%DeepSee.extensions.clusters.AbstractModel
class %DeepSee.extensions.clusters.AbstractModel extends %Library.RegisteredObject
This class provides a base class for implementation for different Cluster Analysis algorithms. It defines storage for clustering models and provides methods to retrieve information about data and clustering.Cluster analysis or clustering is the assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense. Clustering is a method of unsupervised learning, and a common technique for statistical data analysis used in many fields, including machine learning, data mining, pattern recognition, image analysis, information retrieval, and bioinformatics.
By Default model data is stored in ^CacheTemp globals.
Property Inventory
Method Inventory
- ById()
- Delete()
- Distance()
- Distance1()
- Distance12()
- Exists()
- GeneratePMML()
- GetASWIndex()
- GetCalinskiHarabaszIndex()
- GetCentroid()
- GetCluster()
- GetClusterSize()
- GetCost()
- GetCount()
- GetData()
- GetDimensions()
- GetId()
- GetNumberOfClusters()
- GetPearsonGammaIndex()
- GlobalCentroid()
- IsPrepared()
- RelativeClusterCost()
- Reset()
- SetData()
- SubsetCentroid()
- iterateCluster()
- printAll()
- printCluster()
- randomSubset()
Properties
Methods
- i, j - Ordinal number of the data points in the model
- p - Optional, if specified the power for a Minkowski distance. Default is Euclidean distance (p=2). Specify 1 for Manhattan Distance or 100 for Chebyshev distance (max between coordinates).
- normalize - whether to normalize coordinates by their variances
- i - The ordinal number of the data point in the model
- z - The multidimensional coordinates of the second point: z(1), z(2), ..., z(dim)
- p - Optional, if specified the power for a Minkowski distance. Default is Euclidean distance (p=2). Specify 1 for Manhattan Distance or 100 for Chebyshev distance (max between coordinates).
- normalize - whether to normalize coordinates by their variances
- z1, z2 - The multidimensional coordinates of the points: z1(1), z1(2), ..., z1(dim)
- p - Optional, if specified the power for a Minkowski distance. Default is Euclidean distance (p=2). Specify 1 for Manhattan Distance or 100 for Chebyshev distance (max between coordinates).
- normalize - whether to normalize coordinates by their variances
Coordinates are returned as multidimensional value: z(1), z(2), ..., z(dim)
Coordinates are returned as multidimensional value: z(1), z(2), ..., z(dim)
- rs - is a result set that provides the data. The first column returned by the result set is assumed to be a unique Id of teh record. It is not used in any clustering algorithms but can be retrieved by the application to identify the record. It can be a database %ID or any other value that makes sense to the application. Other columns provide numerical values for the coordinates of the record that are used by clustering algorithms. Result Set must contain at least dim + 1 columns.
- dim - The dimensionality of the model, i.e. the number of the coordinates consumed by clustering algorithm.
- nullReplacement - Optional, of specified this is a numeric replacement for empty values.
Inherited Members
Inherited Methods
- %AddToSaveSet()
- %ClassIsLatestVersion()
- %ClassName()
- %ConstructClone()
- %DispatchClassMethod()
- %DispatchGetModified()
- %DispatchGetProperty()
- %DispatchMethod()
- %DispatchSetModified()
- %DispatchSetMultidimProperty()
- %DispatchSetProperty()
- %Extends()
- %GetParameter()
- %IsA()
- %IsModified()
- %New()
- %NormalizeObject()
- %ObjectModified()
- %OriginalNamespace()
- %PackageName()
- %RemoveFromSaveSet()
- %SerializeObject()
- %SetModified()
- %ValidateObject()