
Developing InterSystems
Applications

Version 2025.1
2025-06-03

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Developing InterSystems Applications
PDF generated on 2025-06-03
InterSystems IRIS® Version 2025.1
Copyright © 2025 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble®, InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™, HealthShare® Health Connect Cloud™, InterSystems® Data Fabric Studio™, InterSystems IRIS for
Health™, InterSystems Supply Chain Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems
Corporation. TrakCare is a registered trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Congress Street,
Boston, MA 02114, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 Transaction Processing ... 1
1.1 About Transactions in InterSystems IRIS .. 1
1.2 Managing Transactions Within Applications ... 1

1.2.1 Transaction Processing Commands ... 2
1.2.2 Transactions and Journaling ... 4
1.2.3 Examples of Transaction Processing Within Applications ... 4

1.3 Handling Transaction Errors with Rollbacks .. 5
1.3.1 Understanding Rollbacks ... 5
1.3.2 Rollback Commands ... 6
1.3.3 Rollback Example .. 6

1.4 Transaction Resiliency and Recovery Functionality ... 7
1.4.1 Automatic Rollbacks .. 7
1.4.2 Backups and Journaling for Transaction Integrity ... 8
1.4.3 Managing Concurrency with Rollbacks ... 8

1.5 Advanced and Legacy Transaction Controls .. 9
1.5.1 Suspending All Current Transactions ... 9
1.5.2 The Legacy Utility ^%ETN and Transactions ... 10

Developing InterSystems Applications iii

1
Transaction Processing

A transaction is a logical unit of work that groups multiple atomic operations into a single, indivisible action. An atomic
operation is always fully executed in any circumstance, including if an error occurs. Typically, a transaction consists of
several atomic operations executed in a specific order and treated as a single action.

This document provides an overview of transaction processing in the InterSystems IRIS® data platform. It explains how
to define and manage transactions, handle errors using rollbacks, and implement strategies for disaster recovery.

1.1 About Transactions in InterSystems IRIS
In InterSystems IRIS, an atomic operation consists of a single operation that changes an object or row, including creation,
deletion, and modification.

However, applications often require combining multiple atomic operations to complete a task. For example, consider a
bank transferring money from one account to another. This task involves at least two separate operations: subtracting the
transfer amount from the sender's account balance and adding the same amount to the recipient's account balance. Each of
these updates is an atomic operation on its own. However, to maintain accurate financial records, they must be treated as
a single unit—either both happen together, or neither happens at all. By grouping these operations within a single transaction,
the system ensures that if something goes wrong after the first update but before the second, it can undo the changes,
returning both accounts to their original state.

Transaction processing commands allow you to specify the sequence of operations that constitute a complete transaction.
One command marks the beginning of the transaction, and after executing a series of operations, another command marks
the end. If any part of the transaction fails, a rollback — either from developer-defined rollback logic or triggered automat-
ically in cases like system failure or process termination— reverses the entire sequence.

1.2 Managing Transactions Within Applications
• Transaction Processing Commands

• Transaction Processing Details

• Examples of Transaction Processing Within Applications

Developing InterSystems Applications 1

1.2.1 Transaction Processing Commands

The available transaction processing commands are summarized in the following sections. These Python, SQL, and
ObjectScript commands are identical in functionality, with any exceptions noted in the command definition below.

1.2.1.1 Python Transaction Commands

iris.tstart()

Begins a new transaction. Each call increases the transaction level.

iris.gettlevel()

Detects whether a transaction is currently in progress. The returned value reflects the current transaction level—the
number of nested transactions opened.

Returns the current transaction level:

• >0: In a transaction; value indicates nesting level (for example, 2 means two nested iris.tstart() commands
are active).

• 0: No transaction active

iris.tcommit()

Commits the current transaction level.

iris.trollbackone()

Rolls back changes made during the most recent nested transaction only. Outer transactions are unaffected.

iris.trollback()

Rolls back all active transactions. Resets the transaction level to 0.

Important: Using the iris.trollback() command can be potentially destructive, as it rolls back all active
transactions for the current process. To avoid unintentionally affecting transactions beyond the
one you are currently working on, InterSystems strongly recommends using iris.trollbackone().

1.2.1.2 SQL Transaction Commands

InterSystems IRIS supports the ANSI SQL operations COMMIT WORK and ROLLBACK WORK (in InterSystems
SQL, the keyword WORK is optional). It also supports the InterSystems SQL extensions SET TRANSACTION, START
TRANSACTION, SAVEPOINT, and %INTRANSACTION.

SET TRANSACTION

Sets transaction parameters without starting a transaction.

START TRANSACTION

Begins a new transaction.

%INTRANSACTION

Determines whether a transaction is currently in progress. This command sets the SQLCODE variable based on
the transaction state, but does not return a value.

2 Developing InterSystems Applications

Transaction Processing

After invoking %INTRANSACTION, the value of SQLCODE is:

• 0: A transaction is in progress.

• 100: No transaction is in progress.

• <0: In transaction, journaling disabled.

SAVEPOINT name

Marks a named point within a transaction for partial rollback.

ROLLBACK TO SAVEPOINT name

Rolls back to the named savepoint without ending the entire transaction.

ROLLBACK

Rolls back all changes made since the transaction began. Releases all locks and resets %INTRANSACTION to
0.

Important: Using the ROLLBACK command can be potentially destructive, as it rolls back all active
transactions for the current process. To avoid unintentionally affecting transactions beyond the
one you are currently working on, InterSystems strongly recommends using ROLLBACK TO
SAVEPOINT.

COMMIT

Commits all changes made during the transaction, including those after any savepoints. COMMIT always finalizes
the entire transaction, including any savepoints or nested transactions.

Tip: SQL does not support committing part of a nested transaction. If you use SAVEPOINT, do not use
COMMIT unless you intend to finalize the entire transaction.

1.2.1.3 ObjectScript Transaction Commands

tstart

Begins a new transaction. Each call increases the transaction level.

$TLEVEL

Detects whether a transaction is currently in progress. The returned value reflects the current transaction level—the
number of nested transactions opened.

Returns the current transaction nesting level.

• >0: In a transaction; value indicates nesting level (for example, 2 means two nested tstart commands are
active).

• 0: No transaction.

tcommit

Commits the current transaction level only.

trollback 1

Rolls back the current nested transaction level only. Outer transactions are unaffected.

Developing InterSystems Applications 3

Managing Transactions Within Applications

trollback

Rolls back all active transactions. Resets $TLEVEL to 0.

Important: Using the trollback command without an argument can be potentially destructive, as it rolls back
all active transactions for the current process. To avoid unintentionally affecting transactions
beyond the one you are currently working on, InterSystems strongly recommends using trollback
1.

1.2.1.4 Nested Transactions

While transactions should ideally be managed within a single language, it is possible to call transaction commands across
languages. For example, from an SQL statement, you can call a stored procedure written in Python that uses Python trans-
action commands. Similarly, a Python method can call a stored procedure written in SQL that uses SQL transaction com-
mands.

It's important to note that nested transactions behave differently depending on the language. In ObjectScript, you nest
transactions by issuing tstart multiple times, and you can commit or roll back at specific levels using tcommit or trollback
1. In contrast, SQL uses the SAVEPOINT command to create nested rollback points. You can roll back to a specific
savepoint using ROLLBACK TO SAVEPOINT, but any COMMIT statement ends all active transactions, including
those started with SAVEPOINT. When mixing languages, be mindful of these behavioral differences to avoid unintended
commits or rollbacks.

1.2.2 Transactions and Journaling

Transaction commands, such as begin, commit, and rollback, are recorded in the journal and can be accessed via the Man-
agement Portal (System Operation > Journals). Journaling plays a critical role in supporting backups and ensuring disaster
recovery. Read about backups and journaling to learn more.

1.2.3 Examples of Transaction Processing Within Applications

The following are examples of transaction processing. The code below performs database modifications and then transfers
funds from one account to another:

Python

Transfer funds from one account to another in Python with SQL

def transfer(from_account, to_account, amount):
 try:
 iris.tstart()
 iris.sql.exec("UPDATE Bank.Account SET Balance = Balance - ? WHERE AccountNum = ?", (amount,
from_account))
 iris.sql.exec("UPDATE Bank.Account SET Balance = Balance + ? WHERE AccountNum = ?", (amount,
to_account))
 iris.tcommit()
 return "Transfer succeeded"
 except Exception as e:
 iris.trollbackone()
 return f"Transaction failed: {e}"

4 Developing InterSystems Applications

Transaction Processing

SQL

START TRANSACTION;

UPDATE Bank.Account
SET Balance = Balance - 500
WHERE AccountNum = '12345';

UPDATE Bank.Account
SET Balance = Balance + 500
WHERE AccountNum = '67890';

COMMIT;

Class Member

 ClassMethod TransferFunds(from As %String, to As %String, amount As %Double) As %Status
 {
 // Transfer funds from one account to another in ObjectScript
 tstart
 try {
 set acctFrom = ##class(Bank.Account).%OpenId(from)
 set acctTo = ##class(Bank.Account).%OpenId(to)
 if acctFrom = "" || acctTo = "" {
 throw ##class(%Exception.StatusException).CreateFromStatus($$$ERROR("Account not found"))
 }

 set acctFrom.Balance = acctFrom.Balance - amount
 set acctTo.Balance = acctTo.Balance + amount

 set status = acctFrom.%Save()
 $$$ThrowOnError(status)
 set status = acctTo.%Save()
 $$$ThrowOnError(status)

 tcommit
 return $$$OK
 } catch ex {
 trollback 1
 return ex.AsStatus()
 }
 }

1.3 Handling Transaction Errors with Rollbacks
• Understanding Rollbacks

• Rollback Commands

• Viewing Rollback Logs

• Rollback Example

1.3.1 Understanding Rollbacks

A transaction typically consists of a sequence of atomic operations that either completes entirely or not at all. If an error
or system malfunction interrupts the transaction, the system uses rollback logic you've defined to undo any completed
operations to restore the state before the failure. To cite the example of a bank transaction, rolling back an incomplete
transaction prevents money from being removed from one account but not credited to another in the case of a system crash
mid-process. As long as the removal of money from one account is grouped in the same transaction as depositing the money
in another, a rollback ensures that each account is credited appropriately.

When developing your transaction, include a rollback command for error handling. Using structured error-handling mech-
anisms — such as TRY-CATCH in ObjectScript or try except in Python — is best practice. InterSystems IRIS is equipped
to manage rollbacks automatically in cases of system failure or process termination. For more information, see system
automated rollbacks.

Developing InterSystems Applications 5

Handling Transaction Errors with Rollbacks

1.3.2 Rollback Commands

Applications typically implement a rollback command in the error-handling block, such as CATCH in TRY/CATCH or
EXCEPT in TRY/EXCEPT. To roll back the current nested level of transactions:

• Python: iris.trollbackone()

• SQL: ROLLBACK TO SAVEPOINT

• ObjectScript: trollback 1

Note: These commands will also work if called in the Terminal while a transaction runs.

1.3.2.1 Viewing Rollback Logs

After a rollback occurs, if you have enabled the LogRollback configuration option, the system logs the details of the rollback
in the messages.log file, which you can view in the Management Portal (System Operation > System Logs > Messages
Log).

1.3.3 Rollback Example

The following code samples illustrate how to use rollback commands within transactions, along with error handling to
maintain data integrity.

Each sample starts a transaction and sets up an error handler. Operations on data structures or variables are executed,
including an intentional error to trigger the rollback. If an error occurs, the handler undoes all changes and displays
"Transaction Failed." If the line triggering an error were deleted and no error occurs, the transaction is committed successfully
with a commit command, and a success message, “Transaction Committed," is displayed.

Python

def rollback_example():
 try:
 iris.tstart()
 # Withdraw too much from the account to simulate a failure
 result1 = iris.sql.exec("UPDATE Bank.Account SET Balance = Balance - 1000 WHERE AccountNum =
?", "12345")
 result2 = iris.sql.exec("UPDATE Bank.Account SET Balance = Balance + 1000 WHERE AccountNum =
?", "67890")

 # Simulate a failure if the balance drops below zero
 balance = iris.sql.exec("SELECT Balance FROM Bank.Account WHERE AccountNum = ?",
"12345").first()[0]
 if balance < 0:
 raise Exception("Insufficient funds")

 iris.tcommit()
 print("Transaction Committed")
 except Exception as e:
 iris.trollbackone()
 print(f"Transaction Failed: {e}")

6 Developing InterSystems Applications

Transaction Processing

ObjectScript

 TRY {
 NEW balance
 tstart
 &sql(UPDATE Bank.Account SET Balance = Balance - 1000 WHERE AccountNum = '12345')
 &sql(UPDATE Bank.Account SET Balance = Balance + 1000 WHERE AccountNum = '67890')

 &sql(SELECT Balance INTO :balance FROM Bank.Account WHERE AccountNum = '12345')
 IF balance < 0 {
 THROW ##class(%Exception.StatusException).CreateFromStatus($$$ERROR("Insufficient funds"))
 }

 tcommit
 WRITE !, "Transaction Committed"
 } CATCH ex {
 trollback 1
 WRITE !, "Transaction Failed: ", ex.DisplayString()
 }

Class Member

 ClassMethod RollbackExample() As %Status
 {
 try {
 // Open account objects
 set acctFrom = ##class(Bank.Account).%OpenId("12345")
 set acctTo = ##class(Bank.Account).%OpenId("67890")
 if (acctFrom = "" || acctTo = "") {
 throw ##class(%Exception.StatusException).CreateFromStatus($$$ERROR("Account not found"))
 }

 // Attempt fund transfer with rollback on failure
 if (acctFrom.Balance < 1000) {
 throw ##class(%Exception.StatusException).CreateFromStatus($$$ERROR("Insufficient funds"))

 }

 tstart
 set acctFrom.Balance = acctFrom.Balance - 1000
 set acctTo.Balance = acctTo.Balance + 1000

 set status = acctFrom.%Save()
 $$$ThrowOnError(status)
 set status = acctTo.%Save()
 $$$ThrowOnError(status)

 tcommit
 write "Transaction Committed",!
 return $$$OK
 } catch ex {
 trollback 1
 write "Transaction Failed: ", ex.DisplayString(),!
 return ex.AsStatus()
 }
 }

1.4 Transaction Resiliency and Recovery Functionality
• Automatic Rollbacks

• Backups and Journaling for Transaction Integrity

• Managing Concurrency with Rollbacks

1.4.1 Automatic Rollbacks

InterSystems IRIS automatically performs a rollback in cases of system failure or specific events such as process termination.
Transaction rollback occurs automatically during each of the three following circumstances:

Developing InterSystems Applications 7

Transaction Resiliency and Recovery Functionality

• At the time of InterSystems IRIS startup, if recovery is needed. When you start InterSystems IRIS and it determines
that recovery is required, the system rolls back any incomplete transactions.

• Process termination. Halting a process using a HALT command (for your current process) automatically or the
^RESJOB utility (for other running processes that are NOT your current process) affects in-progress transactions
differently depending on the process type. Halting a non-interactive process (or a background job) results in the system
automatically rolling back the transaction. If the process is interactive, the system displays a prompt in that process's
Terminal session, asking whether to commit or rollback the transaction. This applies whether the process is halted
directly or through ^RESJOB.

• System managers roll back incomplete transactions by running the ^JOURNAL utility. When you select the Restore
Globals From Journal option from the ^JOURNAL utility main menu, the journal file is restored, and all incomplete
transactions are rolled back.

1.4.2 Backups and Journaling for Transaction Integrity

Journaling ensures transaction integrity by recording a time-sequenced log of database changes. Each instance of InterSystems
IRIS maintains a journal that logs all SET and KILL operations made during transactions—regardless of the journal setting
of the affected databases—as well as all SET and KILL operations for databases whose Global Journal State is set to "Yes.”

Backups can be performed during transaction processing; however, the resulting backup file may contain partial or
uncommitted transactions, which could compromise transactional consistency if restored in isolation.

In the event of a disaster that requires restoring from a backup:

1. Restore the backup file

2. Apply journal files to the restored copy of the database

Applying journal files restores all journaled updates—from the time of the backup up to the point of failure—to the
recovered database. Applying journals maintains transactional integrity by completes any partial transactions and rolls back
those that were not committed.

For more information, see also:

• ECP Recovery Process, Guarantees, and Limitations

• Journaling

• Importance of Journals

• Backup and Restore

1.4.3 Managing Concurrency with Rollbacks

• $INCREMENT and $SEQUENCE in Transactions and Rollbacks

• Lock Behavior with Transactions

1.4.3.1 $INCREMENT and $SEQUENCE in Transactions and Rollbacks

The primary use case for $INCREMENT and $SEQUENCE is to increment a counter before inserting new records into
a database. These functions provide a fast alternative to a lock command, allowing multiple processes to increment a counter
concurrently without blocking each other.

Calls to $INCREMENT and $SEQUENCE are not considered to be part of a transaction and are not journaled, regardless
of whether they are invoked explicitly or implicitly—such as through %Save(), _Save(), or CREATE TABLE. Their
effects cannot be rolled back.

8 Developing InterSystems Applications

Transaction Processing

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GSCALE_ecp_recovery
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCDI_journal
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCDI_backup_journals
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCDI_backup

Because $INCREMENT and $SEQUENCE are not journaled, rolling back a transaction does not affect the values they
have allocated. If a transaction that used $INCREMENT is rolled back, the counter is not decremented, as adjusting the
counter retroactively could disrupt other transactions, so the next use of $INCREMENT will pick up where the previous
left off, even if the transaction that it occurred in was reverted through a rollback. This means skipped values can occur,
but avoiding potential inconsistencies takes priority. Similarly, any integer values returned by $SEQUENCE remain allocated
and unavailable to future calls, even if the transaction that assigned them was rolled back.

Note: %Save and _Save use $INCREMENT by default. CREATE TABLE uses $SEQUENCE by default. Whether
your class uses $SEQUENCE or $INCREMENT is defined in the IdFunction Storage Keyword, which can be
configured as needed.

1.4.3.2 Lock Behavior with Transactions

Releasing a lock (iris.lock() in Python, LOCK in ObjectScript or LOCK TABLE in SQL) during a transaction may result
in one of two possible states: the lock is fully released and immediately available to other processes, or it may enter a delock
state. In a delock state, the lock behaves as released within the current transaction, allowing further lock operations on the
same resource from within that transaction. However, to other processes, the lock remains active and unavailable until the
transaction is either committed or rolled back—at which point the lock is fully released. To avoid locking conflicts, be
mindful of when locks are released during a transaction and monitor for delock status using the Monitor Locks page.

Additionally, when configuring a lock, you can specify a timeout. If a lock attempt times out, the system sets the value of
$TEST, which reflects the outcome of the lock attempt but is not affected by a later rollback of the transaction.

For more information about delock states, lock behavior, and best practices, refer to Managing Transactions and Locking
with Python and Lock Management.

1.5 Advanced and Legacy Transaction Controls
• Suspending All Current Transactions

• The Legacy Utility ^%ETN and Transactions

1.5.1 Suspending All Current Transactions

You can temporarily suspend all current transactions within a process using the TransactionsSuspended() method. Changes
made while transactions are suspended cannot be rolled back. Changes made before or after the suspension are still able
to be rolled back. This is a potent feature that should be used with caution. If used recklessly, it can lead to incomplete and
irreversible changes, which may affect data integrity. Use it only when rollback behavior is not needed and data consistency
is not at risk. Suspending transactions can be appropriate in specific, controlled cases—such as bypassing rollback for audit
logging, improving performance on low-risk operations, or ensuring certain changes persist during administrative tasks.

Important: If a global is modified during a transaction and then modified again while transactions are suspended,
rolling back the transaction may result in an error. To prevent rollback errors while suspending transactions,
avoid modifying the same global both inside a transaction and again while that transaction is suspended.
If such a conflict is possible, use application-level safeguards—like a lock—to coordinate access and ensure
the global isn't changed during suspension. The safest approach is to isolate operations that require trans-
action suspension from those that rely on rollback behavior.

To suspend all current transactions, invoke one of the following methods:

Developing InterSystems Applications 9

Advanced and Legacy Transaction Controls

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ROBJ_storage_idfunction
https://docs.intersystems.com/iris20242/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_vtest
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_trans
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_trans
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_locktable

• In Python, call the TransactionsSuspended() method of the iris.system.Process class. This method takes a boolean
argument: 1 suspends all current transactions and 0 (default) resumes them. It returns a boolean indicating the previous
state.

• In ObjectScript, call the TransactionsSuspended() method of the %SYSTEM.Process class. This method takes a
boolean argument: 1 suspends all current transactions and 0 (default) resumes them. It returns a boolean indicating the
previous state.

There is no SQL equivalent to TransactionsSuspended().

1.5.2 The Legacy Utility ^%ETN and Transactions

While ^%ETN remains functional for compatibility with legacy systems, you should use structured exception handling
and explicit rollback commands in modern applications. Further details are provided in the ^%ETN documentation.

^%ETN is a legacy utility that remains available for handling incomplete transactions in certain systems. If an error occurs
during a transaction and you have not explicitly handled rollback using a rollback command, ^%ETN or FORE^%ETN
will prompt the user to commit or rollback the transaction. Committing an incomplete transaction can compromise logical
database integrity. To prevent this, use structured error-handling mechanisms as recommended in the section on error
handling alongside explicit rollback commands.

If your application invokes ̂ %ETN or FORE^%ETN in an interactive process (such as running a routine in the Terminal)
after an error with an active transaction, the user sees the following prompt before the process terminates:

You have an open transaction.
Do you want to perform a (C)ommit or (R)ollback?
R =>

If the user do not respond within 30 seconds, the system automatically rolls back the transaction. In a background job, the
rollback happens immediately without displaying a prompt.

By default, ^%ETN and FORE^%ETN exit using HALT. In a background job, HALT automatically rolls back the
transaction. In an interactive process, HALT prompts the user to either commit or rollback. However, the BACK^%ETN
and LOG^%ETN entry points do display a prompt or automatically roll back failed transactions; the user must explicitly
roll back using trollback 1 before calling these routines.

10 Developing InterSystems Applications

Transaction Processing

https://docs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Process#TransactionsSuspended
https://docs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Process
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_etn

	Table of Contents
	1 Transaction Processing
	1.1 About Transactions in InterSystems IRIS
	1.2 Managing Transactions Within Applications
	1.2.1 Transaction Processing Commands
	1.2.2 Transactions and Journaling
	1.2.3 Examples of Transaction Processing Within Applications

	1.3 Handling Transaction Errors with Rollbacks
	1.3.1 Understanding Rollbacks
	1.3.2 Rollback Commands
	1.3.3 Rollback Example

	1.4 Transaction Resiliency and Recovery Functionality
	1.4.1 Automatic Rollbacks
	1.4.2 Backups and Journaling for Transaction Integrity
	1.4.3 Managing Concurrency with Rollbacks

	1.5 Advanced and Legacy Transaction Controls
	1.5.1 Suspending All Current Transactions
	1.5.2 The Legacy Utility ^%ETN and Transactions

	Index

