InterSystems-

IRIS Data Platform

Securing Web Services

Version 2025.1
2025-06-03

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Securing Web Services

PDF generated on 2025-06-03
InterSystems IRIS® Version 2025.1
Copyright © 2025 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble®, InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™, HealthShare® Health Connect Cloud™, InterSystems® Data Fabric Studio™, InterSystems IRIS for
Health™, InterSystems Supply Chain Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems
Corporation. TrakCare is a registered trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Congress Street,
Boston, MA 02114, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1 Securing Web ServiceS With SOAP ...ttt e 1
1.1 Toolsin InterSystems IRIS Relevant to SOAP SECUNLYccceviververieerieerieerieereeesieesieeseeeeeas 1
1.2 A Brief Look at the WS-SeCurity HEAOEY ..o s 2
1.3 SOAP SECUNLY SEANUAITSeveeeeeeeeeeeeeere s e e e e saesresresnesrenreseesnens 4

1.3.1 WS-Security Support in InterSystems [RISccoceveverreieeeeeese e 4
1.3.2 WS-Policy Support in InterSystemS TRIS ... 5
1.3.3 WS-SecureConversation Support in InterSystems IRIScooviiiieneicieeerereneeee, 7
1.3.4 WS-ReliableMessaging Support in InterSystems IRIS ..o 8

2 Setup and Other ComMMON ACLIVITIEScivririeiereere ettt nae e se e eneeneenens 9

2.1 Performing SELUP TaSKSccveeriririesesesteseseeseseesesseesessessessessessessessesseseessensensesssssssessessessessessens 9
2.1.1 Providing Trusted Certificates for InterSystems IRISto USecccovvvvvveveeveeceeecereeeenne, 9
2.1.2 Creating and Editing InterSystems IRIS Credential SEtSccccovvveevviceevienceeveecee s 10

2.2 Retrieving Credential Sets ProgrammatiCallycoeveeirininininene e 11
2.2.1 Retrieving a Stored Credential SEbocoovveiiiinene e e 12
2.2.2 Retrieving a Certificate from an Inbound MESSEgEcceevererirennenene e 12

2.3 Specifying the SSL/TLS Configuration for the Client to USEccvvvverevevceveeeeeeseseenns 13

3 Creating and USING POLICIEScccoviirirerese st ee et s st st sr e nae e e e ene e e 15

G0 @Y= V= SRS 15
3.1.1 Effect of the Configuration ClasScccerererererenisiesie e s 15
3.1.2 Relationship to WS-Security, WS-Addressing, and MTOM SUPPOItccccceeerererereene 15
3.1.3 Relationship of Web Service and WeD ClIentcccooveererierenenie e 16

3.2 Creating and AttaChing POIICIESccveieeeeseceeee ettt 16
3.2.1 Generating the Policy from the WSDL ..ot 17

3.3 Editing the Generated POIICYc.cceiiieeiiees et st sttt s sne s 17

3.4 Adding a Certificate a RUNLIMEcocririiiiire s e sb e s see s 18

3.5 Specifying aPOlICY @ RUNIIMEoviieieeeeeeeeeetese st s 19

3.6 Suppressing Compilation Errors for Unsupported POliCIESccecevvreereneneeneeeeeeeeeene 20

4 W S-Policy Configuration Class DEailSccccerererierierirere e see e e e se e sre s e e 21
4.1 Configuration ClaSS BASICScceveiuirierieiesieseseseeseeiessesessessessessessessessessessesssnsessessensesssessessens 21
4.2 Adding InterSystems EXtension AttHDULEScccceieeieieese e 21
4.3 Details for the Configuration XData BIOCKcccciiiiriiiniinerieseeieee et 22

4.3.1 <CONFIQUIBLTION ..ottt r et b e sn e enas 23
A= Y/ <> 23
G TG T 1= 0o > 24
R B A o U= 25
4.3.5 SIESPONSES ...oeeeeeieesteriee st siee st et et e eas e s bt e et e bt e et sheeaeesaeeseesheeseesaeeabesaeenbesae e beeneenreeneenneenns 25

4.4 Example Custom COonfigUIAIONSccceeeeerererienienie e ees e e e sre e s sresee e e sieseeseeneas 26
4.4.1 Configuration with POliCY AITEINELIVESccviiriiririieeee s 26
4.4.2 Configuration with Policy REFEIENCEccovviiriiririeee s 26

5Adding Security EIementS Manuallyccccveeeerereeircecece s 29
5.1 Adding Security Header EIEMENESccveieieece et e et 29
5.2 Order of Header EIEMENLSocceiiee ettt sttt s re et e ene s 29

6 Adding Timestamps and USerName TOKENScococeeiririerirere et sae s 31
B.1 OVEIVIEW ..t eteeeiee et e ctee et et teeete e s be s e teeebe s s beeabeesabeesbeeeaseesbeseabeabessabeeseesateesbeesaneebessnsennbensn 31
(S0 (o o = N T 1= = 0] 31

Securing Web Services

6.3 AddiNg @ USErNamE TOKENcceeciieiieieetc e este e st e s ae e ae e ae et et e e e sreeaesneenresneenaesnnas 32

6.4 Timestamp and Username TOKeN EXAMPIEoovoiiririienre e 32

7 ENCrypting the SOAP BOOYccccirieieieiirieie ettt ettt sttt st st ene e 35
7.1 OVEIVIEW Of ENCIYPLION ...eviiiiiietereete ettt s st s b e s b e s sbe e sbene s 35

7.2 Encrypting the SOAP BOGYcccccererereriereieses e stestestesaesseaeseseesesessessessessessessessessessessensenes 36
7.2.1 Variation: Using Information That Identifies the Certificateccoevevririenieriereiennnn, 37

7.2.2 Variation: Using a Signed SAML ASSEMIONccveviieevecee et 39

7.3 Message ENCryption EXMPIEScoeiiiirireiiniese et sre bbb e e e 39

7.4 Specifying the Block Encryption AlQOFthM ... 40

7.5 Specifying the Key Transport AIGOrthmcooovviviniiinise e 41

8 Encrypting Security Header EIEMENTSoccvcvveiieerececeeese s 43
8.1 Encrypting Security Header EIEMENESccevevere ettt 43

8.2 BASIC EXBIMPIES ...ttt ettt b et st b e b et b et b e et e e 45

9 AAdING Digital SIGNALUIEScoueieeeeeerieriere ettt sttt sae st she b b s ae bbb e s e b e e e e e e e e eae 47
9.1 Overview Of Digital SIgNALUMEScerveuireeririeiirieierieeseee sttt 47

9.2 Adding aDigital SIGNALUIEc.coireeiireeiereet et 48
SN 1 o) = S 49

9.3 Other Ways to Use the Certificate with the SIgNaturecccecevieveveececeece e 51
9.3.1 Variation: Using Information That Identifies the Certificateccccevvvveevvreevvceennene, 51

9.3.2 Variation: Using a Signed SAML ASSEITIONcocorererinirieririese e 52

9.4 Applying a Digital Signature to Specific Message Partsccocveverererereeieecrenesesese e 53

9.5 Specifying the DIigest MEtNOUcoviererereeeeeeeeee e 54

9.6 Specifying the SIgnature MEthOdcocverieecesere e 54

9.7 Specifying the Canonicalization Method for <Keylnfo>ccccvcvivieneveecccececceeece e 55

9.8 Adding Signature CoNfIrMELIONccccieiieiierieesieeieseese e e ee e e e sre s ree e ae e eae e eresreensenns 55

10 Using Derived Key Tokens for Encryption and Signingcoeeveeerenneneseneseseeseees e 57
FO. 1 OVEIVIEW ettt etee et et e e eeete e saa e e steesbe s et e e ebessabeesaeesabeesbeesnseesbessnbesbessabesaseesaseesbeesnneents 57
10.2 Creating and Adding a <DerivedKey TOKEN™ccoeirerieenere e seese e 58
10.2.1 Variation: Creating an Implied <DerivedKeyToKeN>ccccvvivvvrereneneereesreeeeeennns 59

10.2.2 Variation: Referencing the SHA1 Hash of an <EncryptedKey>ccoccevvvvevvnnnnnn, 59

10.3 Using a <DerivedKeyToken> for ENCryPtionccccveeireneninine e 60
10.4 Using a <DerivedKey TOKEN> fOr SIgNING «....cccerererereriereeniesie e se e e 63

11 Combining ENCryption and SIgNINGcoeeererereeeeeeeee e s e e sresae s seeseas 67
11.1 Signing and Then Encrypting with ASymMmEtric KEYScovveiereeeeereeeeeeene e 67
11.2 Encrypting and Then Signing with ASYyMMELric KEYScvvvveieveeeecerereceeese e 67
11.3 Signing and Then Encrypting with Symmetric KEYSccovveveieieciererecesese e 69
11.3.1 Using <DerivedKey ToKeN™> EIEMENEScccovieeriiieere e 69

11.4 Encrypting and Then Signing with SymMmEetric KeYS ... 71
11.5 Order of Security Header EIEMENES ..o e 71

12 Validating and Decrypting INbound MESSAJESccveveererererisene e seeseeseeseeseeseeeeeereseeseeseenes 73
F2.1 OVEIVIEIW ..eeeeviieeiecieeeteete ettt et e b s teeste s e e s besaaesbeeasesbeeabesbeenbeebeensesaeessesasesbeensesbeentesteentessenntenns 73
12.2 Validating WS-SeCUrity HEAOEN'Scceviieiereeeeeee ettt sttt ene e 73
12.3 Accessing a SAML Assertion in the WS-Security Headerocovveeveeevecceeceeeceeee e, 74
12.4 Instance Authentication and WS-SECUFLYccceierirereiiniine et 74
12.5 Retrieving a Security Header EIEMENt ..o 75
12.6 Checking the Signature CONfIFMELIONcoeevririrerieenieeree e 76

13 Creating SECUre CONVEN SALIONSvivieiiereeeeeeeeesteseseesresseseessesteseeseessessessssessessessessessesssssessessessensen 77
L3.1 OVEIVIEIW ..eeciiieeiteciee ettt ettt et et st este st e s b e s aaesbeeabesbeeabesbeenbesbeenbesaeeaaeeaeesbeeasesheenbesbeenbesseenbenns 77

Securing Web Services

13.2 Starting a SECUre CONMVEISALIONcccvviueriereesieeiesteeeesieeeeseesseseesssseesseseesaesseessesssessessssssenns 77

13.3 Enabling an InterSystems IRIS Web Service to Support WS-SecureConversation 78
13.4 Using the <SeCurityCONtEXITOKEN™cceiieireeerieieriee ettt 80
13.5 ENding & SeCUre CONVEISAIONc..cerieuerieerieeeiereete sttt st seebeseese st sbe et et se b seebe e 81
14 USINg WS-READIEM ESSAQING ...vvevereeririerieiesiesesiestesesteseeseeses e esessessessesrestessessessessesesssessesesessesses 83
14.1 Sending a Sequence of Messages from the Web Clientcccooeeevrcvieccncve e 83
14.2 Signing the WS-ReliableMessaging HEader'Sccoceeve e 84
14.2.1 Signing the Headers with the SecurityContextTOKENccoevererereeienienienererenans 84
14.2.2 Signing the Headers When Signing the MESSagEcccereereenieenereneeseseseseeieeas 84
14.3 Modifying a Web Service to Support WS-ReliableMeSsagingcccoeeerererenenennienenieneenens 84
14.4 Controlling How the Web Service Handles Reliable MeSsagingcccoeeeveveveeieneneneeseniens 85
15 Creating and Adding SAML TOKENSocvvirrirrerserre e st 87
15,1 OVEIVIEIW .eeiieiiieieteie ettt ettt ettt st se bt b e st st e st e e b e e b e s e be st e sesbe s s benenteneeee 87
15.2 BASIC SEEPS -eueeueeueeuieerieeterie st st stesee st be e se e e e e e e et e e e it e st sheebe bt sheebesE e sE et e b e ne e b et et e e eneeaeeaenrens 87
15.2.1 Variation: Not Using a <BinarySecurity TOKEN>ccccevieiiiinienn i 89
15.2.2 Variation: Creating an Unsigned SAML ASSEItiONccceevereereeereeeeeesese e 89
15.3 Adding SAML SEAEEMENESevvevirieiiririerieirieesiee ettt 89
15.4 Adding a<SUDJECE> EIEMENLc.eiviiriiiiiiesiereee ettt seene e 90
15.5 Adding a <SubjectConfirmation> EIeMentccceoeirirrninesese e 90
15.5.1 <SubjectConfirmation> with Method Holder-of-Key ... 90
15.5.2 <SubjectConfirmation> with Method Sender-vouchescccoeeveinennennenenenenn 91
15.5.3 <SubjectConfirmation> with <ENCryptedKey> ... 91
15.5.4 <SubjectConfirmation> with BinarySecret as Holder-of-keyccoovvvnvinvinniennn 91
15.6 Adding a <ConditionNS> EIEMENTcccveririrererieeriee sttt st seseeseeseseesens 92
15.7 Adding <SAGVICES EIBMENLS ..ot 92
16 Troubleshooting SEeCUrity ProbIEmMS ... e 93
16.1 Information Needed for Troubl@SNOOLINGc.coveerrererierirereee e 93
16.2 POSSIDIE EFTOIS ...oveeeieieiisie et e e see e eee e e e e e seessessestesteseeseenteseessansenseeeneeneeneenessensessees 94
16.3 Items to Check in the Event Of SECUFtY EFTOrSccivvvierere e seseseeseeneeee e esese e see e 94
Appendix A: Details of the Security EIEMENTS ...t 97
AL <BiNarySECUINTY TOKENSccveiiieitieieeierieeeeste e se e steesae e e te s e e sre et esre e tesnaeteeneesseensesaneneas 97
0 I T - TSRS 97
A.L2 POSITION IN MESSAEccveeevirieierieierieie sttt sttt st s b e st se b e bbb e bt b e b se b e 97
A2 KENCIYPLEAKEY™ ...ttt st sttt st st st sttt st e et e seetesaesesaesesaenestenennns 98
y N R T = £ TSP 98
A.2.2 POSITION IN IMIESSA0E ..ccueeveeeiriertesiesiestestesesaeseeaeee e esesses e ssestesteseestesteseessesssnsensesessessessens 99
A3 <ENCIYPLEADEIESoouiiuiiieiierierie sttt sttt sbe b b et sb b bbb se e e e e se e et eaeeaas 99
G I I T - TSR 99
A.3.2 POSITION 1N MESSAEcveeetereete ittt sttt st s st 100
S o [{=> 100
N R I 1< = £ TSROSO 100
A.4.2 POSITION IN IMESSAgE ..ecueeereeiriertestesiestestes e seestesesae e sseesessessestestesaestestestessensensensenessessens 101
A5 <DENVEAKEYTOKENSooiicieieee ettt sttt sttt et re e e e e e e neeneesaesneesaeeneens 101
T I T - TSRS 102
A.5.2 POSITION 1N MESSAEcveeeteieete ittt sttt bt ene e 102
A.B SREFEIENCELISES ...viiieiiieisicese ettt ae st s et se s ese s e se s ensnsenaenn 103
ALB.L DELAIIS ..ottt bbb ettt be e 103
A.B.2 POSITION IN IMESSA0E ...cuveveeverierieetesiestestes e seeseetesee e eseesessesrestestesaestestesee s ensenseneeneesessens 103

Securing Web Services

Securing Web Services with SOAP

InterSystems IRIS supports parts of the WS-Security, WS-Palicy, WS-SecureConversation, and WS-ReliableM essaging
specifications, which describe how to add security to web services and web clients. This topic summarizes the tools and
lists the supported standards.

If your InterSystems IRIS web client uses aweb service that requires authentication, and if you have a special reason to
do s0, you can use the older WS-Security login feature. See Using the WS-Security Login Feature.

1.1Tools in InterSystems IRIS Relevant to SOAP Security

InterSystems IRIS provides the following tools that are relevant to security for web services and web clients:

Ability to provide trusted certificates for InterSystems IRIS to use to validate certificates and signatures received in
inbound messages.

Ability to represent X.509 certificates. You can store, inthe IRISSYS database, certificatesthat you own and certificates
of entitiesyou will communicate with. For certificatesthat you own, you can a so store the corresponding private keys,
if you need to sign outbound messages.

In the IRISSYS database, an X.509 certificate is contained within an InterSystems IRIS credential set, specifically
within an instance of %SYS.X509Credentials. You use the methods of this class to load a certificate (and optionally,
the associated private key file, if applicable) into the database. You can execute the methods directly or you can use
the Management Portal.

You can specify who owns the credential set and who can useiit.

The %SYS.X509Credentials class also provides methods to access certificates by alias, by thumbprint, by subject key
identifier, and so on. For reasons of security, the %SYS.X509Credentials class cannot be accessed using the normal
object and SQL techniques.

Support for SSL (Secure SocketsLayer) and TLS (Transport Layer Security). You usethe Management Portal to define
InterSystems IRIS SSL/TLS configurations, which you can then use to secure the communications to and from an
InterSystems IRIS web service or client, by means of X.509 certificates.

SSL/TLS configurations are discussed in the InterSystems TLS Guide.

WS-Policy support. InterSystems IRIS provides the ability to attach WS-Policy information to an InterSystems IRIS
web service or web client. A policy can specify the items like the following:

— Use of WS-SecureConversation.
— Useof SSL/TLS.

Securing Web Services 1

Securing Web Services with SOAP

— WS-Security featuresto use or to expect.

— WS-Addressing headers to use or expect. WS-Addressing headers are described in Creating Web Services and
Web Clients, which also describes how to add these headers manually.

— Useof MTOM (Message Transmission Optimization Mechanism) packaging. MTOM is described in Creating
Web Services and Web Clients, which also describes how to manually use MTOM packaging.

Thepolicy iscreated in aseparate configuration class. In the class, you use an X Data block to contain the policy (which
isan XML document) and to specify the parts of the service or client to which it is attached. You can attach the policy
to the entire service or client or to specific methods (or even to specific request or response messages).

You can make direct edits to the policy later if wanted. The policy isin effect when you compile the configuration
class.

e Support for creating and working with WS-Security elements directly. InterSystems |RIS provides a set of XML-
enabled classes to represent WS-Security header elements such as <UsernameToken> and <Signature>. These
specialized classes provide methods that you use to create and modify these elements, as well as references between
them.

If you use WS-Poalicy support, InterSystems IRIS uses these classes automatically. If you use WS-Security support
directly, you write code to create instances of these classes and insert them into the security header.

In all cases, when an InterSystems IRIS web service or client receives a SOAP message with WS-Security elements,
the system creates instances of these classes to represent these elements. It also creates instances of
%SYS.X509Credentials to contain any certificates received in the inbound messages.

» Support for creating and working with WS-SecureConversation elements directly. InterSystems IRIS provides a set
of XML-enabled classes to represent these elements. You define a callback method in the web service to control how
the web service responds to a request for a secure conversation.

You can either use WS-Policy or you can use WS-Security and WS-SecureConversation directly. If you use WS-Policy,

the system automatically usesthe WS-Security tools as needed. If you use WS-Security or WS-SecureConversation directly,
more coding is necessary.

1.2 A Brief Look at the WS-Security Header

A SOAP message carries security elements within the WS-Security header element — the <Security> subelement of
the SOAP <Header> element. The following example shows some of the possible components:

2 Securing Web Services

A Brief Look at the WS-Security Header

N ., ’ !
example digital signature - __ --+ (contains direct reference to
consists of these elements BinarySecurityToken)

SOAP Message

Header

Security
Timestamp

BinarySecurityToken
’1' {contains X.509 certificate)

/ BinarySecurityToken
/' (contains X.509 certificate) ’“\

! UsernameToken \
' Assertion .

/ EncryptedKey N,
! (contains direct reference to PP I, :
/! BinarySecurityToken)

, example encrypted key
consists of these elements

Signature

Other Header Elements ...

Body

These elements are as follows:

The timestamp token (<T imestamp>) includes the <Created> and <Expi res> elements, which specify the range
of time during which this message isvalid. A timestamp is not, strictly speaking, a security element. If the timestamp
is signed, however, you can use it to avoid replay attacks.

The binary security tokens (<BinarySecurityToken>) are binary-encoded tokens that include information that
enabletherecipient to verify asignature or decrypt an encrypted element. You can use these with the signature el ement,
encryption element, and assertion element.

The username token (<UsernameToken>) enables aweb client to log in to the web service. It contains the username
and password required by the web service; these are included in clear text by default. There are several options for
securing the password.

The assertion element (<Assertion>) includes the SAML assertion that you create. The assertion can be signed or
unsigned.

The assertion element can include a subject confirmation element (<SubjectConfirmation>). Thiselement can
use the Holder-of-key method or the Sender-vouches method. In the former case, the assertion carries key materia
that can be used for other purposes.

The encrypted key element (<EncryptedKey>) includesthe key, specifiesthe encryption method, and includes other
such information. This element describes how the message has been encrypted. See Overview of Encryption.

The signature element (<Signature>) signs parts of the message. The informal phrase signs parts of the message
means that the signature element appliesto those parts of the message, as described in Overview of Digital Signatures.

The figure does not show this, but the signature element contains <Reference> elements that point to the signed
parts of the message.

Securing Web Services 3

Securing Web Services with SOAP

As shown here, an encrypted key element commonly includes a reference to a binary security token included earlier in the
same message, and that token contains information that the recipient can use to decrypt the encrypted key. However, it is
possiblefor <EncryptedKey> to contain the information needed for decryption, rather than having areferenceto atoken
elsewhere in the message. InterSystems | RIS supports multiple options for this.

Similarly, adigital signature commonly consists of two parts: a binary security token that uses an X.509 certificate and a
signature element that hasadirect referenceto that binary security token. (Rather than abinary security token, an alternative
isto useasigned SAML assertion with the Holder-of-key method.) It is also possible for the signature to consist solely of
the<Signature> element; in this case, the element containsinformation that enablesthe recipient to validate the signature.
InterSystems IRI'S supports multiple options for this as well.

1.3 SOAP Security Standards

This section lists the support details for WS-Security, WS-Policy, WS-SecureConversation, and WS-ReliableM essaging
for InterSystems IRIS web services and web clients.

Also see XML Standards and SOAP Standards.

1.3.1WS-Security Support in InterSystems IRIS
InterSystems IRI'S supports the following parts of WS-Security 1.1 created by OASIS (http://docs.oasis-
open.org/wss/v1.1/wss-v1.1-spec-pr-SOA PM essageSecurity-01.pdf):
» WS-Security headers (https://docs.0asis-open.org/wss-m/wss/v1.1.1/os/wss-SOA PM essageSecurity-v1.1.1-0s.html)
e X.509 Token Profile 1.1 (https://docs.0asis-open.org/wss-m/wss/v1.1.1/wss-x509TokenProfile-v1.1.1.html)
e XML Encryption (https://www.w3.0rg/TR/xmlenc-core/) with the following choice of algorithms:
— Block encryption (data encryption): AES-128 (default), AES-192, or AES-256
— Key transport (key encryption): RSA-OAEP (default) or RSA-v1.5
* XML Signature with Exclusive XML Canonicalization (https://www.w3.org/TR/xmldsig-core/) with the following
choice of algorithms:
— Digest method: SHA1 (default), SHA256, SHA384, or SHA512

— Signature algorithm: RSA-SHA1, RSA-SHA256 (default), RSA-SHA 384, RSA-SHA512, HMACSHA 256,
HMACSHA384, or HMACSHAS512

Note that you can modify the default signature algorithm. To do so, access the Management Portal, click System
Administration, then Security, then System Security, and then System-wide Security Parameters. The option to
specify the default signature algorithm is labeled Default signature hash.

For encryption or signing, if the binary security token contains an X.509 certificate, InterSystems IRIS follows the
X.509 Certificate Token Profile with X509v3 Token Type. If the key material uses a SAML assertion, InterSystems
IRIS follows the WS-Security SAML Token Profil e specification.

You can specify the message parts to which the digital signature applies.
* UsernameToken Profile 1.1 (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-UsernameTokenProfile-01.pdf)

* Most of WS-Security SAML Token Profile 1.1 (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-0s-SAMLToken-
Profile.pdf) based on SAML version 2.0. The exception isthat InterSystems IRIS SOAP support does not include
features that refer to SAML 1.0 or 1.1.

4 Securing Web Services

https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-SOAPMessageSecurity-01.pdf
https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-SOAPMessageSecurity-01.pdf
https://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html
https://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-x509TokenProfile-v1.1.1.html
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmldsig-core/
https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-UsernameTokenProfile-01.pdf
https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

SOAP Security Standards

For outbound SOAP messages, InterSystems IRIS web services and web clients can sign the SAML assertion token.
However, it is the responsibility of your application to define the actual SAML assertion.

For inbound SOA P messages, InterSystems IRIS web services and web clients can process the SAML assertion token
and validate its signature. Your application must validate the details of the SAML assertion.

Full SAML support is not implemented. SAML support in InterSystems IRIS refers only to the details listed here.

1.3.2WS-Policy Support in InterSystems IRIS
Both the WS-Policy 1.2 (https.//www.w3.org/Submission/WS-Palicy/) and theWS-Policy 1.5 (https.//www.w3.0rg/ TR/ws-
policy) frameworks are supported along with the associated specific policy types:
* WS-SecurityPolicy 1.1
* WS-SecurityPolicy 1.2 (https://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html)
* Web ServicesAddressing 1.0 - Metadata (https.//www.w3.0rg/ TR/ws-addr-metadata)
e Web ServicesAddressing 1.0 - WSDL Binding (https://www.w3.org/TR/ws-addr-wsdl)
e WSMTOMPOdlicy (https://www.w3.org/Submission/WS-MTOM Policy/)
Notethat <Pol icyReference> issupported only in two locations: in place of a<Pol i cy> element within aconfiguration
element or asthe only child of a<Policy> element.
WS-SecurityPolicy 1.2 is supported as follows. Equivalent parts of WS-SecurityPolicy 1.1 are also supported.
* 4.1.1 SignedParts supported with exceptions:
— Body supported
— Header supported

— Attachments not supported

» 4.1.2 SignedElements not supported

» 4.2.1 EncryptedParts supported with exceptions:
— Body supported
— Header not supported

— Attachments not supported

e 4.2.2 EncryptedElements not supported
* 4.3.1 RequiredElements not supported
* 4.2.1 RequiredParts supported:

— Header supported

e 5.1 sp:IncludeToken supported

e 5.2 Token Issuer and Required Claims not supported

» 5.3 Derived Key properties supported only for X509Token and Saml Token
» 5.4.1 UsernameToken supported

» 5.4.2 IssuedToken not supported

e 5.4.3 X509Token supported

Securing Web Services 5

https://www.w3.org/Submission/WS-Policy/
https://www.w3.org/TR/ws-policy
https://www.w3.org/TR/ws-policy
https://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html
https://www.w3.org/TR/ws-addr-metadata
https://www.w3.org/TR/ws-addr-metadata
https://www.w3.org/Submission/WS-MTOMPolicy/

Securing Web Services with SOAP

5.4.4 KerberosToken not supported

5.4.5 SpnegoContextToken not supported

5.4.6 SecurityContextToken not supported

5.4.7 SecureConversationToken supported

5.4.8 Saml Token supported

5.4.9 Rel Token not supported

5.4.10 HttpsToken supported only for TransportBinding Assertion
5.4.11 KeyValueToken supported

6.1 [Algorithm Suite] partially supported:

Basic256, Basic192, Basic128 supported

Basic256Rsalb, Basic192Rsal5, Basic128Rsalb supported

— Basic256Sha256, Basic192Sha256, Basic128Sha256 supported

— Basic256Sha256Rsalb, Basic192Sha256Rsal5, Basic128Sha?56Rsal5s supported

— TripleDes, TripleDesRsalb, TripleDesSha256, TripleDesSha256Rsal5b not supported
— InclusiveC14N, SOAPNormalization10, STRTransform10 not supported

— XPath10, XPathFilter20, AbsX Path not supported

6.2 [Timestamp] supported

6.3 [Protection Order] supported

6.4 [Signature Protection] supported

6.5 [Token Protection] supported

6.6 [Entire Header and Body Signatures] supported
6.7 [Security Header Layout] supported

7.1 AlgorithmSuite Assertion per 6.1

7.2 Layout Assertion per 6.7

7.3 TransportBinding supported only with HttpsToken
7.4 SymmetricBinding supported

7.5 AsymmetricBinding supported:

— Only for tokens supported in section 5.4

— Only for propertiesin section 6

8.1 SupportingTokens Assertion supported

8.2 SignedSupportingTokens Assertion supported

8.3 EndorsingSupportingTokens A ssertion supported

8.4 SignedEndorsingSupportingTokens Assertion supported
8.5 Encrypted SupportingTokens Assertion supported

8.6 SignedEncrypted SupportingTokens Assertion supported

Securing Web Services

SOAP Security Standards

» 8.7 EndorsingEncrypted SupportingTokens Assertion supported
» 8.8 SignedEndorsingEncrypted SupportingTokens Assertion supported
* 9.1 Wss10 Assertion supported with exceptions:

— sp:MustSupportRefKeyldentifier supported

- gp:MustSupportReflssuerSerial supported

- sp:MustSupportRefExternalURI not supported

— sp:MustSupportRef EmbeddedToken not supported

* 9.2Wssl11 Assertion supported with exceptions:
— sp:MustSupportRefKeyldentifier supported
— sp:MustSupportReflssuerSerial supported
- sp:MustSupportRef External URI not supported
- sp:MustSupportRef EmbeddedToken not supported
— sp:MustSupportRefKey Thumbprint supported
— sp:MustSupportRefKeyEncryptedK ey supported
— sp:RequireSignatureConfirmation supported

e 10.1 Trust13 Assertion supported with exceptions:
- gp:MustSupportClientChallenge not supported
- sp:MustSupportServerChallenge not supported
— sp:RequireClientEntropy supported
— sp:RequireServerEntropy supported
— sp:MustSupportl ssuedTokens not supported -- ignored for now
— sp:RequireRequestSecurity TokenCollection not supported
- sp:RequireAppliesTo not supported

e Trustl0 Assertion (see http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf)

Note: TheTrust10Assertionissupported only in atrivial way; InterSystems RIS convertsit to a Trust13 Assertion
to avoid throwing an error.

1.3.3WS-SecureConversation Support in InterSystems IRIS
InterSystems IRIS supports parts of WS-SecureConversation 1.3 (https://docs.oasi s-open.org/ws-sx/ws-secureconversa-
tion/v1.3/ws-secureconversation.html), as follows:

* Itsupportsthe SCT Binding (for issuing SecureConversationTokens based on the Issuance Binding of WS-Trust) and
the WS-Trust Cancel binding (see Canceling Contexts in http://docs.oasi s-open.org/ws-sx/ws-secureconversa-
tion/v1.4/0s/ws-secureconversation-1.4-spec-os.html).

» |t supports the case when the service being used acts as its own Security Token Service.

* It supports only the simple request for atoken and simple response.

Securing Web Services 7

https://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
https://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
https://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
https://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
https://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html

Securing Web Services with SOAP

InterSystems IRIS al so supports the necessary supporting parts of WS-Trust 1.3 (http://docs.oasi s-open.org/ws-sx/ws-
trust/v1.3/ws-trust.pdf). Support for WS-Trust is limited to the bindings required by WS-SecureConversation and is not a
genera implementation.

1.3.4WS-ReliableMessaging Support in InterSystems IRIS

InterSystems IRIS supports WS-ReliableMessaging 1.1 and 1.2 for synchronous messages over HTTP. Only anonymous
acknowledgments in the response message are supported. Because only synchronous messages are supported, no queueing
is performed.

See http://docs.oasi s-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-0s-01.html and http://docs.oasis-open.org/ws-
rx/wsrm/200702.

8 Securing Web Services

https://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.pdf
https://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.pdf
https://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
https://docs.oasis-open.org/ws-rx/wsrm/200702
https://docs.oasis-open.org/ws-rx/wsrm/200702

Setup and Other Common Activities

For reference, this topic describes common activities that apply to securing web services.

2.1 Performing Setup Tasks

For most of the tasks related to SOAP security, you must first do the following tasks:
* Providing trusted certificates for use by InterSystems IRIS
* Creating InterSystems IRIS credential sets

These tasks are also prerequisites for some tasks described in Using XML Tools.
You might also need to create SSL/TL S configurations. For information, see InterSystems TL S Guide.

2.1.1 Providing Trusted Certificates for InterSystems IRIS to Use

InterSystems RIS uses its own collection of trusted certificates to verify user certificates and signaturesin inbound SOAP
messages (or in XML documents). It also uses these when encrypting content in outbound SOA P messages or when
encrypting XML documents. This collection is available to all namespaces of this InterSystems IRIS installation. To create
this collection, create the following two files and place them in the system manager’s directory:

* iris.cer — This contains root certificates, that is, trusted CA X.509 certificates in PEM-encoded format. Thisfileis
required if you want to use any WS-Policy or WS-Security featuresin InterSystems IRIS.

* iris.crl — This contains X.509 certificate revocation lists in PEM-encoded format. Thisfileis optional.
Note that you can have alternative root certificates used with specific InterSystems IRIS credential sets; see the next sub-
section.

Information on creating these files is beyond the scope of this documentation. For information on X.509, which specifies
the content of certificatesand certificate revocation lists, see RFC5280 (https://www.ietf.org/rfc/rfc5280.txt). For information
on PEM-encoding, which is afile format, see RFC1421 (https://www.ietf.org/rfc/rfcl421.ixt).

CAUTION: Becareful to obtain certificates from atrusted source for any production use, because these certificates
arethe basis for trusting all other certificates.

This collection is not used for SSL.

Securing Web Services 9

https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc1421.txt

Setup and Other Common Activities

2.1.2 Creating and Editing InterSystems IRIS Credential Sets

This section describes how to create and edit InterSystems IRIS credential sets, which are containersfor X.509 certificates.
There are two general scenarios:

You own the certificate. In this case, you also have the private key. You use this certificate at the following times:

— When you sign outbound messages (if you also |oad the private key file).

— When you decrypt messages that were encrypted with your public key.

You do not own the certificate. In this case, you obtained it from its owner and you do not have the private key file.
You use this certificate at the following times:

— When you encrypt messages that you send to the owner of the certificate.

— When you validate digital signatures created by the owner of the certificate.

2.1.2.1 Creating InterSystems IRIS Credential Sets

To create an InterSystems IRIS credential set:

1. Obtain the following files:

* A persona X.509 certificate, in PEM-encoded X.509 format.

This could be either your own certificate or can be a certificate obtained from an entity with which you expect to
exchange SOAP messages.

e (Optional) An associated private key, in PEM-encoded PK CS#1 format.

Thisisapplicable only if you own the certificate. If you do not want to sign outbound messages, you do not need
to load the private key file.

* (Optiona) A file containing root certificates, that is, trusted CA X.509 certificates in PEM-encoded format, for
use with this credential set.

Information on creating these files is beyond the scope of this documentation.

2. Inthe Management Portal, select System Administration > Security > X.509 Credentials.
3. Click Create New Credentials.
4. Specify the following values:

» Alias — Specify aunique, case-sensitive string that identifies this credential set. This property is required.

* File containing X.509 certificate — Click Browse ... and navigate to the certificate file. This property is required.

* File containing associated private key — Click Browse ... and navigate to the file.

e Private key password and Private key password (confirm) — Specify the password for the private key. If you do
not specify the password, you will have to provide the password instead when you retrieve the credential set.
These fields are displayed only if you specify avalue for File containing associated private key.

* File containing trusted Certificate Authority X.509 certificate(s) — The path and filename of the X.509 certificates
of any CAstrusted by this credential set. The certificates must be in PEM format. The path can be specified as
either an absolute path or a path relative to the manager’s directory.

With one exception, when you use this credential set, InterSystems IRIS uses this trusted certificate rather than
iris.cer, discussed earlier. The exception iswhen adigital signature contains adirect reference to abinary security
10 Securing Web Services

Retrieving Credential Sets Programmatically

token in the message; in this case, because the message contains the public key needed to verify the signature,
InterSystems IRIS does hot look up the credential set. InterSystems I RISinstead usesthe trusted certificate contained
iniris.cer.

e Authorized user(s) — Specify acommarseparated list of InterSystems IRIS users who can use this credential set.
If this property isnull, any user can use this credential set.

* Intended peer(s) — Specify a comma-separated list of the DNS names of systemswhere the credential set can be
used. Your code must use the Check Peer Name() method of the credential s object to check that a peer isvalid for
this credential set.

5. Click save.
When you do so, both the certificate file and the private key file (if any) are copied into the database. If you specified
File containing trusted Certificate Authority X.509 certificate(s), that file is not copied into the database.

Rather than using the Management Portal, you can use methods of the %SYS.X509Credentials class. For example:

ObjectScript

Set credset=##class(%SYS.X509Credentials) .%New()
Set credset._Alias="MyCred"

Do credset.LoadCertificate('c:\mycertbase64.cer')
Do credset.LoadPrivateKey(*'c:\mycertbase64._key')
Set sc=credset.Save()

If sc Do $system.Status.DisplayError(sc)

Note: Do not use the normal object and SQL methods for accessing this data. The ¥%Adni n_Secur e: USE privilegeis
needed to use the Save(), Delete(), and L oadPrivateK ey() methods.

For more details, see the class reference for %SYS.X509Credentials.

2.1.2.2 Editing InterSystems IRIS Credential Sets

Once you have created an InterSystems IRIS credential set, you can edit it as follows:
1. Inthe Management Portal, select System Administration > Security > X.509 Credentials.

2. Inthetable of credentia sets, the value of the alias column serves as an identifier. For the credential set that you wish
to edit, click Edit.

3. Make edits as needed. See the previous section for information on these fields.
4. Click save to save the changes.

Itisnot possible to change the alias or certificate of acredential set; it isalso not possible to add, alter, or remove an asso-
ciated private key. To make any changes of thiskind, create a new credential set.

2.2 Retrieving Credential Sets Programmatically

When you perform encryption or signing, you must specify the certificate to use. To do so, you choose an InterSystems
IRIS credential set.

When you create WS-Security headers manually, you must retrieve a credential set programmatically and use it.
For reference, this section discusses the following common activities:

 How toretrieve a stored credential set

Securing Web Services 11

Setup and Other Common Activities

* How toretrieve a credential set from an inbound message

2.2.1 Retrieving a Stored Credential Set

Toretrieve aninstance of %SYS.X509Credentials, call the GetByAlias() class method. Thismethod returnsan InterSystems
IRIS credential set that contains a certificate and other information. For example:
ObjectScript

set credset=##class(%SYS.X509Credentials) .GetByAlias(alias,password)

+ aliasisthealiasfor the certificate.

» pwdisthe private key password; thisis applicable only if you own the certificate. You need this only if the associated
private key is encrypted and if you did not load the password when you loaded the private key file.

If you do not own the certificate, you do not have access to the private key in any form.
If you do not specify the password argument, the %SYS.X509Credentials instance does not have access to the private
key and thus can be used only for encryption.
To run this method, you must be logged in as a user included in the OwnerList for that credential set, or the OwnerList must
be null.

If you are going to use the certificate for encryption, you can retrieve the InterSystems IRIS credential set by using other
class methods such as FindByField(), GetBySubjectK eyl dentifier (), and GetByThumbprint(). See the class documen-
tation for %SYS.X509Credentials. GetByAlias() is the only method of this class that you can use to retrieve the certificate
for signing, because it is the only method that gives you access to the private key.

2.2.2 Retrieving a Certificate from an Inbound Message
If you receive a SOAP message that has been digitally signed, the associated certificate is available within an instance of
%SYS.X509Credentials. You can retrieve that certificate. To do so:

1. First accessthe WS-Security header element viathe Securityln property of the web service or web client. Thisreturns
an instance of %SOAP.Security.Header.

2. Then do one of the following:

» Accessthe Signature property of the %SOAP.Security.Header instance, which references the first <Signature>
element in the security header element.

e Accessthefirst <Signature> eement of the %SOAP.Security.Header instance by using the FindElement()
method of the %SOAP.Security.Header instance.
In either case, the result is an instance of %XML.Security.Signature that contains the digital signature.
3. Accessthe X509Credentials property of the signature object.

4. Check the type of the returned object to seeif it is an instance of %SYS.X509Credentials.

ObjectScript

iT $CLASSNAME(credset) "="%SYS.X509Credentials"™ {set credset=""}

If the inbound message contained asigned SAML assertion, the X509Credentials property is an instance of some other
class and cannot be used to access a %SYS.X509Credentials instance.

12 Securing Web Services

Specifying the SSL/TLS Configuration for the Client to Use

For example:

ObjectScript

set credset=..Securityln.Signature.X509Credentials
it $CLASSNAME(credset) "="%SYS.X509Credentials"™ {set credset=""}
//if credset is not null, then use it...

2.3 Specifying the SSL/TLS Configuration for the Client
to Use

If the web service requires use of HTTP over SSL/TLS (HTTPS), the web client must use the appropriate | nterSystems
IRIS SSL/TLS configuration.

When you create WS-Security headers manually, you must programmatically specify the configuration to use.

To specify the SSL/TL S configuration to use, set the SSLConfiguration property of the web client equal to an SSL/TLS
configuration name. For example:

ObjectScript

set client=##class(proxyclient.classname).%New()
set client_SSLConfiguration="mysslconfig"
//invoke web method of client

Note that if the client is connecting via a proxy server, you must also set the HttpProxySSLConnect property equal to 1in
the web client.

Securing Web Services 13

Creating and Using Policies

This topic describes how to use WS-Policy support in InterSystems IRIS. WS-Policy enables you to specify the WS-
Security headers to use or to expect. It also enables you to specify use of WS-Addressing headers and MTOM (which are
described in Creating WWeb Services and Web Clients). You create policies in separate classes rather than editing the web
service or web client directly. In most cases, no low-level programming is required.

3.1 Overview

InInterSystems|RIS, the policy (or collection of policies) for aweb service or client iscontained in a separate configuration
class, a subclass of %SOAP.Configuration. The policies are in effect when the classis compiled.

No coding is generally required. However, in some cases, you can specify adetail programmatically, rather than having
that element hardcoded into the policy.

3.1.1 Effect of the Configuration Class

When you compile a configuration class, the future operation of the web service or client is affected as follows:

» Theweb service or client includes additional header elements in outbound messages, according to the details of the
policy.

» Theweb service or client validates inbound SOAP messages based on the policy. This includes decrypting inbound
messages if appropriate.

» Theweb service or client optionally encrypts outbound messages, if appropriate.

» For aweb service, the WSDL is automatically affected. Specifically, <wsp:Policy> elements are added, and the
namespace declarations include the following:

xmIns:wsp="http://www.w3.org/ns/ws-policy"

Important: If the configuration classis mapped to multiple namespaces, you must compileit in each of those names-
paces.

3.1.2 Relationship to WS-Security, WS-Addressing, and MTOM Support

InterSystems IRIS support for WS-Policy is built on InterSystems IRIS support for WS-Security, WS-Addressing, and
MTOM. Note the following points:

Securing Web Services 15

Creating and Using Policies

* If apolicy does not include a security policy, InterSystems IRIS uses the SecurityOut property of the web service or
web client. (To add security header elements manually to aweb service or client, you add them to SecurityOut property,
as described elsewhere.)

» If apolicy doesinclude a security policy, InterSystems IRIS ignores the SecurityOut property of the web service or
web client except for any elements that relate to that policy.

For example, when you use the Mutual X.509 Certificates Security policy, you can specify an InterSystems IRIS cre-
dential set to use directly within the policy, or you can create an instance of %SYS.X509Credentials and add that,
contained in abinary security token, to the SecurityOut property. If you do not specify the credential set directly in the
policy, InterSystems IRIS retrieves the binary security token from the SecurityOut property and usesit. InterSystems
IRIS ignores other elementsin SecurityOut property, however, because they do not apply to this scenario.

* If apolicy requires WS-Addressing, InterSystems IRIS ignores the WSADDRESS NG class parameter.

If the AddressingOut property is set, however, InterSystems IRIS uses the WS-Addressing headers that it specifies.
Otherwise, it uses the default set of WS-Addressing headers.

e Ifapoalicy requiresMTOM, InterSystems|RISignoresthe MTOMREQUIRED class parameter and the MTOMRequired
property.

3.1.3 Relationship of Web Service and Web Client

When you attach a policy to aweb service, al clients must be able to obey that policy. If the web service policy does not
include any policy alternatives, then the clients must have the same policy as the web service, substituting a client-side
certificate for the server-side certificate, if needed.

Similarly, if you attach a policy to aweb client, the service must be able to obey that policy.
In practice, if both the service and the client are created in InterSystems IRIS, the following procedure is the simplest:
1. Createthe web service class.
2. Create the web service configuration class, with the service policy.
3. Generate the client classes, including the client configuration class.
After you do so, examine the generated client classes and make changes if needed.
You usually also create awrapper class for it.
For information on these tasks, see Creating Web Services and Web Clients.

4. Examine the generated configuration classes and make changesif needed. See Editing the Generated Policy.

For details on the configuration class, see WS-Policy Configuration Class Details.

3.2 Creating and Attaching Policies

To create a policy and attach it to aweb service or client, you create and compile a configuration class. There are several
ways to create this class:

» Usethe GeneratePolicyFromWSDL () method to generate just the configuration class from the WSDL . This option
appliesif the web service or client class already exists, and you do not want to regenerate that.

» Create aconfiguration class manually for an existing web service or client. For information, see the next topic.

If you generate the policy class from aWSDL, you may need to edit it as described in the next section.

16 Securing Web Services

Editing the Generated Policy

3.2.1 Generating the Policy from the WSDL

In some cases, you might already have client classes, but not the corresponding configuration classes. This could occur,
for example, if you generate the client classes from the WSDL and later the WSDL is modified to include WS-Policy
information. In such cases, you can generate the configuration class a one by using autility method in %SOAP.WSDL.Reader,
asfollows:

1. Create an instance of %SOAP.WSDL.Reader.

2. Set properties of that instance as applicable. See the class documentation for %SOAP.WSDL.Reader.
Do not use the Process() method.

3. Invoke the GeneratePolicyFromW SDL () method of your instance.
This method has the following signature:

method GeneratePolicyFromWSDL(wsdIURL As %String,
clientWebServiceClass As %String,
policyConfigClass As %String) as %Status

Where:
e wsdlURL is URL of the WSDL which contains the policy. It is assumed that the WSDL specifies only one port.

* clientWebServiceClass is the name of the web client class. It is your responsibility to ensure that this web client
matches the given WSDL.

» policyConfigClassis the name of the configuration class to be created.

This creates (or overwrites) a configuration class for aweb service client which contains the policy specified by the WSDL
of the web service. If thereisno policy intheWSDL, an empty configuration classis created. The configuration class will
be compiled if the CompileClasses property of the instance equals 1.

3.3 Editing the Generated Policy

If you generate a configuration class from aWSDL and if the WSDL is external to thisinstance of InterSystems RIS, you
must edit the configuration class to include information about the certificates and SSL/TL S configurations to use. Or you
could specify thisinformation at runtime.

The following table gives the details:

Securing Web Services 17

Creating and Using Policies

If the Generated Policy Includes ... Do the following ...
<sp:HttpsToken> For a policy attached to client, do one of the following:

« Editthis element as described in Adding InterSystems Extension
Attributes.

« Specify the name of an SSL/TLS configuration as described in
Specifying the SSL/TLS Configuration for the Client to Use.
For a policy attached to a service, no change is needed.
<sp:InitiatorToken> For a policy attached to client, do one of the following:

« Edit the <sp:X509Token> element within this as described in
Adding InterSystems Extension Attributes.

* Retrieve a credential set and add the contained certificate as
described in Adding a Certificate at Runtime.
In either case, this must be a credential set owned by the client.
For a policy attached to a service, no change is needed.
<sp:RecipientToken> Do one of the following:

« Edit the <sp:X509Token> element within this as described in
Adding InterSystems Extension Attributes.

+ Retrieve a credential set and add the contained certificate as
described in Adding a Certificate at Runtime.

In either case, this must be a credential set owned by the service.

<sp:SecureConversationToken> Optionally add the cfg:Lifetime attribute as described in Adding
InterSystems Extension Attributes. The default lifetime is 5 minutes.

3.4 Adding a Certificate at Runtime

If your web service or client must select and include a certificate programmatically, use the following procedure:
1. Retrieve an instance of %SYS.X509Credentials, as described in Retrieving Credential Sets Programmatically.

For example:

ObjectScript

set credset=##class(%SYS.X509Credentials).GetByAlias(alias,password)
Or:

ObjectScript

set credset=..Securityln.Signature.X509Credentials

2. Create an instance of %SOAP.Security.BinarySecurityToken that contains the certificate from that credential set. For
example:

18 Securing Web Services

Specifying a Policy at Runtime

ObjectScript

set bst=##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(credset)

Where credentials is the credential set you retrieved in the previous step.

Thisreturns an object that representsthe <BinarySecur i tyToken> element, which carriesthe certificatein seridized,
base-64—-encoded form.

3. Cdl the AddSecurityElement() method of the SecurityOut property of your web client or web service. For the method
argument, use the binary security token you created previously. For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(bst)

Important: In some cases, two binary security tokens are needed: one for encryption and one for signing. Be sure to
add these in the appropriate order. If the policy encrypts the message and then signsit, be sure to add the
binary security token used for encryption before you add the one used for signing. Conversely, if the policy
signs and then encrypts, the first binary security token must be the one used for signing.

The following shows an example within aweb method in aweb service:

ObjectScript

//get credentials

set x509alias = "'something"

set pwd = "password"

set credset = ##class(%SYS.X509Credentials).GetByAlias(x509alias,pwd)

//get certificate and add it as binary security token
set cert = ##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(credset)
do ..SecurityOut._AddSecurityElement(cert)

The code would be slightly different for aweb client, because you do not typically edit the proxy client:

ObjectScript

set client=##class(proxyclient.classname).%New()

//get credentials

set x509alias = "'something”

set pwd = "password"

set credset = ##class(%SYS.X509Credentials).GetByAlias(x509alias,pwd)

//get certificate and add it as binary security token

set cert = ##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(credset)
do client._SecurityOut.AddSecurityElement(cert)

//invoke web method of client

3.5 Specifying a Policy at Runtime

For an InterSystems IRIS web client, you can specify the policy to use at runtime; this overrides any policy configuration
class. To specify the policy at runtime, set the PolicyConfiguration property of the web client instance. The value must have
the following form:

Configuration class name:Configuration name

Where Configuration class name isthe full package and class name of a policy configuration class, as described earlier in
thistopic, and Configuration name is the value of the name attribute of the <configuration> element for the policy in
that class

Securing Web Services 19

Creating and Using Policies

3.6 Suppressing Compilation Errors for Unsupported
Policies

By default, when you compile a configuration class, InterSystems IRIS issues an error if the configuration includes any
policy expressions that are not supported in InterSystems IRIS. To suppress such errors, include the following in the con-
figuration class:

Class Member

Parameter REPORTANYERROR=0;

When you generate aweb client or web service from aWSDL, if InterSystems IRIS also generates a configuration class,
it includes this parameter setting in that class.

Unsupported alternatives can be ignored as long as there is one supported policy alternative.

20 Securing Web Services

WS-Policy Configuration Class Detalls

For reference, thistopic contains details on the configuration classthat InterSystems | RIS usesto store WS-Policy information.

4.1 Configuration Class Basics

To create aWS-Policy configuration class manually, create a subclass of %SOAP.Configuration. In this class, add an XData
block as follows:

XData service

<cfg:configuration xmlns:cfg="http://www. intersystems.com/configuration” name="service'>

The XDatablock has the following general structure:

XData service

{
<cfg:configuration ...>
<service ...>
<method ...>
<request ...>
<response ...>

The elements <service>, <method>, <request>, and <response> can each include policy information that applies
at that level. The <service> element isrequired, but the other elements are optional.

The policy information, if included, iseither apolicy expression (that is, an <wsp:Pol icy> element) or apolicy reference
(that is, a<wsp:PolicyReference> element that pointsto a policy contained in another X Data block in the same con-
figuration class). The following sections provide more details.

Notethat <Pol icyReference> issupported only intwo locations:. in place of a<Pol i cy> element within aconfiguration
element or asthe only child of a<Policy> element.

4.2 Adding InterSystems Extension Attributes

In addition to the cfg:wsdlElement attribute (previously discussed), you may need to add InterSystems extension
attributes in the following elements within your policy elements:

* <sp:X509Token> (within <sp: InitiatorToken> or <sp:RecipientToken>)

Securing Web Services 21

WS-Policy Configuration Class Details

Inthiselement, specify avaluefor thecfg:FindField and cfg: FindValue attributes, which specify the InterSys-
tems IRIS credential set to use for this token.

— Thecfg:FindField attribute specifies the name of the field by which to search. Typically thisisAl ias.
— thecfg:FindValue attribute specifies the value of that field. If cFg:FindField isAlias, thenthisisthe
name of the InterSystems IRIS credential set.

For example:

XML

<sp:X509Token IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never"
cfg:FindField="Alias"
cfg:Findvalue="servercred">
<wsp:Policy>
<sp:WssX509vV3Tokenll/>
</wsp:Policy>
</sp:X509Token>

* <sp:HttpsToken>
In this element, specify avalue for the cfg:SSLConfiguration attribute. This should equal the name of an Inter-
Systems IRIS SSL/TL S configuration. For example:
XML

<sp:HttpsToken cfg:SSLConfiguration="mysslconfig">
<wsp:Policy/>
</sp:HttpsToken>

Specify this attribute only for the web client.
* <sp:SecureConversationToken>

Inthiselement, you can specify the cFg : Li Fetime attribute. Thisshould equal the lifetimefor the secure conversation,
in hours or fractional hours. The default lifetime is 5 minutes. Suppose that we want to specify that the lifetimeis 15
minutes. To do so, we edit <sp'*SecureConversationToken> asfollows.

<sp:SecureConversationToken cfg:Lifetime=""_25"
sp: IncludeToken="http://docs.oasis-open.org/ws-sx/ws-secur i typol icy/200702/ IncludeToken/AlwaysToRecipient'">

<wsp:Policy>
<sp:MustNotSendAmend/>
<sp:MustNotSendRenew/>

é]Wsp:Policy>
</sp:SecureConversationToken>

Specify this attribute only for the web client.

For information on the prefix cfg, see the next section.

If you generate a configuration class while generating aweb client or service, you may need to edit these attributes.

4.3 Details for the Configuration XData Block

This section describes the contents of the XData block of aweb service or client configuration class.

22 Securing Web Services

Details for the Configuration XData Block

The<configuration>, <service>, <method>, <request>, and <response> elementsmust all bein thefollowing
namespace:

"http://www. intersystems.com/configuration™

In thistopic, the prefix cfg refersto that namespace.

Also see InterSystems Extension Attributes.

4.3.1 <configuration>

The <configuration> element isthe root element in the XData block. This element includes the following items:

Attribute or Purpose

Element

name (Optional) Name of this configuration. If specified, this must match the name of the
XData block.

<service> (Optional) Associates a policy with an InterSystems IRIS web service or web client.

4.3.2 <service>

The <service> element associates a policy with an InterSystems |RIS web service or web client. This element includes
the following items:

Attribute or Element Purpose

classname (Required) Full package and class name of an InterSystems IRIS web service
or client.

<wsp:Policy> (Include 0 or 1) Specifies the policy to apply to this web service or client (at
the binding level). Specify a WS-Policy 1.2 or WS-Policy 1.5 policy
expression.

Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<wsp:PolicyReference> (Include 0 or 1) Specifies the policy reference to apply to this web service
or client (at the binding level). If you specify this, the policyID attribute
must be a reference to a local policy defined in a different XData block in
the same configuration class. For an example, see Configuration with
PolicyReference.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<method> (Include 0 or more) Associates a policy with a specific web method in the
given web service or client (to apply at the operation level). The <service>
element can include any number of <method> elements.

For example:

Securing Web Services 23

WS-Policy Configuration Class Details

XML

<cfg:configuration
xmlns:cfg="http://www. intersystems.com/configuration”
xmlIns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmIns:wsap="http://www.w3.0rg/2006/05/addressing/wsdl"
xmIns:wsp="http://www.w3.org/ns/ws-policy"
name="'service'>
<cfg:service classname="DemoPolicies.NoSecurity'>
<wsp:Policy>
<wsap:UsingAddressing/>
</wsp:Policy>
</cfg:service>
</cfg:configuration>

Withinthe<wsp:Policy>or <wsp:Pol icyReference> child of <service>, you can specify thecfg:wsdlElement
attribute, which specifies the part of the WSDL to which to attach this policy element. In this context, this attribute can
have any of the following values:

* "service" — Attach this policy element to the WSDL <service> element.

* "port'" — Attach this policy element to the WSDL <port> element.

* "binding" (the default) — Attach this policy element to the WSDL <binding> element.
* "portType" — Attach this policy element to the WSDL <portType> element.

4.3.3 <method>

The <method> element associates a policy with a specific web method within the web service or client specified by the
parent <service> element. The <method> element includes the following items:

Attribute or Element Purpose

name Name of a web method.

<wsp:Policy> (Include 0 or 1) Specifies the policy to apply to this web service or client (at
the operation level). Specify a WS-Policy 1.2 or WS-Policy 1.5 policy
expression.

Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<wsp:PolicyReference> (Include 0 or 1) Specifies an optional reference WS-Policy 1.2 or WS-Policy
1.5 policy expression for this web method. The policylD attribute is a
reference to a local policy defined in a different XData block in the same
configuration class. For an example, see Configuration with PolicyReference.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<request> (Include 0 or 1) Associates a policy with the request message for the web
method.

<response> (Include 0 or 1) Associates a policy with the response message for the web
method.

Withinthe<wsp:Policy> or <wsp:Pol icyReference> child of <method>, you can specify thecfg:wsdIElement
attribute, which specifies the part of the WSDL to which to attach this policy element. In this context, this attribute
can have any of the following values:

* "binding" (the default) — Attach this policy element to the WSDL <binding> element.
e "portType" — Attach this policy element to the WSDL <portType> element.

24 Securing Web Services

Details for the Configuration XData Block

4.3.4 <request>

The <request> element associates a policy with the request message for the web method to which the parent <method>
element refers. The <request> element includes the following items:

Attribute or Element Purpose

<wsp:Policy> (Include 0 or 1) Specifies the policy to apply to the request message. Specify
a WS-Policy 1.2 or WS-Policy 1.5 policy expression.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<wsp:PolicyReference> | (Include O or 1) Specifies an optional reference WS-Policy 1.2 or WS-Policy
1.5 policy expression for the request message. The policylID attribute is a
reference to a local policy defined in a different XData block in the same
configuration class. For an example, see Configuration with PolicyReference.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

Withinthe<wsp:Pol icy> or <wsp:Pol icyReference> child of <request>, you can specify thecfg:wsdlElement
attribute, which specifies the part of the WSDL to which to attach this policy element. In this context, this attribute can
have any of the following values:

* "binding" (the default) — Attach this policy element to the WSDL <binding> element.
* "portType" — Attach this policy element to the WSDL <portType> element.

e "message' — Attach this policy element to the WSDL <message> element.

4.3.5 <response>

The<response> element associates a policy with the response message for the web method to which the parent <method>
element refers. The <response> element includes the following items:

Attribute or Element Purpose

<wsp:Policy> (Include 0 or 1) Specifies the policy to apply to the response message. Specify
a WS-Policy 1.2 or WS-Policy 1.5 policy expression.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

<wsp:PolicyReference> | (Include 0 or 1) Specifies an optional reference WS-Policy 1.2 or WS-Policy 1.5
policy expression for the response message. The policylD attribute is a
reference to a local policy defined in a different XData block in the same
configuration class. For an example, see Configuration with PolicyReference.
Specify <wsp:Policy>, <wsp:PolicyReference>, or neither.

Withinthe<wsp:Policy> or <wsp:Pol icyReference> child of <response>, you can specify thecfg:wsdIElement
attribute, which specifies the part of the WSDL to which to attach this policy element. In this context, this attribute can
have any of the following values:

* "binding" (the default) — Attach this policy element to the WSDL <binding> element.
* "portType" — Attach this policy element to the WSDL <portType> element.

e "message' — Attach this policy element to the WSDL <message> element.

Securing Web Services 25

WS-Policy Configuration Class Details

4.4 Example Custom Configurations

This section provides examples of some custom configuration classes.

4.4.1 Configuration with Policy Alternatives
The following configuration class includes two policy aternatives: either use WS-Addressing headers or do not.

Class Definition

/// PolicyAlternatives.DivideWSConfig
Class PolicyAlternatives.DivideWSConfig Extends %SOAP.Configuration

XData service

<cfg:configuration xmlns:cfg="http://www. intersystems.com/configuration”
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmIns:wsap="http://www._.w3.0rg/2006/05/addressing/wsdl™
xmIns:wsp="http://www.w3.org/ns/ws-policy"
name=""'service'>
<cfg:service classname="PolicyAlternatives.DivideWS">
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<wsap:UsingAddressing/>
</wsp:All>
<wsp:All>
<wsp:Policy/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>
</cfg:service>
</cfg:configuration>

}

When used with aweb client whose attached policy requires WS-Addressing, this web service responds with a message
that has WS-Addressing headers. When used with a client whose policy does not use WS-Addressing, this web service
responds with messages without WS-Addressing headers.

Another scenario would be for one policy to require SSL/TLS and an alternative policy to use message encryption.

4.4.2 Configuration with Policy Reference

Thefollowing configuration class contains two X Data blocks. One contains apolicy whose 1D attributeismypolicy. The
other contains a configuration for aweb service; this configuration refers to the policy contained in the other X Data block:

Class Definition

Class DemoPolicies.WithReferenceConfig Extends %SOAP.Configuration

XData service

<cfg:configuration
xmIns:cfg="http://www. intersystems.com/configuration"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmIns:wsp="http://www.w3.org/ns/ws-policy"
name="'service'>
<cfg:service classname="DemoPolicies.WithReference'>
<wsp:PolicyReference URI="#mypolicy">
</wsp:PolicyReference>
</cfg:service>
</cfg:configuration>

XData Policyl

26 Securing Web Services

Example Custom Configurations

<wsp:Policy
xmIns:wsp="http://www.w3.org/ns/ws-policy"
xmIns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility"
xmIns:wsap="http://www.w3.0rg/2006/05/addressing/wsdl"
xmIns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization”
wsu: Id="mypolicy">

<wsap:UsingAddressing/>

<wsoma:OptimizedMimeSerialization/>

</wsp:Policy>

}

In this example, the policy expression is contained in an X Data block named Pol icy1. The name of this block has no
effect on the WSDL or on any SOAP operations.

Securing Web Services 27

Adding Security Elements Manually

Thistopic describes generally how to add security elements manually to messages sent by InterSystems IRIS web services
and InterSystems IRIS web clients.

The following topics provide details on specific security tasks.

5.1 Adding Security Header Elements

To add a security element to the WS-Security header element, you use the following general procedure in your web client
or web service:

1. Create an instance of the applicable class or classes. To do so, you use a method named Create() or CreateX509(),
depending on the class. The instance represents one of the WS-Security header elements such as <Username> or
<EncryptedKey>.

2. Add each instance to the WS-Security header element by updating the SecurityOut property of your web client or web
service. To do so, call the AddSecurityElement() method.

3. Sendthe SOAP message. The WS-Security header isincluded in the message and contains the el ements that you added
toit.

4. For subsequent outbound messages:

» For aweb client, the SecurityOut property isleft unchanged, so that subsequent outbound messages from this
instance include the security header you added. If thisis undesirable, set the SecurityOut property to null.

» For aweb service, the SecurityOut property is automatically set to null after the first outbound SOAP message.

5.2 Order of Header Elements

When you add multiple security elements to the header, it isimportant to add security header elementsin the appropriate
order. When you perform both encryption and signing of the same message element, thisis especially important: that is,
add them in the same order that you perform the encryption and signing operations.

The order of header elements indicates the order in which the processing of the message occurred. The WS-Security 1.1
specification says this:

Securing Web Services 29

Adding Security Elements Manually

As elements are added to a <wsse:Security> header block, they SHOULD be prepended to

the existing elements. As such, the <wsse:Security> header block represents the signing and
encryption steps the message producer took to create the message. This prepending rule

ensures that the receiving application can process sub-elements in the order they appear in the
<wsse:Security> header block, because there will be no forward dependency among the sub-
elements.

Asyou add header elements, I nterSystems | RIS prepends each element to the previously added elements, with thefollowing
exceptions:

* If youincludethe <Timestamp> element, it isforced to be first.

» If youinclude any <BinarySecurityToken> elements, they are forced to follow the <Timestamp> element (if
included) or are forced to be first.

e Whenyou use AddSecurityElement() to add an encrypted version of a security header element, you specify asecond
argument to force the inserted <EncryptedData> element to follow the associated <EncryptedKey>.

When you perform both encryption and signing of the same message element, it is especially important to add security
header elementsin the appropriate order: that is, add them in the same order that you perform the encryption and signing
operations.

30 Securing Web Services

Adding Timestamps and Username
Tokens

This topic discusses timestamps and user tokens.

6.1 Overview

A timestamp isthe <T imestamp> security element in the WS-Security header. A timestamp isnot strictly asecurity element.
You can use it, however, to avoid replay attacks. Timestamps can also be useful for custom logging.

A username token is the <UsernameToken> security element in the WS-Security header; it carries a username. It can
also carry the corresponding password (optionally in digest form). You typically useit for authentication, that is, to enable
an InterSystems IRIS web client to use aweb service that requires a password.

CAUTION: TheWS-Security header element is sent in clear text by default. To protect the password in a
<UsernameToken>, you should use SSL/TLS, encrypt the<UsernameToken> (asdescribed el sewhere),
or use some combination of these techniques.

6.2 Adding aTimestamp

To add atimestamp to the WS-Security header element, do the following in your web client or web service:

1. Cadll theCreate() class method of %SOAP.Security. Timestamp. This method takes one optional argument (the expiration
interval in seconds). The default expiration interval is 300 seconds. For example:

set ts=##tclass(%SOAP.Security.Timestamp).Create()

This method creates an instance of %SOAP.Security. Timestamp, Sets the values for its Created, Expires, and
TimestampAtEnd properties, and returns the instance. This instance represents the <T imestamp> header element.

2. Cdl the AddSecurityElement() method of the SecurityOut property of your web client or web service. For the method
argument, use the %SOAP.Security. Timestamp instance you created. For example:

ObjectScript

do client.SecurityOut.AddSecurityElement(ts)

Securing Web Services 31

Adding Timestamps and Username Tokens

3. Send the SOAP message. See the general commentsin Adding Security Header Elements.

If you include a<T imestamp> element, InterSystems IRIS forces it to be first within <Security>.

6.3 Adding a Username Token

To add a username token, do the following in your web client:
1. Optionaly include the %soap.inc include file, which defines macros you might need to use.

2. Cadl the Create() class method of %SOAP.Security.UsernameToken. For example:

ObjectScript

set user="SYSTEM"
set pwd="_SYS"
set utoken=##class(%SOAP.Security.UsernameToken).Create(user,pwd)

The method has an optional third argument (type), which specifies how to include the password in the username token.
This must be one of the following:

* $$$SOAPWSPasswordText — Include the password in plain text. Thisis the default.

* $$$SOAPWSPasswordDigest — Do not include the password but instead include its digest. The digest, Nonce,
and Created timestamp are derived as specified by WS-Security 1.1.

Important: Thisoptionis available only for SOAP clients interacting with third-party serversthat support it.
PasswordDigest authentication requires the server to store the plain-text password, which is not
acceptablein amodern security environment. The PasswordDigest algorithm should be considered
alegacy feature. To protect the password in a <UsernameToken>, you should use SSL/TLS,
encrypt the <UsernameToken>, or use some combination of these techniques.

* $$$SOAPWSPasswordNone — Do not include the password.

This method creates an instance of %SOAP.Security.UsernameToken, Sets its Username and Password properties, and
returns the instance. This object represents the <UsernameToken> header element.

3. Cdl the AddSecurityElement() method of the SecurityOut property of your web client or web service. For the method
argument, use the %SOAP.Security.UsernameToken instance you created. For example:

ObjectScript

do client.SecurityOut.AddSecurityElement(utoken)

4. Send the SOAP message. See the general commentsin Adding Security Header Elements.

6.4 Timestamp and Username Token Example

This example shows aweb service that requires password authentication, and aweb client that sends a timestamp and
username token in its request messages.

CAUTION: Thisexample sends the username and password in clear text.

32 Securing Web Services

Timestamp and Username Token Example

To make this example work in your own environment, first do the following:

» For the web application to which the web service belongs, configure that application to support only password
authentication:

1. FromtheManagement Portal home page, select System Administration > Security > Applications >Web Applications.
2. Select the web application.

3. Select only the Password option and then select Save.
» Edit the client to use an appropriate InterSystems IRIS username and password, if you are not using the defaults.
The web serviceisasfollows:

Class Definition

Class Tokens.DivideWS Extends %SOAP.WebService

Parameter SECURITYIN = "REQUIRE";

/// Name of the Web service.
Parameter SERVICENAME = "‘TokensDemo';

/// SOAP namespace for the Web service
Parameter NAMESPACE = "http://www.myapp.org";

/// Divide argl by arg2 and return the result. In case of error, call ApplicationError.
Method Divide(argl As %Numeric = 2, arg2 As %Numeric = 8) As %Numeric [WebMethod]

Try {
Set ans=argl / arg2
}Catch{
Do ..ApplicationError("'division error')
Quit ans
/// Create our own method to produce application specific SOAP faults.
Method ApplicationError(detail As %String)

//details not shown here

}

The following client-side class invokes the proxy client (not shown here) and adds a username token:

Class Definition

Include %systemInclude

Class TokensClient.UseClient

ClassMethod Test() As %Numeric
{
Set client=##class(TokensClient.TokensDemoSoap) .%New()

Do ..AddSecElements(.client)
Set ans=client.Divide(1,2)

Quit ans

}
ClassMethod AddSecElements(ByRef client As %SOAP_WebClient)
{

Set utoken=##class(%SOAP.Security.UsernameToken).Create(*'_SYSTEM","SYS')
Do client.SecurityOut.AddSecurityElement(utoken)

Set ts=##class(%SOAP.Security.Timestamp).Create()
Do client.SecurityOut.AddSecurityElement(ts)
Quit

Securing Web Services 33

Adding Timestamps and Username Tokens

A sample message from this client is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Timestamp xmlns="[parts omitted]oasis-200401-wss-wssecurity-utility-1.0.xsd">
<Created>2010-03-12T720:18:03Z</Created>
<Expires>2010-03-12T20:23:03Z</Expires>
</Timestamp>
<UsernameToken>
<Username>_SYSTEM</Username>
<Password
Type=""[parts omitted]#PasswordText">
SYS

</Password>
</UsernameToken>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
[omitted]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

34 Securing Web Services

Encrypting the SOAP Body

This topic describes how to encrypt the body of SOAP messages sent by InterSystems IRIS web services and web clients.

Thetopics Encrypting Security Header Elements and Using Derived Key Tokens for Encryption and Signing describe how
to encrypt security header elements as well as other ways to encrypt the SOAP body.

7.1 Overview of Encryption

InterSystems IRIS support for encryption of SOAP messages is based on WS-Security 1.1. In turn, WS-Security follows
the XML Encryption specification. According to the latter specification, to encrypt an XML document:

1. You generate a symmetric key for temporary use.
2. You usethisto encrypt the document (or selected parts of the document).

You replace those parts of the document with <EncryptedData> elementsthat contain the encrypted version of the
contents.

3. You encrypt the symmetric key with the public key of the entity to whom you are sending the document.

You can obtain the public key from an X.509 certificate contained in a request message from that entity. Or you can
obtain it ahead of time.

4. You include the encrypted symmetric key within an <EncryptedKey> element in the same document. The
<EncryptedKey> element provides, directly or indirectly, information that enables the recipient to determine the
key to use to decrypt this element.

Thisinformation can be contained within the <EncryptedKey> element, or the <EncryptedKey> element can
include a direct reference to a binary security token that contains an X.509 certificate or asigned SAML assertion. In
the latter case, the security token must be added to the message before the <Signature> element is added.

The document can include multiple <EncryptedKey> elements, applicable to different encrypted parts of the document.

Other topics describe other ways to encrypt parts of SOAP messages. The details of the messages themselves vary, but the
general processisthe same and follows the XML Encryption specification: You generate and use symmetric keys, encrypt
the symmetric key, and include the encrypted symmetric key in the messages.

Securing Web Services 35

Encrypting the SOAP Body

7.2 Encrypting the SOAP Body

To encrypt the body of SOAP messages, you can use the basic procedure here or the variations described in the subsections.
First, the following figure summarizes the process:

Obtain credentials object from
inbound SOAP message

L

%SYS.X509Credentials (OREF)

Create binary security Cr?ate encrypted ffe y
token object based on object based on binary

credentials object security token object

%SOAP.Security.BinarySecurityToken \ %XML.Security. EncryptedKey
(OREF) / (OREF)
l insert into header l insert into header
SOAP header

In detail, the processis as follows:
1. Optionally include the %soap.inc include file, which defines macros you might need to use.

2. Obtain acredential set that contains the public key of the entity that will receive the SOAP messages, typically from
the inbound message that you have received. See Retrieving Credential Sets Programmatically.

For example:

ObjectScript

set credset=..Securityln.Signature.X509Credentials

Be sure to check the type of the returned object to seeif it is an instance of %SYS.X509Credentials, as discussed in
Retrieving Credential Sets Programmatically.

3. Create abinary security token that contains the certificate associated with that credential set. To do so, call the
CreateX509Token() class method of %SOAP.Security.BinarySecurityToken. For example:

ObjectScript

set bst=##class(%SOAP._Security.BinarySecurityToken).CreateX509Token(credset)

Thismethod returnsan instance of %SOAP.Security.BinarySecurityToken that representsthe <BinarySecurityToken>
header element.

36 Securing Web Services

Encrypting the SOAP Body

Add thistoken to the WS-Security header element. To do so, call the AddSecurityElement() method of the SecurityOut
property of your web client or web service. For the method argument, use the token you just created. For example:
ObjectScript

do ..SecurityOut._AddSecurityElement(bst)

Create the encrypted key based on the binary security token. To do so, call the CreateX509() class method of
%XML.Security.EncryptedKey. For example:
ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(bst)

This method generates a symmetric key, usesit to encrypt the SOAP body, and returns an instance of
%XML.Security.EncryptedKey which represents the <EncryptedKey> header element. This header element contains
the symmetric key, encrypted by the public key contained in the given binary security token.

Optionally modify the encrypted key instance to use different algorithms. See Specifying the Block Encryption Algorithm
and Specifying the Key Transport Algorithm.

Add the <EncryptedKey> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your instance
of %XML.Security.EncryptedKey.

For example:

ObjectScript

do ..SecurityOut._AddSecurityElement(enckey)

This step also adds an <EncryptedData> element asthe child of the <Body> element.

Send the SOAP message. The SOAP body is encrypted and the WS-Security header is included.

The WS-Security header includes the <BinarySecurityToken> and <EncryptedKey> elements.
See the general comments in Adding Security Header Elements.

7.2.1Variation: Using Information That Identifies the Certificate

A <BinarySecurityToken> contains a certificate in serialized, base-64—-encoded format. You can omit this token and
instead use information that identifies the certificate; the recipient uses this information to retrieve the certificate from the
appropriate location. To do so, use the preceding steps, with the following changes:

Skip steps 3 and 4. That is, do not add a<BinarySecurityToken>.

In step 5 (creating the encrypted key), use the credential set from step 1 (rather than abinary security token) asthe
first argument to CreateX509(). For example:

ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(credset, ,referenceOption)

For the third argument (referenceOption), you can specify how the <Signature> element uses the certificate.

If you specify acredential set as the first argument (as we are doing in this variation), the default for referenceOption
IS $$SSOAPWSReferenceThumbprint. Optionally specify avalue as described in the subsection. You can use any
value except $$$SOAPWSReferenceDirect.

Securing Web Services 37

Encrypting the SOAP Body

7.2.1.1 Reference Options for X.509 Certificates

The section A Brief Look at the WS-Security Header shows one way in which certificates are used in SOAP messages. In
the example there, the digital signature consists of two header elements:

e A <BinarySecurityToken> element, which carries the certificate in serialized, base-64—encoded form.

e A <Signature> element, which carries the signature and which includes a direct reference to the binary security
token.

There are other possible forms of reference. For example, the <Signature> could instead include a thumbprint of the

certificate, and the <BinarySecurityToken> isnot needed in the message in this case.

When you create an encrypted key, digital signature, or SAML assertion, you can specify the referenceOption argument,
which controls how the newly created element uses the certificate (or more, specifically, the key material) contained in the
credentials.

For reference, thisargument can have any of thefollowing values. These values are macros defined in the %soap.inc include
file:
$$$SOAPWERef er enceDi r ect

Theelement includes adirect referenceto the binary security token. Specifically, a<key Info> element iscreated
with a<SecurityTokenReference> subelement with a<Reference> subelement whose URI attributeisa
local reference to the <BinarySecurityToken>. In order to use this option, you must be sure to also add the
security token to the WS-Security header; details are given in the relevant sections.

$SSSOAPWBRef er enceThunbpri nt

The element includes the SHA-1 thumbprint of the X.509 certificate.

$SSSOAPWBRef er enceKeyl denti fi er
The element includes the SubjectKeyldentifier of the X.509 certificate.

$$$SOAPWSRef er encel ssuer Seri al
Theelement includesa<Key Info> element with a<Secur i tyTokenReference> child withan <X509Data>
child that contains an <X509 IssuerSerial> element.

$$$Keyl nf oX509Certificate

Theelement includesa<Key I nfo> element with an <X509Data> child that containsan <X509Certificate>
element. This usage is not recommended by the WS-Security specification for the <Signature> and
<EncryptedKey> elements, but may be used for the <Assertion> element.

$$$Keyl nf 0X5091 ssuer Seri al

Theelement includesa<Key Info> element with an <X509Data> child that containsan <X5091ssuerSerial>
element. This usage is not recommended by the WS-Security specification for the <Signature> and
<EncryptedKey> elements, but may be used for the <Assertion> element.

$$$Keyl nf 0X509SKI

The element includes a <Key Info> element with an X509Data> child that contains an <X509SK 1> element.
Thisusageis not recommended by the WS-Security specification for the <Signature> and <EncryptedKey>
elements, but may be used for the <Assertion> element.

38 Securing Web Services

Message Encryption Examples

$$$Key| nf 0X509Subj ect Nane

Theelement includesa<Key Info> element with an <X509Data> child that containsan <X509Sub jectName>
element. This usage is not recommended by the WS-Security specification for the <Signature> and
<EncryptedKey> e ements, but may be used for the <Assertion> element.

$$$Key| nf oRSAKey

Theeementincludesa<Key Info> element with a<KeyValue> child that containsan <RSAKeyValue> element.
Thisusageis not recommended by the WS-Security specification for the <Signature> and <EncryptedKey>
elements, but may be used for the <Assertion> element.

7.2.2 Variation: Using a Signed SAML Assertion

To encrypt using the public key contained in the certificate in asigned SAML assertion, do the following:
1. Skip steps 1-4 in the preceding steps.

2. Createasigned SAML assertion with a<SubjectConfirmation> element that uses the Holder-of-key method .
See Creating and Adding SAML Tokens.

3. Createthe <EncryptedKey> element. When you do so, use the signed SAML assertion as the first argument to the
CreatexX509() class method. For example:

ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(signedassertion)

4. Continue with step 5 in the preceding steps.

7.3 Message Encryption Examples

Inthisexample, the web client (not shown) sends a signed request message and the web service sends an encrypted response.

The web service obtains the public key from the client certificate in the signature of the request message and uses that to
add an <EncryptedKey> element in its response, which is encrypted. The <EncryptedKey> element is encrypted with
the client’s public key and it contains the symmetric key used to encrypt the response message body.

The web serviceis as follows:

Class Definition

Class XMLEncr.DivideWS Extends %SOAP.WebService
{

Parameter SECURITYIN = "REQUIRE";
Parameter SERVICENAME = "XMLEncryptionDemo";
Parameter NAMESPACE = "http://www.myapp.org";
Method Divide(argl As %Numeric = 2, arg2 As %Numeric = 8) As %Numeric [WebMethod]
Do ..EncryptBody()
Try {
Set ans=argl / arg2
} Catch {
Do ..ApplicationError(‘'division error')

Quit ans

Securing Web Services 39

Encrypting the SOAP Body

Method EncryptBody()
{

//Retrieve X.509 certificate from the signature of the inbound request

Set clientsig = ..Securityln.Signature

Set clientcred = clientsig.X509Credentials

set bst=##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(clientcred)
do ..SecurityOut.AddSecurityElement(bst)

//generate a symmetric key, encrypt that with the public key of

//the certificate contained in the token, and create an
//<EncryptedKey> element with a direct reference to the token (default)
Set enc=##class(WXML.Security.EncryptedKey) .CreatexX509(bst)

//add the <EncryptedKey> element to the security header
Do ..SecurityOut.AddSecurityElement(enc)

}

/// Create our own method to produce application specific SOAP faults.
Method ApplicationError(detail As %String)

//details omitted

3
This service sends response messages like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<BinarySecurityToken wsu:ld="SecurityToken-4EC1997A-AD6B-48E3-9E91-8D50C8EA3B53""
EncodingType=""[parts omitted]#Base64Binary"
ValueType="[parts omitted]#X509v3"">
MIICNDCCAYQ[parts omitted]ngHKNhh
</BinarySecurityToken>
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="[parts omitted]xmlenc#rsa-oaep-mgflp'>
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</DigestMethod>
</EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference
xmIns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#SecurityToken-4EC1997A-AD6B-48E3-9E91-8D50C8EA3B53""
ValueType=""[parts omitted]#X509v3""></Reference>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>WtE[parts omitted]bSyvg==</CipherValue>
</CipherData>
<ReferencelList>
<DataReference URI="#Enc-143BBBAA-B75D-49EB-86AC-B414D818109F"></DataReference>
</ReferenceList>
</EncryptedKey>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-143BBBAA-B75D-49EB-86AC-B414D818109F"
Type="http://www._.w3.0rg/2001/04/xmlenc#Content">
<EncryptionMethod Algorithm="[parts omitted]#aesl1l28-cbc"></EncryptionMethod>
<CipherData>
<CipherValue>MLWR6hvKEOgon[parts omitted]8njiQ==</CipherValue>
</CipherData>
</EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

7.4 Specifying the Block Encryption Algorithm

By default, the message itself is encrypted with $$$SOAPWSaes128cbc. You can specify adifferent algorithm. To do
S0, set the Algorithm property of your instance of %XML.Security.EncryptedKey.

Possible values are $$$S0APWSaes128cbc (the default), $$$SOAPWSaes192chc and $$$SO0APWSaes256¢cbhc

40 Securing Web Services

Specifying the Key Transport Algorithm

For example:

ObjectScript

set enckey.Algorithm=$$$SOAPWSaes256cbc

Thisinformation is also applicable when you create an <EncryptedKey> in other scenarios, as described elsewhere.

1.5 Specifying the Key Transport Algorithm

The key transport algorithmis the public key encryption agorithm used for the symmetric keys (see
https://www.w3.org/ TR/xmlenc-core/). By default, thisis $$$SOAPWSrsaoaep. You can instead use $$$SOAPWSrsals.
To do so, call the SetEncryptionM ethod() method of your instance of %XML.Security.EncryptedKey, created in the previous
step. The argument to this method can be either $$$SOAPWSrsaoaep (the default) or $$$SOAPWSrsals

For example:

ObjectScript

do enckey.SetEncryptionMethod ($$$SOAPWSrsals)

Thisinformation is also applicable when you create an <EncryptedKey> in other scenarios, as described el sewhere.

Securing Web Services 41

https://www.w3.org/TR/xmlenc-core/

Encrypting Security Header Elements

This topic describes how to encrypt elements within the WS-Security header in messages sent by InterSystems IRIS web
services and web clients. (The tools described here can a so be used to encrypt the SOAP body, alone or in combination
with security header elements.)

Typically you perform both encryption and signing. This topic describes encryption alone, for simplicity. For information
on combining encryption and signing, see Combining Encryption and Signing.

The topic Using Derived Key Tokens for Encryption and Signing describes yet another way to encrypt parts of SOAP
messages.

8.1 Encrypting Security Header Elements

Unlike the encryption technique shown in the previous topic, the process of encrypting aWS-Security header element
requiresyou to specify how the<EncryptedData> element isconnected to the corresponding <EncryptedKey> element.

To encrypt a security header element, do the following:
1. Optionaly include the %soap.inc include file, which defines macros you might need to use.

2. Create the header element or elements to be encrypted. For example:

ObjectScript

set userToken=##class(%SOAP.Security.UsernameToken) .Create(*''_SYSTEM","SYS™)

3. Obtain acredential set that contains the public key of the entity that will receive the SOAP messages. See Retrieving
Credentia Sets Programmatically.

For example:

ObjectScript

set credset=..Securityln.Signature.X509Credentials

Be sure to check the type of the returned object to seeif it is an instance of %SYS.X509Credentials, as discussed in
Retrieving Credential Sets Programmatically.

4. Create the encrypted key based on the credential set. To do so, call the CreateX509() class method of
%XML.Security.Encryptedkey and optionally specify the second argument. For example:

Securing Web Services 43

Encrypting Security Header Elements

ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(credset, $$$SOAPWSEncryptNone)

This method generates a symmetric key and returns an instance of %XML.Security.EncryptedKey which represents the
<EncryptedKey> header element. This header element contains the symmetric key, encrypted by the public key
contained in the given credential set.

The second argument specifies whether this key encrypts the SOAP body (in addition to any other uses of the key).
The value $$$SOAPWSEncryptNone means that this key will not be used to encrypt the SOAP body. If you omit
this argument, the SOAP body is encrypted as well.

Optionally modify the encrypted key instance to use different algorithms. See Specifying the Block Encryption Algorithm
and Specifying the Key Transport Algorithm.

For each security header element to encrypt, create an <EncryptedData> element based on that element. To do so,
call the Create() class method of %XML.Security.EncryptedData. In this procedure, specify only the second argument,
which is the security header element to encrypt. For example:

ObjectScript

set encdata=##class(%XML.Security.EncryptedData) .Create(,userToken)

For the <EncryptedKey>, add references to the <EncryptedData> elements. Do the following for each
<EncryptedData> element:

a. Cdl the Create() class method of %XML.Security.DataReference and provide the encrypted data instance as the
argument.

b. Call the AddReference() method of the encrypted key instance and provide the data reference as the argument.
For example:

ObjectScript

set dataref=##class(%XML.Security.DataReference) .Create(encdata)
do enckey.AddReference(dataref)

This step updates the encrypted key instance to include a pointer to the encrypted data instance.

If this<EncryptedKey> aso encryptsthe SOAP body, it automatically includes areferencetothe <EncryptedData>
element in <Body>.

Add the <EncryptedKey> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your instance
of %XML.Security.EncryptedKey.

For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(enckey)

Add the encrypted security header element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. In this case, you specify two arguments:

a. Thesecurity header element toinclude (not theinstance of the %XML.Security.EncryptedData based on that element).

b. Theencrypted key instance. The second argument specifieswhereto place theitem specified by the first argument.
If the arguments are A,B, then InterSystems IRIS ensures that A is after B. You specify this so that the recipient
processes the encrypted key first and later processes the encrypted security header element that depends on it.

44

Securing Web Services

Basic Examples

For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(userToken,enckey)

10. Send the SOAP message. See the general commentsin Adding Security Header Elements.

8.2 Basic Examples

The following example invokes aweb client and sends a <UsernameToken> that is encrypted. In this example, the body
is not encrypted.

ObjectScript

Set client=##class(XMLEncrSecHeader .Client._XMLEncrSecHeaderSoap) - %New()

// Create UsernameToken

set user="_SYSTEM"

set pwd="SYS"

set userToken=##class(%SOAP.Security.UsernameToken).Create(user,pwd)

//get credentials for encryption
set cred = ##class(%SYS.X509Credentials).GetByAlias(''servernopassword'™)

//get EncryptedKey element and add it
set encropt=$$$SOAPWSEncryptNone ; means do not encrypt body
set enckey=##class(%XML.Security.EncryptedKey) .Createx509(cred,encropt)

//create EncryptedData and add a reference to it from EncryptedKey
set encdata=##class(%XML.Security.EncryptedData) .Create(,userToken)
set dataref=##class(%XML.Security.DataReference) .Create(encdata)

do enckey.AddReference(dataref)

//add EncryptedKey to security header

do client.SecurityOut.AddSecurityElement(enckey)

//add UsernameToken and place it after EncryptedKey

do client.SecurityOut.AddSecurityElement(userToken,enckey)

Quit client.Divide(1,2)
This client sends messages like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgflp'>
<DigestMethod
xmIns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'>
</DigestMethod>
</EncryptionMethod>
<KeylInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference
xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1l">[omitted]</Keyldentifier>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>pftET8jJFDEjNC2x[parts omitted]xEjNC2==</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#Enc-61000920-44DE-471E-B39C-6D08CB17FDC2"">
</DataReference>
</ReferenceList>
</EncryptedKey>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-61000920-44DE-471E-B39C-6D08CB17FDC2""

Securing Web Services 45

Encrypting Security Header Elements

Type="http://www.w3.0rg/2001/04/xmlenc#Element'>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aesl128-chc'>
</EncryptionMethod>
<CipherData>

<CipherValue>wW3zZM5tgPD[parts omitted]tgPD==</CipherValue>
</CipherData>
</EncryptedData>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
[omitted]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Asasimple variation, consider the procedure in the preceding section. Suppose that we did the following in step 4 and
made no other changes:

ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(credset)
In this case, the messages from the client include an encrypted body and an encrypted <UsernameToken>:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<EncryptedKey xmlIns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgflp'>
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</DigestMethod>
</EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference
xmIns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType=""[parts omitted]#ThumbprintSHA1l">
Sa[parts omitted]dMlr6cM=
</Keyldentifier>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>TB8uavpr[parts omitted]nZBiMCcg==</CipherValue>
</CipherData>
<ReferencelList>
<DataReference URI="#Enc-43FE435F-D1D5-4088-A343-0E76D154615A""></DataReference>
<DataReference URI="#Enc-55FE109A-3C14-42EB-822B-539E380EDE48" ></DataReference>
</ReferencelList>
</EncryptedKey>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-43FE435F-D1D5-4088-A343-0E76D154615A""
Type="http://www._.w3.0rg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aesl128-chc'>
</EncryptionMethod>
<CipherData>
<CipherValue>G+X7dgl [parts omitted]nojroQ==</CipherValue>
</CipherData>
</EncryptedData>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-55FE109A-3C14-42EB-822B-539E380EDE48""
Type="http://www._.w3.0rg/2001/04/xmlenc#Content">
<EncryptionMethod Algorithm="[parts omitted]aesl28-chc''></EncryptionMethod>
<CipherData>
<CipherValue>YJbzyi[parts omitted]NhJoln==</CipherValue>
</CipherData>
</EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In comparison to the previous example, in this case, the <EncryptedKey> eement includes references to two
<EncryptedData> e ements. One isthe <EncryptedData> element in the security header, which contains the
<UsernameToken>; thisreference was created and added manually. The other isthe <EncryptedData> element in the
SOAP body; this reference was added automatically.

46 Securing Web Services

Adding Digital Signatures

This topic describes how to add digital signatures to SOAP messages sent by InterSystems IRIS web services and web
clients.

Typicaly you perform both encryption and signing. This topic describes signing alone, for simplicity. For information on
combining encryption and signing, see the topic Combining Encryption and Signing.

The topic Using Derived Key Tokens for Encryption and Signing describes an aternative way to add digital signaturesto
SOAP messages.

9.1 Overview of Digital Signatures

You use digital signatures to detect message alteration or to simply validate that a certain part of a message was really
generated by the entity which islisted. Aswith the traditional manually written signature, adigital signature is an addition
to the document that can be created only by the creator of that document and that cannot easily be forged.

InterSystems IRIS support for digital signatures on SOAP messages is based on WS-Security 1.1. In turn, WS-Security
followsthe XML Signature specification. According to the latter specification, to sign an XML document:

1. You useadigest function to compute the hashed value of one or more parts of the document.
2. You concatenate the digest values.
3. You useyour private key to encrypt the concatenated digest. (Thisis the computation that only you can perform.)
4. You create the <Signature> element, which includes the following information:
» Referencesto the signed parts (to indicate the parts of the message to which this signature applies).
» Theencrypted digest value.
» Information to enable the recipient to identify the public key to use to decrypt the encrypted digest value.

Thisinformation can be contained within the <Signature> element, or the <Signature> element can include
adirect reference to a binary security token that contains an X.509 certificate or asigned SAML assertion. In the
latter case, the security token must be added to the message before the <Signature> element is added.

Thisinformation also enables the recipient to validate that you are the owner of the public/private key pair.

The topic Using Derived Key Tokens for Encryption and Signing describes an alternative way to add digital signaturesto
SOAP messages. The details of the messages themselves vary, but the general processis the same and follows the XML

Securing Web Services 47

Adding Digital Signatures

Signature specification: You generate adigest of the signed parts, encrypt the digest, and include a<Signature> element
with information that enables the recipient to validate the signature and decrypt the encrypted digest.

9.2 Adding a Digital Signature

To digitally sign a SOAP message, you can use the basic procedure here or the variations described in the following parts
of the topic.

First, the following figure summarizes the process:

certificate loaded into
Management Portal

Create : _
credentials ooy
object based on
certificate =
%SYS.X508Credentials (OREF)
Create binary security E&fﬂﬁfde Sf.f:'g?wre object
token object based on Sed or iary
credentials object - securily token object
WHS0AP.Security BinarySecurityToken I\ YeXML. Security. Signature
{OREF) l// (OREF)
insert into header insert into header
4 L 4

SOAP header

In detail, the processis as follows:
1. Optionaly include the %soap.inc include file, which defines macros you might need to use.

2. If youwant to sign any security header elements, create those security header elements. For example:

ObjectScript

set utoken=##class(%SOAP.Security.UsernameToken) .Create(*"_SYSTEM","SYS")

3. Create an instance of %SYS.X509Credentials, as described in Retrieving Credential Sets Programmatically. This
InterSystems IRIS credential set must contain your own certificate, and you must provide the private key password,
if it has not already been loaded. For example:

ObjectScript

Set x509alias = "'servercred"
Set pwd = "mypassword"
Set credset = ##class(%SYS.X509Credentials).GetByAlias(x509alias,mypassword)

48 Securing Web Services

Adding a Digital Signature

4. Create abinary security token that contains the certificate associated with that credential set. To do so, call the
CreateX509Token() class method of %SOAP.Security.BinarySecurityToken. For example:
ObjectScript

set bst=##class(%SOAP.Security.BinarySecurityToken) .CreateX509Token(credset)

Thismethod returnsan instance of %SOAP.Security.BinarySecurity Token that representsthe<BinarySecurityToken>
header element.

5. Addthistokentothe WS-Security header element. To do so, call the AddSecur ityElement() method of the SecurityOut
property of your web client or web service. For the method argument, use the token you just created. For example:
ObjectScript

do ..SecurityOut._AddSecurityElement(bst)

6. Createthe <Signature> element based on the binary security token. To do so, call the CreateX509() class method
of %XML.Security.Signature. For example:
ObjectScript

set dsig=##class(%XML.Security.Signature) .Createx509(bst)

This method returns an instance of %XML.Security.Signature that represents the <Signature> header element. The
<Signature> element appliesto adefault set of parts of the message; you can specify a different set of parts.

Formally, this method has the following signature:

classmethod CreatexX509(credentials As %SYS.X509Credentials = """
signatureOptions As %lInteger,
referenceOption As %Integer,
Output status As %Status) as %XML.Security.Signature

Where:

» credentialsis either a%SYS.X509Credentials instance, a %SAML.Assertion instance, or a
%SOAP.Security.BinarySecurityToken instance.

» signatureOptions specifies the parts to sign. This option is described in Applying a Digital Signature to Specific
Message Parts.

» referenceOption specifiesthetype of referenceto create. For details, see Reference Optionsfor X.509 Credentials.

e statusindicates whether the method was successful.

7. Addthedigital signature to the WS-Security header element. To do so, call the AddSecurityElement() method of the
SecurityOut property of your web client or web service. For the argument, specify the signature object created in the
previous step. For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(dsig)

8. Send the SOAP message. See the general commentsin Adding Security Header Elements.

9.2.1 Example

This example shows aweb service that signs its response messages.

Securing Web Services 49

Adding Digital Signatures

To make this example work in your own environment, first do the following:
» Create acertificate for the server.

* Loadthiscertificateinto InterSystems|RIS on the server side, creating credentialswith the name servercred. When
you do so, also load the private key file and provide its password (so that the web service does not have to provide that
password when it signs its response message.)

The web servicerefersto an InterSystems IRIS credential set with this exact name.

Class Definition

Class DSig.DivideWS Extends %SOAP.WebService

/// Name of the Web service.
Parameter SERVICENAME = "DigitalSignatureDemo’;

/// SOAP namespace for the Web service
Parameter NAMESPACE = "http://www.myapp.org";

/// use in documentation
Method Divide(argl As %Numeric = 2, arg2 As %Numeric = 8) As %Numeric [WebMethod]

Do ..SignResponses()
Try {
Set ans=argl / arg2
}Catch{
Do ..ApplicationError(*'division error')

Quit ans

/// use in documentation
/// signs and includes a binary security token
Method SignResponses()

//Add timestamp because that"s commonly done
Set ts=##class(%SOAP.Security.Timestamp).Create()
Do ..SecurityOut._AddSecurityElement(ts)

//access previously stored server certificate & private key file

//no need to use private key file password, because that has been saved
Set x509alias = '"servercred"”

Set cred = ##class(%SYS.X509Credentials) .GetByAlias(x509alias)

set bst=##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(cred)
do ..SecurityOut.AddSecurityElement(bst)

//Create WS-Security Signature object
Set signature=##class(%XML.Security.Signature).CreateX509(bst)

//Add WS-Security Signature object to the outbound message
Do ..SecurityOut.AddSecurityElement(signature)
Quit

/// Create our own method to produce application specific SOAP faults.
Method ApplicationError(detail As %String)
{

Set fault=##class(%SOAP.Fault).%New()

Set fault.faultcode=$$$FAULTServer

Set fault.detail=detail

Set fault._faultstring="Application error"

// ReturnFault must be called to send the fault to the client.
// ReturnFault will not return here.

Do ..ReturnFault(fault)

50 Securing Web Services

Other Ways to Use the Certificate with the Signature

9.3 Other Ways to Use the Certificate with the Signature

In the basic procedure discussed in the previous section, you use a<BinarySecurityToken> contains a certificate in
serialized, base-64—encoded format. Instead of including the certificate, you can useinformation that identifiesthe certificate.
Or you can contain the certificate within asigned SAML assertion. This section discusses these variations.

9.3.1 Variation: Using Information That Identifies the Certificate

Instead of including a certificate in the message, you can include information that identifies the certificate. The recipient
usesthisinformation to retrieve the certificate from the appropriate location. To do so, use the stepsin the previous section,
with the following changes:

e Skipsteps4and 5. That is, do not add a<BinarySecurityToken>.

* Instep 6 (creating the signature), use the credential set from step 1 (rather than a binary security token) as the first
argument to CreateX509(). For example:

ObjectScript

set dsig=##class(%XML.Security.Signature).CreateX509(credset, ,referenceOption)

For the third argument (referenceOption), you can specify how the <Signature> element uses the certificate.

If you specify acredential set as the first argument (as we are doing in this variation), the default for referenceOption
is $$$SO0APWSReferenceThumbprint. Optionally specify avalue as described in Reference Options for X.509
Credentials. You can use any value except $$$SOAPWSReferenceDirect.

9.3.1.1 Example

This exampleis avariation of the earlier example in thistopic.

Class Member

Method SignResponses()

//Add timestamp because that®"s commonly done
Set ts=##class(%SOAP.Security.Timestamp).Create()
Do ..SecurityOut._AddSecurityElement(ts)

//access previously stored server certificate & private key file

//no need to use private key file password, because that has been saved
Set x509alias = "servercred"

Set cred = ##class(%SYS.X509Credentials) .GetByAlias(x509alias)

//Create WS-Security Signature object
Set signature=##class(%XML.Security.Signature).CreateX509(cred)

//Add WS-Security Signature object to the outbound message
Do ..SecurityOut.AddSecurityElement(signature)
Quit

In this case, the web service sends response messages like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Timestamp xmIns="[parts omitted]oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu: 1d=""Timestamp-48CEE53E-E6C3-456C-9214-B7D533B2663F"">
<Created>2010-03-19T14:35:06Z</Created>
<Expires>2010-03-19T14:40:06Z</Expires>
</Timestamp>
<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#">

Securing Web Services 51

Adding Digital Signatures

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</CanonicalizationMethod>

<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-sha256'></SignatureMethod>

<Reference URI="#Timestamp-48CEE53E-E6C3-456C-9214-B7D533B2663F"">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"'></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'></DigestMethod>
<DigestValue>waSMFeYMruQn9XHx85HqunhMGl1A=</DigestValue>

</Reference>
<Reference URI="#Body-73F08A5C-OFFD-4FE9-AC15-254423DBA6A2"">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"></Transform>
</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>wDCgAzy5bLKKF+Rt0+YV/gxTQws=</DigestValue>
</Reference>
</Signedinfo>
<SignatureValue>j6vtht/[parts omitted]trCQ==</SignatureValue>
<KeyInfo>
<SecurityTokenReference
xmlns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1">
WeCnU2sMyOXFHHBCHTL JNTQQNGQ=
</Keyldentifier>
</SecurityTokenReference>
</KeyInfo>
</Signature>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body wsu: ld=""Body-73FO08A5C-0OFFD-4FE9-AC15-254423DBA6A2"">
[omitted]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.3.2 Variation: Using a Signed SAML Assertion

To add adigital signature that uses the certificate in asigned SAML assertion, do the following:
1. Optionaly include the %soap.inc include file, which defines macros you might need to use.

2. If youwant to sign any security header elements, create those security header elements. For example:

ObjectScript

set utoken=##class(%SOAP.Security.UsernameToken).Create(*'_SYSTEM",'SYS'™)

3. Createasigned SAML assertion with a<SubjectConfirmation> element that uses the Holder-of-key method .
See Creating and Adding SAML Tokens.

4. Createthe <Signature> element. When you do, use the signed SAML assertion as the first argument to the
Createx509() class method. For example:

ObjectScript

set signature=##class(%XML.Security.EncryptedKey) .CreateXx509(signedassertion)

5. Addthedigital signature to the WS-Security header element. To do so, call the AddSecurityElement() method of the

SecurityOut property of your web client or web service. For the argument, specify the signature object created in the
previous step. For example:

ObjectScript

do ..SecurityOut._AddSecurityElement(dsig)

6. Send the SOAP message. See the general commentsin Adding Security Header Elements.

52 Securing Web Services

Applying a Digital Signature to Specific Message Parts

9.4 Applying a Digital Signature to Specific Message Parts

By default, when you create and add a digital signature to the WS-Security header element, the signature is applied to the
SOAP body, the <Timestamp> element in the header (if present), and any WS-Addressing header elements.

To specify the parts to which the signature applies, use any of the procedures described earlier with one variation: When
you create the signature, use the second argument (signatureOptions) to specify the message parts to sign. Specify this
argument as a binary combination of any of the following macros (which are contained in the %soap.inc file):

e $$$SOAPWSINncludeNone

e $$$SO0APWSIncludeDefault (which equas$$$SOAPWS IncludeSoapBody + $$$SOAPWSIncludeTimestamp
+ $$$SOAPWSIncludeAddressing)

s $$$SOAPWSINncludeSoapBody

s $$$SOAPWSINncludeTimestamp

* $$$SOAPWSIncludeAddressing
* $$$SOAPWSIncludeAction

* $$$SOAPWSIncludeFaultTo

* $$$SOAPWSIncludeFrom

e $$$SOAPWSIncludeMessageld

* $$3$SOAPWSIncludeRelatesTo

* $$$SOAPWSIncludeReplyTo

* $$$SOAPWSINncludeTo

e $$$SOAPWSIncludeRMHeaders (see Using WS-ReliableM essaging)

To combine macros, use plus (+) and minus (=) signs. For example:
$$$SOAPWS IncludeSoapBody+$$$SOAPWS IncludeTimestamp

Note: These options apply both to the CreateX509() and the Create() methods; the latter is discussed in Using Derived
Key Tokens for Encryption and Signing.

For example:

ObjectScript

set ts=##class(%SOAP.Security.Timestamp).Create()

do ..SecurityOut.AddSecurityElement(ts)

set x509alias = "servercred"

set cred = ##class(%SYS.X509Credentials).GetByAlias(x509alias)

set parts=$$$SOAPWSIncludeSoapBody + $$$SOAPWSIncludeTimestamp
set signature=##class(%XML.Security.Signature).CreateX509(cred,parts)

Securing Web Services 53

Adding Digital Signatures

9.5 Specifying the Digest Method

By default, the digest value for the signature is computed viathe SHA-1 algorithm, and the <Signature> element in the
security header includes something like this:

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'></DigestMethod>
<DigestValue>waSMFeYMruQn9XHx85HqunhMGl1A=</DigestValue>

You can specify adifferent digest method for the signature. To do so, call the SetDigestM ethod() method of your instance
of %XML.Security.Signature. For the argument, use one of the following macros (which are contained in the %soap.inc file):

* $$$SOAPWSshal (the default)
* $$$SOAPWSsha256
* $$$SOAPWSsha384
* $$$SOAPWSsha512

For example:

do sig.SetDigestMethod($$$SOAPWSsha256)

9.6 Specifying the Signature Method

By default, the signature valueis computed viathe RSA-SHA 256 algorithm, and the<Signature> element in the security
header includes something like this:

<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-sha256'></SignatureMethod>

---<SignatureVaIue>J+gACmdjkaanthA[parts omitted]</SignatureValue>

You can specify adifferent algorithm for the signature method. To do so, call the SetSignatureM ethod() method of your
instance of %XML.Security.Signature. For the argument, use one of the following macros (which are contained in the
%soap.inc file):

* $$$SOAPWSrsashal

* $$$SOAPWSrsasha256 (the default)
* $$$SOAPWSrsasha3s4

* $$$SOAPWSrsasha512

* $$$SOAPWShmacsha256

* $$$SOAPWShmacsha384

* $$$SOAPWShmacsha512

For example:
do sig.SetSignatureMethod($$$SOAPWSrsasha512)

Note that you can modify the default signature algorithm. To do so, access the Management Portal, click System Adminis-
tration, then Security, then System Security, and then System-wide Security Parameters. The option to specify the default
signature algorithm is labeled Default signature hash.

54 Securing Web Services

Specifying the Canonicalization Method for <Keylnfo>

9.7 Specifying the Canonicalization Method for <KeyInfo>

By default, the <Key I nfo> element is canonicalized with Exclusive XML Canonicalization, and the <Key Info> element
includes the following:

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">

To instead canonicalize this element with Inclusive XML Canonicalization, do the following:
Set sig.SignedInfo.CanonicalizationMethod.Algorithm=$$$SOAPWSc14n

Where sig is the instance of %XML.Security.Signature.

In this case, <Key Info> contains the following:

<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"">

9.8 Adding Signature Confirmation

TheWS-Security 1.1 <SignatureConfirmation> feature enablesaweb client to ensure that areceived SOAP message
was generated in response to the original request sent by the web client. The client request istypically signed but does not
haveto be. In this mechanism, theweb service addsa<SignatureConfirmation> element to the security header element,
and the web client can check that <SignatureConfirmation> element.

For aweb service, to add a<SignatureConfirmation> element to the security header element:

1. Call the WSAddSignatureConfirmation() method of the web service. For the argument, specify the main signature
of the security header element. For example:

do ..WSAddSignatureConfirmation(sig)

2. Send the SOAP message as usual. See the general commentsin Adding Security Header Elements.
This method adds WS-Security 1.1 <SignatureConfirmation> elementsto the outbound message. It adds a
<SignatureConfirmation> eement to the SecurityOut property for each <Signature> received in Securityln.

If Securityln doesnot includeasignature, thena<SignatureConfirmation> e ementisadded with no Value attribute,
as required by WS-Security 1.1.

For information on validating <SignatureConfirmation> elements, see Checking the Signature Confirmation.

Securing Web Services 55

10

Using Derived Key Tokens for Encryption
and Signing

InterSystems|RIS supportsthe <Der i vedKeyToken> element as defined by WS-SecureConversation 1.4. You can create
and use the <Der ivedKeyToken> element for encryption and signing, as an alternative to the approaches described in
the previous three topics.

Typically you perform both encryption and signing. Thistopic describesthese tasks separately, for simplicity. For information
on combining encryption and signing, see Combining Encryption and Signing.

10.1 Overview

The <DerivedKeyToken> element isintended to carry information that the sender and the recipient can independently
use to generate the same symmetric key. These parties can use that symmetric key to encrypt, sign, or perform both actions
on the indicated parts of the SOAP message.

To generate and use a<Der ivedKeyToken>, you do the following:
1. You generate a symmetric key for temporary use.

2. You encrypt the symmetric key with the public key of the entity to whom you are sending the message. This creates
an <EncryptedKey> element.

You can obtain the public key from an X.509 certificate contained in a request message from that entity. Or you can
obtain it ahead of time.

3. You compute a new symmetric key from the original symmetric key, viathe P_SHA1 algorithm.
This creates an <Der ivedKeyToken> element that refers to the <EncryptedKey> element.
4. You usethe new symmetric key to encrypt or sign.

It is considered good practice to use different symmetric key for these activities, so that thereis minimal datafor
analysis.

5. Youinclude the <EncryptedKey> element and the <Der ivedKeyToken> in the message.

In InterSystems IRIS, aderived key token could also be based on another derived key token.

Securing Web Services 57

Using Derived Key Tokens for Encryption and Signing

10.2 Creating and Adding a <DerivedKeyToken>

For reference, this section describes a common activity needed in later sections. It describes how to create a
<DerivedKeyToken> and add it to the WS-Security header. You can use the following procedure or the variations
described in the subsections.

1
2.

Optionally include the %soap.inc include file, which defines macros you might need to use.

Obtain the credentia set of the entity to whom you are sending the message. See Retrieving Credential Sets Program-
matically.

For example:

ObjectScript

Set x509alias = "'servernopassword"
Set credset = ##class(%SYS.X509Credentials).GetByAlias(x509alias)

Create an encrypted key based on the credential set. To do so, call the CreateX509() class method of
%XML.Security.EncryptedKey and specify the second argument as $$$SOAPWSEncryptNone. For example:
ObjectScript

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(credset, $$$SOAPWSEncryptNone)

This method generates a symmetric key and returns an instance of %XML.Security.EncryptedKey which represents the
<EncryptedKey> header element. This header element contains the symmetric key, encrypted by the public key
contained in the given credential set.

When you create an encrypted key to use as abasis for a derived key, always specify $$$SOAPWSEncryptNone or
""" as the second argument for CreateX509().

Optionally modify the encrypted key instance to use different algorithms. See Specifying the Block Encryption Algorithm
and Specifying the Key Transport Algorithm.

Add the <EncryptedKey> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your instance
of %XML.Security.EncryptedKey.

For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(enckey)

Create the derived key token based on the encrypted key. To do so, call the Create() method of
%SOAP.WSSC.DerivedKeyToken. This method takes two arguments:

a. Theencrypted key to use as abasis.
b. A reference option that specifies how the derived key refers to that encrypted key. In this basic procedure, use
$$$SOAPWSReferenceEncryptedKey

For example:

ObjectScript

set refopt=$$$SOAPWSReferenceEncryptedKey
set dkenc=##class(%SOAP_WSSC.DerivedKeyToken) .Create(enckey, refopt)

58

Securing Web Services

Creating and Adding a <DerivedKeyToken>

Thismethod returns an instance of %SOAP.WSSC.DerivedKeyToken that representsthe <Der i vedKeyToken> element.

7. Addthe<DerivedKeyToken> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your instance
of %SOAP.WSSC.DerivedKeyToken.

For example:

ObjectScript

do ..SecurityOut._AddSecurityElement(dkenc)

8. Send the SOAP message. See the general comments in Adding Security Header Elements.

10.2.1 Variation: Creating an Implied <DerivedKeyToken>

You can also create an implied <Der ivedKeyToken>, which is a shortcut technique for referencing a

<DerivedKeyToken>. In thistechnique:

* The<DerivedKeyToken> isnot included in the message.

» Within the element that usesthe <Der ivedKeyToken>, the <SecurityTokenReference> element specifiesthe
Nonce attribute, which contains the value of the nonce used for the <Der ivedKeyToken>. Thisindicatesto the
message recipient that the derived key token isimplied and is derived from the referenced token.

To create an implied <DerivedKeyToken>, use the general procedure described previoudly, with two changes:

1. SettheImplied property to 1, for the derived key token instance.

For example:

ObjectScript

set dkt.Implied=1

2. Do not add the <Der ivedKeyToken> element to the WS-Security header element.

Use the <Der ivedKeyToken> in exactly the same way asif you had included it in the message.

10.2.2 Variation: Referencing the SHA1 Hash of an <EncryptedKey>

In this variation (available only on the web service), the sender does not include the <EncryptedKey> element in the
message but instead references the SHA 1 hash of the key. The web service can reference an <EncryptedKey> element
received in the inbound message.

Use the preceding general procedure, with the following changes:
* Steps2-4 are optional.
* Omit step 5 (do not add the <EncryptedKey>).

* Instep 6, when you use Create() to create the derived key token, to use the <EncryptedKey> received from the
client, omit the first argument. Or, if you have created an <EncryptedKey>, use that as the first argument.

Specify $$$SOAPWSReferenceEncryptedKeySHA1L for the second argument.

For example, to use the first <EncryptedKey> element in the message received from the web client:

Securing Web Services 59

Using Derived Key Tokens for Encryption and Signing

ObjectScript

set refopt=$$$SOAPWSReferenceEncryptedKeySHAL
set dkenc=##class(%SOAP.WSSC.DerivedKeyToken) .Create(,refopt)

10.3 Using a <DerivedKeyToken> for Encryption

To use a<DerivedKeyToken> for encryption, use the following procedure:

1. If you want to encrypt one or more security header elements, create those security header elements.
2. Createthe <DerivedKeyToken> and add it to the WS-Security header, as described in Creating and Adding a
<DerivedK ey Token.
Note that this step also creates and adds the <EncryptedKey> element on which the <DerivedKeyToken> is
based.
3. For each element that you want to encrypt, create an <EncryptedData> element based on the element. To do so,
call the Create() class method of %XML.Security.EncryptedData. In this procedure, specify the following arguments:
a. Thederived key token.
b. Theitem to encrypt. Omit this argument to encrypt the body.
c. A macrothat specifieshow the<EncryptedData> element refersto the<Der ivedKeyToken>. In thisscenario,
the only currently supported value is $$$SOAPWSReferenceDerivedKey.
For example, to encrypt the <UsernameToken>:
ObjectScript
set refopt=$$$SOAPWSReferenceDerivedKey
set encryptedData=##class(%XML.Security.EncryptedData).Create(dkenc,userToken, refopt)
Or, to encrypt the body:
ObjectScript
set refopt=$$$SOAPWSReferenceDerivedKey
set encryptedData=##class(%XML.Security.EncryptedData) .Create(dkenc, ,refopt)
4. Createa<Referencelist> element. To do so, call the % New() method of the %XML.Security.ReferenceList class.
For example:
ObjectScript
set reflist=##class(WXML.Security.ReferencelList) . %New()
5. Within this<ReferenceList>, create a<ReferenceList> that pointsto the <EncryptedData> elements. To
do so, do the following for each <EncryptedData>:
a. Cdl the Create() class method of %XML.Security.DataReference and specify the encrypted data instance as the
argument. This method returns an instance of %XML.Security.DataReference.
b. Call the AddReference() method of your reference list instance and specify the data reference instance as the
argument.
For example:
60 Securing Web Services

Using a <DerivedKeyToken> for Encryption

ObjectScript

set dataref=##class(%XML.Security.DataReference) .Create(encdata)
do reflist.AddReference(dataref)

set dataref2=##class(%XML.Security.DataReference).Create(encdata2)
do reflist.AddReference(dataref2)

6. Addthe <ReferencelList> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your reference
list instance.

For example:

ObjectScript

do ..SecurityOut._AddSecurityElement(reflist)

7. If you encrypted any security header elements, add them to the WS-Security header element. To do so, call the
AddSecurityElement() method of the SecurityOut property of your web client or web service. In this case, two arguments
are required:

a. The security header element (not the %XML.Security.EncryptedData that you generated from it).

b. Thereferencelist instance. The second argument specifies where to place the item specified by the first argument.
If the arguments are A,B, then InterSystems IRIS ensures that A is after B. You specify this so that the recipient
processes the reference list first and later processes the encrypted security header element that depends on it.

For example:

ObjectScript

do client.SecurityOut.AddSecurityElement(userToken,reflist)

If you encrypted only the SOAP body, the system automatically includes an <EncryptedData> element asthe child
of <Body>.

8. Send the SOAP message. See the general commentsin Adding Security Header Elements.
For example, the following client-side code encrypts both the SOAP body and the <UsernameToken>:

ObjectScript

// Create UsernameToken
set userToken=##class(%SOAP.Security.UsernameToken).Create(*"'_SYSTEM","SYS™)

// get credentials for encryption
set cred = ##class(%SYS.X509Credentials) .GetByAlias(''servercred™)

// get EncryptedKey element to encrypt <UsernameToken)

// $$$SOAPWSEncryptNone means that this key does not encrypt the body

set enckey=##class(WXML.Security.EncryptedKey) .CreateX509(cred, $$$SOAPWSEncryptNone)
//add to WS-Security Header

do client.SecurityOut.AddSecurityElement(enckey)

// get derived key to use for encryption

// second argument specifies how the derived key

// refers to the key on which it is based

set dkenc=##class(%SOAP_WSSC.DerivedKeyToken) .Create(enckey,
$$$SOAPWSReferenceEncryptedKey)

//add to WS-Security Header

do client._SecurityOut.AddSecurityElement(dkenc)

// create <EncryptedData> element to contain <UserToken>
set encdata=##class(%XML.Security.EncryptedData) .Create(dkenc,userToken,
$$$SOAPWSReferenceDer ivedKey)

// create <EncryptedData> element to contain SOAP body
set encdata2=##class(%XML.Security.EncryptedData).Create(dkenc,"",
$$$SOAPWSReferenceDerivedKey)

Securing Web Services 61

Using Derived Key Tokens for Encryption and Signing

// create <ReferencelList> with <DataReference> elements that

// point to these two <EncryptedData> elements

set reflist=##class(WXML.Security.ReferenceList).%New()

set dataref=##class(%XML.Security.DataReference) .Create(encdata)
do reflist.AddReference(dataref)

set dataref2=##class(%XML.Security.DataReference).Create(encdata?)
do reflist.AddReference(dataref2)

// add <ReferencelList> to WS-Security header

do client.SecurityOut.AddSecurityElement(reflist)

// add encrypted <UserName> to security header;

// 2nd argument specifies position

do client._SecurityOut.AddSecurityElement(userToken,reflist)

// encrypted SOAP body is handled automatically
The client sends messages like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""1d-658202BF-239A-4A8C-A100-BB25579F366B" >
<EncryptionMethod Algorithm="[parts omitted]#rsa-oaep-mgflp">
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</DigestMethod>
</EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1">5afOHv1w7WSXwDyz6F3WdM1r6cM=
</Keyldentifier>
</SecurityTokenReference>
</KeylInfo>
<CipherData>
<CipherValue>tFeKrZKw[parts omitted]r+bx7KQ==</CipherValue>
</CipherData>
</EncryptedKey>
<DerivedKeyToken xmlns="[parts omitted]ws-secureconversation/200512"
xmlns:wsc="[parts omitted]ws-secureconversation/200512"
wsu: 1d="Enc-943C6673-E3F3-48E4-AA24-A7F82CCF6511'">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#1d-658202BF-239A-4A8C-A100-BB25579F366B'></Reference>
</SecurityTokenReference>
<Nonce>Gb JRvVNrPtHs0zo/w9NeOw==</Nonce>
</DerivedKeyToken>
<ReferenceList xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<DataReference URI="#Enc-358FB189-81B3-465D-AFEC-BC28A92B179C'></DataReference>
<DataReference URI="#Enc-9EF5CCE4-CF43-407F-921D-931B5159672D"></DataReference>
</ReferencelList>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-358FB189-81B3-465D-AFEC-BC28A92B179C""
Type="http://www._.w3.0rg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="[parts omitted]#aes256-cbc'></EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#Enc-943C6673-E3F3-48E4-AA24-A7F82CCF6511'"'></Reference>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>e4//6aWGqold1Q7ZAF[parts omitted]KZcj99N78A==</CipherValue>
</CipherData>
</EncryptedData>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<EncryptedData xmlIns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-9EF5CCE4-CF43-407F-921D-931B5159672D""
Type="http://www.w3.0rg/2001/04/xmlenc#Content'>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes256-cbc'>
</EncryptionMethod>
<KeylInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#Enc-943C6673-E3F3-48E4-AA24-A7F82CCF6511"'></Reference>
</SecurityTokenReference>
</KeylInfo>
<CipherData>
<CipherValue>Q3XxuNjSan[parts omitted]x9AD7brM4</CipherValue>
</CipherData>

62 Securing Web Services

Using a <DerivedKeyToken> for Signing

</EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For another example, the following web service receives an <EncryptedKey> in the inbound message and usesiit to
generate a<DerivedKeyToken> that it usesto encrypt parts of the response:

ObjectScript

// create <DerivedKeyToken> based on first <EncryptedKey> in inbound message;
// refer to it with SHA1 thumbprint

set refopt=$$$SOAPWSReferenceEncryptedKeySHAL

set dkenc=##class(%SOAP.WSSC.DerivedKeyToken).Create(,refopt)

do ..SecurityOut.AddSecurityElement(dkenc)

// create <EncryptedData> element to contain SOAP body
set encdata=##class(%XML.Security.EncryptedData) .Create(dkenc,""",
$$$SO0APWSReferenceDer ivedKey)

// create <ReferencelList> with <DataReference> elements that

// point to the <EncryptedData> elements

set reflist=##class(WXML.Security.ReferenceList).%New()

set dataref=##class(%XML.Security.DataReference) .Create(encdata)
do reflist.AddReference(dataref)

// add <ReferenceList> to WS-Security header
do ..SecurityOut._AddSecurityElement(reflist)

This web service sends messages like the following:

<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>
<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<DerivedKeyToken xmlIns="[parts omitted]ws-secureconversation/200512"
xmIns:wsc=""[parts omitted]ws-secureconversation/200512"
wsu: 1d=""Enc-D69085A9-9608-472D-85F3-44031586AB35"">
<SecurityTokenReference xmlns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd"

s01:TokenType="[parts omitted]#EncryptedKey"
xmIns:s01="h[parts omitted]oasis-wss-wssecurity-secext-1.1.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
[parts omitted]#EncryptedKeySHA1">
UBCEWXdUPs1k/r8JT+2KdwU/gSw=
</Keyldentifier>
</SecurityTokenReference>
<Nonce>nJWy1JUcXXLd4k1tbNgl10w==</Nonce>
</DerivedKeyToken>
<ReferenceList xmIns="http://www.w3.0rg/2001/04/xmlenc#">
<DataReference URI="#Enc-0FF09175-B594-4198-9850-57D40EB66DC3''></DataReference>
</ReferencelList>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-0FF09175-B594-4198-9850-57D40EB66DC3""
Type="http://www._.w3.0rg/2001/04/xmlenc#Content">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes256-chc'>
</EncryptionMethod>
<KeyInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#Enc-D69085A9-9608-472D-85F3-44031586AB35"></Reference>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>Nz194WnuQU4uBO[parts omitted]xHZpJSA==</CipherValue>
</CipherData>
</EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

10.4 Using a <DerivedKeyToken> for Signing

To use a<DerivedKeyToken> for signing, use the following procedure;

Securing Web Services 63

Using Derived Key Tokens for Encryption and Signing

If you want to sign any security header elements, create those security header elements.

Create the <DerivedKeyToken> and add it to the WS-Security header, as described in Creating and Adding a
<DerivedKeyToken>.

Note that this step also creates and adds the <EncryptedKey> element on which the <DerivedKeyToken> is
based.

Create the <Signature> element based on the derived key token. To do so, call the Create() class method of
%XML.Security.Signature. For example:
ObjectScript

set dsig=##class(WXML.Security.Signature).Create(dkt)

This method returns an instance of %XML.Security.Signature that represents the <Signature> header element. The
signature value is computed viathe HMAC-SHA1 digest algorithm, using the symmetric key implied by the
<DerivedKeyToken>.

The <Signature> element appliesto a default set of parts of the message; you can specify a different set of parts.

Add the digital signature to the WS-Security header element. To do so, call the AddSecurityElement() method of the
SecurityOut property of your web client or web service. For the argument, specify the signature object created in the
previous step. For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(dsig)

For example, the following client-side code signs the SOAP body:

ObjectScript

// get credentials
set cred = ##class(%SYS.X509Credentials) .GetByAlias(''servercred')

// get EncryptedKey element that does not encrypt the body

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(cred, $$$SOAPWSENncryptNone)
//add to WS-Security Header

do client.SecurityOut.AddSecurityElement(enckey)

// get derived key & add to header

set dksig=##class(%SOAP.WSSC.DerivedKeyToken) .Create(enckey, $$$SOAPWSReferenceEncryptedKey)
//add to WS-Security Header

do client.SecurityOut.AddSecurityElement(dksig)

// create a signature and add it to the security header
set sig=##class(%XML.Security.Signature).Create(dksig, ,$$$SOAPWSReferenceDerivedKey)
do client.SecurityOut.AddSecurityElement(sig)

The client sends messages like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
<SOAP-ENV:Header>

<Security xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<EncryptedKey xmlIns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""1d-6188CA15-22BF-41EB-98B1-C86D4B242C9F"'">
<EncryptionMethod Algorithm="[parts omitted]#rsa-oaep-mgflp'>
<DigestMethod xmIns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’></DigestMethod>
</EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference
xmlns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1l">5afOHv1w7WSXwDyz6F3WdM1lr6cM=
</Keyldentifier>
</SecurityTokenReference>
</KeyInfo>

64

Securing Web Services

Using a <DerivedKeyToken> for Signing

<CipherData>
<CipherValue>VKyyi[parts omitted]gMVfayVYxA==</CipherValue>
</CipherData>
</EncryptedKey>
<DerivedKeyToken xmlns="[parts omitted]ws-secureconversation/200512"
xmIns:wsc=[parts omitted]ws-secureconversation/200512"
wsu: 1d=""Enc-BACCE807-DB34-46AB-A9B8-42D05DOD1FFD"">
<SecurityTokenReference
xmlns=""[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#1d-6188CA15-22BF-41EB-98B1-C86D4B242C9F"></Reference>
</SecurityTokenReference>
<O0ffset>0</0Offset>
<Length>24</Length>
<Nonce>1gSfzJ1jje710zadbPXf1Q==</Nonce>
</DerivedKeyToken>
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</CanonicalizationMethod>
<SignatureMethod Algorithm="[parts omitted]#hmac-shal'></SignatureMethod>
<Reference URI="#Body-B08978B3-8BE8-4365-A352-1934D7C33D2D"">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"'></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'></DigestMethod>
<DigestValue>56gxpK1mSVW7DN5LUYRvgDbMtOs=</DigestValue>
</Reference>
</Signedinfo>
<SignatureValue>aY4dKX17zDS2SF+BXIVTHcEituc=</SignatureValue>
<KeyInfo>
<SecurityTokenReference
xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#Enc-BACCE807-DB34-46AB-A9B8-42D05DOD1FFD"></Reference>
</SecurityTokenReference>
</KeyInfo>
</Signature>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body wsu: 1d=""Body-B08978B3-8BE8-4365-A352-1934D7C33D2D"">
[omitted]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Securing Web Services 65

11

Combining Encryption and Signing

You can encrypt and sign within the same message. |n most cases, you can simply combine the approaches given in the
preceding topics. This topic discusses multiple scenarios.

11.1 Signing and Then Encrypting with Asymmetric Keys

To sign and then encrypt (when using asymmetric keys), do the following:
1. Follow the stepsin Adding a Digital Signature.
2. Follow the stepsin Encrypting Security Header Elements.

Or follow the steps in Encrypting the SOAP Body.

11.2 Encrypting and Then Signing with Asymmetric Keys

To encrypt only the SOAP body and then add a digital signature (when using asymmetric keys), do the following:

1. Follow the stepsin Encrypting the SOAP Body.

2. Follow the stepsin Adding a Digital Signature.

To encrypt any security header elements and then add a digital signature (when using asymmetric keys), it is necessary to

use atop-level <Referencel i st> element (which has not been necessary elsewhere in the documentation). In this case,
do the following:

1. Follow steps1— 4 in Encrypting Security Header Elements.

2. For each security header element to encrypt, create an <EncryptedData> element based on that element. To do so,
call the Create() class method of %XML.Security.EncryptedData. In this procedure, specify all three arguments:

a. Theencrypted key instance that you created in the previous steps.
b. The security header element to encrypt.
C. $$$SOAPWSReferenceEncryptedKey, which specifies how the <EncryptedData> usesthe encrypted key

instance.

For example:

Securing Web Services 67

Combining Encryption and Signing

ObjectScript

set refopt=$$$SOAPWSReferenceEncryptedKey
set encdata=##class(%XML.Security.EncryptedData).Create(enckey,userToken, refopt)

3. Createa<ReferencelList> element. To do so, call the % New() method of the %XML.Security.ReferenceList class.

For example:
ObjectScript
set reflist=##class(WXML.Security.ReferenceList).%New()

4. Withinthis<ReferenceList>, create a<Reference> that pointsto the <EncryptedData> elements. To do so,

do the following for each <EncryptedData>:
a Cadl the Create() class method of %XML.Security.DataReference and specify the encrypted data instance as the
argument. This method returns an instance of %XML.Security.DataReference.
b. Call the AddReference() method of your reference list instance and specify the data reference instance as the
argument.
For example:
ObjectScript
set dataref=##class(%XML.Security.DataReference) .Create(encdata)
do reflist.AddReference(dataref)

5. Addthe <ReferenceList> element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. For the element to add, specify your reference
list instance. For example:

ObjectScript
do ..SecurityOut._AddSecurityElement(reflist)
Note: The <Referencel ist> element must be added before you add the other items.

6. Addthe<EncryptedKey> element totheWS-Security header element. Usethe AddSecurityElement(). For example:
ObjectScript

do ..SecurityOut.AddSecurityElement(enckey)

7. Addtheencrypted security header element to the WS-Security header element. To do so, call the AddSecurityElement()
method of the SecurityOut property of your web client or web service. In this case, you specify two arguments:

a. Thesecurity header element toinclude (not the instance of the %XML.Security.EncryptedData based on that element).

b. Theencrypted key instance. The second argument specifieswhereto place theitem specified by thefirst argument.
If the arguments are A,B, then InterSystems IRIS ensures that A is after B. You specify this so that the recipient
processes the encrypted key first and later processes the encrypted security header element that depends on it.

For example:

ObjectScript

do ..SecurityOut.AddSecurityElement(userToken,enckey)
Or, if the encrypted security header element is<Signature>, use AddSecurityElement() instead.
68 Securing Web Services

Signing and Then Encrypting with Symmetric Keys

8. Follow the steps Adding aDigital Signature.
9. Send the SOAP message. See the general commentsin Adding Security Header Elements.

11.3 Signing and Then Encrypting with Symmetric Keys

To sign and then encrypt (when using symmetric keys):
1. Follow the stepsin Using a <DerivedK ey Token> for Encryption.
2. Follow the stepsin Using a <DerivedKeyToken> for Signing.

11.3.1 Using <DerivedKeyToken> Elements

The following example signs and then encrypts using symmetric keys. It creates an <EncryptedKey> element using the
public key of the message recipient and then uses that to generate two <Der i vedKeyToken> elements, one for signing
and one for encryption:

ObjectScript

// create UsernameToken
set userToken=##class(%SOAP.Security.UsernameToken) .Create(''_SYSTEM","SYS™)

//get credentials of message recipient
set x509alias = "'servernopassword"
set cred = ##class(%SYS.X509Credentials).GetByAlias(x509alias)

//get EncryptedKey element
set enc=##class(%XML.Security.EncryptedKey) .Createx509(cred, $$$SOAPWSEncryptNone)
do client._SecurityOut.AddSecurityElement(enc)

// get derived keys

set dkenc=##class(%SOAP.WSSC.DerivedKeyToken) .Create(enc, $$$SOAPWSReferenceEncryptedKey)
do client.SecurityOut.AddSecurityElement(dkenc)

set dksig=##class(%SOAP_WSSC.DerivedKeyToken) .Create(enc,$$$SOAPWSReferenceEncryptedKey)
do client._SecurityOut.AddSecurityElement(dksig)

// create and add signature
set sig=##class(%XML.Security.Signature).Create(dksig, ,$$$SOAPWSReferenceDerivedKey)
do client._SecurityOut._AddSecurityElement(sig)

// ReferenceList to encrypt Body and Username. Add after signing

set reflist=##class(WXML.Security.ReferenceList).%New()

set refopt=$$$SOAPWSReferenceDerivedKey

set encryptedData=##class(%XML.Security.EncryptedData) .Create(dkenc,userToken,refopt)
set dataref=##class(%XML.Security.DataReference) .Create(encryptedData)

do reflist.AddReference(dataref)

set encryptedData=##class(%XML.Security.EncryptedData) .Create(dkenc,"",refopt)

set dataref=##class(%XML.Security.DataReference) .Create(encryptedData)

do reflist.AddReference(dataref)

do client.SecurityOut.AddSecurityElement(reflist)

// Add UsernameToken; force after ReferencelList so that it can decrypt properly
do client.SecurityOut.AddSecurityElement(userToken,reflist)

This client sends messages like the following:

<SOAP-ENV:Envelope [parts omitted]">
<SOAP-ENV:Header>
<Security xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""1d-AOCBB4B7-18A8-40C1-A2CD-COC383BF9531"">
<EncryptionMethod Algorithm="[parts omitted]#rsa-oaep-mgflp">
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="[parts omitted]#shal"></DigestMethod>

</EncryptionMethod>
<KeylInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

Securing Web Services 69

Combining Encryption and Signing

<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1l">
5afOHv1w7WSXwDyz6F3WdM1r6cM=</Keyldentifier>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>fR4hoJdy4[parts omitted]Gmglxg==</CipherValue>
</CipherData>
</EncryptedKey>
<DerivedKeyToken xmlns="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmIns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
wsu: 1d="Enc-43F73EB2-77EC-4D72-9DAD-17B1781BC49C"">
<SecurityTokenReference xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#1d-A0CBB4B7-18A8-40C1-A2CD-C0OC383BF9531'"'></Reference>
</SecurityTokenReference>
<Nonce>Q1wDtOPSSLmARcy+Pg49Sg==</Nonce>
</DerivedKeyToken>
<DerivedKeyToken xmlns="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmIns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
wsu: 1d=""Enc-ADE64310-E695-4630-9DA6-A818EF5CEE9D"">
<SecurityTokenReference xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#I1d-AOCBB4B7-18A8-40C1-A2CD-COC383BF9531"></Reference>
</SecurityTokenReference>
<O0ffset>0</0Offset>
<Length>24</lLength>
<Nonce>PvaakhgdxoBVLR611j6KGA==</Nonce>
</DerivedKeyToken>
<ReferenceList xmIns="http://www.w3.0rg/2001/04/xmlenc#">
<DataReference URI="#Enc-F8013636-5339-4C25-87CD-C241330865F5" ></DataReference>
<DataReference URI="#Enc-CDF877AC-8347-4903-97D9-E8238C473DC4"'"></DataReference>
</ReferenceList>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-F8013636-5339-4C25-87CD-C241330865F5""
Type="http://www.w3.0rg/2001/04/xmlenc#Element'>
<EncryptionMethod Algorithm="[parts omitted]#aes256-cbc"></EncryptionMethod>
<KeylInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#Enc-43F73EB2-77EC-4D72-9DAD-17B1781BC49C"'></Reference>
</SecurityTokenReference>
</KeylInfo>
<CipherData>
<CipherValue>ebxkmD[parts omitted]ijtlg==</CipherValue>
</CipherData>
</EncryptedData>
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</CanonicalizationMethod>
<SignatureMethod Algorithm="[parts omitted]#hmac-shal'></SignatureMethod>
<Reference URI="#Body-COD7FFO05-EE59-41F6-939D-7B2F2B883E5F'">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"'></Transform>
</Transforms>
<DigestMethod Algorithm="[parts omitted]#shal'></DigestMethod>
<DigestValue>vic7p2selz4WvmlnAX67pOxF1VI=</DigestValue>
</Reference>
</Signedinfo>
<SignatureValue>TxI1Ba4a8wX50FN+eyjjsUuLdn7U=</SignatureValue>
<KeyInfo>
<SecurityTokenReference xmIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#Enc-ADE64310-E695-4630-9DA6-A818EF5CEEID "' ></Reference>
</SecurityTokenReference>
</KeylInfo>
</Signature>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body wsu:l1d="Body-COD7FFO5-EE59-41F6-939D-7B2F2B883E5F"">
<EncryptedData xmIns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-CDF877AC-8347-4903-97D9-E8238C473DC4""
Type="http://www._.w3.0rg/2001/04/xmlenc#Content">
<EncryptionMethod Algorithm="[parts omitted]#aes256-cbc'></EncryptionMethod>
<KeyInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Reference URI="#Enc-43F73EB2-77EC-4D72-9DAD-17B1781BC49C""></Reference>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>vYtzDsv[parts omitted]GohGsL6</CipherValue>
</CipherData>

70 Securing Web Services

Encrypting and Then Signing with Symmetric Keys

</EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

11.4 Encrypting and Then Signing with Symmetric Keys

To encrypt and then sign (when using symmetric keys):
1. Follow the stepsin Using a <DerivedKeyToken> for Signing.
2. Follow the stepsin Using a <DerivedKeyToken> for Encryption.

11.5 Order of Security Header Elements

In general, you should add security elements to the security header in the order in which you perform the processing. The
message recipient should be able to process the message from beginning to end without having any forward references.

The following table lists the resulting order of security header elements when you use asymmetric keys (these scenarios
use asymmetric key bindings):

Signing and then encrypting Encrypting and then signing
1. Other header elements 1. Other header elements
2. <EncryptedKey> 2. <EncryptedKey>
3. <Signature> 3. <Signature>
4. <ReferencelList>

Thefollowing table lists the resulting order of security header el ements when you use symmetric keys (these scenarios use
symmetric key bindings):

Signing and then encrypting Encrypting and then signing
1. Other header elements 1. Other header elements

2. <EncryptedKey> 2. <EncryptedKey>

3. <DerivedKeyToken> 3. <DerivedKeyToken>

4. <DerivedKeyToken> 4. <DerivedKeyToken>

5. <ReferenceList> 5. <Signature>

6. <Signature> 6. <ReferenceList>

Securing Web Services 71

12

Validating and Decrypting Inbound
Messages

This topic describes how to validate security elements in messages received by an InterSystems IRIS web service or web
client (and automatically decrypt any encrypted content).

12.1 Overview

InterSystems | RIS web services and web clients can validate the WS-Security header element for inbound SOA P messages,
aswell as automatically decrypt the inbound messages.

InterSystems | RIS web services and web clients can also process asigned SAML assertion token and validate its signature.
However, it is the responsibility of your application to validate the details of the SAML assertion.

All the preceding activities are automatic if you use a security policy.

Inall scenarios, InterSystems | RIS usesits collection of root authority certificates; see Setup and Other Common Activities.

12.2 Validating WS-Security Headers

To validate the WS-Security header elements contained in any inbound SOAP messages, do the following:
1. Intheweb service or the web client, set the SECURITYIN parameter. Use one of the following values:

* REQUIRE — The web service or the web client verifies the WS-Security header element and issues an error if
there isamismatch or if this element is missing.

e ALLOW— The web service or the web client verifies the WS-Security header element.
In both cases, the web service or the web client validates the <T imestamp>, <UsernameToken>,

<BinarySecurityToken>, <Signature>, and <EncryptedKey> header elements. It also validates the WS-
Security signature in the SAML assertion in the header, if any. The message is also decrypted, if appropriate.

If validation fails, an error is returned.

There are two additional possible values for SECURITYIN parameter, for usein testing and troubleshooting:

Securing Web Services 73

Validating and Decrypting Inbound Messages

* IGNORE — The web service or client ignores the WS-Security header elements except for <UsernameToken>,
as described in CSP Authentication and WS-Security.

For backward compatibility, this value is the default.
* IGNOREALL — The web service or client ignores all WS-Security header elements.

For an example, see Message Encryption Example.

Note: The SECURITYIN parameter isignored if there isa security policy in an associated (and compiled) configuration
class.

12.3 Accessing a SAML Assertion in the WS-Security
Header

If the WS-Security header element includes an <Assertion> element, an InterSystems IRIS web service or web client
automatically validates the signature of that SAML assertion, if it is signed.

Note: Validation requires atrusted certificate. InterSystems IRIS can validate a signature if it can verify the signer’s
certificate chain from the signer’s own certificate to a self-signed certificate from a certificate authority (CA) that
istrusted by InterSystems IRIS, including intermediate certificates (if any).

InterSystems IRI'S does not, however, automatically validate the assertion. Your code should retrieve the assertion and
vaidate it.

To access the SAML assertion, find the <Assertion> element of the security header element. To do so, use the
FindElement() method of the Securityln property of the service or client, as follows:

ObjectScript

Set assertion=..Securityln.FindElement(''Assertion')

Thisreturns an instance of %SAML.Assertion. Examine properties of this object as needed.

12.4 Instance Authentication and WS-Security

It isuseful to understand that with an InterSystems RIS web service, two separate mechanismsarein effect: the IRIS server
and the web service code.

* Inthe Management Portal, you specify allowed authentication modes for aweb application, thus controlling access to
the %Ber vi ce_WebGat eway service. (For details, see Timestamp and Username Token Example. For additional
background, see Web Applications.) If you select the Password option, the web application can accept an | nterSystems
IRIS username/password pair; thisis called instance authentication.

* Independently of this, the web service can require an InterSystems IRIS username/password pair.

These mechanisms work together as follows:

1. Upon receiving a message, the web service checks for the presence of aheader element called <Secur i ty>, without
examining the contents of that element.

74 Securing Web Services

Retrieving a Security Header Element

2. If no <Security> header element is present and if the SECURITYIN parameter equals REQUIRE, the web service
issues afault and quits.

3. If the<Security> header element contains a <UsernameToken> element:

» If you selected the Password option for the web application, the web servicereadsthe <UsernameToken> el ement,
obtains the username and password from that, and logs in to the web application.

The web service does this for any value of the SECURITYIN parameter, except for IGNOREALL.

The username is available in the SUSERNAME special variable and in the Username property of the web service.
The password is not available.

e |If youdid not select the Password option, no login occurs.

Note: The SECURITYIN parameter isignored if there isa security policy in an associated (and compiled) configuration
class.

12.5 Retrieving a Security Header Element

In some cases, you might want to add custom processing for WS-Security header elements. To do this, use the Securityln
property of theweb serviceor client. If aserviceor client receivesWS-Security header elements, this property isan instance
of %SOAP.Security.Header that contains the header elements. For example:

ObjectScript
Set secheader=myservice.Securityln

Then use one of the following methods of that instance to retrieve a header element:

FindByEncryptedKeySHA1()
method FindByEncryptedKeySHAl(encryptedKeySHAL1 As %Binary) as %SOAP.Security.Element

Returnsthe key from an <EncryptedKey> element that correspondsto the given EncryptedKeySHA 1 argument.
Or returns the empty string if there is no match.

FindElement()
method FindElement(type As %String, ByRef pos As %String) as %SOAP.Security.Element

Returns the first security element of the specified type after position pos. If thereis no match, the method returns
the empty string (and returns pos as 0).

For type, specify ""Timestamp", ""BinarySecurityToken", "UsernameToken", ""'Signature", or
"EncryptedKey"'.

FindLastElement()

method FindLastElement(type As %String, ByRef pos As %String) as %SOAP.Security.Element

Returns the last security element of the specified type. If there is no match, the method returns the empty string
(and returns pos as 0).

For information on type, see the entry for FindElement().

Securing Web Services 75

Validating and Decrypting Inbound Messages

All these methods return either an instance of %SOAP.Security.Element or an instance of one the following subclasses,
depending upon the element type:

Element Type Subclass Used

"Timestamp" %SOAP.Security. Timestamp
"BinarySecurityToken" %SOAP.Security.BinarySecurityToken
""UsernameToken" %SOAP.Security.UsernameToken
"'Signature" %XML.Security.Signature

For details, see the class reference.

12.6 Checking the Signature Confirmation

TheWS-Security 1.1 <SignatureConfirmation> feature enablesaweb client to ensure that areceived SOAP message
was generated in response to the original request sent by the web client. The client request istypically signed but does not
haveto be. In thismechanism, theweb service addsa<SignatureConfi rmation>element to the security header element,
and the web client can check that <SignatureConfirmation> element.

For aweb client, to validate the <SignatureConfirmation> elementsin aresponse received from aweb service, cal
the W SCheck SignatureConfir mation() method of the web client. This method returns true if the
<SignatureConfirmation> elements are valid, or false otherwise.

For information on adding signature confirmation to messages sent by aweb service, see Adding Signature Confirmation.

76 Securing Web Services

13

Creating Secure Conversations

InterSystems RIS supports secure conversations, following the WS-SecureConversation 1.3 specification. This page
describes how to manually create secure conversations.

13.1 Overview

In a secure conversation, aweb client makes an initial request to the web service and receives a message that contains a
<SecurityContextToken>. Thiselement contains information about a symmetric key that both parties can use. This
information refersto a shared secret key known only to the two parties. Both parties can then use the symmetric key in
subsequent exchanges, until the token expires or until the client cancels the token.

Rather than directly using the <SecurityContextToken> for these tasks (which is not recommended), both parties
should generate a <Der ivedKeyToken> from it, and then use that for encryption, signing, decryption, and signature
validation.

The shared secret key can be specified in any of the following ways:
» Jointly, by both parties, if they both provide arandom entropy value. Thisisthe typical scenario.
» By theclient, if the client provides arandom client entropy value.

» By theservice, if the service provides a random service entropy value.

13.2 Starting a Secure Conversation

A web client starts a secure conversation. To do thisin InterSystems IRIS, do the following within the web client:

1. Encrypt the SOAP body. The request sent by the client contains information that must be protected; thisinformation
is carried within the SOAP body.

Optionally secure the request message in other ways as needed.

2. Cdl the CreateBinarySecret() method of %SOAP.WST.Entropy. This method returns an instance of that class that
represents the random client entropy. The method takes one argument, the size of the entropy in bytes.

For example:

Securing Web Services 77

Creating Secure Conversations

ObjectScript

set clientEntropy=##class(%SOAP.WST.Entropy) .CreateBinarySecret(32)

This instance represents the <Entropy> element and the <BinarySecret> contained in it.

3. Cadl the Createl ssueRequest() class method of %SOAP.WST.RequestSecurityToken. This method returns an instance
of this class, which the client will use to request a secure conversation. The method has the following arguments:

a. Interval, thelifetime of the requested token. The default is 300 seconds; use an empty string to not specify alifetime.
b. clientEntropy, the client entropy object you created in the previous step, if applicable.

c. requireServerEntropy, aboolean value that specifies whether the server must use server entropy when it creates
the <SecurityContextToken>. The default isfalse.

set RST=##class(%SOAP_WST.RequestSecurityToken) .CreatelssueRequest(300,clientEntropy,1)

4. Optionally specify the ComputedKeySize property of the %SOAP.WST.RequestSecurityToken instance.

5. Cdl the StartSecureConver sation() method of the web client. This method sends a message to the web service that
requests a<SecurityContextToken> that both parties can use. This method takes one argument, the instance of
%SOAP.WST.RequestSecurityToken from the previous step.

This method returns a status code, which your code should check. If the response indicates success, the
SecurityContextToken property of the client contains an instance of %SOAP.WSSC.SecurityContextToken that represents
the<SecurityContextToken> returned from the client. This element containsinformation about asymmetric key
that both parties can use for encryption, signing, decryption, and signature validation.

6. Usethe<SecurityContextToken> to respecify the security headers as needed. See Using the <SecurityContext-
Token>.

The following shows an example;

ObjectScript

//encrypt the SOAP body because it contains part of the shared secret key
Set x509alias = '"'servernopassword"

Set cred = ##class(%SYS.X509Credentials).GetByAlias(x509alias)

set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(cred)

do client.SecurityOut.AddSecurityElement(enckey)

// if client entropy to be passed

set entropy=##class(%SOAP.WST.Entropy) .CreateBinarySecret(32)

// request with 300 second lifetime and computed key using both client

//and server entropy.

set RST=##class(%SOAP._WST.RequestSecurityToken) .CreatelssueRequest(300,entropy,1)
set sc=client.StartSecureConversation(RST) ; sends a SOAP message

13.3 Enabling an InterSystems IRIS Web Service to
Support WS-SecureConversation

A secure conversation starts when aweb client sends a message to the web service requesting a secure conversation. In
response, the web service sends a<SecurityContextToken> that both parties can use.

To enable an InterSystems | RI Sweb serviceto respond with thistoken, override the OnStart Secur eConver sation() method
of the web service. This method has the following signature:

Method OnStartSecureConversation(RST As %SOAP_WST.RequestSecurityToken) As
%SOAP .WST .RequestSecurityTokenResponseCollection

78 Securing Web Services

Enabling an InterSystems IRIS Web Service to Support WS-SecureConversation

This method should do the following:

1. Encrypt the SOAP body. The message sent by OnStartSecureConver sation() contains information that must be pro-
tected; thisinformation is carried within the SOAP body.

Optionally secure the message in other ways as needed.

2. Optionaly, call the CreateBinarySecret() method of %SOAP.WST.Entropy. This method returns an instance of that
class that represents the random server entropy. The method takes one argument, the size of the entropy in bytes.

For example:

ObjectScript

set serverEntropy=##class(%SOAP.WST.Entropy) .CreateBinarySecret(32)

This instance represents the <Entropy> element and the <BinarySecret> contained in it.

3. Cdl the Createl ssueResponse() method of the %SOAP.WST.RequestSecurityToken instance that is received by
OnStartSecureConver sation(). The Createl ssueResponse() method takes the following arguments:

a. $THIS, which represents the current web service instance.

b. keysize, the size of the desired key in bytes. This argument is used only if both server entropy and client entropy
are provided. The default is the size of the smaller key, given the key in the client entropy and the key in the server
entropy.

c. requireClientEntropy, which is either true or false, depending on whether the web service requires the request to
include client entropy. If thisis false, the request must not include client entropy.

d. serverEntropy, the server entropy object you created in step 2, if applicable.
e. error, astatus code that is returned as an output parameter.

f. lifetime, an integer that specifies the lifetime of the secure conversation, in seconds.

For example:
set responseCollection=RST.CreatelssueResponse($this,,1,serverEntropy, .error)

4. Check the error output parameter from the previous step. If an error occurred, your code should set the SoapFault
property of the web service and return an empty string.

5. Inthe case of success, return the instance of %SOAP.WST.RequestSecurityTokenResponseCollection that was created
by step 2.

This instance represents the <RequestSecurityTokenResponseCol lection> element, which contains the
<SecurityContextToken> that both parties can use.

The following shows an example:

Class Member

Method OnStartSecureConversation(RST As %SOAP._WST.RequestSecurityToken)
As %SOAP_WST .RequestSecurityTokenResponseCol lection

{

// encrypt the SOAP body sent by this messsage

//because it contains part of the shared secret key

Set x509alias = "clientnopassword"

Set cred = ##class(%SYS.X509Credentials).GetByAlias(x509alias)
set enckey=##class(%XML.Security.EncryptedKey) .CreateX509(cred)
do ..SecurityOut._AddSecurityElement(enckey)

//Supply the server entropy
set serverEntropy=##class(%SOAP.WST._Entropy) .CreateBinarySecret(32)
// Get the response collection for computed key

Securing Web Services 79

Creating Secure Conversations

set responseCollection=RST.CreatelssueResponse($this, ,1,serverEntropy, .error)

If error==""

{
set ..SoapFault=##class(%SOAP.WST.RequestSecurityTokenResponse) .MakeFault('InvalidRequest')
Quit ™

Quit responseCollection

Note: The OnStartSecureConver sation() method isinitially defined to return a <SecurityContextToken> only

if that is specified by a policy. See Creating and Using Policies.

13.4 Using the <SecurityContextToken>

After aweb servicerespondswith a<Secur i tyContextToken>, the client instance and the serviceinstance have access
to the same symmetric key. Information about thiskey is contained in the SecurityContextToken property of both instances.
The recommended procedureis as follows:

1

Inthe client, set the SecurityOut property to null, to remove the security headers that were used in the request message.
Thisisnot needed in the web service, because the web service automatically clears the security headers after each call.
Optionally add the <SecurityContextToken> to the WS-Security header element. To do so, call the
AddSecurityElement() method of the SecurityOut property of your web client or web service. For example:
ObjectScript

set SCT=..SecurityContextToken
do ..SecurityOut._AddSecurityElement(SCT)

Thisisnecessary if you use the $$$SOAPWSReferenceSCT reference option when you create the derived key token
in the next step. Otherwise, this step is not necessary.

Create anew <Der ivedKeyToken> based on the<SecurityContextToken>. To do so, call the Create() method
of %SOAP.WSSC.DerivedKeyToken, as follows:
ObjectScript

set dkenc=##class(%SOAP._WSSC.DerivedKeyToken) .Create(SCT, refOpt)

In this scenario, you must specify the first argument to Create(), and refOpt must be one of the following reference
values:

* $$$SOAPWSReferenceSCT (alocal reference) — The URI attribute of the reference starts with # and pointsto
thewsu: Id value of the <SecurityContextToken> element, which must be included in the message.

* $$$SOAPWSReferenceSCTIdentifier (aremotereference) — The URI attribute of the reference contains
the <ldentifier> value of the <SecurityContextToken> element, which does not have to be included in

the message.

For example:

ObjectScript

set dkenc=##class(%SOAP.WSSC.DerivedKeyToken) .Create(SCT,$$$SOAPWSReferenceSCT)

Use the new <DerivedKeyToken> as wanted to specify security headers. See Using Derived Key Tokens for
Encryption and Signing.

80

Securing Web Services

Ending a Secure Conversation

5. Send the SOAP message. See the general commentsin Adding Security Header Elements.
The following shows an example:

ObjectScript

//initiate conversation -- not shown here

//clear SecurityOut so that we can respecify the security header elements for
//the secure conversation

set client.SecurityOut=""

//get SecurityContextToken

set SCT=client.SecurityContextToken

do client._SecurityOut.AddSecurityElement(SCT)

// get derived keys

set dksig=##class(%SOAP.WSSC.DerivedKeyToken).Create(SCT,$$$SOAPWSReferenceSCT)
do client._SecurityOut.AddSecurityElement(dksig)

// create and add signature

set sig=##class(%XML.Security.Signature).Create(dksig, ,$$$SOAPWSReferenceDerivedKey)
do client.SecurityOut.AddSecurityElement(sig)

//invoke web methods

13.5 Ending a Secure Conversation

A secure conversation ends as soon as the <Secur i tyContextToken> expires, but the web client can also end it by
canceling an unexpired <SecurityContextToken>.

To end a secure conversation, call the Cancel Secur eConver sation() method of the web client. For example:
set status=client.CancelSecureConversation()

The method returns a status value.
Note that this method sets the SecurityOut property of the client to an empty string.

Securing Web Services 81

14

Using WS-ReliableMessaging

InterSystems RIS supports parts of the WS-Reliabl eM essaging specifications, as described in Introduction. This specification
provides amechanism to reliably deliver asegquence of messages, in order. This page describes how to manually usereliable

messaging.

14.1 Sending a Sequence of Messages from the Web
Client

To send a sequence of messages reliably from an InterSystems IRIS web client to aweb service that supports WS-Reli-
ableMessaging, do the following:

1. Specify the security header elements of the web client as needed.
If you are using WS-SecureConversation, start the secure conversation.
2. Call the Create() class method of %SOAP.RM.CreateSequence. This returns an instance of that class.

This method has the following signature:

classmethod Create(addressingNamespace As %String,
oneWay As %Boolean = O,
retrylnterval As %Float = 1.0,
maxRetryCount As %Integer = 8,
expires As %xsd.duration,
SSLSecurity As %Boolean = 0) as %SOAP_RM.CreateSequence

Where:

e addressingNamespace is the namespace being used for WS-Addressing support. The default is
"http://www.w3.0rg/2005/08/addressing"

* oneWay istrueif only request sequenceisto be created.

* retrylnterval isinterval in seconds to wait before retry.

* maxRetryCount is the maximum number of retries when no activity has taken place.

» expiresisan XML format duration that specifies requested duration of the sequence to be sent.
eSS Security specifies whether the web client uses SSL to connect to the web service.

3. Cdl the % StartRM Session() method of the web client and pass the instance of %SOAP.RM.CreateSequence as the
argument.

Securing Web Services 83

Using WS-ReliableMessaging

Note that you can use the instance of %SOAP.RM.CreateSequence only onetime. That is, you cannot use it to create
another session later.

4. Invoke web methods as needed.
Use the same web client instance each time.

5. Cadll the % CloseRM Session() method of the web client when you are done sending messages.

Important: Also make sure to sign the WS-ReliableM essaging headers as described in the next section.

14.2 Signing the WS-ReliableMessaging Headers

You can sign the WS-ReliableM essaging headers in either of the following ways.

14.2.1 Signing the Headers with the SecurityContextToken

If you are also using WS-SecureConversation, the SecurityContextToken property of web client contains a symmetric key
that you can use to sign the WS-ReliableM essaging header elements. To do so, call the AddSTR() method of the instance
of %SOAP.RM.CreateSequence, passing the SecurityContextToken property as the argument:

do createsequence.AddSTR(client.SecurityContextToken)

Do this before calling % StartRM Session().

14.2.2 Signing the Headers When Signing the Message

You can aso sign the WS-ReliableM essaging headers in the same way that you sign the rest of the message. To do so, add
thevalue $$$SOAPWS I nc ludeRMHeader s to the signatureOptions argument when you call the Create() or CreateX509()
method of %XML.Signature. The $$$SOAPWS IncludeRMHeaders macro isincluded in the %soap.inc file.

14.3 Modifying aWeb Service to Support
WS-ReliableMessaging

To modify an InterSystems IRIS web service to support WS-ReliableM essaging, modify the web methods so that they do
the following:

* Verify theinbound request messages contain the WS-ReliableM essaging headers.
e Verify that the WS-ReliableM essaging headers are signed.

Note that InterSystems IRIS automatically checks whether any signatures are valid. See Validating and Decrypting
Inbound M essages.

» Optionaly specify the parameters of the web service class to fine-tune the behavior of the web service, as described
in the next section.

84 Securing Web Services

Controlling How the Web Service Handles Reliable Messaging

14.4 Controlling How the Web Service Handles Reliable
Messaging

You can specify the following parameters of the web service class to fine-tune the behavior of the web service:

RMINORDER

Corresponds to the InOrder policy assertion of WS-ReliableM essaging. Specify this as either O (false) or 1 (true).
See the Web Services Reliable Messaging Policy 1.1 specification for details.

By default, when this parameter is not specified, an InterSystems | RIS the web service does not issue SOAP faults
about the order of messages.

RMDELIVERYASSURANCE

Correspondsto the DeliveryAssurance policy assertion of WS-ReliableM essaging. Specify thisas"ExactlyOnce™,
"AtlLeastOnce", or ""AtMostOnce"". Seethe Web Services Reliable Messaging Policy 1.1 specification for
details.

By default, when this parameter is not specified, an InterSystems | RIS the web service does not issue SOAP faults
about any failuresto deliver according to this policy assertion.

RMINACTIVITYTIMEOUT
Specifiestheinactivity timeout, in seconds, for the sequence received by the web service. The default is 10 minutes.

Also, you can implement the % OnCreateRM Session() callback method of the web service. This method isinvoked at the
start of WS-ReliableM essaging session before the %SOAP.RM .CreateSequenceResponse isreturned. The response argument
has been completely created and not yet returned at this point. This callback gives you an opportunity to add any required
Security header elements to the SecurityOut property of the web service. If WS-Palicy is used, then WS-Policy support
does this automatically. For the method signature, see the class reference for %SOAP.WebService.

Securing Web Services 85

15

Creating and Adding SAML Tokens

This topic describes how to add a SAML token to the WS-Security header element.
Also seethe class reference for %SAML.Assertion and related classes.

Full SAML support isnot implemented. SAML support in InterSystems IRISrefersonly to the detailslisted in WS-Security
Support in InterSystems IRIS.

15.1 Overview

With InterSystems RIS SOAP support, you can add a SAML token to the WS-Security header element.

Optionally, you can usethis SAML token as key materia for signing or encryption. If you do so, InterSystems RIS follows
theWS-Security SAML Token Profile specification. The key material comesfrom the<SubjectConfirmation> element
of the SAML assertion with the Holder-of-key (HOK) method and <SubjectConfirmationData> or
<KeyInfoConfirmationData> with a<Key Info> subelement.

Alternatively, you can add a <Sub jectConfirmation> with the Sender-vouches (SV) method; in this case, the subject
does not include akey. To protect the assertion in this case, it is recommended that you add a security token reference from
the message signature to the SAML token.

15.2 Basic Steps

To create a SAML token and add it to outbound SOA P messages, you can use the basic procedure here or the variations
described in the subsections.

1. Optionaly include the %soap.inc include file, which defines macros you might need to use.
2. Create an instance of %SYS.X509Credentials, as described in Retrieving Credential Sets Programmatically.

This InterSystems |RIS credential set must contain your own certificate. For example:

ObjectScript

Set x509alias = "servercred"”
Set pwd = "mypassword"
Set credset = ##class(%SYS.X509Credentials).GetByAlias(x509alias,pwd)

Securing Web Services 87

Creating and Adding SAML Tokens

10.
11
12.

13.

14.

Create a binary security token that contains the certificate associated with the given credential set. To do so, call the
CreateX509Token() class method of %SOAP.Security.BinarySecurityToken. For example:
ObjectScript

set bst=##class(%SOAP.Security.BinarySecurityToken) .CreateX509Token(credset)

Where credset is the InterSystems |RIS credential set you created in the previous step.

Add thistoken to the WS-Security header element. To do so, call the AddSecurityElement() method of the SecurityOut
property of your web client or web service. For the method argument, use the token you just created. For example:
ObjectScript

do ..SecurityOut.AddSecurityElement(bst)

Create asigned SAML assertion based on the binary security token. To do so, call the CreateX509() class method of
%SAML.Assertion. For example:
ObjectScript

set assertion=##class(%SAML .Assertion).CreateX509(bst)

This method returns an instance of %SAML.Assertion. InterSystems IRIS automatically sets the Signature, SAMLID,
and Version properties of thisinstance.

Thisinstance represents the <Assertion> element.

Specify the following basic properties of your instance of %SAML.Assertion:

e For Issuelnstant, specify the date and time when this assertion is issued.

» For Issuer, create an instance of %SAML.NamelD. Specify properties of thisinstance as needed and set the Issuer
property of your assertion equal to this instance.

Add SAML statements, as described in Adding SAML Statements.

Add a<Subject> element to the SAML assertion, as described in Adding a <Subject> Element.

Optionally add a<SubjectConfirmation> e ement to the<Subject>, asdescribed in Adding a <SubjectConfir-
mation> Element.

You can confirm the subject with either the Holder Of Key method or the Sender Voucher method.
Specify the SAML <Condi tions> element, as described in Adding a <Conditions> Element.
Optionally add <Advice> elements, as described in Adding <Advice> Elements.

Call the AddSecurityElement() method of the SecurityOut property of your web client or web service. For the method
argument, use the SAML token you created.

Optionally sign the SAML assertion by adding areference from the SOAP message signature to the SAML assertion.

If the signature is a %XML.Security.Signature object, then you would sign the SAML assertion as follows:

ObjectScript

Set str=##class(%SOAP.Security.SecurityTokenReference) .GetSAMLKeyldentifier(assertion)
Set ref=##class(%XML.Security.Reference).CreateSTR(str.Getld())
Do signature.AddReference(ref)

This step is recommended especially if you add a<SubjectConfirmation> with the Sender Vouches method.
Send the SOAP message. See the general commentsin Adding Security Header Elements.

88

Securing Web Services

Adding SAML Statements

15.2.1 Variation: Not Using a <BinarySecurityToken>

A <BinarySecurityToken> contains a certificate in serialized, base-64—-encoded format. You can omit this token and
instead use information that identifies the certificate; the recipient uses thisinformation to retrieve the certificate from the
appropriate location. To do so, use the preceding steps, with the following changes:

Skip steps 2 and 3. That is, do not create and add a<BinarySecurityToken>.
In step 4, usethe credential set (rather than abinary security token) asthefirst argument to CreateX509(). For example:

ObjectScript

set assertion=##class(%SAML.Assertion).CreateX509(credset, referenceOption)

For referenceOption, optionally specify avalue as described in Reference Options for X.509 Credentials. Use any
value except $$$SOAPWSReferenceDirect.

If you specify acredentia set as the first argument (as we are doing in this variation), the default reference option is
the thumbprint of the certificate.

15.2.2 Variation: Creating an Unsigned SAML Assertion

To create an unsigned SAML assertion, use the preceding steps, with the following changes:

Skip steps 1, 2, and 3. That is, do not create and add a<BinarySecurityToken>.
For step 4, use the Create() method instead of CreateX509(). This method takes no arguments. For example:

ObjectScript
set assertion=##tclass(%SAML.Assertion).Create()

This method returns an instance of %SAML.Assertion. InterSystems RIS automatically sets the SAMLID and Version
properties of thisinstance. The Signature property is null.

15.3 Adding SAML Statements

To add SAML statements to your instance of %SAML.Assertion:

1.

Create one or more instances of the appropriate statement classes:
* %SAML.AttributeStatement
* %SAML.AuthnStatement

e %SAML.AuthzDecisionStatement

Specify properties of these instances as needed.

For %SAML.AttributeStatement, the Attribute property is an instance of either %SAML.Attribute or
%SAML.EncryptedAttribute.

%SAML.Attribute carries attribute valuesin its AttributeValue property, whichisalist of %SAML.AttributeValue instances.

To add attribute values to a %SAML.Attribute instance:

Securing Web Services 89

Creating and Adding SAML Tokens

a. Createinstances of %SAML.AttributeValue.
b. Usemethods of %SAML.AttributeValue to specify the attribute either as XML, asastring, or asasingle child element.
c. Createalist that contains these attribute val ue instances.
d. Setthe AttributeValue property of your attribute object equal to thislist.
Or directly specify the AttributeValueOverride property. For the value, use the exact string (an XML mixed content
string) needed for the value.

3. Createalist that contains these statement instances.

4. Set the Statement property of your assertion object equal to thislist.

15.4 Adding a <Subject> Element

To add a<Subject> element to your instance of %SAML.Assertion:
1. Create anew instance of %SAML.Subject.
2. Set properties of the subject as needed.

3. Set the Subject property of your assertion object equal to this instance.

15.5 Adding a <SubjectConfirmation> Element

To add a<SubjectConfirmation> element to your instance of %SAML.Assertion, use the stepsin one of thefollowing
subsections.

15.5.1 <SubjectConfirmation> with Method Holder-of-key

To add a <Sub jectConfirmation> with the Holder-of-key method, do the following;:
1. Create aninstance of %SYS.X509Credentials as described in Retrieving Credential Sets Programmatically.
Or use the same credential set that you use to sign the assertion.

2. Optionally create and then add a binary security token that contains the certificate associated with the given credential
Set.

To create the token, call the CreateX509Token() class method of %SOAP.Security.BinarySecurityToken. For example:

ObjectScript

set bst=##class(%SOAP.Security.BinarySecurityToken).CreateX509Token(credset)

Where credset is the credential set you created in the previous step.

To add this token to the WS-Security header element, call the AddSecurityElement() method of the SecurityOut
property of your web client or web service. For the method argument, use the token you just created.

920 Securing Web Services

Adding a <SubjectConfirmation> Element

3. Cdl the AddX509Confirmation() method of the Subject property of your SAML assertion object.

method AddX509Confirmation(credentials As %SYS.X509Credentials,
referenceOption As %lInteger) as %Status

For credentials, use the binary security token or the credential set. In the former case, do not specify referenceOption.
In the latter case, specify avalue as described in Reference Options for X.509 Credentials.

The <SubjectConfirmation> element is based on an X.509 KeyInfo element.

15.5.2 <SubjectConfirmation> with Method Sender-vouches

To add a <Sub jectConfirmation> with the Sender-vouches method, do the following:
1. Setthe NamelD property of the Subject property of your SAML assertion object.
2. Cdl the AddConfirmation() method of the Subject property of your SAML assertion object.

method AddConfirmation(method As %String) as %Status

For method, specify $$$SAMLSenderVouches, $$$SAMLHolderOfKey or $$$SAMLBearer.

In this case, be sureto sign the SAML assertion to protect it.

15.5.3 <SubjectConfirmation> with <EncryptedKey>

Toadd a<SubjectConfirmation> that carriesa<SubjectConfirmationData> that containsan <EncryptedKey>
element, do the following:

1. Create an instance of %SYS.X509Credentials as described in Retrieving Credential Sets Programmatically.
Or use the same credential set that you use to sign the assertion.

2. Set the NamelD property of the Subject property of your SAML assertion object.

3. Cdl the AddEncryptedK eyConfirmation() method of the Subject property of your SAML assertion object.

method AddEncryptedKeyConfirmation(credentials As %X509.Credentials) as %Status

For the argument, use the instance of %SYS.X509Credentials that you previously created.

15.5.4 <SubjectConfirmation> with BinarySecret as Holder-of-key
To add a<SubjectConfirmation> with aBinarySecret as Holder-of-key, do the following:
1. When you sign the SAML assertion, create the signature as follows:
set sig=##class(%XML.Security.Signature).Create(assertion,$$$SOAPWSIncludeNone, $$$SOAPWSSAML)

Where assertionisthe SAML assertion. Notethat you use the Create() method in this scenario. The $$$SOAPWSSAML
reference option creates a reference to the SAML assertion.

2. Create aBinarySecret. To do so, call the Create() method of %SOAP.WST.BinarySecret:
set binsec=##class(%SOAP_WST.BinarySecret) .Create()
3. Cdl the AddBinarySecretConfirmation() method of the Subject property of your SAML assertion object:

set status=assertion.Subject.AddBinarySecretConfirmation(binsec)

Securing Web Services 91

Creating and Adding SAML Tokens

For binsec, use the BinarySecret you created in the previous step.

Thisaddsa<SubjectConfirmation> that containsa<SubjectConfirmationData> that containsa<KeyInfo>
that contains the <BinarySecret>.

15.6 Adding a <Conditions> Element

To add a<Conditions> element to your instance of %SAML.Assertion:

1. Create an instance of %SAML.Conditions.

2. Specify properties of thisinstance as needed.

3. Set the Conditions property of your assertion object equal to thisinstance.

15.7 Adding <Advice> Elements

To add <Advice> elementsto your instance of %SAML.Assertion:
1. Createinstances of one or more of the following classes:

* %SAML.AssertionIDRef

* %SAML.AssertionURIRef

* %SAML.EncryptedAssertion

2. Specify properties of these instances as needed.
3. Createalist that contains these advice instances.

4. Set the Advice property of your assertion object equal to thislist.

92 Securing Web Services

16

Troubleshooting Security Problems

This topic provides information to help you identify causes of SOAP security problemsin InterSystems IRIS.

For information on problems unrelated to security, see Troubleshooting SOAP Problems in InterSystems IRIS.

16.1 Information Needed for Troubleshooting

To troubleshoot SOAP problems, you typically need the following information:
 TheWSDL and all external documentsto which it refers.

* (Inthe case of message-related problems) Some form of message logging or tracing. You have the following options:

Option Usable with
SSL/TLS?

InterSystems IRIS SOAP Yes

log

Web Gateway trace Yes

Third-party tracing tools No

Shows HTTP Comments

headers?

No

Yes

Depends on
the tool

For security errors, this log shows
more detail than is contained in the
SOAP fault.

For problems with SOAP messages
that use MTOM (MIME attachment),
it is crucial to see HTTP headers.

Some tracing tools also show
lower-level details such as the
actual packets being sent, which
can be critical when you are
troubleshooting.

These options are discussed in Troubleshooting SOAP Problemsin InterSystems IRIS.

* Intherarecasethat your SOAP client isusing HT TP authentication, note that you can enable logging for the authenti-

cation; see Providing Login Credentials.

It isalso extremely useful to handle faults correctly so that you receive the best possible information. See SOAP Fault

Handling.

Securing Web Services

93

Troubleshooting Security Problems

16.2 Possible Errors

This section discusses possible security-related errorsin InterSystems |RIS web services and web clients:

If you have just generated the InterSystems |RISweb service or client, it might not yet be configured to recognize WS-
Security headers. In this case, you receive a generic error like the following when you try to execute a web method:

<ZSOAP>zInvokeClient+269"%SOAP .WebClient.1

Add the following to the web service or client and recompileit:

Class Member

Parameter SECURITYIN="REQUIRE";

This generic error can aso be caused by calling the web method incorrectly (for example, referring to areturn value
when the web method does not have one).

Thisitem does not apply if you are using WS-Policy.

In other cases, you might receive the following security error when you try to execute a web method:

ERROR #6454: No supported policy alternative in configuration
Policy.Client.DemolSoapConfig:service

See Items to Check in the Event of Security Errors.
The inbound message might have failed validation. If so, the SOAP log indicates this. For example:

08/05/2011 14:40:11
Input to Web client with SOAP action = http://www.myapp.org/XMLEncr_DivideWS.Divide
<?xml version="1.0" encoding="UTF-8" standalone="no* ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance® xmlns:s="http://www.w3.0rg/2001/XMLSchema*”
xmIns:wsse="http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-secext-1.0.xsd" >
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedAuthentication</faultcode>
<faultstring>The security token could not be authenticated or authorized</faultstring>
<detail></detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

See Items to Check in the Event of Security Errors.

16.3 Items to Check in the Event of Security Errors

If the inbound message failed validation or if InterSystems IRISissues the no supported policy aternative error, it is useful
to check the following items:

When you retrieve a stored InterSystems |RIS credential set, make sure that you type its name correctly.

After retrieving an InterSystems |RIS credential set, check the type of the object to ensure that it is
%SYS.X509Credentials.

Make sure that you are using the appropriate certificate.

If you areusing it for encryption, you use the certificate of the entity to whom you are sending the message. Encryption
uses the public key of this certificate.

94

Securing Web Services

Items to Check in the Event of Security Errors

If you are using it for signing, you use your own certificate, and you sign with the associated private key. In this case,
make sure that you have loaded the private key and that you have correctly specified the password for the private key
file.

Make sure that the certificates are signed by a certificate authority that istrusted by InterSystems IRIS.

If you are using WS-Palicy, be sureto edit the generated configuration classto specify the InterSystems | RIS credential
set to use. See Editing the Generated Policy.

If the web service requires a<UsernameToken>, make sure that InterSystems IRIS web client is sending this, and
that it contains correct information. InterSystems IRIS cannot automatically specify the <UsernameToken> to send;
this must be done at runtime. See Adding Timestamps and Username Tokens.

Make surethat at least one of the security policies required by web service or client is supported in InterSystems IRIS.
See SOAP Security Standards.

In the case of an authentication failure, identify the user in the <UsernameToken>, and examine the roles to which
that user belongs.

Securing Web Services 95

Details of the Security Elements

This topic discusses the more common security elements in SOAP messages, in particular the variations that can be sent
by InterSystems RIS web services and clients. Thisinformation isintended as a refresher for the memory of anyone who
does not continually work with SOAP. The details here may also be useful in troubleshooting.

A.l1 <BinarySecurityToken>

Thepurpose of <BinarySecurityToken> isto carry security credentialsthat are used by other elementsin the message,
for use by the message recipient. The security credentials are carried in serialized, encoded form. The following shows a
partial example:

<BinarySecurityToken wsu: ld="SecurityToken-4EC1997A-AD6B-48E3-9E91-8D50C8EA3B53""
EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#X509v3">
MI1CnDCCAYQ[parts omitted]ngHKNhh
</BinarySecurityToken>

A.1.1 Details

The parts of this element are as follows:

» 1distheuniqueidentifier for thistoken, included so that other elementsin this message can refer to this token. Inter-
Systems |RIS generates this automatically if necessary.

* EncodingType indicatesthetype of encoding that was used to generatethe valueinthe<BinarySecurityToken>.
In InterSystems IRIS, the only encoding used in a<BinarySecurityToken> is base-64 encoding.

» ValueType indicates the type of value that is contained in the token. In InterSystems IRIS, the only supported value
typeisan X.509 certificate.

» Thevalue contained within the <BinarySecurityToken> element is the serialized, encoded certificate. In this
example, the value MI ICNDCCAYQ[parts omitted]ngHKNhh isthe security credentials.

If thistoken is associated with an encryption action, then the contained certificate isthe certificate of the message recipient.
If this token is associated with signing, then the contained certificate is the certificate of the message sender.

A.1.2 Position in Message

A <BinarySecurityToken> should be included within <Security> before any elementsthat refer to it.

Securing Web Services 97

Details of the Security Elements

A.2 <EncryptedKey>

The purpose of <EncryptedKey> isto carry asymmetric key that isused by other elementsin the message. The symmetric
key is carried in encrypted form. The following shows a partial example:

<EncryptedKey xmlIns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="[parts omitted]xmlenc#rsa-oaep-mgflp'>
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#"
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’>
</DigestMethod>
</EncryptionMethod>
<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#SecurityToken-4EC1997A-AD6B-48E3-9E91-8D50C8EA3B53""
ValueType="[parts omitted]#X509v3"">
</Reference>
</SecurityTokenReference>
</KeyInfo>
<CipherData>
<CipherValue>WtE[parts omitted]bSyvg==</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#Enc-143BBBAA-B75D-49EB-86AC-B414D818109F"></DataReference>
</ReferencelList>
</EncryptedKey>

A.2.1 Detalls

The parts of this element are asfollows;
* <EncryptionMethod> indicates the algorithms that were used to encrypt the symmetric key.

In InterSystems IRIS, you can specify the key transport algorithm (shown by the Algor i thm attribute of
<EncryptionMethod>). See Specifying the Key Transport Algorithm.

* <KeylInfo> identifiesthe key that was used to encrypt this symmetric key. In InterSystems|RIS, <Key Info> includes
a<SecurityTokenReference>, which has one of the following forms:

— Areferenceto a<BinarySecurityToken> earlier in the WS-Security header, as shown in the preceding
example.

— Information to uniquely identify the certificate, which presumably the message recipient owns. For example, the
<SecurityTokenReference> could include the SHA1 thumbprint of the certificate, as follows:

<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1">
maedm8CNoh4zH8SMoF+3xViMYtc=
</Keyldentifier>
</SecurityTokenReference>

In both cases, the corresponding public key was used to encrypt the symmetric key that is carried in this
<EncryptedKey> element.

This element is omitted if the encryption uses atop-level <ReferencelL ist> element; see <Referencelist>.

» <CipherData> carriesthe encrypted symmetric key, asthe valuein the <CipherValue> element. In this example,
the value WtE[parts omitted]bSyvg== isthe encrypted symmetric key.

* <ReferencelList> indicatesthe part or parts of this message that were encrypted with the symmetric key carried in
this<EncryptedKey> element. Specificaly, the URI attribute of a<DataReference> pointsto the 1d attribute
of an <EncryptedData> element elsewhere in the message.

98 Securing Web Services

<EncryptedData>

Depending on the technique that you use, this element might not be included. It is possible to instead link a
<EncryptedData> and the corresponding <EncryptedKey> viaatop-level <ReferencelL i st> element; see
<Referencelist>.

A.2.2 Position in Message

An <EncryptedKey> element should be included within <Security> after any <BinarySecurityToken> that it
uses and before all <EncryptedData> and <Der ivedKeyToken> elements that refer to it.

A.3 <EncryptedData>

The purpose of <EncryptedData> isto carry encrypted data. The following shows a partial example:

<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
1d=""Enc-143BBBAA-B75D-49EB-86AC-B414D818109F""
Type="http://www.w3.0rg/2001/04/xmlenc#Content'>
<EncryptionMethod Algorithm="[parts omitted]#aesl128-cbc"></EncryptionMethod>
<CipherData>
<CipherValue>MLWR6hvKEOgon[parts omitted]8njiQ==</CipherValue>
</CipherData>
</EncryptedData>

A.3.1 Details

The parts of this element are as follows:
* Idisthe unique identifier for the element. InterSystems IRIS generates this automatically.
» <EncryptionMethod> indicates the algorithm that was used to encrypt this data.
In InterSystems IRIS, you can specify this algorithm. See Specifying the Block Encryption Algorithm.

e <CipherData> carriesthe encrypted data, asthe value in the <CipherVvalue> element. In this example, the value
MLWR6hvKEOgon[parts omitted]8njiQ==isthe encrypted data.

* (Not included in the example) <Key Info> identifies the symmetric key. In this case, <Key Info> includes a
<SecurityTokenReference> element, which includes areference to a symmetric key in one of the following
forms:

— A referenceto a<DerivedKeyToken> earlier in the WS-Security header.

— A referenceto animplied <DerivedKeyToken>. For example:

<KeylInfo xmlIns="http://www.w3.0rg/2000/09/xmldsig#">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd"
s01:Nonce="mMDkOzn8V7WTsFal juJ7zg==""
xmlns:s01="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512">
<Reference URI="#1d-93F97220-568E-47FC-B3E1-A2CF3F70B29B"></Reference>
</SecurityTokenReference>
</KeyInfo>

In this case, the URI attribute in <Reference> pointsto the <EncryptedKey> element used to generate the
<DerivedKeyToken>, and the Nonce attribute indicates the nonce value that was used.
In both cases, this derived key was used to encrypt the data that is carried in this <EncryptedData> element.

The <Key Info> element isincluded if the encryption uses atop-level <ReferencelL ist> element; see <Refer-
encelist>.

Securing Web Services 99

Details of the Security Elements

A.3.2 Position in Message

Within <Security>, an <EncryptedData> element should be included after the associated <EncryptedKey>.
An <EncryptedData> element can also be the child of the SOAP body (the <Body> element).

A.4 <Signature>

The purpose of <Signature> isto carry adigital signature that can be verified by the recipient of the message. You use
digital signatures to detect message alteration or to simply validate that a certain part of amessage was really generated by
the entity whichislisted. Aswith thetraditional manually written signature, adigital signatureisan addition to the document
that can be created only by the creator of that document and that cannot easily be forged.

The following shows a partial example:

<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-sha256'></SignatureMethod>
<Reference URI="#Timestamp-48CEE53E-E6C3-456C-9214-B7D533B2663F"">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'></DigestMethod>
<DigestValue>waSMFeYMruQn9XHx85HqunhMGIA=</DigestValue>

</Reference>
<Reference URI="#Body-73F08A5C-0FFD-4FE9-AC15-254423DBA6A2"">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"></Transform>
</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal'></DigestMethod>
<DigestValue>wDCgAzy5bLKKF+Rt0+YV/gxTQws=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>j6vtht/[parts omitted]trCQ==</SignatureValue>
<KeylInfo>
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#SecurityToken-411A262D-990E-49F3-8D12-7D7E56E15081""
ValueType=""[parts omitted]oasis-200401-wss-x509-token-profile-1.0#X509v3">
</Reference>
</SecurityTokenReference>
</KeyInfo>
</Signature>

A.4.1 Details

The parts of this element are as follows:

» <SignedInfo> indicatesthe parts of the message that are signed by this signature and indi cates how those partswere
processed before signing.

In InterSystems IRIS, you can specify the digest method (shown by the Algor i thm attribute of <Di gestMethod>).
See Specifying the Digest Method.

You can also specify the algorithm used to compute the signature (shown by the Algor i thm attribute of
<SignatureMethod>). See Specifying the Signature Method.

» <SignatureValue> holdsthe actual signature. In this case, the signature is6vtht/[parts omitted]trCQ==

Thisvalue is computed by encrypting the concatenated digests of the signed parts. The encryption is performed with
the private key of the sender.

100 Securing Web Services

<DerivedKeyToken>

» <KeylInfo> identifies the key that was used to create the signature. In InterSystems IRIS, <Key I nfo> includes a
<SecurityTokenReference>, which has one of several forms:

— A referenceto a<BinarySecurityToken> earlier in the WS-Security header, as shown in the preceding
example. In this case, the corresponding private key was used to create the signature.

— Information to identify a certificate, which presumably the message recipient has previously received and stored.
For example, the<SecurityTokenReference> could includethe SHA 1 thumbprint of the certificate, asfollows:

<SecurityTokenReference xmlIns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
ValueType="[parts omitted]#ThumbprintSHA1l">
maedm8CNoh4zH8SMoF+3xV1MYtc=
</Keyldentifier>
</SecurityTokenReference>

As with the previous case, the corresponding private key was used to create the signature.

— A referenceto a<DerivedKeyToken> earlier in the WS-Security header. For example:

<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#Enc-BACCE807-DB34-46AB-A9B8-42D05DOD1FFD" ></Reference>
</SecurityTokenReference>

In this case, the signature was created by the symmetric key indicated by that token.

— A referenceto an implied <DerivedKeyToken>. For example:

<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd"
s01:Nonce="mMDkOzn8V7WTsFal juJ7zg=="
xmIns:s01=""http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512">
<Reference URI="#1d-93F97220-568E-47FC-B3E1-A2CF3F70B29B" ></Reference>
</SecurityTokenReference>

In this case, the URI attribute in <Reference> pointsto the <EncryptedKey> element used to generate the
<DerivedKeyToken>, and the Nonce attribute indicates the nonce value that was used.

As with the previous case, the derived key was used to encrypt the data.

A.4.2 Position in Message

A <Signature> element should be included within <Secur i ty> after the <BinarySecurityToken> or
<DerivedKeyToken> that it uses, if any.

A.5 <DerivedKeyToken>

The purpose of <DerivedKeyToken> isto carry information that both the sender and the recipient can independently
use to generate the same symmetric key. These parties can use that symmetric key for encryption, decryption, signing, and
signature validation, for the associated parts of the SOAP message.

The following shows a partial example:

<DerivedKeyToken xmlIns="[parts omitted]ws-secureconversation/200512"
xmIns:wsc=""[parts omitted]ws-secureconversation/200512"
wsu: 1d="Enc-943C6673-E3F3-48E4-AA24-A7F82CCF6511"">
<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd">
<Reference URI="#1d-658202BF-239A-4A8C-A100-BB25579F366B"></Reference>
</SecurityTokenReference>
<Nonce>GbjRvVNrPtHs0zo/w9NeOw==</Nonce>
</DerivedKeyToken>

Securing Web Services 101

Details of the Security Elements

A.5.1 Details

The parts of this element are as follows:

Id isthe unique identifier for the element. InterSystems | RIS generates this automatically.
<EncryptionMethod> indicates the algorithm that was used to encrypt this data.
In InterSystems IRIS, you can specify this algorithm. See Specifying the Block Encryption Algorithm.

<SecurityTokenReference> indicates the symmetric key to use as a basis when computing the derived key. This
can contain a<Reference> element whose URI attribute pointsto either an <EncryptedKey> or another
<DerivedKeyToken> in the same message.

Or <SecurityTokenReference> can contain a<Keyldentifier> that references the SHA1 hash of the
<EncryptedKey> that was used. For example:

<SecurityTokenReference xmlns="[parts omitted]oasis-200401-wss-wssecurity-secext-1.0.xsd"
s01:TokenType=""[parts omitted]#EncryptedKey"
xmIns:s01="h[parts omitted]oasis-wss-wssecurity-secext-1.1.xsd">
<Keyldentifier EncodingType="[parts omitted]#Base64Binary"
[parts omitted]#EncryptedKeySHA1">
UBCEWXdUPs 1K/ r8JT+2KdwU/gSw=
</Keyldentifier>
</SecurityTokenReference>

<Nonce> isthe base-64—-encoded value that was used the seed in the key derivation function for this derived key.

Computation for the <DerivedKeyToken> element uses a subset of the mechanism defined for TLS in RFC 2246.

The connection between the <Der i vedKeyToken> element and the associated <EncryptedData> or <Signature>
elementsis handled as follows:

Each <DerivedKeyToken> includes an Id attribute with a unique identifier.

Within each <EncryptedData> element that has been encrypted by the symmetric key indicated by a given
<DerivedKeyToken>, thereisa<SecurityTokenReference> e ement whose URI attribute points to that
<DerivedKeyToken>.

Within each <Signature> element whose value was computed by the symmetric key indicated by a given
<DerivedKeyToken>, thereisa<SecurityTokenReference> element whose URI attribute points to that
<DerivedKeyToken>.

Each <EncryptedData> and <Signature> element also includes the 1d attribute with a unique identifier.

The WS-Security header includes a<Referencel i st> element that refersto the <EncryptedData> and
<Signature> elements.

A.5.2 Position in Message

A <DerivedKeyToken> should be included within <Security> before any <EncryptedData> and <Signature>
elementsthat refer toit.

102

Securing Web Services

<ReferencelList>

A.6 <ReferenceList>

This section discusses the <Referencel i st> element, when used as a child of <Security> in the message header.
When <ReferenceList> isused in thisway, it is possible to perform encryption before signing. The following shows
an example of this element:

<ReferenceList xmIns="http://www._.w3.0rg/2001/04/xmlenc#">
<DataReference URI="#Enc-358FB189-81B3-465D-AFEC-BC28A92B179C"'></DataReference>
<DataReference URI="#Enc-9EF5CCE4-CF43-407F-921D-931B5159672D""></DataReference>
</ReferencelList>

A.6.1 Details

In each <DataReference> element, the URI attribute points to the Id attribute of an <EncryptedData> element
elsewhere in the message.

When you use atop-level <ReferencelList> element, the details are different for <EncryptedKey> and
<EncryptedData>, asfollows:;

Scenario <Encr ypt edKey> <Encr ypt edDat a>
<EncryptedKey> contains pointer | Includes <KeylInfo> (same for all | Does not include <KeylInfo>
to <EncryptedData> associated <EncryptedData>

elements)
Top-level <ReferenceList> Does not include <KeyInfo> Includes <Key Info> (potentially
element contains pointer to different for each
<EncryptedData> <EncryptedData> element.

A.6.2 Position in Message

Within <Security>, a<ReferenceList> element should beincluded after the associated <EncryptedKey>.

Securing Web Services 103

	Table of Contents
	1 Securing Web Services with SOAP
	1.1 Tools in InterSystems IRIS Relevant to SOAP Security
	1.2 A Brief Look at the WS-Security Header
	1.3 SOAP Security Standards
	1.3.1 WS-Security Support in InterSystems IRIS
	1.3.2 WS-Policy Support in InterSystems IRIS
	1.3.3 WS-SecureConversation Support in InterSystems IRIS
	1.3.4 WS-ReliableMessaging Support in InterSystems IRIS

	2 Setup and Other Common Activities
	2.1 Performing Setup Tasks
	2.1.1 Providing Trusted Certificates for InterSystems IRIS to Use
	2.1.2 Creating and Editing InterSystems IRIS Credential Sets

	2.2 Retrieving Credential Sets Programmatically
	2.2.1 Retrieving a Stored Credential Set
	2.2.2 Retrieving a Certificate from an Inbound Message

	2.3 Specifying the SSL/TLS Configuration for the Client to Use

	3 Creating and Using Policies
	3.1 Overview
	3.1.1 Effect of the Configuration Class
	3.1.2 Relationship to WS-Security, WS-Addressing, and MTOM Support
	3.1.3 Relationship of Web Service and Web Client

	3.2 Creating and Attaching Policies
	3.2.1 Generating the Policy from the WSDL

	3.3 Editing the Generated Policy
	3.4 Adding a Certificate at Runtime
	3.5 Specifying a Policy at Runtime
	3.6 Suppressing Compilation Errors for Unsupported Policies

	4 WS-Policy Configuration Class Details
	4.1 Configuration Class Basics
	4.2 Adding InterSystems Extension Attributes
	4.3 Details for the Configuration XData Block
	4.3.1 <configuration>
	4.3.2 <service>
	4.3.3 <method>
	4.3.4 <request>
	4.3.5 <response>

	4.4 Example Custom Configurations
	4.4.1 Configuration with Policy Alternatives
	4.4.2 Configuration with Policy Reference

	5 Adding Security Elements Manually
	5.1 Adding Security Header Elements
	5.2 Order of Header Elements

	6 Adding Timestamps and Username Tokens
	6.1 Overview
	6.2 Adding a Timestamp
	6.3 Adding a Username Token
	6.4 Timestamp and Username Token Example

	7 Encrypting the SOAP Body
	7.1 Overview of Encryption
	7.2 Encrypting the SOAP Body
	7.2.1 Variation: Using Information That Identifies the Certificate
	7.2.2 Variation: Using a Signed SAML Assertion

	7.3 Message Encryption Examples
	7.4 Specifying the Block Encryption Algorithm
	7.5 Specifying the Key Transport Algorithm

	8 Encrypting Security Header Elements
	8.1 Encrypting Security Header Elements
	8.2 Basic Examples

	9 Adding Digital Signatures
	9.1 Overview of Digital Signatures
	9.2 Adding a Digital Signature
	9.2.1 Example

	9.3 Other Ways to Use the Certificate with the Signature
	9.3.1 Variation: Using Information That Identifies the Certificate
	9.3.2 Variation: Using a Signed SAML Assertion

	9.4 Applying a Digital Signature to Specific Message Parts
	9.5 Specifying the Digest Method
	9.6 Specifying the Signature Method
	9.7 Specifying the Canonicalization Method for <KeyInfo>
	9.8 Adding Signature Confirmation

	10 Using Derived Key Tokens for Encryption and Signing
	10.1 Overview
	10.2 Creating and Adding a <DerivedKeyToken>
	10.2.1 Variation: Creating an Implied <DerivedKeyToken>
	10.2.2 Variation: Referencing the SHA1 Hash of an <EncryptedKey>

	10.3 Using a <DerivedKeyToken> for Encryption
	10.4 Using a <DerivedKeyToken> for Signing

	11 Combining Encryption and Signing
	11.1 Signing and Then Encrypting with Asymmetric Keys
	11.2 Encrypting and Then Signing with Asymmetric Keys
	11.3 Signing and Then Encrypting with Symmetric Keys
	11.3.1 Using <DerivedKeyToken> Elements

	11.4 Encrypting and Then Signing with Symmetric Keys
	11.5 Order of Security Header Elements

	12 Validating and Decrypting Inbound Messages
	12.1 Overview
	12.2 Validating WS-Security Headers
	12.3 Accessing a SAML Assertion in the WS-Security Header
	12.4 Instance Authentication and WS-Security
	12.5 Retrieving a Security Header Element
	12.6 Checking the Signature Confirmation

	13 Creating Secure Conversations
	13.1 Overview
	13.2 Starting a Secure Conversation
	13.3 Enabling an InterSystems IRIS Web Service to Support WS-SecureConversation
	13.4 Using the <SecurityContextToken>
	13.5 Ending a Secure Conversation

	14 Using WS-ReliableMessaging
	14.1 Sending a Sequence of Messages from the Web Client
	14.2 Signing the WS-ReliableMessaging Headers
	14.2.1 Signing the Headers with the SecurityContextToken
	14.2.2 Signing the Headers When Signing the Message

	14.3 Modifying a Web Service to Support WS-ReliableMessaging
	14.4 Controlling How the Web Service Handles Reliable Messaging

	15 Creating and Adding SAML Tokens
	15.1 Overview
	15.2 Basic Steps
	15.2.1 Variation: Not Using a <BinarySecurityToken>
	15.2.2 Variation: Creating an Unsigned SAML Assertion

	15.3 Adding SAML Statements
	15.4 Adding a <Subject> Element
	15.5 Adding a <SubjectConfirmation> Element
	15.5.1 <SubjectConfirmation> with Method Holder-of-key
	15.5.2 <SubjectConfirmation> with Method Sender-vouches
	15.5.3 <SubjectConfirmation> with <EncryptedKey>
	15.5.4 <SubjectConfirmation> with BinarySecret as Holder-of-key

	15.6 Adding a <Conditions> Element
	15.7 Adding <Advice> Elements

	16 Troubleshooting Security Problems
	16.1 Information Needed for Troubleshooting
	16.2 Possible Errors
	16.3 Items to Check in the Event of Security Errors

	Appendix A: Details of the Security Elements
	A.1 <BinarySecurityToken>
	A.1.1 Details
	A.1.2 Position in Message

	A.2 <EncryptedKey>
	A.2.1 Details
	A.2.2 Position in Message

	A.3 <EncryptedData>
	A.3.1 Details
	A.3.2 Position in Message

	A.4 <Signature>
	A.4.1 Details
	A.4.2 Position in Message

	A.5 <DerivedKeyToken>
	A.5.1 Details
	A.5.2 Position in Message

	A.6 <ReferenceList>
	A.6.1 Details
	A.6.2 Position in Message

	Index

