this time. This issue will be addressed in an upcoming version of InterSystems IRIS.

On Microsoft Windows, as of InterSystems IRIS 2024.2, the installer no longer installs a default version of Python. You
can install Python from https://www.python.org/downloads/. Make sure to do a custom installation and install Python for
all users.

Important: The installer for InterSystems IRIS 2024.1 on the Windows platform previously installed OpenSSL 3.1.4
along with Python 3.9.5. However, installing Python 3.9 from Python.org installs OpenSSL 1.1.1n. If you
need to use OpenSSL 3 with Embedded Python on InterSystems IRIS 2024.2, install Python 3.11 or higher.

On InterSystems IRIS 2024.2 for Windows, the AutoML feature of IntegratedML requires using Python
3.11.

On other operating systems that support the Flexible Python Runtime feature, you can override the default version of Python.
This is useful if you are writing code or using a package that depends on a version of Python other than the default version.
You must use a version of Python that is the same or greater than your operating system's default version. For example,
Red Hat Enterprise Linux 9 comes with Python 3.9, so on that operating system you must use version 3.9 or higher.

After installing Python, follow the steps below to configure the version of Python to be used by Embedded Python:
1. Inthe Management Portal, go to System Administration > Configuration > Additional Settings > Advanced Memory.
2. On the Advanced Memory Settings page, in the PythonRuntimeLibrary row, click Edit.
3. Enter the location of the Python runtime library you want to use.
This location will vary based on your operating system, Python version, and other factors.

Windows example: C:\Program Files\Python311\python3.dll (Python 3.11 on Windows)

2 Using Embedded Python

https://www.python.org/downloads/

Flexible Python Runtime Feature

Linux example: Zusr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0 (Python 3.11 on Ubuntu 22.04 on
the x86 architecture)

4. Click save.
5. On the Advanced Memory Settings page, in the PythonRuntimeLibraryVersion row, click Edit.
6. Enter the version number of the Python runtime library you want to use.

For example: 3.11

7. Click save.

For more information, see PythonRuntimeLibrary and PythonRuntimeLibrary\ersion.

Note: If you install a new version of Python and cannot find the Python runtime library, you may need to install it sep-
arately. For example, to install the Python 3.11 runtime library on Ubuntu 22.04: apt install
libpython3.11.

On Microsoft Windows, if you find that the Python runtime library is located within your user directory, for
example, C:\Users\<username>\AppData\Local\Programs\Python\Python311, it indicates that you have installed
Python for the current user only. InterSystems recommends installing Python for all users to avoid unexpected
results.

For more details on how to configure this feature, including step-by-step examples, see Use the Flexible Python Runtime
Feature.

Using Embedded Python 3

Install and Import Python Packages

Embedded Python gives you easy access to thousands of useful libraries. Commonly called “packages,” these need to be
installed into the InterSystems IRIS file system before they can be used. Then they need to imported to load them into
memory for use by your code. There are different ways to do this, depending on how you will use Embedded Python.

2.1 Install Python Packages

Install Python packages from the command line before using them with Embedded Python. The command you use differs
depending on whether you are using InterSystems IRIS on a UNIX-based system (except AlX), on AlX, on Windows, or
in a container.

2.1.1 Install Python Packages on a UNIX-Based System (except AlX)

On UNIX-based systems, use the command python3 -m pip install --target <installdir>/mgr/python
<package>.

Note: Ifitis notinstalled already, first install the package python3-pip with your system’s package manager.

For example, the ReportLab Toolkit is an open source package for generating PDFs and graphics. On a UNIX-based system,
use a command like the following to install it:

$ python3 -m pip install --target /InterSystems/IR1S/mgr/python reportlab

Important: If you do not install the package into the correct target directory, Embedded Python may not be able to
import it. For example, if you install a package without the --target attribute (and without using sudo),
Python will install it into the local package repository within your home directory. If any other user tries
to import the package, it will fail.

Although InterSystems recommends using the --target <installdir>/mgr/python option,
installing packages using sudo and omitting the —-target attribute installs the packages into the global
package repository. These packages can also be imported by any user.

2.1.2 Install Python Packages on AIX

On AlX, install packages from the AIX Toolbox for Open Source Software, if they are available.

Using Embedded Python 5

https://www.ibm.com/support/pages/node/883796

Install and Import Python Packages

Before installing the package, make sure the package is in the Al1X Toolbox with the command sudo dnf list | grep
<package>. Then install the package with the command sudo dnf install <package>.

Note: Ifitis not installed already, first install the package python3.9-pip from the AIX Toolbox.

For example, confirm that the package psutil is the AlX Toolbox:

$ sudo dnf list | grep psutil

python3-psutil.ppc 5.9.0-2 AIX_Toolbox
python3-psutil-tests.ppc 5.9.0-2 AIX_Toolbox
python3.9-psutil.ppc 5.9.0-2 AIX_Toolbox
python3.9-psutil-tests._ppc 5.9.0-2 AlX_Toolbox

Then install the package:
$ sudo dnf install python3-psutil.ppc
Only if a package is not in the AlIX Toolbox, install it with the following command:

$ python3 -m pip install <package>

2.1.3 Install Python Packages on Windows

Note: OnWindows, the irispip command was removed in InterSystems IRIS 2024.2. If you are running an earlier version,
see the installation method described in the 2024.1 documentation.

On Windows, use the command python -m pip install --target <installdir>\mgr\python <package>.
For example, you can install the ReportLab package on a Windows machine as follows:

C:\>python -m pip install --target C:\InterSystems\IRIS\mgr\python reportlab

If you are using the Python launcher, you can use:

C:\>py -m pip install --target C:\InterSystems\IRIS\mgr\python reportlab

2.1.4 Install Python Packages in a Container
If you are running InterSystems IRIS in a container without using the durable %SY'S feature, use the command python3
-m pip install --target /Zusr/irissys/mgr/python <package>.

For example, you can install the ReportLab package in the container as follows:
$ python3 -m pip install --target /usr/irissys/mgr/python reportlab

If you are running InterSystems IRIS in a container using the durable %SYS feature, use the command python3 -m pip
install --target <durable>/mgr/python <package>, where <durable> is the path defined in the environment
variable 1SC_DATA_DIRECTORY when running the container.

For example, if ISC_DATA_DIRECTORY=/durable/iris, you can install the ReportLab package in the container as
follows:

$ python3 -m pip install --target /durable/iris/mgr/python reportlab

Note: Note: If you are using a Dockerfile to create a custom Docker image for InterSystems IRIS, install Python packages
in /usrfirissys/mgr/python. Both /usr/irissys/mgr/python and <durable>/mgr/python are included in sys. path by
default so that the packages can be found whether or not you are using the durable %SY'S feature.

6 Using Embedded Python

https://docs.intersystems.com/iris20241/csp/docbook/DocBook.UI.Page.cls?KEY=GEPYTHON_loadlib_install_windows

Import Python Packages

For more information on creating and running containers, see Running InterSystems Products in Containers.

2.2 Import Python Packages

After installing a package, you need to import it before you can use it from InterSystems IRIS. This loads the package into
memory so that it is available for use.

2.2.1 Import Python Packages from ObjectScript

To import a Python package from ObjectScript, use the Import() method of the %SYS.Python class. For example:

set pymath = ##class(%SYS.Python). Import(*'math'™)
set canvaslib = ##class(%SYS.Python). Import(*“reportlab.pdfgen.canvas'™)

The first line, above, imports the built-in Python math module into ObjectScript. The second line imports just the canvas.py
file from the pdfgen subpackage of ReportLab.

2.2.2 Import Python Packages from a Method Written in Python

You can import packages in an InterSystems IRIS method written in Python, just as you would in any other Python code,
for example:

ClassMethod Example() [Language = python]
{
import math
import iris
import reportlab.pdfgen.canvas as canvaslib

Your Python code here

2.2.3 Import Python Packages via an XData Block

You can also import a list of packages using an XData block in a class, as in the following example:

XData %import [MimeType = application/python]
{

import math

import iris

import reportlab.pdfgen.canvas as canvaslib

Important: The name of the XData block must be %import. The MIME type can be appl ication/python or
text/x-python. Make sure to use correct Python syntax, but do not indent your code or a complier
error will occur.

These packages can then be used in any method within the class that is written in Python, without needing to import them
again.
ClassMethod Test() [Language = python]
Packages imported in XData block
print(*\nValue of pi from the math module:®)
print(math.pi)

print("\nList of classes in this namespace from the iris module:*)
iris._SYSTEM.OBJ.ShowClasses()

Using Embedded Python 7

Install and Import Python Packages

For background information on XData blocks, see Defining and Using XData Blocks

8 Using Embedded Python

Run Embedded Python

This page details several ways to run Embedded Python.

3.1 From the Python Shell

You can start the Python shell from an InterSystems Terminal session or from the command line.

3.1.1 Start the Python Shell from Terminal

Start the Python shell from an InterSystems Terminal session by calling the Shell() method of the %SYS.Python class. This
launches the Python interpreter in interactive mode. The user and namespace from the Terminal session are passed to the
Python shell.

Exit the Python shell by typing the command quit().

The following example launches the Python shell from the USER namespace in a Terminal session. It prints the first few
numbers in the Fibonacci sequence and then uses the InterSystems IRIS % SY STEM .OBJ.ShowClasses() method to print
a list of classes in the current namespace.

USER>do ##class(%SYS.Python).Shell()

Python 3.9.5 (default, Jul 6 2021, 13:03:56) [MSC v.1927 64 bit (AMD64)] on win32
Type quut() or Ctrl D to exit this shell.
>>> a, b =
>>> while a < 10
prlnt(a end = " %)
a, b=Db,a+b

0112358 >>>

>>> status = iris._SYSTEM.OBJ.ShowClasses()
User .Company

User.Person

>>> print(status)

1

>>> quit(Q)

USER>

The method % SY STEM .OBJ.ShowClasses() returns an InterSystems IRIS %Status value. In this case, a 1 means that no
errors were detected.

Using Embedded Python 9

Run Embedded Python

3.1.2 Start the Python Shell from the Command Line

Start the Python shell from the command line by using the irispython command. This works much the same as starting the
shell from Terminal, but you must pass in the InterSystems IRIS username, password, and hamespace.

The following example launches the Python shell from the Windows command line:

C:\InterSystems\IRIS\bin>set IRISUSERNAME = <username>
C:\InterSystems\IRIS\bin>set IRISPASSWORD = <password>
C:\InterSystems\IRIS\bin>set IRISNAMESPACE = USER

C:\InterSystems\IRIS\bin>irispython

Python 3.9.5 (default, Jul 6 2021, 13:03:56) [MSC v.1927 64 bit (AMD64)] on win32
Type "help', "copyright”, *"credits" or "license" for more information.

>>>

On UNIX-based systems, use export instead of set.

/InterSystems/IRIS/bin$ export IRISUSERNAME=<username>
/InterSystems/IRIS/bin$ export IRISPASSWORD=<password>
/InterSystems/IRIS/bin$ export IRISNAMESPACE=USER
/InterSystems/IRIS/bin$ _/irispython

Python 3.9.5 (default, Jul 22 2021, 23:12:58)

[GCC 9.4.0] on linux

Type "help', "copyright', '"credits" or "license" for more information.
>>>

Note: If you see a message saying IRIS_ACCESSDENIED, enable %Service_Callin. In the Management Portal,
go to System Administration > Security > Services, select %Service_Callin, and check the Service Enabled box.

3.2 In a Python Script File (.py)

You can also use the irispython command to execute a Python script. Note that in this case, you have to include a step
(import iris) that provides access to InterSystems IRIS.

Consider a file C:\python\test.py, on a Windows system, containing the following code:

print the members of the Fibonacci series that are less than 10
print("Fibonacci series:")
a, b=0,1
while a < 10:
print(a, end = * %)
a, b=Db,a+b

import the iris module and show the classes in this namespace
import iris

print("\ninterSystems IRIS classes in this namespace: ")

status = iris._SYSTEM.OBJ.ShowClasses()

print(status)

You could run test.py from the command line, as follows:

C:\InterSystems\IRIS\bin>set IRISUSERNAME = <username>
C:\InterSystems\IRIS\bin>set IRISPASSWORD = <password>
C:\InterSystems\IRIS\bin>set IRISNAMESPACE = USER

C:\InterSystems\IRIS\bin>irispython \python\test.py
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Company

User .Person

1

10 Using Embedded Python

In a Method in an InterSystems IRIS Class

On UNIX-based systems, use export instead of set.

/InterSystems/IRIS/bin$ export IRISUSERNAME=<username>
/InterSystems/IRIS/bin$ export IRISPASSWORD=<password>
/InterSystems/IRIS/bin$ export IRISNAMESPACE=USER
/InterSystems/IRIS/bin$./irispython /python/test.py
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Company

User.Person

1

Note: Ifyoutrytorun import irisandseeamessage saying IRIS_ACCESSDENIED, enable %Service_Callin.
In the Management Portal, go to System Administration > Security > Services, select %Service_Callln, and check
the Service Enabled box.

3.3 In a Method in an InterSystems IRIS Class

You can write Python methods in an InterSystems IRIS class by using the Language keyword. You can then call the
method as you would call a method written in ObjectScript.

For example, take the following class with a class method written in Python:

Class User.EmbeddedPython

/// Description
ClassMethod Test() As %Status [Language = python]
{

print the members of the Fibonacci series that are less than 10
print("Fibonacci series: ")
a, b=0,1
while a < 10:
print(a, end = * %)
a, b=Db,a+b

import the iris module and show the classes in this namespace
import iris

print("\nInterSystems IRIS classes in this namespace:")

status = iris._SYSTEM.OBJ.ShowClasses()

return status

You can call this method from ObjectScript:

USER>set status = ##class(User.EmbeddedPython).Test()
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:

User .Compan

User .EmbeddedPython

User .Person

USER>write status
1

Using Embedded Python 11

Run Embedded Python

Or from Python:

>>> import iris

>>> status = iris.User.EmbeddedPython.Test()
Fibonacci series:

0112358

InterSystems IRIS classes in this namespace:
User .Company

User.EmbeddedPython

User .Person

>>> print(status)

1

3.4 In SQL Functions and Stored Procedures

You can also write a SQL function or stored procedure using Embedded Python by specifying the argument LANGUAGE

PYTHON in the CREATE statement, as is shown below:

CREATE FUNCTION tzconvert(dt TIMESTAMP, tzfrom VARCHAR, tzto VARCHAR)

RETURNS TIMESTAMP
LANGUAGE PYTHON
{
from datetime import datetime
from dateutil import parser, tz
d = parser.parse(dt)
if (tzfrom is not None):
tzf = tz.gettz(tzfrom)
d = d.replace(tzinfo = tzf)

return d.astimezone(tz.gettz(tzto)) . .strftime('%Y-%m-%d %H:%M:%S"")

}

The code uses functions from the Python datetime and dateutil modules.

Note: On some platforms, the datetime and dateuti I modules may not be installed by default. If you run this
example and get a ModuleNotFoundError, install the missing modules as described in Install Python Packages.

The following SEL ECT statement calls the SQL function, converting the current date/time from Eastern time to Coordinated

Universal Time (UTC).
SELECT tzconvert(now(), "US/Eastern®, "UTCT)
The function returns something like:

2021-10-19 15:10:05

12

Using Embedded Python

Call Embedded Python Code from
ObjectScript

The section details several ways to call Embedded Python code from ObjectScript:

» Use a Python package

e Call amethod in an InterSystems IRIS class written in Python

* Runan SQL function or stored procedure written in Python

* Runan arbitrary Python command

In some cases, you can call the Python code much the same way as you would call ObjectScript code, while sometimes

you need to use the %SYS.Python class to bridge the gap between the two languages. For more information, see Bridge the
Gap Between ObjectScript and Embedded Python.

4.1 Use a Python Package

Embedded Python gives you easy access to thousands of useful libraries. Commonly called “packages,” these need to be
installed from the Python Package Index (PyPl) into the <installdir>/mgr/python directory before they can be used. (For
information on how to install a package, see Install Python Packages.)

For example, the ReportLab Toolkit is an open source library for generating PDFs and graphics.
After installing a package, you can use the Import() method of the %SYS.Python class to use it in your ObjectScript code.

Given a file location, the following ObjectScript method, CreateSamplePDF(), creates a sample PDF file and saves it to
that location.

Class Demo.PDF

ClassMethod CreateSamplePDF(fileloc As %String) As %Status

set canvaslib = ##class(%SYS.Python) . Import(*“'reportlab._pdfgen.canvas™)

set canvas = canvaslib.Canvas(fileloc)

do canvas.drawlmage(''C:\Sample\isc.png'”, 150, 600)

do canvas.drawlmage(''C:\Sample\python.png", 150, 200)

do canvas.setFont("'Helvetica-Bold", 24)

do canvas.drawString(25, 450, "InterSystems IRIS & Python. Perfect Together.')
do canvas.save()

Using Embedded Python 13

https://pypi.org/

Call Embedded Python Code from ObjectScript

The first line of the method imports the canvas.py file from the pdfgen subpackage of ReportLab. The second line of code
instantiates a Canvas object and then proceeds to call its methods, much the way it would call the methods of any InterSystems
IRIS object.

You can then call the method in the usual way:
do ##class(Demo.PDF) .CreateSamplePDF(*'C:\Sample\hello.pdf'")

The following PDF is generated and saved at the specified location:

InterSystems-

Creative data technology

InterSystems IRIS & Python. Perfect Together.

@ python

If you have written your own Python packages or modules, you can put them in <installdir>/mgr/python and import them
from ObjectScript in the same way.

4.2 Call a Method of an InterSystems IRIS Class Written
In Python

You can write a method in an InterSystems IRIS class using Embedded Python and then call it from ObjectScript in the
same way you would call a method written in ObjectScript.

The next example uses the usaddress-scourgify package. (For information on how to install a package, see Install
Python Packages.)

14 Using Embedded Python

Run an SQL Function or Stored Procedure Written in Python

The demo class below contains properties for the parts of a U.S. address and a method, written in Python, that uses
usaddress-scourgify to normalize an address according to the U.S. Postal Service standard.

Class Demo.Address Extends %Library.Persistent

Property AddressLinel As %String;

Property AddressLine2 As %String;

Property City As %String;

Property State As %String;

Property PostalCode As %String;

Method Normalize(addr As %String) [Language = python]
from scourgify import normalize_address_record
normalized = normalize_address_record(addr)
self.AddressLinel = normalized["address_line_1"]
self.AddressLine2 = normalized["address_line_27]
self.City = normalized["city"]
self_State = normalized["state"]
self.PostalCode = normalized["postal_code"]

}
}

Given a address string as input, the Normalize() instance method of the class normalizes the address and stores each part
in the various properties of a Demo.Address object.

You can call the method as follows:

USER>set a = ##class(Demo.Address).%New()
USER>do a.Normalize(*'One Memorial Drive, 8th Floor, Cambridge, Massachusetts 02142')
USER>zwrite a

a=3@Demo.Address <OREF>
Fomm - general information ----—-—————————-

oref value: 3
class name: Demo.Address
reference count: 2
e it attribute values - -————————————————

%Concurrency = 1 <Set>

AddressLinel = "ONE MEMORIAL DR"

AddressLine2 = "FL 8TH"™
City = "CAMBRIDGE"

PostalCode = *02142"

State = ""MA"

4.3 Run an SQL Function or Stored Procedure Written in
Python

When you create a SQL function or stored procedure using Embedded Python, InterSystems IRIS projects a class with a
method that can be called from ObjectScript as you would any other method.

For example, the SQL function tzconvert() from the example earlier in this document generates a class User.functzconvert,
which has a tzconvert() method. Call it from ObjectScript as follows:

USER>zwrite ##class(User.functzconvert).tzconvert($zdatetime($h,3), " "US/Eastern”, " UTC™)
''2021-10-20 15:09:26"

Here, $zdatetime($h,3) is used to convert the current date and time from $HOROL OG format to ODBC date format.

Using Embedded Python 15

Call Embedded Python Code from ObjectScript

4.4 Run an Arbitrary Python Command

Sometimes, when you are developing or testing Embedded Python code, it can be helpful to run an arbitrary Python command
from ObjectScript. You can do this with the Run() method of the %SYS.Python class.

Perhaps you want to test the normalize_address_record() function from the usaddress_scourgify package used
earlier in this document, and you don’t remember how it works. You can use the % SY S.Python.Run() method to output
the help for the function from the Terminal as follows:

USER>set rslt = ##class(%SYS.Python) .Run(*'"from scourgify import normalize_address_record™)

USER>set rslt = ##class(%SYS.Python) .Run("'help(normalize_address_record)')

Help on function normalize_address_record in module scourgify.normalize:

normalize_address_record(address, addr_map=None, addtl_funcs=None, strict=True)
Normalize an address according to USPS pub. 28 standards.

Takes an address string, or a dict-like with standard address fields
(address_line_1, address_line_2, city, state, postal_code), removes
unacceptable special characters, extra spaces, predictable abnormal
character sub-strings and phrases, abbreviates directional indicators
and street types. |If applicable, line 2 address elements (ie: Apt, Unit)
are separated from line 1 inputs.

The % SY S.Python.Run() method returns 0 on success or -1 on failure.

16 Using Embedded Python

Call InterSystems IRIS from Embedded
Python

The key to calling InterSystems IRIS from Embedded Python is the 1 ris Python module. The iris module provides a
number of methods that unlock the functionality of InterSystems IRIS from Embedded Python and also allows you to access
any InterSystems IRIS class as if it were a Python class.

This section provides a few basic examples of how to use the capabilities of InterSystems IRIS from Embedded Python:
* Use the iris Module

e Use an InterSystems IRIS Class

e Use InterSystems SQL

* Run an Arbitrary ObjectScript Command

For additional examples, see Call the InterSystems IRIS APIs from Python.

See InterSystems IRIS Python Module Reference for detailed descriptions of the most important APIs exposed by the iris
module.

5.1 Use the iris Module

The 1ris Python module enables you to interact with InterSystems IRIS to use its transaction processing functionality,
access globals (the underlying data structure for all storage in InterSystems IRIS), access InterSystems IRIS APIs and
classes, or call utility methods that help Embedded Python operate smoothly with ObjectScript.

Use the iris module from Embedded Python just as you would any Python module, by using the import command:
import iris

Note: You do not need to import the i ris module explicitly when running the Python shell using the Shell() method
of the %SYS.Python class. In this context only, the import is done for you behind the scenes.

After you import the iris module, call its methods just as you would with any other Python module.

For example, the tstart() method is used to indicate the start of a transaction in InterSystems IRIS:

iris.tstart()

Using Embedded Python 17

Call InterSystems IRIS from Embedded Python

5.2 Use an InterSystems IRIS Class

You can use the i ris module to return a reference to an InterSystems IRIS class. This gives you easy access to both built-
in system classes and any custom classes you or someone on your team may have written.

If a system class has a name starting with a percent sign (%), it means that you can access the class from any namespace.
If a system class does not begin with a percent sign, you must access the class from the %SYS namespace.

For instance, the class %Regex.Matcher creates an object that does pattern matching using regular expressions. The following
example finds all of the area codes in a string and replaces them with the area code 212.

Using the method % New() is the standard way for creating a new instance of an InterSystems IRIS class.

Remember, class names and method names in Python cannot use the % character, so you must substitute an underscore (),
instead.

>>> import iris

>>> matcher = iris._Regex.Matcher

>>> m = matcher._New(*\(Q(\d{3pP)\V) ")

>>> m.Text = "(617) 555-1212, (202) 555-1313, (415) 555-1414~
>>> print(m.ReplaceAll("(212)"))

(212) 555-1212, (212) 555-1313, (212) 555-1414

You can find out more about this and other system classes by looking in the InterSystems Class Reference.

Custom classes work much the same way. They can create a logical grouping for a number of related methods, and often
they extend the class %Persistent (short for %Library.Persistent), which enables you to store objects of the class in the
InterSystems database.

You can find sample classes (including sample data) to learn from in the Samples-Data repository on GitHub:
https://github.com/intersystems/Samples-Data. InterSystems recommends that you create a dedicated namespace called
SAMPLES and load samples into that namespace.

Following is an excerpt from the class Sample.Person:

Class Sample.Person Extends (%Persistent, %Populate, %XML.Adaptor)

{
/// Person®s name.
Property Name As %String(POPSPEC = "Name()') [Required];

/// Person®s Social Security number. This is validated using pattern match.
Property SSN As %String(PATTERN = "3N1"*"-"""2N1""-""4N") [Required];

/// Person®s Date of Birth.
Property DOB As %Date(POPSPEC = "Date()');

/// A collection of strings representing the person"s favorite colors.
Property FavoriteColors As list Of %String(JAVATYPE = "java.util_List",
POPSPEC = "ValueList('",Red,Orange,Yellow,Green,Blue,Purple,Black,White'"):2");

/// Person®s age.

/// This is a calculated field whose value is derived from DOB.
Property Age As %Integer [Calculated, SqlComputeCode = { Set
{Age}=##class(Sample.Person) .CurrentAge({DOB})

}. SqglComputed, SqglComputeOnChange = DOB];

/// This class method calculates a current age given a date of birth date.
/// This method is used by the Age calculated field.

ClassMethod CurrentAge(date As %Date = ') As %Integer [CodeMode = expression]
{

$Select(date=""":"",1: ($ZD($H,8)-$ZD(date,8)\10000))

}

}

You can see that a person object has several properties, including Name, SSN, DOB, FavoriteColors, and Age. The
DOB property is the person’s birth date in $SHOROLOG format. The FavoriteColors property is a list of strings. The
Age property is a computed field that uses a method CurrentAge() to calculate it from the person’s date of birth.

18 Using Embedded Python

https://docs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls
https://github.com/intersystems/Samples-Data

Use InterSystems SQL

The following example changes the current namespace to the SAMPLES namespace, creates a new instance of Sample.Person,
sets its properties, and saves it to the database:

>>> import iris

>>> iris.system.Process.SetNamespace("SAMPLES*")
"SAMPLES™

>>> p = iris.Sample.Person._New()

>>> p_Name = "Doe,John”

>>> p.SSN = "000-00-0000"

>>> p.DOB = iris._Library.Date.DisplayToLogical ("04/24/1999")
>>> print(p-Age)

25

>>> p._FavoriteColors. Insert("Red")

1

>>> p_FavoriteColors.Insert("Blue®)

1

>>> p._Save()

1

>>> print(p._1dQ)
201

As you saw earlier, the % New() method creates an instance of Sample.Person, while the % Save() method saves it to the
database. The % Library.Date.DisplayToL ogical() method takes a date string and converts it to $HOROL OG format for
storage. Finally, the Insert() method of a list property inserts a new element into a list.

Notice that the Insert() and % Save() methods in this example all return 1. These are examples of InterSystems IRIS status
codes, and a 1 indicates that no error occurred during the execution of a method. Often, you will want to check this status
code using iris.check_status() to handle any possible error cases.

InterSystems IRIS automatically assigns an ID to the object when it is stored, in this case, 201.

Note: Effective with InterSystems IRIS 2024.2, an optional shorter syntax for referring to an InterSystems IRIS class
from Embedded Python has been introduced. Either the new form or the traditional form are permitted.

5.3 Use InterSystems SQL

Persistent classes in InterSystems IRIS are projected to SQL, allowing you to access the data using a query using InterSystems
SQL. The class Sample.Person, described above, projects to a table of the same name.

The example below selects the ID, name, and age of all persons having red as one of their favorite colors:

>>> sql = iris.sql.prepare("SELECT ID, Name, Age FROM Sample.Person WHERE FOR SOME
%ELEMENT (FavoriteColors) (%Value = ?)%)

>>> rs = sql.execute("Red")

>>> for 1dx, row in enumerate(rs):

print(F {idx} = {row}")

0 = ["14", "Roentgen,Sally S.", 78]

1 = ["30", "Vanzetti,Jane A.", 73]

2 = ["38", "Vanzetti,Heloisa W.", 8]

3 = ["61", "Gibbs,Zoe J.", 81]

4 = ["727, "Klingman,Pat E.", 55]

5 = ["89", "Beatty,Mario Q.", 91]

6 = ["91", "Oott,Jeff Z.", 54]

7 = ["97", "Van De Griek,Kirsten B.", 49]
8 = ["101", "Newton,Barbara A.", 51]

9 = ["105", "Hertz,Yan M.", 90]

10 = ["129", “Leiberman,Mo U.", 54]

11 = ["133", "Zubik,George X.", 95]

12 = ["137", "Jung,Lawrence T.", 83]

13 = ["147", “Ubertini,Nataliya D.", 71]
14 = ["150", "Ravazzolo,Sally S.", 84]
15 = ["187", “"Nichols,Terry F.", 64]

16 = ["196", "Houseman,David D.*, 97]

17 = ["200", “Ng,James T.", 36]

18 = ["201", "Doe,John", 25]

You can see that 19 records are returned, including that of John Doe, whom we entered earlier.

Using Embedded Python 19

Call InterSystems IRIS from Embedded Python

5.4 Run an Arbitrary ObjectScript Command

Sometimes it can be handy to be able to run an arbitrary command in ObjectScript. You may want to test an ObjectScript
command from Embedded Python, or you may want to access an ObjectScript function or “special variable.”

If you ever need to contact customer support, sometimes they will ask you for the InterSystems IRIS version string,
$ZVERSION (or $2V for short). This special variable contains a string that has the version of InterSystems IRIS you are
using and additional details, like build number.

The following example shows how to write the value of $ZVERSION from Embedded Python:

>>> iris.execute(“write $zversion, !*
IRIS for Windows (x86-64) 2024.1 (Build 267_2U) Tue Apr 30 2024 16:35:10 EDT

Or you can return the value of $ZVERSION and put its value in a Python variable:

>>> zv = iris.execute("return $zversion-)
>>> print(zv)
IRIS for Windows (x86-64) 2024.1 (Build 267_2U) Tue Apr 30 2024 16:35:10 EDT

In this case, there is an equivalent way to get $ZVERSION using an API, but this will not always be true for other special
variables and functions.

>>> print(iris.system.Version.GetVersion())
IRIS for Windows (x86-64) 2024.1 (Build 267_2U) Tue Apr 30 2024 16:35:10 EDT

20 Using Embedded Python

Bridge the Gap Between ObjectScript and
Embedded Python

Because of the differences between the ObjectScript and Python languages, you will need to know a few pieces of information
that will help you bridge the gap between the languages.

From the ObjectScript side, the %SYS.Python class allows you to use Python from ObjectScript. See the InterSystems IRIS
class reference for more information.

From the Python side, the iris module allows you to use ObjectScript from Python. From Python, type help(iris)
for a list of its methods and functions, or see InterSystems IRIS Python Module Reference for more details.

6.1 Access an InterSystems IRIS Class

The iris module gives you access to any InterSystems IRIS class from Embedded Python.

There are two ways of referring to an InterSystems IRIS class. The recommended syntax is iris.<classname>. You
canalsouse iris.cls("<classname>"), and this syntax is required in InterSystems IRIS 2021.1.x through 2024.1.x.

The following examples are equivalent:

>>> matcher
>>> matcher

iris._Regex.Matcher #Recomended syntax
iris.cls("%Regex.Matcher®) #Older syntax (required in 2021.1.x through 2024.1.x)

If an InterSystems IRIS class name contains a percent sign (as in %Regex.Matcher), substitute an underscore in Embedded
Python (as in _Regex.Matcher). In the case of iris.cls("%Regex.Matcher "), the name of the class is contained in
a string argument, so a substitution is not needed.

The following examples are equivalent:

>>> p
>>> p

iris.Sample.Person._New() #Recomended syntax
iris.cls("Sample.Person®) . _New() #Older syntax (required in 2021.1.x through 2024.1.x)

If an InterSystems IRIS method name contains a percent sign (as in % New()), substitute an underscore in Embedded Python
(asin _New()).

Using Embedded Python 21

Bridge the Gap Between ObjectScript and Embedded Python

6.2 Refer to the Current InterSystems IRIS Class

When you want to refer to class members of the current InterSystems IRIS class in Embedded Python, you can often use
self, just as you would with a Python class. This is the case for accessing properties or instance methods, for example.
However, accessing other class members (such as class parameters or class methods) require a different syntax. For an
overview of these and other class members, see Basics Contents of a Class Definition.

The following very simple InterSystems IRIS class definition, User.RedSoxFan can be used to describe Red Sox fans:

Class User.RedSoxFan Extends %Library.Persistent

Property Name As %String;
Parameter FAVORITETEAM = "Boston Red Sox';
ClassMethod FunFact() [Language = python]

{
print("Did you know baseball opening day is in three weeks!")

Method Greeting() [Language = python]
{

import iris

option 1

print(“Hello, my name is " + self_Name + "_. My favorite team is the " +
iris.User.RedSoxFan._GetParameter ("FAVORITETEAM®™) + "_%)

option 2

print("Hello, my name is " + self.Name + ". My favorite team is the " +
iris.cls(_name__). GetParameter("FAVORITETEAM®") + "_%)

Method Conversation() [Language = python]
{

import iris
self._Greeting()

option 1
iris._User_RedSoxFan.FunFact()
option 2

iris.cls(__name_) .FunFact()
}

3

Red Sox fans have a Name (a property, or value that is unique to each instance of the class) and a FAVORITETEAM (a class
parameter, or value that is constant across all instances of the class). The class also has an instance method, Greeting(),
that allows a member to print a greeting message to introduce themselves.

Looking at the code, you can see that the Greeting() method uses se 1 ¥.Name to access the Name property of the current
fan. But to access the FAVORITETEAM parameter, you need to call the built-in method % GetPar ameter (). And instead
of using sel f to reference the current class, you need to use iris.User.RedSoxFanor iris.cls(__name_).In
the second option, __name___is a built-in variable in Python that evaluates to the name of the current class. It uses the
iris.cls() method, which takes a class name and returns a reference to the class.

In this example, Greeting() is an instance method, while FunFact() is a class method. You can think of an instance method
as belonging to an instance of the class, while a class method belongs to the class. And in Embedded Python, the syntax
for calling an instance method and a class method differ when you call them from within the class. Looking at the
Conversation() method, you can see that sel f can be used to call the instance method, while iris.User .RedSoxFan
oriris.cls(__name_) are used to call the class method.

The following example shows the class in action:

>>> f = Iris.User._RedSoxFan._New()

>>> f_Name = "Jane Doe"

>>> f_Conversation()

Hello, my name is Jane Doe. My favorite team is the Boston Red Sox.
Did you know baseball opening day is in three weeks!

22 Using Embedded Python

Use ObjectScript and Python Identifier Names

Of course, if you call a method from outside its class, you need to specify the class name:

>>> iris.User.RedSoxFan.FunFact()

Did you know baseball opening day is in three weeks!

>>> iris.User.RedSoxFan.Conversation(f)

Hello, my name is Jane Doe. My favorite team is the Boston Red Sox.
Did you know baseball opening day is in three weeks!

6.3 Use ObjectScript and Python Identifier Names

The rules for naming identifiers are different between ObjectScript and Python. For example, the underscore () is allowed
in Python method names, and in fact is widely used for the so-called “dunder” methods and attributes (“dunder” is short
for “double underscore™), suchas __getitem _or__ class__. Dunder methods enable instances of a class to interact
with Python’s built-in functions and operators. To use such identifiers from ObjectScript, enclose them in double quotes:

USER>set mylist = builtins._list()

USER>zwrite mylist.”__class__ "
2@%SYS.Python ; <class list> ; <OREF>

Conversely, InterSystems IRIS methods often begin with a percent sign (%). such as % New() or % Save(). To use such
identifiers from Python, replace the percent sign with an underscore. If you have a persistent class User.Person, the following
line of Python code creates a new Person object.

>>> import iris
>>> p = iris.User.Person._New()

6.4 Use Python Builtin Functions

The bui I'tins package is loaded automatically when the Python interpreter starts, and it contains all of the language’s
built-in identifiers, such as the base object class and all of the built-in datatype classes, exceptions classes, functions, and
constants.

You can import this package into ObjectScript to gain access to all of these identifiers as follows:
set builtins = ##class(%SYS.Python) . Import(*builtins'™)

The Python print() function is actually a method of the bui I'tins module, so you can now use this function from
ObijectScript:

USER>do builtins.print(“hello world!")
hello world!

You can then use the zwrite command to examine the bui I'tins object, and since it is a Python object, it uses the str()
method of the bui I'tins package to get a string representation of that object. For example:

USER>zwrite builtins
bul Itins=5@%SYS.Python ; <module “builtins® (built-in)> ; <OREF>

By the same token, you can create a Python list using the method builtins.list(). The example below creates an empty list:

USER>set list = builtins.list()

USER>zwrite list
1ist=5@%SYS.Python ; [1 ; <OREF>

Using Embedded Python 23

Bridge the Gap Between ObjectScript and Embedded Python

You can use the builtins.type() method to see what Python type the variable Fist is:

USER>zwrite builtins.type(list)
3@%SYS.Python ; <class "list"> ; <OREF>

Interestingly, the list() method actually returns an instance of Python’s class object that represents a list. You can see what
methods the list class has by using the dir () method on the list object:

USER>zwrite builtins.dir(list)
3@%SYS.Python ; [*_add_ ", "_class_ ", "_ class_getitem__", "_ contains__", "_ delattr__",

delitem__ ",
dir__ ", " _doc_ ", "_eq_", "_format_ ", "__ge_ ", "_ getattribute_ ", "_ getitem_ ", " gt *,
hash__ ", " idadd__ ", " amul__ ", " init_", " init_subclass_ ", " iter__ ", " le_*", " len_",

It ", " _mul__", "_ ne , T__new , "__reduce__ ", "_ reduce_ex_ ","_repr__", "_ reversed_ ",
rmul__ ", * setattr__ ", *_ setitem ", "_ sizeof ", " _str__ ", *_ subclasshook ", "append®,“clear”,

"copy", "count®, "extend", "index", "insert®, "pop", "remove®", "reverse", "sort"] ; <OREF>

Likewise, you can use the help() method to get help on the list object.

USER>do builtins._help(list)
Help on list object:
class list(object)

list(iterable=(), /)
Built-in mutable sequence.

IT no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Methods defined here:

__add__(self, value, /)
Return self+value.

__contains__(self, key, /)
Return key in self.

__delitem__(self, key, /)
Delete self[key].

Note: Instead of importing the bui I'tins module into ObjectScript, you can call the Builtins() method of the

%SYS.Python class.

6.5 Use Keyword or Named Arguments

A common practice in Python is to use keyword arguments (also called “named arguments™) when defining a method. This
makes it easy to drop arguments when not needed or to specify arguments according to their names, not their positions. As
an example, take the following simple Python method:

def mymethod(foo=1, bar=2, baz='"three'):

print(f'foo={foo}, bar={bar}, baz={baz}'")

Since InterSystems IRIS does not have the concept of keyword arguments, you need to create a dynamic object to hold the
keyword/value pairs, for example:

USER>set args = { "bar': 123, *"foo'": "foo"}

24

Using Embedded Python

Pass Arguments By Reference

If the method mymethod() were in a module called mymodule.py in the directory <installdir>/mgr/python, you could import
it into ObjectScript and then call it, as follows:

USER>set obj = ##class(%SYS.Python). Import(*'mymodule™)
USER>set args = {"bar': 123, "foo": "foo"}

USER>do obj.mymethod(args.-..)
foo=foo, bar=123, baz=three

Since baz was not passed in to the method, it is assigned the value of ""three'" by default.

6.6 Pass Arguments By Reference

Arguments in methods written in ObjectScript can be passed by value or by reference. In the method below, the ByRef
keyword in front of the second and third arguments in the signature indicates that they are intended to be passed by reference.

ClassMethod SandwichSwitch(bread As %String, ByRef fillingl As %String, ByRef Filling2 As %String)
{

set bread = "whole wheat"
set fillingl = "almond butter™
set filling2 = "cherry preserves"

Assume this method is contained in a class called User.EmbeddedPython. When calling the method from ObjectScript,
place a period before an argument to pass it by reference, as shown below:

USER>set argl = "white bread"

USER>set arg2 = 'peanut butter"

USER>set arg3 = '"‘grape jelly"

USER>do ##class(User.EmbeddedPython).SandwichSwitch(argl, -arg2, .arg3)

USER>write argl
white bread
USER>write arg2
almond butter
USER>write arg3
cherry preserves

From the output, you can see that the value of the variable argl remains the same after calling SandwichSwitch(), while
the values of the variables arg2 and arg3 have changed.

Since Python does not support call by reference natively, you need to use the iris.ref() method to create a reference to pass
to the method for each argument to be passed by reference:

>>> import iris

>>> argl = "white bread”

>>> arg2 iris.ref("peanut butter®)
>>> arg3 = iris.ref("grape jelly"
>>> iris.User.EmbeddedPython.SandwichSwitch(argl, arg2, arg3)
>>> argl

“"white bread”

>>> arg2.value

“almond butter*

>>> arg3.value

“cherry preserves*®

You can use the value property to access the values of arg2 and arg3 and see that they have changed following the call
to the method.

ObijectScript also has a keyword Output, which indicates that an argument is passed by reference and it is expected that
this argument is to be used as an output, without any incoming value. From Python, use the iris.ref() method to pass the
argument the same way as you would for a ByRef argument.

Using Embedded Python 25

Bridge the Gap Between ObjectScript and Embedded Python

Note: While passing arguments by reference is a feature of ObjectScript methods, there is no equivalent way to pass
arguments by reference to a method written in Python. The ByRef and Output keywords in the signature of an
ObjectScript method are conventions used to indicate to the user that the method expects that an argument is to
be passed by reference. In fact, ByRef and Output have no actual function and are ignored by the compiler.
Adding ByRef or Output to the signature of a method written in Python results in a compiler error.

6.7 Pass Values for True, False, and None

The %SYS.Python class has the methods True(), False(), and None(), which represent the Python identifiers True, False,
and None, respectively.

For example:

USER>zwrite ##class(%SYS.Python).True()
2@%SYS.Python ; True ; <OREF>

These methods are useful if you need to pass True, False, and None to a Python method. The following example uses
the method shown in Keyword or Named Arguments.

USER>do obj .-mymethod(##class(%SYS.Python).True(), ##class(%SYS.Python).False(),
##tclass(%SYS.Python) .None())
foo=True, bar=False, baz=None

If you pass unnamed arguments to a Python method that expects keyword arguments, Python handles them in the order
they are passed in.

Note that you do not need to use the methods True(), False(), and None() when examining the values returned by a Python
method to ObjectScript.

Say the Python module mymodule also has a method isgreaterthan(), which is defined as follows:

def isgreaterthan(a, b):
return a > b

When run in Python, you can see that the method returns True if the argument a is greater than b, and False otherwise:

>>> mymodule.isgreaterthan(5, 4)
True

However, when called from ObjectScript, the returned value is 1, not the Python identifier True:

USER>zwrite obj.isgreaterthan(5, 4)
1

6.8 Use Dictionaries

In Python, dictionaries are commonly used to store data in key-value pairs, for example:

>>> mycar = {

S "make”: "Toyota",
“model”: “RAV4-",
“color™: "blue”

>>> print(mycar)

{"make": "Toyota®", "model®: “"RAV4", “color®: "blue"}
>>> print(mycar["color®])

blue

26 Using Embedded Python

Use Lists

You can use the method iris.arrayref() to place the contents of the dictionary mycar into an ObjectScript array and return
a reference to that array:

>>> a = Iris.arrayref(mycar)

>>> print(a.value)

{"color®: "blue”, "make®": "Toyota®", "model®: "RAV4"}
>>> print(a.value["color®])

blue

You can then pass the array to an ObjectScript method.

For example, assume you have an InterSystems IRIS class called User.ArrayTest that has a method WriteContents() that
writes the contents of an array:

ClassMethod WriteContents(myArray) [Language = objectscript]

zwrite myArray

Then, you can call WriteContents() as follows:

>>> jris.User._ArrayTest._WriteContents(a)
myArray(‘‘color')="blue"
myArray(‘'make')="Toyota"
myArray(‘'model*)="RAvV4"

For more information, see iris.arrayref().

On the ObjectScript side, you can manipulate Python dictionaries using the dict() method of the Python bui Itins module:

USER>set mycar = ##class(%SYS.Python).Builtins().dict()
USER>do mycar.setdefault("'make™, "Toyota')
USER>do mycar.setdefault(*'model", ""RAV4'™)
USER>do mycar.setdefault(*color™, *"blue™)

USER>zwrite mycar
mycar=2@%SYS.Python ; {"make®: "Toyota®", "model®: "RAV4", “color®: "blue"} ; <OREF>

USER>write mycar."__getitem_ "(“'color'™)
blue

The example above uses the dictionary method setdefault() to set the value of a key and ___getitem__ () to get the value of
a key.

6.9 Use Lists

In Python, lists store collections of values, but without keys. Items in a list are accessed by their index.

>>> fruits = ["apple®, "banana®, "cherry”]
>>> print(fruits)

["apple®, "banana®, "cherry®]

>>> print(fruits[0])

apple

Using Embedded Python 27

Bridge the Gap Between ObjectScript and Embedded Python

In ObjectScript, you can work with Python lists using the list() method of the Python bui Itins module:

USER>set 1 = ##class(%SYS.Python)._Builtins(Q).list()
USER>do I.append(*'apple™)
USER>do I .append(*'banana'™)
USER>do I.append(*‘cherry™)

USER>zwrite 1
1=13@%SYS.Python ; ["apple®, "banana®, "cherry®] ; <OREF>

USER>write 1."__getitem__ " (0)
apple

The example above uses the list method append() to append an item to the listand __getitem__ () to get the value at a
given index. (Python lists are zero based.)

If you want to convert an ObjectScript list to a Python list, you can use the ToL ist() and ToL istTyped() methods in
%SYS.Python. Given an ObjectScript list, ToList() returns a Python list that contains the same data. Given an ObjectScript
list containing data and a second ObjectScript list containing integer ODBC data type codes, ToListTyped() returns a
Python list that contains the same data as the first list, with each item having the data types specified in the second list.

Note: For a table of ODBC data types, see Integer Codes for Data Types.
Some ODBC data types may translate to the same Python data type.

Some data types require the Python package numpy to be installed.

In the example below, a Python method L oop() in the class User.Lists iterates over the items in a list and prints their value
and data type.

ClassMethod Loop(pyList) [Language = python]
for x in pyList:

) print(x, type(x))

You can then use ToList() and ToListTyped() as follows:

USER>set clist = $listbuild(123, 456.789, "hello world"™)
USER>set plist = ##class(%SYS.Python) .ToList(clist)
USER>do ##class(User.Lists).Loop(plist)

123 <class "int">

456.789 <class "float">

hello world <class "str">

USER>set clist = $listbuild(42, 42, 42, 42)

USER>set tlist = $listbuild(-7, 2, 3, 4)

USER>set plist = ##class(%SYS.Python) .ToListTyped(clist, tlist)
USER>do ##class(User.Lists).Loop(plist)

True <class "bool ">

42.0 <class "float">

42 <class "decimal .Decimal ">
42 <class "int">

6.10 Use Globals

Most of the time, you will probably access data stored in InterSystems IRIS either by using SQL or by using persistent
classes and their properties and methods. However, there may be times when you want to directly access the underlying

28 Using Embedded Python

Use Globals

native persistent data structures, called globals. This is particularly true if you are accessing legacy data or if you are storing
schema-less data that doesn’t lend itself to SQL tables or persistent classes.

Though it is an oversimplification, you can think of a global as a dictionary of key-value pairs. (See Introduction to Globals
for a more accurate description.)

Consider the following class, which has two class methods written in Python:

Class User.Globals
ClassMethod SetSquares(x) [Language = python]
{

import iris
square = iris.gref("~square®)
for key in range(1, x):
value = key * ke
square.set([key], value)

ClassMethod PrintSquares() [Language = python]
{

import iris
square = iris.gref("~square®)
key = **
while True:

key = square.order([key])

if key == None:

break
print("The square of * + str(key) + " is " + str(square.get([key])))

}
}

The method SetSquares() loops over a range of keys, storing the square of each key at each node of the global “square.
The method PrintSquares() traverses the global and prints each key and the value stored at the key.

Let’s launch the Python shell, instantiate the class, and run the code to see how it works.

USER>do ##class(%SYS.Python).Shell()

Python 3.9.5 (default, May 31 2022, 12:35:47) [MSC v.1927 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.

>>> g = iris.User.Globals

>>> g.SetSquares(6)

>>> g._PrintSquares()

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25

Now, let’s look at how some of the methods of the built-in iris module allow us to access globals.

In method SetSquar es(), the statement square = iris.gref("~square™) returns a reference to the global *square,
also known as a gref:

>>> square = iris.gref(*/square-)

The statement square .set([key], value) setsthe node of “square with key key to the value value, for example
you can set node 12 of ~square to the value 144:

>>> square.set([12], 144)
You can also set the node of a global with the following shorter syntax:
>>> square[13] = 169

In method PrintSquares(), the statement key = square.order([key]) takes a key as input and returns the next key
in the global, similar to the $ORDER function in ObjectScript. A common technique for a traversing a global is to continue

Using Embedded Python 29

Bridge the Gap Between ObjectScript and Embedded Python

using order () until it returns None, indicating that no more keys remain. Keys do not need to be consecutive, so order ()
returns the next key even if there are gaps between keys:

>>> key = 5

>>> key = square.order([key])
>>> print(key)

12

Then, square.get([key]) takes a key as input and returns the value at that key in the global:

>>> print(square.get([key]))
144

Again, you can use the following shorter syntax:

>>> print(square[13])
169

Note that nodes in a global don’t have to have a key. The following statement stores a string at the root node of ~square:
>>> gsquare[None] = "Table of squares®

To show that these Python commands did in fact store values in the global, exit the Python shell and then use the zwrite
command in ObjectScript to print the contents of “square:

>>> quit()

USER>zwrite “square
~square="Table of squares"
~square(1)=1

~square(2)=4

~square(3)=9

~square(4)=16
~square(5)=25
~square(12)=144
~square(13)=169

See Global Reference API for more details on how to access and manipulate globals from Python.

6.11 Change Namespaces

InterSystems IRIS has the concept of namespaces, each of which has its own databases for storing code and data. This
makes it easy to keep the code and data of one namespace separate from the code and data of another namespace. For
example, if one namespace has a global with a certain name, another namespace can use a global with the same name
without the danger of conflicting with the other global.

If you have two namespaces, NSONE and NSTWO, you could create a global called “myFavorite in NSONE, using
ObjectScript in Terminal, as shown below. Then you could set the $namespace special variable to change to NSTWO and
create a separate global called ~“myFavor ite in that namespace. (To replicate this example, you can configure these two
namespaces on your InterSystems IRIS instance or use two namespaces you already have.)

NSONE>set "myFavorite("'fruit'™) = "apple”
NSONE>set $namespace = "NSTWO"

NSTWO>set “myFavorite("'fruit') = "orange"

Here, “myFavorite(""fruit') has the value ""apple’ in NSONE and the value "*orange'* in NSTWO.

30 Using Embedded Python

Run an ObjectScript Routine from Embedded Python

When you call Embedded Python, it inherits the current namespace. We can test this by calling the NameSpace() method
of the iris.system.Process class from Python, which displays the name of the current namespace, and by confirming that
“"myFavorite("fruit') = "orange".

NSTWO>do ##class(%SYS.Python).Shell()

Python 3.9.5 (default, Jun 2 2023, 14:12:21) [MSC v.1927 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.

>>> iris.system.Process.NameSpace()

"NSTWO*

>>> myfav = iris.gref(""myFavorite®)

>>> print(myfav["fruit®])

orange

You’ve seen how to use $namespace to change namespaces in ObjectScript. In Embedded Python, you use the
SetNamespace() method of the iris.system.Process class. For example, you can change to the namespace NSONE and confirm
that ~"myFavorite(""fruit') = "apple".

>>> iris.system.Process.SetNamespace("NSONE™)
“NSONE*

>>> myfav = iris.gref(""myFavorite®)

>>> print(myfav["fruit"])

apple

Finally, when you exit from the Python shell, you remain in namespace NSONE.

>>> quit(Q)
NSONE>

6.12 Run an ObjectScript Routine from Embedded Python

You may encounter older ObjectScript code that uses routines instead of classes and methods and want to call a routine
from Embedded Python. In such cases, you can use the method iris.routine() from Python.

The following example, when run in the %SYS namespace, calls the routine *SECURITY::

>>> jris.routine("~SECURITY")

1) User setup
2) Role setup
3) Service setup
4) Resource setup

If you have a routine *Math that has a function Sum() that adds two numbers, the following example adds 4 and 3:

>>> sum = iris.routine("Sum™Math*,4,3)
>>> sum

Using Embedded Python 31

Bridge the Gap Between ObjectScript and Embedded Python

6.13 Handle Exceptions

The InterSystems IRIS exception handler can handle Python exceptions and pass them seamlessly to ObjectScript. Building
on the earlier Python package example, the following example shows what happens if you try to call canvas.drawl mage()
using a non-existent file. Here, ObjectScript catches the exception in the special variable $zerror:

USER>try { do canvas.drawlmage(*'C:\Sample\bad.png', 150, 600) } catch { write “Error: *, $zerror, ! }
Error: <THROW> *%Exception.PythonException <THROW> 230 ~07DO canvas.drawlmage(''W:\Sample\isc.png",
150, 600)

<class "0OSError®>: Cannot open resource "W:\Sample\isc.png"” -

In this case, <class "0OSError®>: Cannot open resource "W:\Sample\isc.png" is the exception passed
back from Python.
For more information on $zerror, see $ZERROR (ObjectScript).

For information on raising an ObjectScript status error as a Python exception, see check_status(status).

6.14 Bytes and Strings

Python draws a clear distinction between objects of the “bytes” data type, which are simply sequences of 8-bit bytes, and
strings, which are sequences of UTF-8 bytes that represent a string. In Python, bytes objects are never converted in any
way, but strings might be converted depending on the character set in use by the host operating system, for example, Latin-
1.

InterSystems IRIS makes no distinction between bytes and strings. While InterSystems IRIS supports Unicode strings
(UCS-2/UTF-16), any string that contains values of less than 256 could either be a string or bytes. For this reason, the fol-
lowing rules apply when passing strings and bytes to and from Python:

» InterSystems IRIS strings are assumed to be strings and are converted to UTF-8 when passed from ObjectScript to
Python.

e Python strings are converted from UTF-8 to InterSystems IRIS strings when passed back to ObjectScript, which may
result in wide characters.

» Python bytes objects are returned to ObjectScript as 8-bit strings. If the length of the bytes object exceeds the maximum
string length, then a Python bytes object is returned.

» To pass bytes objects to Python from ObjectScript, use the ##class(% SY S.Python).Bytes() method, which does not
convert the underlying InterSystems IRIS string to UTF-8.

» To turn the bytes object back into a string, use the builtins method builtins.bytes().

32 Using Embedded Python

Standard Output and Standard Error Mappings

The following example turns an InterSystems IRIS string to a Python object of type bytes and then converts that object
back into a string:

USER>set builtins = ##class(%SYS.Python). Import(*'builtins'™)
USER>set b = ##class(%SYS.Python).Bytes(*"Hello Bytes!")

USER>zwrite b
b=3@%SYS.Python ; b"Hello Bytes!® ; <OREF>

USER>zwrite builtins.type(b)
4@%SYS.Python ; <class "bytes"> ; <OREF>

USER>set s = builtins.bytes(b)

USER>zwrite s
s="Hello Bytes!"

USER>zwrite builtins.type(s)
4@%SYS.Python ; <class "str*> ; <OREF>

To construct Python bytes objects bigger than the 3.8MB maximum string length in InterSystems IRIS, you can use a
bytearray object and append smaller chunks of bytes using the extend() method. Finally, pass the bytearray object into the
builtins bytes() method to get a bytes representation:

USER>set ba = builtins.bytearray()
USER>do ba.extend(##class(%SYS.Python).Bytes(*'chunk 1))
USER>do ba.extend(##class(%SYS.Python) .Bytes(*'chunk 2'))

USER>zwrite builtins.bytes(ba)
"'chunk 1chunk 2"

6.15 Standard Output and Standard Error Mappings

When using Embedded Python, standard output is mapped to the InterSystems IRIS console, which means that the output
of any print() statements is sent to the Terminal. Standard error is mapped to the InterSystems IRIS messages.log file,
located in the directory <install-dir>/mgr.

As an example, consider this Python method:

def divide(a, b):
try:
print(asb)
except ZeroDivisionError:
print(“Cannot divide by zero*)
except TypeError:
import sys
print("Bad argument type®, file=sys.stderr)
except:
print(*“Something else went wrong®)

Assume the method is contained in a module called mymodule.py in the directory <installdir>/mgr/python. Then, if you test
this method in Terminal, you might see the following:

USER>set obj = ##class(%SYS.Python). Import(*'mymodule™)

USER>do obj.divide(5, 0)
Cannot divide by zero

USER>do obj .divide(5, "hello™)

If you try to divide by zero, the error message is directed to the Terminal, but if you try to divide by a string, the message
is sent to messages.log:

11/19/21-15:49:33:248 (28804) O [Python] Bad argument type

Using Embedded Python 33

Bridge the Gap Between ObjectScript and Embedded Python

Only important messages should be sent to messages.log, to avoid cluttering the file.

34 Using Embedded Python

Use Embedded Python in Interoperability
Productions

If you are writing custom business host classes or adapter classes for interoperability productions in InterSystems IRIS,
any callback methods must be written in ObjectScript because their signatures make use of ByReT and Output keywords.
A callback method is an inherited method that does nothing by default, but is designed to be implemented by the user. The
ObjectScript code in a callback method can, however, make use of Python packages or call other methods implemented in
Python.

The following example shows a business operation that takes the string value from an incoming message and uses the
Amazon Web Services (AWS) boto3 SDK for Python to send that string to a phone in a text message via the Amazon
Simple Notification Service (SNS). The details of this package is out of scope for this discussion, but you can see in the
example that the Onlnit() and OnM essage() callback methods are written in ObjectScript, while the methods Pyl nit() and
SendSM () are written in Python.

/// Send SMS via AWS SNS
Class dc.opcua.SMS Extends Ens.BusinessOperation

Parameter INVOCATION = "'Queue';

/// AWS boto3 client
Property client As %SYS.Python;

/// json._dumps reference
Property tojson As %SYS.Python;

/// Phone number to send SMS to
Property phone As %String [Required];

Parameter SETTINGS = "'phone:SMS";
Method OnMessage(request As Ens.StringContainer, Output response As Ens.StringContainer) As %Status

#dim sc As %Status = $$$OK

try {
set response = ##class(Ens.StringContainer).%New(. .SendSMS(request.StringValue))
set code = +{}.%FromJSON(response.StringValue).ResponseMetadata.HTTPStatusCode
set:(code™=200) sc = $$SERROR($$$GeneralError, $$$FormatText(’Error sending SMS,

code: %1 (expected 200), text: %2'", code, response.StringValue))

} catch ex
set sc = ex.AsStatus()

3

return sc

}
Method SendSMS(msg As %String) [Language = python]
{

response = self.client.publish(PhoneNumber=self.phone, Message=msg)
return self._tojson(response)

}

Using Embedded Python 35

Use Embedded Python in Interoperability Productions

Method Onlnit() As %Status
{

#dim sc As %Status = $$$0K
try {

do ..PyInitQ)
} catch ex {

set sc = ex.AsStatus()

quit sc

}

/// Connect to AWS
Method PylInit() [Language = python]
{

import boto3

from json import dumps

self._client = boto3.client(''sns™)
self.tojson = dumps

Note: The code in the OnM essage() method, above, contains an extra line break for better formatting when printing
this document.

The following business service example is known as a poller. In this case, the business service can be set to run at intervals
and generates a request (in this case containing a random string value) that is sent to a business process for handling.

Class Debug.Service.Poller Extends Ens.BusinessService

Property Target As Ens.DataType.ConfigName;
Parameter SETTINGS = "'Target:Basic";
Parameter ADAPTER = "Ens.InboundAdapter";

Method OnProcesslinput(plnput As %RegisteredObject, Output pOutput As %RegisteredObject,
ByRef pHint As %String) As %Status [Language = objectscript]

{

set request = ##class(Ens.StringRequest).%New()

set request.StringValue = ..RandomMessage()

return ._SendRequestSync(..Target, request, .pOutput)
3

ClassMethod RandomMessage() As %String [Language = python]

import iris

import random

fruits = ["apple", "banana', "cherry']

fruit = random.choice(fruits)

return fruit + * * + iris.Debug.Service.Poller._GetSomeText()

}
ClassMethod GetSomeText() As %String [Language = objectscript]

quit "is something to eat"

}

For more information on programming for interoperability productions, see Programming Business Services, Processes
and Operations.

36 Using Embedded Python

Use the Flexible Python Runtime Feature

8.1 Overview of the Flexible Python Runtime Feature

When you run Embedded Python, InterSystems IRIS expects that you are using the default version of Python for your
operating system. However, Microsoft Windows does not come with Python by default, and as of version 2024.2, the

InterSystems IRIS installer on Windows does not install Python for you. Also, there may be times when you might want

to upgrade to a later version of Python or switch to an alternate distribution like Anaconda.

The Flexible Python Runtime feature enables you to choose what version of Python you want to use with Embedded Python

in InterSystems IRIS.

Note: The Flexible Python Runtime feature is not supported on all operating systems. See Other Supported Features for

a complete list of platforms that support the feature.

Important: There are known incompatibilities between InterSystems IRIS and Python 3.13, so you are advised to

avoid Python 3.13 at this time. This issue will be addressed in an upcoming version of InterSystems IRIS.

Preparing to use the Flexible Python Runtime feature involves three basic steps:

1. Install the version of Python you want to use.

2. Setthe PythonRuntimelLibrary configuration setting to specify the location of the Python runtime library to use

when running Embedded Python.
This location will vary based on your operating system, Python version, and other factors.

Windows example: C:\Program Files\Python311\python3.dll (Python 3.11 on Windows)

Linux example: Zusr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0 (Python 3.11 on Ubuntu 22.04 on

the x86 architecture)

See PythonRuntimeLibrary for more information.

3. Setthe PythonRuntimelLibraryVersion configuration setting to specify the version number of the Python runtime

library to use when running Embedded Python.
For example: 3.11.

See PythonRuntimeLibraryVersion for more information.

4. Ensure that the sys. path variable in Embedded Python includes the correct directories needed to import Python

packages.

See Embedded Python and sys.path.

Using Embedded Python

37

Use the Flexible Python Runtime Feature

See the following sections for step-by-step instructions for some common Flexible Python Runtime scenarios:
» Example: Python 3.11 on Windows

e Example: Python 3.11 on Ubuntu 22.04

» Example: Anaconda on Windows

» Example: Anaconda on Ubuntu 22.04

8.1.1 Embedded Python and sys.path

After you launch Embedded Python, it uses the directories contained in the sys. path variable to locate any Python
packages you want to import.

When you use Embedded Python with the default version of Python for your operating system, or on Microsoft Windows,
sys.path already includes the correct directories, for example.

e <installdir>/lib/python (Python packages reserved for InterSystems IRIS)

* <installdir>/mgr/python (Python packages installed by the user)

e Global package repositories for the default Python version
This location will vary based on your operating system, Python version, and other factors.
Windows example: C:\Program Files\Python311\Lib\site-packages (Python 3.11 on Windows)

Linux example: /usr/local/lib/python3.10/dist-packages (Python 3.10 on Ubuntu 22.04)

On Microsoft Windows with Python 3.11, sys. path in Embedded Python might look something like this:

USER>do ##class(%SYS.Python).Shell()

Python 3.11.9 (tags/v3.11.9:de54cf5, Apr 2 2024, 10:12:12) [MSC v.1938 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[“C:\\Program Files\\Python311\\python311l.zip®, “C:\\Program Files\\Python311\\DLLs",
"C:\\Program Files\\Python311\\Lib", "c:\\intersystems\\IRIS\\bin",
“c:\\intersystems\\IRIS\\mgr\\python®, “c:\\intersystems\\IRIS\\Ilib\\python*,

“C:\\Program Files\\Python311", *C:\\Program Files\\Python311\\Lib\\site-packages®]

Important: On Microsoft Windows, if sys. path contains a directory that is within your user directory, such as
C:\Users\<username>\AppData\Local\Programs\Python\Python311, it indicates that you have installed Python
for the current user only. InterSystems recommends installing Python for all users to avoid unexpected
results.

On Ubuntu 22.04, with the default version of Python (3.10), sys. path in Embedded Python might look something like
this:

USER>do ##class(%SYS.Python).Shell()

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/usr/lib/python310.zip®, “/usr/lib/python3.10", "/usr/lib/python3.10/1ib-dynload”,
*/InterSystems/IRIS/1ib/python®,

"/InterSystems/IR1S/mgr/python®, "/usr/local/lib/python3.10/dist-packages”,
*/usr/lib/python3/dist-packages”,

*/usr/1ib/python3.10/dist-packages”]

38 Using Embedded Python

Overview of the Flexible Python Runtime Feature

Important: On Linux, if sys.path contains a directory that is within your home directory, such as
/home/<username>/.localllib/python3.10/site-packages, it could indicate that you have installed packages
in your local package repository. For example, if you install a package without the --target attribute
(and without using sudo), Python will install it into the local package repository within your home directory.
If any other user tries to import the package, it will fail.

Although InterSystems recommends using the --target <installdir>/mgr/python option,
installing packages using sudo and omitting the —-target attribute installs the packages into the global
package repository. These packages can also be imported by any user.

If you switch to an alternate distribution of Python, InterSystems IRIS may not know where its package repositories are
located. InterSystems IRIS provides you with a tool that can help you tailor your sys . path to include the correct directories,
namely the iris_site.py file in the directory <installdir>/lib/python.

The iris_site.py file covers the most common use cases, but if you need to customize the file, copy it to the
<installdir>/mgr/python directory. This will ensure that your configuration is not wiped out when you upgrade to a later
version of InterSystems IRIS. Read the comments in the file for helpful tips.

If you are using Anaconda, InterSystems IRIS 2024.2 comes with examples you can edit to your needs. For example, if
you are using Anaconda on Linux, copy the file iris_site_anaconda_ubuntu_linux_example.py from the <installdir>/lib/python
directory to the <installdir>/mgr/python directory and rename it iris_site.py. Then edit the path names in the file to match
your installation.

For Anaconda on Ubuntu 22.04, for example, edit the last few lines of your iris_site.py file to substitute your actual username:

sys.path = sys.path + __ sitegetsitepackages(["/home/<username>/anaconda3”]
sys.path = sys.path + ["/home/<username>/anaconda3/lib/python3.11/lib-dynload™]
sys.path = ["/home/<username>/anaconda3/lib/python3.11'"] + sys.path

sys.path = [''/home/<username>/anaconda3/lib/python311.zip"] + sys.path

With the iris_site.py above, sys. path in Embedded Python might look something like this:

USER>do ##class(%SYS.Python).Shell()

Python 3.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys.path

[*/home/<username>/anaconda3/lib/python311.zip®, "/home/<username>/anaconda3/lib/python3.11",
"/home/<username>/anaconda3/lib/python311.zip®, "/home/<username>/anaconda3/lib/python3.11",
"/home/<username>/anaconda3/lib/python3.11/1ib-dynload”, */InterSystems/IR1S/mgr/python~,
"/InterSystems/IRIS/1ib/python®, */home/<username>/anaconda3/lib/python3.11/site-packages”,
*/home/<username>/anaconda3/lib/python3.11/1ib-dynload"]

Again, the <username> in the above example will reflect your actual username.

It may take you a few iterations to get your sys. path correct for Flexible Python Runtime. It may be helpful to launch
Python outside of InterSystems IRIS and compare its sys . path with the sys. path inside Embedded Python to make
sure you have all of the expected directories.

Note: Changes to the PythonRuntimeLibrary and PythonRuntimelL ibraryVersion configuration settings or
iris_site.py take effect on starting a new session. Restarting InterSystems IRIS is not required.

8.1.2 Check Python Version Information

If you are using the Flexible Python Runtime feature, it can be useful to check the version of Python that Embedded Python
is using versus the default version that your system is using. An easy way to do this is by calling the GetPythonl nfo()
method of the %SYS.Python class.

Using Embedded Python 39

Use the Flexible Python Runtime Feature

The following example, on Ubuntu 22.04 on the x86 architecture, shows that the Python runtime library being used is
/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0, the running version of Embedded Pythonis3.11.0rc1,
and the system version is 3.10.12.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""AllowNonSystemPythonForIntegratedML')=0

info("'CPF_PythonPath")="""
info("'CPF_PythonRuntimeLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0"
info(""CPF_PythonRuntimeLibraryVersion'™)=3.11

info(""IRISInsidePython')=0

info(""PythonlnsidelR1S™)=2
info(RunningLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0"
info(""RunningVersion')="3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0]"
info("'SystemPath')="/usr/lib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]"
info("'SystemVersionShort')="3.10.12"
info("iris_site.py_platform™)=""Inxubuntu2204x64""

This information will vary based on your operating system, Python version, and other factors.

8.2 Flexible Python Runtime Example: Python 3.11 on
Windows

Microsoft Windows does not come with Python, and as of InterSystems IRIS 2024.2, the InterSystems IRIS installer for
Windows does not install Python. You must download and install Python yourself.

Important: The installer for InterSystems IRIS 2024.1 on the Windows platform previously installed OpenSSL 3.1.4
along with Python 3.9.5. However, installing Python 3.9 from Python.org installs OpenSSL 1.1.1n. If you
need to use OpenSSL 3 with Embedded Python on InterSystems IRIS 2024.2, install Python 3.11 or higher.
This installs whatever version of OpenSSL 3 is included with the Python installer. (The version of OpenSSL
used by Embedded Python is independent from any other versions used by the Windows operating system
or by InterSystems IRIS itself.)

The example below shows how to determine the version of OpenSSL used by Embedded Python:

USER>do ##class(%SYS.Python).Shell()

Python 3.11.9 (tags/v3.11.9:de54cf5, Apr 2 2024, 10:12:12) [MSC v.1938 64 bit (AMD64)]
on win32

Type quit() or Ctrl-D to exit this shell.

>>> import ssl

>>> ssl_OPENSSL_VERSION

"OpenSSL 3.0.13 30 Jan 2024*

Important: On InterSystems IRIS 2024.2 for Windows, the AutoML feature of IntegratedML requires using Python
3.11.

The following example shows how to use install and use Python 3.11 with InterSystems IRIS 2024.2 on Windows:

1. Download Python 3.11 from https://www.python.org/downloads/.

2. Launch the Python installer.

3. Click customize Installation.

4. Click Next until you reach the Advanced Options screen.

5

Select the option to Install Python for All Users.

40 Using Embedded Python

https://www.python.org/downloads/

Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04

10.
11.
12.
13.
14.

15.

Click Install.

In the InterSystems IRIS Management Portal, go to System Administration > Configuration > Additional Settings >
Advanced Memory.

On the Advanced Memory Settings page, in the PythonRuntimeLibrary row, click Edit.

Enter C:\Program Files\Python311\python3.dllI.

Important: If python3.dll is located in a folder that is within your user directory, such as
C:\Users\<username>\AppData\Local\Programs\Python\Python311, it indicates that you have installed
Python for the current user only. InterSystems recommends installing Python for all users to avoid
unexpected results.

Click save.
On the Advanced Memory Settings page, in the PythonRuntimeLibraryVersion row, click Edit.
Enter 3.11.
Click save.

From Terminal, launch Embedded Python and verify that sys . path now includes the Python 3.11 package directories.

USER>do ##class(%SYS.Python).Shell()

Python 3.11.9 (tags/v3.11.9:de54cf5, Apr 2 2024, 10:12:12) [MSC v.1938 64 bit (AMD64)] on win32
Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> gys._path

["C:\\Program Files\\Python311\\python311l.zip®", "C:\\Program Files\\Python311\\DLLs",
"C:\\Program Files\\Python311\\Lib", "c:\\intersystems\\IRIS\\bin",
“c:\\intersystems\\IRIS\\mgr\\python®, “c:\\intersystems\\IRIS\\Iib\\python~,

"C:\\Program Files\\Python311", "C:\\Program Files\\Python311\\Lib\\site-packages"]

From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""AllowNonSystemPythonFor IntegratedML')=0

info("'CPF_PythonPath')="""

info("'CPF_PythonRuntimeLibrary')="C:\Program Files\Python311\python3.dl1"
info(""'CPF_PythonRuntimeLibraryVersion'™)=3.11

info(""IRISInsidePython')=0

info("'PythonlinsidelR1S)=16

info(RunningLibrary')="C:\Program Files\Python311\python3.dIl"

2nf0("§;nningVersion")="3.11.9 (tags/v3.11.9:deb54cf5, Apr 2 2024, 10:12:12) [MSC v.1938 64 bit
AMD64)]"

info("'SystemPath')="F:\AlIPythons\python.3.9.13\tools\"

2nf0("§¥stemVersion")="3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit
AMD64) 1"

info("'SystemVersionShort'*)="3.9.13"

info("iris_site._py_platform)="winamd64"

This example shows that the Python runtime library being used is C:\Program Files\Python311\python3.dll
and the running version of Embedded Python is 3.11.9. The SystemVersion is not relevant on Windows.

8.3 Flexible Python Runtime Example: Python 3.11 on
Ubuntu 22.04

Python 3.10 is the default version of Python on Ubuntu 22.04. This example shows how to use Python 3.11 with Embedded
Python.

Using Embedded Python 41

Use the Flexible Python Runtime Feature

Note: This example is for Ubuntu 22.04 on the x86 architecture. File and directory names may vary if you are on the

© o N o g p

11.

ARM architecture.

Install Python 3.11 from the command line.

$ sudo apt install python3.11-full
Install the Python 3.11 libpython.so shared library.
$ sudo apt install libpython3.11

In the InterSystems IRIS Management Portal, go to System Administration > Configuration > Additional Settings >
Advanced Memory.

On the Advanced Memory Settings page, in the PythonRuntimeLibrary row, click Edit.

Enter Zusr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0.

Click save.

On the Advanced Memory Settings page, in the PythonRuntimeLibraryVersion row, click Edit.
Enter 3.11.

Click save.

. From Terminal, launch Embedded Python and verify that sys . path now includes the Python 3.11 package directories.

USER>do ##class(%SYS.Python).Shell()

Python 3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> gys._path

[*/usr/lib/python311.zip®, "/usr/lib/python3.11", "/usr/lib/python3.11/1lib-dynload”,
*/InterSystems/IR1S/mgr/python”,

"/InterSystems/IRIS/11b/python®, "/usr/local/lib/python3.11/dist-packages”,
"/usr/lib/python3/dist-packages”,

"/usr/lib/python3.11/dist-packages”]

From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>do ##class(%SYS.Python).GetPythonInfo(.info)

USER>zw info

info("'Al lowNonSystemPythonFor IntegratedML')=0

info("'CPF_PythonPath™)="""
info("'CPF_PythonRuntimeLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0"
info("'CPF_PythonRuntimelLibraryVersion')=3.11

info(""IRISInsidePython')=0

info(""PythoninsidelRI1S")=2
info(""RunningLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0"
info("RunningVersion')="3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0]"
info("'SystemPath')="/usr/lib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]"
info("'SystemVersionShort')="3.10.12"
info("iris_site._py_platform™)=""Inxubuntu2204x64"

This example shows that the Python runtime library being used is
/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0, the running version of Embedded Python is
3.11.0rcl, and the system version is 3.10.12.

42

Using Embedded Python

Flexible Python Runtime Example: Anaconda on Windows

8.4 Flexible Python Runtime Example: Anaconda on
Windows

Anaconda is a Python-based platform commonly used for data science and artificial intelligence applications. This example
shows how to use Anaconda with Windows. InterSystems recommends installing Anaconda for all users.

© N o g ~ w D PP

10.
11.
12.
13.
14.
15.

16.

Download Anaconda from https://anaconda.com/download.

Launch the Anaconda installer, and on the welcome screen, click Next.

Approve the license agreement.

Under Select Installation Type, install for All Users.

Under Choose Install Location, for Destination Folder, leave the default: C:\ProgramData\anaconda3.
Under Advanced Installation Options, deselect Register Anaconda3 as the System Python.

Click Install to begin the installation process.

In the InterSystems IRIS Management Portal, go to System Administration > Configuration > Additional Settings >
Advanced Memory.

On the Advanced Memory Settings page, in the PythonRuntimeLibrary row, click Edit.

Enter C:\ProgramData\anaconda3\python312.dl1.

Click save.

On the Advanced Memory Settings page, in the PythonRuntimeLibraryVersion row, click Edit.
Enter 3.12.

Click save.

Copy the file iris_site_anaconda_windows_example.py from the <installdir>/lib/python directory to the
<installdir>/mgr/python directory and rename it iris_site.py.

If you installed Anaconda in the default location, you should not need to modify the file.

From Terminal, launch Embedded Python and verify that sys . path now includes the Anaconda package repositories.

USER>do ##class(%SYS.Python).Shell(Q)

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:03:56) [MSC v.1929 64 bit
(AMD64)] on win32

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

["C:\\ProgrambData\\anaconda3\\python312.zip®, “C:\\ProgramData\\anaconda3\\DLLs",
"C:\\ProgramData\\anaconda3\\Lib", \"c:\\intersystems\\IRIS\\bin",
“c:\\intersystems\\IRIS\\mgr\\python®, “c:\\intersystems\\IRIS\\lib\\python*,
“C:\\ProgramData\\anaconda3", "C:\\ProgramData\\anaconda3\\Lib\\site-packages~,
"C:\\ProgramData\\anaconda3\\Lib\\site-packages\\win32",
"C:\\ProgramData\\anaconda3\\Lib\\site-packages\\win32\\lib",
“C:\\ProgramData\\anaconda3\\Lib\\site-packages\\Pythonwin"]

Using Embedded Python 43

https://anaconda.com/download

Use the Flexible Python Runtime Feature

17.

From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""AllowNonSystemPythonForIntegratedML')=0

info("'CPF_PythonPath')="""
info("'CPF_PythonRuntimelLibrary')="C:\ProgramData\anaconda3\python312._d11"
info(""CPF_PythonRuntimeLibraryVersion')=3.12

info(""IRISInsidePython')=0

info("'PythonlinsidelR1S™)=1

info("RunningLibrary')="C:\ProgramData\anaconda3\python312_dIl"

info(""RunningVersion')="3.12_.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:03:56) [MSC
v.1929 64 bit (AMD64)]"

info("'SystemPath')="F:\AllPythons\python.3.9.13\tools\"

znfo("§¥stemVersion")="3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit
AMD64) 1"

info("'SystemVersionShort')="3.9._13"

info("iris_site._py_platform')="winamd64"

This example shows that the Python runtime library being used is C:\ProgramData\anaconda3\python312.dl1
and the running version of Embedded Python is 3.12_4. The SystemVersion is not relevant on Windows.

8.5 Flexible Python Runtime Example: Anaconda on
Ubuntu 22.04

Anaconda is a Python-based platform commonly used for data science and artificial intelligence applications. This example
shows how to use Anaconda with Ubuntu 22.04. InterSystems recommends doing an installation for your user.

Note: This example is for Ubuntu 22.04 on the x86 architecture. File and directory names may vary if you are on the

ARM architecture.

1. Download Anaconda.
curl -0 https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh
2. Run the Anaconda installation script from the command line, for example:
$ sh Anaconda3-2024.02-1-Linux-x86_64.sh
3. Accept the license terms.
4. When prompted for an installation directory, enter /home/<username>/anaconda3, where <username> is your
Ubuntu username.
5. You will be asked if you want to activate conda on startup. For this example, enter no.
6. This will end the Anaconda installation process.
You will see the message Thank you for installing Anaconda3!
7. Activate Anaconda.
$ source /home/<username>/anaconda3/bin/activate
Substitute your actual username.
8. Initialize Anaconda.
$ conda init
9. Inthe InterSystems IRIS Management Portal, go to System Administration > Configuration > Additional Settings >
Advanced Memory.
44 Using Embedded Python

Flexible Python Runtime Example: Anaconda on Ubuntu 22.04

10.
11.

12.
13.
14,
15.
16.

17.

18.

19.

On the Advanced Memory Settings page, in the PythonRuntimeLibrary row, click Edit.

Enter /home/<username>/anaconda3/lib/libpython3.11.s0.1.0.

Substitute your actual username.

Click save.

On the Advanced Memory Settings page, in the PythonRuntimeLibraryVersion row, click Edit.
Enter 3.11.

Click save.

Copy the file iris_site_anaconda_ubuntu_linux_example.py from the <installdir>/lib/python directory to the
<installdir>/mgr/python directory and rename it iris_site.py.

Edit the iris_site.py file to substitute your actual username in the last few lines of the file::

sys.path = sys.path + _ sitegetsitepackages(["/home/<username>/anaconda3"])
sys.path = sys.path + ['"/home/<username>/anaconda3/lib/python3.11/lib-dynload"]
sys.path = ["/home/<username>/anaconda3/lib/python3.11"] + sys.path

sys.path = ['"/home/<username>/anaconda3/lib/python311.zip"] + sys.path

From Terminal, launch Embedded Python and verify that sys . path now includes the Anaconda package repositories.

USER>do ##class(%SYS.Python).Shell()

Python 3.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0] on linux

Type quit() or Ctrl-D to exit this shell.

>>> import sys

>>> sys._path

[*/home/<username>/anaconda3/lib/python311.zip®, "/home/<username>/anaconda3/lib/python3.11",
"/home/<username>/anaconda3/lib/python311.zip®, "/home/<username>/anaconda3/lib/python3.11",
"/home/<username>/anaconda3/lib/python3.11/1ib-dynload®, "/InterSystems/IR1S/mgr/python*,
*/InterSystems/IRIS/1ib/python®, */home/<username>/anaconda3/lib/python3.11/site-packages”,
"/home/<username>/anaconda3/lib/python3.11/1ib-dynload"]

The <username> in the above example will reflect your actual username.

From Terminal, use the GetPythonlnfo() method of the %SYS.Python class to view the Python version information.

USER>do ##class(%SYS.Python) .GetPythonInfo(.info)

USER>zw info

info(""AllowNonSystemPythonForIntegratedML')=0

info("'CPF_PythonPath')="""
info("’'CPF_PythonRuntimeLibrary')="/home/<username>/anaconda3/lib/1ibpython3.11._so"
info(""CPF_PythonRuntimeLibraryVersion')=3.11

info(""IRISInsidePython')=0

info("'PythonInsidelRI1S")=3
info("RunningLibrary')="/home/<username>/anaconda3/lib/libpython3.11.s0"
info("'RunningVersion')="3_.11.7 (main, Dec 15 2023, 18:24:52) [GCC 11.2.0]"
info('SystemPath')=""/usr/1ib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]"
info(''SystemVersionShort')="3.10.12"
info(iris_site.py_platform™)="Inxubuntu2204x64"info(*'"PythonlnsidelRIS")=2
info("RunningLibrary')="/usr/1ib/x86_64-1inux-gnu/libpython3.11.s0.1.0"
info("'RunningVersion')="3.11.0rcl (main, Aug 12 2022, 10:02:14) [GCC 11.2.0]"
info('SystemPath')=""/usr/1ib/python3.10/config-3.10-x86_64-1inux-gnu"
info("'SystemVersion')="3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]"
info("'SystemVersionShort')="3.10.12"
info(iris_site.py_platform™)="Inxubuntu2204x64"

Again, the <username> in the above example will reflect your actual username.

This example shows that the Python runtime library being used is
/home/<username>/anaconda3/lib/1ibpython3.11. so, the running version of Embedded Pythonis3.11.7,
and the system version is 3.10.12.

Using Embedded Python 45

InterSystems IRIS Python Module
Reference

If you are using Embedded Python and need to interact with InterSystems IRIS, you can use the i ris module to enable
InterSystems IRIS functionality.

Using Embedded Python 47

InterSystems IRIS Python Module Reference

InterSystems IRIS Python Module Core API

This section provides API documentation for the core functions of the InterSystems IRIS Python Module. These functions
allow you to access InterSystems IRIS classes and methods, use the transaction processing capabilities of InterSystems
IRIS, and perform other core InterSystem IRIS tasks.

Summary

The following table summaries the core functions of the iris module. To use this module from Embedded Python, use
import iris.

Group Functions

Code Execution check_status(), execute(), routine()
Locking and lock(), unlock()

Concurrency

Control

Reference Creation | arrayref(), cls(), gref(), ref(),

Transaction tcommit(), tlevel(), trollback(), trollbackone(), tstart(),
Processing*

“See Transaction Processing for information on using transactions to maintain the logical integrity of your InterSystems
IRIS database.

arrayref(dictionary)
Creates an ObjectScript array from a Python dictionary and returns a reference to the array.

Assume you have an InterSystems IRIS class called User.ArrayTest that has the following ObjectScript methods that expect
an array as an argument:

ClassMethod WriteContents(myArray) [Language = objectscript]

zwrite myArray

ClassMethod Modify(myArray) [Language = objectscript]
{

set myArray(‘'new') = 123
set myArray("x","y","z'") = "xyz"

ClassMethod StoreGlobal(myArray) [Language = objectscript]
{

kill "MyGlobal

if "$data(myArray) return "no data"
merge ~MyGlobal = myArray

return '"ok"

}

The method WriteContents() writes the contents of the array, M odify() modifies the contents of the array, and StoreGlobal()
takes the contents of the array and stores it in the global “MyGlobal.

48 Using Embedded Python

InterSystems IRIS Python Module Core API

From Python, you can create a dictionary mydict and use iris.arrayref() to place its contents in an ObjectScript array
and return a reference to that array. Then you can pass that reference to the three methods in User.ArrayTest.

>>> mydict = {2:{3:4}}

>>> mydict

{2: {3: 4}})

>>> a = iris.arrayref(mydict)

>>> a.value

{2: {3: 4}})

>>> jiris.User._ArrayTest._Modify(a)

>>> iris.User.ArrayTest.WriteContents(a)
myArray(2,3)=4

myArray(''new')=123
myArray("'x","y","z")="xyz"

>>> jiris.User._ArrayTest.StoreGlobal (a)
“ok®

Then, from ObjectScript, you can verify that global ~MyGlobal now contains the same data as the array did:

USER>zwrite “MyGlobal
~MyGlobal (2,3)=4

~MyGlobal ("'new'")=123
~MyGlobal (*'x","y","z")=""xyz""

For information on ObjectScript arrays, see Multidimensional Arrays.

check_status(status)

Raises an exception if status contains an error. Returns None if no error condition occurs.

If you have an InterSystems IRIS class Sample.Company that has a Name property that is required, trying to save an instance
of that class without a Name property results in an error status. The following example uses iris.check_status() to check
the status returned by the _Save() method and throws an exception if it contains an error.

>>> mycompany = iris.Sample.Company._New()
>>> mycompany.TaxID = "123456789"
>>> try:
- status = mycompany._Save()
- iris.check_status(status)
. except Exception as ex:
print(ex)

ERROR #5659+ Property "Sample.Company::Name(4@Sample.Company, ID=)" required

cls(class_name)

Returns a reference to an InterSystems IRIS class. This allows you access the properties and methods of that class in the
same way you would a with a Python class. You can use iris.cls() to access both built-in InterSystems IRIS classes or
custom InterSystems IRIS classes you write yourself.

The following example uses iris.cls() to return a reference to the built-in InterSystems IRIS class %SYS.System. It then
calls its Getl nstanceName() method.

>>> gystem = iris.cls("%SYS.System®)
>>> print(system.GetlnstanceName())
IR1S2023

Note: Effective with InterSystems IRIS 2024.2, an optional shorter syntax for referring to an InterSystems IRIS class
from Embedded Python has been introduced. Either the new form or the traditional form are permitted.

execute(statements)

Executes an ObjectScript statement and optionally returns a value.

Using Embedded Python 49

InterSystems IRIS Python Module Reference

The following example uses iris.execute() to write the value of SHOROL OG, an ObjectScript special value that contains
the current local date and time in the internal InterSystems IRIS format.

>> iris.execute(“write $horolog,!")
66682,45274

The following example returns the value of $HOROL OG, converted to a human-readable string by the ObjectScript
$ZDATE function.

>>> today = iris.execute("return $zdate($horolog)")
>>> print(today)
07/27/2023

gref(global_name)
Returns a reference to an InterSystems IRIS global. The global may or may not already exist.

The following example uses iris.gref() to set variable day to a reference to global ~day.
>>> day = iris.gref("~day")

The next example prints the value stored at ~day (1, ‘‘name’™), and since no value is currently stored for those keys, it
prints None. Next it stores the value "*Sunday'" at that location and retrieves and prints the stored value.

>>> print(day[1, "name®])

None

>>> day[1, "name"] = "Sunday”

>>> print(day[1, “"name®])
Sunday

For information on the methods that can be used on an InterSystems IRIS global reference, see Global Reference API.

For background information on globals, see Introduction to Globals.

lock(lock_list, timeout_value, locktype)

Sets locks, given a list of lock names, an optional timeout value (in seconds), and an optional lock type. If locktypeis **S*,
this indicates a shared lock.

In InterSystems IRIS, a lock is used to prevent more than one user or process from accessing or modifying the same resource
(usually a global) at the same time. For example, a process that writes to a resource should request an exclusive lock (the
default) so that another process does not attempt to read or write to that resource simultaneously. A process that reads a
resource can request a shared lock so that other processes can read that resource at the same time, but not write to that
resource. A process can specify a timeout value, so that it does not wait forever waiting for a resource to become available.

The following example uses iris.lock() to request exclusive locks on locks named ~one and ~two. If the request is successful,
the call returns True.

>>> iris.lock([""one", "~two"])
True

If another process then requests a shared lock on ~one, and the first process does not release the lock within 30 seconds,
the call below returns False.

>>> jiris.lock(["”one"],30,"S")
False

A process should use unlock() to relinquish locks when the resources they protect are no longer being used.

For more information on how locks are used in InterSystems IRIS, see Locking and Concurrency Control.

50 Using Embedded Python

InterSystems IRIS Python Module Core API

ref(value)

Creates an iris.ref object with a specified value. This is useful for situations when you need to pass an argument to an
ObijectScript method by reference.

The following example uses iris.ref() to create an iris.ref object with the value 2000.

>>> calories = iris.ref(2000)
>>> calories.value
2000

Assume an InterSystems IRIS class User.Diet has a method called Eat() that takes as arguments the name of a food you’re
about to consume and your current calorie count for the day, and that caloriesis passed in by reference and is updated with
your new calorie count. The following example shows that after the call to Eat(), the value of the variable calories has been
updated from 2000 to 2250.

>>> jris.User.Diet_Eat("hamburger®, calories)
>>> calories.value
2250

For information on passing arguments by reference in ObjectScript, see Indicating How Arguments Are to Be Passed.

routine(routine, args)

Invokes an InterSystems IRIS routine, optionally at a given tag. Any arguments that need to be passed in the call are comma-
delimited, following the name of the routine.

The following example, when run in the %SYS namespace, uses iris.routing() to call the routine *SECURITY::

>>> iris.routine(""SECURITY")

1) User setup
2) Role setup
3) Service setup
4) Resource setup

If you have a routine *Math that has a function Sum() that adds two numbers, the following example adds 4 and 3:

>>> sum = iris.routine("Sum™Math",4,3)
>>> sum
7

For more information on how routines are called in ObjectScript, see Invoking Code and Passing Arguments.

tcommit()

Marks the successful end of an InterSystems IRIS transaction.

Use iristcommit() to mark the successful end of a transaction and decrement the nesting level by 1:
>>> jris.tcommit()

To ensure that transactions nest properly, every iris.tstart() should be paired with an iristcommit().
If iristcommit() is called when not in a transaction, an exception occurs, with the value <COMMAND>.

See also tstart(), tlevel(), trollback(), and trollbackone().

Using Embedded Python 51

InterSystems IRIS Python Module Reference

tlevel()

Detects whether a transaction is currently in progress and returns the nesting level. A call to iris.tstart() increments the
nesting level, and a call to iristcommit() decrements the nesting level. A value of zero means not in a transaction.

The following example shows the value returned by iris.level() at different transaction nesting levels.

>>> jris.tlevel ()
0
>>> jris.tstart()
>>> iris.tstart()
>>> jiris.tlevel ()
2
>>> jris.tcommit()
>>> jiris.tlevel ()
1

See also tstart(), tcommit(), trollback(), and trollbackone().

trollback()

Rolls back all current transactions in progress and restores all journaled database values to their values at the start of the
initial transaction. It also resets the transaction nesting level to 0.

This simple example initializes the global ~a(1) to the value “hello.” It then starts a transaction and sets ~a(1) to the
value “goodbye.” But before the transaction is committed, it calls iris.trollback(). This resets the transaction nesting level
to 0 and restores ~a (1) to the value it had before the start of the transaction.

>>> a = iris.gref(*"a")
>>> a[1] = "hello*
>>> jris.tstart()
>>> jqris.tlevel ()

1

>>> a[1] = "goodbye*
>>> jris.trollback()
>>> iris.tlevel()

0

>>> a[1]

“hello*

See also tstart(), tcommit(), tlevel(), and trollbackone().

trollbackone()

Rolls back the current level of nested transactions, that is, the one initiated by the most recent iris.tstart(). It also decrements
the transaction nesting level by 1.

This example initializes the global ~a(1) to the value 4 and ~b (1) to the value “lemon.” It then starts a transaction and
sets ~a(1) to 9. Next, it starts a nested transaction and sets ~b (1) to “lime.” It then calls iris.trollbackone() to roll back
the inner transaction and calls iris.commit() to commit the outer transaction. When all is said and done, ~a(1) retains its
new value, while ~b(2) is rolled back to its original value.

>>> a = iris.gref(*"a")
>>> b = iris.gref(*b")
>>> a[l1] = 4

>>> b[1] = "lemon*

>>> jris.tstart()

>>> iris.tlevel ()

1

>>> a[1] = 9

>>> iris.tstart()

>>> iris.tlevel ()

2

>>> b[1] = “lime*

>>> iris.trollbackone()
>>> iris.tlevel()

1

>>> iris.tcommit()

>>> iris.tlevel ()

0

>>> a[1]

52 Using Embedded Python

InterSystems IRIS Python Module Core API

9
>>> p[1]
"lemon*

See also tstart(), tcommit(), tlevel(), and trollback().

tstart()

Marks the start of an InterSystems IRIS transaction.

A transaction is a group of commands that must all complete in order for the transaction to be considered successful. For

example, if you have a transaction that transfers a sum of money from one bank account to another, the transaction is only
successful if withdrawing the money from the first account and depositing it into the second account are both successful.

If the transaction fails, the database can be rolled back to the state it was in before the start of the transaction.

Use iris.start() to mark the start of a transaction and increment the transaction nesting level by 1:
>>> iris.tstart()

See also tcommit(), tlevel(), trollback(), and trollbackone().

For more information on how transaction processing works in InterSystems IRIS, see Transaction Processing.

unlock(lock_list, timeout_value, locktype)
Removes locks, given a list of lock names, an optional timeout value (in seconds), and an optional lock type.
If your code sets locks to control access to resources, it should unlock them when it is done using those resources.

The following example uses iris.unlock() to unlock the locks named ~one and ~two.

>>> jris.unlock([""one", "~two"])
True

See also lock().

Using Embedded Python 53

InterSystems IRIS Python Module Reference

Global Reference API

This section provides APl documentation for the methods of the gref class of the InterSystems IRIS Python Module. These
methods allow you to access and manipulate InterSystems IRIS globals.

Summary

The following table summaries the methods of the gref class of the InterSystems IRIS Python Module. To use this class
from Embedded Python, first do import iris, and then use the iris.gref() function to obtain a reference to a global. (See

iris.gref().)
Group Settings

Work on a Node of | data(), get(), getAsBytes(), kill(), set()
a Global

Traverse a Global | keys(), order(), orderiter(), query()

For background information on globals, see Introduction to Globals.

data(key)

Checks if a node of a global contains data and/or has descendants. The key of the node is passed as a list. Passing a key
with the value None (or an empty list) indicates the root node of the global.

You can use data() to inspect a node to see if it contains data before attempting to access that data and possibly encountering
an error. The method returns 0 if the node is undefined (contains no data), 1 if the node is defined (contains data), 10 if the
node is undefined but has descendants, or 11 if the node is defined and has descendants.

Assume you have a global ~a with the following contents:

~a(2) = "two"

~a(3,1) = "three one"
~a(4) = “four™
~a(4,1) = "four one"

Then you can use data() to test the various nodes of the global as in these examples:

>>> a = iris.gref(""a")
>>> a.data([1])

0

>>> a.data([2])

1

>>> a.data([3])

10

>>> a.data([4])

11

>>> a.data([None])
10

>>> a.data([3,1])
1

You can use modulo 2 arithmetic to check whether a node contains data, regardless of whether it has descendants or not.

>>> a.data([3]) % 2
0
>>> a.data([4]) % 2
1

get(key)
Gets the value stored at a node of a global. The key of the node is passed as a list. Passing a key with the value None (or
an empty list) indicates the root node of the global.

54 Using Embedded Python

Global Reference API

Assume you have a global ~a with the following contents:

~a(2) = "two"
~a(3,1) = "three one"
~a(4) = "four™”
~a(4,1) = "four one"

Then you can use get() to retrieve data from the various nodes of the global as in these examples:

>>> a = iris.gref(*"a")
>>> a.get([2])
“two"

>>> a.get([3,1])
“three one*

Alternatively, you can get the value of a node directly, as you would for a Python dictionary, or you can use the dunder
method __getitem__ ().

>>> a[3,1]
“three one*
>>> a._ getitem_ ([3,1])
“three one*

Using get() to get data from a node that is undefined results in an error.

>>> a.get([5])

Traceback (most recent call last):
File "<input>", line 1, in <module>

KeyError: “"Global Undefined”

You can use the data() method to test whether a node contains data before trying to retrieve it.

Getting data from an undefined node directly or by using __ getitem__ () returns None, instead of causing an error.

>>> print(a[5])
None

>>> print(a.__getitem__ ([5]))
None

See also getAsBytes().

getAsBytes(key)

Gets a string value stored at a node of a global and converts it to the Python bytes data type. The key of the node is passed
as a list. Passing a key with the value None (or an empty list) indicates the root node of the global.

Assume you have a global ~a with the following contents:

~a(2) = "two"
~a(3,1) = "three one™
~a(4) = "four™”
~a(4,1) = "four one"

Then you can use getAsBytes() to retrieve data from the various nodes of the global as in these examples:

>>> a = iris.gref(*"a")
>>> a.getAsBytes([2])
b*two*

>>> a._getAsBytes([3,1])
b*three one*

Using getAsBytes() to get data from a node that is undefined results in an error.

>>> a_getAsBytes([5])

Traceback (most recent call last):
File "<input>", line 1, in <module>

KeyError: “Global Undefined”

Using Embedded Python 55

InterSystems IRIS Python Module Reference

You can use the data() method to test whether a node contains data before trying to retrieve it.

See also get().

keys(key)
Returns the keys of a global, starting from a given key. The starting key is passed as a list. Passing an empty list indicates
the root node of the global.

Assume you have a global ~mIb with the following contents:

~mlb = "Major League Baseball"
~mIb(*'AL") = "American League"
~mIb("'AL",""Central') = "AL Central"
mlb("'AL","East') = "AL East"

~mIb("'AL","East",1) = "Baltimore"
~mIb("'AL",""East',2) = "Boston"
~mlb("'AL",""East',3) = "NY Yankees"
~mIb("'AL",""East",4) = "Tampa Bay"
mlb(""AL","East",5) = "Toronto"

mlb(""AL","West") = "AL West"

AmIb("'AL","West',1) = "Houston"
~mIb("'AL",""West',2) = "LA Angels"
mlb(""AL","West",3) = "Oakland"
mlb("'AL","West'" ,4) = "Seattle"
mlb("'AL","West",5) = "Texas"

~mIb(*'NL'") = "National League"
You can use keys() to get the keys of the global and print out their values, as follows:

>>>m = iris.gref("mlb")
>>> for key in m.keys([]):
- value = m[key]
print(f {key} = {value}")

["AL"] = American League

["AL", "Central®] = AL Central
["AL", "East"] = AL East

["AL", “East®, "1"] = Baltimore
["AL", "East", "2"] = Boston
["AL", "East”, "3"] = NY Yankees
["AL", “East®, "4"] = Tampa Bay
["AL", "East", "5"] = Toronto
["AL", "West"] = AL West

["AL", “West", "1"] = Houston
["AL", "West", "2"] = LA Angels
["AL", "West", "3"] = Oakland
["AL", “West", "4"] = Seattle
["AL", "West®, "57] = Texas
["NL"] = National League

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, keys()
begins with the key of the next node according to the sort order, for example:

>>>m = iris.gref(" mlb*
>>> for key in m.keys(["AL","North"]):
- value = m[key

print(f- {key}] {value}")
t;AL', “"West"] = AL West

["AL", "West®", "1"] = Houston
["AL", “"West", "2"] = LA Angels
["AL", “West®, "3"] = Oakland
["AL", "West", "4"] = Seattle

["AL", “"West", "5"] = Texas
[°N L'] = National League

You can also use get() to retrieve the value of each node, but you need to test each node first by using data() to make sure
it is contains data.

Use order() to traverse the nodes at one level of a global.

56 Using Embedded Python

Global Reference API

kill(key)

Deletes the node of a global, if it exists. The key of the node is passed as a list. This also deletes any descendants of the
node. Passing a key with the value None (or an empty list) indicates the root node of the global.

Assume you have a global ~a with the following contents:

~a(2) = "two™

~a(3,1) = "three one"
~a(4) = "four”
~a(4,1) = "four one™

Then you can use Kill() to kill a node of the global, and its descendants, as in this example:

>>> a = iris.gref(*"a")
>>> a.kill([4])

Now the global has the following contents:

~a(2) = "two"
~a(3,1) = "three one"

Passing None for the key kills the entire global.

>>> a_kill([None])

order(key)

Returns the next key in that level of the global, starting from a given key. The starting key is passed as a list. If no key follows
the starting key, order () returns None.

Assume you have a global ~mIb with the following contents:

“mlb = Major League Baseball™
mlb(*"AL") = "American League"
~mIb(*'AL",""Central’) = "AL Central"
mlb (" AL","East) = "AL East"
mlb(*""AL","East',1) "Baltimore™

Amlb("AL","East",Z) = "Boston"
mlb(*"AL","East™,3) = "NY Yankees"
mlb(*"AL","East",4) = "Tampa Bay"
~mlb("'AL","East",5) = "Toronto"

mlb(""AL","West') = AL West"

Amlb(""AL","West™,1) = "Houston"
mIb("'AL",""West',2) = "LA Angels"
mlb("'AL","West",3) = "Oakland"
Amlb(""AL","West",4) = "'Seattle"

~mib(""AL" "West" 5) = "Texas"
Amlb(*"'NL") “National League™

You can use order () to get the next key from a given key, as in the following examples:

>>>m = iris.gref(" mlb*

>>> m.order(["AL","Central*])
"East”

>>> m.order(["AL","East™])
“West*

>>> m.order(["AL", "East”,1])
o

>>> m.order(["AL", "East",2])
-3

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, order ()
returns the key of the next node according to the sort order, for example:

>>> m.order(["AL", "West",3.5])
e

Using Embedded Python 57

InterSystems IRIS Python Module Reference

Use a while loop to traverse the nodes of a global at a certain level, breaking when the return value is None. Setting the

starting key to the empty string means “start at the beginning of that level.”

The following example traverses the top-level nodes of a global:

>>>m = iris.gref(*mlb*)
>>> key = "°
>>> while True:
key = m.order([key])
if key == None:
break
print(m[key])

American League
National League

The following example traverses the third-level nodes of a global:

>>>m = iris.gref(*mlb*)
>>> key = "*
>>> while True:
key = m.order(["AL", "East”,key])
if key == None:
break
print(m[“AL", "East”,key])
Baltimore
Boston
NY Yankees
Tampa Bay
Toronto

You can nest while loops as necessary, or use keys() or query() to traverse an entire global.

orderiter(key)

Returns the keys and values of a global, starting from a given key, down to the next leaf node. The starting key is passed

as a list. Passing an empty list indicates the root node of the global.

Assume you have a global ~mIb with the following contents:

~mlb = “Major League Baseball"
~mlb(""AL') = "American League"
~mlb(""AL","Central'™) = "AL Central™
mlb("AL","East'") = "AL East"
mlb(""AL","East',1) "Baltimore"

~mlb("'AL","East',2) = "Boston"
AmIb(*'AL","East',3) = "NY Yankees™
mlb(""AL","East",4) = "Tampa Bay"
~mlb("'AL","East",5) = "Toronto"

AmIb(**AL™,"West'™) = "AL West"

~mlb("AL","West",1) = "Houston"
mlb(""AL","West",2) = "LA Angels"
mlb(""AL","West',3) = "Oakland"
~mlb("'AL","West",4) = "Seattle"
mlb("'AL","West",5) = "Texas"

AmIb(**NL"") = "National League"

The following example uses orderiter() to traverse the global down to the next leaf node starting from the root:

>>> m = iris.gref(" mlb*")
>>> for (key, value) in m.orderiter([]):
print(f {key} = {value}")

t;AL'] = American League
["AL", "Central"] = AL Central

58

Using Embedded Python

Global Reference API

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, orderiter()
finds the next node according to the sort order, for example:

>>>m = iris.gref(* mlb*)

>>> for (key, value) in m.orderiter(["AL","North"]):
print(f {key} = {value}")

["AL", "West"] = AL West
["AL", “West®", "1"] = Houston

query(key)

Traverses a global starting at the specified key, returning each key and value. The starting key is passed as a list. Passing
an empty list indicates the root node of the global.

Assume you have a global ~mIb with the following contents:

~“mlb = "Major League Baseball"
mlb(*"AL'™) = "American League"
AmIb(**AL","Central’) = "AL Central™
~mlb("'AL","East') = "AL East"

~mlb("'AL","East',1) = "Baltimore"
AmIb(*'AL",""East',2) = "Boston"
mlb(""AL","East™,3) = "NY Yankees"
Amlb("AL","East",4) = "Tampa Bay"
~mIb(**AL",""East",5) = "Toronto"

Amlb(""AL™, "West") = "AL West"

Amlb("AL" "West" 1) = "Houston"
AmIb(*'AL"™,"West™,2) = "LA Angels™
Amlb("AL","West",S) = "Oakland"
mlb("'AL","West" ,4) = "Seattle"
mlb(""AL","West' ,5) = "Texas"

~mlb(*'"NL') = "National League"

The following example uses query() to traverse the global starting from the root:

>>> m = iris.gref(""mlb*")
>>> for (key, value) in m.query([1):
S print(f {key} = {value}~)

["AL"] = American League

["AL", "Central®] = AL Central
["AL", "East"] = AL East

["AL", “East”, "1"] = Baltimore
["AL", "East®, "2"] = Boston
["AL", "East”, "3"] = NY Yankees
["AL", “East", "4"] = Tampa Bay
["AL", "East", "5"] = Toronto
["AL", "West"] = AL West

["AL", “West", "1"] = Houston
["AL", "West", "2"] = LA Angels
["AL", "West", "3"] = Oakland
["AL", “West", "4"] = Seattle
["AL", “West", "5"] = Texas
["NL"] = National League

Note that the starting key does not have to exist as a node in the global. Since a global is stored in sorted order, query()
finds the next node according to the sort order, for example:

>>> m = iris.gref(""mlb")
>>> for (key, value) in m.query(["AL","North"]):
- print(f {key} = {value}")

i:;AL', "West"] = AL West

["AL", "West®", "1"] = Houston
["AL", “West®", "2°"] = LA Angels
[AL", “West®", "3"] = Oakland
["AL", “"West", "4"] = Seattle

["AL", “West®", "5"] = Texas
['NL'] = National League

Using Embedded Python 59

InterSystems IRIS Python Module Reference

set(key, value)

Sets a node in a global to a given value. The key of the node is passed as a list, and value is the value to be stored. Passing
a key with the value None (or an empty list) indicates the root node of the global.

The following example obtains a reference to global “messages and uses set() to set the value of some nodes in the global:

>>> msg = iris.gref("“messages”)

>>> msg.set([None], "list of messages”)
>>> msg.set([“greeting”,1], “hello®)
>>> msg.set(["greeting”,2], “goodbye®)

If the global “messages did not already exist, it would look as follows:

~messages = "list of messages"
~messages('‘greeting',1) = "hello"”
~messages(‘'greeting",2) = "goodbye"

If "messages already existed, the new values would be added to the global, possibly overwriting existing data at those
nodes. You can use the data() method to test whether a node already contains data before trying to set it.

You can also set a global node directly, as you would for a Python dictionary, as in the following example:

>>> msg = iris.gref("~messages”)
>>> msg["greeting®,3] = "aloha”

Now the global “messages looks like this:

~messages = "list of messages"
~messages(‘'greeting”,1) = "hello™
~messages(''greeting',2) = "‘goodbye"

~messages(''greeting",3)="aloha"

60 Using Embedded Python

IRIS System API

IRIS System API

This section provides documentation for the classes in the system package of the InterSystems IRIS Python Module. These
classes allow you to access some common System API classes in the InterSystems IRIS %SYSTEM package.

Summary

The following table summaries the classes of the system package of the InterSystems IRIS Python Module. To access these
classes from Embedded Python, use iris.system.<classname>.

Class

DocDB, Encryption, Error, Event, Monitor, Process, SQL, SYS, Security, Semaphore, Status, Util, Version

This summary of the classes in the iris.system package does not attempt to document all of the methods available in each
class, some of which number in the dozens. For information how to find complete documentation on InterSystems IRIS
classes, see Locating and Exploring Class Reference Documentation.

Note: You can access %SYSTEM classes not included in iris.system by using the InterSystems IRIS class directly. For
example, list all InterSystems IRIS classes in the current namespace by using the command
iris._SYSTEM.OBJ.ShowClasses().

DocDB
The %SYSTEM.DocDB class provides an interface for managing Document Databases.

The following example uses the Exists() method of the iris.system.DocDB class to check for the existence of a document
database called People. Not finding the database, it then uses the CreateDatabase() method to create it:

>>> jiris.system.DocDB.Exists("People™)
0

>>> db = iris.system.DocDB.CreateDatabase("People*)
>>> jiris.system.DocDB.Exists("People™)
1

For more information, see Introducing InterSystems IRIS Document Database.

Encryption

The %SYSTEM.Encryption class provides class functions to perform data encryption, Base64 encoding, hashing, and gener-
ation of message authentication codes.

The following example uses the ListEncryptionKeys() method of the iris.system.Encryption class to list the key IDs of all
active encryption keys, which can be used for data element encryption for applications.

>>> jris.system.Encryption.ListEncryptionKeys()
"1E5C9EOD-1257-4707-8864-3428E17A6FCE"

The following example uses the CreateEncryptionKey() method to create a 32-byte (256-bit) encryption key. The method
returns the key ID of the generated encryption key. Creating and activating keys need to be done in the %SYS namespace.

>>> jris.system.Process.SetNamespace("%SYS™)

"%SYS*

>>> st = iris.ref("")

>>> jris.system.Encryption.CreateEncryptionKey("c:\\temp\\mykeyfile.txt", “<username>", "<password>",32,st)
"C861F668-435A-4AE8-A302-FBD4ED528432"

>>> st.value

1

Using Embedded Python 61

InterSystems IRIS Python Module Reference

The CreateEncryptionKey() method passes back a %Status by reference in the last argument, so the example above uses
iris.ref() to create a reference to the variable st. Access the value property of st to retrieve the actual status.

The following example uses the ActivateEncryptionKey() method to activate the encryption key created in the previous
example. Then it calls ListEncryptionKeys() again to show it is now active.

>>> status =
iris.system.Encryption.ActivateEncryptionKey("c:\\temp\mykeyfile.txt", "<username>", "<password>")
>>> status

1

>>> jris.system.Encryption.ListEncryptionKeys()

"1E5C9EOD-1257-4707-8864-3428E17A6FCE ,C861F668-435A-4AE8-A302-FBD4ED528432*

For more information on using encryption in InterSystems IRIS, see Encryption.

Error

The %SYSTEM.Error class is a generic error container used to return error information reported from various sources, in
various different forms. The class has properties that can store a %Status, a $ZERROR code, a SQLCODE, and/or a free
text message. It can also contains methods that convert a %SYSTEM.Error to an InterSystems IRIS exception and vice-
versa.

The following example shows how to create a new generic error object from a %Status, after trying to create and save an
object of an InterSystems IRIS class called Sample.Company:

>>> my_company = iris.Sample.Company._New()

>>> my_company.TaxID = "123456789"

>>> status = myCompany._Save()

>>> e = Iris.system_Error._New(status)

>>> print(e.Message)

ERROR #5659: Property "Sample.Company::Name(8@Sample.Company,ID=)" required

For more information, see iris.system.Status, Working with %Status Values, $ZERROR (ObjectScript), and SQL Error
Messages.

Event

The %SYSTEM.Event class provides an interface to the Event API. It allows processes to go to sleep waiting for a particular
resource, which can be a named resource or a process ID. The Wait() method of the iris.system.Event class causes a process
to wait on a resource, while the Signal() method wakes up a process waiting for a resource.

A named resource is a string representation of a valid identifier, much the same as that used for locks. Named resources
are explicitly created and deleted, using the Create() and Delete() methods respectively.

A process ID is automatically created when a process is created and automatically deleted when a process exits. A process
may wait only on its own process identifier.

In the following example, a process creates a named resource called MyResource by using the Create() method of
iris.system.Event:

>>> jiris.system.Event.Create("MyResource")
1

62 Using Embedded Python

IRIS System API

A second process can then use the Wait() method of iris.system.Event to wait on this resource before continuing, as shown
in this Python module, waiter.py:

import iris

def run(Q:
print(*Waiting for signal*)
ret = Iris.system.Event_Wait(*MyResource®,b30)

if ret == 1:
print(°“Signal received®)
elif ret == -1:

print('Reséurce deleted™)
elif ret == O:
print(*Wait timed out®)

The run() function of the waiter module prints “Waiting for signal,” and then calls the Wait() method of iris.system.Event.
It then waits up to 30 seconds for MyResource to become available before continuing along one of three paths, depending
on the return value of the Wait() method.

If the first process then uses the Signal() method of the iris.system.Event class, it wakes up the second process:

>>> iris.system.Event.Signal (*MyResource*)
1

If no process is waiting for the resource, the wakeup is queued, and when another process waits for the resource, it is
awakened immediately.

Executing the run() function of the waiter module might look something like this:

>>> import waiter

>>> waiter.run()

Waiting for signal

<process sleeps for up to 30 seconds>
Signal received

If the first process uses the Delete() method of the iris.system.Event class instead, the run() function prints “Resource
deleted.”

If no response is received after 30 seconds, the output is “Wait timed out.”

For more information, see %SYSTEM.Event and iris.lock().

Monitor

The %SYSTEM.Monitor class provides an interface for accessing the System Monitor, allowing you to perform such functions
as getting the number of alerts posted to messages.log, reading the messages in alerts.log, or checking the system state.

The following example uses the State() method of the iris.system.Monitor.State class to return the current system state as
an integer:

>>> jris.system.Monitor.State()
2

System states are determined by the number of system alerts posted to messages.log during or following startup. In this
case, a system state of 2 means Alert (or RED). For further details on system states, see System Monitor Health State.

Use the Alerts() method to return the current number of system alerts:

>>> iris.system_Monitor.Alerts()
10

Using Embedded Python 63

InterSystems IRIS Python Module Reference

The following example (for InterSystems IRIS 2023.2 or later) calls the GetAlerts() method of the iris.system.Monitor class,
which returns the number of alerts in alerts.log, the text of the alerts as an array of messages, and a string containing the
text of the most recent alert:

>>> alerts = iris.ref(0)
>>> messages = iris.arrayref({})
>>> last_alert = iris.ref("")
>>> status = iris.system._Monitor.GetAlerts(alerts, messages, last_alert)
>>> for x in range(l, alerts.value + 1):
print(messages[x])

12/02/24-14:31:55:470 (68232) 2 [CGeneric.Event] Failed to allocate 1592MB shared memory using large
pages. Switching to small pages.

12/02/24-14:31:57:762 (56676) 2 [Utility.Event] Preserving journal files
C:\InterSystems\IRIS\mgr\journal\20241128.002 and later for journal recovery and transaction rollback
12/03/24-06:29:54:435 (66624) 2 [Utility.Event] LMF Error: Could not send startup message to license
server
12/03/24-19:48:32:895 (66624) 2 [Utility.Event] LMF Error: Could not send startup message to license
server

12/04/24-11:18:43:264 (66624) 2 [Utility.Event] LMF Error: Could not send startup message to license
server

12/04/24-12:41:12:897 (66624) 2

server

12/07/24-07:35:44:424 (66624) 2

server

12/10/24-00:52:38:787 (45112) 2 [Utility.Event] Preserving journal files
c:\intersystems\iris\mgr\journal\20241207.002 and later for journal recovery and transaction rollback
12/10/24-05:42:01:245 (66624) 2 [Utility.Event] LMF error: Could not connect to license server
(127.0.0.1,4002).

12/10/24-15:29:54:916 (42260) 2 [Generic.Event] Process terminated abnormally (pid 13056, jobid
0x0002001b)

>>> last_alert.value

"12/10/24-15:29:54:916 (42260) 2 [Generic.Event] Process terminated abnormally (pid 13056, jobid
0x0002001b) *

[Utility.Event] LMF Error: Could not send startup message to license

[Utility.Event] LMF Error: Could not send startup message to license

The GetAlerts() method’s three arguments are all passed by reference, so it is necessary to use iris.ref() and iris.arrayref()
to pass in references to the Python variables that will hold the returned results.

For more information, see Using System Monitor and Monitoring InterSystems IRIS Logs.

Process
The %SYSTEM.Process class allows you to monitor and manipulate a process.

Some of the methods in iris.system.Process require a process ID (pid) to be passed as an argument, such as State(), which
returns the current state of the process:

>>> iris.system.Process.State(8608)
"READ"

Some of its methods act upon the current process, such as SetNamespace(), which sets the namespace of the current process:

>>> jiris.system.Process.SetNamespace(“USER")
“"USER™

Other methods work on either the current process or another process, such as NameSpace(), which returns the current
namespace for a given process:

>>> jiris.system.Process.NameSpace()
“"USER™

>>> jiris.system.Process.NameSpace(44828)
"%SYS*®

For more information, see %SYSTEM.Process.

sQL

The %SYSTEM.SQL class provides a mechanism for preparing and executing SQL queries. The key methods of
iris.system.SQL are Prepare() and Execute().

64 Using Embedded Python

IRIS System API

The following examples use the Sample.Person class described in Use an InterSystems IRIS Class.

The example below executes a SQL query that requests the name, age, and date of birth of the first 10 rows in the table
Sample.Person and places the result set in the variable rsi:

>>> rsl = iris.system.SQL.Execute("SELECT TOP 10 Name,Age,DOB FROM Sample.Person®,"DISPLAY")

The second argument in the call to Execute() is the SelectMode, which in this case tells the method to print the Display
values of each field, rather than the Logical values. For example, a human-readable format for the DOB field will be used,
rather than the internal $HOROL OG format.

The result set is an instance of the class %SQL.StatementResult, S0 you can manipulate the result set using the methods in
that class, such as % Display() to print the contents of the result set:

>>> rsl._Display()

Name Age DOB

Avery,Zelda 0. 40 05/13/1984
Quincy,Debby 1. 48 06/11/1976
Schaefer,Barb G. 20 03/08/2005
Newton,Angela L. 46 05/30/1978
Thompson,Emily Y. 23 11/11/2001
O"Brien,James D. 71 10/12/1953
Baker,Valery F. 73 09/22/1951
Kratzmann,Frances T. 68 09/07/1956
Quixote,Janice 1. 32 05/25/1992
Tsatsulin,Danielle P. 42 08/04/1982

10 Rows(s) Affected

The next example stores a similar query in a variable q:

q = iris.system.SQL.Prepare("SELECT TOP ? Name,Age,DOB FROM Sample.Person®,"DISPLAY")

The question mark in the query allows you to pass in an argument when you execute the query, in this case, specifying how
many rows to place in the result set.

The query is an instance of the class %SQL.Statement, so you can manipulate the query using the methods in that class,
such as % Execute() to run the query. This example requests the top 5 rows in the table and places the result set in the
variable rs2.

>>> rs2 = (._Execute("5%)
You can use the %Next() method of the of the class %SQL.StatementResult to iterate through the result set:

>>> while rs2._Next():
print(f {rs2_Name} is {rs2.Age} years old and was born on {rs2.DOB}")

Avery,Zelda O. is 40 years old and was born on 05/13/1984
Quincy,Debby I. is 48 years old and was born on 06/11/1976
Schaefer,Barb G. is 20 years old and was born on 03/08/2005
Newton,Angela L. is 46 years old and was born on 05/30/1978
Thompson,Emily Y. is 23 years old and was born on 11/11/2001

For more information, see Using Dynamic SQL.

Use the iris.sqgl class to return a result set that can be iterated in a more Python-like way. See Use InterSystems SQL for
more information.

SYS

The %SYSTEM.SYS class provides a language-independent way to access selected system variables, also known as “special
variables.”

Using Embedded Python 65

InterSystems IRIS Python Module Reference

The Horolog() method of the iris.system.SYS class gets the value of system variable $3HOROL OG, which contains the
local date and time in internal format. The first number is the current day, where day 1 is January 1, 1841, and the second
number is the number of seconds since midnight of the current day. See $HOROLOG for details.

>>> jris.system.SYS_Horolog()
"67292,57639"

The TimeStamp() method gets the UTC date and time in internal format. See $ZTIMESTAMP for details.

>>> jris.system.SYS_.TimeStamp()
"67292,72041.4628646"

Subtracting the number of seconds since midnight in the above examples indicates that the current time is 4 hours behind
UTC.

The TimeZoneg() method retrieves the offset from the Greenwich meridian in minutes. See $ZTIMEZONE for details.

>>> jris.system.SYS.TimeZone()
300

This shows that the local time in this example is 5 time zones from the Greenwich meridian. This apparent discrepancy
arises due to the fact that UTC is unaffected by daylight saving time or other time variants that may affect local time.

For more information, see %SYSTEM.SYS.

Security

The %SYSTEM.Security class provides an interface for performing certain tasks related to user permissions.

For example, role escalation can be used when a user occasionally needs to perform certain functions that require a higher
level of permissions than the user would normally have. This requires that the user already have the %DB_ I1R1SSYS :W and
%Service_EscalatelLogin:U privileges.

You can check to see if a user has a particular privilege by using the CheckUser Per mission() method of the
iris.system.Security class, for example:

>>> jris.system.Security.CheckUserPermission(“userone”, "%DB_IRISSYS®)
"READ,WRITE"

>>> jiris.system.Security.CheckUserPermission(“userone”, "%Service_EscalatelLogin®)
"USE"

or

>>> jris.system.Security.CheckUserPermission(“userone”, "%DB_IRISSYS", "WRITE")
1

>>> jris.system.Security.CheckUserPermission(“userone”, "%Service_EscalatelLogin®, "USE")
1

The user also needs to have the role with the higher level of privilege defined as an escalation role. This can be configured
in the Management Portal by going to System > Security Management > Users and selecting the user you wish to have an
escalation role. Then click the EscalationRoles tab, where you can assign roles that the user can escalate to.

Then, to escalate the user to a new role, use the Escalatel ogin() method. The following example escalates the current user
to the %Manager role;

>>> jiris.system.Security.EscalateLogin("%Manager*™)

Escalated Login for User: userone (Role: %Manager)
Password: *****ikix

USER (%Manager)#

This drops you back to the ObjectScript shell with %Manager role. You can then execute commands in ObjectScript or
re-enter the Python shell with the new level of permissions.

66 Using Embedded Python

IRIS System API

For more information, see Roles.

Semaphore

The %SYSTEM.Semaphore class provides an interface for managing semaphores. Whereas a lock can be used to ensure
that only one process can use a given resource, a semaphore can be used when multiple copies of a resource can exist. For
example, you might want to allow a certain number of concurrent connections to a database, forcing an additional process
to wait for a resource to become available.

The following sample module, sem.py, shows how semaphores can be used to regulate a process that generates a resource
and a process that consumes a resource.

import time
import random
import iris

Create a semaphore "resource_sem®" with a starting number of resources
def create(num_resources):

my_sem = iris.system.Semaphore._New()

my_sem.Create("resource_sem", num_resources)

print(f*Created semaphore with value {my_sem.GetValue()}-")

Return current value of semaphore "resource_sem”
def value(Q):
my_sem = iris.system.Semaphore._New()
my_sem.Open("resource_sem")
return(my_sem.GetValue())

Produce a resource and increment semaphore “resource_sem®
def produce():
my_sem = iris.system.Semaphore._New()
my_sem.Open("resource_sem")
time.sleep(random.uniform(4, 8)) # Insert some randomness
my_sem.Increment(l) # Increment semaphore
print(*Done producing.®)

Consume a resource and decrement semaphore "resource_sem”
def consume():
my_sem = iris.system.Semaphore._New()
my_sem.Open(“resource_sem-")
time._sleep(random.uniform(5, 10)) # Insert some randomness
result = my _sem.Decrement(l, 10) # Decrement semaphore with a 10-sec timeout
if result == O:
print("Timed out waiting for semaphore.")
else:
print(“Done consuming.")

Delete semaphore "resource_sem®

def delete():
my_sem = iris.system.Semaphore._New()
my_sem.Open("resource_sem")
print(f Deleting semaphore with value {my_sem.GetValue()}-")
my_sem.Delete()

The function create() instantiates the iris.system.Semaphore class, uses the Create() method of that class to create a
semaphore with the name resource_sem and set its initial value to num_resources. This semaphore can now be
accessed by any process.

The valug() function uses the Open() method of iris.system.Semaphore to open the semaphore with the name resource_sem
and then uses the GetValue() method to retrieve the current value of the semaphore. This value represents the current
number of resources that are waiting to be consumed.

The produce() function represents the production of a resource for later consumption and uses the I ncrement() method
of iris.system.Semaphore to increment the value of the semaphore.

The consume() function represents the consumption of a resource and uses the Decrement() method of iris.system.Semaphore
to decrement the value of the semaphore and indicate that a resource was consumed. If the method finds that the semaphore’s
value is 0 at the time Decrement() is called, the method will wait up to 10 seconds for a resource to be produced.

Finally, the delete() function uses the Delete() method of iris.system.Semaphore to delete the semaphore.

Using Embedded Python 67

InterSystems IRIS Python Module Reference

When run in Terminal, the following example creates a the num_resources semaphore and assigns it the initial value 0,
which means no resources are yet created. It then produces a resource and shows that the value of the semaphore is now
1, meaning that a resources is ready to be consumed.

>>> import sem

>>> sem.create(0)

Created semaphore with value O.
>>> sem.produce()

Done producing.

>>> sem.value()

1

When run in a second Terminal session, the following example shows that you can retrieve the value of the semaphore.
Since the value of the semaphore is 1, the process can consume the resource immediately and decrement the semaphore
value.

>>> import sem
>>> sem.value()

1

>>> sem.consume()
Done consuming.

Now, the value of the semaphore is 0, and if a process tries to consume a resource, it will wait up to 10 seconds for a process
to produce a new resource. If this happens, it will proceed and consume the resource. Otherwise, the call to Decrement()
returns 0 to indicate it timed out.

>>> sem.value()
0

>>> sem.consume()
Timed out waiting for semaphore.

Since semaphores are shared objects, they do not go away unless you delete them explicitly by calling the Delete() method
of iris.system.Semaphore.

>>> sem.delete()
Deleting semaphore with value O.

The following sample module, threads.py, exercises the sample semaphore code in sem.py by spinning up threads for an
equal number of producers and consumers.

Driver takes starting number of resources
And number of producer/consumer threads to run
def main(num_resources, num_threads):

Create semaphore with specified number of resources
sem.create(num_resources)

Thread to produce a resource

def start_producer(thread_id):
print(f*Producer {thread_id} started. Semaphore value is {sem.value()}.")
sem.produce()

Thread to consume a resource

def start_consumer(thread_id):
print(f"Consumer {thread_id} started. Semaphore value is {sem.value()}.")
sem.consume()

Spawn multiple threads simulating concurrent producer/consumer requests
threads = []
for i1 in range(num_threads):
t = threading.Thread(target=start_producer, args=(i,))
time.sleep(2)
threads.append(t)
t.start()
time.sleep(2)
t = threading.Thread(target=start_consumer, args=(i,))
threads.append(t)
t.start()

Wait for all threads to finish
for t in threads:

t.joinQ

68 Using Embedded Python

IRIS System API

Clean up
print(f'Exercise complete. Final semaphore value is {sem.value()}.")
sem.delete()

The following example runs threads.py, with a starting semaphore value of 0 and spins up 5 producer threads and 5 consumer
threads.

>>> import threads

>>> threads.main(0,5)

Created semaphore with value O.
Producer O started. Semaphore value is
Consumer O started. Semaphore value is
Producer 1 started. Semaphore value is
Done producing.

Consumer 1 started. Semaphore value is
Producer 2 started. Semaphore value is
Done producing.

Consumer 2 started. Semaphore value is
Done consuming.

Producer 3 started. Semaphore value is
Done consuming.

Consumer 3 started. Semaphore value is
Done producing.

Producer 4 started. Semaphore value is
Done producing.

Consumer 4 started. Semaphore value is
Done consuming.

Done consuming.

Done producing.

Done consuming.

Exercise complete. Final semaphore value is O.
Deleting semaphore with value O.

N P O B N PRPFPLr 00O

Since the number of producers and consumers is equal and no timeouts occurred, the final value of the semaphore is 0.

To read about other semaphore scenarios, see Semaphores in InterSystems Products or %SYSTEM.Semaphore.

Status

The %SYSTEM.Status class provides methods that can display or construct InterSystems IRIS status values, that is, objects
of type %Library.Status (or %Status for short). Status values are commonly returned by methods in InterSystems IRIS. If
a status has the value 1, it indicates that the method was a success. Otherwise, the status contains one or more error codes
and messages to indicate any error conditions that occurred while running the method.

If you call an InterSystems IRIS method that returns a status, iris.system.Status.I SOK () returns 1 if the status is not an
error, while iris.system.Status.| sError () returns 1 if the status is contains one or more errors. The DisplayError () method
displays the contents of a status, including its error codes and messages.

If you write a method and you want to return a status, iris.system.Status.OK () returns a non-error status, while
iris.system.Status.Error () lets you create and return an error status.

For example, say you are working with a simple persistent class that defines a pet object, which contains two required
properties, Name and Species:

Class User.Pet Extends %Library.Persistent
{

Property Name As %String [Required];
Property Species As %String [Required];
3

Using Embedded Python 69

InterSystems IRIS Python Module Reference

Creating a new instance of a pet and trying to save it returns a status value, which you can check to see if the save succeeded,
as well as display any errors that occur. If you try to save a pet without giving the Species property a value, you will see
error #5659, indicating a required property is missing.

>>> status = iris.system.Status
>>> p = iris.User.Pet._New()
>>> p_Name = "Fluffy”
>>> st = p._Save()
>>> if status.1sOK(st):
.- print("Pet saved®)

. elif status.IsError(st):

status.DisplayError(st)

ERROR #5659: Property "User.Pet::Species(8@User.Pet,ID=)" required

See InterSystems Error Reference for a list of possible error codes and messages.

You can also iris.check _status() to check the status returned by the _Save() method and throw a Python exception if it
contains an error. This allows you to handle the error in a standard Python Try...Except. See iris.check_status() for more
information.

Also, you might find situations where you are writing a method in Python and you need to return a status value, for instance,
to some ObjectScript code. For example, you are writing a module souffle.py that contains a bake() function that needs to
return a status that tells the caller if the souffle came out successfully or not.

def bake():
import iris
import random
result = random.randint(1,10)
if result > 6:
. st = iris.system.Status._Error(5001, "The souffle fell.")
else:
st = iris.system.Status.OK(Q)
return st

From looking at the code, you can see that there is a 40 percent chance that the souffle will fall. In such cases, the code
will create a custom error, using the iris.system.Status.Error () method, and return it to the caller. InterSystems IRIS
reserves the error codes 83 and 5001 for custom errors. If the souffle comes out successfully, it returns a non-error status,
using the OK () method.

USER>set souffle = ##class(%SYS.Python). Import(*'souffle'™)
USER>set st = souffle.bake()

USER>do ##class(%SYSTEM.Status).DisplayError(st)

ERROR #5001: The souffle fell.

For more information, see Working with %Status Values.

Util
The %SYSTEM.Util class provides an assortment of utility methods that can be useful for a variety of purposes. Just a few

of these methods are explained here, to give you an idea of the breadth of this class.

Some of the utility methods in the iris.system.Util class can be used to monitor or administer the current state of InterSystems
IRIS.

The method 1sDST () determines whether the timestamp representing the current date and time is in daylight saving time.
A return value of 1 indicates daylight saving time is currently in effect. For more information on the InterSystems IRIS
date format, see $SHOROLOG.

>>> jris.system.Util.IsDSTQ
1

70 Using Embedded Python

IRIS System API

The SetSwitch() method allows you to set a switch, controlling the instance-level functioning of InterSystems IRIS. For
example, switch 12 inhibits new users or processes from logging in to the instance. See Using Switches for more information.

>>> jris.system.Util_SetSwitch(12,1)
0

Here, SetSwitch() is being used to turn on switch 12. The return value of 0 indicates the previous state of the switch 12,
which was off. With switch 12 turned on, a user trying to log in to InterSystems IRIS sees the message:

<InterSystems IRIS Startup Error: Sign-on and JOB inhibited: Switch 12 is set (0)>
Other methods in iris.system.Util can be used to check certain attributes at the operating system level. The following
examples are for Microsoft Windows.

The GetEnviron() method retrieves the value of an environment variable:

>>> jris.system.Util_GetEnviron("PATHEXT")
" _.COM; .EXE; .BAT; .CMD; .VBS; .VBE; .JS; .JSE; .WSF; _.WSH; _MSC; .PY; .PYW"

The InstallDirectory() method retrieves the directory where the instance of InterSystems IRIS is installed:

>>> jris.system.Util.InstallDirectory()
“c:\\intersystems\\iris\\"

Still other methods in iris.system.Util perform simple tasks that are useful for manipulating data.

The HexToDecimal() and Decimal ToHex() methods convert hex data to decimal and vice versa:

>>> jris.system.Util._HexToDecimal ("BEAD")
"48813"

>>> jris.system.Util._DecimalToHex(1023)
"3FF*

The methods Compress() and Decompress() can be used to compress and decompress data, for example, with the zlib
algorithm:

>>> compressed_string = iris.system.Util._Compress("The %SYSTEM.Util class contains useful utility
methods”®, "zlib")

>>> compressed_string B o . _

" 6x\X9Cc\X0bEHUP\\x8e\x0c\x0eqdO\x0b-EIQHT I, .VHI T+ 1 T1+V(-NM+I1Q(\x05Je\x96T*&; \x96da8§\x14\x03\x00\x02
\X13E\x01*

>>> decompressed_string = iris.system.Util._Decompress(compressed_string)

>>> decompressed_string

"The %SYSTEM.Util class contains useful utility methods*®

For more information, see %SYSTEM.Uil.

Version
The %SYSTEM.Version class provides methods for retrieving product version information.

For example, you can retrieve the entire version string (often referred to as the $zv string) or a piece of it:

>>> jris.system.Version.GetVersion()

"IRIS for Windows (x86-64) 2024.2 (Build 230U) Mon Jul 1 2024 16:40:47 EDT*
>>> iris.system.Version.Get0S()

“Windows*

You can also set the system mode using the SystemM ode() method, instead of having to use the Management Portal:

>>> jris.system.Version.SystemMode("TEST")
“"DEVELOPMENT*

The example above causes the Management Portal to display “Test System” at the top, to let you quickly identify what
environment you are in. The return value of the method is the previous system mode of the InterSystems IRIS instance.

Using Embedded Python 71

InterSystems IRIS Python Module Reference

For more information, see %SYSTEM.Version.

72 Using Embedded Python

	Table of Contents
	1 Introduction and Prerequisites
	1.1 Recommended Python Version
	1.2 Required Service
	1.3 Flexible Python Runtime Feature

	2 Install and Import Python Packages
	2.1 Install Python Packages
	2.1.1 Install Python Packages on a UNIX-Based System (except AIX)
	2.1.2 Install Python Packages on AIX
	2.1.3 Install Python Packages on Windows
	2.1.4 Install Python Packages in a Container

	2.2 Import Python Packages
	2.2.1 Import Python Packages from ObjectScript
	2.2.2 Import Python Packages from a Method Written in Python
	2.2.3 Import Python Packages via an XData Block

	3 Run Embedded Python
	3.1 From the Python Shell
	3.1.1 Start the Python Shell from Terminal
	3.1.2 Start the Python Shell from the Command Line

	3.2 In a Python Script File (.py)
	3.3 In a Method in an InterSystems IRIS Class
	3.4 In SQL Functions and Stored Procedures

	4 Call Embedded Python Code from ObjectScript
	4.1 Use a Python Package
	4.2 Call a Method of an InterSystems IRIS Class Written in Python
	4.3 Run an SQL Function or Stored Procedure Written in Python
	4.4 Run an Arbitrary Python Command

	5 Call InterSystems IRIS from Embedded Python
	5.1 Use the iris Module
	5.2 Use an InterSystems IRIS Class
	5.3 Use InterSystems SQL
	5.4 Run an Arbitrary ObjectScript Command

	6 Bridge the Gap Between ObjectScript and Embedded Python
	6.1 Access an InterSystems IRIS Class
	6.2 Refer to the Current InterSystems IRIS Class
	6.3 Use ObjectScript and Python Identifier Names
	6.4 Use Python Builtin Functions
	6.5 Use Keyword or Named Arguments
	6.6 Pass Arguments By Reference
	6.7 Pass Values for True, False, and None
	6.8 Use Dictionaries
	6.9 Use Lists
	6.10 Use Globals
	6.11 Change Namespaces
	6.12 Run an ObjectScript Routine from Embedded Python
	6.13 Handle Exceptions
	6.14 Bytes and Strings
	6.15 Standard Output and Standard Error Mappings

	7 Use Embedded Python in Interoperability Productions
	8 Use the Flexible Python Runtime Feature
	8.1 Overview of the Flexible Python Runtime Feature
	8.1.1 Embedded Python and sys.path
	8.1.2 Check Python Version Information

	8.2 Flexible Python Runtime Example: Python 3.11 on Windows
	8.3 Flexible Python Runtime Example: Python 3.11 on Ubuntu 22.04
	8.4 Flexible Python Runtime Example: Anaconda on Windows
	8.5 Flexible Python Runtime Example: Anaconda on Ubuntu 22.04

	InterSystems IRIS Python Module Reference
	InterSystems IRIS Python Module Core API
	Global Reference API
	IRIS System API

