
Data Serialization with the
InterSystems Persister for Java

Version 2025.1
2025-06-03

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Data Serialization with the InterSystems Persister for Java
PDF generated on 2025-06-03
InterSystems IRIS® Version 2025.1
Copyright © 2025 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble®, InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™, HealthShare® Health Connect Cloud™, InterSystems® Data Fabric Studio™, InterSystems IRIS for
Health™, InterSystems Supply Chain Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems
Corporation. TrakCare is a registered trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Congress Street,
Boston, MA 02114, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

1 The InterSystems Persister for Java ... 1

2 Overview of the Java Persister .. 3

3 Serializing Data with Persister .. 5
3.1 Persister Threading and Buffering .. 6

3.1.1 Using Local Buffers with PersisterBuffer .. 6
3.1.2 Threading with BufferWriter ... 7

3.2 Persister Buffer Statistics ... 8

4 Implementing Schemas with SchemaManager .. 11
4.1 Synchronizing Schema Definitions .. 11
4.2 Acquiring Schemas from the Server ... 12
4.3 Schema and Extent Utilities ... 13

5 Designing Schemas with SchemaBuilder .. 15

6 Java Persister Examples ... 17
6.1 Hello Persister .. 17
6.2 Continents - Load Data from a Local Array ... 18
6.3 DivvyTrip - CSV bicycle sharing dataset (small - 1.5 million records) 19
6.4 ThreadLoader (large - 20 million records) ... 20

7 Quick Reference for Java Persister Classes ... 23
7.1 Class Persister .. 23

7.1.1 Persister Constructor .. 23
7.1.2 Persister Methods ... 24

7.2 class SchemaManager .. 28
7.2.1 SchemaManager Constructor ... 28
7.2.2 SchemaManager Methods .. 28

7.3 class SchemaBuilder .. 31
7.3.1 SchemaBuilder Methods .. 31
7.3.2 SchemaBuilder LogicalSchema Methods .. 36

Data Serialization with the InterSystems Persister for Java iii

List of Figures

Figure 3–1: Persister Architecture ... 5

iv Data Serialization with the InterSystems Persister for Java

1
The InterSystems Persister for Java

See the Table of Contents for a detailed listing of the subjects covered in this document.

The InterSystems IRIS Persister for Java is a high speed data persistence engine, featuring a multi-threaded loader capable
of ingesting and serializing nearly a million real time records per second. It uses a format based on Apache Avro
[https://avro.apache.org/], a robust open source data serialization framework.

• Schema-based serialization format allows extremely fast, flexible, reliable data persistence. Since the schema is always
stored with the records, data can be exchanged with systems that have no prior knowledge of the data structure.

• Flexible, language agnostic design eases data exchange between systems, programming languages, and processing
frameworks.

• Data is stored as serialized instances of ObjectScript classes. Sharded extents can be used, enabling shard factor
buffering for parallel writes.

• Schemas can be generated from an existing ObjectScript class, created by inference from source data, or designed
using the SchemaBuilder class.

The Persister is the successor to InterSystems XEP. Compared to XEP, the Persister is faster, much easier to implement,
and far more powerful.

See the following topics for detailed information:

• Overview of the Java Persister — provides a quick introduction to important Persister SDK features.

• Serializing Data with Persister — describes how the Persister is used to buffer and store serialized data.

• Implementing Schemas with SchemaManager — describes how a SchemaManager is used to manage schemas and
interface with the server.

• Designing Schemas with SchemaBuilder — describes how a SchemaBuilder is used to design custom schemas.

• Java Persister Examples — lists and describes several small applications that demonstrate various Persister SDK features.

• Quick Reference for Java Persister Classes — Provides a quick reference for methods discussed in this document.

Related Documents
The following documents contain related material about InterSystems solutions for Java:

• Using Java with InterSystems Software provides an overview of all InterSystems Java technologies enabled by the
InterSystems JDBC driver, and describes how to use the driver.

• Using the Native SDK for Java describes how to use Java with the InterSystems Native SDK to access and manipulate
ObjectScript classes, objects, and multidimensional global arrays.

Data Serialization with the InterSystems Persister for Java 1

2
Overview of the Java Persister

The InterSystems IRIS® Persister for Java is designed to ingest data streams and persist them to a database at extremely
high speed. Each thread-safe Persister instance consumes a data stream, serializes each record, and writes each serialized
record to an output buffer or pool of buffers. Each buffer in a pool maintains a separate connection to an InterSystems IRIS
server.

The Persister SDK uses a format based on the Apache Avro schema-based data serialization format, which enables extremely
fast, flexible, reliable data persistence. The format consists of two parts:

• a schema, which describes the structure the data

• data records, serialized in a compact format without repetitive structural information

Since the data and the schema are stored together, records can always be serialized or deserialized without any previous
knowledge of their structure.

The Persister SDK provides several ways to create schemas. They can be generated from an existing ObjectScript class,
created by inference from source data, or designed using the SchemaBuilder class.

When data is serialized to an InterSystems IRIS database, schemas are stored on the server in a Schema Registry, where
they are available to any Persister application. Each schema in the registry defines a corresponding ObjectScript class, and
records are stored as serialized instances of those classes.

The serialized classes are immediately usable through standard access methods, including ObjectScript and SQL. Indexes
can be generated during serialization or deferred until later.

The Persister SDK has three main classes:

• Persister handles all aspects of reading, serializing, buffering, and writing data. Each instance of Persister is bound to
one specific schema and its associated database extent. Persisters are thread-safe, and allow precise control and moni-
toring of buffers and buffer queues. See Serializing Data with Persister for details.

• SchemaManager implements schemas and makes them available to Persisters. It maintains a local cache of schemas
for the current application, and synchronizes the cache with a persistent Schema Registry on the server. It provides
Persisters with a connection to the database, and includes tools for creating and changing both schemas and their cor-
responding database extents. See Implementing Schemas with SchemaManager for details.

• SchemaBuilder is a utility that provides methods to construct schema definitions, which are returned as JSON strings.
All construction methods are static and calls can be nested. Field types can be specified directly, or can be inferred
from Java types, classes, or objects. See Designing Schemas with SchemaBuilder for details.

The following code fragments demonstrate the basic steps from schema creation to data serialization. The code uses the
three main Persister SDK classes to create a schema, synchronize it to the server, and persist the serialized data (see Hello
Persister in the Java Persister Examples section for a complete listing of the source application).

Data Serialization with the InterSystems Persister for Java 3

https://avro.apache.org/

Persister Workflow

The test data for this example consists of three String[] objects that are used to create a stream for the Persister to
ingest.

 String[][] data = new String[][]{{"Hello"},{"Bonjour"},{"Guten Tag"}};
 Stream<Object[]> stream = Arrays.stream(data);

SchemaBuilder examines the first data record to infer the data structure, and returns the resulting schema as JSON
string schemaJson. The schema name is Demo.Hello.

 String[] fieldnames = new String[]{"greeting"}
 String schemaJson = SchemaBuilder.infer(data[0],"Demo.Hello",fieldnames);

Next, a SchemaManager is created and connected to the InterSystems IRIS server (this example assumes that
JDBC connection object irisConn already exists). The schema manager makes the JSON schema definition
available to the application by synchronizing it to the Schema Registry on the server.

 SchemaManager manager = new SchemaManager(irisConn);
 RecordSchema schemaRec = manager.synchronizeSchema(schemaJson);

The synchronized schema is returned as schemaRec, a canonical RecordSchema object that identifies the extent
of the associated ObjectScript class on the server. Synchronizing a schema creates a new extent if one does not
already exist. The ObjectScript class has the same name as the schema, Demo.Hello.

Finally, a Persister object is created. It is bound to the Demo.Hello extent identified by schemaRec, and accesses
the server through the connection provided by manager.

 Persister persister = Persister.createPersister(manager, schemaRec,
 Persister.INDEX_MODE_DEFERRED);

Each item in the data stream is passed to persister, which serializes the data and inserts each serialized record into
the database extent.

 persister.deleteExtent(); // delete old test data
 stream.map(d -> new ArrayRecord(d, schemaRec)).forEach(persister::insert);

Once the data has been persisted, it can be retrieved by standard database access methods such as an SQL query.

 Statement statement = irisConn.createStatement();
 ResultSet rs = statement.executeQuery("SELECT %ID, * FROM Demo.Hello");
 while (rs.next()) {
 System.out.printf("\n Greeting: %s", rs.getString("greeting"));
 }

The following sections discuss how the main Persister SDK classes are typically used:

• Serializing Data with Persister — describes how a Persister reads, serializes, buffers, and writes data.

• Implementing Schemas with SchemaManager — describes how a SchemaManager implements a schema on the server
and makes it available to Persisters.

• Designing Schemas with SchemaBuilder — describes the structure of a schema and demonstrates how to create one
with the SchemaBuilder utility.

See Java Persister Examples for complete program listings that are the source for many of the examples shown in other
parts of this document.

4 Data Serialization with the InterSystems Persister for Java

Overview of the Java Persister

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=BJAVA_connecting#BJAVA_connecting_create_datasource

3
Serializing Data with Persister

Persister handles all aspects of reading, serializing, buffering, and writing data. Each instance of Persister is bound to one
specific schema and its associated database extent. Persisters are thread-safe, and allow precise control and monitoring of
buffers and buffer queues.

• A multi-threaded loader can be used to ingest large data sets. The loader consumes a data stream, serializing each
record and writing each serialized record to a pool of output buffers.

• Each buffer maintains a separate connection to an InterSystems IRIS® server.

• If the targeted extent is a sharded extent then at least one buffer per shard factor is allocated, resulting in parallel writes
to the factors.

• The size of the serialized object queues, the number of buffers allocated and the size of the buffers can be configured.

• The loader maintains its own connection pool which, in the case of sharded extents, may include connections to multiple
servers.

Schemas define the content and structure of data messages and are used by serializers (data message producers) and dese-
rializers (data message consumers).

Figure 3–1: Persister Architecture

The Persister can be used by Java applications to rapidly ingest large data sets into an InterSystems IRIS® server.

Data Serialization with the InterSystems Persister for Java 5

Data is organized as a set of records and is described by a Schema. Schemas are managed by the SchemaManager. The
SchemaManager interacts with the InterSystems IRIS Schema Manager to synchronize schemas between the local schema
cache and the Schema Repository on the server. A Persister instance is created by passing a SchemaManager instance and
a RecordSchema (an implementation of the Record interface).

3.1 Persister Threading and Buffering
A Persister instance accepts data from the caller, serializes that data and writes it to a buffer. Buffers are automatically
written to the InterSystems IRIS Server when full, on demand, and on close. Buffers to be written to the server can be either
written immediately or placed in a queue that is monitored by a separate thread. The Persister constructor automatically
creates an output buffer, but it is also possible to create local buffers for use in threads.

Thread-local instances of PersisterBuffer are created by calling Persister.createLocalBuffer().

• createLocalBuffer() creates an instance of PersisterBuffer for use exclusively within a thread. If a bufferQueue is
specified, filled buffers will be placed in the buffer queue instead of being written directly to the server

PersisterBuffer createLocalBuffer ()
PersisterBuffer createLocalBuffer (LinkedBlockingQueue< BufferWrite > bufferQueue)

• flush() flushes a buffer to the server or bufferQueue if there are objects in the buffer. Optional localBuffer specifies a
local buffer to be flushed. This method can be used to finish a sequence of calls to add().

synchronized void flush ()
void flush (PersisterBuffer localBuffer)

3.1.1 Using Local Buffers with PersisterBuffer

PersisterBuffer holds data that is intended to be written to a server using the provided connection. The buffer data is flushed
whenever it is full, by direct call and when it is closed.

This class does not use any concurrency protections as it is primarily used by Persister, where protections are in place. The
exception is for direct use by applications wishing to use a local buffer in a single thread. The local buffer can be flushed
a buffer queue to be written to the database. The buffer queue is expected to be consumed by a separate thread running the
BufferWriter runnable (see Threading with BufferWriter for details).

PersisterBuffer accumulates statistics, including number of objects written, total number of bytes written, and the number
of buffer flushes (see Persister Buffer Statistics for details).

class PersisterBuffer

The following PersisterBuffer methods are available:

 PersisterBuffer (long persisterFunction, int bufferSize, IRISConnection connection,
 ListWriter headerSuffix)
 PersisterBuffer (long persisterFunction, int bufferSize, IRISConnection connection,
 ListWriter headerSuffix, LinkedBlockingQueue bufferQueue)

 final void add (ListWriter vList)
 final void addAndWrite (ListWriter vList)
 final void close () throws IOException
final PersisterBuffer combine (PersisterBuffer otherBuffer)
 final long [] finish ()
 void flush ()
 static ListWriter getListWriter ()
 static ListWriter getListWriter (byte[] byteArray)
 final long [] getStatistics ()
 static void recycleListWriter (ListWriter idList)
 final void write ()

6 Data Serialization with the InterSystems Persister for Java

Serializing Data with Persister

3.1.2 Threading with BufferWriter

PersisterBuffer does not use any concurrency protections as it is primarily used by Persister where protections are in place.
The exception is for direct use by applications wishing to use a local buffer in a single thread.

The buffer can be placed in a queue of buffers to be written. That queue is expected to be consumed by a separate thread
running the BufferWriter runnable (BufferWriter.BufferWriterRun.run()).

BufferWriter

BufferWriter consumes a BlockingQueue of BufferWrite objects and writes each one to the server. The following
methods are available:

 BufferWriter (BlockingQueue< BufferWrite > bufferQueue, IRISConnection connection)
 void close () throws IOException
 void stopBufferWriter ()
static BufferWriter startBufferWriter (BlockingQueue< BufferWrite > bufferQueue, IRISDataSource
 dataSource)
static BufferWriter startBufferWriter (BlockingQueue< BufferWrite > bufferQueue, IRISConnection
 connection)

Using a buffer queue with BufferWriter

Persister instances are thread safe. To improve performance, it is possible to create buffers that are used in a single
thread. The local buffers are not thread safe, so they are passed to a buffer queue rather than being written directly
to the database. When the queue is full, BufferWriter writes the buffered data to the database.

Create bufferQueue to hold local buffers, then start bufferWriter.

 LinkedBlockingQueue<BufferWrite> bufferQueue =
 new LinkedBlockingQueue<BufferWrite>(200_000);
 BufferWriter bufferWriter = BufferWriter.startBufferWriter(bufferQueue, dataSource);

Generate Runnable producer which provides a custom run() function to be passed to the threads. The runnable
overrides function BufferWriter.BufferWriterRun.run().

 Runnable producer = new Runnable() {
 @Override
 public void run() { // create separate local buffer for each thread
 PersisterBuffer localBuffer = persister.createLocalBuffer(bufferQueue);
 for (int i = 0; i < chunks; i++) { // get data from somewhere and insert it
 Object[] data = new Object[3]{"Smith-Jones", true, 922285477L};
 persister.insert(data, localBuffer);
 }
 persister.flush(localBuffer);
 statistics.addThreadStat(persister.getStatistics(localBuffer));
 }
 };

Now call producer.run() from each thread and buffer the results:

 Thread[] producerThreads = new Thread[producerThreadCount];
 for (int tp = 0; tp < producerThreadCount; tp++) {
 producerThreads[tp] = new Thread(producer); // pass producer.run() to thread
 producerThreads[tp].start();
 }
 for (int tp = 0; tp < producerThreadCount; tp++) {
 producerThreads[tp].join();
 }
 bufferWriter.stopBufferWriter();

See ThreadLoader in Java Persister Examples for a complete listing of the source program that provides this
example.

Data Serialization with the InterSystems Persister for Java 7

Persister Threading and Buffering

3.2 Persister Buffer Statistics
Persister statistics are collected by the Persister and can be reported. Statistics are stored in a PersisterStatistics object
(described below). The following Persister statistics methods are available:

• getStatistics() — returns a PersisterStatistics object containing the current statistics from the buffer or a specified local
buffer.

• reportStatistics() — displays a console message listing server write statistics since this Persister instance was created
or reset (see details at end of this section).

• resetStatistics() — resets buffer startTime and refreshes baseStatistics. This will cause a future call to reportStatistics()
to report on the activity starting from the time when this method is called. If localBuffer is specified, resets statistics
for the local buffer.

These methods are typically called just before and after a set of Persister inserts. For example::

 persister.resetStatistics();
 PersisterStatistics statistics = new PersisterStatistics();
 statistics.setStartTime((new Date(System.currentTimeMillis())).getTime())
;
//start BufferWriter / run Persister / stop BufferWriter

 statistics.setStopTime((new Date(System.currentTimeMillis())).getTime());
 statistics.reportStatistics();

class PersisterStatistics

This is a small class that tracks statistics for a specified buffer: start time, stop time, number of objects, total bytes
written, and number of buffers written to the server.

 PersisterStatistics ()
 PersisterStatistics (long startTime, long stopTime, long[] rawStat)
 PersisterStatistics (long startTime, long stopTime, ConcurrentLinkedQueue< long[]> rawStats)

synchronized void addThreadStat (PersisterStatistics persisterStatistics)
 long [] getCumulativeRaw ()
 long getDuration ()
 long getStartTime ()
 long getStopTime ()
 void reportStatistics ()
 void setStartTime (long startTime)
 void setStopTime (long stopTime)

• addThreadStat() — add a PersisterStatistics instance to this Persister instance, accumulating the statistics into the
cumulativeStats and adding it to the threadStats List.

• getCumulativeRaw() — return a long[] containing the accumulated statistics. The first element is the total object
count, the second is the total byte count and the third is the total number of buffers used.

• getDuration() — return the duration (stopTime - startTime) in milliseconds.

• getStartTime() — start time in milliseconds.

• getStopTime() — stop time in milliseconds.

• reportStatistics() — display console message listing server write statistics since this Persister instance was created
or reset.

• setStartTime() — start time in milliseconds.

• setStopTime() — stop time in milliseconds.

8 Data Serialization with the InterSystems Persister for Java

Serializing Data with Persister

reportStatistics() writes the following statistics to the console:

load() executed on [threadStats.size()] threads...
Elapsed time (seconds) = [getDuration()/1000.0f]
Number of objects stored = [objectCount]
Store rate (obj/sec) = [objectCount * 1000.0/getDuration()]
Total bytes written = [byteCount]
Total buffers written = [bufferWrites]
MB per second = [(byteCount / getDuration() * 1000f) / 1048576f]

Avg object size = [byteCount / objectCount]

Where:

objectCount = getCumulativeRaw()[0]
byteCount = getCumulativeRaw()[1]
bufferWrites = getCumulativeRaw()[2]

Data Serialization with the InterSystems Persister for Java 9

Persister Buffer Statistics

4
Implementing Schemas with
SchemaManager

In order to persist date, the Persister requires a schema structure that is understood by both the Persister application and
the server. The application must have a way to retrieve valid schemas from the server’s persistent Schema Registry, and
to update existing schemas or add new ones. On the server side, the Schema Registry synchronization process must ensure
that each schema has a corresponding ObjectScript class extent, creating a new extent if one does not already exist.

SchemaManager is the primary interface between a Persister application and the server. The SchemaManager provides
each Persister instance with a validated schema and a connection to the server. The SchemaManager also communicates
with the Schema Registry process, ensuring that application and server schema definitions are synchronized. To accomplish
this, the SchemaManager provides the following services to the Persister application:

• Synchronizes schema definitions with the Schema Registry, making a local cache of validated schemas available to
the application.

• Provides the IRISConnection object that connects the Persister to the server.

• Adds new schema definitions to the Schema Registry (see Designing Schemas with SchemaBuilder)

• Retrieves existing schemas by name, and creates new ones from existing ObjectScript classes (see Acquiring Schemas
from the Server)

• Includes schema and extent utilities that provide current information and allow schemas or extents to be deleted.

The following sections provide detailed information on synchronizing schemas, acquiring them from the server, and man-
aging them with various utilities.

4.1 Synchronizing Schema Definitions
Each SchemaManager object maintains a local cache of schemas for the current application. In each InterSystems IRIS
namespace, schema records are persisted in a Schema Registry, and are implemented in associated ObjectScript class
extents. A schema is said to be synchronized between the application and the server when:

• The named schema is present in the Schema Registry on the server.

• The Schema Registry record is implemented by an existing ObjectScript class extent.

• The SchemaManager object in the application has a schema in its local cache that matches the one in the Schema
Registry.

Data Serialization with the InterSystems Persister for Java 11

A schema is implemented by calling the synchronizeSchema() method, which passes it to the Schema Registry process
on the server. If the server process is able to synchronize the schema, it is returned as canonical RecordSchema object,
which is also stored in the SchemaManager’s local cache.

The synchronization process on the server can act in several different ways, depending on what information is already on
the server:

• If the requested schema does not exist in the Schema Registry, the process adds a new record to the Registry and creates
a corresponding ObjectScript class extent.

• If a matching schema is already defined in the Schema Registry and is implemented by a matching ObjectScript extent,
the process simply returns the currently defined RecordSchema.

If a schema of the same name is in the Registry, but does not match the parameter passed by synchronizeSchema(),
the differences are resolved. The resolution may require generating a new version of the local implementation class.
In this case, the new class will be kept compatible with existing data.

• If the schema does not exist in the Registry but an ObjectScript class with the same name exists, then a schema is
generated from that ObjectScript class and synchronized.

Once the schema is synchronized, a Persister can be used to store data in the extent of the implementing ObjectScript class
(see Serializing Data with Persister).

4.2 Acquiring Schemas from the Server
SchemaManager has two methods to acquire schemas from existing server information:

• getSchema() gets and synchronizes an existing schema from the Schema Registry.

• getSchemaForClass() creates and synchronizes a schema from an existing ObjectScript class.

getSchema()

Given a schema name, getSchema() will first check to see if the requested schema is already in the local cache.
If not, it checks the Schema Registry on the server. If the schema is present there then it is retrieved, placed in the
local cache and returned to the caller.

 Schema demoSchema = mgr.getSchema("Demo.Hello");
 System.out.println(demoSchema.toJson());

The resulting schema may contain some metadata added by the Schema Registry.

 {"name":"Hello","namespace":"Demo","final":false,"importFlags":0, "category":"persistent",

 "type": "record", "fields": [{"name":"greeting", "type":"string"}]}

getSchemaForClass()

getSchemaForClass() — A schema can also be generated from an existing ObjectScript class. If the schema for
that class already exists and is up to date then the previously defined schema is retrieved. Otherwise, a new schema
is generated from the class and returned to the caller.

 RecordSchema someSchema = schemaManager.getSchemaForClass("Demo.someClass");

12 Data Serialization with the InterSystems Persister for Java

Implementing Schemas with SchemaManager

4.3 Schema and Extent Utilities
The following examples assume that there is a schema with namespace Test.Demo and name Hello. By default the
corresponding ObjectScript class will have a package name and short name identical to the schema namespace and name.
The corresponding SQL table name would be Test_Demo.Hello (see Designing Schemas with SchemaBuilder for more
information on schema names).

Schema Utilities

All of these SchemaManager methods act only on schemas stored in the Schema Registry on the server. They do
not affect or require a schema with the same name on the application side.

• deleteIrisSchema() — deletes the schema definition from the Schema Registry on the server. Also deletes
the corresponding ObjectScript class (if it exists), and all data in the class extent.

 manager.deleteIrisSchema("Test.Demo.Hello");

• isIrisSchemaDefined() — returns true if a schema with the specified name is defined in the Schema Registry.

 boolean isDefined = manager.isIrisSchemaDefined("Test.Demo.Hello");

• isSchemaUpToDate() — returns true if the structure of the specified ObjectScript class matches the corre-
sponding schema in the Schema Registry.

 boolean isCurrent = manager.isSchemaUpToDate("Test.Demo.Hello");

Extent Utilities

• deleteIrisExtent() — given a schema name, deletes the extent of the associated ObjectScript class.

 manager.deleteIrisExtent("Test.Demo.Hello");

• isIrisClassDefined() — returns true if the ObjectScript class is defined on the server. The class does not have
to match an entry in the Schema Registry.

 boolean isDefined = manager.isIrisClassDefined("Test.Demo.Hello");

• getIrisTableClass() — gets the name of the ObjectScript class that projects the specified SQL table.

 String tableClass = manager.getIrisTableClass("Test_Demo.Hello");

In this example, a query on table name Test_Demo.Hello would return class name Test.Demo.Hello,
where Test.Demo is the class package name and Hello is the unqualified class name.

Data Serialization with the InterSystems Persister for Java 13

Schema and Extent Utilities

5
Designing Schemas with SchemaBuilder

SchemaBuilder is a utility that provides simple calls to construct schema definitions, which are returned as JSON strings.
All construction methods are static and calls can be nested. Field types can be specified directly or inferred from Java types,
classes, or objects.

There are several ways to create schemas. One of the easiest is to use SchemaBuilder.infer() to construct a schema from
sample data and corresponding field names. For example:

 Object[] values = new Object[]{"Apple", 2};
 String[] labels = new String[]{"item","count"};
 String schemaFruit = SchemaBuilder.infer(values,"Demo.Fruit",labels);

Schemas can also be designed using SchemaBuilder.record(), which provides builder methods such as addfield() to create
schema components. Builder methods can be chained until complete() is called to return the JSON schema string.

The following call to record() produces a JSON schema string identical to the one produced by infer():

 String schemaFruit = SchemaBuilder.record()
 .withName("Test.Demo.Fruit")
 .addField("item", "string")
 .addField("count", "int")
 .complete();

Both of the examples above will return the same JSON schema string (line breaks added for clarity):

 {"type":"record",
 "namespace":"Test.Demo",
 "name":"Fruit",
 "category":"persistent",
 "fields":[
 {"name":"item","type":"string"},
 {"name":"count","type":"int"}
]}

This schema contains the following components:

• type — Schemas can have various types (in the example above, notice that each field is a schema with its own type),
but Persister schemas will always be stored in the server Schema Registry as record types (class RecordSchema).

• namespace — A schema name qualifier. It is important to note that schema namespaces have nothing to do with
InterSystems IRIS database namespaces. Schema namespaces are part of the qualified schema name, which also
determines the fully qualified name of the corresponding ObjectScript class. For example, the Test.Demo.Fruit
schema has namespace Test.Demo and name Fruit. The corresponding class would be Test.Demo.Fruit (package
name Test.Demo and short class name Fruit). This class could be stored in any InterSystems IRIS namespace (for
example, the USER namespace).

• name — The unqualified schema name. This is the final part of the identifier you specify for the schema. For example,
if you specify .withname(Test.Demo.Fruit), the namespace will be Test.Demo, and the name will be Fruit.

Data Serialization with the InterSystems Persister for Java 15

The corresponding SQL table will be named Test_Demo.Fruit (see Table Names and Schema Names in Using
InterSystems SQL for related information on naming conventions).

• category — Since InterSystems IRIS stores records as serialized instances of ObjectScript classes, Persister schemas
need to differentiate between classes that extend %Library.Persistent and those that extend %Library.SerialObject

(embedded objects). The default is Persistent if no value is specified.

• fields — Each field entry is specified as a schema with its own name and type. The Persister supports primitive
types string, bytes, short, int, long, float, double, boolean, and null. Complex type declarations can include their own
fields, nested as deep as necessary.

SchemaBuilder.record() provides an extra level of control when specifying field types. For example, a schema for the fol-
lowing object could be created by either infer() or record():

 Object[] data = new Object[];
 data[0] = "Wilber";
 data[1] = true;
 data[2] = new Object[][] {{0,1},{2,3}};
 data[3] = java.util.UUID.randomUUID();
 data[4] = new java.util.Date();

It is very simple to create the schema by inference from data:

 String[] names = {"Name","isActive","Scores","MemberID","DateJoined"};
 String schemaJson = SchemaBuilder.infer(data,"Demo.ClubMember",names);

But the record() builder methods allow individual field types to be specified in several different ways. Types can still be
inferred from data, but they can also be inferred from Java class names or specified directly as Java types. Some complex
types such as dates and times can be also be specified using logical type methods. The following example demonstrates all
of these options:

 String schemaJson = SchemaBuilder.record()
 .withName("Demo.ClubMember")
 .addField("Name", SchemaBuilder.infer("java.lang.String"))
 .addField("isActive", SchemaBuilder.infer(true))
 .addField("Scores", java.lang.Integer[].class)
 .addField("MemberID", SchemaBuilder.uuid())
 .addField("DateJoined", SchemaBuilder.date())
 .complete();

In the first two fields, Name and isActive, types are determined by calling infer() on class name "java.lang.String"
and value true. The Scores field directly specifies class type java.lang.Integer[].class. The last two fields use
logical type methods uuid() and date(). This produces the following JSON schema string:

 {"type":"record",
 "name":"ClubMember",
 "namespace":"Demo",
 "category":"persistent",
 "fields":[
 {"name":"Name", "type":"string"},
 {"name":"isActive", "type":"boolean"},
 {"name":"Scores", "type":{"type":"array", "items":"int"}}
 {"name":"MemberID", "type":{"logicalType":"uuid", "type":"string"}},
 {"name":"DateJoined", "type":{"logicalType":"date", "type":"int"}},
]}

This schema is almost identical to one produced by simple inference, except for the last field. The date() method produces
a logical type for java.util.Date, while inference would produce a logical type for java.sql.Timestamp.

16 Data Serialization with the InterSystems Persister for Java

Designing Schemas with SchemaBuilder

6
Java Persister Examples

This section provides full listing for several working Persister programs:

• Hello Persister — a quick demonstration of the basic Persister workflow.

• Continents - load data from a local array

• DivvyTrip - Chicago Bicycle Sharing CSV file (small - 1.5 million records)

• ThreadLoader — load a large data set- 20 million records

Note: The Persister, like all InterSystems Java drivers, connects to the database with a standard InterSystems JDBC
IRISConnection object (see Using IRISDataSource to Connect in Using Java with InterSystems Software).
IRISDataSource is the recommended way to create a the connection because a DataSource is required to use the
Persister’s multi-threaded loader.

6.1 Hello Persister
This very short Persister application demonstrates all of the basic Persister mechanisms from schema creation to data seri-
alization, using the three main Persister classes: SchemaBuilder creates a schema, SchemaManager synchronizes the schema
to the Schema Registry on the server, and Persister serializes and stores records in the extent specified by the Registry.

Hello.java

package com.intersystems.demo;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.intersystems.jdbc.*;
import com.intersystems.persister.Persister;
import com.intersystems.persister.SchemaBuilder;
import com.intersystems.persister.SchemaManager;
import com.intersystems.persister.ArrayRecord;
import com.intersystems.persister.schemas.RecordSchema;
import java.util.Arrays;
import java.util.stream.*;
import java.sql.*;

public class Hello {
 public static void main(String[] args) throws SQLException, JsonProcessingException {
 IRISDataSource dataSource = new IRISDataSource();
 dataSource.setURL("jdbc:IRIS://127.0.0.1:1972/USER");
 IRISConnection irisConn = (IRISConnection) dataSource.getConnection("_SYSTEM","SYS");

 // Create a data stream and use SchemaBuilder to infer a schema
 String[][] data = new String[][]{{"Hello"},{"Bonjour"},{"Guten Tag"}};
 Stream<Object[]> stream = Arrays.stream(data);
 String schemaJson = SchemaBuilder.infer(data[0],"Demo.Hello",new String[]{"greeting"});

Data Serialization with the InterSystems Persister for Java 17

 // Create a SchemaManager and synchronize the schema to the database
 SchemaManager mgr = new SchemaManager(irisConn);
 RecordSchema schemaRec = mgr.synchronizeSchema(schemaJson);

 // Create a persister, passing it the manager and the schema record
 Persister persister = Persister.createPersister(mgr, schemaRec,
Persister.INDEX_MODE_DEFERRED);
 persister.deleteExtent(); // delete old test data

 // Pass the stream to the persister and insert each item into the database
 stream.map(d -> new ArrayRecord(d, schemaRec)).forEach(persister::insert);

 // Use standard SQL calls to display the persisted data
 ResultSet rs = irisConn.createStatement().executeQuery("SELECT %ID, * FROM Demo.Hello");
 while (rs.next()) { System.out.printf("\n Greeting: %s", rs.getString("greeting"));}
 }
}

The call to SchemaBuilder.infer() produces the following JSON schema string:

 {"type":"record","name":"Hello","namespace":"Demo","category":"persistent",
 "fields":[{"name":"greeting","type":"string"}]}

The final SQL printf statement produces the following output:

 Greeting: Hello
 Greeting: Bonjour
 Greeting: Guten Tag

6.2 Continents - Load Data from a Local Array
Example of loading a local array of strings. Each string is delimited. This example uses CsvRecord to model the source
data.

Continents.java

package com.intersystems.demo;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.intersystems.jdbc.*;
import com.intersystems.persister.*;
import com.intersystems.persister.schemas.*;
import java.util.Arrays;
import java.util.stream.*;
import java.sql.*;

public class Continent {
 public static void main(String[] args) throws SQLException, JsonProcessingException {
 IRISDataSource dataSource = new IRISDataSource();
 dataSource.setURL("jdbc:IRIS://127.0.0.1:1972/USER");
 IRISConnection irisConn = (IRISConnection) dataSource.getConnection("_SYSTEM","SYS");

 // create a set of delimited strings (instead of reading a CVS file)
 String[] continents = new String[]{
 "NA,North America", "SA,South America", "AF,Africa", "AS,Asia",
 "EU,Europe", "OC,Oceana", "AT,Atlantis", "AN,Antarctica"
 };
 Stream<String> dataStream = Arrays.stream(continents);

 // Create a schema
 String schemaSource = SchemaBuilder.record()
 .withName("Demo.Continent")
 .addField("code", "string")
 .addField("name", "string")
 .complete();
 System.out.println("\nschemaSource:\n" + schemaSource + "\n");

 // Parse and synchronise the schema
 SchemaManager schemaManager = new SchemaManager(irisConn);
 RecordSchema schemaRecord = (RecordSchema) schemaManager.parseSchema(schemaSource);
 RecordSchema continentsSchema = schemaManager.synchronizeSchema(schemaRecord);
 System.out.println("\ncontinentsSchema:\n" + continentsSchema.toJson() + "\n");

18 Data Serialization with the InterSystems Persister for Java

Java Persister Examples

 // Prepare the User.Continent extent and parse the data stream to a buffer
 Persister persister = Persister.createPersister(schemaManager, continentsSchema,
Persister.INDEX_MODE_DEFERRED);
 persister.deleteExtent();
 dataStream.map(CsvRecord.getParser(",", schemaRecord)).forEach(record ->
persister.add(record));

 // Flush buffer to the database and print buffer statistics
 persister.flush();
 System.out.println("REPORT STATISTICS");
 persister.reportStatistics();

 // Query the new data
 Statement query = irisConn.createStatement();
 java.sql.ResultSet rs = query.executeQuery("select code, name from Demo.Continent order by
 name");
 int colnum = rs.getMetaData().getColumnCount();
 while (rs.next()) {
 for (int i=1; i<=colnum; i++) {
 System.out.print(rs.getString(i) + " ");
 }
 System.out.println();
 }
 }
}

6.3 DivvyTrip - CSV bicycle sharing dataset (small - 1.5
million records)
The City of Chicago’s Divvy bicycle sharing data sets are publicly available. This example shows how a local file containing
data in CSV format can be loaded using streams and Persister. The schema used here is generated from an existing Inter-
Systems IRIS class (RowDB.DivvyTrip) created by a series of DDL statements (see listing in TABLE DivvyTrip). The data
set used in this example concatenates several months of Divvy data. To simplify the example, the data was preprocessed
to eliminate rows that contain null entries.

DivvyTrip.java

package com.intersystems.demo;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.intersystems.jdbc.*;
import com.intersystems.persister.*;
import com.intersystems.persister.schemas.*;
import java.util.Arrays;
import java.util.stream.*;
import java.util.function.Function;
import java.sql.*;
import java.io.FileReader;
import java.io.BufferedReader;

public class DivvyTrip {
 public static void main(String[] args) throws SQLException, JsonProcessingException {
 IRISDataSource dataSource = new IRISDataSource();
 dataSource.setURL("jdbc:IRIS://127.0.0.1:1972/USER");
 IRISConnection irisConn = (IRISConnection) dataSource.getConnection("_SYSTEM","SYS");

 SchemaManager divvyManager = new SchemaManager(irisConn);

 // Generate a schema from an existing ObjectScript class
 RecordSchema divvySchema = divvyManager.getSchemaForClass("RowDB.DivvyTrip");
 System.out.println("\ndivvySchema:\n" + divvySchema + "\n");
 System.out.println();

 // Create a Persister and delete any old test data
 Persister persister = Persister.createPersister(divvyManager, divvySchema,
Persister.INDEX_MODE_DEFERRED);
 persister.deleteExtent();

 // Get a data stream from a CSV file
 Stream<String> dataStream = Stream.empty();
 try {

Data Serialization with the InterSystems Persister for Java 19

DivvyTrip - CSV bicycle sharing dataset (small - 1.5 million records)

 dataStream = new BufferedReader(new FileReader("../divvy-tripdata.csv")).lines();
 } catch (Exception ignore) {}
 System.out.println("\n STARTING TO PERSIST STREAM\n");

 // Create a CSV parser, then parse and add each record to the database.
 Function<String, CsvRecord> parser = CsvRecord.getParser(",", divvySchema);
 persister.resetStatistics();
 try {
 dataStream.skip(1)
 .map(parser)
 .forEach(record -> persister.add(record));
 } catch (Exception e) {
 e.printStackTrace();
 }

 // Flush the buffer to the database, report buffer statistics after indexing has finished
 persister.flush();
 persister.waitForIndexing();
 persister.reportStatistics();

 // Query the new data and print first 10 records
 Statement query = irisConn.createStatement();
 java.sql.ResultSet rs = query.executeQuery(
 "select top 10 * from RowDB.DivvyTrip order by started_at");
 int colnum = rs.getMetaData().getColumnCount();
 while (rs.next()) {
 for (int i=1; i<=colnum; i++) {
 System.out.print(rs.getString(i) + " ");
 }
 System.out.println();
 }
 }

TABLE DivvyTrip

The RowDB.DivvyTrip class is created by a series of DDL statements. To create a fresh table, open the Terminal
and paste the following lines exactly as shown. (The first command may be changed if you want to use a namespace
other than USER. The single empty line after DROP TABLE is required to enter SQL.Shell() multi-line mode):

zn "USER"
DO $SYSTEM.SQL.Shell()
DROP TABLE RowDB.DivvyTrip

CREATE TABLE RowDB.DivvyTrip (
 ride_id VARCHAR(16),
 rideable_type VARCHAR(11),
 started_at TIMESTAMP,
 ended_at TIMESTAMP,
 start_station_name VARCHAR(50),
 start_station_id VARCHAR(4),
 end_station_name VARCHAR(50),
 end_station_id VARCHAR(4),
 start_lat DOUBLE,
 start_lng DOUBLE,
 end_lat DOUBLE,
 end_lng DOUBLE,
 member_casual VARCHAR(10))
GO
CREATE BITMAP INDEX StartTimeIndex ON RowDB.DivvyTrip (started_at)
CREATE BITMAP INDEX EndTimeIndex ON RowDB.DivvyTrip (ended_at)
CREATE BITMAP INDEX StartStationIndex ON RowDB.DivvyTrip (start_station_id)
CREATE BITMAP INDEX EndStationIndex ON RowDB.DivvyTrip (end_station_id)
CREATE BITMAP INDEX RideIDIndex ON RowDB.DivvyTrip (ride_id)
TUNE TABLE RowDB.DivvyTrip
q

6.4 ThreadLoader (large - 20 million records)
This example uses generated data stored in an Object array, multiple threads, local buffers and a BufferWriter. See Serial-
izing Data with Persister for more information on threading, buffering, and buffer statistics.

20 Data Serialization with the InterSystems Persister for Java

Java Persister Examples

ThreadLoader.java

package com.intersystems.demo;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.intersystems.jdbc.*;
import com.intersystems.persister.*;
import com.intersystems.persister.schemas.*;
import java.sql.*;
import java.util.concurrent.LinkedBlockingQueue;

public class ThreadLoader {
public static void main(String[] args) throws SQLException, JsonProcessingException {
 try {
 //==
 // Initialize Persister, SchemaManager, statistics, and buffer queue
 //==
 System.out.println("ThreadLoader - write arrays of generated data " +
 "to localBuffer, BufferWriter writes to server");
 IRISDataSource dataSource = new IRISDataSource();
 dataSource.setURL("jdbc:IRIS://127.0.0.1:1972/USER");
 IRISConnection irisConn = (IRISConnection) dataSource.getConnection("_SYSTEM","SYS");

 SchemaManager schemaManager = new SchemaManager(irisConn);
 try {
 schemaManager.deleteIrisSchema("Demo.ThreadLoader");
 } catch (Exception ignore) {
 }
 RecordSchema sourceType = schemaManager.synchronizeSchema(SchemaBuilder.record()
 .withName("Demo.ThreadLoader")
 .addField("ID", "int")
 .addField("FirstName", "string")
 .addField("LastName", "string")
 .addField("aBool", "boolean")
 .addField("along", "long")
 .addField("afloat", "float")
 .addField("adouble", "double")
 .addField("abytes", "bytes")
 .complete());
 Persister persister = Persister.createPersister(schemaManager, sourceType,
 Persister.INDEX_MODE_DEFERRED, 32_000);
 persister.deleteExtent();
 persister.flush();

 System.out.println("\nStarting load, resetting statistics");
 persister.resetStatistics();
 PersisterStatistics statistics = new PersisterStatistics();
 statistics.setStartTime((new Date(System.currentTimeMillis())).getTime());

 // Create queue to hold local buffers
 LinkedBlockingQueue<BufferWrite> bufferQueue =
 new LinkedBlockingQueue<BufferWrite>(200_000);
 BufferWriter bufferWriter = BufferWriter.startBufferWriter(bufferQueue, dataSource);

 // Set loader constants
 int producerThreadCount = 2;
 int objectCount = 24_000_000;
 int chunkSize = 10_000;
 int chunks = objectCount / chunkSize / producerThreadCount;
 System.out.format("Loading %d objects using %d producer threads, %d chunks of " +
 "%d objects.%n", objectCount, producerThreadCount, chunks, chunkSize);

 //==
 // Generate Runnable producer (provides function to be passed to threads)
 //==
 Runnable producer = new Runnable() {
 @Override
 public void run() { // create separate local buffer for each thread
 PersisterBuffer localBuffer = persister.createLocalBuffer(bufferQueue);
 for (int i = 0; i < chunks; i++) { // generate some test data
 Object[][] data = new Object[chunkSize][8];
 for (int j = 0; j < chunkSize; j++) {
 data[j][0] = i * chunkSize + j;
 data[j][1] =
 "1234567890123456789012345678901234567890123456789012345678901234567890";
 data[j][2] = "Smith-Jones";
 data[j][3] = true;
 data[j][4] = 922285477L;
 data[j][5] = 767876231.123F;
 data[j][6] = 230.134;
 data[j][7] = 233;
 }
 persister.insert(data, localBuffer);
 }

Data Serialization with the InterSystems Persister for Java 21

ThreadLoader (large - 20 million records)

 persister.flush(localBuffer);
 statistics.addThreadStat(persister.getStatistics(localBuffer));
 }
 };

 //==
 // Call producer.run() from each thread and buffer results
 //==
 Thread[] producerThreads = new Thread[producerThreadCount];

 for (int tp = 0; tp < producerThreadCount; tp++) {
 producerThreads[tp] = new Thread(producer); // pass producer.run() to thread
 producerThreads[tp].start();
 }
 for (int tp = 0; tp < producerThreadCount; tp++) {
 producerThreads[tp].join();
 }

 System.out.println("Stopping the BufferWriter");
 bufferWriter.stopBufferWriter();
 statistics.setStopTime((new Date(System.currentTimeMillis())).getTime());
 statistics.reportStatistics();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

This code produces output similar to the following:

Demo.ThreadLoader - write arrays of generated data to localBuffer, BufferWriter writes to server

Starting load, resetting statistics
Loading 24000000 objects using 2 producer threads, 1200 chunks of 10000 objects.
Stopping the BufferWriter
loaded 24,000,000 objects, using 2 threads in 37.51 seconds, 639,863 obj/sec, 76.956749 MB/sec
load() executed on 2 threads...

Elapsed time (seconds) = 37.51
Number of objects stored = 24,000,000
Store rate (obj/sec) = 639,863
Total bytes written = 3,026,714,094
Total buffers written = 94,856
MB per second = 76.96

Avg object size = 126

22 Data Serialization with the InterSystems Persister for Java

Java Persister Examples

7
Quick Reference for Java Persister
Classes

This section is a reference for the InterSystems Persister for Java SDK (namespace com.intersystems.persister). This quick
reference covers the following SDK classes:

• class Persister — main interface for serializing records to the database.

• class SchemaManager — main interface for coordinating schemas between Persister applications and the server.

• class SchemaBuilder — utility for creating schema definitions.

Note: This quick reference is intended as a convenient guide to the Java Persister classes and methods discussed in this
document. It does not cover all public classes, and is not a complete or definitive reference for the Java Persister.
For the most complete and up-to-date information, see the Java Persister online documentation. In many cases,
documentation and examples from Avro implementations may also be helpful.

7.1 Class Persister
The com.intersystems.persister.Persister class defines and implements the main interface for the InterSystems IRIS Persister
for Java SDK. Persister is used to write data to the extent of a persistent class. See Serializing Data with Persister for more
information and examples.

7.1.1 Persister Constructor

Constructor

Persister.Persister() is used to write data to the extent of an ObjectScript persistent class. A SchemaManager
provides the connection to the target extent and interfaces with the Schema Registry on the server.

Persister (SchemaManager schemaManager, RecordSchema schema, int indexMode) throws
PersisterException
Persister (SchemaManager schemaManager, RecordSchema schema, int indexMode, int bufferSize)
throws PersisterException

parameter:

• schemaManager — a local instance of SchemaManager connected to the Schema Registry on the server.

Data Serialization with the InterSystems Persister for Java 23

• schema — a schema (either a JSON string or a RecordSchema) describing the target extent on the server.

• indexMode — valid values are attributes INDEX_MODE_DEFAULT (= -1), INDEX_MODE_DEFERRED
(= 0), or INDEX_MODE_IMMEDIATE (= 2).

• bufferSize — optional buffer size. Defaults to attribute DEFAULT_BUFFER_SIZE (= 32_000)

7.1.2 Persister Methods

add()

Persister.add() adds one or more records to a buffer. If adding a record causes the buffer to overflow then the
buffer automatically flushes to the server. Persister.flush() may be used to write a partially filled buffer.

Local buffers are presumed to be thread-private as there are no concurrency guarantees with local buffers.

add (record)

serializes and adds one or more Record objects to the buffer.

synchronized void add (Record record)
synchronized< R extends Record > void add (R[] records)

• record — the Record object to be added to the buffer

• records — array of Record objects to be added to the buffer

add (list)

adds one or more serialized ListWriter records to the buffer.

synchronized void add (ListWriter vList)
synchronized void add (ListWriter[] lists)

• vList — serialized ListWriter object to be added to the buffer

• lists — array of ListWriter objects to be added to the buffer

add (list, localBuffer)

adds one or more serialized ListWriter records to the specified local buffer.

void add (ListWriter serial, PersisterBuffer localBuffer)
synchronized void add (ListWriter[] lists, PersisterBuffer localBuffer)

• serial — serialized ListWriter object

• lists — array of serialized ListWriter objects

• localBuffer — local buffer where serialized value is to be added

close()

Persister.close() close this instance of Persister.

void close ()

24 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

createLocalBuffer()

Persister.createLocalBuffer() creates an instance of PersisterBuffer that is expected to be used within a thread
and not shared with any other threads as there are no built in concurrency controls. If bufferQueue is specified,
filled buffers will be placed in the buffer queue instead of being written directly to the server.

PersisterBuffer createLocalBuffer ()
PersisterBuffer createLocalBuffer (LinkedBlockingQueue< BufferWrite > bufferQueue)

parameter:

• bufferQueue — optional queue where filled buffers will be placed.

createPersister()

Persister.createPersister() constructs and returns an instance of Persister that is bound to the specified Schema.
Works exactly like the Constructor.

static Persister createPersister (SchemaManager schemaManager, RecordSchema schema, int
indexMode)
static Persister createPersister (SchemaManager schemaManager, RecordSchema schema, int
indexMode, int bufferSize)

parameter:

• schemaManager — a local instance of SchemaManager connected to the Schema Registry on the server.

• schema — a schema (either a JSON string or a RecordSchema) describing the target extent on the server.

• indexMode — valid values are attributes INDEX_MODE_DEFAULT (= -1), INDEX_MODE_DEFERRED
(= 0), or INDEX_MODE_IMMEDIATE (= 2).

• bufferSize — optional buffer size. Defaults to attribute DEFAULT_BUFFER_SIZE (= 32_000)

delete()

Persister.delete() deletes a single object from the extent of the server class bound to this persister.

void delete (Long id)
void delete (String id)

parameter:

• id — id of the object to delete. In the case where the IDKEY is a composite key, the id is a delimited string
serialization of the IDKEY key properties using || as a delimiter.

deleteExtent()

Persister.deleteExtent() deletes all of the data from the extent of the server class that is bound to this persister.

void deleteExtent ()

flush()

Persister.flush() flushes a buffer to the server or bufferQueue (see createLocalBuffer()) if there are objects in the
buffer. localBuffer optionally specifies a local buffer to be flushed. This method can be used to finish a sequence
of calls to add().

synchronized void flush ()
void flush (PersisterBuffer localBuffer)

parameter:

Data Serialization with the InterSystems Persister for Java 25

Class Persister

• localBuffer — local PersisterBuffer to be flushed

getStatistics()

Persister.getStatistics() returns a PersisterStatistics object containing the current statistics from the buffer or a
specified localBuffer (see Persister Buffer Statistics for details).

PersisterStatistics getStatistics ()
PersisterStatistics getStatistics (PersisterBuffer localBuffer)

parameter:

• localBuffer — local buffer where statistics are recorded.

insert()

Persister.insert() immediately writes records into the extent of the class that implements this persister's schema
(unlike add(), which writes to a buffer that may not be flushed immediately).

insert(object)

inserts one or more objects into the extent of the class that implements this persister's schema. Each object
contains an array of schema field values (where element 0 of the array is the first field in the schema). If
localBuffer is specified, the data array is written to the local buffer, which is then immediately flushed
to the server.

synchronized void insert (Object[] object)
synchronized void insert (Object[][] data)
void insert (Object[][] data, PersisterBuffer localBuffer)

parameter:

• object — an array of field values.

• data — an array of field value arrays.

• localBuffer — optional local buffer

insert(record)

inserts one or more new Record objects into the extent of the class that implements this persister's schema.

synchronized void insert (Record record)
synchronized void insert (Record[] data)

parameter:

• record — an object implementing the Record interface.

• data — an array of Record objects.

insert(map)

inserts one or more new Map objects into the extent of the class that implements this persister's schema.
Each object contains a map of schema field values (for example JsonRecord or MapRecord values).

synchronized void insert (Map< String, Object > map)
synchronized void insert (Map< String, Object >[] data)

parameter:

26 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

• map — Map where key is the field name and value is the field value.

• data — an array of field value maps.

insert(stream)

inserts all data in a stream into the extent of the class that implements this persister's schema. The factory
function maps the data from the stream to a Record. The buffer is automatically flushed either when it
becomes full or when the stream is completely consumed.

synchronized< R extends Record, T extends Object > void insert (BiFunction< T, RecordSchema,
R > factory, Stream< T > data)

parameter:

• factory — the Record factory function used to instantiate the records to which data is mapped.

– <R> — optional Record implementation class. This can often be inferred from the factory
function.

– <T> — optional data type. This can often be inferred from the Stream.

• data — the data Stream.

reportStatistics()

Persister.reportStatistics() writes report to the console. Reports the server write statistics for activity since this
persister was constructed. If localBuffer is specified, reports server write statistics for the local buffer (see Persister
Buffer Statistics for more information).

void reportStatistics ()
void reportStatistics (PersisterBuffer localBuffer)

parameter:

• localBuffer — local buffer containing statistics to be reported

resetStatistics()

Persister.resetStatistics() resets buffer startTime and refreshs baseStatistics. This will cause a future call to
reportStatistics() to report on the activity starting from the time when this method is called. If localBuffer is
specified, resets statistics for the local buffer.

synchronized void resetStatistics ()
void resetStatistics (PersisterBuffer localBuffer)

parameter:

• localBuffer — local buffer containing statistics to be reset.

serialize()

Persister.serialize() serializes an Object[], Map, or Record and returns the serialization.

ListWriter serialize (Object[] value)
ListWriter serialize (Map< String, Object > value)
ListWriter serialize (Record value)

parameter:

• value — value to be serialized.

Data Serialization with the InterSystems Persister for Java 27

Class Persister

waitForIndexing()

Persister.waitForIndexing() builds deferred indexes for the specified class on the server and waits for completion.
Returns true if indexing has completed, false if timed out before index build is completed.

final boolean waitForIndexing ()

7.2 class SchemaManager
Class com.intersystems.persister.SchemaManager is connected to an InterSystems server. Each server maintains a Schema
Registry in each namespace. The SchemaManager maintains a cache of schemas that are synchronized with the Schema
Registry and available to the application. Once a specified schema is synchronized with the server, a Persister can be used
to store data in the extent of the ObjectScript class that implements that schema. See Implementing Schemas with
SchemaManager for more information and examples.

7.2.1 SchemaManager Constructor

Constructor

Persister.SchemaManager() accepts an IRISConnection object and returns a SchemaManager.

SchemaManager (IRISConnection connection) throws SQLException

parameter:

• connection — a connected IRISConnection object (standard InterSystems JDBC connection object).

7.2.2 SchemaManager Methods

deleteIrisExtent()

SchemaManager.deleteIrisExtent() deletes the persistent extent in the current namespace for the server’s local
ObjectScript implementation class. Throws an exception if the schema does not exist or if there is an error
encountered during delete. Also see Persister.delete(), which can delete a single object from the extent.

void deleteIrisExtent (String schema_name)

parameter:

• schema_name — string specifying a schema name.

deleteIrisSchema()

SchemaManager.deleteIrisSchema() deletes the schema definition from the server. If the associated ObjectsScript
implementation class exists, it will also be deleted, along with any data in its extent. Throws an exception if any
errors are encountered.

void deleteIrisSchema (String schemaName)

parameter:

• schemaName — string specifying a schema name.

28 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

getIrisTableClass()

SchemaManager.getIrisTableClass() gets the name of the class that projects the tableName table.

String getIrisTableClass (String tableName)

parameter:

• tableName — string specifying a table name.

getSchema()

SchemaManager.getSchema() gets a schema from the local Schema Registry. If it is a NamedSchema then get it
from the local cache or from the server if not present in the cache. Returns an instance of a class that implements
Schema.

Schema getSchema (String name) throws JsonProcessingException

parameter:

• name — string specifying the schema name.

getSchemaForClass()

SchemaManager.getSchemaForClass() retrieves the schema from the connected server whose local ObjectScript
implementation class is class_name If the schema for the class already exists and is up to date then that schema
is retrieved. Otherwise, a new schema is generated from the class and returned.

RecordSchema getSchemaForClass (String className) throws JsonProcessingException

parameter:

• className — name of the ObjectScript class that implements the current schema.

isIrisClassDefined()

SchemaManager.isIrisClassDefined() return true if the ObjectScript class is defined on the server.

boolean isIrisClassDefined (String name)

parameter:

• name — name of the ObjectScript class.

isIrisSchemaDefined()

SchemaManager.isIrisSchemaDefined() return true if the schema is defined in the Schema Registry

boolean isIrisSchemaDefined (String name)

parameter:

• name — string specifying the schema name.

Data Serialization with the InterSystems Persister for Java 29

class SchemaManager

isSchemaUpToDate()

SchemaManager.isSchemaUpToDate() returns true if the schema matches ObjectScript implementation class
class_name on the server.

boolean isSchemaUpToDate (String class_name)

parameter:

• class_name — name of the ObjectScript class.

parseSchema()

SchemaManager.parseSchema() parses the schema source, returning an instance of a class that implements
Schema.

Schema parseSchema (String source) throws JsonProcessingException
Schema parseSchema (JsonNode source) throws JsonProcessingException

parameter:

• source — source of the schema; either a String or a JsonNode (an instance of
com.fasterxml.jackson.databind.JsonNode)

synchronizeSchema()

SchemaManager.synchronizeSchema() synchronizes a schema (either a JSON string or a RecordSchema) with
the connected Schema Registry and returns the synchronized schema as a RecordSchema. If the schema is already
defined in the Schema Registry then it is returned. If an ObjectScript class whose name matches the name defined
by schemaSource exists then a schema is generated from that ObjectScript class and returned. Otherwise,
schemaSource is added to the Schema Registry and an ObjectScript implementation class is generated. The
resulting schema from the server is then returned.

When there is a matching schema already defined in the Schema Registry, it is compared with the schemaSource.
If there is a difference then those differences are resolved, possibly generating a new version of the local imple-
mentation class. Existing data is kept compatible with the new class.

RecordSchema synchronizeSchema (String schemaSource) throws PersisterException,
JsonProcessingException
RecordSchema synchronizeSchema (RecordSchema schema) throws PersisterException
RecordSchema synchronizeSchema (String schemaSource, String annotations)
RecordSchema synchronizeSchema (RecordSchema schema, String annotations) throws
PersisterException

parameter:

• schemaSource — JSON formatted schema definition

• schema — a RecordSchema formatted schema definition

• annotations — JSON formatted object with indices field (see SchemaBuilder.index() and indexes()).

Throws PersisterException if the server reports a problem. JsonProcessingException is thrown by the Jackson
JSON parser.

synchronizeSchemaWithIris()

SchemaManager.synchronizeSchemaWithIris() allows the manager to establish a new connection and synchronize
using that connection. Once connected, it synchronizes a schema definition with the connected server and returns
the corresponding RecordSchema retrieved from the Schema Registry at that location. If annotations is specified,
the index definitions contained in the annotation are also applied. If the named schema already exists on the server

30 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

then it is simply returned. If it does not exist but a class of the same name does exist then a schema is generated
on the server and returned. Otherwise, the schema is saved to the server, compiled, and the resulting schema is
then returned. The new connection is closed when this method returns.

static RecordSchema synchronizeSchemaWithIris (RecordSchema schema, IRISConnection connection)
 throws SQLException
static RecordSchema synchronizeSchemaWithIris (RecordSchema schema, IRISConnection connection,
 String annotations) throws SQLException

parameter:

• schema — RecordSchema sent to the server

• connection — IRISConnection object connected to the server

• annotations — JSON formatted object containing index definitions

Throws SQLException if there is an issue obtaining a connection to the server.

7.3 class SchemaBuilder
Class com.intersystems.persister.SchemaBuilder is a utility that provides simple calls to construct Schema sources. All
methods are static and calls can be nested.

7.3.1 SchemaBuilder Methods

array()

SchemaBuilder.array() builds an array schema and returns a JSON string containing the schema.

static String array (String itemsType)
static String array (Schema itemsType)

parameter:

• itemsType — Schema object or JSON schema string defining the type of the array items

date()

SchemaBuilder.date() returns a LogicalSchema of type date as a JSON formatted string (see LogicalSchema Types).

static String date ()

decimal()

SchemaBuilder.decimal() returns a LogicalSchema of type Decimal as a JSON formatted string (see LogicalSchema
Types).

static String decimal (int precision, int scale)

parameter:

• precision — integer specifying the maximum number of significant digits to be stored.

• scale — (optional) integer specifying the number of digits to the right of the decimal point. Defaults to 0.

Data Serialization with the InterSystems Persister for Java 31

class SchemaBuilder

embedded()

SchemaBuilder.embedded() accepts an embedded schema description (in either JSON or RecordSchema format)
and returns a string containing a JSON formatted embeddedSchema.

Note: Embedded types are currently not fully supported by the builder.

static String embedded (RecordSchema embeddedSchema)
static String embedded (String embeddedSchema)

parameter:

• embeddedSchema — (RecordSchema or String) schema describing the embedded record.

index()

SchemaBuilder.index() returns an SchemaBuilder.IndexBuilder that can be used to build an index definition.

static IndexBuilder index (String indexName)

parameter:

• indexName — name of the index to build.

SchemaBuilder.IndexBuilder

The IndexBuilder class has the following methods, all of which can be chained. The final call in the chain
must be the complete() method, which returns the finished index definition as a JSON string.

 IndexBuilder ()
IndexBuilder isExtent ()
IndexBuilder isIdkey ()
IndexBuilder isPrimaryKey ()
IndexBuilder isUnique ()
IndexBuilder on (String field)
IndexBuilder withName (String name)
IndexBuilder withType (String type)
IndexBuilder withType (IndexType type)
 String complete ()

indexes()

SchemaBuilder.indexes() returns a SchemaBuilder.AnnotationsBuilder object implementing addIndex() methods
used to create a schemas.LogicalSchema annotations object, typically containing one or more index definitions.

Indexes are not part of a schema but can be defined and passed to an IRIS server when synchronizing a schema.
Indexes are processed by the server when generating the ObjectScript class.

static AnnotationsBuilder indexes ()

SchemaBuilder.AnnotationsBuilder

AnnotationsBuilder has the following methods, all of which can be chained. The final call in the chain
must be the complete() method, which returns the finished annotations object as a JSON string.

AnnotationsBuilder addExtent (String name, IndexType type)
AnnotationsBuilder addId (String name, String field)
AnnotationsBuilder addIndex (IndexBuilder index)
AnnotationsBuilder addIndex (String index)
AnnotationsBuilder addIndex (String name, String field)
AnnotationsBuilder addIndex (String name, String field, IndexType type)
 String complete ()

32 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

infer()

SchemaBuilder.infer() creates a schema by inference from a data value, a class instance, a class type, or a Record.

infer(value)

Infers a schema from a value and returns a string containing a JSON formatted schema describing the
value.

static String infer (Object value)

parameter:

• value — a data value, can be a simple or complex value.

infer(type)

Infers a schema from a Java Type or Java Class object, and returns a string containing a JSON formatted
schema describing the type.

static String infer (Class type)
static String infer (Type type)

parameter:

• type — a Java Type or Java Class object.

infer(record)

Infers a schema from the types of each element in the specified Object[] and returns a string containing
a JSON formatted schema. If fieldName is specified, each value in the generated schema is assigned a
name from the fieldName array.

static String infer (Object[] record)
static String infer (Object[] record, String schemaName)
static String infer (Object[] record, String schemaName, String[] fieldName)

parameter:

• record — Object[] containing representative field values

• schemaName — optional name of the schema to generate.

• fieldName — optional String array of field names to assign to Record fields.

logical()

SchemaBuilder.logical() returns an instance of SchemaBuilder.LogicalSchemaBuilder, which can be used to create
a schemas.LogicalSchema object.

static LogicalSchemaBuilder logical ()

SchemaBuilder.LogicalSchemaBuilder

LogicalSchemaBuilder has the following methods, all of which can be chained. The final call in the chain
must be the complete() method, which returns the finished logical schema definition as a JSON string.

LogicalSchemaBuilder withLogicalType (String logicalType)
LogicalSchemaBuilder withProp (String propName, String value)
LogicalSchemaBuilder withType (Schema type)
LogicalSchemaBuilder withType (String type)
 String complete ()

Data Serialization with the InterSystems Persister for Java 33

class SchemaBuilder

map()

SchemaBuilder.map() builds a map schema and returns a string containing a JSON array formatted schema.

static String map (Schema keysSchema, Schema valuesSchema)
static String map (String keysType, String valuesType)

parameter:

• keysSchema — Schema instance that is type of the map keys

• valuesSchema — Schema instance that is type of the map values

• keysType — JSON formatted Schema that is type of the map keys

• valuesType — JSON formatted Schema that is type of the map values

normalizeAsJson()

SchemaBuilder.normalizeAsJson() calls String.trim() on any value starting with {, [, or " and returns the trimmed
string. If it begins with any other character, value is returned in double quotes.

static String normalizeAsJson (String value)

parameter:

• value — String value to be normalized.

primitive()

SchemaBuilder.primitive() builds a primitive schema and returns string containing a JSON formatted schema.

static String primitive (String type)

parameter:

• type — String specifying primitive schema type. Valid values are string, bytes, short, int, long, float, double,
boolean, or null.

record()

SchemaBuilder.record() returns an instance of subclass RecordSchemaBuilder, which can be used to create a JSON
schema string.

static RecordSchemaBuilder record ()

34 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

SchemaBuilder.RecordSchemaBuilder

RecordSchemaBuilder has the following methods, all of which can be chained. The final call in the chain
must be the complete() method, which returns the finished record schema definition as a JSON string:

RecordSchemaBuilder addField (String name)
RecordSchemaBuilder addField (String name, String type)
RecordSchemaBuilder addField (String name, Schema type)
RecordSchemaBuilder addField (String name, Class type)
RecordSchemaBuilder addField (String name, Type type)
RecordSchemaBuilder addField (RecordField field)
RecordSchemaBuilder asEmbedded ()
RecordSchemaBuilder asFinal ()
RecordSchemaBuilder category (String category)
 String complete ()
RecordSchemaBuilder extendsClasses (String superClasses)
RecordSchemaBuilder extendsSchema (RecordSchema superSchema)
RecordSchemaBuilder withFinal (boolean isFinal)
RecordSchemaBuilder withName (String name)
RecordSchemaBuilder withName (SchemaName name)

reference()

SchemaBuilder.reference() returns a LogicalSchema of type intersystems-reference as a JSON formatted string
(see LogicalSchema Types).

static String reference (String referencedSchema)

parameter:

• referencedSchema — the schema that is referenced

timeMicros()

SchemaBuilder.timeMicros() returns a LogicalSchema of type time-micros as a JSON formatted string (see Logi-
calSchema Types).

static String timeMicros ()

timeMillis()

SchemaBuilder.timeMillis() returns a LogicalSchema of type time-millis as a JSON formatted string (see Logi-
calSchema Types).

static String timeMillis ()

timestampIrisPosix()

SchemaBuilder.timestampIrisPosix() returns a LogicalSchema of type IRIS POSIX timestamp as a JSON formatted
string (see LogicalSchema Types).

static String timestampIrisPosix ()

timeStampMicros()

SchemaBuilder.timeStampMicros() returns a LogicalSchema of type timestamp-micros as a JSON formatted string
(see LogicalSchema Types).

static String timeStampMicros ()

Data Serialization with the InterSystems Persister for Java 35

class SchemaBuilder

timeStampMillis()

SchemaBuilder.timeStampMillis() returns a LogicalSchema of type timestamp-millis as a JSON formatted string
(see LogicalSchema Types).

static String timeStampMillis ()

uuid()

SchemaBuilder.uuid() returns a LogicalSchema of type UUID as a JSON formatted string (see LogicalSchema
Types).

static String uuid ()

7.3.2 SchemaBuilder LogicalSchema Methods

SchemaBuilder supports the following logical type methods, which currently return the JSON schema strings shown here:

• date() — (returns logical java.util.Date) {"logicalType":"date","type":"int"}

• decimal() — {"logicalType":"decimal","type":"bytes","precision":<int>,"scale":<int>}

• embedded() — {"logicalType":"intersystems-embedded","type":"string","value":{<embedded
schema string>}}

• reference() — {"logicalType": "intersystems-reference", "type": "string", "value",
<referencedSchema>}

• timeMicros() — {"logicalType": "time-micros", "type": "int"}

• timeMillis() — {"logicalType": "time-millis", "type": "int"}

• timestampIrisPosix() — {"logicalType": LogicalSchema.LOGICAL_TYPE_TIMESTAMP_IRIS_POSIX,
"type": "long"}

• timeStampMicros() — {"logicalType": "timestamp-micros", "type": "long"}

• timeStampMillis() — {"logicalType": "timestamp-millis", "type": "long"}

• uuid() — {"logicalType": LogicalSchema.LOGICAL_TYPE_UUID, "type": "string"}

36 Data Serialization with the InterSystems Persister for Java

Quick Reference for Java Persister Classes

	Table of Contents
	1 The InterSystems Persister for Java
	2 Overview of the Java Persister
	3 Serializing Data with Persister
	3.1 Persister Threading and Buffering
	3.1.1 Using Local Buffers with PersisterBuffer
	3.1.2 Threading with BufferWriter

	3.2 Persister Buffer Statistics

	4 Implementing Schemas with SchemaManager
	4.1 Synchronizing Schema Definitions
	4.2 Acquiring Schemas from the Server
	4.3 Schema and Extent Utilities

	5 Designing Schemas with SchemaBuilder
	6 Java Persister Examples
	6.1 Hello Persister
	6.2 Continents - Load Data from a Local Array
	6.3 DivvyTrip - CSV bicycle sharing dataset (small - 1.5 million records)
	6.4 ThreadLoader (large - 20 million records)

	7 Quick Reference for Java Persister Classes
	7.1 Class Persister
	7.1.1 Persister Constructor
	7.1.2 Persister Methods

	7.2 class SchemaManager
	7.2.1 SchemaManager Constructor
	7.2.2 SchemaManager Methods

	7.3 class SchemaBuilder
	7.3.1 SchemaBuilder Methods
	7.3.2 SchemaBuilder LogicalSchema Methods

