Skip to main content

Introduction to ML

IntegratedML is a feature within InterSystems IRIS® which allows you to use automated machine learning functions directly from SQL to create and use predictive models.


Successful organizations recognize the need to develop applications that effectively harness the massive amounts of data available to them. These organizations want to use machine learning to train predictive models from large datasets, so that they can make critical decisions based on their data. This places organizations without the in-house expertise to build machine learning models at a significant disadvantage. For this reason, InterSystems has created IntegratedML.

IntegratedML enables developers and data analysts to build and deploy machine learning models within a SQL environment, without any expertise required in feature engineering or machine learning algorithms. Using IntegratedML, developers can use SQL queries to create, train, validate, and execute machine learning models.

IntegratedML considerably reduces the barrier to entry into using machine learning, enabling a quick transition from having raw data to having an implemented model. It is not meant to replace data scientists, but rather complement them.


To use IntegratedML, you need an introductory understanding of several commonly used terms:

  • Machine learning

  • Models

  • Training

  • Features and labels

  • Model validation

What is Machine Learning?

Machine learning is the study of computer algorithms that identify and extract patterns from data in order to build and use predictive models.

Traditional Programming vs. Machine Learning

In traditional programming, a program is manually developed that, when executed on input data, generates the desired output. In machine learning, the computer takes sample data and its known (or expected) output to develop a program (in this case, a predictive model), which can in turn be executed on further data.

Training a Model

The training process is how a machine learning algorithm develops a predictive model. The algorithm uses sample data, or training data, to identify patterns that map the inputs to the desired output. These inputs (or features) and outputs (or labels) are columns in the data set. A trained machine learning model has an algorithmically derived relationship between the features and the resulting label.

Validating a Model

After training a model, but before deployment, you can validate your model to confirm that is useful on data aside from the data that was used to train it. Model validation is the process of evaluating a model’s predictive performance by comparing the model’s output to the results of real data. While training data was used to train the model, testing data is used to validate it. In the simplest case, the testing dataset is data from an original dataset that is set aside from the training data.

Using a Model

A trained machine learning model is used to make predictions on new data. This data must contain the same features as the training and testing data, but without the label column as this is the output of the model.